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PREFACE. 

The fact that certain bodies, after being rubbed, 

appear to attract other bodies, was Icnown to the 

ancients. In modem times, a great variety of other 

phenomena have been observed, and have been found 

to be related to these phenomena of attraction. They 

have been classed under the name of Electric phe¬ 

nomena, amber, fikeKrpov, having been the substance 

in which they were first described. 

Otlier bodies, particulai’ly the loadstone, and pieces 

of iron and steel which have been subjected to certain 

processes, have also been long known to exhibit phe¬ 

nomena of action at a distance. These phenomena, 

with others related to them, were found to differ from 

the electric phenomena, and have been classed under 

the name of Magnetic phenomena, the loadstone, ndyvijs, 

being found in the Thessalian Magnesia. 

These two classes of phenomena have since been 

found to be related to each other, and the relations 

between the various phenomena of both classes, so 

far as they are kno^vn, constitute the science of Elec¬ 

tromagnetism. 

In the following Treatise I propose to describe the 
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most important of tliesc plienomena, to shew how they 

may he subjected to measurement, and to trace the 

mathematical connexions of the quantities measured. 

Having- thus obtained the data for a mathematical 

theory of electromagnetism, and having shewn how 

this theory may ho applied to tlie calculation of phe¬ 

nomena, I shall endeavour to place in as clear a light 

as I can the relations between the mathematical form 

of this tlieory and that of the fundamental science of 

Dynamics, in order that we may be in some degree 

prepai’ed to determine the kind of dynamical pheno¬ 

mena among -which we arc to look for illustrations or 

explanations of the electromagnetic phenomena. 

In describing the phenomena, I shall select those 

which most clearly illustrate the fundamental ideas of 

the theory, omitting others, or reserving them till the 

reader is more advanced. 

The most important aspect of any phenomenon from 

a mathematical point of view is that of a measurable 

quantity. I shall therefore consider electrical pheno¬ 

mena chiefly with a view to their measurement, de¬ 

scribing the methods of measurement, and defining 

the standards on which they depend. 

In the application of mathematics to the calculation 

of electrical quantities, I shall endeavour in the first 

place to deduce the most general conclusions from the 

data at our disposal, and in the next place to apply 

the results to the simplest cases that can be chosen. 

I shall avoid, as much as I can, those questions which, 

though they have elicited the skill of mathematicians, 

have not enlarged our knowledge of science. 
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Tlie internal relations of the different branches of 

the science which we have to study are more numerous 

and complex than those of any other science hitherto 

developed. Its external relations, on the one hand to 

dynamics, and on the other to heat, light, chemical 

action, and the constitution of bodies, seem to indicate 

the special importance of electrical science as an aid 

to the interpretation of nature. 

It appears to me, therefore, that the study of elec¬ 

tromagnetism in all its extent has noAv become of the 

first importance as a means of promoting the progress 

of science. 

The mathematical laws of the different classes of 

phenomena have been to a great extent satisfactorily 

made out. 

The connexions between the different classes of phe¬ 

nomena have also been investigated, and the proba¬ 

bility of the rigorous exactness of the experimental 

laws has been greatly strengthened by a more extended 

knowledge of their relations to each other. 

Finally, some progress has been made in the re¬ 

duction of electromagnetism to a dynamical science, 

by shewing that no electromagnetic phenomenon is 

contradictory to the supposition that it depends on 

purely dynamical action. 

What has been hitherto done, however, has by no 

means exhausted the field of electrical research. It 

has rather opened up that field, by pointing out sub¬ 

jects of enquiry, and furnishing us with means of 

investigation. 

It is hardly necessary to enlarge upon the beneficial 
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results of magnetic research on navigation, and the 

iinpoi’tance of a knowledge of the time direction of 

the compass, and of the effect of the iron in a ship. 

But the labours of those who have endeavoured to 

render navigation more secure bj means of magnetic 

observations have at the same time greatly advanced 

the progi’ess of pure science. 

Gauss, as a member of the German Magnetic Union, 

brought his powerful intellect to bear on the theory 

of magnetism, and on the methods of observing it, 

and he not only added greatly to our knowledge of 

the theory of attractions, but reconstructed the whole 

of magnetic science as regards the instruments used, 

the methods of observation, and the calculation of the 

results, so that his memoirs on Terrestrial Magnetism 

may be taken as models of physical research by all 

those who ai’e engaged in the measurement of any 

of tlic forces in nature. 

The important applications of electromagnetism to 

telegraphy have also reacted on pure science by giving 

a commercial value to accurate electrical measure¬ 

ments, and by affording to electricians the use of 

apparatus on a scale which greatly transcends that 

of any ordinary laboratory. The consequences of this 

demand for electrical knowledge, and of these experi¬ 

mental opportunities for acquiring it, have been already 

very great, both in stimulating the energies of ad¬ 

vanced electricians, and in diffusing among practical 

men a degree of accurate knowledge which is likely 

to conduce to the general scientific progress of the 

whole engineering profession. 
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There ai'e several treatises in which electrical and 

magnetic phenomena are described in a popiilai* way. 

These, however, are not what is wanted by those who 

have been brought face to face with quantities to he 

measured, and whose minds do not rest satisfied with 

lecture-room experiments. 

There is also a considerable mass of mathematical 

memoii-s which ai-e of great importance in electrical 

science, but they lie concealed in the bulky Trans¬ 

actions of learned societies; they do not form a con¬ 

nected system; they are of very unequal merit, and 

they ai’e for the most part beyond the comprehension 

of any but professed mathematicians, 

I have therefore thought that a treatise would be 

useful which should have for its principal object to 

take up the whole subject in a methodical manner, 

and which should also indicate hoAv each paid of the 

subject is brought within the reach of methods of 

verification by actual measurement. 

The general complexion of the treatise differs con¬ 

siderably from that of several excellent electrical 

works, published, most of them, in Germany, and it 

may appear that scant justice is done to the specu¬ 

lations of several eminent electricians and mathema¬ 

ticians. One reason of this is that before I began 

the study of electricity I resolved to read no mathe¬ 

matics on the subject till I had first read through 

Faraday’s Experimental Researches on Electricity. I 

was aware that there was supposed to be a difference 

between Faraday’s way of conceiving phenomena and 

that of the mathematicians, so that neither he nor 



X PREFACE. 

they were satisfied with each other’s language. I had 

also the conviction that this discrepancy did not arise 

from either party being wrong. I was first convinced 

of this by Sir William Thomson * to whose advice and 

assistance, as well as to his published papers, I owe 

most of what I have learned on the subject. 

As I proceeded with the study of Faraday, I per¬ 

ceived that his method of conceiving the phenomena 

was also a mathematical one, though not exhibited 

in the conventional form of mathematical symbols. I 

also found that these methods were capable of being 

expressed in the ordinary mathematical forms, and 

thus compared with those of the professed mathema¬ 

ticians. 

For instance, Faimlay, in his mind’s eye, saw lines 

of force traversing all space where the mathematicians 

saw centres of force attracting at a distance : Fai’aday 

saw a medium where they saw nothing but distance : 

Faraday sought the seat of the phenomena in real 

actions going on in the medium, they were satisfied 

that they had found it in a power of action at a 

distance impressed on the electric fluids. 

When I had translated what I considered to be 

Faraday’s ideas into a mathematical foim, I found 

that in general the results of the two methods coin¬ 

cided, so that the same phenomena were accounted 

for, and the same laws of action deduced by both 

methods, but that Faraday’s methods resembled those 

* I take this opportunity of acknowledging my obligations to Sir 

^V. Thoinson and to Professor Tait for many valuable suggestions made 

during the printing of this work. 
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ill wliicli we begin with the whole and arrive at the 

jiarts by analysis, while the ordinary mathematical 

methods were founded on the principle of beginning 

with the parts and building up the whole by syn¬ 

thesis. 

I also found that several of the most fertile methods 

of research discovered by the mathematicians could be 

expressed much better in temis of ideas derived from 

Faraday than in their original form. 

Tire whole theory, for instance, of the potential, con¬ 

sidered as a quantity which satisfies a certain partial 

differential equation, belongs essentially to the method 

which I have called that of Faraday. According to 

tlie other method, the potential, if it is to be considered 

at all, must be regarded as the result of a summa¬ 

tion of the electrified particles divided each by its dis¬ 

tance from a given point. Hence many of the mathe¬ 

matical discoveries of Laplace, Poisson, Green and 

Gauss find their proper place in this treatise, and their 

appropriate exjiression in terms of conceptions mainly 

derived from Faraday. 

Great progress has been made in electrical science, 

chiefly in Germany, by cultivators of the theory of 

action at a distance. The valuable electrical measure¬ 

ments of W. Weber are interpreted by him according 

to this theory, and the electromagnetic si)eculation 

which was originated by Gauss, and carried on by 

Weber, Riemann, J. and C. Neumann, Lorenz, &c. is 

founded on the theory of action at a distance, but 

depending either directly on the relative velocity of the 

particles, or on the gradual propagation of something, 
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whether potential or force, from the one particle to 

the other. Tlie great success which these eminent 

men have attained in the application of mathematics 

to electrical phenomena gives, as is natural, addi¬ 

tional weight to their theoretical speculations, so that 

those who, as students of electricity, turn to them as 

the greatest authorities in mathematical electricity, 

would probably imbibe, along with their mathematical 

methods, their physical hypotheses. 

These physical hypotheses, however, are entirely 

alien from the Avay of looking at things which I 

adopt, and one object which I have in view is that 

some of those who vdsh to study electricity may, by 

reading this treatise, come to see that there is another 

way of treating the subject, which is no less fitted to 

explain the phenomena, and which, though in some 

parts it may appear less definite, corresponds, as I 

think, more faithfully with our actual knowledge, both 

in vdiat it affirms and in what it leaves undecided. 

In a philosophical point of view, moreover, it is 

exceedingly important that two methods should be 

comparcd, both of which have succeeded in explaining 

the principal electromagnetic phenomena, and both of 

which have attempted to explain the propagation of 

light as an electromagnetic phenomenon, and have 

actually calculated its velocity, while at the same time 

the fundamental conceptions of what actually takes 

place, as well as most of the secondary conceptions of 

the quantities concerned, are radically different. 

I have therefore taken the part of an advocate rather 

than that of a judge, and have rather exemplified one 
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method than attempted to give an impartial description 

of both, I have no doubt tliat the method which I 

iiave called the German one will also find its sup¬ 

porters, and will be expounded with a skill worthy 

of its ingenuity. 

I have not attempted an exhaustive account of elec¬ 

trical phenomena, experiments, and apparatus. The 

student who desires to read all that is know on these 

subjects M'ill find great assistance from the Traite 

iVElectricity of Professor A. de la Rive, and from several 

German treatises, such as Wiedemann’s Galvanismiis, 

Riess’ Reihungselekiricitat, Beer’s Einleit^ing in die Elek- 

irostatilCi &c, 

I have confined myself almost entirely to the ma¬ 

thematical treatment of the subject, but I would 

recommend the student, after he has learned, experi¬ 

mentally if possible, what are the phenomena to be 

observed, to read carefully Faraday’s ExjperimeAdal 

Researches in Electricity. He will there find a strictly 

contemporary historical account of some of the greatest 

electrical discoveries and investigations, carried on in 

an order and succession which could hardly have been 

improved if the results had been known from the 

first, and expressed in the language of a man who 

devoted much of his attention to the methods of ac¬ 

curately describing scientific operations and their re¬ 

sults *. 

It is of great advanta<,m to the student of any 

subject to read the original memoirs on that subject, 

for science is always most completely assimilated when 

■* Life and Lett&'s of P'arailay, vol, i. p. 395. 
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it is in the nascent state, and in the case of Faraday’s 

Researches this is comparatively easy, as they are 

published in a separate form, and may be read con¬ 

secutively. If by anything I have here written I 

may assist any student in understanding Faraday’s 

inodes of thought and expression, I shall regal’d it as 

the accomplishment of one of my principal aims—to 

communicate to others the same delight which I have 

found myself in reading Faraday’s Researches. 

The descri])tion of the phenomena, and the ele¬ 

mentary parts of the theory of each subject, will be 

found in the earlier chapters of each of the four Parts 

into -which this treatise is divided. The student will 

find in these chapters enough to give him an elementary 

acquaintance with the whole science. 

The remaining chapters of each Part are occupied 

■with the higher parts of the theory, the processes of 

numerical calculation, and the instruments and methods 

of experimental research. 

The relations between electromagnetic phenomena 

and those of radiation, the theory of molecular electric 

currents, and the results of speculation on the nature 

of action at a distance, are treated of in the last four 

chapters of the second volume. 

Fel. 1, 1873, 
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ELECTRICITY AND MAGNETISM. 





ERRATA. VOL. I. 1 

Page 26, 1. 3 from lioftoni, dele ‘As we liavc made no assiinijition', &p, 
down to 1. 7 of p. 27, ‘the e.\i)i'C.saioii may then ho written’, niicl 
substitute as Follows ;— 

Let us now supposo that tlie curves fur which a is coii.stant 
form n series of closed curves, suiroumliug the point on the surface 
for whiuh a has its niiiiiiniini value, the last curve of the series, 
for which a = a,, eoineiiling with the original closed curve a. 

Let us also sup]ioso that the curves for which fi is constant form 
a series of lines flrawii from the ])oiiit at which n = to the. 
clo.«ecl curve.*!, the fir.st, j3,„ and the last, /3,, being iclentieal. 

Integrating (8) by parts, the first teriu with i’es])cct to a aiul 
the seconil with res])cct to j3, the double integrals destroy each 
other. The line integral. 

is zero, because the curve a = a„ is reduced to a point at which 
there is bat one value of A” and cf.^'. 

The two Hue iiitegrahs. 

da+r'{x 
J CLO P = Pl .'“0 

da, 
-Pi .'ofl P^-Po 

destroy each other, because the point (a, /3^) is identical with the 
point (a, /d„). 

The cxj)iCbsion (8) is therefore reduced to 

(«) 

Since the curve a = is identical with the closed cui-ve s, we 
may write this e.xprcssion 

p. 80, in equations (3), (4), (G), (8), (17), (18), (19), (20), (21), (22), for 
Ji read X. 

p. 82, 1. 3, for Itl read XL 
d~V i'^V’ 

p. 83, in equations (28), (29), (30), (31), for read 

„ in cfiuation (29), insert — before the second member, 
p. 105, 1. 2, for Q read SirQ. 
p. 108, equation (1), for p read //. 

„ „ (2), for // read f>. 
„ „ (3), for (T read o'. „ „ (‘1), for a-' read <r. 

p. 113, 1. 4, for KB read — KB, 
Itt 

„ 1. 5, for KBR'case read Y^KRR'eopf. 

p. 114, I. 5, for S, read S. 
p. 124, last linn, for ej+Cj read ei4c.j. 
p. 125, lines 3 and 4, transpose within and without; 1, 16, for v 

read V”; and 1. 18, for V read v. 
p. 128, lines 11, 10, 8 from bottom, for dx read dz. 
p. 149, 1. 24, for ecpipoteutial read ecpiipotcutial. 



0 EEEATA. VOL. 1. 

.2^3 6'* a 

159, 1. 3, for F read f. 

,, 1. 2 from bottom, for M read d\f^. 

1C3, 1. 20, for Ai_,(.i read 

lG-1, equation (34), for read (-1)'- 

179, equation (7G), for i + l read 2? + l. 
O’? . o o 

185, equation (24), for —;7= 1 read —— „'■■■„= 1. 
0- c- 6“ C- — 0- 

18G, 1. 5 from bottom, for ‘The purfiiee-density on the elliptic jjlate’ 
read The siirfuce-clensity on eitlior side of tlie ellii)tic jdate. 

18(i, eqiiiitioii (30), for 2tt read ■iir. 
188, ciiuntion (38), for 77- read 2r. 

190, 1.27, for e..e read e^..e.y 
Ee 

197, equation (IO)kIiouIcI be M =■ ^ 

20‘1, 1. 15 from bottom, dele either. 

215, 1.1, for ^2k read \/2h, 
E 

231, equation (13), for 2E read — • 

335, dele last 11 lines. 
330, 1. 1, dede therefore. 
,, 1. 2, for ‘ the potential at C to exceed that at B by P,' read a 

current, C, from F to 
,, 1. 1, for ‘ C to B will cause the potential at A to exceed that at 

Ji by the same quantity P,’ read X to Y will cause mi equal 
cun-i'iit C from A to 5. 

3.51, 1. 3, for PAo--\-lifiv- read /f, ?<-+/igw-+ ifgle®. 

„ 1. 5, read + 2 // / (u~ + v-g + w _) dxdydz. 

355, last line, for S' rend S. 
^,2 ^2 

35G, equation (12), for read • 
cl j do' 

3G5, in eipiutioiis (12), (15), (IG), for A read Ar. 

/in £., 
3GG, equation (3), for —- read — 

r, r., 

3G7, 1. 5, for 2/•,.<? read 2LS\ 
3G8, equation (11), for Jf read If 

397, 1. 1. for ~h' read ^5', 
Jj Jli 

104, at the cud of Art. 350 insert as follows :— 

When y, the resi.staiiee to be measured, a, the resi.stance of the 
battery, and a, the re.sistauce of the galvanometer, are given, the 
best values of the other resi.stMnce3 have been shewn by Mr. Oliver 
Heaviside {Phih Ma'j,, Feb. 1873) to be 

c = \/tm, b = ^ay -, /3 = ay ——2', 
a + y ' aq-y 



ELECTEICITY AND MAGNETISM, 

PRELIMINARY. 

ON THE MEA,SUI{EMENT OF QUANTITIES. 

1.] Eveuy expression of a Quantity consists of two factors or 

components. One of tliese is tlie name of a eertiiin known quan¬ 

tity of the same kind as the quantity to lie expressed, which is 

taken as a standard of reference. The other component is the 

nunilior of times the standard is to he taken in order to make up 

the required quantity. The standard quantity is teehiiieally called 

the Unit, and the number is calk'd the Numerical Value of the 

quantity. 

There must be as man}’" dilfereiit units as there are different 

kinds of quantities to be nicasnred, but in all dynamical sciences 

it is po.ssihle to define these units in terms of the three funda¬ 

mental units of Length, Time, and Mass. Thus the units of area 

and of volume are defined respectively as the square and the cube 

whose sides are the unit of length. 

Sometimes, however, we find several units of the same kind 

founded on independent considerations. Thus the gallon, or the 

volume of ten pounds of water, is used as a unit of capacity as well 

as the cubic foot. Tlie gallon miiy be a convenient measure in 

some cases, but it is not a systematic one, since its numerical re¬ 

lation to the cubic foot is not a round integral number. 

2.] In framing a mathematieal system we suppose the funda¬ 

mental units of length, time, and mass to be given, and deduce 

all the derivative units from these by the simplest attainable de¬ 

finitions. 

The formulae at which we arrive must be such that a person 

13 



2 rilELlMINAHV. [3- 

of aiij nation, Ijy substituting for tho different symbols tlie nu¬ 

merical value of the <ju:nitilies ns measured l)y liis own national 

units, would arrivi' nt a 1rii(> result. 

Henee, in all .seientifie studies it i.s of the greatest iniportaiiee 

to employ iinils belong-ing to a ])roperly defined system, and to 

know the relations of these units to the fundamental units, so that 

've limy be able at onee to triiusforin our results from one system to 

another. 

This is most conveniently done by ascertaining' the diineiisions 

of every unit iii terms of the three fundamental units. When a 

given unit varies as the ;ith power of one of these units, it is said 

to he of n dimcmlons as regards that unit. 

For instance, the scientific unit of volume is always the cube 

who,se side is the unit of length. If the unit of length varies, 

tho unit of volume will vary as its third power, and the unit of 

volume is said to be of three dimensions with respect to the unit of 

leng-th, 

A knowledge of the dimensions of units furnishes a test which 

oiig-lit to he a])[)lied to the eipiations resulting from any lengthened 

investigation. The dimensions of every'^ term of such an ecpia- 

tioii, with respect to each of the three lundainental units, must 

be the same. If not, the equation is alisurd, and contains some 

error, as its interpretation would be different according to the arbi¬ 

trary system of units whieli we adopt*. 

The Three Fundamental Units. 

3.] (1) Lenyth. The standard of length for scientific purposes 

in thi.s country is one foot, whicdi is the third part of the standard 

yard pre,served in the Fxchequer Chambers. 

In France, and other countries which have adopted the metne 

system, it is the metre. The metre is theoretically the ten mil¬ 

lionth part of the length of a meridian of the earth measured 

from the pole to tlie equator; hut practically it is the length of 

a standard preserved in Paris, whiph w.-'.s eoiistructed by Borda 

to coiTe,spond, when at the temperature of melting ice, with the 

value of the preceding length as measured by Dehimbre. The metre 

lias not been altered to correspond with new and more accurate 

measurements of the earth, but the arc of the meridian is estimated 

in terms of the original metre. 

* Tlie theory of diuieiwlons was first stated hy Fourier, Thione de CJialeur, § ICO. 
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Ill astronomy the mean distaiiee of the earth from the sun is 

sometimes taken as a unit of length. 

In tlie present state of scienec the most nniversnl standard of 

length whieh we could assume would be the wave length in vacuum 

of n particular kind of light, emitted by some widely diffused sub¬ 

stance such as .sodium, whioli has well-defined lines in its spectrum. 

Such a standard would be independent of any changes in the di- 

men.sion.s of the earth, and should be adopted by those who e.xpect 

their writings to be more permanent than that bodj'. 

In treating of the dimensions of units we shall call the unit of 

length [Z/]. If I is the numerical value of a length, it is under- 

.stood to be expressed in terms of the conerete unit \Ij\, so that 

the actual length would be fully expressed by L [i/]. 

4, ] (:^) Thne, The standard unit of time in all civilized eoim- 

tric.s is deduced from the time of rotation of the earth about its 

axis. The sidereal day, or the true period of rotation of the earth, 

can be ascertained with great exactness hy the ordinary observa¬ 

tions of astronomers ; and the mean solar day can be deduced 

from this by our knowledge of the lengdli of the j'ear. 

The unit of time adopted in all phj'sical researches is one second 

of mean solar time. 

In astronomy a year is sometimes used as a unit of time. A 

more universal unit of time might be found by taking the periodic 

time of vibration of the particular kind of light whose wave length 

is the unit of length. 

We shall call the conerete unit of time [7’], and the numerical 

measure of time t. 

5. ] (3) Muss. The standard unit of mass is in this country the 

avoirdimois pound preserved in the Exchequer Chambers. The 

grain, which is often used as a unit, is defined to be the 7000th 

part of this pound. 

Ill the metrical .system it is the gramme, which is theoretically 

the mass of a cubic centimetre of distilled water at standard tem¬ 

perature and pressure, but practically it is the thousandth part 

of a standard kilogramme preserved in Paris. 

The accuracy with which the masses of bodies can be com¬ 

pared by W'eighing is far greater than that hithei-to attained in 

the measurement of lengths, .so that all masses ought, if possible, 

to be compared directly with the standard, and not deduced from 

experiments on water. 

In descriptive astronomy the mass of the sun or that of the 
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cfirtli is sometimes taken as a iiiiit, but in the dj’iiamieal theory 

of aslvoiKMiiy tlie unit of mass is deduced from the units of time 

and loufftli, eomhiiied witli the fact of uiiivin-sal gravitation. The 

astronomical unit of mass is that mass which attracts another 

bod}' placed at the unit of distiuiee so as to prodace in that body 

the unit of acceleration. 

In Irjiniiug a universal system of units \vc may either deduce 

tlu! unit ol' mass in this way fioni those of lengtli and time 

already delinod, and this we can do to a rough approximation in 

the ])roscnt state of scienoo ; or, if we expect * soon to be able to 

determine the mass of a single molecule of a standard substance, 

we may wait for this determination before fixing a universal 

standard of mass. 

We shall denote the concrete unit of mass by the symbol [ilf] 

in treating of the dimensions of other units. The unit of mass 

will he taken as one of the three finidamcutal units. When, as 

in the Freneli systcin, a particular substance, water, is taken as 

a standard of density, then the unit of mass is no longer inde¬ 

pendent, but varies as the unit of volume, or as [//•']. 

If, as in the astronomioal system, the unit of mass is defined 

with respect to its attractive power, the dimensions of [il/] are 

[//' T-‘], 

For the acceleration due to the attraction of a mass >ii at a 

VI 
distance -/ is by the Newtonian Law —. Suppose this attnietion 

to act for a very small time i on a body originally at rest, and to 

cause it to de,seribe a space then by the formula of Galileo, 

w'heiiee m = 

m 

Since r and .? are both lengths, and t is a 

time, this equation cannot he true unless the dimensions of ;// are 

The same can he shewn from any astronomical equa¬ 

tion in which the muss of a body appears in some hut not in all 

of the terms f. 

• .Sue I’ror, .1, LiKuliiiiidl, ‘ Ziir ti'rii.-.so dor l.iiftinultii ule,’ Afailciny of Vienna, 
Dot, 12, 18(5.'); U, .1. .Stonoy on •'f'lio Iiitonijil ^Motions of (diisi'H,' /'/iiV. .Vo^., Aug. 
1808 : and .Sir Tliomsori on ‘ Tlic .Size of AtoiuK.' Xohtre, March 31, 1870.' 

t If a foot and a .iccaiid are taken as units, the lostroiioiinual unit of iii.-wn would 
1)0 about .‘132,000,000 ixaind.s. 
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JJeriveil UuUft. 

(), j Tlie unit of Velocity is (hat velocity in which unit of length 

is (lescrihed in unit of time. Its dimensions arc [ZZ'"’]. 

If we adopt the units of length and time derived from the 

vibvatioifs of light, then the unit of velocity is the velocity of 

light. 

The unit of Acceleration is that aeeelcratiou in which the velo¬ 

city increase- hy unity in unit of time. Its dimensions are [ZiT"-]. 

The unit of Density is the density of a siihstance which contains 

unit of mass in unit of volume. Its dimensions are [dfZ'“]. 

The unit of Momentum is the momentum of unit of mass moving 

with unit of velocity. Its dimension.s are [d/Z/Z'"’], 

The unit of Force is the force which produces unit of momentum 

in unit of time. Its dimensions are [MLT~“'\. 
This is tho absolute unit of force, and this definition of it i.s 

implied in every equation in Dynamics, Nevertheless, in many 

text books in which these equations are given, a different unit of 

force is adopted, namely, the weight of the national unit of mas.s; 

and then, in order to satisfy the equations, the national unit of ma,ss 

is itself abandoned, and an arlifieiul unit is adopted as the dynamical 

unit, equal to tho national unit divided by the numerical value of 

the force of gravity at the place. In this way both the unit of force 

and the unit of mass arc made to depend on the value of the 

force of gravity, which varies from place to place, so that .state¬ 

ments involving these quantities are not complete without a kiiow'’- 

ledge of the force of gravity in the places where these statements 

were found to he true. 

The abolition, for all seientific purpose.s, of this method of mea¬ 

suring forces is mainly due to (he int roduction of a general system 

of unilcing observations of magnetic force in countries in which 

the force of gravity is difTerent. All sueh forces are now measured 

according to tho strictly dynamical method deduced from our 

delinitions, and the numerical results arc the same in whatever 

country the experiments are made. 

The unit of Work is the work done hy the unit of force acting 

through (he unit of leng-th measured in its own direction. Its 

dimensions are 

The Energy of a system, being its capacity of peribrming work, 

is measured b}" the work wdiieli the system is capable of performing 

by the expenditure of its whole energy. 
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The definifions of otlicM- quantities, and of the units to which 

they are referred, will be <iiveii when we require them. 

In transforming the values of pliy.sioiil (juantities determined in 

terms of one unit, so as to express them in terms of any other unit 

of the same kind, wo have only to remeiril)er that every expres¬ 

sion for the quantity consists of tv/o factors, the unit and the nu¬ 

merical part which expresses how often the unit is to Ije taken. 

Henee the numerical part of the expression varies inversely as the 

raagnitiulc of the unit, that is, inversely as the various powers of 

the fundamental units wliieh are indieated by the dimensions of the 

derived unit. 

On Pi//i‘ic(/l Cunlhmit^i/ ami Blscovl 'niuilj/. 

7.] A quantity is ssud to vary oontinnonsly when, if it passes 

from one value to another, it assumes all the intermediate values, 

\Ve may obtain the conception of continuity from a consideralion 

of the continuous existeuec of 11 particle of matter in time and space. 

Such a ])article cannot pass from one position to another without 

describing u continuous line iu space, and the eoordinate.s of its 

position must be continuous functions of the time. 

In the so-eallcd * equation of eontimiity,’ as given in treatises 

on Hydrodynamics, the fact expressed is that matter cannot ap])ear 

in or disappear from an element of volume without passing in or out 

through the sides of that element. 

A (juantity is said to be a continuous function of its variables 

when, if the variables alter eontinuoiisly, the quantity itself alters 

continuously. 

Thus, if n. is a function of.r, and if, while x passes eontinuoiisly 

from to ij'j, u ])asses continumi.sly from to yq, but when x 

passes from x^ to ;r,^, u jaisses I'rom to v.,, //,' lieing iliffcrcnt from 

?q, (hen u is said to have a discontinuity in its variation with 

respect to x for the value x — a\, hocause it passes abruptly from yq 

to yyi' while x passes continuously (hrough a,’,. 

If wc consider the differential eoefliciont of 71 with respect to x for 

the value x = aq as the limit of the fraction 

yc,, ’ 

when .r.^ and .r^ arc both made to ajiproaeh .Tj without limit, then, 

if !i’o and x.^ are always 011 opposite sides of aq, (ho ultimate value of 

the numerator will he yq'—yq, and tliat of the denominator will 

be zero. If 71 is a quantity physically continuous, the discontinuity 
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can exist only witli respect to the particular variable .r. We must 

in this case admit that it has an infinite clilFcrcntial coeffieieut 

when X = a'j. If u is not physically continuous, it cannot be dif¬ 

ferentiated at all. 

It is possible in plij'sical questions to get rid of the idea of 

discontinuity without sensibly altering the conditions of the case. 

If a\, is a very little less than aq, and a very little greater than 

.•/q, then will ho very nearly e([iial to rq and it., to vq', We 

may now suppose u to vary in any arbitrary but continuous manner 

from rq to between the limits ,)q and x.,. In many physical 

questions we may begin with a hypothesis of this kind, and then 

investigate the result when the values of aq and a\, arc made to 

aiqn’oach that fif aq and nltiniatcly to reach it. The result will 

in most cases be independent of the arbitrary manner in which we 

have supposed ii to vary between the limits. 

TJiscoiittiiui/j/ of a ['auction of more Ilian One Vur 'iahlc. 

8,] If we snpioose the values of all the vai-iables except x to be 

constant, the discontinuity of the fuiietion will occur for particular 

values of x, and these will bo connected with the values of the 

other variables by an equation which we may write 

(/> = ^ {x, y, &c.) = 0. 

The discontinuity will occur when 0 = 0. When 0 is positive the 

function will have the form (.r, y, z, &c,). When 0 is negative 

it will have the form F-^{x,t/,z, &c,). There need be no nccessaiy 

relation between the forms F-^ and F.,. 

To express this discontinuity in a mathematical form, let one of 

the variable,s, say .r, be cxpre6.sod as a function of 0 and the other 

variables, and let 7'\ and F.^ be expressed as functions of 0, y, z, &c. 

We may now express the general form of the function by any 

formula which is sensibly equal to i'L when 0 is positive, and to 

i'j when 0 is negative. Sneh a formula is the following— 

As long as n is a finite quantity, however great, F will be a 

continuous function, hut if we make n infinite F will be equal to 

F\ w'hen 0 is positive, and equal to F^ when 0 is negative. 

D'lscoii/iinii/j/ of (he Derivaftccs of a Continnoiis Function. 

The first derivatives of a continuous function may be diseon- 
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tinuous. Let tlie values of the variables for which the discon¬ 

tinuity of the derivatives occurs be connected by the eejuation 

0 = rr...) = 0, 

and let and R, be expressed in terms of (j) and n — l other 

variables, say ...)• 

Then, when (f) is negative, i'j is to be taken, and when (p is 

])Ositive R,, is to be taken, and, since R is itself continuous, when 

fp is zero, = F.,. 

Hence, when </j is zero, the derivatives and may be 
r/(/) d(p ^ 

different, but the derivatives Avith respect to any of the other 

variables, such as and , must be the same. The discon- 
d)/ dy 

tinuity is therefore confined to the derivative Avith respect to </>, all 

the other derivatives being continuous. 

Periodic and’ MuUipfe Fu iclions. 

0,] If 71 is a function of such that its value is the same for 

X, P’ + o, x + 7)a, and all values of x difTcring by a, n is called a 

periodic function of .r, and a is called its period. 

If a; Is considered as a function of u, then, for a given value of 

11, there must be an infinite series of values of x dilfcring by 

multiples of a. In this case x is called a multiple function of u, 

and a is called its cyclic constant. 

1 (hv , , 
The dilTereiitial cocfiicient , has only a finite number of values 

du 

corre.spondiug to a given value of u. 

On tf/e Relation of Physical Quantities to Birections in Space. 

10.] In distinguishing the kinds of physical quantities, it is of 

great importance to know how they are related to the directions 

of tlio,sc coordinate axes which wc usually employ in defining’ the 

positions of things. The Introduction of coordinate axo.s into geo¬ 

metry by Des Cartes was one of the greatest steps in mathematical 

progress, for it reduced the methods of geometry to calculations 

performed on numerical quantities. The position of a point is made 

to depend on the length of three lines whieh are always drawn in 

determinate directions, and the line joining tAVo points is in like 

manner considered as the resultant of three llne.s, 

Hut for many purposes in jihysieal reasoning, as distinguished 
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fi’om calculation, it is dcsivable to avoid explicitly introducing’ the 

Cartesian coordinates, and to fix tlie mind at once on a point of 

S])acc instead of its three coordinates, and on tlio mag’nitude and 

direction of a force instead of its three components. This mode 

of contemplating geometrical and physical (piantities is more pi’im- 

itivc and more natural than the other, although the ideas connected 

with it did not receive their full development till Hamilton made 

the next great step in dealing with space, hy the invention of his 

Calenlus of Quaternions. 

As the methods of Des Cartes arc still the most familiar to 

students of science, and as they ai’c really the most useful for 

])urposes of calculation, ^^'c shall express all onr results in the 

Cartesian form. I am convinced, however, that the introduction 

of the ideas, as distinguished from the operations and methods of 

Quaternions, will he of great use to us in the study of all parts 

of our suhject, and especially in electrodynaniics, where we have to 

deal with a niimher of physical quantities, the relations of which 

to each other can be expressed far more simply by a tew words of 

Hamilton’s, than by the ordinary equations, 

11,] One of the most important features of Hamilton’s mctliod is 

tlic division of quantities into Scalars and Vectors. 

A Scalar quantity is capable of being completely defined by a 

single numerical spceitication. Its numerical value docs not in 

any way depend on the directions we assume for the coordinate 

axes. 

A Vector, or Directed quantity, requires for its definition three 

numerical specifications, and these may most simply he understood 

as having reference to the directions of the coordinate axes. 

Scalar quantities do not involve direetiou. The volume of a 

geometrical figure, the mass and the energy of a material body, 

the liydrostatical pressure at a point in a fluid, and the potential 

at a point in space, arc examples of scalar quantities. 

A vector quantity has direction as well as magnitude, and is 

such that a reversal of its direction reverses its sign, Tlic dis¬ 

placement of a point, represented by a straight lino drawn from 

its original to its final position, may be taken as the typical 

vector quantity, from wliich indeed the name of Vector is derived. 

The velocity of a nody, its momentum, the force acting on it, 

an electric current, tlie magnetization of a particle of iron, are 

instances of vector quantities. 

There arc pliysieal quantities of another kind whicdi arc related 
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to directions in space, I ait wlu’cli are not vectors. Stresses and 

strains in solid bodies are examples of these, and the properties 

of bodies considered in the theory of elasticity and in the theory 

of double refraction. Quantities of this class require for their 

definition u'me numerical s])eelfieationB. They arc exjiressed in the 

lang^uag'c of Quatc’rnions by linear and vector functions of a vector. 

The luldition ol' one vector quantity to another of the same kind 

is performed according to the rule given in Staties for the com¬ 

position of forces. In fact, the proof which Poisson gives of the 

‘parallelogram of forces' is applicable to the composition of an}' 

quantities such that a reversal of their sign is equivalent to turning 

them end for end. 

When we wish to denote a vector quantity by a single symbol, 

and to call attention to the fact that it is a vector, so that we must 

consider its direction as well as its magnitude, \vc shall denote 

it by a German capital letter, as ‘iB, &c. 

In the caleulus of Quaternions, the position of a point in space 

i.s defined by the vector dranm from a fixed point, called the origin, 

to that point. If at that point of space wc have to consider any 

pliysicnl cjiiantity wdiose value depends on the position of the point, 

that quantity is treated as a fimotion of the vector drawn from 

the origin. The function may he itself cither scalar or vector. 

Tlie density of a body, its temperature, its hydrostatic pressure, 

the potential at a point, arc examples of scalar functions. The 

resultant force at the point, the velocity of a iliiid at that point, 

the velocity of rotation of an element of the fluid, and the couple 

producing rotation, are examples of vector functions. 

12,] Physical vector quantities may he divided into two classes, 

in one of which the quantity is defined with reference to a line, 

while in tlie other the quantity is defined with reference to an 

area. 

For instance, the resultant of an attractive force in any direction 

may he measured hy finding the work which it would do on a 

body if the body were moved a short distance in that direction 

and dividing it by that short distance. Here the attractive force 

i.s defined with reference to a line. 

On the other hand, the flux of heat in any direction at any 

point of a solid body may be defined as the quantity of heat which 

crosses a small area drawn perpendicular to that direction divided 

hy that area and by the time. Here the flux is defined with 

reference to an area. 
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There are certain ea,ses in wliicli a (quantity may be measured 

witli referenee to a line as well as with referenee to an area. 

Thus, in treating- of the displaeeraents of elastie solids, we may 

direct our attention either to the original and the actual position 

of a partiele, in wliieh ease the displaeement of the particle is 

measured by the line drawn from the first position to the second, 

or we may consider a small area fixed in space, and determine 

what quantity of the solid passes across that area during the dis- 

plaoonicnt. 

In the same way the velocity of a fluid may be investigated 

either with respect to the actual velocify of the individual parti¬ 

cle,s, or with respect to the quantity of the fluid which flows through 

any fixed area. 

But in fliese cases we rcipiire to know separately the density of 

the body as well as the displacement or velocity, in order to apply 

the first method, and whenever ivc attempt to form a moleeular 

tlicoi'y we have to use the second method. 

In the case of the flow of electricity we do not know anything 

of its density or its velocify in the conductor, we only know the 

value of what, on the fluid theory, would correspond to the product 

of the density and the velocity. Hence in all such cases we must 

apply the more general method of measurement of the flux across 

an area, 

In electrical science, cleetromotive force and magnetic force 

belong to the first class, being defined with reference to lines, 

When we wish to indicate this fact, we may refer to them as 

Forces. 

On the other hand, electric and magnetic induction, and electric 

currents, belong to the second class, being defined with referenee 

to areas, When we wish to indicate this fact, we shall refer to them 

as Fluxes. 

Each of these forces may he considered as producing, or tending 

to produce, its corresponding flux. Thus, electromotive force iiro- 

duees electric currents in conductors, and tends to produce them 

in dielectrics. It produces electric induction in dielectrics, and pro¬ 

bably in conductors also. In the same sense, magnetic force pro¬ 

duces magnetic iiiduction, 

13.] In some eases the flux is simply proportional to the force 

and in the same direction, hut in other case.s we can only affirm 

that the direction and magnitude of the flux are functions of the 

direction and magnitude of the force. 



12 l-KELlMlNAltY. [14 

Tlio case in which the components of the iliix arc Ihwar functions 

of those of the force is discussed in the chapter 011 the Ecpiations 

of Conduction, Art. 290. There are in general nine cocflicients 

whicli determine the relation between the force and the flux. In 

certain cases wc have reason to believe that six of the.se. coellieicnts 

form three pairs of equal quantities. In such cases the relation he- 

tweeii the line of direction of the force and the normal plane of the 

flux is of the same kind as that between a diameter of an clhp.soid 

and its (.‘onjugate diametral ])lane. In Quaternion language, the 

one vector is said to be a linear and vector function of the other, and 

when there are three pairs of equal eocfliciciits the function is said 

to be self-couj ligate. 

In the ease of magnetic induction in iron, the flux, (the mag¬ 

netization of the iron,) is not a linear function of the magnetizing 

force. In all eases, however, the product of the force and the 

flux resolved in its direction, gives a result of scientific import¬ 

ance, and this is always a scalar quantity. 

14. ] There arc two mathematical operations of frequent occur¬ 

rence which arc appropriate to these two clas-scs of vectors, or 

directc(l qiiaiititios. 

In the ease of forces, we have to take the integral along a line 

of the product of an element of the line, and the resolved part of 

the force along that element. The result of this operation is 

called the Liuc-iiitcgral of the force. It represents the work 

done on a body carried along" the line. In certain cases in which 

the line-integral does not depend on the ibrm of the line, but 

only on the position of its extremitic.s, the line-integral is called 

the Potential. 

Ill the ease of fluxes, we have to take the integral, over a surface, 

of the flii.x through every element of the surface. The result of 

thi.s- operation is called the Surface-integral of the iliix. It repre¬ 

sents the quantity which passes through the surface. 

There are certain surfaces across which there is 110 flux. If 

two of these surfaces intersect, their line of iiiterseetioii is a line 

of flux. In those ca.ses in which the flii.x is in the same direction 

ns the force, lines of this kind are often called Liiie.s of Force. It 

would be more correct, however, to speak of them in electrostatics 

and miignctios as Lines of Induction, and in eleetrokiiiematics as 

Lines of Flow, 

15, ] There is another distinction between difTercnt kinds of 

directed quantities, which, though very important in a physical 
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point of view, is not so necessary to be observed fl)r the sake of 

the matlicmntical methods. This is the distiiietioii between longi¬ 

tudinal and rotational properties. 

The direction and magnitude of a quantity may depend upon 

some action or effect which takes place entirely along a certain 

line, or it may depend upon something of the nature of rota¬ 

tion about that line as an axis. The laws of eondnnation of 

directed quantities are the same whether they are longitudinal or 

rotational, so that there is no difference in the malhematieal treat- 

iiieiit of the two classes, but there may be physical eireumstances 

wliich indicate to which class we must refer a particular pheiio- 

menou. Thus, electrolysis consists of the transfer of certain sub¬ 

stances along a line in one direction, and of certain other sub¬ 

stances in the opposite direction, which is evidently a longitudinal 

])lieuomcnon, and there is no evidence of any rotational effect 

about the diieetion of the force. Hence we infer that the electric 

current wliich causes or accompanies elect roly .sis is a longitudinal, 

and not a rotational phenomenon. 

On the other hand, the north and south poles of a magnet do 

not differ ns oxygen and hydrogen do, which appear at opposite 

])laces during electrolysis, so that we have no evidence that mag¬ 

netism is a loiigitndinal phenomenon, while the effect of magnetism 

in rotating the plane of polarized light distinctly shews that mag¬ 

netism is a rotational phenomenon. 

O/i .hine-infef/ml'i, 

16.] The opcriitioii of integration of the resolved part of a vector 

quantity along a line is important in physical scieiiee generally, 

and should he clearly understood. 

Let .r, jj, : be the coordinates of a point T' on a line whose 

length, measured from a certain point A, is s. Those coordinates 

will be fiinetioiis of a single variable s. 

Let R be the value of the vector quantity at Vy and lot the 

tangent to the curve at P make with the direction of R the angle f, 

then ifco.se is the resolved part of R along ilie line, and the 

inti'gral r* 
R ~ j R cos e (U 

•JO 

is called the line-integral of R along the Hue a. 

AV e may write this expression 
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wlicrc Vj Z are tlie com])oncnts of li parallel to x, y, z respect¬ 

ively. 

This quantity is, in ft’cneral, dilTeront for clinfcrcnt lines drawn 

between A and P. AVlicn, however, within a certain rcg'ion, the 

quantity 
X(lx-\- Ydy + Zth = 

that is, is an exact differential within that region, the value of P 

becomes L = 

and is the same for any tw'o forms of the path between A and P, 

provided the one form can he changed into the other by con- 

tinnons motion without passing out of this region. 

On Potentials, 

The quantity 4* is a scalar function of tlie position of the point, 

and is therefore independent of the directions of reference. It is 

called the Potential Function, and the vector quantity whose com¬ 

ponents are P, Z is said to have a potential 4', if 

When a potential function exists, surfaces for which the po¬ 

tential is constant arc called Equipotential surfaces. The direction 

of li at any point of such a surface coincides W'itli the normal to 

the surface, and if n be a normal at the point P, then li — — • 

The method of considering the components of a vector as the 

first derivatives of a certain function of the coordinates with re¬ 

spect to those coordinates was inventeel hy Laplaee * in liis treat¬ 

ment of the theory of attractions. The name of Potential was first 

given to this function by Green t, who made it the basis of his 

treatment of electricity. Green’s essay was neglected by mathe- 

niatioiaiis till 1846, and before that time most of its important 

theorems hael been rcdiscovercel by Gauss, Chasles, Sturm, and 

Thomson 

In the thcoiy of gravitation the potential is taken with the 

opposite sign to that which is here used, and the resultant force 

in any direction is then measured by the rate of increase of the 

• Mcic. CYlesle, liv. iii. 
t Kiiiuiy on tlio A|]i)li<:iitirm of Aliitlieinatlcftl Analysis to tlie Tlieories of Electricity 

and M.igiifitisin, Ni.ttiM(.flia!n, 1S2S. Iteprinted in CrtUct Juunial, and in Mr. Furrer's 
edition of Grodn'H Worka. 

t Thomson and Tnit, Natural Philosophy, § 483. 
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potential function in that direction. In elccti’ical and magnetic 

investigations the potential i.s defined so that the resultant force 

in any direction i.s measured by the decrease of the potential in 

that direction. This method of using the expression makes it 

correspond in sign with potential energy, which always decreases 

when the bodies are moved in the direction of the forces acting 

on them. 

17.] The geometrical nature of the relation between the poten¬ 

tial and the vector thus derived from it receives g’reat light from 

Hamilton’s discovery of the form of the operator by which the vector 

is derived from the potential. 

The resolved part of the vector in any direction is, as wc have 

seen, the first derivative of the potential with rcspiect to a co¬ 

ordinate drawn in that direction, the sign being reversed. 

Now if i, j, k are three unit vectors at right angles to each 

other, and if A”, Y, Z are the components of the vector g resolved 

parallel to these vectors, then 

^=iX+jY-^kZ-, (1) 
and by what we have said above, if 'P is the potential, 

If W'C now write V for the operator. 

(2) 

. d . d , d 

dj' djj dz 

5 = _Vv{/. (4) 

The symbol of operation V may be interpreted as directing us 

to measure, in each of three rectangular directions, the rate of 

increase of 4', and then, considering the quantities thus found as 

vectors, to compound them into one. This is what wc are directed 

to do by the expression (3). But we may also consider it as directing 

ns first to find out in what direction 'k increases fastest, and then 

to lay off in that direction a vector representing this rate of 

increase. 

M. Lame, in his Tralle des Functions Inverses, uses the term 

Differential Parameter to express the magnitude of this greatest 

rate of increase, but neither the term itself, nor the mode in which 

Lame uses it, indicates that the quantity referred to has direction 

as well as magnitude. On those rare occasions in which I shall have 

to refer to this relation iis a purely geometrical one, I shall call the 

vector ^ the Slope of the scalar function 'k, using the word Slope 
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to iiidieatc the direction, as well as the magnitude, of the most 

rn])id decrease of 

18.] There arc eases, however, in which the conditions 

(IZ (lY dX dZ ^ , dY dX ^ 

d^ dz dz dx dx dy 

which arc those of Xdx-^YdyZdzhem^ a complete differential, 

arc fulfilled throughont a certain region of siiace, and yet the line- 

integral from A to P may be different for two lines, each of 

which lies wholly within that region. This may he the case if 

the region is in the form of a ring, and if the two lines from A 

to P puss through op])Osite segments of the ring. In this case, 

the one path cannot be transformed into the other by continuous 

motion without passing out of the region, 

IVe arc here led to considerations belonging to the Geometry 

of Position, a subject which, though its importance was pointed 

out by Leibnitz and illustrated by Gau.ss, has been little studied. 

The most complete treatment of this subject has been given by 

J. 13. Listing *. 

Let there be p points in space, and let I lines of any form be 

tlraw-n joining these points so that no two lines intersect each 

other, and no point is left isolated. We shall call a figure com¬ 

posed of lin(;s in this way a Diagram. Of these lines, p—\ are 

sufficient to join the p points so as to form a connected system. 

Every new line completes a loop or closed path, or, as we shall 

call it, a Cycle. The number of independent cycles in the diagram 

i.s therefore k = (?— + 1. 

Any closed path drawm along the lines of the diagram is com¬ 

posed of these independent cycles, each being taken any number of 

times and in either direction. 

Tlie cxistencu of cyeles is called Cyelosis, and the number of 

cycles ill a diagram is called its Cyelomatic iiuiiiher. 

Ci/clomis in Surfaces and Peyions, 

Surfaces arc cither complete or hounded. Complete surfaces are 

cither infinite or closed. Bounded surfaces arc limited by one or 

more closed lines, which may in the limiting eases become finite 

lines or points. 

A finite region of space is bounded by one or more closed 

surfaces. Of these one is the external surfaecj the others are 

Ihr Cunmts liaUmUcher CompIeM, Giitt. Abh., Bel. x. S. 97 (1861). 
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includctl in it and exclude each other, and arc called internal 

surfaces. 

If the region has one bounding surface, we may suppose that 

surface to contract inwards without breaking its continuity or 

cutting itself. If the region is one of simple continuity, such as 

a sphere, this process may be continued till it is reduced to a 

point; but if the region is like a ring, the result will be a closed 

curve; and if the region has multijde connexions, the result will 

be a diagram of lines, and the cyclomatie number of the diagram 

will be that of the region. The space outside the region has the 

same eyclomatic number as the region itself. Hence, if the region 

is bounded by internal as well as external surfaces, its cyclomatie 

number is the sum of those due to all the surfaces. 

When a region encloses within itself other regions, it is called a 

Periphraetie region. 

The number of internal bounding surfaces of a region is called 

its periphraetie number. A closed surface is also periphraetie, its 

number being unity. 

The cyclomatie number of a closed surface is twice that of the 

region which it bounds. To find the cyclomatie number of a 

bounded surface, suppose all the boundaries to contract inwards, 

without breaking continuity, till they meet. The surface will then 

be reduced to a point in the case of an acyclic surface, or to a linear 

diagram in the ease of cyclic surfaces. The cyclomatie number of 

the diagram is that of the surface. 

19.] TjiiiOREii I. If Ihrovyhov.t any acyclic reyioii 

X (lx + Ydy -I- Z(h = —D'P, 

the value of the line-integral from a point A to a point P taken 

along any 2uilh vMhin the region will be the same. 

We shall firet shew that the line-integral taken round any closed 

path within the region is zero. 

Suppose the equipotential surfaces drawn. They are all either 

closed surfaces or are bounded entirely by the surface of the region, 

so that a closed line within the region, if it cuts any of the sur¬ 

faces at one part of its path, must cut the same surface in the 

opposite direction at some other part of its path, and the corre¬ 

sponding portions of the line-integral being equal and opposite, 
the total value is zero. 

Hence if AQP and AQ'P are tw'o paths from A to P, the line- 

integral for AQ'P is the sum of that for AQP and the closed path 
vox.. I. c 
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AQ'FQA. But the line-integiul of the closed path is zeroj there¬ 

fore those of the two i)aths are equal. 

Henee if the potential is given at any one point of sneh a 

region, that at any other point is determinate, 

20.] Tj£fc;om-;.M II. In a cj/clic region in which the eijuation 

X(li'+ Yilg-ifZd: ~—l)Y 

is ei'en/when fulfilled, tin iiiie.-intcgrul from A to F, along a 

line drawn ivithiii the region, 'will not in general he deterininale 

unless the channel of coininaiiiealioii hetween A and F he sjiecljied. 

Let K be the eyeloiimtie number of the region, then K sections 

of the region may be made by surfaces which we may call Di.!- 

j)braginsj so as to close up K of the channels of eoinmunieatit)n, 

and rcdiiee the region to an acyclic condition without destroying 

its coutiimity, 

T1 le line-integral from A to any point F taken along a line 

which does not cut any of these diaphragms will be, by the last 

theorem, determinate in value. 

Now let A and F be taken indefinitely near to each other, but 

on opposite sides of a diaphragm, and let K be the line-integral 

I'roin A to P. 

Let A' and be two other points on opposite sides of the same 

diaphragm and iiulefliiitely near to each other, and let K' be the 

line-integral from A' to F', Then K' =z K. 

For if we draw AA' and Fl^, nearly coincident, but on opposite 

sides of the diaphragm, the line-integrals along these lines will be 

ecjual. Supjiose each etpuul to A, then the line-integral of A'l^ is 

equal to that of A'A A AF + FI^ = ~Jj + K+L — K — that of AF. 

Hence the line-integral round a closed curve which passes through 

one diiiphragna of the .system in a given direction is a constant 

quantity K. This quantity is called the Cyclic constant corre¬ 

sponding- to the given cycle. 

Let any closed curve be drawn within the region, and let it cut 

the diaphragm of the first cycle p times in the positive direction 

and ]i' times in the negative direction, and let — Then 

the line-integral of the closed curve will be ?ij A"j. 

Similarly the line-integral of any closed curve will be 

;/] A j q- w.j A,^ +... -f rite. F-r ; 

where W/,- renresents die excess of the number of positive passag^es 

of the curve through the diaphragm of the cycle K over the 

number of negative passages. 
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If two curves are such that one of them may be transformed 

into the other by eontinnous motion without at any time passing 

through any part of space for which the condition of having a 

potential is not fulfilled, these two curves are called Reconeileable 

curves. Curves for which this transformation cannot be effected 

are called Irreconeileable curves *. 

The condition that Xdx-\- Ydi/ + Zdz is a complete differential 

of some function 'I' for all points within a certain region, occurs in 

several physical investigations in which the directed quantity and 

the potential have diflerent physical interpretations. 

In pure kinematics we may suppose X, Y, Z to he the com¬ 

ponents of the disphieeinent of a point of a continuous body whose 

original coordinates are then the condition expresses that 

these displacements constitute a ^io)i-rotalio)i(d strain f. 

If X, Y, Z represent the components of the velocity of a fluid at 

the point x, y, z, then the condition expresses that the motion of the 

fluid is iiTotational. 

If A", Yj Z represent the components of the force at the point 

X, y, z, then the condition expresses that the work done on a 

particle passing from one point to another is the differenee of the 

potentials at these points, and the value of this difference is the 

same for all reconeileable paths between the two points. 

O/i Surface-Integrals. 

21.] Let dS be the clement of a surface, and e the angle which 

a normal to the surface drawn towards the positive side of the 

surface makes with the direction of the vector quantity li, then 

ffji eos edS is called the surface-inieyral of li orer the surface S. 

Theoiiem III. T/ie surfuce-integral of the Jlux (hmujh a closed 

surface may be exjpressed as the volume-hilegral of its convergence 

taken within the surface. (See Art. 25.) 

Let X, Y, Z be the components of R, and let I, m, n be the 

direetion-eosines of the normal to S measured outwards. Then the 

surface-integral of It over S is 

//- cos e (IS = jjxidS-\- J'JrmdS-t- jj' ZndS 

Xdydzz, Jj'YdzdxX f f Zdxdy] (1) 

* See Sir W. Thomson ‘On Vortex Atotiuii.' Truni. R. S. £d!n., 1869. 
+ See Thomson and Tiiit’s Natural Pliilutoiihy, § 190 (i). 
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the values of A'j Y, Z being' those at a point in the surface, and 

the integrations being extended over the whole surface. 

If the snrfaee is a closed one, then, when y and z are given, 

the eoordinate .r must have an even numl)er of values, since a line 

par.nllel to sa must enter and leave the cnelosed simee an equal 

nnmhcr of times provided it meets the surface at all. 

Let a point travelling from « = —co to .r = +c5o first enter 

the space when a; = a'j, then leave it when x= x.,, and so on; 

and let the values of Jl'at these points be A'^, X, &e., then 

ffxdyd: = ff {(X-X,) + (X-A’3) + &c. + (A;,-A',,,_0}^/y'. (2) 

If A' is a quantity which is continuous, and has no infinite values 

hctw’een and .r.,, then 
d X 

(3) 

where the integration is extended from the first to the second 

intersection, that is, along the first segment of x which is within 

the closed surface. Taking into account all the segments which lie 

within the closed surface, we find 

//AVy* (-1) 

the double integration being confined to the closed surface, but 

the triple integration being extended to the whole enclosed space. 

Hence, if A”, L, Z are continuous and finite within a closed surface 

'S', the total surface-integral of It over that surface will be 

//«=o..,W=///(^f + + f)*'?/*. 0) 

the triple integration being extended over the whole space within S. 

Let us next supi^ose that X, Y, Z are not continuous within the 

closed snrfaee, but that at a certain surface F{x, y, z) = Q the 

values of A", Y, Z alter abruptly from A', Y, Z on the negative side 

of the surface to A", Y', Z' on the positive side. 

If this discontinuity occurs, say, between and x.j, the value 

of X, — X^ Avill be 

(c, 

where in the expression under the integral sign only the finite 

values of the derivative of Xare to be considered. 

Ill this ease therefore the total surface-integral of 2i over the 

closed surface Avill be expressed by 
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//A>eoaX),l, * 

-\-fJ(r-r) (h (h + jj{Z'-Z) (lx (ly ; (7) 

or, if l\ m', n' are the clireetion-eosines of the normal to the surface 

of (liseontiniiity, and dS' an element of that surfaee, 

// CO.. =/// (f + ‘'1+ * 

+jj{l'{r-X) + m'{Y'-~Y)^n'{Z'-Z)](lS', (8) 

where the integration of the last term is to be extended over the 

surfaee of diseontinuity. 

If at every iioint where X Y, Z are eontinuons 

(IX (lY dZ 
(lx + ^ + 7/^ = 

and at every surfaee where they are diseoutinuous 

I'X' + m' Y' + n'Z' = V X+ w! Y+ 71'Z, (10) 

then the surfaee-iutegral over every elosed surface is zero, and the 

distribution of the veetor quantity is said to be Solenoidal. 

We shall refer to equation (9) as the Genei'al solenoidal eon- 

dition, and to equation (10) as the Superfieial solenoidal eondition. 

22.] Let us now eonsider the ease in which at every point 

within the surfaee S the equation 

dX (lY (IZ 

is fulfilled. We have as a eonsequcnee of this the surface-integral 

over the elosed surfaee equal to zero. 

Now let the elosed surfaee B eonsist of three parts ^S'^, Sq, and 

6]. Let (Sj be a surfaee cif any form bounded by a elosed line Ly 

Let Sq be formed by drawing lines from every qioint of X, always 

eoineiding with the direetion of R. If w, « are the direetion- 

eosines of the normal at any point of the surfaee 8^, we have 

Xeos € = X^4-+ = 0. (12) 

Henee this part of the surfaee eontributes nothing towards the 

value of the surface-integral. 

Let B.j, be another surfaee of any form bounded by the elosed 

eurve L,^ in whieh it meets the surfaee S^y 

Let Qj, Qq, Q,, be the surfaee-integrals of the surfaees S-^,Sq, 

and let Q be the surfaee-integral of the elosed surface S. Then 

Q ~ Q\Y Qo+ Q2 — ^ 7 
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and wo know that = 0; (14) 

therefore! Q., = — •, (15) 

or, in other words, the siirfiieo-inteo'ral over the surface S., i.s equal 

and opposite to thiit over -S', whatever be the form and position 

of -So, provided that the interinediate surface is one for wliieh li 

is always tano'ential. 

If we su])])ose L^ a closed curve of small area, will be a 

tubular surface having the property that the snrfacc-integ-ral over 

every complete section oi' the tube is the same. 

Since the whole space can be divided into tubes of this kind 

provided (LY dV dZ _ 

dx ^ dtj ^ dz 
(16) 

a distribution of a vector rpiantity consistent with this equation is 

called a Solenoidal Distribution. 

On Tubes and Lines of Flow. 

If the space is so divided into tubes that the surface-integral 

for every tube is unity, the tubes arc called Unit tubes, and the 

surfacc-iutegral over any finite surface S bounded by a closed 

curve L is equal to the number of such tubes which pass through 

8 in the loositive direction, or, what is the same thing, the number 

which pass through the closed curve L, 

Hence the surface-integral of S depends only on the form of 

its boundary Z-, and not on the form of the surface within its 

boundary. 

On Perfhraciic Fegions. 

If, throughout the whole region bounded externally by the single 

closed surface S^, the solenoidal condition 

dX dY dZ 

Tx IJj ~dl - ^ 

is fulfilled, then the surfacc-integiMl taken over any closed surface 

drawn within this region will be zero, and the surface-integral 

taken over a bounded surface within the region will depend only 

oil the fonn of the closed curve which forms its boundary. 

It is not, however, generally true that the same results follow 

if the region within which the solenoidal condition is fulfilled is 

bounded otherwise than bj' a single surface. 

For if it is bounded by more than one continuous surface, one of 

these is the external surface and the others arc internal surfaces, 
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and the region S is a periphraetie region, having within it other 

regions wliieh it completely eneloses. 

If witliin any of tliese enclosed regnons, S^, the solenoidal eon- 

dition is not fulfilled, let 

Qi = j j ^ ® 

he the burfaee-integral for the snrfaee enclosing this region, and 

let Q.y, Q.f, &e. be the eorresponding quantities for the other en- 

elosed regions. 

Then, if a closed surface S' is drawn within the region S, the 

value of its surfaee-integral will be zero only when this snrfaee 

S' does not include any of the enclosed regions /S'j, S2, &c. If it 

inolndcs any of these, the surface-integral is the sum of the surface- 

integrals of the different enclosed regions which lie within it. 

For the same reason, the surface-integral taken over a surface 

hounded by a closed curve is the same for such surfaces only bonuded 

by the closed curve as arc reconcileable with the given surface by 

continuous motion of the .surface within the region S'. 

When wc have to deal with a pcriidiractie region, the first thing 

to be done is to reduce it to an apcriphractic region by draw'ing 

lines joining the different hounding surfaces. Each of these lines, 

provided it joins surfaces which were not already in continuous 

eouuexiou, reduces the periphraetie number by unity, so that the 

whole number of lines to be drawn to remove the periphraxy is 

equal to the periphraetie number, or the number of internal sur¬ 

faces. When these Hues have been drawn wc may assert that if 

the solenoidal condition is fulfilled in the region -S', any closed surface 

drawn entirely within S, and not cutting any of the lines, has its 

surface-integral zero. 

In drawing these lines wc must remember that any line joining 

surfaces which arc already connected does not diinini.sh the peri¬ 

phraxy, hnt introduces cyclosis. 

The most familiar example of a periphraetie region within which 

the solenoidal condition is fulfilled is the region surrounding a mass 

attracting or rcjiclling inversely as the square of the distance. 

In this case wc have 
t? ?/ 

X = m — > J' = w — > Z — m—', 
.^3 ,^3 .^k3 

where M is the mass supposed to be at the origin of coordinates. 

At any point where r is finite 

(IX (lY (IZ 
d" "b 
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but at the orig'in these quantities become infinite. For any closed 

surface not including tlie origin, tlic surface-integral is zero. If 

a closed surface includes the origin, its surface-integral i.s Ittw. 

If, for any reason, \re wisb to treat the region round m .as if it 

were not pcripbractie, we must draw a lino from m to an infinite 

distiincc, and in taking surface-integrals wo must remember to add 

A-nm whcncv’cr this line crosses from, the nogiitive to the positive 

side of the surface. 

0)1 lU(jht~ha)i(U(l and Lefl-haiuhd Relallons i)i Space, 

23.] In this treatise the motions of translation along any axis 

and of rotation about that axis, will be assumed to be of the same 

sign when their directions correspond to those of the tmnslation 

and rotation of an ordinary or right-handed screw*. 

For instance, if the actiud rotation of the earth from west to cast 

is taken positive, the direction of the earth’s axis from south to 

north will be taken positive, and if a man walks forw.ird in the 

positive direction, the positive rotation is in the order, head, right- 

. hiind, feet, left-hand. 

If we place ourselves on the positive side of a surface, the positive 

direction along its bounding curve will be opposite to the motion 

of the hands of a watch with its face towards us. 

This is the right-handed system which is .adopted in Thomson 

and Tait’s Natural P/iilosoplii/, § 24 3, The opposite, or left-handed 

system, is adopted in Hamilton’s and Tait’s (luaicrnims. The 

operation of passing from the one system to the other is called, by 

Listing, Vcrvmion, 

The reflexion of an object in a mirror is a perverted im.agc of the 

object. 
AYhen we use the Cartesian axes of a‘, y, r, we shall draw them 

* Tlio conibhieil autioii of tlio muflclcH of the Jirni when we turn the upper m'df of 
the ri^'lit-lian<l oiitwiirds, and at the same time tlirust the hand forwards, will 
impress the riglit-handed screw motion on the memory more firmly than any verbal 

defiiiitioii. A common corkscrew may ha used ns a material symbol of the same 
relation. 

Professor \V, H. Miller h.ns sUjjKested to me tli.nt as the tendrils of the vine aro 

rif^hl-banlied .scrows .aiul tho.se of the hop loft-liandeil, the two systems of rel.atioii.s iti 
sinice might bo called tho.se of tlio vine and the hop res))ectively. 

The system of the vine, which we .adopt, is that of Linnieits, and of screw-iiiakerH 
in all civilized eountrios except Japan. Do Candolle was the first who called the 
ho))-tendril right-handed, and in this he is followed hy Listing, and by mo.st writers 
on the rotatory jrolarization of light. Screws like the hop-tendril are marie for the 

couplings of milw.ay-c.arriages, and for the fittings of wheels on tliu left side of ordinary 
carriagOB, but they are always called left-handed screws by those who use them. 
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so that tlie ordiimiy convention.s about the eyelie order of the 

symbols lead to a right-handed system of directions in space. Thus, 

if is drawn eastward and y northward, ^ must be drawn upward. 

The areas of surfaces will be taken positive when the order of 

integration eoineides with the eyelie order of the symbols. Thus, 

the area of a closed eurve in the plane of xy may be written either 

the order of integration being x, y in the first expression, and y, x 

in the seeond. 

This relation between the two products dxily and dy dx may 

be compared with that between the products of two perpendieular 

veetons in the doctrine of Quaternions, the sign of which depends 

on the order of multiplication, and with the reversal of the sign 

of a determinant when the adjoining rows or columns are ex¬ 

changed. 

For similar reasons a volume-integral is to he taken positive when 

the order of integration is in the eyelie order of the variables r, 

and negative when the eyelie order is reversed. 

We now proceed to prove a theorem which is useful as esta¬ 

blishing a connexion between the surface-integral taken over a 

finite surface and a line-integral taken round its boundary. 

24.] Theohem IV. A Hne~hiteyral takoi round a closed curve 

may he expressed in terms of a surfaoc-integral tsJaiv'm'er a 

surface hounded hy the curve. 

Let X, Y, Z be the components of a vector quantity 51 whose line- 

integral is to be taken round a closed eurve s. 

Let S be any continuous finite surface bounded entirely by the 

closed eurve s, and let ^ be the components of another vector 

quantity 33, related to X, Y, Z by the equations 

_dZ dY _ dX _d.Z 

^ ~ dy ^ ~ dz dx ’ ~ dx dy ' 

Then the surface-integral of S5 taken over the surface S is equal to 

the line-integral of 51 taken round the curve s. It is manifest that 

1], ( fulfil of themselves the solenoidal condition 

d£ dx] dC 

Let I, ni, n be the direetion-cosiiies of the normal to an element 
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of the surface (IS, reckoned in the positive direction. Then the 

value of the surface-integral of may he written 

»iri-i-uC)(lS. 

In order to form a definite idea of the meaning of tlie element 

dS, we shall suppose that the value.s of the coordinates a', i/, z for 

every point of the surface are given as functions of two inde¬ 

pendent variables a and fi. If/3 is constant and a varies, the point 

z) will describe a curve on the surface, and if a series of values 

is given to f3, a scries of such curves will he traced, all lying- on 

the surface S. In tlie same way, hy giving a series of constant 

values to a, a second series of curves may be traced, cutting the 

first series, and dividing the whole surface into elementary portions, 

any one of which may be taken as the element (IS. 

The projection of this element on the plane of y, z is, hy the 

ordinary formula. 

The expressions for mdS and ndS are obtained from this by sub¬ 

stituting y, z in cyclic order. 

The surface-integral which we have to find is 

Jf {^^-i-f>in + »OdS-, 
or, substituting the values of rj, ^ in terms of A", F, Z, 

ff. dX dX dY ,dY , ,dZ (IZ. 

JJ (*• rfj A + - * &) <*> 
The part of this which depends on X may be written 

l'f(dX/dzdx dz (lx\ dX/dx du dx (h/\] , 

JJ I Vz (l^ - ry (iy C/a tJS 

addin”: and subtracting this becomes 
” ^ dx (la r//3 

C f (dx fdX dx dXdy dX dzy^ 

JJ )dB '^dx da~^ dy da^ dz da' 

dx ydX dx (IX (h/ (IXdzX) , 

” Ta y dB^TydB'^ Tz S ■’ 

ffydXdx dXdxy ^ 

As \vc have made no assumption as to the form of the functions 

a and /3, wo may assume that a is a function of A', or, in other 

words, that the curves for which a is constant are those for which 
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X is eonslant. In this case = 0, and the expression becomes 

by iiitegrution with respeet to a, 

dX (lx 

(Id f//3 
rf/3 (la (9) 

where the integration is now to be perfonned round the closed 

curve. Since all the quantities are now expressed in terms of one 

variable /3, we may make the length of the bounding' curve, the 

independent varinblCj and the expression may then be written 

where the integration is to be performed round the curve s. We 

may treat in the same way the parts of the surface-integral which 

depend upon Y and Y, so that we get finally, 

//« + «,+ +r| +4')* ; (..) 

where the first integral is extended over the surface S, and the 

second round the bounding curve .9*. 

On the effect of the operator V on a vector function, 

25.] We have seen that the operation denoted by V i.s that by 

which a vector quantity is deduced from its potential. The same 

operation, however, when applied to a vector function, produces 

results which enter into the two theorems wo have just proved 

(III and IV). The extension of this operator to vector displacements, 

and most of its further development, is due to Professor Tait f. 

Let <r be a vector function of p, the vector of a variable point. 

Let us suppose, as usual, that 

p = ix+Jjf + kz, 

and cr z= iX+JY+hZ; 

where X, Y, Z are the components of a in the directions of the 

axes. 

We have to perform on o- the operation 

V = 9- 
(I .(I , (I 

(lx '' dy (h 

Performing this operation, and remembering the rules for the 

* Tins theorem was given l>y Professor Stokes, Smith’s Prize Examination, 185i, 
que.stioii 8- It i.s |>ri)ve(l in Tlionison nnil Tuit’.s Natural Philosophy, § 190 (j), 

+ See I'roc. It. S, Edin., April 28, 18C2. ‘ On Green’s ami other allied Tlieorems,’ 
Trans, R. S. Edin,, 11169-70, a vei^ v.alunhie paper; and ‘On some Qu.atcmion 
Integrals,’ Proc. R, S, Edin., 1870-71. 
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multiplication of i, j, k, we find that Vfr consists of two parts, 

one scalar and the otlier vector. 

The scalar part is 

iS V cr = — -f -) see Theorem III, 
^dx dy dz' 

and the vector part is 

.AZ dl\ ,(dX dZ. ,(ilY dl\ 

= 'h.) - 7e) +•'(*-*)+Yr.' rip■ 
If the relation between A', Y, Z and t], C is given by- 

equation (1) of the last theoren-J, we may write 

?' V cr = i f-f- j 1] -}- k C See Theorem IV. 

It appears therefore that the functions of X, Z which occur 

in the two theorems are both obtained by the operation V on the 

vector whose components are X, Y, Z. The theorems themselves 

may be written 

JJl SVads ^JJs.tUv ds, (III) 

and Js <T dp = JJS.V (t Ui' ds; (I^) 

where ds is an element of a volume, ds of a surface, dp o£ a, curve, 

and Uv a unit-vector in the direction of the normal. 

To understand the meaning of these functions of a vector, let us 

suppose that o-q is the value of o- at a point P, and let ns examine 

the value of o'—o-,, in the neighbourhood of F. 

If we draw a closed surface round P, then, if the 

surface-integral of a over this surface is directed 

inwards, iSV o- w'ill be positive, and the vector 

O'—(r„ near the point P will be on the whole 

directed towards P, as in the figure (1). 

I propose therefore to call the scalar part of 

V a the convergence of o- at the point P. 
To interpret the vector part of Vcr, let us 

suppose ourselves to be looking in the direction of the vector 

whose components are ?/, C £Hid let us examine 

-*'■— the vector a■ — (r^, near the point P, It will appear 

as ill the figure (2), this vector being arranged on 

the whole tangentially in the direction opposite to 

the hands of' a watch. 

I propose (with great diffidence) to call the vector 

\ * / 

Fijr. 1, 

Fig, '2. 

part of Vo" the curl, or the version of a at the point P. 



26.] CONCENTRATION. 29 

\ 
\ 

At Fig. 3 we have an illustration of eurl combined with con¬ 

vergence. 

Let us now consider the meaning of the equation 

FVa = 0. 
Tills implies that V it is a scalar, or that the vector 

(T is the slope of some scalar function 'h. Tlie.se 

applications of the operator V are due to Professor 

Tait*. A more complete development of the theory 

is given in his paper ‘ On Green’s and other allied Theorems f/ 

to which I refer the reader for the purely Quaternion investigation 

of the properties of the operator V. 

26.] One of the most remarkable properties of the operator V is 

that when repeated it becomes 

/ 

/ 

I’is. 3, 

V'-i = — + 
dx'^ ^ ' (h 

an operator oeeumng in all parts of Physics, which Ave may refer to 

as Laplace’s Operator. 

This operator is itself essentially scalar. When it acts on a 

scalar fiinetioii the result is scalar, when it acts on a vector function 

the result is a vector. 

If, with any point P as centre, we draw a small sphere whose 

radius is r, then if is the value of q at the centre, and q the 

mean value of q for all points Avithin the sphere, 

so that the value at the centre exceeds or falls short of the mean 

value according as is positive or negative. 

I propose therefore to call V^q the concentration of q at the 

point P, because it indicates the excess of the value of q at that 

point over its mean value in the neighbourhood of the point. 

li q w a scalar function, the method of finding its mean value is 

well known. If it is a vector function, we must find its mean 

value by the rules for integrating vector functions. The result 

of course is a A'cetor. 

• Proceetlingn Ji, S, Eiiiv., 1802, + Tmn». R. S. Edin., 1809-70, 



PART I. 

ELECTROSTATICS. 

CHAPTER I. 

DESCRIPTION OF PHENOMENA. 

Electrijicatlun by Friction. 

27.] Expebiment I *. Let a piece of glass and a piece of resin, 

neither of which exhibits any electrical properties, be rubbed to¬ 

gether and left with the rubbed surfaces in eoiitaet. They will 

still exhibit no electrical properties. Let them be separated. They 

will now attract each other. 

If a second piece of glass be rubbed w'ith a second piece of 

resin, and if the pieces be then separated and suspended in the 

neighbourhood of the former pieces of glass and resin, it may be 

observed— 

(1) That the two pieces of glass repel each other. 

(2) That each piece of glass attracts each piece of resin. 

(3) Tliat the tAvo pieces of resin repel each other. 

These phenomena of attraction and repulsion are called Elec¬ 

trical phenomena, and the bodies which exhibit them are said to 

be electrified, or to be charged with electricity. 

Bodies may be eleetrihed in many other Avays, as well as by 

friction. 

The electrical properties of the two pieces of glass are similar 

to each other but opposite to those of the two pieces of resin, 

the glass attracts w’hat the resin repels and repels Avhat the resin 

attracts. 

♦ .See Kir AV. Tljoinson ‘ On the Matheinaticiil Ttieory of Electricity,’ Cambridge 

and Dublin Malhematiral Jonruiil. Marcli, 1818. 
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If a body electrified in any manner wliatever behaves as the 

g'lass docs, tliat isj if it repels tlic glass and attracts the resiiij the 

body is said to be vitreoiislj/ electrified, and if it attracts the glass 

and repels the resin it is said to be resinoiislt/ electrified. All 

electrified bodies are found to be either vitreously or resinously 

electrified. 

It is the established practice of men of science to call the vitreous 

electrification positive, and the resinous electrification negative. 

The exactly opposite properties of the two kinds of electrification 

justify us in indicating them by opposite signs, but the applica¬ 

tion of the positive sign to one rather than to the other kind must 

be considered as a matter of arbitrary convention, just as it is a 

mutter of convention in mathematical diagrams to reckon positive 

distances towards the right hand. 

No force, either of attraction or of repulsion, can be observed 

between an electrified body and a body not electrified. When, in 

any ease, bodies not previously -electrified are observed to be acted 

on by an electrified body, it is because they have become electrified 

hy iuiluclUni, 

Electrification b\j [nduct'wn. 

28.] Experluent II*. Let a hollow vessel of inetul be hung 

up by white silk threads, and let a similai* thread 

be attached to the lid of the vessel so that the vessel 

may be opened or closed without touching it. 

Let the pieces of glass and resin be similarly sus¬ 

pended and electrified as before. 

Let the vessel be originally uneleetrified, then if 

an electrified piece of glass is hung up within it by 

its thread without touching the vessel, and thu lid 

closed, the outside of the vessel will be found to 

be vitieously electrified, and it may be shewn that 

the electrification outside of the vessel is exactly the 

same in w'hatever part of the interior space the glass 

is suspended. 

If the glass is now taken out of the vessel without touching it, 

the eleetrifieation of the glass will be the same as before it was 

put in, and that of the vessel will have disappeared. 

This eleetrifieation of the vessel, which depends on the glass 

* Tliig, and aeveral experiments which follow, are due to Faraday, ‘ On Static 
Electrical Inductive Action.' PhW. Mag,, 1843, or Eicp, Rei., vol. ii. p. 279. 
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being within it, and wliieli vaiiislies wlieu the glass is removed, is 

called Eleetrifieation by iiicluetiou. 
Similar effeets would be produeed if the glass were suspended 

near the vessel 011 the outside, but in that ease we should find 

an eleetrifieation vitreous in one part of the outside of the vessel 

and resinous iu another. When the glass is inside the vessel 

the wliole of the outside is vitrcously and the whole of the inside 

resinously electrified. 

Electrificallon by Coiiditction, 

29.] Expeiiiment III. Let the metal vessel be eleetrified by 

induction, as iu the last experiment, let a seeoud raetallie body 

be suspended by white silk threads near it, and let a metiil wire, 

similarly suspended, be brought so as to touch simultaneously the 

electrified vessel and the second body. 

The second body will now be found to bo vitreously eleetrified, 

and the vitreous eleetrifieation of the vessel Avill have diminished. 

Tlie electrical condition has been transferred from the vessel to 

the second body by means of the wire. The wire is ealled a con¬ 

ductor of electrieity, and the seeond body is said to be electrified 

by conduction. 

Conductors and Insulators. 

Experiment IV, If a glass rod, a stiek of resin or gutta-perelia, 

or a white silk thread, had been used instead of the metal wire, no 

transfer of elcetrieity would have taken place. Henee these latter 

substanees arc ealled Non-conduetors of eleetrieity. Non-eonduc- 

tors are used in eleetrieal experimonts to support eleetrified bodies 

without earrying off their electrieity. They are then called In¬ 

sulators. 
The metals are good eonduetors ; air, glass, resins, gutta-pereha, 

vulcanite, paraffin, &e. are good insulators; but, as we shall see 

aftenvards, all substanees resist the passage of eleetrieity, and all 

substances allow it to pass, though in exceedingly different degrees. 

This subject will bo considered when we come to treat of the 

Motion, of eleetrieity. For the present we shall consider only two 

classes of bodies, good conductors, and good insulators. 

In Experiment II an electrified body produced electrification in 

the metal vessel while separated from it by air, a non-eondueting 

medium. Such a medium, considered as transmitting these eleetneal 

effects without conduction, has been ealled by Faraday a Dielectric 
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niodiuin, and the action which takes place througli it is called 
Induetion. 

Ill Experiment III the electrified vessel produced electrilicatioii 

in the second metallic body through the medium of the wire. Let 

us suppose the wire removed, and the electrified piece of {flass taken 

out of the vessel without touching it, and removed to a sufficient 

distance. The second body will still exhibit vitreous eleetrilica- 

tiou, but the vessel, when the glass is removed, will have resinous 

elcetrifleation. If we now bring the wire into contact with Imth 

bodies, conduction will take place along the wire, and all electri¬ 

fication will disappear from both bodies, shewing that the elec¬ 

trification of the two bodies was equal and opposite. 

30. ] Exi'EUIMENT V. In Experiment II it was shewn that if 

a piece of glass, electrified by rubbing it with resin, is hung up in 

an insulated metal vessel, the electrification observed outside doe.s 

not depend on the position of the glass. If we now introduce the 

piece of resin with which the glas.s wa.s rubbed into the same vessel, 

without touching it or tlie vessel, it will he found that there is 

110 electrification outside tlie vc,ssel. From this we conclude that 

the electrification of the re.sin is exactly ecpial and opposite to that 

of the gla.ss. By putting in any number of bodies, electrified in 

any way, it may be shewn that the electrification of the outside of 

the vessel is that due to the algebraic sum of all the electrifica¬ 

tions, those being reckoned negative which arc resinous. We have 

thus a practical method of adding the electrical effects of several 

bodies without altering the electrification of each. 

31, ] Exveiument VI. Let a second insulated metallic vessel, 7?, 

he provided, and let the electrified piece of glass be put into the 

first vessel A, and the electrified piece of resin into the second vessel 

B, Let the two vessels be then put in conimnnicatiou by the metal 

wire, as in Experiment III. All signs of electrification will dis¬ 
appear. 

Next, let the wire he removed, and let the pieces of glass and of 

resin be taken out of the vessels without touching them. It will 

be found that A is electrified resinoiisly and B vitrcously. 

If now the glass and the vessel A be introduced together into a 

larger insulated vessel C, it will be found that there is no elec¬ 

trification outside C. This show's that the electrification of A is 

exactly equal and opposite to that of the piece of gla.ss, and that 

of B may be shewn in the same way to he equal and opposite to that 

of the piece of resin. 
voT,, I. n 
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We liavc thus olitainccl a method of' charging a vessel with a 

quantity of electricity exactly c(|iial and opposite to that of an 

eloetrifiecl body without iiltering the electrilicatioii of the latter, 

and we may in this way ehai'ge any number of vessels with exactly 

equal quantities of electricity of eitluT kind, which we may take 

lor provisional units, 

32, ] Exi’ERI.mekt VII. Let the vessel 7J, charged with a quan¬ 

tity of positive eleetrieity, whicdi we shall call, for the present, 

unity, be introduced into the larger insidated vessel C without 

touehiug it. It will produce a positive electrification on the out¬ 

side of C. Now let Ji be made to touch the imside of C. No change 

of the external electrification will he observed. If 7i is now tuK'en 

out of C without touching it, and removed to a suflicient dislxinee, 

it will be found that B is completely discharged, and that C has 

become charged with a unit of positive eleetrieity, 

W(« 1 lave thus a method of transferring the charge of 7^ to (J. 

Let li be now recharged with a unit of eleetrieity', introduced 

into C already' charged, made to touch the inside of C, and re¬ 

moved, It will be found that B is again completely discharged, 

so that the charge of C is doxdded. 

If this process is repeated, it will be found that however highly 

C is previously' charged, and in whatever way B is charged, when 

B is first entirely enclosed in C, then made to touch C, and finally 

removed without touching C, the charge of B is completely trans¬ 

ferred to C, and B is entirely free from electrification. 

This experiment indicates a method of charging a body with 

any number of units of electricity. We shall find, when we come 

to the mathematical theory of electricity, that the result of this 

experiment affords an accurate test of the truth of the theory. 

33. ] Before we proceed to tin.* inve.stigation of the law of 

electrical force, let ns enumerate the facts we have already esta¬ 

blished. 

By placing any electrified system inside an insulated hollow con¬ 

ducting vessel, and examining the resultant effect on the outside 

of the vessel, wc ascertain the character of the total electrification 

of the system placed inside, without any commnuicatiou of elec¬ 

tricity between the diffcrcut bodies of the sy.stem. 

The electrification of the outside of the vessel may be tested 

with great delicacy by putting it in communication with an elec¬ 

troscope. 

We may suppose the elcetroseopc to consist of a .strip of gold 



34-] ELECTRICITY AS A QUANTITY. 35 

k>af‘ hanging between two bodies charged, one jiositivcly, and the 

other negatively. If the gold leaf becomes electrified it will incline 

towards the body whose electrification is oppo.site to its own. Uy 

increasing- the electrification of the two bodies and the delicacy of 

th(! suspension, an exceedingly small clcetrification of the gold leaf 

may be detected, 

When we come to describe electrometers and multipliers we 

shall find that there arc still more delicate methods of detecting 

electrification and of testing the accuracy of our theorems, but at 

present we shall suppose the testing to be made by connecting the 

hollow vessel with a gold leaf electroscope. 

This method was used by Faraday in his very admirable de¬ 

monstration of the laws of electrical pliciiomciia*, 

34.] I. Tlic total electrification of a body, or system of bodies, 

remains always the same, except in so far as it receives electrifi¬ 

cation from or gives electrification to other bodies. 

In all electrical experiments the clcetriliciition of bodies is found 

to change, but it is always found that this change is due to want 

of pcM'fcet in.snlatiou, and that as the means of insulation ai'c im- 

])i'0VL>d, the loss of eloctrifieation becomes less. Wo nia^' thci-eforc 

as.sert that the electrification of a body placed in a perfectly in- 

sidating medium would remain perfectly constant. 

II. AVbcn one body electrifies anotlicr by conduction, the total 

electrification of the two Ijodics remains the same, that is, the one 

loses as much positive or gains as much negative electrification as 

the other gains of positive or loses of negative electrification. 

lA)! if the two bodies arc enclosed in the hollow vessel, no change 

of the total electrification is observed. 

III. When electrification is produced by friction, or by any 

other known method, ccpial c|uantities of positive and negative elec¬ 
trification arc produced. 

For the electrification of the whole system may be tested in 

the hollow vessel, or the process of ek-etrification may be carried 

on within the vessel itself, and however intense the electrification of 

the parts of the system may be, the electrification of the whole, 

as indicated by the gold leaf electroscope, is invariably zero. 

The electrification of a body is therefore a physical (quantity 

cajKihle of measurement, and two or more electrifications can be 

combined experimentally with a result of the same kind as when 

* ‘Oil Static Elcctric.nl Imliictive Action.' Phil. 1813, or Pxp, Pa., vol. ii. 
p, 219, 
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two ([uantities are added algcliraically. Wo therefore arc entitled 

to use language fitted to deal with electrification as a (iiumtitj'- as 

well as a quality, and to speak of any electrified body as ‘ charg'ed 

with a certain quantity of positive or negative electricity.^ 

35.] While admitting electricity, as we have now done, to the 

rank of a physical quantity, we must not too hastily assume that 

it is, or is not, a sul)stancej or that it is, or is not, a form of 

energy, or that it belongs to any known category of physical 

quantities. All that we have hitherto proved is that it cannot 

be created or annihilated, so that if the total quantity of elec¬ 

tricity within a clo.sed surface is increased or diminished, the in¬ 

crease or diminution must have passed in or out through the closed 

surface. 

Tliis is true of matter, and is expressed by the equation known as 

the Equation of Continuity in Hydrodynamics. 

It is not true of heat, for heat may be increased or diminished 

within a closed surface, without passing in or out tlirough the 

surface, by the transformation of some other form of energy into 

heat, or of heat into some other form of energy. 

It is not true even of energy in general if we admit the imme¬ 

diate action of bodies at a distance. For a body outside the closed 

surface may make au exchange of energy with a body within 

the surface, Eut if all apparent action at a distance is the 

result of the action between the parts of an intervening medium, 

and if the nature of this action of the parts of the medium is 

clearly understood, then it is conceivable that in all cases of the 

increase or diminution of the energy within a closed surface we 

may be able to trace the passage of the energy in or out through 

that surface. 

There is, however, another reason whioh warrants us in asserting 

that electricity, as a physical quantity, synonymous with the total 

electrification of a body, is not, like heat, a form of energy, An 

electrified system has a certain amount of energy, and this energy 

can be calculated by multiplying the quantity of electricity in 

each of its parts by another physical quantity, called the Potential 

of that part, and taking half the sum of the products. The quan¬ 

tities ‘ Electricity ’ and ‘ Potential,’ when multiplied together, 

produce the quantity ‘ Energy.’ It is impossible, therefore, that 

electricity and energy should be quantities of the same category, for 

electricity is only one of the factors of energy, the other factor 

being ‘ Potential.’ 
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Energy^ which is the product of these factors, may also be con¬ 

sidered as the product of several other pairs of factors, such as 

A Foree x A distance through which the force is to act. 

A Mass X Gravitation acting through a certain height. 

A Mass X Half the square of its velocity, 

A Pressure x A volume of fluid introduced into a vessel at 

that pressure. 

A Chemical Affinity x A chemical change, measured by the number 

of clcctro-chcmical equivalents which enter 

into combination. 

If we obtain distinct mechanical ideas of the nature of electric 

])oteutialj we may combine these with the idea of energy to 

determine the physical category in which ‘Electricity’ is to be 
placed, 

36,] In mo.st theories on the subject, Electricity is treated as 

a substance, but inasmuch as there arc two kinds of electrification 

which, being combined, annul each other, and since we cannot 

conceive of two substances annulling each other, a distinction has 

been drawn between Free Electricity and Combined Eleetricity. 

Theory of Two Fluids. 

In the theory called that of Two Fluids, all bodies, in their 

unelcctrificd state, are supposed to bo oharged with equal quan¬ 

tities of positive and negative electricity. These quantities are 

supposed to bo so great that no process of electrifioation has ever 

yet deprived a body of all the eleetricity of either kind. The pro¬ 

cess of clectrification, according to this theory, consists in taking 

a certain quantity P of positive electricity from the body A and 

communicating it to B, or in taking a quantity N of negative 

eleetricity from B and communicating it to J, or in some com¬ 

bination of these processes. 

The result will be that A will have P + N units of negative 

eleetricity over and above its remaining positive electricity, which 

is supposed to be in a state of combination with an equal quantity 

of negative electricity. This quantity P+iV is called the Free 

eleetricity, the rest is called the Combined, Latent, or Fixed elec¬ 
tricity. 

In most expositions of this theory the two electricities are called 

‘Fluids,’ because they are capable of being transferred from one 

body to another, and are, within conducting bodies, extremely 
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mobile. The other properties of Iluids, such as their inertia; 

weight; and elastieitp; are not attributed to them those who 

have used the theory ibr merely mathematieal purposes-, but the 

use of the word Fluid has been apt to mislead the vulgiir, ineluding 

many men of seienee who are not natural philosophers; and who 

have seized on the word Fluid as the only term in the stutement 

of the theory whieh seemed intelligible to them. 

We shall see that the mathematical treatment of the subjeet has 

been greatly dcvelo2)ed by writers who express themselves in terms 

of the ' Tw(r Fluids’ theory. Their results; however, liave been 

dedueed entirely from datii whieh can be proved by expenment; 

and whieh must therefore be true; whether we adopt the theory of 

two fluids or not. The experimental veritieation of the mathe- 

mntieal resnlts therefore is no evidenee for or against the peenliar 

doetriiKi.s of this theory, 

The introdnetion of two thuds {rermits ns toeonsidcr the negative 

eleetrifieation ot‘ A and the positive eleetrltieation of as the effeet 

of (Viy OHO of three ditferent proces,ses whieh would lead to the same 

result. \\'e have already .supposed it produced by the transfer of 

r units of positive electricity from A to B, together with ^the 

transfer of N units ot‘ negative clectrieity from B to A. But if 

BN units of {)ositivc electricity had been transferred from A 

to B, or if P + N units of negative electricity had been transferred 

from B to A, the resulting ' free electricity’ on A and on B would 

have been the same as before, but the (piantity of 'eoinbincd 

electricity’ in A would have been less in the second ease and greater 

jii the third than it was in the first. 

It would appear therefore, according to this theory, that it is 

])i).ssible to alter not only the amount of free electrieity in a body, 

hnt the amount of eoinbincd electricity. But no phenomena have 

ever been observed in electrilied bodies whieh can be traced to the 

varying amount, of their coinhinnd electricities. lienee either the 

combined electricities have no observable propertie-s, or the amount 

of the combined oleetrieitics is incapable of variation. The first 

of fliese ulternatives ])resents no difnenlty to tlie mere mathema- 

tieian, who attributes no i>roperties to the (Inixls exce{)l those of 

attraction and re^uilsion, for in this point of view the two fluids 

simjily annul one another, and their combination is a true mathe¬ 

matical zero. But to those who cannot use the word Fluid without 

thinking of a substance it is difficult to conceive tliat the eom- 

hination of the two Iluids shall have no propertie.s at all, so that 
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tlic addition of more or loss of tlie combination to a body shall not 

in ;mv way affect it, cither by increasing- its mass or its wcig-ht, or 

alterinjj some of its other properties. Hence it has been supposed 

by some, that in every proce.ss of electrification exactly e(|nul (pian- 

tities of the two fluids are transferred in opposite directions, so 

that the total quantity of the two fluids in any body taken to- 

gethor remiiins always the same, hy this new law they 'contrive 

to save appearances,’ forgetting- that there w-ould have been no need 

of the law except to reconcile the 'two fluids’ theory with facts, 

and to prevent it from predicting iion-exi.steut phenomena. 

T/ieori/ of One FluuL 

37.] In the theory of One Fluid everything i.s the same as in 

the theory of Two Fluids except that, instead of supposing the two 

substauecs equal and opposite in all res])ects, one of them, gene¬ 

rally the negative one, has been endowed with the pro])crtics and 

name of Ordinary Matter, while the other retains the name of The 

Flectrie Fluid, The particles of the fluid are supposed to repel 

one nuotlier according to the law of the inverse square of the 

distance, and to attract those of matter according to the same 

huv. Tlio.se of matter arc supposed to repel each other and attract 

those of electricity. The attraction, however, l.etween units of the 

different substances at unit of distance is supposed to Ire a very little 

greater than the repulsion between units of tho same kind, so that 

a unit of matter combined with a unit of electricity will exert a 

force of attraction on a similar combination at a distance, this 

force, however, being exceedingly small compared with the force 

between two uncoiidmiod units. 

This residual force is supposed to account for the attraction of 

gravitation. Uneleclrified bodies arc sup])osed to be charged wdth 

as many units of electricity as they contain of ordiiuiry matter. 

AVhen they contain more electricity or lc.s.s, they are .said to be 

positively or negatively cleetrltied. 

This theory'' doe.s not, like the Two-Fluid theoi’y, explain too 

much. It rerjuire.s us, however, to suppose the ma.ss of the electric 

fluid so small that no attainable positive or negative electrification 

has yet perceptibly' increased or diuiinislied either the mass or the 

weight of a body, and it has not yet been able to assign sufficient 

reasons why the vitreous rather than the resinous electrification 

should be supposed due to an excess of electricity. 

One objection has sometimes been urged against this theory by 
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men who ouerlit to have reasoned bettor. It lias been said that 

the doctrine that tlie particles of matter uncombined with elec¬ 

tricity repel one another, is in direct antagonism with the well- 

established fact that every particle of matter allmcls every other 

particle throughout the universe. If the theory of One Knid were 

true we should have the heavenly bodies repelling om another. 

But it is manifest tliat the heavenly bodies, according to thi.s 

theory, if they consi.sted of matter uncombined with electricity, 

would be ill the highest state of negative electrification, and would 

repel each other. We have no reason to believe that they arc in 

siieli a highly electrified state, or could be maintained in that 

.state. The earth and all the bodies whose attraction has been 

observed are rather in an unelectrified stab,*, that is, they contain 

the normal charge of electricity, and the only action between them 

is the residual force lately mentioned. The artificial manner, how'- 

ever, iu which this residual force is Introduced is a much more 

valid objection to the theory. 

In the present treatise I propose, at di (Torent stages of the in¬ 

vestigation, to test the diflerent theories in the light of additional 

classes of phenomena. For my own part, I look for additional 

light on the nature of electricity from a study of what takes place 

in the space intervening between the electrified bodie.s. Such is the 

essential ehariicter of the mode of Investigation pursued by l^araday 

in his Krperiineyilul Hesearchea, and a.s we go on I intend to exliibit 

the results, as develojied by Faraday, W. Tliom.sou, fee., in a con¬ 

nected and mathematical form, so that we may peroelvc what 

phenomena are explained equally well by all the theories, and what 

phenomena indicate the peeuliar difficulties of eaeh tlleory^ 

Mcasuremenl of the Force between Electrified Bodiee, 

38,] Forces may be measured in various ways. For instance, 

one of the bodies may be suspended from one arm of a delicate 

balance, and weig-hts suspended from tlie other arm, till the body, 

when unelectrified, is in equilibrium, The other body may then 

be i)laced at a known distance beneath the first, so that the 

attraction or repulsion of the bodies when electrified may increase 

or diuiiuish the apparent weight of the first. The weight which 

must bo added to or taken from the other arm, when expressed 

in dynamical measure, will measure the force between the bodies. 

This arrangement was used by Sir W. Snow Harris, and is that 

adopted in Sir W. Thomson’s absolute electrometers. See Art, 217, 
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It is sometimes more eonveiiient to use a torsion-balanee in 

wliicli a horizontal arm is suspended by a fine wire or fibre, so as 

to be capalrle of vibrating about the vertical wire as an axis, and 

the body is attached to one end of the arna and acted on by tlie 

force in the tangential direction, so as to turn the arm round the 

vertical axis, and so twist the suspension wire through a certain 

angle. Tlie torsional rigidity of the wire is found by' obseiwing 

the time of oscillation of the arm, the moment of inertia of the 

arm Ijcing’ otherwise known, and from the angle of torsion and 

the torsional rigidity the force of attraction or repulsion can be 

deduced. The torsion-balance v'as devised by Michell for the de¬ 

termination of the force of gravitation between small bodies, and 

was used by Cavendish for this purpose. Coulomb, working in¬ 

dependently of these philosophers, reinvented it, and successfully 

applied it to discover the laws of electric and magnetic forces; 

and the torsion-balance has ever since been used in all researches 

where small forces have to be measured. See Art, 215. 

39.] Let us suppose that by either of these methods we e,in 

measure the force between two electrified bodies. We shall suppose 

the dimensions of the bodies small compared with the distance 

between them, so that the result may not be much altered by 

any inequality of distribution of tho electrification on either body, 

and we shall suppose that both bodies are so suspended in .air as 

to be at a considerable distfinee from other bodies on which they 

might induce electrification. 

It is then found that if the bodies are placed at a fixed distance 

and charged respectively with c and e' of our provisional units of 

electricity, they will repel e.aeh other with a force proportional 

to the product of e and e'. If either e or e' is negative, th.at is, 

if one of the charges is vitreous and the other resinous, the force 

will be attractive, but if both e and e' are negative the force is again 

repulsive. 

We may suppose the first body. A, charged with 7?i units of 

vitreoiLs and n units of resinous electricity', which may be con¬ 

ceived separately placed within the body, as in Experiment V. 

Let the second body, B, be charged with units of positive 

and u' units of negative electricity. 

Then each of the m positive units in A W'ill repel each of the m' 

positive units in B with a certain force, say J] making a total effect 
equal to 

Since the effeot of negative eleetrieity is exactly ecpial and 



42 ELECTllOSTATIC rilENOMENA. [40. 

opposite to tliat oF positive eleetrieity, eacli of the m positive units 

in A will attract each of the 11' nog-ative units in B with the same 

force/, making a total eflect ecpial to mii'f, 
Sinnilarly the 11 negative units in A will attract the «/ positive 

units ill 7i with a force iim'/, ami will repel the n' negative units 

in B with a foree mif. 
The total repulsion will therefore be {mm'nn')/\ and the total 

attraction will be (/««'+ m'u)/\ 
The resultant repulsion will be 

{mm- -f mi' — mn'—nm')/ or {m — n) {in'—n')f. 

Now m~n = e is the algebraical value of the cdiarge on A, and 

m'—n'— 0' is that of the charge on B, so that the resultant re¬ 

pulsion may be written ee' f, the quantities c and e' being always 

understood to be taken with their proper signs. 

Variation of the Force with the Distance. 

40. ] Having established the law of force at a iixed distancOj 

we may measure the foree between bodies charged in a constant 

manner and placed at diHeveiit distances. It is found by direct 

nieasurcmcnt that the force, whether of attraction or repulsion, 

varies inversely as the scpiare of tlie distance, so that if _/ is the 

repulsion between two units at unit distance, the repulsion at dis¬ 

tance r will be fr~“, and the general expression for the repulsion 

between e units and e' unit.s at distance r will be 

fee'r-’K 

Ikjinition of the Vhetrostaiie Unit of Klcctricitj. 

41. ] We have hitherto used a wholly arbitiury standard for onr 

unit of cleetricify, namely, the electrification of a certain piece of 

glass as it happened to be electrified at the eommencenient of onr 

expennicnls. We are now able to select a unit on a definite prin¬ 

ciple, and ill order that this unit may belong to a general system 

we deliiic it so tliat./’may be unity, or in other words— 

'I'he elcoh'oslatic unit of ekctriciti/ is that quantit// of electricity 

which, when plaeal at unit of distance from an equal qiianiity, rejwls 

it with unit (fforce. 
This unit is called the Electrostntie unit to distingiii.sh it from 

the Hleetromagnetie unit, to be afterwards defined. 

We may now write the general law of electrical action in the 

simple form p — ce'r~- ; or, 
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The repulsion helween liuo siiiull bodies charged, respectively luitfi e aiU 

e' units of electricity is niimericalli equal tv the product of the charges 

divided by the square of the distance, 

Diiucnsious of the Electrostatic Unit of Quantity. 

42. ] If [^] is tlie couerete olectro.static unit of qnantitv itsolf, 

ami c, c the luinierioal valno.s nf partienlar quantities; if [//] is 

the unit of len^tli, and r the nunierieal value of the ilistanee; and 

if [/'’] is the unit of force, anti /'Hhe nunierieal value of the foree, 

then the equation becomes 

¥\:F-\=.cc'r-^ [g^] 
whenee [Q] = 

This unit is ealled the Electrostatic Unit of electricity. Other 

units may be employed for practical pnrpo.ses, and in other depart¬ 

ments of electrical seieuce, but in the equations of elcctrostatic.s 

quantities of electricity are nndeiytood to be estimated in electro¬ 

static unitSj just as in physical astronomy we employ a unit of 

mass which is founded on the phenomena of gravitation, and which 

differs from the units of mass in common use. 

Vroof of the Law of Electrical Force. 

43. ] The experiments of Coulomb with the torsion-balance may 

be considered to have established the law of force with a certain 

approximation to accuracy. Experiments of this kind, however, 

are rendered diflicult, and in some degree uncertain, by several 

disturbing causes, which must be carefully traced and corrected for. 

In the first place, the two electrified bodies must be of sen-sible 

dimensions relative to the distance between them, in order to he 

capable of carrying charges sufficient to produce measurable forces. 

The action of each body will then produce an effect on the dis¬ 

tribution of electricity on the other, so that the charge cannot be 

considered as evenly distributed over the surface, or collected at 

the centre of gravity; but its effect must be calculated by an 

intricate investigation. This, however, has been done as regards 

two spheres by Poisson in an extremely able manner, and the 

investigation has been greatly simplified by Sir W. Thomson in 

his Theory nf Electrical Images. See Arts. 172-174. 

Another difficulty arises from the action of the electricity 

induced on the sides of the case containing the instrument. By 
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making- the inside of the instrument aecurately cylindrie, and 

making its inner surface of metal, this clTect can he rendered 

definite and measurable. 
An independent dilliculty arises from the imperfect insulation 

of the bodies, on account of which the charge continually de¬ 

creases. Coulomb investigated the law of dissipation, and made 

eorreetions for it in his experiments. 

The methods of insulating charged conductors, and of rneiisuring 

electrical efleets, have been greatly improved since the time of 

Coulomb, particularly by Sir W. Thomson; but the perfect ac¬ 

curacy of Coulomb’s law of force is established, not by any direct 

experiments and measnreinents (which maybe used a.s illustrations 

of the law), but by a mathematical consideration of the pheno¬ 

menon described as Experiment VII, namely, that an electrified 

conductor B, if made to touch the inside of a hollow clo.sod con¬ 

ductor Cand then withdrawn without touching 0, is perfectly dis¬ 

charged, in whatever maimer the outside of C may be electrified. 

By means of delicate electroscopes it is easy to shew that no 

electricity remains on B after the operation, and by the mathe¬ 

matical theory given at Art. 74, this can only be the case if the 

force varies inversely as the stpiare of the distance, for if the law 

had been of any different form B would have been electrified. 

Th Electric Field. 

44.] The Electric Field is the portion of sioace in the neigh¬ 

bourhood of electrified hodie.s, considered with reference to electric 

phenomena. It may he ocenpied by air or other bodies, or it 

may be a so-eallcd vacniun, from whieh we have withdrawn every 

substance wlu'eh we can act upon with the means at our di.s- 

po.sal. 
If an electrified body be placed at any part of the clectrie field 

it w’ill he acted on by a force which will depend, in general, on 

the sliajie of the body and on its charge, if the body is so highly 

charged as to produce a sensible disturbance in the previous elec¬ 

trification of the other bodies. 
But if the body is very small and its charge al.‘^o very small, 

the eloetrlflealion of the other bodies will not be sensibly disturbed, 

and we may consider the body as indicating by its centre of gravity 

a certiiin point of the field. The force acting on the body will 

then be jn-oportional to il.« charge, and will be reversed when the 

charge is reversed. 
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Let e be the eharge of the body, and F the fovee acting on tlie 

body in a eertain direction, then when e is very small F is propor¬ 
tional to c, or j,' _ 21 

where li is a quantity depending on. the other bodies in the field. 

If the eharge e eould he made cciiial to unity without disturbing 

the eleetrifieation of other bodies wo should have F — It. 

We shall call R the Resultant electrie foree at the given point 

of the field. 

Fleclnc Potential. 

45. ] If the small body eanying the snnall eharge e be moved 

from the given point to an indefinite distanee from the oleetrified 

bodies, it will experienee at each point of its eoiirse a foree Re, 

where R varies from point to point of the eonrse. Let the whole 

work done on the body by these eleetrieal forees be }'e, then V is 

the potential at the point of the field from wliieh the body started, 

If the eharge e eould be made equal to unity without disturbing 

the eleetrifieation of other bodies, we might define the potential at 

any point as the work done on a body eharged with unit of eleo- 

trieity in moving from that point to an infinite distance. 

A body electrified positively tends to move from plaees of greater 

positive potential to places of smaller positive, or of negative 

potential, and a body negatively electrified tends to move in the 

opposite direction. 

In a conductor the electrification is distributed exactly as if 

it were free to move in the eondnetor according to the same law. 

If therefore two parts of a eonduetor have dilFerent potentials, 

positive electricity will move from the part having greater potential 

to the part having less potential as long as that differenee con¬ 

tinues. A conductor therefore cannot be in electrical equilibrium 

unless every point in it has the same potential, This potential is 

called the Potential of the Conductor. 

Equijwlenllal Surfaces. 

46. ] If a surface described or supposed to be described in the 

eleetrie field is such that the cleetrie potential is the same at every 

point of the surface it is called an Equipotential surface. 

An electrified point constrained to rest upon sucdi a surface will 

have no tendency to move from one part of the surface to another, 

because the potential is the same at every point. An equipotential 

surface is therefore a surface of equilibrium or a level surface. 
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Tlie resultant force at any point of the surface is in the direction 

of the normal to the surface, and the magnitude of the force is such 

that Ihe work done on an electrical unit in passing from the surface 

Vio the surface V' is V— V. 

No two equipoteiitial surfaces having dilferent potentials can 

meet one another, because the same point cannot have more than 

one potential, hut one equipotential surface may meet itself, and 

this takes place at all points and linos of equilihriniTi. 

The surface of a conductor in electrical equilibrium is necessarily 

an equipotential surface. If the electrilication of the conductor is 

positive over the whole surface, then the potential will diminish as 

we move away from the surface on every side, and the conductor 

will he surrounded by a series of suifaccs of lower potential. 

]3ut if (owing to the aelion C)f external eleetritied bodies) .some 

regions of t.he conductor are electrified positively and others ne- 

gativel}’', the complete equipotential surface will consist of the 

surface of the eouduetor itself together wth a system of other 

surfaces, meeting the surface of the conductor in the lines which 

divide the positive from the negative regions. These lines w'ill 

he lines of eqnilihrium, so that an electrified point placed 011 one 

of these lines w'ill experience no force in any direction. 

When tlie surface of a conductor is electrified positively in some 

parts and negatively in others, there must be some other electrified 

body in the field besides itself. For if we allow a positively 

electrified point, starting from a positively electrified part of the 

surface, to move always in the direction of the resultant force upon 

it, the potential at the point will continually diminish till the point 

reaches either a negatively electrified surface at a potential less than 

that of the tir.st conductor, or moves off to an infinite distance. 

Since the potential at an infinite distance is zero, the latter ease 

can only occur when the potential of the conductor is positive. 

In the same way a negatively electrified point, moving off from 

a negatively electrified part of the surface, must either reach a posi¬ 

tively electrified surface, or pass ofl’ to infinity, and the latter case 

can only happen when the potential of the conductor is negative. 

Therefore, if both positive and negative elcetrification exists on 

a eouduetor, there must be some other body in the field whose 

potential has the same sign as that of the conductor but a greater 

numerical value, and if a eonduetor of any form is alone in the 

field the eleetrifieation of every part is of the same sign as the 

potential of the conductor. 
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Lines of Force. 

47. ] The line do.«eribe(l hy a point moving- always in the direc¬ 

tion of the resultant force is ealled a Line of foreo. It euts the 

etjuipotontiiil surfaces at right angles. The properties of lines of 

foree will be more fully explained aftGr\vard.s', because Faraday has 

expressed many of the laws of electrical action in terms of his 

conception of lines of force drawn in the electric field, and indicating 

both the direction and the magnitude of the foree at every point, 

Eledric Tension, 

48. ] Since the surface of a conductor is an equipotential surface, 

the resultant force is normal to the surface, and it will be shewn 

in Art. 78 that it is proportional to the superficial density of the 

elcetrifieation. Hence the electricity on any small area of the 

surface will be acted on by a force tending from the conductor 

and proportional to the product of the resultant foreo and the 

density, that is, proportionid to the square of the resultant force 

This foree which nets outward.s as a tension on every part of 

the conductor will be called electrie Tension. It is measured like 

ordinary mechanical tension, by the force exerted on unit of area. 

The word Tension has been used by electricians in several vague 

senses, and it has been attempted to adopt it in mathematical 

language as a synonym for Potential ; but on examining the cases 

in which the word has been used, I think it will be more con¬ 

sistent with usage and with mechanical analogy to understand 

by tension a pulling foree of so many pounds per square inch 

exerted on the surface of a conductor or elsewhere. We shall find 

that the conception of Faraday, that this eleciric tension exists not 

only at the electrified surface but all along the lines of foreo, leads 

to a theory of electric action as a phenomenon of stress in a 

medium. 

Ekdromotive Force. 

49.] When two conductors at different potentials are connected 

hy a thin conducting wire, the tendency of electricity to flow 

along the wire is measured by the diflereneo of the potentials of 

the two bodies. The differenee of potentials between two con¬ 

ductors or two points is therefore ealled the Electromotive foree 

between them. 

Electromotive force may arise from other causes than diflerenee 
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of potential, but these eauses are not considered in treating of sta¬ 

tical electricity. We shall consider them when we come to chemical 

actions, motions of magnets, inequalities of temperature, &e. 

Cajmclli] of a Coiuhicfor, 

50. ] If one conductor is insulated while all the surroundiug eoii- 

ductors are kept at the zero potential by being put in coininii- 

nieatioii with the earth, and if the conductor, when charged with 

a quantity E of electricity, has a potential E, the ratio of E to F 

is called the Capacity of the conchictor. If the conductor is com¬ 

pletely enclosed within a conducting vessel without touching it, 

then the charge 011 the inner coiiduetor will be equal and op¬ 

posite to the charge on the inner surface of the outer conductor, 

and will be equal to the capacity of the inner conductor multiplied 

by the difrerciice of the potentials of the two conductors. 

Electric Accumulators. 

A system consisting of two coiuluctors whose opposed surfaces 

are separated from each other by a thin stratum of an insulating 

medium is called an electric Accumulator. Its capacity is directly 

propoi-tional to the area of the opposed surfaces and inversely pro¬ 

portional to the thiekucss of the stratum between them. A Leyden 

jar is an accumulator in which glass is the insulating medium. 

Aecunnilators are sometimes called Condensers, but I prefer to 

restrict the term ‘condenser’ to an instrument which is used not to 

hold electricity but to increase its superficial density. 

1>I101>E11TH;.S OF BODIES IN REL.\TI0N TO .STATICAL ELECTRICITY, 

Itesistance to the Fassage of Electricity through a Body. 

51, ] When a charge of electricity is communicated to any part 

of a mass of metal the electricity is rapidly transferred from places 

of high to places of low potential till the potential of the whole 

mass becomes the same. In the case of pieces of metal used in 

ordinary experiments this process is completed in a time too short 

to be observed, but in the case of very long' and thin wires, such 

as tlio.se used in telegraphs, the potential does not become uniform 

till after a sensible time, on account of the resistance of the \vire 

to the pas.sage of electricity through it. 

The resistance to the passage of electricity is exceedingly dif¬ 

ferent in dilTerent substances, as may be seen from the tables at 
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Arts. 3G2, 3G6, and 369, whleh will be explained in treating of 

Electrie Currents. 

All tlic metals are good conductors, though the resistance of 

lead is 12 times that of copper or silver, that of iron 6 times, 

unci that of mercury 00 times that of copper. The resistance of all 

metals increases as their temperature rises. 

Selenium in its crystalline state may also be regarded as a con¬ 

ductor, though its resistance is 3.7x10^2 that of a piece 

of copper of the same dimensions. Its resistance inereascs as the 

temperature rises. Selenium in the uinori)lious form is a good 

insulator, like sulphur. 

Many liquids conduct electricity by electrolysis. This mode of 

coiuliiction w'ill be eoiisiclerod in Part II. For the present, we may 

regard all liquids containing water and all damp bodies as con¬ 

duct or.s, far inferior to the metals, but incapable of insulating a 

charge of electricity for a sufficient time to be observed. 

On the other hand, the gases at the atmospheric pressure, w'hether 

dry or moist, are insulators so nearly perfect when the electric tension 

is small that w'e have as yet obtained 110 evidence of electricity passing 

through them by ordinary conduction. The gradual loss of charge 

Ijy electrified bodies may in everj' case be traced to imperfect insu¬ 

lation in the supi)orts, the electricity cither passing through the 

substance of the support or creeping over its surface. Hence, when 

two charged bodies are hung up near each other, they will preserve 

their charges longer if they are electrified in opi)o.sitc ways, than if 

they are electrified in the same way. For though the electromotive 

force tending to make the oleetrieitj pass through the air hetween 

them is imieli greater when they are oppositely eloetritied, no per¬ 

ceptible loss occurs in this way. The actual loss takes phiee through 

the supports, and the electromotive force through the supports is 

greatest when the bodies are oleetrificd in the same way. Tlie result 

appears anomalous only when we expect the loss to occur by the 

passage of electricity through the air between the bodies. 

Certain kinds of glass when cold arc marvelously perfect in¬ 

sulators, and Sir \V. Thomson has preserved cli.irges of electricity 

for years in bulbs hermetically sealed. The same glass, however, 

becomes a conductor at a temperature below that of boiling water. 

Gutta-percha, caoutchouc, vulcanite, paraffin, and resins are good 

insulators, the resistance of gutta-pcrelia at 7.')°F. being about 

G X 10^“ times that of copper. 

Ice, crystals, and solidified electrolytes, are also insulators. 

VOI,. I. E 
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Certain liquids, such as naphtha, turpeiiliiie, and some oils, are 

insulators, hut inferior to most of the solid insulators. 

The resistance of most sub.stanees, except the metals, and selenium 

and carbon, seems to diminish as the temperature rises. 

DlKLECTllICS. 

Specific Tudnelive CopacHj/. 

52.] All bodies whose insulating power is such that when they 

arc placed between two conductors at different potentials the elec¬ 

tromotive force acting 011 them does not immediately distribute 

their electricity so as to reduce the potential to a constant value, are 

called by Faraday Dielcetries. 

Faraday discovered that the capacity of an aeeuimilator depends 

oil the nature of the insulatiiig medium between the two conductors, 

as well as on the dimensions and relative position of the conductors 

themselves. By substituting other insulating media for air as the 

dielectric of the accumulator, without altering it in any other 

respect, he found that when air and other gases were emplo}'ed as 

the. insulating' medium the capacity of the accumulator remained the 

same, but that when shell-lae, sulphur, glass, See., were substituted 

for air, the capacity was increased in a ratio which was different 

fur each substiinec. 

The ratio of the capacity of an accumulator formed of any di¬ 

electric inediiiin to the capacity of an accumulator of the aarae form 

and dimensions filled with air, was named by Faraday the Specific 

Inductive Capacity of the dielectric inediuin. It is equal to unity 

for air and other gases at all pressures, and probably at all tempe¬ 

ratures, and it is greater than unity for all other liquid or solid 

dieleetries which have hceii examined. 

If the dielectric i.s not a good insulator, it is difficult to mea¬ 

sure its inductive capacity, because the accumulator will not hold a 

charge for a sufficient time to allow it to be measured ; but it is 

certain that inductive capacity is a property not confined to good 

insulators, and it is iirobable that it exists in all bodies. 

Absorption of Eleclricifp. 

53.] It is round that when an accumulator is formed of certain 

dielectrics, the following phenomena occur. 

When the accumulator has been for some time electrified and is 

then suddenly discharged and again insulated, it becomes recharged 
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in the same sense as at first, but to a smaller degree, so that it may 

be dlseliarged iigain several times in siieeession, these diseharges 

always diminishing. This idienomenon is ealled that of the Re¬ 

sidual Discharge. 

The instantaneous discharge appears always to be proportional 

to the diHereiiee of potentials at the instant of diseharge, and the 

ratio of' these quantities is the true capaeity of the accumulator; 

but if the eoiitaet of the diseliarger is prolonged so as to ineludo 

some of the residual diseharge, the apparent capaeity'' of the aeeu- 

midator, ealeulated from sueh a diseharge, w'ill be too great. 

The aeeumulator if eharged and left insulated appears to lose its 

charge by eoiidiietion, but it is found that the proportionate rate 

of loss is much greater at first than it is afterwards, so that the 

measure of eouductivity, if dedueed from what takes place at first, 

would be too great. Thus, when the insulation of a submarine 

eable is tested, the insulation appears to improve as the electrifi- 

eation continues, 

Thermal phenomena of a kind at first sight analogous take place 

in the case of the conduction of heat when the opposite sides of a 

body are kept at different temperatures. In the case of heat we 

know that they^ depend on the heat taken in and given out by the 

body itself. Hence, in the case of the electrical phenomena, it 

has been suppos'd that electricity is absorbed and emitted by the 

parts of the body. We shall see, however, in Art. 32!), that the 

phenomena can be explained without the liypothcsis of absorption of 

electricity, by supposing the dielectric in some degree heterogeneous. 

That the phenomenon called Electric Absorption is not an 

actual absorption of electricity by the substance may be shewn by 

charging the substance in any manner with electricity while it is 

surrounded by a closed metallic insulated vessel. If, when the 

substance is eharged and insulated, the ves.sel be instantaneously 

discharged and then left insulated, no charge is ever communicated 

to the vessel by the gradual dissipation of the electrification of the 

chiiigcd sub.stancc within it. 

54.] This fact is cx])resscd by the statement of Faraday that 

it is impossible to charge matter with an absolute and independent 

charge of one kind of clectricity'^'*^. 

In fact it appears from the result of every experiment which 

has been tried that in whatever way electrical actions may take 

Ejp, lies., vol. i. serios xi. '!I ii. ‘ On tlie Abnolute Charyo of Matter,’ and (1241). 



ELECTROSTATIC PHENOMENA. 52 [55- 

place amon;? a system of bodies surrounded by a metallic vessel, the 

ebarg-e on the outside of that vessel is not altered. 

Now if any portion of eleetrieity eoiild be forced into a body 

so us to be absorbed in it, or to become latent, or in any way 

to exist in it, without being- connected with an equal j)ortion of 

the opposite electricity by lines of induction, or if, after having 

being absorbed, it eonld gradually emerge and return to its or¬ 

dinary mode of action, we should find some change of electrifica¬ 

tion in the snrroiniding vessel. 

As this is never found to be the case, Faraday concluded that 

it is impossible to comnuinieatc an absolute charge to matter, and 

that no portion of matter can by any change of state evolve or 

render latent one kind of electricity or the other. He therefore 

regarded induction as ' the essential function both in the first 

development and the consequent phenomena of electricity.' His 

‘induction' is (1298) a polarized stale of the particles of the 

dielectric, each jiartielo being positive on one side and iiegativc 

on the other, the positive and the negative electrification of each 

particle being al\vay.s exactly ecpial. 

Diirupfive Dhcharge *. 

55.] If the electromotive force acting at any point of a dielectric 

is gradually inoi'cascd, a limit is at length reached at which there 

is a sudden electrical discharge through the dielectric, generally 

accompanied with light and sound, and with a tcmixirary or per¬ 

manent rupture of the dieleetrie. 

The intensify of the electromotive force when this takes place 

depends on the nature of the dielectric. It is greater, for instance, 

in dense air than in rare air, and greater in glass than in air, but 

in every case, if the electromotive force be made groat enough, 

the dielectric givc.s way and its insulating power is destroyed, so 

that a current of electricity takes place through it. It is for this 

reason that distributions of electricity for wdiieh the electric resultant 

force becomes anysvliere infinite cannot exist in nature. 

The Eleclric Glow. 

Tims, when a conductor having a sharp point is electrified, 

the theory, based on the hypothesis that it retains its charge, 

leads to the eonchisioii that as we approach the point the snjjer- 

flcial density of the electricity increases wifhout limit, so that at 

the point itself the surface-density, and tlierororc the resultant 

* .See Faraday, lies., vol. i., Hories xii. imd xiii. 
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electrical force, would be infinite. If the air, or other surrounding 

dielectric, liad an invincible insulating power, this result would 

actually occur ; but the faet is, that as soon as the resultant force 

ill the neighbourhood of the point has reached a certain limit, the 

insulating power of the air gives way, so that the air close to 

the point becomes a conductor. At a certain distance from the 

point the resultant force is not sufficient to break through the 

insulatioii of the air, so that the clcetrie current is oheeked, and 

the electricity accumulates in the air round the point. 

The point is thus surrounded by particles of air obarged with 

electricity of the same kind with its own. The effect of this charged 

air round the point is to relieve the air at the point itself from 

part of the enormous electromotive force which it would have ex¬ 

perienced if the conductor alone had been electrified. In fact the 

surface of the electrified body is no longer pointed, because the 

point is enveloped by a rounded mass of electrified air, the surface 

of which, rather than that of the solid conductor, may be regarded 

as the outer electrified siirflicc. 

If this jiortion of electrified air could be kept still, the elec¬ 

trified body would retain its charge, if not oii itself at least in its 

nciglihourhood, but the charged particles of air being free to move 

under the action of electrical force, tend to move away from the elec¬ 

trified body beeausc it is charged with the same kind of electricity. 

The charged particles of air therefore tend to move off in the direc¬ 

tion of the lines'of force and to approach those surrounding bodies 

which are oppositely electrified. When they arc gone, other un¬ 

charged particles take their jihiec round the point, and since these 

cannot shield tho.se next the point itself from the exccs.slve elec¬ 

tric tension, a new discharge takes place, after which the newly 

charged particles move off, and so on as long as the body remains 

electrified. 

In this way the following phenomena arc produced :—At and 

close to the point there is a steady glow, arising from the con¬ 

stant discharges which arc taking iilaeo between the point and the 

air very near it. 

The charged particles of air tend to move off in the same general 

direction, and thus ])rodiicc a current of air from the point, con¬ 

sisting of the charged particles, and probably of others carried along 

by them. l?y iirtificially aiding this ciirreiit we may increase the 

glow, and by checking the formation of the current we may pre¬ 

vent the contiiinance of the glow. ' 
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The electric wind in the neig’hboiirhood of the point is sometimes 

very vapid, but it soon loses its velocity, and the air with its charged 

particles is carried about with the gciicml motions of the atmo¬ 

sphere, and constitutes an invisible electric cloud. When the charged 

particles come near to any condiieting surface, such as a wall, they 

induce on that surface an electrification opposite to their own, and 

are then attracted towards the wall, but since the electromotive 

force is small they may remain for a long time near the wall 

without being drawn up to the surface and discharged. They 

thus form an electrilied atmosphere clinging to conductors, the pre¬ 

sence of which may sometimes be detected by the electrometer. 

The electrical forces, however, acting between charged portions 

of air and other bodies are exceedingly feeble compared with the 

forces which produce winds arising from inequalities of density 

due to differences of teinpevature, so that it is very improhalde 

that any observable part of the motion of ordinary thunder clouds 

arises from clectiical cans-es. 

The passage of electricity from one place to another liy the 

motion of charged particles is called Electrical Convection or Con¬ 

vective Discharge. 

Tlie electrical glow is therefore produced by the constant pa.ssage 

of electricity through a small portion of air in which the tension 

is very high, so as to charge the surrounding particles of air which 

are eontiimally swept off by the electric wind, which is an essential 

part of the phenomenon. 

The glow is more easily formed in rare air than in den.s’e air, 

and more easily when the point is positive than when it is negative. 

This and many other dilferenees between positive and negative elec¬ 

trification must ho studied by those who desire to discover some¬ 

thing about the nuture of electricity. They have not, however, 

been satisfactorily brought to bear upon any existing theory. 

The Electric Brush. 

56,] The electric brash is a idienomenon which may be pro¬ 

duced h\' electrifying a blunt point or .small ball so as to ])rodnce 

an electric field in which the tension diiiiini.slics, but in a less rapid 

manner, n.s we leave the surface!. It consl.sts of a suece.ssioii of 

discharges, ramifying as they diverge from the bull into tbc air, 

and terminating either by eluirging portions of air or by reaebing 

some other conductor. It i.s aocompanied by a sound, the pitch of 

which dejiends on the interval between the .successive discharges, 

and tlu'rc is no current of air as in the ease of the glow. 
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The Electric Sj)ark. 

57.] When the tension in the space between two eonduetors is 

considerable all the way between them, as in the ease of two balls 

whose distance i.snot great compai.cd with their radii, the dischai'ge, 

when it occurs, usually takes the form of a spark, by which nearly 

the whole electrification is discharged at once, 

In this case, when any part of the dielcctrie has given wray, 

the parts on cither side of it in the direction of the electric force 

arc put into a state of greater tension so that they also give way, 

and so the discharge proceeds right through the dielcctrie, just as 

when a little rent is made in the edge of a piece of paper a tension 

applied to the ])apcr in the direetion of the edge causes the paper to 

be torn through, beginning at the rent, hut diverging occasionally 

where there are weak places in the jiapcr. The electric spark in 

the same way begins at the })oint wdiere the tdectrie tension first 

overeomes the insulation of the dielectric, and proceeds from that 

point, in an apparently irregular path, so as to take in other weak 

points, such as particles of dust lloatiug in air. 

0)1 the Elect)‘ic Force required to produce a Spark in Air. 

In the experiments of Sir W, Thomson * the clectroniotivc force 

rccpiircd to produce a spark across strata of air of various thick¬ 

nesses was mea.surcd by means of an electrometer. 

The sparks were made to pass between two surfaces, one of which 

was plane, and the other only suflieicntly convex to make the .sparks 

occur always at the same place, 

The dilfcrencc of potential rccpiircd to cause a spark to pass was 

found to increase with the distance, but iu a less rapid ratio, so that 

the electric force at any point between the surfaces, which is the 

cpiotieiit of the diflerenec of potential divided by the distance, can 

be raised to a greater value without a discharge when the stratum 

of air is thin. 

hen the stratum of air is very thin, say .0025‘1 of a centimetre, 

the resultant force rcrpiircd to jiroducc a spark was found to be 

027,7, ill torm.s of centimetres and grammes. This corresponds to 

an electric tension of ] I,2t) grammes weight per sepmre centimetre. 

When the distance between the surfaces is about a millimetre 

the electric force is about l,tO, and the electric tension .08 gframmos 

weight iier square eciitimctrc. It is probable that the value for 

* I’rnr. It. t<., ISSn ; or, Kcjirinl, olitij'. .si.\. 
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greater distances is not mneli less than this. The ordinary pressure 

of the atmospliero is iil)ont 10.12 grammes per square centimetre. 

It is dilHcnlt to e.'cplain why a tliin .stratum of air slioiikl require 

a greater force to produce a disruptive di.seluirgc across it than a 

thicker stratum. Is it possible that the air very near to the sur¬ 

face of dense bodies is coiulensod, so as to become a better insu¬ 

lator? or does the potential of an electrified conduetor differ from 

that of the air in oontact with it by a cpiantity having a maximum 

value just before discharge, so that the observed difference of 

potential of the conductors is in every case greater than the dif¬ 

ference of potentials on the two sides of the stratum of air by a 

con.stunt quantity equivalent to the addition of about ,005 of an 

ineh to the thickness of the stratum ? Sec Art. 370. 

All these iihenomeiia differ eoiisiderably in different gases, and in 

the same gas at different densities. Some of the forms of eleetrieal 

discharge through rare gases are exceedingly remarkable. In some 

cases there is a regular alternation of bnninoiis and dark strata, so 

that if the elcetricity, for examjjlc, is passing along a tube contain¬ 

ing a very small quantity of gas, a number of luminous disks will 

be .‘iceii arranged transversely at nearly equal intervals along the 

axis of the tube and separated by dark strata. If the strength of 

the current be increased a new disk will start into existence, and 

it and tho old disks will arrange themselves in closer order. In 

a tube described by Mr. Gassiot* the light of each of the disks 

is bluish on the negative and reddish on the positive side, and 

bright red in the central stratum, 

These, and many other jjhenomena of electrical dl.schargo, are 

exceedingly lni])ortunt, and when they are better understood they 

will irrobably throw great light on the nature of electricity ius well 

as on the nature of gases and of the medium pervading space. At 

present, however, they must be considered as outside the domain of 

die mathematical theory of electricity, 

Electric Pkenomeua of Tounnallne, 

58.] Certain cry.stals of tourmaline, and of other minerals, po.s.sess 

what may be called Electric Polarity. Suppose a crystal of tour¬ 

maline to be at a uniform teni])cralurc, and a])purently free from 

electrification on its surface. Let its tcm])eratnrc be now raised, 

the crystal remaining insulated. One cud will he found positively 

* Inlcllcctnal Oltacrver, March, 1866. 
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and the otlici’ end negatively electrified. Let the surface be de¬ 

prived of tliis apparent electrification by means of a flame or olher- 

wise, then if the erystrd be made still hotter, electrification of the 

same kind as before will appear, but if the crystal be cooled the 

end which was positive when the crystal was heated will become 

negative. 

These electrifications are observed at the extremities of the erys- 

tallograjrliic axis, Some crystals arc terminated by a six-sided 

pyramid at one end and by a three-sided pyramid at the other. 

In these the end having the six-siiled pyramid beeomes positive 

when the crystal is heated. 

Sir W. Thomson supposes every portion of these and other hemi- 

hedral crystals to have a definite electric polarity, the intensity 

of which depends on the temperature. When the surface is passed 

through a Ihime, every part of the surface becomes electrified to 

such an extent a.s to exactly neutralize, for all external points, 

the effect of the internal polarity. The crystal then has no ex¬ 

ternal electrical action, nor any tendency to change its mode of 

electrification. But if it be heated or cooled the interior polariza¬ 

tion of cjich particle of the crystal is altered, and can no longer 

be balanced by the .superficial electrification, so that there is a 

resultant external action. 

Flail of this Treatise. 

59.] In the following treatise I propose first to explain the ordinary 

theory of electrical action, which considers it as dci^ending only 

on the electrified bodies and on their relative position, without 

taking account of any phenomena which may take place in the 

surrounding media. In this way we shall establish the law of the 

inverse scjuarc, the theory of the potential, and the eejuations of 

Laplace and Poisson. We shall next consider the charges and 

potentials of a system of electrified conductors as connected by 

a system of equations, the coefFiciciits of which may be supposed 

to be determined by experiment in those cases in which our jn’cscnt 

mathematical methods are not applicable, and from these we shall 

determine the mcchauieal forces acting bctw'ocn the dilferent elec¬ 

trified bodies. 

We shall then investigate certain general theorems by which 

Green, Gauss, and Thomson have indicated the conditions of so¬ 

lution of problems in the distribution of electricity. One result 

of these theorems is, that if Poisson’s equation is satisfied by any 
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function, and if at tlic surface of every conductor the function 

has tile value of the jiotcntial of that conductor, then the func¬ 

tion expresses the actual potential of the system at every point, AVe 

also deduce a method of finding' problems capable of exact solution. 

In Thomson’s theorem, the total energy of the system is ex¬ 

pressed in the form of the integral of a certain cjuantity extended 

over the whole space between the electrified bodies, and also in 

the form of an integral extended over the electrified surfaces only. 

The equation between these two expressions may be thus inter¬ 

preted jihysically. AVe may conceive the relation into which the 

electrified bodies arc thrown, either as the result of the state of 

the intervening medium, or as the rc-sult of a direct action between 

the electrified bodies at a distance. If we adopt the latter con¬ 

ception, we may determine the laAV of the action, but we can go 

no further in speculating on its oause. If, on the other hand, 

we adopt the eoncoptiou of action through a medium, we are led to 

enquire into the nature of that action in each part of the medium. 

It aiipears from the theorem, that if we arc to loolc for the scat 

of the electric energy in the diflerent parts of the dielcetric me¬ 

dium, the amount of energy in any small part must depend on 

the square of the intensity of the resultant elceti-omotive force at 

that place multiplied by a coefficient called the speeifie induetive 

capacity of the medium. 

It is better, however, in considering the theory of dielectrics 

in the most general point of view, to distinguish between the elec¬ 

tromotive foiec at any ])oint and the electric polarization of the 

medium at that point, since these directed quantities, though re¬ 

lated to one another, arc not, in some solid substances, in the same 

direction, The mo.st general expression for the electric energy of 

the medium per unit of volume is half the product of the electro¬ 

motive force and the electric polarization multii)licd by the cosine 

of the angle between their directions. 

In all fluid dielectrics the electromotive force and the electric 

polarization arc in the same direction and in a constant ratio. 

If we calculate on this hypothesis the totid energy residing 

in the medium, we shall find it equal to the energy due, to the 

cleetniicatiou of the conductors 011 the hypothesis of direct action 

at a distance. Hence the two hypotheses arc matheuiatically equi¬ 

valent. 

If Avc now proceed to investigate the mechanical state of the 

medium on the hypothesis that the mechanical action observed 
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Letween electrified bodies is exerted through and hy means of 

the medium, as in the familiar instanees of the aetion of one body 

on another by means of the tension of a rope or the pressure of 

a rod, we find that the medium must he in a state of mechanical 

stress. 

The nature of this stress is^ as Faraday pointed out *, a tension 

along the lines of foree eombinod with an equal pressure in all 

directions at right angles to these lines. The magnitude of these 

stresses is proportional to the energy of the eloctrificatioUj or, in 

other words, to the square of the resultant eleetromotivc foree mul¬ 

tiplied hy the speeifie inductive eaiiaeit}" of the medium. 

This distribution of stress is the only one eonsistent wdth the 

observed meehanieal action ou the electrified bodie.s, and also with 

the observed equilibrium of the fluid dieleetric whieh surrounds 

them. I have therefore thought it a warrantable step in scientific 

proeedure to assume the actual e.xistencc of this state of stress, and 

to follow the assumption into its consequenees. Finding the phrase 

electric ienmn used in several vague senses, I have attempted to 

confine it to what I conceive to have been in the mind of some 

of those who have used it, namely, the state of stress in the 

dielectric medium which causes motion of the electrified bodic.s, 

and leads, when continually augmented, to disruptive discharge. 

Electric tension, in this sense, is a tension of exactly the same 

kind, and measured in the same way, as the tension of a rope, 

and the dielectric medium, which can support a certain tension 

and no more, may be said to have a ccrhiin strength in exactly 

the same sense as the rope is said to have a ccrhiin strength. 

Thus, for e.xaraple, Thomson has found that air at the ordinary 

pressure and temperature can support an electric tension of OfiOO 

grains weight per square foot bofoi'c a spark passes. 

60.] From the hyjrothcsis that electric action is not a direct 

action between bodies at a distance, but is exerted by means of 

the medium between the bodies, we have deduced that this medium 

must he in a state of sti-css. We have also ascertained the eba- 

raetcr of the stress, and compared it with the stresses which may 

occur in solid bodies. Along the lines of force there is tension, 

and perpendienlav to them there is prc.ssiirc, the numerical mag¬ 

nitude of these forces being e([ual, and each proportional to the 

square of the resultant force at the point. Having established 

these results, we are prepared to take another step, and to form 

* Exj). Eca., seric!) .xi. 1297. 
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an idea of tlic iiatnvc of the electric polarization of the dielectric 

medium. 

An elementary portion of a body may be said to be polarized 

when it acquires equal and opposite properties on two opposite 

sides. The idea of internal polarity may bo studied to the g’reatcst 

advantage as exemplified in permanent magnets, and it will be 

explained at greater length when we come to treat of magnetism. 

The electric polarization of an elementary portion of a dielectric 

is a forced state into wbieh the medium is thrown by the action 

of cleetroinotivc forcoj and which disappears when that force is 

removed. Wo may conceive it to consist in what we may call 

an electrical dis[)hiecmcnt, produced by the electromotive force. 

When the electromotive force acts on a conducting medium it 

produces a current through it, but if the medium is a non-con- 

diictor or dielectric, the current cannot flow through the medium, 

blit the electricity is displaced within the nicdinm in the direction 

of the electromotive force, the extent of this displacement dc- 

jiendiiig on the magnitude of the electromotive force, so that if 

the electromotive force increases or diminishes the electric displace¬ 

ment increases and diminishes in the same ratio. 

The amount of the displacement is measured by the quantity 

of electricity which crosses unit of area, while the disjilaccment 

increa.scs from zero to its actual amount. This, tlicrcfovo, is the 

measure of the electric polarization. 

The analogy between the action of electromotive force in pro¬ 

ducing electric displacement and of ordinary mechanical force in 

pvodiieing the displacement of an clastic body is so obvious that 

I have ventured to call the ratio of the electromotive force to the 

corresponding electric displacement the coefficient of electric elasticity 

of llie medium. This coeffieient is dillevoiit in different media, and 

varies inversely as the specific inductive capacity of each medium. 

The variations of eloetrie displacement evidently constitute electric 

currents. These currents, however, can only exist during the 

variation of the displacement, and therefore, since the displace¬ 

ment cannot exceed a certain value without causing disruptive 

di.sch:irge, they cannot he eontiimed indefinitely in the same direc¬ 

tion, like the enrrents through conductors. 

In tourmaline, and other j)yro-clcctric crystals, it is probable that 

a state of electric polarization exists, which depends upon tem¬ 

perature, and does not require an external electromotive force to 

produce it If the interior of a body were in a state of permanent 
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eleetrie polarization, the outside would gradually become charged 

ill such a manner as to neutralize the action of the internal elec¬ 

trification for all points outside the body. Thi.s external suiicrflcial 

cdiarge could not be detected by any of the ordinary tests, and 

could not he removed by any of the ordinary methods for dis¬ 

charging superficial electrification. The internal polarization of 

the substonce would therefore never be discovered unless by some 

iiicaiis, such as change of temperature, the amount of the internal 

polarization could be increased or diminished. The external elec¬ 

trification would then be no longer capable of neutralizing the 

external effect of the internal polarization, and an apparent elec¬ 

trification would be observed, as in the case of tourmaline. 

If a charge e is iniiformly distrihnied over the surface of a 

sphere, the resultant force at any point of the medium surrounding 

the sphere is numerically equal to the charges divided by the square 

of the distance from the centre of the sphere. This resultant force, 

according to our thcoiy, is accompanied by a displacement of elec¬ 

tricity in a direction outwards from the sphere. 

If we now draw a concentric spherical surface of radius r, the whole 

displacement, Ji, through this surface will be proportional to the 

resultant force multiplied by the area of the S2)hcrieal surface. But 

the resultant force is directly as the charge e and inversely as the 

s(piare of the radius, while the area of the surface is directly as the 

square of the radius. 

Hence the whole displacement, E, is proportional to the charge e, 

and is independent of the radius. 

To determine the ratio between the chai’ge e, and the quantity 

of electricity, E, displaced outwards through the spherical surface, 

lot us consider the work done upon the medium in the region 

between two concentric spherical surfaces, while the displacement 

is increased from E to E-\-hE. If F, and denote the potentials 

at the inner and the outer of these surfaces respectively, the elec¬ 

tromotive force by which the additional displacement is produced 

is ]\—Fo, so that the work spent in augmenting the displacement 

is {l\-f.^hE. 

If we now make the inner surface coincide with that of the 

electrified sphere, and make the radius of the other infinite, 

becomes V, the potential of the sphere, and V,^ becomes zero, so 

that the whole work done in the surrounding medium is VhE, 

But by the ordinary theory, the work done in augmenting the 

charge is Vhe, and if this is spent, as we suppose, in augmenting 
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the displacement, 57? = be, and since JH and e Yanisli together, 

7? = c, or— 

'£he disjjhicemod onfiranls through any sjiJiefical surface concentric 

with the sphere is crjiial to the charge on the sphere. 

To fix onr ideas of electric displacement, let ns consider an accu¬ 

mulator formed of two conducting plates A and B, separated by a 

stiatnm of a dielectric C. Let W be a conducting wire joining 

A and B, and let ns suppose that by the action of an electromotive 

force a quantify Q of positive electricity is transfeiTcd along the 

wire from li to A. The positive electrification of A and the 

negative elcclrification of B will produce a certain electromotive 

force acting from A towards B in the dielectric stratum, and this 

will jn'odiicc an electric displacement from A towards B within the 

dielectric. The amount of this displacement, as measured by the 

(juantily of electricity forced across an imaginary section of the 

dielectric dividing it into two strata, will be, according to our 

theory, exactly Q. Sec Arts. 75, 7(3, 111. 

It appears, Ihciufore, that at the same time that a quantity 

Q of eleetrieit\' is being transferred along fho wire by the electro¬ 

motive force from B towards A, so as to cross every section of 

the wire, the same quantity of electricity crosses every section 

of flic dielectric from A towards B by reason of the electric dis¬ 

placement. 

The reverse motions of electricity will take place during the 

discharge of the accumulator. In the wire the discharge will be 

Q, from A to B, and in the dielectric the displacement will subside, 

and a quantity of electricity Q will cross every section from B 

towards A. 

Every case of electrification or discharge m.ay therefore be con¬ 

sidered as a motion in a closed circuit, such that at every section 

of the circuit the same quantity of electricity crosses in the same 

time, and this is the case, not only in the voltaic circuit where 

it has always been recognised, but in those cases in which elec¬ 

tricity has been generally supposed to be accumulated in certain 

places. 

61.] We arc thus led to a very remarkable consequence of the 

theory which we arc examining, namely, that the motions of elec¬ 

tricity arc like those of an incompressible fluid, so that the total 

quantity within an imaginary fixed closed surface remains always 

the same. This result appears at first sight in direct contradiction 

to the tact that we can charge a conductor and then introduce 
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it into the closed space, and so alter the quantity of electricity 

witliiii that space. But wc must remember tliat tlic ordinary tlieoiy 

takes no account of tlic electric displacement in tlic substance of 

dielectrics wliicli we have been invcstigatiiif*', but confines its 

attention to the electrification at the bounding surfaces of tlie 

coiuluetors and dielectrics. In the case of tlic charged conductor 

let us suppose tlic charge to be positive, tlien if tlic surrounding 

dielectric extends on all sides beyond the closed surface tlicre will be 

electric polarization, aceonijianicd witli displacement from witliin 

outwards all over tlic closed surface, and tlic surliice-iutcgral of 

the displacement talrcn over tlic surface will be equal to the cliarge 

on the eouduetor within, 

Thus when tlic charged conductor is introduced into tlic closed 

space there is immediately a displacement of a quantity of elec¬ 

tricity equal to the charge throiigli the surface from within out- 

w'ards, mid tlic wliolc quantity witliin tlic surface remains tlie 

same. 

The theory of electric polarization will lie discussed at greater 

leiigtli ill Chapter V, and a mechanical illustration of it will be 

given ill Art, 33-1, but its importance cannot be fully understood 

till we arrive at tlic study of olcctroraagnctic phenomena. 

62.] The peculiar features of tlie theory as wc have now de¬ 

veloped them are ;— 

That the energy of electrification resides in tlic dielectric medium, 

whctlicr that medium be solid, liquid, or gaseous, dense or rare, 

or even deprived of ordinaiy gross matter, provided it be still 

capable of transmitting electrical action. 

That the energy in any part of tlic medium is stored up in 

tlie form of a state of constraint called electric polarization, tlie 

amount of whicli depends on the resultant electromotive force at 

tlie place. 

Tliat electromotive force acting on a dielectric jirodnces wliat 

wc liavc called electric displacement, the relation between the force 

and the displacement being in the most general case of a kind 

to be afterwards investigated in treating of conduction, but in 

the most important cases the force is in the same direction as 

the displacement, and is numerically equal to the displacement 

multiplied by a quantity which wc have called the coefficient of 

electric elasticity of the dielectric. 

That the energy per unit of volume of the dielectric arising from 

the electric polarization is half the product of the electromotive 
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force and the electric displacement multiplied, if necessary, by the 

cosine of the angle between their directions. 

That in fluid dielectrics the electric polarization is accompanied 

by a tension in the direction of the lines of force combined with 

an equal jn-essurc in all directions at right angles to the lines 

of foi •cc, the lunonnt of the tension or pressure per unit of area 

being numerically equal to the energy per unit of volume at the 

same pla(,‘e. 

That the surfaces of any elementary portion into -which v,’c may 

conceive the volume of the dielectric divided must be conceived 

to be electrified, so that the surface-density at any point of the 

surface is equal in magnitude to the displacement through that 

point of the surface reckoned hmards, so that if the displacement 

is in the positive direction, the surface of the element will be elec¬ 

trified negatively on the positive side and positively on the negative 

side. These superficial oloctrifieations will in general destroy one 

another when consecutive elements arc considered, cxceid where 

the dielectric has an internal charge, or at the surface of the 

dielectric. 

That whatever elccfricity may he, and w'hatcver we may under¬ 

stand by the movement of electricity, the phenomenon which we 

have called electric displacement is a movement of electricity in the 

same sense as the transference of a definite quantity of electricity 

through a wire is a movement of electricity, the only difference 

being that in the dielectric there is a force which we have called 

electric elasticity which acts against the eloetrie displacement, and 

forces the electricity back when the electromotive force is removed; 

whereas in the conducting wire the electric elasticity is continually 

giving way, so that a current of true conduction is set up, and 

the resistance depends, not on the total quantity of electricity dis¬ 

placed from its po.sition of equilibrium, but on the quantity which 

crosses a section of the conductor in a given time. 

That in every ease the motion of electricity is subject to the 

same condition us that of an incompressible fluid, namely, that 

at every instant as innch ininst flow out of any given closed space 

as flows into it. 

It follows from this that every electric current must form a 

closed circuit. The iniporbince of this result will be seen when we 

investigate the hiw.s of electro-mag'nctism. 

Since, as we Inive seen, the theory of direct action at a distance 

is matliematically identical with that of action hy means of a 
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mctlinm, tlie aotiial phenomena may be explained by the one 

theory a.s well as by the other, provided suitable hypotheses be 

introduecKl when any diflieiilty oeeurs. Thus, Mossotti has deduced 

the mathematieal theory of dioleetries from the ordinary theory 

of attraction by merely giving an eleetrie instead of a magnetie 

interpretation to the symbols in the investigation by whieh Poisson 

has dedueed the theory of magnetie induction from the theory of 

magnetic fluids. He assumes the existence within the dielectric of 

small conducting elements, capable of having their opposite surfaces 

oppositely electrified by induction, but not capable of losing or 

gaining electricity on the whole, owing to their being insulated 

from each other by a non-conductiug medium. This theory of 

dielectrics is consistent with the laws of electricity, and may be 

actually true, If it is true, the speeilic inductive capacity of a 

dielectric may be greater, but cannot be less, than that of air or 

vacuum. No instance has yet been found of a dielectric having 

an inductive capacity less than that of air, but if sneh should 

be discovered, Mossotti’s theory must be abandoned, although his 

formulae would all remain exact, and would only recpiire us to alter 

the sign of a coefficient. 

In the theory which I propose to developc, the mathematical 

methods are founded upon tlic smallest possible amount of hypo¬ 

thesis, and thus equations of the same form are found applicable to 

phenomena which are certainly of quite different natures, as, for 

instance, electric induction through dielectrics ; conduetioii through 

conductors, and magnetic induction. In all these eases the re¬ 

lation between tlic force and tlie effect produced is expressed by 

a set of equations of tlie same kind, so that wlieu a problem in 

one of these subjects is solved, the problem and its solution may 

he translated into the language of tlie other subjects and tho 

results in their new form will also he true. 

VO I.. I. p 



CPIAPTER II. 

ELEMENT.VltY MATHEMATICAL THEORY OP STATICAL 

ELECTRICITy. 

Bejinllion of Ehclnciti/ as a Mathematical Quantit/j, 

63.] We have seen tliat tlie aelions of electrified bodies arc such 

that the electrification of one body may be equal to lliat of another, 

or to the sum of tlie electrifications of two bodies, and that when 

two bodies arc equally and ojqiositely eleetrified they have no elec¬ 

trical effect on external bodic,s when ])lacod together within a dosed 

insulated conducting vessel. We may express all these re.sults in 

a concise and consistent manner by describing an electrified body as 

charged with a eertaiu quautilg of elcclricltg, which we may denote 

by e, When the electrification is positive, that is, according to the 

usual convention, vitreous, e will be a positive quantity. When the 

clectrifieution. is negative or resinous, e will be negative, and the 

quantity —e may he interpreted either as a negative quantity of 

vitreous electricity or as a positive cjinmtity of resinous electricity. 

The effect of adding together two equal and opiiosite charges of 

electricity, +e and —e, is to produce a state of no electrification 

expressed by zero. \Vc may therefore regard a body not eleetrified 

as virtually eharged with equal and opposite charges of indefinite 

magnitude, and an electrified body as virtually charged with un¬ 

equal quantities of positive and negative electricity, the algebraic 

sum of these charges constituting the observed electrification. It is 

manifest, however, that this way of regaitling an electrified body 

is entirely artificial, and may he compared to the conception of the 

velocity of a body as compounded of two or more different velo¬ 

cities, no one of which is the actual velocity of the body. When 

we speak therefore of a body being eharged with a quantity e of 

electricity we mean simply that the body is electrified, and that 

the electrification is vitreous or resinous according as e is positive 

or negative. 
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ON ELECTRIC DEN.SITY. 

Distribution in Three Dimensions. 

64.] Dejinilion. Tlie oloetrio voluine-clensily at a given point 

in space is the limiting ratio of the quantity of electrieity within 

a sphere whose eentre is the given point to the volume of the 

sphere, when its radius i.s diminished without limit. 

We shall denote this ratio by the symbol p, which may be posi¬ 

tive or negative. 

Distribution on a Surjace. 

It is a result alike of theory and of experiment, that, in certain 

eases, the electrification of a body is entirely on the surfaee. The 

density at a point on the surfaee, if defined according to the method 

given above, would be infinite. We therefore adopt a different 

method for the measurement of surface-density. 

Dejinition, The electric density at a given jroint on a surface is 

the limiting’ ratio of the quantity of electricity within a sphere 

whose eentre is the given point to the area of the surfaee contained 

within the sphere, when its radius is diminished without limit. 

We shall denote the surface-density by the symbol a. 

Those writers who supposed electricity to be a material fluid 

or a collection of particles, were obliged in this ease to suppose 

the electricity distributed on the surfaee in the form of a stratum 

of a certain thickness 0, its density being- or that value of p 

which would result from the particles having the closest contact 

of which they are capable. It is manifest that on this theory 

P^O = or. 

When cr is negative, according to this theory, a certain stratum 

of thickness 0 is left entirely devoid of positive electricity, and 

filled entirely with negative electricity. 

There is, however, no experimental evidence either of the elec¬ 

tric stratum having any thickness, or of electricity being a fluid 

or a collection of particles. W^e therefore prefer to do without the 

symbol for the thickness of the stratum, and to use a special symbol 

for surface-density. 

Distribution along a Line. 

It is sometimes convenient to suppose electricity distributed 

on a line, that is, a long narrow body of which we neglect the 
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thickness. In this case wo maj'’deiiiie tlio line-density at any point 

to he tlie liniitiiiff ratio of tlie electricity on an element ol’ the 

lino to the length of that element when the element is dimini.shed 

withuut limit. 

If A (lenote.s the line-density, then the whole qiuintity of elee- 

trieity on a curve is c = ^ Xifs, where Ja is the clement of the curve. 

Siiniliirly, if ir i.s the surface-density, the whole quantity of elec¬ 

tricity on till' surface is 

where (/S i.s the element of surface. 

If p i.s the volume-density at any point of space, then the whole 

electricity within a certain volume i.s 

c = j fj p (hr d/j dz, 

where ilxihj dz is the element of volnine. The limits of integration 

in each case are those of the curve, the surfaeo, or the portion of 

space considered. 

It is rQaiiife.st that e. A, a and p arc quantities dilfering’ in kind, 

each being one dimension in space lower than the preceding, so that 

if (I be a line, the quantities e, aA, «-(t, and a''p will be all of the 

samo kind, and if a he the unit of length, and A, rr, p each the 

unit of the diileront kinds of density, aA, (dc, anda-'p will each 

denote one unit of oleetricity. 

Dejinitioii of the Unit of Eleclricit^. 

65.] Let A and li be two points the distance between which 

is the unit of length. Let two l)odies, whose dimensions are small 

compared with the distance AB, ho charged with equal quantities 

of i)osllive electricity and placed at A and B re.spectivoly, and 

let the charges he sueli that the force with which they repel each 

other is the unit of force, measured as in Art. G. Then the charge 

of either body is .said to be the unit of electricity. If the charge of 

the body at B were a unit of negative electricity, thou, since the 

action hetweeii the bodies would be reversed, we should have an 

attraction equal to the iiiiil offeree. 

If the charge of A were also negative, and equal to unity, the 

force wouhl be repulsive, and equal to unity. 

Since the .notion between any two portions of eleotrioily is not 



68.] LAW OF ELECTRIC FORCE. 69 

afTootecl by the presenee of otlier portions, tlie repulsion between 

e units of eleelrioity at A and e units at Ji is ee, the distanee 

AB being unity. See Art. 39. 

Lmo of Force Lelwceu Eleclrijied Bodies. 

66.] Coulomb sliewed by experiment that tlie force between 

electrified bodies whose dimensions arc small compared with the 

distance between them, varies inversely as the square of the dis¬ 

tanee. Henee the actual reimlsion between two such bodies charged 

with quantities e and d and placed at a distance r is 
ee 

/“ 

We shall prove in Art. 71 that this law is the only one con¬ 

sistent with the observed fact that a conductor, ])laeed in the inside 

of a closed hollow eonduetor and in contact with it, is deprived of 

all electrical charge. Our conviction of the accuracy of the law 

of the inverse S(piare of the distanee may be considered to rest 

on experiments of this kind, rather than on the direct measure¬ 

ments of Coulomb. 

liesnUanl Force hcUceen Two Bodies. 

67. ] In order to lind the resultant force between two bodies 

we migdit divide each of them into its elements of volume, and 

consider the repulsion between the cleetrieity in each of the elements 

of the first body and the electricity in each of the elements of the 

second bodJ^ We should thus get a system of forces equal in 

number to the product of the nnnibers of the clement.s into which 

we have divided eiieh body, and we should have to combine the 

effects of the.se forces by the rules of Statics, Thus, to find the 

component in the direction of .r we should have to find the value 

of the sextuple integral 

ffffff dx dj/ dz dx'dfdz' 

where x, y, z are the coordinates of a point in the first body at 

which the electrical density is p, and a', if, z', and p arc the 

eorre.sponding ([uantilics for the second body, and the integration 

i.s extended first over the one body and then over the other. 

Jlcsulhint Force at a 'Point. 

68. ] In order to simplify the mathematical proees.s, it is con¬ 

venient to consider the action of an electrified hodv, not on another 
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body of any form, but on .an indefinitely small body, eliarged with 

an indefinitely small amount of electricity, and placed at any point 

of the s]).aee to wliieli the electrical action extends, by making 

the charge of this body indefinitely snmll we render insensible its 

disturbing action on the ch.'U'ge of the first body. 

Let c be the charge of this body, and let the force acting on 

it when placed at the point (.r, 3/, be 7iV, and let the direetion- 

eosines of the foreo he m, n, then we may call li the resultant 

force at the point (.r, y, 

In s])eaking of the resultant electrical force at a point, we do not 

necessarily imply that any force is actually exerted there, but only 

tliat if ail electrified body were pliieod there it would be acted 011 

by a force llc^ where e is the charge of the body. 

Befin'dion, The Resultant electrical force at any point is the 

force wliieli would be exerted on a small body charged witli the unit 

of positive electricity, if it wore placed there witliout disturlhng tlic 

actual distribution of electricity'. 

Tliis force not only tends to move an electrified body', l)ut to 

move the electricity witliin ilie body, so that the positive eleetrieity 

tends to move in the direction of 11 and tlie negative eleetrieity 

ill tlie opposite direction. lienee tlie force li is also called tlie 

Electromotive Force at tlie point (j', y, r). 

When we wish to express the fact that the resultant force is a 

vector, we shall denote it by tlie German letter If the body 

is a dieleeti'ie, then, according to the theory’ adopted in this 

treatise, the eleetrieity' is displaced within it, so tliat the quantity 

of electricity which is forced in tlie direction of & across unit 

of area fixed perpendieular to ® is 

S) = ^ K@; 
•1 TT 

wliore S) is the displacement, @ tin; resultant force, and K the 

Kjieeifif indnetivo capacity of the dieleetn'e. For air, K •= I, 

If the body’ is u eondnetor, the state of constraint is continually 

giving way, so that a current of conduction is produced and main¬ 

tained as long as the force @ acts on the medium. 

Compoveiils of the JiesnUant Force. 

If X, Y, Z denote the components of 7?, tlien 

= 7t!/, Y — Rm, Z = Rn; 

where I, m, n are tlie direction-cosines of R. 
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Jjhte-Jnleyral of Electric Force, or Electromotive Force alony 

an Arc of a Carve. 

69,] Tlie Elceti'oinotive force along a given are AP of a curve is 

numerically measured by the work which would be done on a unit 

of po,sitlve electricity carried along the curve from the beginning, 

A, to 1\ the end of the are. 

If ,9 is the lengtii of tlie are, mcasm'od from A, and if the re¬ 

sultant force li at any point of the curve makes an angle e with 

tbe tangent drawn in the positive direction, then the wmrk clone 

on unit of eleetrieit.y in moving along the element of the curve 

and the total electromotive force Vwill he 

r = / ,72 cos e (Is, 

tbe integration being extended from the beginning to the end 

of the nre. 

If we make use of the components of the force F, we find 

If X, Y, and Z are such that X(lx Yd// is a complete 

diflerential of a function of x, y, z, then 

J = V\X(U -f Yihj + Z(h) = Fa-V, ; 
J A 

where the integration is performed in any way from the point A 

to the point whether along the given curve or along any other 

line between A and P. 

In thi.s ease V is a scalar function of the position of a point in 

space, that is, when we know the coordinates of the point, the value 

of f is determinate, and this value is independent of the position 

and direction of the axes of reference. See Art. IG. 

0)1 Fnnotions of the Position of a Point. 

In what ftjllows, when we describe a cjuantity as a function of 

the position of a point, we mean that for every position of the point 

the function has a deteiTiiinate value. We do not imply that this 

value can always be expressed by the same formula for all points of 

space, for it may be ox])ressed by' one formula on one side of a 

given surface and by another formula on the other side. 
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On- Fotmliol Fundions. 

70. ] The quantity Xdx-\-Yili/ -\-Zilz is an exact clifTerential 

wlienever the force anses from attraetioiis or repulsions whose in¬ 

tensity is a function of the clistanee only from any number of 

points. For if )\ be the distance of one of the points from the point 

(»> >/> ^)> repulsion, then 

with similar expressions for J] and so that 

X, dw q- J] dy -f- Xj dz = dr^ ; 

and since is a function of rj only, 7?j dr^ is an exact differential 

of some function of r^, say f]. 

Similarly for any other force acting from a centre at dis¬ 

tance /%, 
X., dx -t- J] dy -f- Z.^ dz = F., dr2 = d • 

But X = A] 4-A2-f-&c. and F and Z are compounded in the same 

way, therefore 

Xdx+Fdy+Zdz= + = dV. 

V, the integ-ral of this quantity, under the condition that V — Q 

at an infinite distance, is called the Potential Function. 

The use of this function in the theory of attractions was intro¬ 

duced by Laplace in the calculation of the attraction of the earth. 

Green, in his essay ‘ On the Ai)plication of Mathematical Analy'sis 

to Electricity^’ gave it the name of the Potential Function. Gauss, 

working independently'' of Green, also used the word Potential. 

Clausius and others have applied the term Potential to the work 

which would be done if two bodies or systems were removed to 

an infinite distance from one another. We shall follow the use of 

the word in recent Engdisb works, and avoid ambiguity by adopting 

the following definition due (0 Sir W. Thomson, 

JJeJhiUion (if PulentUil. The Potential at a Point is the work 

which would be done on a unit of positive electricity by the elec¬ 

tric forces if it were placed at that point without disturbing the 

electric distribution, and carried from that point to an infinite 

distance. 

71. ] Expressions for the ResuHaiit Force and its components in 

terms of the Potential. 

Since (be total electromotive force along any arc AB is 

^ j — J j(. 
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if we put (Is for the arc AJi we shall have for the foree resolved 

in the direction of ds, 

2t cos € = — 
(IT 

(Is 
) 

whence, by assuming (Is parallel to each of the axes in succession, 

X--~, Y---~ Z--'E- 
dx dy dz ’ 

(iF'^ (ir"- (IF'^ 

^ dx ' (Uf dz i ^ 

We shall denote the force itself, whose magnitude i.s /f and whose 

components arc A'", Y, Z, by the German letter <S, as in Arts. 17 

and ()8. 

T/ie Yoientud at all Points within a Conductor is the same. 

72.] A condirctor is a body which allows the electricity within 

it to move from one part of the body to any other when acted on 

by electromotive force. When the clcetricity is in equilibrium 

there can be no electromotive force acting within the conductor. 

Ilencc R = 0 throughout the whole space occupied by the con¬ 

ductor. From this it follows that 

(IF ^ (IF ^ (IF 
dx ~ dy ~ (h ~ ° ’ 

and therefore for every point of the conductor 

r= 6', 
where 6" is a constant quantity. 

Potential of a Coniliictor. 

Since the potential at all points within the sub.stancc of the 

conductor is C, the quantity C is called the Potential of the con¬ 

ductor. C may be defined as the work which must be done by 

external agency in order to bring a unit of electricity from an 

infinite distance to the conductor^ the distribution of electricity 

being supposed not to be disturbed by the presence of the unit. 

If two conductors have equal potentials, and arc eonhected by 

a wire so fine that the electricity on the wire itself may be neg¬ 

lected, the total electromotive force along the wire will be zero, 

and no clcetricity will pass from the one conductor to the other. 

If the irotentials of the conductors A and B be F]| and Fjt, then 

the electromotive force along nnv wire joining A and B will be 
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in the direction that is, positive electricity will tend to pass 

from the conductor of hig-her potcniial to the other. 

Potential, in electrical science, has the same relation to .filcc- 

tricitv that Pres.sare, in Hydrostatics, has to I'liiid, or that Tem¬ 

perature, in Therniodynainies, has to Heat. Electricity, Fluids, 

and Heat all tend to pass from one ])lace to another, if the Poten¬ 

tial, Pressure, or Tenipc-ratiirc is greater in the first place than in 

the second, A fluid is certainly a snhstance, heat is as certainly 

not a substance, so that though we may find assistance from ana¬ 

logies of this kind in forming clear ideas of formal electrical rela¬ 

tions, we mast he careful not to let the one or the other analogy 

suggest to us that electricity is either a substance like water, or 

a state of agitation like heat, 

Pofentiul due to wny Eleclrical Sj/stem. 

73. ] Let there be a single electrified point charged with a quantity 

e of electricity, and let r be the distance of the point®', y', / from it, 

then r= R<h = ~<lr=y 

Let there be any number of electrified points whose coordinates 

arc (A’l,//], 2'i), ,^2.-2). &«■*’ charges Cj, Cj, &c,, and 

let their distances from the point (®',y, z') be r,, 

potential of the system at x, y', / will be 

Let the electric density at any point {x, y, r) within an elec¬ 

trified body be p, then the potcmtial due to the body is 

/'= c/a*r/i; 

where ;•= {(.t-—A-')^ + + (r —F)“} i, 

the integration being extended throughout the body. 

On the Proof of the Law of the Inverse Square. 

74. ] The fact that the force between electrified bodies is inversely 

as the square of the distance may he considered to be established 

by di rect experiments with the torsion-balance. The results, how¬ 

ever, which W(‘ derive from such experinionts must be regarded 

as afTected by an error depending 011 the probable error of each 

experiment, and unless the skill of the operator be very great. 
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the probable error of an experiment with the torsion-balanee is 

considerable. As an arg-inneut that the attraction is really, and 

not nierciy as a rong-li approximation, inversely as the square of the 

distance, Experiment VII (]>. 3-1) i.s far more eonchisive than any 

measurements of electrical forces ean be. 

In that experiment a conductor B, eharg'ed in any manner, was 

enelo.scd in a hollow conducting, vessel 0, which completely sur¬ 

rounded it. C was also electritied in any manner. 

B was then placed in electric communication with C, and was then 

ag.ain insulated and removed from G without touching, it, and ex¬ 

amined by means of an clcctro.scopc. In this way it was shewn 

that a conductor, if made to touch the in.side of a conducting, vessel 

which completely encloses it, becomes comph'tely discharged, so 

that no trace of electrification can be discovered by the most 

delicate electrometer, however strongly the conductor or the vessel 

has been prcvioinsly electrified. 

The methods of detecting the electrification of a body are so 

delicate that a millionth part of the original electrification of B 

could be observed if it existed. No experiments involving the direct 

measurement of forces can be brought to such a degree of accuracy. 

It follows from this experiment that a non-elcctri(ied body in the 

inside of a hollow conductor is at the same potential as the hollow 

eouduetor, in wdiatevcr w'ay that conductor is charged. For if it 

were not at the same potential, then, if it were put in electric 

connexion with the vessel, either by touching it or by means of 

a wire, electricity w'ould pass from the one body to the other, and 

the conductor, when removed from the vessel, would be found to bo 

electrified positively or negatively, which, as we have already stated, 

is not the cruse. 

Hence the wdiolc space inside a hollow conductor is at the same 

potential as the conductor if no oleetrified body is placed within it. 

If the law of the inveme square is true, this w'ill be the ease what¬ 

ever be the form of the hollow eouduetor, Our object at present, 

however, is to ascertain from this fact the form of the law of 

attraction. 

For this purpose let us suppose the hollow eondnetor to be a thin 

spherical shell. Since everything is symmetrical about its centre, 

the shell will be uniformly electrified at every point, and w’c have 

to enf|uirc w'hat must be the law of attraction of a uniform spherical 

shell, so as to fulfil the condition that the potential at every point 

within it shall be the same, 
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Let tlie force at a distanee r from a point at -which a quantity c 

of electricity is concentrated he 7?, where li is some function of r. 

All central forces which arc functions of the distance admit of a 

potential, let us write for the potential function clue to a unit 

of electricity at a distance r. 

Let the radius of the spherical shell he a, and let the surface- 

density he (T. Let V he any'- point within the shell at a distance 

2) from the centre. Take the radius throug'h P as the axis of 

spherical coordinates, and let v be the distance from P to an clement 

dS of the shell. Tlicn the potential at P is 

(IS, 

(t- sin 0 (16 (Icf), 

Now P = (P — 2 (ij) cos 6-{- 

r (Ir = ((2} sin 6 (16. 

Hence F= 2 tt or - / /(r) dr ; 

and F must he constant for all values ofp less than a. 

Multiplying both sides by j) and differentiating with respect toyj, 

7=27:era {/(«+yj) F/{a-p)}. 

Differentiating again with respect toy?, 

0 =/'(a+y;)-/' 

Since a andy; are independent, 

f (r) = C, a constant. 

Hence f{r) = CV-f C\ 

and the potential function is 

r r 

The force at di.stanco r is got by differentiating this expression 

with respect to r, and changing the sign, so that 

or the force is inversely as the square of the distance, and this 

therefore is the only law of force which satisfies the condition that 

the potential within a uniform spherical shell is constant*. Now 

* See Pr.itt's Mechanical rhUosophy, p, 144. 
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this condition is shewn to be fulfilled by the electric forces with 

the most perfect accurney. Hcnee the law of electric force is 

vt. iLuii to a corresponding degree of accuracy. 

Surface-Inlegral of Electric Iniluciion^ and Electric Eisfacemeiit 

llironcjh a Surface. 

75,] Let R be the resultant force at any point of the surface, 

and € the angle which R makes with the normal drawn towrds the 

positive side of the surface, then R cos € is the component of the 

force normal to the surface, and if dS is the clement of the surface, 

the electric displacement through dS will be, by Art. G8, 

-- KR cos e dS. 
4tt 

Since wc do not at present consider any dielectric except air, A"= 1. 

We may, however, avoid introducing at this stage the theory of 

electric displacement, by calling R cos e dS the Induction through 

the element dS. This cpiantity is well known in mathematical 

physics, hut the name of induction is borrowed from Faraday, 

The surface-integral of induction is 

R cos 6 dS, 

and it appears by Art. 21, that if X, Y, Z arc the components of R, 

and if these quantities are continuous within a region bounded by a 

closed surface S, the induction reckoned from within outwards is 

fn^osedS + ‘‘f 

the integration being extended through the whole space within the 

surface. 

Induction through a Finite Closed Surface due to a Single Centre 

of Force, 

76.] Let a quantity e of electricity be supposed to be placed at a 

point O, and let r be the distance of any point P from 0, the force 

at that point is A = -7^ in the direction OF. 

Let a line be drawn from 0 in any direction to an infinite 

distance. If 0 is without the closed surface this line will either 

not cut the surface at all, or it will issue from the surface as many 

times as it enters. If 0 is within the surface the line must first 
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issue from the surface, and then it may cnlcv and issue any number 

of times alternately', ending by issuing from it. 

Let 6 be tin*, angle between OP anti the normal to the surface 

drawn outwards where OF cuts it, then where the line issues from 

the surface eos e will be positive, and where it enters eosf will 

be negative. 

Now let a sphere be desciibed with centre 0 and radius unity, 

and led the lino OP describe a eonieal surface of small angular 

aperture about 0 as vertex. 

This cone will cut off a small element c/w from the surface of the 

sphere, and small elements (/-S',, dS.j., &c. from the elosed .surface at 

the various places where the line OP intersects it. 

Then, since any one of these elements dS intersects the cone at a 

distance r from the vertex and at an oblicpiity €, 

dS = r~ sec € r/a>; 

and, since R — we shall have 

R cos ids = + cd(t3] 

the positive sign being tahen when r issues from the surface, and 

the negative where it enters it. 

If the point. 0 is without the closed .surface, the positive values 

are equal in number to the negative ones, so that for any direction 

of A 2 if cos € dS = 0, 

and therefore ljReos€dS= 0, 

the integration being extended over the whole closed surface. 

If the point 0 is within the closed surface the radius vector OP 

first issues from tlie closed surface, giving a positive value of e du>, 

and then has an equal number of entrancc.s and issues, so that in 

this case v Ji cos e dS = e c/w. 

Extending the integration over the whole closed surface, we shall 

iiieludc the whole of the spherical surlacc, the area of which is 4tt, 

so that 

R cos idS = e. 

Hence we conclude that the total iudiietion outwards through a 

closed surface due to a centre of force e placed at a point 0 is 

zero when 0 is without the surface, and ‘ine when 0 is within 

the surface. 

Since in air the displacement is equal to the induction divided 
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by 'Itt, the displacement through a closed surface, reckoned out¬ 

wards, is equal to the electricity within the surface. 

Cornllari/. It also follows that if the surface is not closed but 

is bounded by^ a given closed curve, the total induction througdi 

it is 0)^, where cu is the solid angle subtended by the closed curve 

at 0. This quantity, therefore, depends only on the closed curve, 

and not on the form of the surface of which it is the boundary. 

On the lujnatlous of Laplace and Poisson, 

77.] Since the value of the total induction of a single centre 

of ibree through a closed surface depends only on whether the 

centre is within the surface or not, and docs not dcpcntl on its 

position in any other way, if there are a number of such centres 

6'j, e.,, &c. within the surface, and e^, e.f, &c. without the surface, 

we shall have 

j'Jli cos ids = ITT e j 

where e denotes the algebraical sum of the quantities of elec¬ 

tricity at all the centres of force within the closed surface, that is, 

the total electricity within the surface, resinous electricity being- 

reckoned negative. 

If the electricity is so distributed within the surface that the 

density is nowhere infinite, we shall have by Art. G-1, 

and by Art. 75, 

= ‘"•11] 
p do! dj (h, 

ffjUos,,lS = ljj 

If we take as the closed surface that of the clement of volume 

du! dy dz, we shall have, by equating these expressions, 

dX dV dZ 

and if a potential V exists, we find by Art. 71, 

d'^r d-V d-V 

This equation, in the case in which the density is zero, is called 

Laplace’s Equation. In its more general form it was first given by 

Poisson, It enables us, when we know the potential at every point, 

to determine the distribution of electricity. 
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We shall dcnoic, as at Art. 2G, the quantity 

(PV (l^ (1-2 V 

~(h- (If Ilf 
hy — y^r, 

and we may express Poisson’s equation in words l5y saying’ that 

the electric density inultii)lied hy Itt is the eoueentration of the 

potential. Where, there is no electrification, the potential has no 

concentration, and this is the interpretation of Laplace’s equation. 

If we suppose that in the supcrfieial and linear distrihutions of 

electricity the volume-density p remains finite, and that the elec¬ 

tricity exists in the form of a thin stratum or narrow fibre, then, 

hy increasing' p and diminishing the depth of the stratum or the 

section of the fibre, we may approach the limit of true superficial 

or linear distribution, and the equation being true throughout the 

process will remain tme at the limit, if interpreted in accordance 

with the actual circumstances. 

On 1/ic Conditions to he fnljilled nt an Eleclrijied Surface, 

78.] We shall consider the electrified surface as the limit to 

which an electrified stratum of density p and thickness v approaches 

when p is increased and v diminished without limit, the product pv 

being always finite and equal to cr the surface-density. 

Let the stratum he that included between the surfaces 

If we put 

F{x,y,z) = F = a 

F = a + Zi. 

dF~ 

^ = *:i + 

and if /, ni, n arc the direction-cosines of the normal to the surface. 

Ihn — Rn = 

Now let J\ he the value of the potential on the negative side 

of the surface F ■= a, J ' its value between the surfaces F= a and 

F = a -f-/q and its value on the positive side of F = a+ Zi. 

Also, lot Pi, p', and p^ he the value.s of the density in these three 

portions of space. Then, since the density is everywhere finite, 

the second derivatives of V are everywhere finite, and the first 

derivatives, and also the function itself, are everywhere continuous 

and finite. 

At any point of the .surface F = a lot a normal he drawn of 
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length p, till it meets the surface F = a + /t, then the value oH F at 

the extremity of the normal is 

(IF (IF. „ 
m + n — j 4- &e., 

' (?>/ ' (h 

or a + F = a +vF + 8[C. 

The value of F at the same point is 

..(IF' (IF' (IF\ , 

or F — F — ~ 4- &c 
“ - Ji (Ip 

(5) 

(G) 

(7) 

(8) 

Since the first derivatives of F continue always finite^ the second 

side of tlie ccpiation vanishes wlicii h is climini-shed without limit, 

and therefore if F.^ and denote the values of F on the outside 

and inside of an electrified surface at the point z, 

F, = F,. (9) 
If x + dx, y-\-(l^, z + dz be the coordinates of another point on 

the electrified surface, J7=a and F-^=F^ at this point also; wheiice 

(IF , dF , (IF , , 

“ = ^*+4''^+**+*“■• 
(10) 

AU'o (iy^ \ , fd!'., (if'^s , /(IF. (IF-.. , „ , , 

du dJi 
and when dx, dy, dz vanish, we find the conditions 

dx (lx ’ 

(IF^ _ dj\ 

dy dy 
Cm, 

= Cn, 
dz dz 

:i2) 

dF 
where C is a cpiantity to he determined. 

Next, let us consider the variation of F and ~ along the 

ordinate parallel to x between the surfaces F— a and F =a-\-h. 

We have F= a + '-f-dx + ^^^^{dxf + &c., (13) 

and 
(IF (IF^ (Pr , 7.0,0 

dx~ dx ' dx^"^ ' '^ dr' 

Hence, at the second surface, where F=a + /i, and ^becomes F^, 

(IF, dF, (PF' 
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whence 
d‘^V 

dx~ 
r/,i‘+&e. = Cl, (IfJ) 

by tlie first of equations (I2). 

Multiplying- by JU, and remembering- tliai, at the seeoiul surface 

lildx = h (17) 

we find 
(FV' 
" 4 k = CJIF. 
dx^ 

(18) 

Similarly (F F' 
,-fi^ Cllm--, 

(hr 
(19) 

and ki
 '
r,

 
1 

.. 

II (20) 

Adding 
,(FF' (F-F' (FF\, 

(7?^ + df 
(21) 

but 
d'^r' 

llx^ 

<F F' (FF' , , , ,, 
^ dz- ■M\d/t = vn-, (22) 

hence C ■=. — 4ttp'v = — 4 7r (T, (23) 

where cr is the surfaec-deiisity; oi-^ multiplying- the equations 

(12) by I, m, n respectively, and adding, 

dJ\. , 

^)+’" 
Cl]_2 _ 

This equation is called the cl/(/yanl/;>'i.^i/n equniion of V at a surface. 

This equation may also be written 

(IF, (IF., 
(25) 

where v■^, I'g normals to the surface drawn towards the 

first and tlie second medium respectively, and F-^, the potentials 

at jwints on these normals, We may also write it 

i72C0S cos ej + tTTO- = 0 ; (2fi) 

where j?j, Ji^ arc the resultant forces, and the angles which 

they make with the normals drawn ^/roai the surface on either 

side. 

79.] Let us next determine the total mechanical force acting on 

an clement of the electrified surface. 

The general expression for the force parallel to x on an element 

whose volume is (hd}/(h, and volume-density p, is 

r/A’ = — /) (lx dy (h. 
f/x ' 

(27) 



8o,] FOIICE ACTING ON AN ELECTKIFIED SURFACE, 83 

Ill the present case \vc have for any point on tlie normal u 

(?T _(11\ 
(ix (hr 

+ v 
<Lc^ 

-&c,; (28) 

also, if the element of surface is dS, that of the volume of the 

cloinciit of llic stratum may be written dSdv; and if X is the whole 

force on a stratum of thickness v, 

(2i)) 

Integrating with respect to i>, we find 

X: 

oi'j siiiec 
(ir. 
(Ix 

_(W, ii- r 
-XF+^IX- 

(30) 

(31) 

(32) 

When V is diminished and p' increased without limitj the product 

p'v remaining always constant and ccpial to a, the expression for 

the force in the direction of a? on the electricity a-(IS on the element 

of surface dS is 
(33) 

that is, the force acting on the electrified element <t (IS in any given 

direction is the arithmetic mean of the forces acting on equal 

quantities of electricity placed one just inside the surface and the 

other just outside the surface close to the actual position of the 

clement, and therefore the resultant mechanical force on the elec¬ 

trified clement is equal to the resultant of the forces which would 

act on two portions of electricity, each equal to half that on the 

element, and placed one on each side of the surface and infiiiitely 

near to it. 

80.] When « conductor is in electrical erpiiUbriviii, the lohole of ike 

electricity is on the surface. 

We have already shewn that throughout the suhstaucc of the 

condnetor the potential V is constant. Hcncc is zei-o, and 

therefore by Poisson’s equation, p is zero throngliout the substance 

of the condnetor, and there can be no clcetrieity in the interior 

of the conductor. 

Hence a siiperlicial distribution of electricity is the only jinssible 

one in the ease of conductors in equilibrium. A distribution 

tliroughont the mass can only exist in equilibrium when the body 

is a non-conduetor. 

u 2 



84 KLKCTROSTATICS. [8i. 

Since the resultant force witluii a conductor is zero, tlic resultant 

force just outside* tlie coruliielor is jdoiiy tlie uormal and is equal to 

4 TT (T, aetiiiy outwards from the conductor. 

81.] If we now siip])ose an elongated body to lie electrified, we 

may, by diminishii)o> Its lateral dimensions, arrive at tlic conception 

of ail electrilleil line. 

.Let ds be the length of a small t^ortion of the elongated body, 

and let c be its circimifercnee, and a the superficial density of the 

electrieity on its surface; then, if A is the electricity per unit of 

length, A = ca, and the resultant electrical force close to the 

surface will be A 
4 ir (T = ■! TT — • 

c 

If, while A remains finite, c be diminished indefinitely, the force 

at the surface will be increased indefinitely, Now in every di¬ 

electric there is a limit beyond which the force cannot be increased 

without a disruptive discharge, Hence a distribution of elcetrieity 

in which a finite quantity is placed on a finite portion of a line 

is inconsistent with the eonditious existing in nature. 

Even if an insulator could be found such that no discharge could 

he driven through it by an infinite force, it would be impossible 

to charge a linear conductor with a finite quantity of electricity, 

for an infinite electromotive force would be required to bring the 

electricity to the linear conductor. 

In the same way it may be sliewn that a point charged with 

a finite quantity of electricity cannot exist in nature. It is con¬ 

venient, however, in certain cases, to speak of eleetrilied lines and 

points, and we may suppose these reiiresented by electrified wires, 

and by small bodies of which the dimensions are negligible com¬ 

pared with the principal distances concerned. 

Since the quantity of electricity on any given portion of a wire 

diminishes indefinitely when the diameter of the wire is indefinitely 

diminished, the distrihution of elcetrieity on bodies of’ considerable 

dimensions will not be sensibly affected by the introdnetioii of very 

fine metallic wires into the field, .so as to form electrical connexions 

between these bodies and the earth, an electrical machine, or an 

electrometer. 

0)1 Lines of Force. 

82.] If a line be drawn whose direction at every point of its 

course coincides with that of the resultant force at tliat point, the 

line is called a Line of Force. 
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If lines of force be drawn from every point of a lino they will 

form a surface such that the force at any point is parallel to the 

tangent plane at that point. The siirfaec-intcgral of the force with 

respect to this surface or any part of it will therefore be zero. 

If lines of force arc drawn from every point of a closed curve 

they will form a tubular siirfiice Let the surface <S'j, bounded 

by the closed curve be a section of this tube, and let S.^ be any 

other section of the tube. Let Q^, Q.^ be the surface-integrals 

over iS,), S^, S.,, theuj since the three surfaces comjdetely enclose a 

space in which there is no attracting matter, wc have 

^(. + -f- = 0- 

Eut Q^^=0, therefore Qo = — Qi, or the surface-integral over 

the second section is equal and ojrpositc to that over the first: but 

since the directions of the normal are opposite in the two cases, wc 

may say that the surface-integrals of the two sections arc equal, the 

direction of the line of force being supposed positive in both. 

Such a tube is called a Solenoid* and such a distribution of 

force is called a Solcnoidal distribution. Ihe velocities of an in¬ 

compressible fluid are distributed in this manner. 

If wc suppose any surface divided into elementary portions such 

that the surface-integral of each element is unity, and if solcnoid.s 

are drawn through the field of force having these elements for their 

bases, then the surfacc-iutcgral for any other surface will be re¬ 

presented hy the number of .solenoids which it cuts. It is in this 

sense that I'arada}'^ uses his eonce})tion of lines of force to indicate 

not only the direction hut the amount of the force at any place in 

the field. 

Wc have used the jihraso Lines of Force because it has been used 

by Faraday and others. In strictness, however, those lines should 

be called Lines of Electric Tiuliictiou. 

In the ordinary cases (he lines of induction indicate the direction 

and magnitude of the re.sidtant elcetroniotive force at every point, 

bce:mso the force and the induction arc in the same direction and 

in a eon.stant ratio. There are other cases, however, in which it 

Is impoidaiit to rememher that those lines indicate the induction, 

and that the force is indicated by the equijiotciitial .surfaces, being 

normal to these surfaces and inversely joroportional to the distances 

of consecutive surfaces. 

* From •*-tii 1)0. Faraday u.sea (3271) tlie tenii ‘ Splioiidyloid’ in tlie same 
Honac. 
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On Specific Indiicfivc QijnicUi/. 

83.] In the preceding' inve.stigiition of Riirfacie-iiitegrals I liave 

acloptecl the orclinaiy eoiice])timi of direct action at a clistaiiee, 

and liave not talcen into consideration any effects depending’ on the 

nature of tlie dielectric niedinni in M'liicli tire rorcc.s are observed. 

But Faraday 1ms observed (hat the quantity of electricity 

induced by a given electromotive force on the surface of a conductor 

which ljonnd.s a dielcclrie is not the .same for all dich;ctric.s'. The 

iudneed electricity is greater for mo.st solid and lirpiid dieh'ctries 

than for air and ga.se.s. Hence these bodie.s arc said to Inivi; a 

greater .specific iudnetive capacity than air, which is the standard 

medium. 

We may express the tlujory of Faraday in mathematical language 

by .saying that in a dielectric medium the induction across any 

.surface is the product of the normal electric force into the coeflicient 

of specific inductive capacity of that medium. If we denote this 

coefficient by A', then in every part of the invcistigatlon of sur¬ 

face-integrals we must multiply X K, and /^ hy A, so that the 

equation of Poisson will become 

if 

(Lv ilv cfij 

,,iir d ,,r/X ^ 
A 7 4- -y . A. : 4-‘1t:p=0. 

(ly dz dz 

At the surface of separation of two media whose inductive capa- 

eities are A'j and K.,, and in which the potentials are f\ and 

the characteristic equation may be written 

A 
dr., 

fh 

df\ 

dll 
+ TTiT = 0; 

where u is the normal drawn from (he first medinin to tho second, 

and (T i.s the true .surfiiec-den.sity on tlio snrfnec of separation ; 

that is to say, the qinuitity of electricity whioli is actually on the 

.surface in the form of a charge, and which can he altered only by 

conveying electricity to or from ilie .spot. This true electrifieation 

must be di.siingui.slied from tho apparent electrification a', which is 

flic elecfrlfieation as deduced from the electrical forces in tho neigh- 

hourhoud of tlie surface, using tlie ordinary eharaeteri.stic equation 

d Iif I , f 
’ -b J7r<r'= 0. 

dv dv 

If a solid dielectric of any I’onn is a perfect Insulator, and if 

it.s .surface receives no charge, then tlu‘ true electrifieation remains 

7-ero, whatever ho the eleelrieal forces acting on it. 
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ilenco 
(ir.. 

K., dv 
aad 

K^ — K.j^ dT\ 

K. dv 
4--1t:o''= 0, 

dl\   iTTa'A'.^ dr,, ■i'ncr'Ki 

dv A'j — K.j^ dv A"i — K.2 

The siu'fiico-tleiisity a is that of the apparent electrification 

protliiccd at tlic surfiicc of the solid dielectric by induction. It 

disapi)ear.s entirely when the inducing' force i.s removed, but if 

during' the action of the indneing force the apparent electrification 

of the. surface is discharged hy ])a.ssing' a flame over the surface, 

then, when tho indneing- force is taken away, there will appear an 

electrification opposite to o-'*. 

In a heterogeneous dielectric in which K varies coiitiuuonsly, if 

// he the apparent volume-density, 

d- V d- r d- r 
d^^ + df ^ dz^ 

Comparing this with the equation above, we find 

■1 Tr{p — Kp') + 
dK dV 

dx dx 

dKdV dKdV 

dy dy dz dz 
0, 

The true olectrifleation, indicated hy p, in the dielectric wdioso 

varinble inductive capacity is denoted by K, will produce tho same 

potential at every point as the apparent electrification, indicated hy 

p', would produce in a dielectric whose induetivo capacity is every¬ 

where equal to unity. 

• See Faniday’H ‘ ReniarkH on Static Iiuliiction,' PweeaHnga uf the. Ilogul Jv- 
alitiilioii, Fol), 12,1858. 



CHAPTER III. 

SYSTEMS OP CONDUCTORS. 

On the ^itperjmition of Electrical Si/slems. 

84. ] Let be a given eleotrified system of wliioli the potential 

at a point E is V-^, and let A!j be another eleetriiied system of whioh 

the potential at the same point would he if E-^ did not exist. 

Then, if and exist together, the potential of the combined 

system will be J\-\- J'.,. 

Hcnoe, if E bo the potential of an oloetrified system E, if the 

electrification of every jrart of E be increased in the ratio of « to 1, 

the potential of the now system n E will be n V. 

Energy of an Electrified System^ 

85. ] Let the system be divided into parts, A.,, &o. so small 

that the potential in each part may' be considered constant through¬ 

out its extent. Let e^, &e. he the quantities of electricity in 

each of these parts, and lot Jfi f'fi &c, bo their potentials. 

If now Cj is altered to «Cj, <?., to &e., then the potentials will 

become nl\, nV.,, &e. 

Let us consider the efTcet of changing n into n~\-d)i in all these 

expressions, It will he equivalent to charging A-i with a quantity 

of electricity e^dn, A., vnth efiii, &e. These charges must be sup- 

po.sed to he brought from a distance at which the electrical action 

of the system is insensible. The work done in bringing c, chi of 

cleetrieity to yfj, whose potential before the charge is and after 

the charge (« + dn) l\, inust lie hetw'cen 

n T\ Cj (hi and {n + dn) F-^ dn. 

In the limit we may neglect the square of dn, and write the 

expression l\<\n(ln. 
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Similarly the work required to increase the eharg'e of is 

V^e.,n(hi, so that the whole work done in increasing the eharg'e 

of the system is 
(iTj + Vo (?2 + &e,) n (hi. 

If we suppose this process repe<ated an indofmitely great number 

of times, each charge being indofmitely small, till the total effect 

becomes sensible, the work done will be 

S(Fe)Jn(In = \'S,{Ve)— ; 

where 2(Fe) means the sum of all the products of the potential of 

each element into the quantity of electricity in tliat element when 

n z=. 1, and w,, is the initial and the final value of n. 

If we make = 0 and ?/j = 1, we find for the work required to 

charge an iiuelectrified system so that the electricity is e and the 

potential V in each element, 

Q = is (7^0). 

General Theory of a System of Conductors, 

86.] Lot yfp Ao, ...A„ bo any number of oonduotors of any 

form. Lot the oliurgo or total quantity of eleotrioity on each of 

these 1)0 IJ„, ... /f,,, and let their potentials be Tj, F„, ... 7„ 

respcotively. 

Let us suppose the oonduotors to be all in.sulatod and originally 

free of charge, and at potential zero. 

Now let Ai be charged with unit of elootricity, the other bodies 

being without charge. The offoot of this charge on will bo to 

raise the potential of to that of A., to y)^„, and that of A,, to 

y)i„, where y;,j, &c, are quantities depending on the form and rela¬ 

tive position of the conduotors. The quantity may be called the 

Potential Cooflioiont of A^ on itself, and may bo called the Po¬ 

tential Coodioient of A^ on A.,, and so on. 

If the charge upon A^ is now made , then, by the principle of 

superposition, we shall have 

= Pii . ^n— 

Now lot //j bo discharged, and A.^. charged with unit of eleotrioity, 

and let the potentials of A^, A.^,...A„ bo ...yhn, then the 

potentials due to on A^ will bo 

— P'il ^2. ^11 — 

Similarly lot us denote the potential of A, duo to a unit charge 

on A, byyv,. and let us call yv, t-lic Potential Coefficient of A^ on A^, 
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then wo shall have the Ibllowiiig equations (leterniining the po- 

tcntials in terms of the cbai-g-es; 

■ 
II 

1 1 

-f
 

1 1 

' “b An} 

• • + 7b»Ai( 

— J)^ „ -/>j ...■}* Prn * ' 

Wc have hero « linear equations containing- n- coefficients of 

potential. 

87.] By solving- these equations for &c. we should obtain 

n cfjuations of the form 

-^1 = 'h\^ 1 ■ • • + !7i»^« ■' ■ "b 71 ii^n) 

A’ = ?rl A • • • + !/r/« ■ + <2r,J\o (2) 

Ai 'l«\ ^ 1 ' ■ ■ "t iZa* ' "b 

The coetfic-ients in these equations may bo obtained directly from 

those ill the former equations. They may bo called Coefficients of 

Induction. 

Of tbese 17,, is numerically equal to the quantity of electricity 

on when A^ is at potential unity and all the other bodies are 

at potential m-o. This is called the Cajiacity of It depends 

on the form and jmsition of nil the conductors in the sy.stem. 

Of the rest 7^, is the charg-e induced on A,, when A, is main¬ 

tained at potential unity and all the other eonduetors at potential 

zero. This is called the Coefficient of Induction of A, on A^. 

The mathematical determination of the coctlioients of potential 

and of capacity from the known forms and positions of the eon- 

dnetors is in general ditlieult. We shall afterwards ju-ove that they 

have always determinate valnes, and we .shall determine their values 

in eerlain special eases, For the present, however, we may suppose 

them to 1)0 determined by actual experiment. 

.Dimenmns of Ihesc Coefficients, 

Since the j)otcntial of an electrified point at a distance r is the 

charge of electricity divided by the distance, the i-atio of a quantity 

of electricity to a potential may be represented by a line. Hence 

all the coefrieients of capacity and iiidnetion (y) are of the nature of 

lines, and the coetfieieuts of potential {p) arc of the nature of the 

reciprocals of lines. 
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88.] Theorem I. The coefficients of relative to A, are equal to 

those of A, relative to A^. 

If tlie oliarge on A^., is ineveasecl by 67^,., tho work spent in 

bringing 877^ from an infinite distance to the eonduetor whose 

])oteiitial is V,., is by the definition of potential in Art. 70, 

and this expresses tlie increment of the eleetrie energy caused l)y 

tlii.s increment of charge. 

If tlie eliarges of the different eoiuluetors are increased l)y h]'\, 

&e., the increment of the eleetrie energy of the system will bo 

hQ — V-^ 37i\ + &e, + hEf + &e. 

If, therefore, the eleetrie energy Q expressed as a fimetioii 

of (he charges /f,, E.,, See., the potential of any eonduetor maybe 

e.xju-essed as the partial difl'orential eoeffieient of this function with 

respect to the charge on that eonduetor, or 

r = .ir 
*• Wy '^clEf 

Since the potentials are linear functions of the charges, the energy 

must be a quadratic fuiietion of the charges. If we put 

for the term in the expansion of Q which involves the product 

Ef then, by differentiating with respect to 7f,, we find the term 

of the expansion of F, which involves E,. to be CE,., 
Differentiating with respect to E^, wo find the term in the 

expansion of which involves E^ to be CE^. 

Comparing these residts with equations (1), Art. 8(j, we find 

Erl — ^ — 7^«r> 

or, interpreting the symbols and •’— 

The potential of A, due to a unit charge on A,, is equal to the 

potential of A,, due to a unit charge, on A„. 
Tin's reciprocal property of the electrical action of one conductor 

on another was established by Helmholtz and Sir W. Thomson. 

If wo suppose the eonduetors A,, and A„ to be indefinitely small, 

we have the following reciprocal prnpedy cif any two points ;— 

The potential at any point A,, due to unit of eleetrieity placed 

at A,, in presence of any system of eonduetors, is a function of the 

positions of A,, and A„ in which the coordinates of A,, and of A, 
cuter in the same manner, so that the value of the function is 

unehaiiged if we exchange A,, and A^. 
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Tliis fimction is known by the name of Green’s Fnnetion. 

Tlie oocfFieients of induction and q,^ are also equal. This is 

easily seen from the process by -whieh these eooflieients arc obtained 

from the coeffieients of potential. For, in the expression for 

and enter in the same way as and do in the expression 

for q„. Hence if all [)airs of coeffieients and arc equal, the 

pairs q^, and q,^ arc also equal. 

89.] TiiEonE:u II. Lei n charye be placed on A^, and let all 

the other conductors be at potential zero, and let the char ye 

induced on he —n^E,, then if A,, is discharged and insulated, 

and A, brought to qmtential V„ the other conductors being at 

potential zero, then the potential of A,, zoill he 

For, in the first case, if is the potential of A^, we find by 

equations (2), 
= '7.. Ky find E, — q„. /■;. 

Hence E, = pq and n,, = - . 
!7,-r 

In the second ease, we have 

E, = 0 = q,X^q„V,- 

Hence /; = - ’ T, - n„ /;. 
jrr 

Prom this follows the important theorem, due to Green :— 

If a eharg-e unity, placed on the conductor A^, in presence of 

conductors A^, A„, &c. at potential zero induces charges —n^, 

~u.^, &e. in these condnetors, then, if A^, is discharged and in¬ 

sulated, and those conductors are maintained at potentials T\, Jf 

&c., the potential of Af, will be 

f 2 4" ^2 4" 
Tlie quantities («) arc evidently numerical quantities, or ratios. 

The conductor A„ may be supposed reduced to a point, and 

7^2, y/,, &c. need not be insulated fi’om each other, but may be 

difforcut elementary portions of the surface of the same conductor. 

We shall see the application of this principle when avc investigate 

Green’s Functions. 

90.] TuEOHEir III. The coefficients of potential are all positive, 

hut none of the coefficientsq),., is greater thanqi,,. orp,,. 

For let a charge unity be communicated to A,., the other con¬ 

ductors being uncharged. A system of equipotential surfaces will 
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be formed. Of tliese one will be the surface of Ar> its potential 

will be p„. A, is placed in a hollow exeavated in A^ so as to bo 

completely enclosed by itj then the potential of A, will also 

If, howcvei-j A, is outside of yf,. its potential Pr, will lie between 

and zero. 

For eonsider the lines of force issuing from the eharged eon- 

duetor A^. The charge i.s measured by the excess of the number 

of lines which issue from it over those which terminate in it. 

Hence, if the conductor has no charge, the number of lines which 

enter the eonduetor must be erpial to the number which issue from 

it. The lines whieh enter the eouduetor come from places of greater 

potential, and those whieh issue from it go to places of less poten¬ 

tial. Hence the potential of an uncharged conductor must be 

intermediate between the highest and lowest potentials in the field, 

and therefore the highest and lowest potentials cannot belong to 

any of the uncharged bodies. 

The highest potential must therefore be that of the eharged 

body A^, and the lowest must be that of space at an infinite dis- 

taiiec, whieh is zero, and all the other potentials such as jiy, must 

lie between yj,.,. and zero. 

It' A^ completely surrounds A^, thenp„ = A/- 

91.] Tiieore.m IV. None of Ike coeflcients of huhci'mi are positive, 

and Ike sum of all those heloag'ing to a s'lWjle condmlor is not 

numerically greater than the coefficient of capacity of that con¬ 

ductor, wh'ick is always jtositive. 

For let be maintained at potential unity w'hile all the other 

conductors are kept at potential zero, then the charge on A,, is q„, 

and that on any other conductor A, is q,.^. 

The number of lines of force which issue from A,, is Of these 

some terminate in the other eonduetorSj and some may proceed to 

infinity, but no lines of force can pass between any of the other 

conductors or from them to infinity, because they are all at potential 

zero. 

No line of force can issue from any of the other conductors such 

as A,, because no part of the field has a lower i)oteutial than y/,. 

If A, is completely cut off from A^ by the closed surface of one 

of the conductors, then q,., is zero. If yf„ is not thus cut off, q„ is a 

negative quantity. 

If one of the conductors yf^ completely surrounds A^, then all 

the lines of force from A,, fall on A^ and the conductors within it. 
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and ilie sum of tlic cocfReicnts of induction of tliese conductors with 

respect to will be equal to with its sign ehang'cd. But if 

is not completely surrounded by a conductor the arithmetical 

sum of the eoelHcicnts of induction ly,.., &e. will be less than (j„. 

We have dednecd these two theorems inde])eiulentl3'‘ by means 

of electrical considerations. We maj" leave it to tbe mathematical 

student to determine whether one is a matbcmatical consequence 

of the other. 

Itesnllant Mechanical Force on any Conductor in terms of the Charyes, 

92.] Let b(j) bo any moehanieal displacement of the condnetorj 

and let <h he the the eompoiicnt of the force tending to produce that 

displacement, then fhSt/j is tlie work done Ijj" the force during 

the displacement. If this work is derived from tbe electrifteation 

of the .system, then if Q is the electric energy of tlie system, 

<hS(/) + 5g = 0, (3) 

Here 

or (h =-- . 
60 

Q — i 1 + ^ e h 

(i) 

(5) 

If the bodies are insulated, the variation of Q must be such that 

/f., &c. remain eonslunt. Sukstituting tbereforo for the values 

of the potentials, we have 

Q = (G) 

where tbe symbol of summation 5 include.s all terms of the form 

within the braekets, and r and s may each have any values from 

1 to n. From this we find 

(7j 

as tbe expression for the comjioncnt of the force which produce.s 

variation of the generalized coordinate, 0. 

Fcsnllant Mechanical Force in lernis of the Potentials. 

93.] The expre.ssion for h in terras of tbe charges is 

(8) 

where in the summation r and s have each every value in suc¬ 

cession from 1 to n. 

Now yf,. = where I may liavc any value from 1 to n, 

so that 
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Now tlic eoefficients of iiotential are eoiincctcd witli those of 

induction by n. equations of tlio form. 

(A... !7..r) = 1 - (10) 
and 1) of tlie form 

S. (A,, k) = 0. (11) 

Diirereiitiatiiig with rc.spcct to 0 we get equatioius of 

tlio form (U. ^ f (h,,. 

02) 
wlierc a and h may be the same or difFcrciit. 

Hence, putting a and b equal to r and s, 

= (13) 

but 2£, (A),;l») = ^r) so tliat we may write 

= (M) 

wliere r and i may have eaeli every value in .succes.siou from 1 

to 11, Tlii.s expression gives the resultant rf)rcc in terms of the 

potentials. 

If each conductor i.s connected with a battery or other con¬ 

trivance by which its potential is maintained constant during the 

displacement, then this expression is .sini]dy 

ilQj 

"■ = ,4’ 05) 
under the condition that all the potentials arc constant. 

The work done in this ease during the displacement 80 is <b 80, 

and the electrical energy of the system of conductors is increased 

hy oQ; hence the energy spent by the batteries during the dis¬ 

placement is 

<h 804-8(2 = 2<h80 = 2 8§. (IG) 

It ajrpears from Art, 92, that the resultant force d> is equal to 

— under the condition that the charges of the conductors are 

. (IQ 
con.stant. It is also, by' Art. 93, equal to under the con¬ 

dition that the potentials of the conductors are constant. If the 

conductors arc insulated, they tend to move so that their energy 

is diminished, and the work done by the electrical forces during 

the dis])laccnicnt is equal to the dimiuntion of energy. 

If the conduetor.s au’ conneclc'd with batteries, so that their 
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ix)tcntials arc maintained constant^ tliey tend to move so that the 

onerg’y of the system is increased, and the work done by the 

electrical forces during the displacement is equal to the increment 

of the energy of the system. Tlic energy spent by the batteries 

is equal to double of cither of these quantities, and is spent half 

in mechanical, and half in electrical work. 

On the Comparison of Similar Electrified Systems. 

94.J If two electrified systems arc similar in a geometrical sense, 

so that the lengths of corresponding lines in the two systems 

arc as E to L\ then if the dielectric which separates the coiidueting 

bodies is the same in both systems, the coefficients of iiidaction 

and of capacity will be in the proportion of L to L'. Por if wo 

consider corresponding portions, A and A, of the two systems, and 

suppose the quantity of electricity on A to be E, and that on A' 

to be E\ then the potentials V and V' at corresponding points 

B and JE, due to this electrification, will be 

E F/ 
^=1TV 

But AB is to AB as L to Jf, so that we must have 

E: E' LVL'V. 

But if the inductive capacity of the dielectric is different in tlic 

two systems, being K in the first and K' in the second, then if tlie 

potential at any point of tlie first system is to that at tlie cor¬ 

responding point of the second as V to V', and if the quantities 

of electricity on corresponding parts are as E to E', we shall have 

E -.E':: LFK ; L'V'K'. 

By this proportion we may find the relation between the total 

clectrilicatiou of corresponding parts of two systems, which are 

in the first place geometrically similar, in the second place com¬ 

posed of dielectric media of which the dielectric inductive capacity 

at corresponding points is in the proportion of K to K', and in 

the third place so electrified that the potentials of eorresponding 

points are as 1'io V'. 

From this it appears that if q be any coefficient of capacity or 

induction in the first system, and (f the corresponding one in the 

q‘(/-. .LK ; L'K' ; 
and if p and pi denote corresponding coefficients of potential in 

the two systems, ^ 1 i 

TK’TK'' P •• P 
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If one of the bodies be displaced in the first system^ and the 

corresponding' body in tlic second system receive a similar dis- 

2)laeenient, tlicn tliese displacements arc in the proportion of L 

to and if the forces acting' nii the two bodies are as F to F', 

then the work done in the two systems will be as FI to F'U. 

Hut the total electrical eiicrg-y is half the sum of the quantities 

of electricity multiplied each by the potential of the electrified 

bcdjq so that in the similar systems^ if Q and Q' be the total 

electrical cncrg'yj 
Q’.Q''. : FF : E' r, 

and the diffei'encc of energy after similar disjdacemeiits in the two 

systems will be in the same proportion. Hence, since FL is pro¬ 

portional to the electrical work done during- the displacement, 

FL ; F'!/ : : FF) F/F\ 

Combining these proportions, we find that the ratio of the 

resultant force on any body of tbc first sj-stem to that on the 

coi'i'csjionding body of the second system is 

or 

F : F': : F~K : 

V'!. 
/<’ • IP' . • __ ■ 

JFK ' 

The first of these projiortioiis shews that in similar systems the 

force is proportional to the square of tbc electromotive force and 

to the iiidnctivc capacity of the dielectric, but is independent of the 

actual dimensions of the system. 

Hence two conductors pliiccd in a liquid whose inductive capacity 

is greater than that of air, aiul electrified to given potentials, will 

attract each other more than if they had been electrified to the 

same potentials in air. 

The .second proportion shews that if the quantity of electricity 

on each body is given, the forces arc projiortional to the square.s 

of the electrifications and inversely to the squares of the distances, 

and also inversely to the inductive eapacilios of tlie media. 

Hence, if two conduetors with given charge.s are placed in a 

liquid wliose inductive capacity i.s greater tlian that of air, tliey 

will attract eaoh otlier less tliaii if tliey liad been surrounded with 

air and electrified witli tlic same charges of eleetricitv. 
O w 

VOI,. 1, n 



CHAPTER IV. 

OENEHAL THEOKEMS. 

95.] In the preceding chapter we liave calculated the potential 

function and investigated its properties on the liypotliosis that 

there is a direct action at a distance between electrified bodies, 

which is the resultant of the direct actions between the various 

electrified parts of the bodies. 

If we call this the direct method of investigation, the inverse 

method wnll consist in assuming that the potential is a funetiou 

characterised by properties the same as those which we have already 

established, and investigating the form of the function. 

In the direct method the potential is calculated from the dis¬ 

tribution of electricity by a process of integration, and is found 

to satisfy certain partial differential equations. In the inverse 

method the partial differential equations are supposed given, and 

we have to find the potential and the distribution of electricity. 

It is only in problems in which the distribution of electricity 

is given that the direct method can be used. When we have to 

find the distribution on a conductor we must make use of the 

inverse method. 
We have now to shew that the inverse method leads in every 

case to a determinate result, and to establish certain general 

theorems deduced from Poisson's partial differential equation 

(l<e^ 

(V-V 
dz^ 

+ 47rp = 0, 

The mathematical ideas expressed by this equation are of a 

different kind from those expressed by the equation 

tdx'dy'iU, 

In the differential equation we express that the values of the 

second derivatives of V in the neighbourhood of any point, and 
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the density at that point arc related to caeli otlicr in a certain 

mniiner, and no relation is expressed between tlie value of V at 

that point and tlic value of p at any point at a sensible distance 

from it. 

In the second expression, on tlie otlicr liand, tlie distance between 

the point (./,/, 2') at wliich p exists from the point {iV, z) at 

wliicli V exists is denoted by r, and is distinctly recognised in the 

expression to be integrated. 

The integral, therefore, is the appropriate mathematical expression 

for a theory of action between particles at a distanci;, whereas the 

differential ecjuntion is the ap])ropriate expression for a theory of 

action exerted Ixitween contiguous ])jirts of a mediiira. 

We have seen that the result of the integration satisfies the 

dilfcrcntial equation. We have now to shew that it is the only 

solution of that equation fulfilling certain conditioii.s. 

We shall in this way not only cstahlisli the mathematical equi¬ 

valence of the two expressions, but prepare our minds to pass from 

the theory of direct action at a distance to that of action hetweeu 

contiguous parts of a medium. 

Chiradcrisl'm of the 'Potential Function. 

96.] The potential function V, considered as derived by integration 

from a known distribution of electricity cither in the substance of 

bodies with the volume-density p or on certain surfaces with the 

surface-density (t, p and <r being everywhere finite, has been shewn 

to have the following characteristics :— 

(1) F is finite and continuous throughout all .space. 

(2) vanishes at an infinite distance from the, electrified system. 

(3) The first derivatives of 1' arc finite throughout all space, and 

continuous except at the electrified surfaces. 

(4) At every point of space, except on the electrified siirfaecs, the 

equation of Poisson 

(PF cPF (PF 

is satisfied. We shall refer to this ccpiation as the General 

Characteristic equation. 

At every point where there is no electritlcatiou lhi.s (Hjiiation 

becomes the equation of Laplace, 

(PF (PF (P F 
(Ix^ (If (h- ~ 

II 2 
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(f)) At any point of an electrified sinfiico at wliieh tlie siirface- 

tlciisity is tr, tlie llrst derivnlive of taken wifli respect to the 

normal to tlie siirfaec, f'h!in”v.s its value abruptly at the siirfuee, 

so that ,//• 

77+ * +-‘ 

where ;> and a' are the normals on either side of the surface, and 

rand /’'are the corresponding ])ofeutials. We shall refer to this 

equation as the Superficial Charactoristie equation. 

(()) If /" denote the potential at a point \vho,se distance from 

any fixed point in a finite electrical system is r, then the ])r()duet 

/ when ;• increases indefinitely, is ultimately equal to 7:’, the total 

ehar^''e in the finite system. 

97,] Jjcmma. Let V be any eoutinnons function of x, y,and 

let w, e, V.' he functions ol' .r, 7, subject to the general solenoidal 

condition 

where these functions are continuous, and to the superficial .sole- 

iioidal condition 

— (i.) + w (^‘i — + u {ii\ — «u) =0, (2) 

at any surface at wliieh these funelioiis heeome di.seoiitinnoas, 

/, ?«, 71 being the direct inn-cosines of the normal to the surlace, 

and i’j, and ?l,, c.,, 7l\, the values of the functions on opjiosite 

sides ol'tln* .surface, then the triple integral 

+ (■’> 

vanishes when the integration is extended over a space hounded hy 

surfaces at which either is eoiistant, or 

I n +1)11! -f 7170 — 0, (-J) 

/, w, w, being the direetion-cosiues of the snrfaee. 

Before proceeding to jirove this theorem analytically we may 

observe, that if 7^, v, lo he taken to represent the components of the 

velocity of a horaogeiieou.s iiicomprcssihle fluid of density unity, 

and if V he taken to laqireseiit the potential at any iioint of space 

of forces acting on the fluid, then the general ami superficial equa¬ 

tions of continuity ((I) and (2)) indicate that every part of the 

space is, and continues lo he, full of the tluid, and equation (1) 

is tlie condition to be fulfilkHl at a surfiice throiigli wliieli tlie fluid 

does not puss. 

The integral J/ represents the work done hy the fluid against 

the forces acting on it in unit of time. 
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Now, since flu! forces wliieli act on tlie fluid are derived from 

tlie poleiitial fimctioii 1\ tlie work wliieli lliey do is .subject to tlie 

linv of conservation of (Micr<>'v, and the \v<n'k done on tlie whole 

fluid within a certain s])aee may be found if we know the potential 

at the points wlnn'o each lino of flow enters the space and where 

it issue.s from it, The excess of the second of these potenfials over 

the llr.st, multiplied by the cpmntify of fluid which is transmifted 

along' ench line of flow, will give the work done l)y that jmrtion 

of the fluid, and the sum of all such prodnct.s will give the whole 

work. 

Now, if the space be bounded by a surface for which V—C^ a 

constant (piantity, the potential will be the same at the place 

where any line of flow enters the si)aee and where it issues from 

if., .so Unit in fhis ea.se 710 work will be done by the forces on the 

fliifd within the .siiace, and d/= 0. 

Secondly, if the space be hounded in whole or in part by a 

snrfaee sati.'^fying eijiiation ( l), 7io fluid will enter or leave the space 

fhroiigh fhis snrfaec, .so that no part of the value of d/ can depend 

on thi.s part of fhe surface. 

The rpTantify d/ is therefore zero for a .space bounded externally 

by the clo.sed surface /"=C, and it reinain.s zero though any part 

of thi.s space be cut off from the rest by siirfiices fulfilling* the 

condition (1). 

The analytical expression of the proee.ss Iry which we dednee the 

work done in the interior of the s])aee from that wdiieli take.s place 

at the bounding- surface is contained in the following method of 

integration hy parts. 

Taking the first term of the integral d/. 

(l.r dy rl:, 

where 2 + -i + > 

and where ii.J’.,, fce. are the values of « and v at fhe points 

wlio-se coordinates are (a*,, y, r), (■(•._,, y, -), fste., .J'j, &c, being the 

vnhics of .r where the ordinate eats the bounding surface or surfaces; 

arranged in descending order of mag-nitude. 

Adding tlie two otlior terms of tlie iiiti'gral d/, wo find 

d/= I l^{Hr)dyd:+ fj^{rr)dzf/.v+ dxdy 
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IIV, n are tlio tlirootion-oosiiios of the normal drawn inwards 

from tlic hounding .surface at any point, and dS an element of that 

surface, then we may write 

the integration of the first term hoing extended over the bounding' 

surface, and that of the second Uiroiighoiit the entire space. 

For all .sjiaocs within whieh ?/, v, -tv arc eontiniions, the .second 

term vanishe.s in virtue of efpiation (1), If for any snrfaec within 

the space n, v, w arc disenntiniious bnt subject to equation (2), wo 

find for the part of M depending on this surface, 

d/, =- [j / j iU W'l + fiix I'l + «’,) dS'i, 

Mn = — fI f 'j, (4 '>'•> + > 

where the suffixes , and applied to any symbol, indieato to which 

of the two spaces separated by the surfaec tlic symbol belongs. 

Now, since /' is continuous, we have at every point of the surface, 

T\ = /; = T; 
we have also = t/S.^ = dS; 

but .since the normals are drawn in oppo.site directions, we have 

/j = — 4 = 4 »i\ = — = — fij = w ; 
so that the total value of d/, .so far as it depends on the surface of 

diseontiuuity, is 

= — JJr {I (i/^ — /(.,) + VI. (Cf — r.j) + n (w, — ?c„)) dS. 

The quantity under the integral .sign vani.shcs at every point in 

virtue of the sU])orfieial soleiioidal condition or characteristic (2). 

Hence, in detormiiiiiig the value of d/, vve have only to con.sider 

the .surface-integral over the actual bounding surface of the space 

considered, or 

=-H y {f. u + mv -p 7iw) d S. 

Case 1. If /-‘ is constant over the whole surface and equal to C, 

+ viv -p tiw) dS. 

The part of this o.xpressioii under the sign of double integration 

reprcseut.s tlic surface-integral of the flux whoso components arc 

7(, V, ?e, and hy Art. 21 this surfiieo-intcgral is zero for the closed 

surface in virtue of the general and sui)orf)eial solenoidal conditions 

fl) and (2). 
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Hence il/ = 0 for a space bounded by a sing’le equipotential 

surface. 

If the space is bounded externally by the surface V =: C, and 

internally by the surfaces V = V = C.^, &c., then the total value 

of Jf for the space so bounded will be 

w'liere M is the value of the integral for the whole space within the 

surface 7' = C' and iJ/j, M.^ are the values of the integral for the 

spaces within the internal surfaces. But we have seen that M, 

M^, M^, &e. are each of them zero, so that the integral is zero also 

for the periphraetie region betw'cen the surfaces. 

Case 2. If Iv,invmo is zero over any part of the bounding 

surface, that part of the surface can contribute nothing to the value 

of jJi, because the quantity under the integral sign is everywhere 

zero. Hence M will remain zero if a surface fulfilling this con¬ 

dition is substituted for any part of the bounding surface, provided 

that the remainder of the surface is all at the same potential. 

98.] We are now prepared to prove a theorem which we owe to 

Sir William Thomson *. 

As we shall require this theorem in various parts of our subject, 

I shall put it in a form capable of the necessary modifications. 

Let a, b, c be any functions of x, t/, z (we may call them the 

components of a flux) subject only to the condition 

(la (lb (h 

where p has given values within a certain space. This is the general 

charaetoristie of a, b, c. 

Let us also suppose that at certain surfaces (jS) a, b, and c are 

disaontimious, but satisfy the condition 

I {a^—a._,) + m{b^—b.^ + n{c^—C2) + i■!^a = 0; (6) 

where I, m, n are the direetlou-eosines of the normal to the surface, 

«!, ^1, Cj the values of a^b, c on the positive side of the surface, and 

^2 those on the negative side, aud a- a c^uantity given for 

every point of the surface. This condition is the superficial charac¬ 

teristic of a, h, c. 

Next, let us suppose that V is a continuous function of x, y, z, 

which cither vanishes at infinity or whose value at a certain point 

is given, and let V satisfy the general characteristic equation 

* Camhrulije and Duhlin MatUmatkul Journal, Februory, 18.18, 
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d ,,r/r <f. d ^.(iv 
(7) 

and the siipevfieial eharacteristie at the surfaces (^S>’), 

^!I± 
<!>/ 

1(1^ Z' I f r' I /' 

/ r//, III ,,\ „ , , 
+ u(^K^-j2-A._, ^^f)+-t 7T(r=0, (8) 

K being a quantity wdiich may bo positive or zero but not negative, 

given at ov'^ory point ol'spaee. 

Finally, let 8 tt <2 represent the triple integral 

8 77 <2 = fjj -jr(.<-- + ^^ + d-)dx (Ilf d:, (0) 

extended over a spaee hounded by snrfaees, for each of whieh either 

V = constant, 

/ ilV „ ilV 
or la + mb + ?/c z= hi ■+ A ni -(- A ?/ 7- = /7, (10) 

dx (Id dz 

whore the value of <7 is given at every point of the surface then, if 

a, I, c be supposed to vary in any manner, subject to the above 

conditions, the value of Q will be a unique minimum, when 

a = K 
riir 

dx 
h = K 

dV 
= A 

JV 

dz 
(II) 

Proof, 

If we put for the general values of a, b, c, 

j^dJ' ,rdV 
a = A + u, i = A +r, c = A , ■ + ?e j (I 2) 

dx dj ilz 

then, by substituting these values in equations (5) and (7), we find 

that u, V, w satisfy the general solenoidal condition 

.,, du dn dw 

Tx'^d'y"^ Tz- 

Wo also find, by equations ((!) and (8), that at the snrfaees of 

jdiseontinnily the values of ?/j, iq, 'U\ and iq, w.^ satisfy the 

snperlicial solenoidal condition 

(2) i f\ — nd + m (r j — iq) + n (u\ — w.f) = 0. 

The (piantities u, r, m, therefore, satisfy at every point the sole- 

noidal conditions as stated in the preceding lemma. 
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"\Vc' may now express Q in terms of /i-, v, w and V, 

dF' dFr,, , , rrn 
+ 4' )Mydz + JK 

{li - + ?)-+ iv-)rlx(lj dz 

H- 2 

The last term of Q may he written 2 M, where jliT is the quantity 

considci'od in the lemma, and which wx* proved to be zero when the 

space is hounded hy surfaeesj each of which is either equipotential 

or satisfies the condition of equation (10), which may be written 

(4) Iu + mi) + ni(> = 0, 

Q is therefore reduced to the sum of the first and second terms. 

In each of these terms the quantity under the sign of integration 

consists of the sum of three squares, and is therefore essentially 

positive or zero. Hence the result of integration can only he 

jiositive or zero. 

Let us suppose the function F known, and let us find what values 

of?/, v,w will make Q minimum. 

If we assume that at every point n = 0, v = 0, and w =. 0, these 

values fulfil the solenoidal conditions, and the second term of Q 

is zero, and Q is then a miiiiminn as regards the A^ariation of 

?/, V, 10. 

For if any of these quantities had at any point values differing 

from zero, the second term of Q would have a- positive value, and 

0, would be greater than in the ease which we have assumed. 

But if ?/ = 0, y = 0, and w = 0, then 

(H) 
,.dV 

a = K -7- > 

(lx 
h = = K 

.dF 
dz 

Hence these values of a, b, c make Q a minimum. 

But the values of a, b, c, as expressed in equations (12), are 

perfectly general, and include all values of these quantities con¬ 

sistent with the conditions of the theorem. Hence, no other values 

of//, h, c can make Q a minimum. 

Again, Q is a cpiantity essentially positive, and therefore Q is 

always capable of a minimum value hy the variation of n, h, c. 

Hence the values of a, h, c which make Q minimum must have 

a real existence. It does not follow that our matheiiiatical methods 

arc siiflicicntly powerful to determine them. 

Corollari/ /. If //, b, c and A' are given at every point of s])aee, 

and if we write? 
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(12) a-=.K~,—\-ii. b ■=■ K-{-v, c = A-,-+7ti, 
(lx (Ij/ dz 

with the condition (1) 

du dn (Iw _ 

dx (Ijj (h ’ 

then r, 71, V, 70 can be foniul without ambiguity from these four 
equations. 

Corollary II. The general characteristic equation 

dx d-x 

d ,^.(IF 
.-A -y-1- 

djj (ly 

(IV 
dz 

+ 4 7rp = 0, 

■where A is a finite quantity of single value whose first derivatives 

are finite and continuous except at the surface S, and at that surface 

fulfil the superficial characteristic 

can be satisfied by one value of V, and by one only, in the following 

cases. 

Case 1. "When the equations apply' to the space within any closed 

surface at every point of which V = C. 
For wc have proved that in this case a, b, c have real and unique 

values which determine the first derivatives of V, and hence, if 

(liffcrent values of V exist, they can only differ by a constant. .But 

at the surface. Vie given equal to C, and therefore A is determinate 

tlirnughout the space. 

As a particular case, let us suppo,se a space within which p = 0 
bounded by a closed surface at which V=C. The characteristic 

equations are satisfied by making V= C for every point within the 

space, and therefore A= C is the only solution of the equations. 

Case 2. When the equations appl}' to the space within any closed 

surface at every point of which A is given. 

For if in thi.s ease the characteristic equations could be satisfied 

by two different values of A, say T and V, put U = V— A', then 

subtracting the cliaractcri-stic equation in A' from that in A, we 

find a characteristic equation in IL At the closed surface U = 0 
because at the surface and within the surface the density 

is zero because p = p'. Hence, by Case 1, A = 0 throughout the 

enclosed space, and tluu’cforc V = J ' tlirougliout this space. 
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Gise 3. When the equations apply to a space bounded by a 

closed surface consisting* of two parts, in one of which Fis given at 

every point, and in the other 

Kli^. 
(l.V 

+ Km-j- + K n - - = q, 
iuj dz 

where q is given at every point. 

For if there are two values of /', let (J' represent, as before, their 

diirercnce, then we shall have the ecpiation fulfilled within a closed 

.surface consisting of two parts, in one of which U'— 0, and in the 

other dU' dU' dU' 
t —J-f- w + n -J— = 0 ; 

(lx dy dz 

and since U'— 0 satisfies the equation it is the only solution, and 

therefore there is but one value of V possible. 

Note—The function V in this theorem is restricted to one value 

at each point of space. If multiple values arc admitted, then, 

if the space considered is a cyclic space, the equations may be 

satisfied by values of V containing temis with multiple values. 

Examples of this will occur in Electromagnetism, 

99,] To apply this theorem to determine the distribution of 

electricity in an electrified system, we must make A'= 1 throughout 

fhe space oecupied by air, and A'’= oo throughout the space occupied 

by conductors. If any part of the space is occupied by dielectrics 

whose inductive capacity differs from that of air, we must make K 

in that part of the space equal to the specific inductive capacity. 

The value of V, determined so as to fulfil these conditions, will 

be the only possible value of the potential in the given system. 

Green’s Theorem shews that the cpiantity Q, when it has its 

minimum value corresponding to a given distribution of electricity, 

represents the potential energy of that distribution of electricity. 

Sec Art, 100, equation (11), 

In the form in w'bich Q is expressed as the result of integration 

over every part of the field, it indicates that the energy due to the 

electrification of the bodies in the field may bo considered as the 

result of the summation of a certain quantity which exists in every 

part of the field where electrical force is in action, whether elec¬ 

trification be present or not in that part of the field. 

The mathematical method, therefore, in which Q, the sy’mhol 

of electrical energy, is made an object of study, instead of p, the 

symbol of electricity itself, corresponds to the method of physical 

spccnhiticm, in which we look for the seat of eh'ctrical action in 
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every pai't of tlic fields instead ni‘ ennfiiiing our aitention to tlio 

electrified bodies. 

Tlie fact that Q attains a miuimiun value whoii the coiTipniicnts 

of the electric force arc expressed in terms of ilie first derivatives 

of a potential, shows that, if it were possible for tin* electric force 

to 1)C distributed in any other manner, a mechanical forei* would 

he brought into play tending to bring the distribution of force 

into its actual state. The actual state of tbc electric field is 

therefore a state of stable equilibrium, considered with relerence 

to all variations of that state consistent with the actual distribution 

of free edectricity. 

Green’s Theorem. 

100.] The following remarkable theorem was given by (Icorgc 

(Ireen in his es.say ‘ On the Application of ^Mathematics to Electricity 

and Magnetism,’ 

I have made nse of the eoeflieient K, introduced by Thomson, to 

give greater generality to the statement, and we shall find a.s wc 

j)roceed that the theorem may be modified so as to apply to the 

most genm-al eonstilution of crystallized media. 

^\'e sludl suppose that 11 and are two functions of .r, y, c, 

whieh, with their first derivatives, are finite and continuous within 

the space bounded by the closed surface S. 

We shall also put for conciseness 

and 

(/.V 

(I 

. (HI (1 <1 dU 

‘ c/x + 7 " ^ "/' + 
<1!/ <!>/ dz 

A = (1 

.(IF d ,,dF d „ dF 

■ + <(!/ ‘{y ifz ^ d: ~ ’ (2 

when* K is a real quantity, given for each point of sp.ace, which 

may be positive or zero but not n(‘g'ative. The quantities p and 

p' eorre.sj)ond to volume-densities in the theory of pobuitials, but 

in this inve.stigmfion they are to be considered simjdv as ab¬ 

breviations fin* the functions of U and /' to which they arc here 

equated. 

In the .same way we may i)nt 

..,<111 ..<1U 
IK , +A 

<(x (I// 

and IK 

„ d1' 
4 I/A ^ =•! TTfr, 

,.dF 
+ 1/ A =4 TT O' , (■1) 

.<ir ,.<ir 
. -f /// A . - 

d.v (h/ 

where /, m, n are the direct ion-cosines of the normal drawn inwards 
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from the surface S. The quantities c and or' correspond to super¬ 

ficial densities, hut at present we must consider them as defined by 

tlie above equations. 

Green’s Tlieorem i,s obtained by integrating by parts the ex¬ 
pression 

, ill!(IV dudiv , , , 

througbont the si)aee within the surface <S'. 

dV 
If wo consider • as a component of a force whose potential is V, 

(I (I 
and K - as a eompoiient of a flux, the expression will give the 

work done by the force on the flux. 

If we apply the method of integration by parts, we find 

-JJJ ^ 0. ^ r/.r + (h, ^ dj + rfv ^ dd 

or •! 77.lA = ^/ ‘Itkt' VdS q- JfJ~^ ^rp' Td.vdj dz. (") 

In precisely the same manner by exchanging If and V, we should 

4 77 .-JA =+ 11 -[tt a U (IS -f- j'jj -l-KpU dx d(j dz. (8) 

The statement of Green’s Theorem is that these three expre.ssions 

for jIAare identical, or tliat 

M = [Ja V (IS + I fjp' Vdx dy (h = I jc UdS +JJf p U(h dj dz 

1 lU.^fdUdV (11/dV (/I/d7\j , , 

Correction of Oreex’s Theorem for Cycloah. 

There are eases in which the resultant force at any point of a 

certain region fulfils the ordinary condition of having a potential, 

while the pot(^ntial itself is a many-valued function of the coor¬ 

dinates, For instance, if 

A = - „ ;7 > 
•T- +^- 

^ rv — \ d n m r 

Y =_^ z = o, 

we find V = tan“' a many-valued function of x and y, the 

values of T formin'; an arithmetical serie.s whose common differenee 
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is 27r, and in order to define which of the.se is to he taken in 

any partieiilar case we must make some restriction as to the line 

along which we are to integrate the foree from the point where 

V = 0 to the required point. 

In tliis case the region in which the eondition of having a 

potential is fulfilled is the cyclic region .siirroending the a.xis of .c, 

this axis being a line in which the force.s are infinite and therefore 

not itself included in the region. 

The part of the infinite plane of a-c for which r is positive may 

he taken as a diaphragm of this cyelie region. If we begin at 

a point close to the positive side of this diajdiragm, and integrate 

along a line which is restricted from passing through the diaj)hiagm, 

the line-integral will be restricted to that value of J' which is 

positive but less than 2 7r. 

Let ns now' suppose that the region bounded by the closed surface 

S in Green’s Theorem is a cyclic region of any number of cycles, 

and that the function / is a many-valued function having any 

number of cyclic constants. 

The quantities —j ’ Ji-nd will have definite values at all 
^ ax (l>j (h 

points withiu S, so that the volume-integral 

dUilV (W(U_ 

JJJ v/.r dx d/j dij dz dz 

has a definite value, a and p have also definite values, so that if 1/ 

is a single valued function, the expression 

JJ<rUdS+ [fjpU d.v dy dz 

has also a dofiuito value. 

The e.xpressioii involving V has no definite value as it stands, 

for is a many-valued function, and any exjiression eontaiuiiig it 

is many-valued unless some rule he given wdierehy we are directed 

to select one of the many values of Tat each point of the region. 

To make the value of V definite in a region of n cycles, we must 

conceive diaphragms or surfaces, each of which completely shuts 

one of the channels of communication hetweeii the parts of the 

cyclic region. Each of these diaphragms reduces the number of 

cycles by unity, and when n of them are drawn the region is still 

a connected region hut acymlic, so that we can pass from any one 

point to any other without cutting a surface, hut only b}'' reeon- 

eileable paths. 
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Let /Sj be the first of tliese diaphragms, and let the line-integral 

of the force for a line drawn in the acyclic space from a point 

on the positive side of this surface to the contiguous point on 

the negative side be k,, then k, is the first cyclic constant. 

Let the other diaphragms, and their corresponding cyclic con¬ 

stants, be distinguished by sufiixes from 1 to «, then, since the 

region is rendered acyclic by these diaphragms, we may apply to 

it the theorem in its original form. 

We thus obtain for the complete expression for the first member 

of the equation 

' V dxdijdz + //- dS + JJff^K^dS^ + JJa-^K-^dSo + kc. -f JJ(T,'K,,dS„. 

The addition of these terms to tho expression of Green’s Theorem, 

in the case of many-valued fuiietions, was first shewn to he necessary 

by Helmholtz *, and was first ajiplied to the theorem by Thomson. 

l^liyskal Interpretation of Green’s Theorem. 

The expressions etdS and pdxdydz denote the quantities of 

eleotrieity existing on an clement of the surface S and in an 

element of volume respectively. We may therefore write for either 

of these quantities the symbol e, denoting a quantity of eleotrieity. 

We shall then express Green’s Theorem as follows— 

M = S(/'y) = 2(re); 

where we have two systems of electrified bodies, c standing in 

succession for Cj, &e., any portions of the electrification of the 

first system, and V denoting the potential at any point due to all 

these portions, while e' stands in succession for ef e.f &c,, portions 

of the second system, and V denotes the potential at any point 

due to the second .system. 

Hence Ve' denotes the product of a quantity of electricity at a 

point belonging to the second system into the potential at that 

point due to the first system, and 2 (Ve') denotes the sum of all 

such quantities, or in other words, 2 (Ve') represents that part of 

the energy of the whole electrified system which is due to the 

action of the second system on the first. 

In the same way 2 ( V'e) represents that part of the energy of 

* ‘ Uober Inteffrale dor Hydrodynamischen Gleicliungen wclclie den Wirbelbo- 
wegungen ciitspruclien,’ Crclle, 1858. Translated by Tait in Phil Mu<j., 1867, (t). 

+ ‘ On Vortex Motion,' Trans. R. S, £din., xxv. part i. p. 241 (1868). 
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the whole system which is due to the action of the first system on 

the second. 

If we define V , where r is the distance of the quantity c 

of electricity from the given point, then the equality between these 

two values of x')/ may be obtained a.s follows, without Green’s 

Theorem— 

r(/y) = = 222v (= 2{F'e), 

This mode of reg.arding the question belongs to what we have 

called the direct method, in which we begin by considering certain 

portions of oleetrieit}', placed at certain points of space, and acting 

on one another in a way de.jiending on the distances between these 

point.s, no account being taken of any iiiterveiiing medium, or of 

any action sui)poscd to take place in the intervening sjjuce. 

Green’s Theorem, on the other hand, belongs essentially to what 

we have called the inverse method. The potential i.s not supposed 

to arb'O from the electrification by a j)roee.ss of summation, but 

the electrification is supposed to be deduced from a perfectly 

arbitrary’’ function called the potential by a process of differen¬ 

tiation. 

In the direct method, the equation is a simple extension of the 

law that when any' force acts directly between two bodies, action 

and reaction are equal and ojjpositc. 

In the inverse method the two quantities are not proved directly 

to be equal, but each is jiroved equal to a third quantity, a triple 

integral which w'c niu.si endeavour to interpret. 

If we write Ji for the resultant electromotive force due to the 

potential /', and I, m, n for the direction-cosines of if, then, by- 

Art. 71, 
(ir 

dx 
ni, 

(If 

(b 
Jin. 

If we also write if' for the force due to the .second system, and 

I', m', n for its direction-eosiiies, 

dV' 

dx 
= IJ I', 

dV 

(ly 

and the quantity Ji may be written 

dV' 

(b 
R n'i 

.1/ = 
1 

1 TT 
(AViVf' eo.s f) dxdjj (b. (10) 
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where cos t = ll' + vim' + nn, 

f being the angle Ijetwccn the directions of £ and 

Now if X is what we have called the coefficient of electric 

inductive cajiacity, then K£ will be the electric displacement due 

to the electromotive force £, and the product XJili'eose will 

represent the work done by the force It' on account of the dis¬ 

placement caused by the force It, or in other words, the amount 

of intrinsic energy in that part of the -field due to the mutual 

action of It and It', 

We therefore conclude that the physical intoipretation of Green’s 

theorem is as follows: 

If the energy' which is known to e.'cist in an electrified system 

is due to actions which take place in all parts of the field, and 

not to direct action at a distance between the electrified bodies, 

then that part ot the intrinsic energy of any part of the field 

upon which the mutual action of two electrified systems depends 

is KIt It' cos € per unit of volume. 

The energy of an electrified system due to its action on itself is, 

by Art. 85, 

which is by Green’s theorem, putting U = V, 

and this is the unique minimum value of the integral considered 

in Thomson’s theorem. 

Green’s Function, 

101,] Let a closed surface S be maintained at potential zero. 

Let P and Q be two points on the positive side of the surface S 

(we may suppose cither the inside or the outside positive), and 

let a small body charged with unit of electricity he placed at F; 

the potential at the point Q will consist of two parts, of which one 

is due to the direct action of the electricity on P, while the other 

is due to the action of the electricity induced on S by P, The 

latter part of the potential is called Green’s Function, and is 

denoted by 

This quantity is a function of the positions of the two points 

P and Q, the form of which depends on that of the surface S, It 

has been determined in the case in which (S' is a sphere, and in 

a very few other cases. It denotes the potential at Q due to the 

electricity induced on S by unit of electricity at P. 

VOI-, 1. 1 
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Tlie aetual potential at any point Q due to the eleetrieity at /* 

and on is 1 

+ i’'i> 

wliere r,,, denotes the distance between P and Q, 

At the surfaee S^, and at all points on the negative side of S, the 

potential is zero, tlierefore 
6',.,, = - 

where the suffix „ indicates that a point A on tlie surface S is taken 

instead of <2- 

Let (Tj,,/ denote tlie surface-density induced by at a point A' 

of the surface S, then, since is the potential at Q due to the 

superficial distribution^ 

= (2) 
' 1711' 

where dS' is an element of the surfaee S at A', and the integration 

is to be extended over the whole surface S. 

But if unit of electricity had been placed at Q, we .should have 

had by e(|uation (l), 1 

= -G„., (3) 

('!) 

qa 

= -// 

'ija 
'-flS; 

where tj,„ is the density induced by Q on an element dS at A, and 

is the distance between A and A'. Substituting this value of 
1 

in tlie expression for we find 

(5) 

Since this expression is not altered by changing j, into and 

„ into wo find that r; ^ ri , /f.. 

a result which we have already shewn to be necessary in Art. 88^ 

but which we now see to be dcduciblc from the mathematical process 

by which Green’s function may be calculated. 

If we assume any distribution of electricity whatever, and place 

in the field a point charged with unit of electricity, and if the 

surface of potential zero completely separates the point from the 

as.sunied distribution, then if wc take this surface for the surface S, 

and the point for V, Green’s fuiietioii, for any point on the same 

side of the surface as P, will be the potential of the assumed dis¬ 

tribution on the other side of the surface. In this way wc may 

construct any number of cases in which Green’s function can be 
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found for a particular position of P. To find the form of the 

function when the form of the surface is given and the position 

of 7-’ is arbitrary, is a prol)lcm of far greater difficulty, though, 

as we have proved, it is mathematically possible. 

Let us suppose the problem solved, and that the point P is 

taken within the surface. Then for all external points the potential 

of the superficial distribution is equal and opposite to that of P. 

The superficial distribution is therefore cenlrobaric *, and its action 

on all external points is the same as that of a unit of negative 

electricity placed at 7^. 

MelJioil of Ajtjjroximalinfj to the Values of Coefjidents of Capacity, t^'c. 

102.] Let a region be completely bounded by a number of 

surfaces S^, S^, i',, &c., and let K be a quantity, positive or zero 

but not negative'; given at every point of this region. Let F 

be a funetion sulqcet to the eonditious that its values at the 

surfaces S^, &c. arc the constant quantities C], C!,, &c., and that 

at the surface /S,, yy 
= 0, 

dv 
where a is a normal to the surface iS„. Then the integral 

(IF 

(1) 

(2) 

taken over the whole region, has a unique minimum when V satisfies 

0 (3) 
the equation d^jrdV d dV d dV 

dx dx ^ (hj (hj dz dz 

throughout the region, as well as the original conditions. 

We have already shewn that a function V exists which fulfils the 

conditions (1) and (3), and that it is determinate in value. We 

have next to shew that of all functions fulfilling the surfaee-eou- 

ditions it makes Q a minimum. 

Let 7'(, bo the function which satisfies (1) and (3), and let 

F=F,+ U (4) 

be a function which satisfies (1). 

It follows from this that at the surfaces S^, &c. 11=0. 

The value of Q becomes 

Tliom.son and Tail’s Xutural Philosophy, § 520. 
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Let us confine our attention to the last of these three groups 

of terms, merely observing that the other groups are es.seutially 

positive, By Green’s theorem 

JJJ ^ d,c (lx (III (lu 

du (ir„ dv JK 
+ '‘)(lxd^dz=JjKU'-^(lS 

-Ilf<«) 

the first iuteg-ral of tlie second moraber Ireiiig extended over tlie 

gurfaee of tlie region and the second throughout the enelosed space. 

But on tlie surfaces -Sj, S.^, &e. (/ = 0, so that these contribute 

nothing to the surface-integral. 

Again, on the surfaee = 0, so that tliis surface eontribates 
av 

nothing to the integral. Henee the surface-integral is zero. 

The quantity within brackets in the volume-integral also dis¬ 

appears by equation (3), so that the volume-integral is also zero. 

Henee Q is reduced to 

Both these quantities arc essentially positive, and therefore tlie 

minimum value of Q is wlicii 

(lU (W (W „ 

(l^-'dj~dz~ ' 

or when t/ is a constant. But at tlie surfaces S, &c, U =: 0, Hence 

U = 0 cvcrywlicre, and gives tlie unique minimum value of Q. 

Calculation of a Siijierior Limit of the Coefficients of Capacity/. 

The quantity Q in its minimum form can be expressed by means 

of Green’s theorem in terms of 1\, T\, &c,, tlie potentials of S^, iS,, 

and El, E.^, &c,, the charges of tliese surfaces, 

Q = i (/1 Aj -f- 1ito-p &e.); (9) 

or, making use of the eoeflieients of capacity and induction as defined 

in Article 87, 

Q ~ h (Ji'll + ^2“ "t' &c.)-f- f^i ^2?i2"h(] 0) 

Tlie accurate determination of the coefficients q is in general 

difficult, involving the solution of the general equation of statical 

electricity, but we make use of the theorem we have proved to 

determine a superior limit to the value of any of these coefficients. 
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To determine a superior limit to the coefficient of capacity 

make Fj = 1, and Vo, r,j, &e. each equal to zero, niid then take 

any function V which shall have the value 1 at iSj, and the value 0 
at the other surfaces. 

From this trial value of V calculate Q by direct iuteg-ration, 

and let the value thus found be Q'. Wo know that Q' is not less 

than the absolute minimum value Q, which in this case is ijn- 

rieiiee is not greater than 2 Q'. (11) 

If we happen to have ehoseii the right value of the function 

then = 2 Q', but if the function we have chosen differs 
slightly from the true form, then, since Q is a minimum, Q' will 
still be a close approximation to the true value. 

Superior LioiU of ike Coefficients of Potential. 

Wo may also determine a superior limit to the coefficients of 

potential defined in Article 8G by means of the minimum value 

of the quantity Q in Article 98, expressed in terms of b, c. 

By Thomson's theorem, if within a certain region bounded by the 

surfaces S(„ S-^, &e. the quantities a, b, c are subject to the condition 

(la (Ib (h 

Jz = ^' 
(12) 

and if la +mb+nc — (q (13) 

be given all over the surface, where /, m, n are the direction-cosines 
of the normal, then the integral 

<2 = g-“ fjf y- («■ + + c2) (bv (Ij/dz (14) 

is an absolute and unique minimum when 

dV 
a — K > 

ilz 
b ■=. K -. c=K 

dV 
dz 

(15) 

When the minimum is attained Q is evidently the same quantity 
which we had before. 

If therefore we can find any form for a, b, c which satisfies the 
condition (12) and at the same time makes 

JJ(j d S, = A’l, JJ(jdS.^=i;.,&c.-, (1G) 

and if Q" be the value of Q calculated by (14) from these values of 
a, b, c, then Q" is not less than 

(17) 
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If we take the case in which one of the surfaces, say S.j,, sur¬ 

rounds the rest at an infinite distance, we have the ordinary case 

of conductors in an infinite region ; and if wo make K, = and 

E = Q for all the other surfaces, W'C have Vn = 0 at infinity, and 

2 Q" 
is not greater than —• 

In the very important case in which the electrical action is 

cntirel}' between two conducting surfaces and &, of which S.j, 

completely surrounds and is kept at potential zero, we have 

= —7^2 and qii2h\ = !• 
Hence in this ease we have 

^1 . 
^11 not less than 

and we had before 
2(2' 

Ji, not greater than 2 Q'; 

(18) 

(19) 

so that we eonelude that the true value of the capacity of the 

internal conductor, lies between these values, 

This method of finding superior and inferior limits to the values 

of these eoeffieients was suggested by a memoir ‘ On the Theory 

of Resonance,’ by the Hon. J. W. Strutt, Fhll, Trans., 1871. See 
Art. 308. 



CHAPTER V. 

aiKCIIANICAL ACTION BETWEEN ELECTRIFIED BODIES. 

103.] Let r = C be any closed cfBiipotential siii'face, C being 

a partienlar value of a fiinelion 7’, the form of which we supiiose 

known at every point of sj)aee. Let the value of /'on the oat.side 

of this surfaee be 1\, and on the inside V... Then, by Poisson’s 

e(piation 
d-r , d-p~ 
dx^ dir dz- 

0, (1) 

we ean determine the density pj at every point on the outside, and 

the density p, at every point on the inside of the surfaee. We shall 

enll the whole electrified system thus explored on the outside 

and that on the inside Ah. The actual value of V arises from the 

combined aetion of both these systems. 

Let H be the total resultant force at any point arising from 

the action of and R is everywhere normal to the oqui- 

potential surfaee passing through the point. 

Now let us su])pose that on the equipotential surface V = C 
electricity is distributed so that at any point of the surfaee at 

which the resultant force due to ii] and A] reckoned outwards 

is R, the surface-density is a, with the condition 

A = 4 7r (T j (2) 

and let us call this .superficial distribution the electrified surface S, 
tlien we can prove the following theorem relating to the aetion of 

this electrified surface. 

If any equipotential surface belonging to a given electrified 

system be coated with eleeti'ieity, so that at each j)oiiit the surface- 

density a , where R is the resultant force, due to the original 
4 77 

electrical system, acting outwards from that point of the surface, 

then the potential due to the electrified surfaee at any point on 
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the outside of that surface will be equal to the potential at the 

same point due to that part of the original system which was on 

the inside of the siii'faee, and the potential duo to the electrified 

surface at any point on the inside added lo that due to the part of 

the original system on the outside will be equal to C\ Ihe potential 

of the surface. 

I’or let us alter the original system as follows: 

Let us leave everything the same on the outside of the surface, 

but on the inside let us make everywhere erpial to C, and let us 

do away with the electrified sy'stem on the inside of the surface, 

and substitute for it a surface-density <r at every point of the 

surface S, such that E = 4v a. (3) 

Then this new arrangement will satisfy the characteristics of ^ at 

every point. 

For on the outside of the surface both the distribution of elec¬ 

tricity and the value of Fare unaltered, therefore, since /''originally 

satisfied Laplace’s equation, it will still .satisfy it. 

On the inside F is constant and p zero. These values of Fand p 

also satisfy the characteristic equations. 

At the surface itself, if is the potential at any point on the 

outside and that on the inside, then, if I, m, 11 are the direction- 

cosines of the normal to the surface reckoned outwards, 

y dJ' ^ clj'-i (IT t ^ ( \\ 
1-—-{■ + n~~ =.—R-=.—^TTiT] ('/) 

(h (ly (Iz 

and on the inside the derivatives of F vanish, so that the superficial 

charaetoristic 

‘Fi - id) +“(i -+”(-sr - 
is satisfied at every point of the surface. 

Hence the new distribution of potential, in which it has the 

old value on the outside of the surface and a constant value on 

the inside, is consistent with the new distribution of electricity, 

in w'hich the electricity in the space within the surface is removed 

and a distribution of electricity on the surface is substituted for 

it. Also, since the original value of T\ vanishes at infinity, the 

new value, w’hieh is the same outside the surface, also fulfils this 

condition, and therefore the new value of V is the sole and only 

value of r belonging to the new arrangement of cleetrieity. 
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On the Mechunical Action and Reaction of the Sj/stems J<\ and E.,, 

104,] If wc now suppose the cqnipotential surface V — C to 
become rigid and eapahlc of sustaining the action of forces, sve 

nnay prove the following theorem. 

If on every element (IS of an equipotential surface a force 

— R'^ (IS be made to act in the direction of the normal reckoned 
Stt 

outwards, where R is tlic ‘electrical resultant force’ along the 

normal, then the total statical effect of these forces on the 

surface considered as a rigid shell will be the same as the total 

statical effect of the electrical action of the electrified system J'\ 
outside the shell on the electrified sy’-stem l'\ inside the shell, the 

parts of the interior system Ej, being supposed rigidly connected 

together. 

We have seen that the action of the electrified surface in the last 

theorem on any external point was ecpial to that of the internal 

system E,,, and, since action and reaction arc equal and opposite, 

the action, of any external electrified body on the electrified surface, 

considered as a rigid system, is equal to that on the internal .system 

E.^, Hence the statical action of the external system E■^ on the 

electrified surface is equal in all respects to the action of on the 

internal system E.^. 
But at any point just outside the electrified surface the resultant 

force is R in a direction normal to the surface, and reckoned positive 

when it acts outwards. Tlic resultant inside the surface is zero, 

therefore, by Art. 79, the resultant force acting on the element 

(IS of the electrified surface is ^RerdS, where a is the surface- 

density. 

Substituting the value of <t in terms of 7? from equation (2), and 

denoting by pdS the resultant force on the electricity spread over 

the clement dS, we find 

pdS==(IS. 
8 TT 

This force always acts along the normal and outw.ards, whether 

R he po.sitive or negative, and may be considered as equal to a 

pressure y;= -- R~ acting on the surface from within, or to a tension 

of the same numerical value acting from without. 

*■ .See Sir W. Thomson ‘ On the Attractions of Conducting and Non-conducting 
Electrified BodieH,' Udmbr'ulgc Mathematical Journal, May 1843, and Bepriiit, 
Art. VII, § 147. 
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Now li is the resultant duo to the combined aetion of the 

external system j5’, and the olcetrificatiou of the surfaee S. Henee 

the eflect of the pressure y; on eaeh element of the inside of the surfiiee 

eonsidcred as a rigid body is equivalent to this eomhined aetion. 

But the aetions of the different parts of the surfaee on eaeh other 

form a s^^stem in equilibrium, therefore the effect of the pre.ssure / on 

the rigid shell is equivalent in all respeets to the cleetrie attraetion 

of on the shelly and this^ as we have before shewn, is equivalent 

to the eleetrie attraetion of on eonsidcred as a rigid system, 

If we had supposed the pressure p to aet on the outside of the 

.shell, the resultant effeet would have been equal and opi)osite, that 

is, it would have been statically equivalent to the action of the 

internal system E, on the external system E^. 
Let us now take the ease of two eleetrified .systems E•^ and 

such that two equipotential surfoees r = C'i and ^ = (7^, which 

we shall call /S', and /S, respectively, ean be described so that E■^^ is 

exterior to /S',, and surrounds A, and Eo lies within S... 
Then if and represent the resultant force at any point of 

/S', and S,, respectively, and if we make 

the mechanical action between E-^ and E» is equivalent to that 

between the shells and S.^, supposing every point of pressed 

inwards, that is, towards /S, with a pressure and every point of 

pressed outwards, tliat is, towards with a pressure p.j.. 
105.] According to the thcoiy- of action at a distance the action 

between A] and is really made up of a system of forces acting in 

straight lines between the electricity in and that in E.,, and the 

actual mechanical effect is in complete accordance with this theory. 

There is, however, another point of view from which wc may 

examine the action between E^ and /to. When wc sec one body 

acting on another at a distance, before wc assume that the one 

acts directly on the other wc generally inquire whether there is 

any material connexion between the two bodies, and if wc find 

strings, or rods, or framework of any kind, capable of accounting 

for tlic observed action between the bodies, wc prefer to explain 

the action by means of the intermediate connexions, rather than 

admit the notion of direct action at a distance. 

Thus when two particles are connected by a straight or curved 

rod, the aetion between the particles is always along the line joining 

them, but wc account for this action by means of a system of 
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infcenial forces in the substance of the rod. The existence of these 

internal forces is deduced entirely from observation of the effect 

of external forces on the rod, and the internal forces themselves 

arc generally assumed to be the resultants of forces which act 

between particles of the rod. Thus the observed action between 

two distant particles is, in this instance, removed from the class 

of direct actions at a distance by referring it to the intervention 

of the rod ; the action of the rod is explained by the existence 

of internal forces in its substance; and the internal forces are 

explained by means of forces assumed to act between the particles 

of which the rod is composed, that is, between bodies at distances 

which though small must be finite. 

The observed action at a considerable distance is therefore cx- 

l)lained by means of a great number of forces acting between 

bodies at very small distances, for which we are as little able to 

account as for the action at any distance however great. 

Nevertheless, the consideration of the phenomenon, as explained 

in this way, leads us to investigate the properties of the rod, and 

to form a theory of elasticity which we should have overlooked 

if we had been satisfied with the explanation by action at a distance. 

105.] Let us now examine the consequence of assuming that the 

action between electrified bodies can be explained by the inter¬ 

mediate action of the medium between them, and let ns ascertain 

what properties of the medium will account for the observed action. 

We have first to determine the internal forces in the medium, 

and afterwards to account for them if po.ssiblo, 

In order to determine the internal forces in any case we proceed 

as follows : 

Let the system M be in equilibrium under the action of the 

system of external forces F, Divide M hy an imaginary surface 

into two parts, M-^ and JIL, and let the systems of external forces 

acting on these parts respectively be F-^ and Fn- Also let the 

internal forces acting on M-y in consequence of its connexion with 

II„ be called the system /, 

Then, since yl/j is in equilibrium under the action of and /, 

it follows that / is statically equivalent to i] reversed. 

In the case of the electrical action between two electrified systems 

7fj and we described two closed cquipotential surfaces entirely 

surrounding and cutting it off from and we found that the 

a])]>lication of a certain normal pressure at every point of the inner 

side of the inner surface, and on the outer side of the outer surface. 
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would; if these surfaces were each rig-id, act on the outer surface 

with a rc.suliant equal to that of the electrical forces on the outer 

system and on the inner surface with a resultant equal to that 

of the electrical forces on the inner system. 

Let us iio-w consider the spac(3 between the surfaces, and let us 

suppose that at every point of this space there is a tension in the 

direction of M and equal to per unit of area. This tension 

will act on the two surfaces in the same way as the pressures on 

the other side of the surfaces, and will therefore account for the 

action between ZTj and Aj, so far as it depends on the internal force 

in the space between and S.>, 
Let us next investigate the equilibrium of a portion of the shell 

bounded by these surfaces and separated from the rest by a surface 

everywhere perpendicular to the cquipotential surfaces. We may 

suppose this surface generated by describing any closed cuivc on 

6'i, and drawing from every point of this curve lines of force till 

they meet S.>. 
The Hgnre we have to consider is therefore bounded by the two 

equipotential surfaces S-^ and &, and by a surface through which 

there is no induction, which we may call S^. 
Let ns first suppose that the area of the closed curve on is very 

small, call it dS^, and that C.^ = C'j q dV, 
The portion of space thus hounded may be regarded as an element 

of volume. If a is the normal to the cquipotential surface, and 

(IS the element of that surface, then the volume of this element 

is ultimately dSdir, 
The induction througli dSy is RdS^, and since there is no in¬ 

duction through Sq, and no free electricity within the space con¬ 

sidered, the induction through the opposite surface dS.j^ will be 

equal and opposite, considered with reference to the space within 

the closed surface. 

There will therefore be a quantity of electricity 

on tbc first cquipotential surface, and a quantity 

e.. = ^ R., dS.. 
" 471 ' " 

on the second equipotential surface, with the condition 

r, 0. 
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Let us next consider the resultant force due to the action of the 

electrified systems on these small electrified surfaces. 

The potential within the surface is constant and equal to C^, 

and without the surface it is constant and equal to C.^. In the 

shell between these surfaces it is eontiiiiious from Cj to C^, 

Hence the resultant force is zero except within the shell. 

The electrified surface of the shell itself will be acted on by forces 

which are the arithmetical means of the forces just within and just 

without the surface, that is, in this case, since the resultant force 

outside is zero, the force acting on the superficial electrification is 

one-half of the resultant force just within the surface. 

Hence, if XdSdv be the total moving force resolved parallel 

to X, due to the electrical action on both the electrified surfaces of 

the element dSdv, 

where the suffixes denote that the derivatives of v are to be taken 

at dS^ and dS.^ respectively. 

Let I, 7/1, 11 be the direetion-cosines of V, the normal to the 

oquipotential surface, then making 

dx = Idv, dy = 7/1 dv, and dz = 71 dv, 

fdV. (dV. ,,dW dW , 

and since e.^ = —e^, we may write the value of X 

d ( dV 

dx ' (ix dy ' " dz 

But 6]^ = —~-~RdS and + 7iIt 
At: V dx d/j dz' 

V 1C 1 , « /i(H' dV dVs. , 

therefore 

or, if we write 

P 

XdSdv = — Ii dSdv ; 
Sir dx 

_ 1 1 idr'"- dV'^ drf\ 

8 TT 8 TT ' dx dll \ dz \ / 

then A'= i 
dp 
dx r=if: 

dy 
7 — i • 

^Tz' 

or the force in any direction on the element arising from the action 

of the electrified system on the two electrified surfaces of the 

element is equal to half the rate of increase of p in that direction 

multiplied by the volume of the element. 
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This result is the same if we substitute for tlie forees acting on 

the eleetrified surfaces an imaginary force whose potential is — i 

aeting on the wliole volume of the element and .soHeitiiig' it to 

move so as to increase 4p. 

If \vc now return to the case of a figure of finite size, bounded 

by the cquijxiteutial surfaee.s jS'j and S., and by the surface of no 

iruhietioii (S,,, we may divide the whole spaee into elements by a 

series of cquipolential surfaces and two series of surfaces of no 

induetion. The charges of electricity on those faces of the elements 

which are in contaet will be ccpial and opposite, so that the total 

efleet will be that due to the electrical forces acting on the charges 

on the .surfaces S', and and by what we have proved this will be 

the same as the action on the whole volume of the figure due to a 

system of forces whose jioteiitial is —ijJ. 

But we have already' shewn that these electrical forees are 

equivalent to u tension p applied at all points of the surfaces 

and Hence the effect of this tension is to pull the figure in 

the direetioii in which increases. The fig-iire therefore cannot be 

in equilibrium unless some other forces act on it. 

Now w'e know that if a hydrostatic pressure p is applied at every 

point of the surface of any' closed figure^ the efleet is equal to 

that of a .system of fjorees acting on the whole volume of the figure 

and having- a potential In this case the figure is pushed in 

the direction in which p diminishes. 

IVe can now arrange matters so that the figure shall he in 

equilibrium. 

At every' point of-the two cquipoteutial surfaces and <5,, let 

a tension — p he applied, and at every point of the surface of no 

induction let a pressure = p he applied. These forees will keep 

tlie figure in equilibrium. 

For the tension p may be considered as a pressure p combined 

W'itli a tension 2 p. We have then a hydrostatic pressure p acting 

at every point of the surface, and a tension 2p acting on jS'j and S., 

only. 

The effoot of the tension 2p at every point of 6'i and S., is double 

of that which we have just calculated, that is, it is equal to that 

of forces whose potential is —yj acting on the whole volume of the 

figure. The efleet of the pressure p acting on the whole surface 

is by hydrostatics equal and op])Osite to that of this system of 

forees, and will keep the figure in equilibrium. 

107.] We have now determined a system of internal forces in 
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tlie medium wliieli is consistent witli tlie plienomena so far as 

we liavo examined them. We have found that in order to aeeount 

for tlie electric attraction between distant bodies without admitting 

direct action, we must assume the existence of a tension p at every 

jioiiit of tlie medium in tlie direction of the resultant force It at 

that point. In order to aeeount for the ecpiilibrium of the medium 

itself we must further suppose th.at in every direction perpendicular 

to ]t there is a pressure p*. 

]3y establishing the necessity of assuming these internal forces 

in the theory of an electric medium, we have advanced a step in 

that theory which will not be lost though we should fail in 

accounting for these internal forces, or in explaining the ineehanism 

by which they can be maintained in air, glass, and other dielectric 

media, 

We have seen that the internal stresses in solid bodies can be 

ascertained with precision, though the theories which aeeount for 

the,sc stresses by means of molecular forces may still be doubtful. 

In the same way we may estimate these internal electrical forces 

bcibre we are able to aeeount for them. 

In order, however, that it may not appear as if we had no 

ex])lanation of these internal forces, we shall shew that on the 

ordinary theory they must exist in a shell hounded hy two ecpiipo- 

teiitial surfaces, and that the attractions and repulsions of tlie olee- 

tricit}' on tlie surfaces of tlie sliell are siiflieieiit to aeeount for them. 

Let the first surface 6j be electrified so that the surface-density is 

and the second surfiiee S.^ so that the surface-density is 

‘Iir 

then, if we suppose that the value of V \s at every point w'ithin 

/S'j, and C at every point outside of S.^, the value of /’ between these 

surfaces reniainirig as before, the characteristie oquation of V will 

he satislied everywhere, and T' is therefore the true value of the 

potential, 

AVe have already shewn that the outer and inner surfaces of the 

shell will be pulled towards each other with a force the value of 

which referred to unit of surfiiee is p^ or in other words, there is a 

tension p in the substance of the shell in the direction of the lines 

of’ force. 

8eQ Faraday, Exji. lies. (1224) and (1297). 
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If we now conceive the shell divided into two segments by a 

surface of no iiuluetion, the two parts will experience electrical 

forces the resultants ol' which will tend to separate the parts with 

a force equivalent to the re.sultant force due to a pressure p acting 

on every part of the surface of no induction which divides them. 

This illustration is to be taken merely as an explanation of what 

is meant by the tension and pressure, not as a ph^'sieal theory to 

aeconnt for them. 

108.] We have next to consider whether these internal forces 

arc eapahle of accounting for the observed electrical forces in every 

ease, a.s well as in the ease where a closed e(piipotential surface can 

be drawn surrounding one of the electrified systems. 

The statical theory of internal forces has heen investigated by 

writers on the theory of elasticity. At present we shall require only 

to investigate the effect of an oblique tension or pressure on an 

element of surface. 

Let p he the value of a tension referred to unit of a surface to 

which it is normal, and let there ho no tension or pressure in any 

direction normal to p. Lot the direction-cosines of y; he /, n. 

Let r/y dz he an clement of surface normal to the axis of .r, and let 

the efi'ecl. of the internal force be to urge the parts on the positive 

side of this element with a force whose components are 

J^xx 'r* flic direction of x, 

.jy. and 

Pxzilffz. 

From every point of the boundary of the element r/y dz let lines 

be drawn parallel to the direction of the tension p, forming a prism 

whose axis is in the line of tension, and let this prism he cut by a 

plane normal to its axis. 

The area of this section will be Idpdx, and the whole tension 

upon it will be and .since there is no action on the sides 

of the prism, which are normal toy;, the force on the base dydz 

must he equivalent to the force pldt/dx acting in the direction 

(/, ?;/, /;). Hence the component in the direction of x, 

y;„r/y('/^ = pi-dy dzor 

Pxx = Pl'^- 
Similarly p^^ = phn, (1) 

Pxz = pin. 
If we now combine with this tension two tensions y/ and p>" in 

directions {V,%') and {I”, vi'\ n") respectively, we shall have 
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= + p'r-^ -VpT^, 

Pxv = + ]' »t' + p" ^■" ?«") (2) 

= pin + p'V )P + fl" tt". 

In tlic case of tlie electrical tension and pressure tlie pressures 

are numerically equal to the tension at every point, and are in 

dircetion.s at rig’lit angles to the tension and to each other. Hence, 

1'»<^”>S: y=y'=_;?, (3) 

/“ + ir- -i- P"^ = 1, tm + I'ni: +1"id' =0, In^ Ihi + Vn" = 0, (1) 

we find P^^ = {11--\)p, 

Pxa = (i>) 

= 2 hip, 

for the action of the eomhined tension .and pressures. 

Also, since p = ^ /i’-, where 11 denotes the resultant force, and 
8 77 

sinc'c III = X, Tim = Rn = 'A, 

p.r = 

Piy — — Pu^> 

P.r. = 2A'^ = A.; 
O 77 

where X, Y, ^.arc the coin])ononts of 7^, the resultant electromotive 

force, 

The expressions for the eomponent internal forces on surfaces 

iioniial to y and xr may he written down from symmetry. 

To (letervihie the condillons of eeinUilrinm oj the element dxdydz^ 

This clement is hounded hy the six planes perpendicular to ihn 

.axes of coordinates passing- through the points (.-c, yj T) and 

y + dy, z+dz). 

The force in the direction of ® M'hich .acts on the first face dydz 

is —pj^ dy dz, tending- to draw the element towards the negative 

side. On the second face dydz, for which x has the value 

the tension p^, h.as the v.aluc 

p„ dy dz + 74,,) dze dy ilz, 

.and this tension tends to draw the clement in the positive direction, 

If wc n('xt consider the two faces dzdx with respect to the 

vor., I. K 
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tangential forces urging them in tlie direetion of a;, wc iind the 

force on tlio first fiiee — py^dz <lt\ and tl)at on tlio second 

Py,dz dx + {j^ py,)dz dx dp. 

Similarly for the faces dxdp, we find that a Ibrce —p^^dxdp acts 

on the first face, and 

Prx 

on the second in the direction of x. 

If ^d.t-d)/dz denotes the total effect of all these internal forces 

acting parallel to the axis of x on the six faces of the element, we find 

i dx dp dz = 2hx + dp dz; 

or, denoting by ^ the internal force, referred to unit of volume, and 

resolved parallel to the axis of a’, 

. d d d 
t — TiZ "b Pv>: d" 77 Jhx i (7) dx^'^^ ' dp^'^^ ' d. 

with similar expressions for 7 and f, the component forces in the 

other directions*, 

Dilferentiating the values of Pxr,pyx) ^■''d jy,i ffiren in equations 

(0), we find 
^ 1 ^xaIX dY dZs 

But by Art. 77 
plX dY dZ. , 

+ + &)=■*"■ 

Hence ^ = p X. 

Similarly 7 = pY, 

C=pZ. 

(8) 

(9) 

(10) 

Thus, the resultant of the tensions and pressures which we have 

supposed to act upon the surface of the clement is a force whose 

components are the same as those of the force, which, in the 

ordinary theory, is ascribed to the action of electrified bodies on the 

electricity within the clement. 

If, therefore, we admit that there is a medium in which there 

is maintained at every jjoint a tension p in the direetion of the 

* Tin's investigation may te compared with tliut of tlic ‘equation of continuity 
ill hydrodynaniicH,’ .and witli others in wliicli tlie cfTect on an elenient of volume 
is deduced from the values of certain (jiiantitie.s at its bounding surface. 
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resullant oleetroniotive force Ji, and siicli that li- = Htt/;, conil)iiU‘<l 

with an equal pressure p in every direction at right angles to the 

resultant li, then the mechanical effect of these tensions and 

pressures on any portion of the medium, however hounded, will he 

identical with the mechanical effect of the elcetncal forces according 

to the ordinary theory of direct action at a distance. 

109. ] This distribution of stress is jirceisely that to which Fara¬ 

day was led in his investigation of induction through dielectrics. 

He sums up in the following words :— 

'(121)7) The direct inductive force, which may be conceived to 

he exerted in lines between the two limiting and charged eon- 

ducting surfaces, is accompanied by a lateral or transverse force 

equivalent to a dilatation or reirulsion of these representative lines 

(1221.); or the attracting force which exists amongst the par¬ 

ticles of the dielectric in the direction of the induction is ac¬ 

companied by a repulsive or a diverging force in the transvcr.se 

direction. 

‘(1298) Induction appears to consist in a certain polarized state 

of the particles, into which they are thrown by the electrified body 

sustaining the action, the particles assuming positive and negative 

points or parts, which are symmetrically arranged with respect 

to each other and the inducting suifaccs or particles. The slate 

must he a forced one, for it is originated and sustained only by 

force, and sinks to the normal or quiescent .state when that force 

is removed. It can be anniinued only in insulators by the same 

portion of electricity, because they only can retain this state of the 

particles.’ 

This is an exact account of the conclusions to which we have 

been conducted Iw our mathematical investigation. At cveiy j)oint 

of the medium there is a state of stress such that there is tension 

along the lines of force and pressure in all directions at right angles 

to these lines, the numerical magnitude of the pre.ssure being equal 

to that of the tension, and both varying as the square of the 

resultant force at the point. 

The expression ‘electric tension’ has been used in various senses 

by different writers. I shall always use it to denote the tension 

along the lines of force, which, as we have seen, varies from jjoint 

to point, and is always proportional to the square of the resultant 
force at the point. 

110, ] The hy])Otlie,sis that a state of stres.s of this kind exists 

in a llnid dielectric, such as air or turpentine, may at first sight 

K c 
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a|)])i‘ai' at variance with tlic e-stahlislieil ])rinciple tlial al any ])oint 

in a llnid tlie ])ressiirL>.s in all directions are C(|nal, I3nt in the 

(lodnetion of Ihi.s ])rinci])l(; from a consideralioii of the mobility 

and equilibrium of the parts of the flnid it is taken for granted 

that no action .sindi as that which we here sn])po,se to take ])hiee 

along the lines of foree exi.sts in the fluid. The sta.te of .stre.ss 

which we have been studying is perfectly consistent with the 

mobility and e(inilibrinm of the fluid, for we have seen that, if 

any portion of the llnid is devoid of electric charge, it experi- 

enc(>s no resnllant force, from the stre.sscs on its surface, however 

inlensc these may he. It is only when a portion of the fluid 

becomes charged, that its equilibrium is disturbed by the slre.sses 

on il.s surface, and we know that in this case it actually' tends to 

move, II enee the suppo.scd state of .strcs.s is not inconsi.stcnt with 

the equilibrium of a fluid dielectric. 

The quantity Q,, which was investigated in Thomson’s theorem, 

Art. .OH, may' he interpreted as the energy in the medium due to 

the distribution of stress. It appears from that thcoreni that the 

distribution of stress which satisfies the ordinary eondilions also 

makes Q an ahsohite minimum. Now when the energy is a 

minimum for any' configuration, tli.at configuration is one of equi¬ 

librium, and the cquilihriiim is stable. Hence the dielectric, 

W'heu subjected to the iiiduetivc action of electrified bodies, will 

of itself take ii]) a state of stress distributed in the way we have 

descrilmd. 

It must he carefully borne in mind that we have made only one 

step in the theory of the action of the medium, We have supposed 

it to he in a state of stress, but we have not in any way accounted 

for this stress, or explained how it is maintained. This stej), 

however, seems to me to he an important one, as it explains, by 

the action of the coasocutive parts of the medium, phenomena which 

wore formerly supposed to ho explicable only' by' direct action at 

a distance. 

111.] I have not hecn able to make the next step, namely, to 

aecount by mechanical considerations for these stresses in the 

dielcetrie. I therefore leave the Ihcory at this point, merely 

stating what arc the other parts of the phenomenon of induction 

in dielectrics. 

1. Electric Displacement. When iiulnction takes place in a 

dielectric a phenomenon takes ])laec which is equivalent to a 

displacement of electricity in the dircetioii of the induction, For 
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inslanee, in u Loydeii jur, of whicli tlie inner coating is cliarged 

positively and tlie outer coatiug iiegtilively, the di.splaecnient in 

iJie siil).stance of tlie glass is from within outwards. 

Any increase of this (lisplacement i.s ec|uivalent, during’tlie time 

of incrcascj to a current of jiositive electricity from within outwards, 

and any (liiTiiniitioii of the displacenient is equivalent to a current 

in the opjiosite direction. 

'I'he whole (piantity of electricity displaced through any area 

of a surface lixed in the dielectric is moasured by the (jiuiutity which 

we have already investigated (Art. 75) as the surhicc-intcgral of 

indaelion through that area, imiltiplied by K, where K is the 
•i 77 

speeihe inductive capneity of the dielectric, 

JI. Sii])cr(ieial Klectrilication of the Particles of the Dielectric. 

Conceive any portion of the dieleetrie, large or small, to he .separated 

(in imagination) from the rest by a closed surface, tlieii we must 

suppose that on every elcmeutnry portion of this surface llicre is 

an electrilieatiou measured by the total di.spin coni cut of electricity 

through that element of surface reckoned 'mmirdH, 

In the case of the Leyden jar of which the inner coating is 

cluirg’cd ])ositively, any portion of the glass will have its inner 

side charged positively and its outer side negatively. If this 

portion be entirely in the interior of the ghnss, its siiperfieiiil elec¬ 

trification will be neutralized hy the opposite eleelritieatiou of tlie 

jiarts ill contact with it, but if it be in contact with a condiieliiig 

body which is incapable of maintainiiig: in itself the iiidiictive slate, 

the superficial electrification will not be neutralized, but will con- 

.stitiite that ajipareiit electrification which is comnionly called the 

Iillectrifieatioii of the Conductor. 

The electrilieatiou therefore at the boiiiidiiig surface of a coii- 

duetor and the siirroiindiiig dielectric, which on the old tliemy 

was called the electrification of* the eondiictor, must be called in the 

theory of induction the superficial electrilieatiou of the surrounding 

dielectric. 

According to this theory, all electrification is the residual clfeet 

of the polarization (jf the dielectric. This polarization exists 

throughout the interior of the snb.slauee, but it is there neutralized 

by the juxtaposition of op])ositcly eleefrilicd jtarts, so that it is only 

at the surface of the dielectric that the elfects of the electrilieatiou 

become ajijiareut. 

The theory completely accounts for the theorem of Art. 77, lhal 
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tlio total induction through a closed surface is equal to the total 

quantity of olectricit}' within the surface multiplied by 4%. For 

what we have called the induction through the surface is simply 

the electric disphiccmcut multiplied hy and the total displncc- 

ment outwards is necessarily equal to the total electrification within 

the surface. 

The llicory also accounts for the impossibility of communicating 

an ahsolnto cliarge to matter. For every particle of the dielectric 

is electrified with o([ual and opposite eliargos on its opposite sides, 

if it would not ho more correct lo say that tliese olcctrificutions are 

only the manifestations of a single phenomenon, which we may cull 

Electric Polarization. 

A dielectric medium, when thus polarized, is llie seat of electrical 

(>nergy, and the energy in iiiiit of volume of the medium is mi- 

niei'icallj' eipuil to tlio electric tension on unit of area, both quan¬ 

tities being equal to half tlie product of the displacement and tlie 

resullant olcetromotive Ibree, or 

p = ^X)(S = ’ 
8 IT A 

where yi is the electric tension, 3) the displacement, @ the electro¬ 

motive force, and K the specific inductive capacity. 

If the medium is not a perfect insulator, the state of constraint, 

which we tall electric polarization, is continually giving way. The 

medium yields to the electromotive force, the electric stress is 

relaxed, and the potential energy of the state of constraint is con¬ 

verted into heat, Tlio rate at which this decay of the state of 

polarization takes place depends on the nature of the medium. 

In some kinds of glas,s, da^'s or years may elapse before the polar- 

izalioii sinks to half its original value. In copper, this change 

may occupy loss than the billionth of a seeontl. 

We have supposed the medium after being polarized to be simjily 

left to itself. In the plienomeiion cfilled the electric current the 

coiislant passage of electricity through the medium tends to restore 

the stale of polarization as fast as the eon<liietivity of the medium 

allows it to decay. Thus tlie externul agency which maintains the 

eiiiTcnt is always doing work in restoring the polarization of tlie 

inediiiiii, which is eontiniuilly becoming relaxed, and the potenlial 

energy of this polarization is continually hceomiiig transformed 

into heat, so tliat the final result of the energy expended in iiiaiii- 

Uiiiiiiig- tlie eurrent is to raise the temperature of the conductor. 



CHAPTER VL 

ON I'OINTS AND DINES OF EQUILIBRIUM. 

112.] Ii- at any point of the electric (icld tlu> rosnltant ft)rce is 

zero, the point is called a Point of ccjuilihriinn. 

If every point on n certain line is a point of ccjiiilibriiim, the line 

is called a Line of equilibrium. 

The conditions that a point shall be a point of equilibrium are 

that at that point 

dx ~ ^ 
= 0. . = 0. 

dy ’ dz 

At .such a point, therefore, the valno of is a maximum, or 

a minimum, or is stationary, with rcs})cct to variations of the 

noordinate.s. The potential, however, can have a maxininm or a 

minimum value only at a point ohart>ed with positive or with 

neg’ativc electricity, or throughout a finite space bounded by a 

surface electrified positively or negatively. If, therefore, a point 

of equilibrium occurs in an iinclectrificd part of the field it must 

be a stationary point, and not a maximum or a minimum. 

In fact, the first condition of a maximum or minimum is that 

d^~F dV' . d^-V 
-7-^ > ~r-T, > and 
(IX- <ly- (Iz- 

must he all negative or all positive, if they have finite values. 

Now, by Laplace’s equation, at a point where there is no elec¬ 

trification, the sum of these three c^uantitics is zero, and therefore 

this condition cannot be fulfilled. 

Instead of investigating the analytical conditions for the cases 

in which the components of the force simultaneously vanish, we 

shall give a general proof by means of the equipotential surfaces. 

If at any point, P, there is a true maximum value of T\ then, at 

all other points in the immediate neighbourhood ofP, the value of 

r i.s les.s than at I\ Hence P will be surrounded by a series of 
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closod of£iiij)otontial suvl'acos, L'ach outside the one before it, iiiul at 

all points of any one of these siirlhecs tlie oloetriciil force will be 

diroeted outwards. But wo have proved, in Art. 70, that the surliice- 

integrid of the electrical force taken over any closed surliiee j^-ives 

the total olcetrificatioa within that surface nndtiplicd by Itt. Now, 

in this ea.se thc! force i.s everywhere outwards, .so that the .siirfaee- 

inlegral is necessarily positive, and therefore there is positive clec- 

triliealion within the surface, and, since we may take the snrfaco as 

near to J' as we please, there is positive electrification at thc point J\ 
In the same way we may jirove that if / is a ininimuni at 

then P is acj^utivcdy electridecl. 

Next, let F be a point of eijuilibrium in a region devoid of elec¬ 

trification, and let us describe a very small closed surface roinnl 

F, then, as we have seen, the jiotential at thi.s surface cannot be 

everywhere greater or evm'jwhere le.ss than at F. It nui.st there¬ 

fore he greater at .some ])arts of the surface and less at others, 

Thesu portions of the surface are bounded by lines in which Ihc 

polential is equal lo that al. F. Along lines drawn from F to 

points at which the potential is less than that at F the electrical 

force is from F, and along- hues drawn to points of g-realcr po¬ 

tential the force is towards F. jfenee thc jioint P is a ]ioin1 of 

stable i'f|uilibrhim for some (li.splaccincuts, and of unstable eipiili- 

hriuin for other dis])hiceineut.s. 

113.] To determine the iiundicr of the points and lines of cqni- 

libriuui, let us oon.sider the siirfaei! or surfaces for which the 

potential is eepial to C, a given (piantity. Let ns call the reg:ions 

in which the potential is le.ss than (J the negative regions, and 

those in which it is greater than C the positive regions. Let 

/’„ be the lowest, and /', the highest jiotential e.vistiiig in the 

eh.-etric field, If we make the negative n-gion will in¬ 

clude only the electrified jioint or condiietor of lowe.st jiotential, 

and this is lu-cessarily electritied negatively. The jiositive region 

consists of tlie rest of .sjiaec, and since it surrounds the negative 

region if i.s perijihractio. See Art. 18. 

If We now iiierea.se the value of C the negative region will 

exjiand, and new negative regions will be formed round negatively 

eleetrilied bodies. For every iieg-alive region lliiis formed the 

.siirroiiudiiig- jiosilive regiuii acquires one degree of jicrijilinixy. 

As the (lillereiit neg-iiti\'e regions exjiarid, two or more of them 

may meet in a point or a line. If //-(-1 iiegnlive regions meet, 

the positive region loses n degrees of jierijdu'ii.xy, and the jioint 
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or tlio lino in wliicli they meet is a point or line of equilibrium 

of tlie ?itli de'-Teo. 

Wlien C l)oeomcs equal to J\ the positive ref^ion is reduced to 

the eleetrilied point or eondiictor of liifi'liest jiotential, and has 

thcnfforo lost all its periphraxy. lienee, if etieli point or line of 

equilibrium eouiits for one, two, or n according- to its dog-ree, the 

niunber so made up by the jmints or lines now eoiisidercd will 

be one less than the number of ncg-ativcly electrified bodies. 

There are other jioints or lines of equilibrium whieli occur where 

the positive reg-ions beeoine sejrarated from each other, and the 

iicg-ative reg-ion acquires ])eri])hruxy. The number of these, reek- 

oiicil according to their degrees, is one less than the number of 

positivedy oleetritied bodies. 

If we call a point or line of equilibrium positive when it is the 

nieeting-plaee of two or more positive regions, and negative when 

the regions which unite there are negative, thou, if there are p 

bodies positively and « bodies negatively electrified, the sum of 

the degrees of the jiositive points and lines of equilihrium will he 

p—\, and that of the negative ones ti~\. 

But, besides this detiiiite number of points and lines of equi¬ 

librium arising from the junetioii of ditfereiit regions, there may 

be others, of which we can only afTirm that their mimher must be 

even. For if, as the negative region expands, it meets itself, it 

becomes a cyclic region, ami it may ae(|nire, by repeatedly meeting 

itself, any miniber of degrees of eyelosis, each of which c;orres])onds 

to the jioint or line of equilibrium at which the cyclo.sis was 

established. As the negative region continues to expand till it 

nils all sjiace, it loses every degree of eyelosis it has ae(pured, and 

becomes at last acyclic. Hence there is a set of points or lines 

of equilibrium at which eyelosis is lost, and tlie.se are equal in 

muiiber of degrees to Iboso at wliieh it is acquired. 

If the form of the electrified bodies or conductors is arbitrary, 

we can only as.seit that the iiiimber of these additional points or 

lines i.s even, but if they are electrified points or splieheal coii- 

duelors, the number arising in this way cannot exceed («— 2), 

where ti is the iminber of bodies, 

114.] The potential close to any point P may he expanded in 

the series 

/ = -[ /Aq&e. ; 

where //,, II.,, Ike. are hoinogeiieoiis fmietioii.s of r, //, whose 

dimensions are I, 2, rcspectivcdy. 
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Since the first derivatives of r vanish at a point of equilibrium, 

7/j = 0, if P be a point of equilibrium. 

Let //,. be the first fiinetion which does not vanish, then close to 

the point P we may neglect all funetions of higher degrees as 

compared with 

Now JI^ — (J 

is the equation of a cone of the degree and this cone is the cone 

of closest contact with the eqiiipotential surface at 7^. 

It appears, therefore, that the eqiiipotential surface passing 

through P has, at that jioiat, a conical point touched by a cone 

of the second or of a higher degree. 

If the point P is not on a line of equilibrium thi.s cone 

does not intersect itself, but consists of i sheets or some smaller 

number. 

If the nodal line intersects itself, then the point P is on a line 

of equilibrinra, and the equi]>oteiitial surface through P oiits itself 

in that line, 

If there arc intersections of the nodal line not oii opposite points 

of the sphere, then P is at the intersection of three or more lines 

of equilibrium. For the cquipotential surface through P must cut 

itself in each line of equilibrium, 

115.] If two sheets of the same eqiiipotential surface intersect, 

they must intersect at right angles. 

For let the tangent to the line of interseetion be taken as the 

axis of r, then —7 = 0. Also let the axis of .r bo a tangent to , 

cl- V 
one of the sheets, then = 0. It follows from this, by Laplaee^s 

equation, that 
727 

¥ 0, or the axis of is a tangent to the other 

sheet. 

This investigation assumes that 11^ is finite. If 11^ vanishes, let 

the tangent to the line of intersection be taken as the axis of r, and 

let X = r cos 0, aiidy = rsin 0, then, since 

or 

(PV , 

cpr 

(PI- iPV 

ihP (hj- 

1 (IV 1 (PF 

= 0 

(IP r (Ir r-' dO'^ ~ ^ 

the solution of which e<[uation in ascending powers of?' is 

V = / rcos(0 + o)4- J.j?'- oo.s(204-o.,.) + &i‘. 4-,-/, r' cos (/d -fa,). 
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At a point of ocjuiUbrinm is zero. If the first term tliat iloos 

not vaiiisli is tliat in ?•', then 

V— /p = y/;/■*'cos (2 0 + a,.) + term.s in liig-lier powers of r. 

This gives i sheets of the equipoteiitial surface 1 = I intersecting 

at angles each ecpial to ^ . This theorem was given by Rtuikine*. 

It is only under certain conditions that a line of eejnilibrium can 

exist in free space, but there must he a lino of eqnilihrium on the 

•siirfiM'e of a conductor whenever the electrification of the eoiiduetor 

i.s positive in one ]iortion and negative in another. 

Ill order that a conductor may be oppositely electrified in diflerent 

portions of its surface, there must be in the field some places where 

the jxitential is higher than that of the body and others where it is 

lower. We must remember that at an infinite distance the potential 

i.s zero. 

Let us begin w'ith two eoiiducturs electrified positively to the 

same potential. There will be a point of equilibrium between the 

two bodies. Let tbe potential of tbo fiist body be gradually raised. 

The point of equilibrium will approacb the other body, and as the 

jiroeess goes on it will coincide with a point on its surface. If the 

potential of the first body he now increased, the equipotential 

surface round the first body which has tbe .same potential as tbe 

second body will cut the surface of tbe second body at right angles 

in a closed curve, which is a line of equilibrium. 

]’]u nm// am’.S' Th eornhi. 
116.] An electrified body placed in a field of electric force cannot 

be in stable equilibrium. 

First, let us suppose tbe electricity of the moveable body (//), and 

also that of tbe system of surrounding bodies (7i), to be fixed in 

those bodies. 

Let Fbe the potential at any point of the moveable body due to 

tlic action of the surrounding bodies (7?), and let e be the clcctrieity 

on a.small portion of the moveable body A surrounding- this point. 

Then the potential energy of A with respect to B will be 

M= S(re), 
where the summation is to be exteuded to every electrified portion 

of A. 

• ‘ Summary nf tli« ProportiuH of certain Stream Liuci<,’ PhU. Mmj., OcL. 18fi1. 
Sec ivlao, I'lionmon au<l Taifr) S'aliiriil riillufojihi/, § 780; ami It.niikine .•vml Stokes, 

in tile Pnic. 11, S',, 1807, p. 408; also \V. K,.Siiiitli, Pi'w. .s', Bilin., ]S(j!i-70, p. 70. 
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Let a, b, c Ije the coordinates of any electrified part of A with 

respect to axes fixed in y/, and parallel to those of x, y, z. Lot the 

coordinates of the point fixed in the body through which these axes 

pass be (. 

Let us suppose for the present that the body A is constrained to 

move, parallel to itself, then the absolute coordinates of the j)oint 

a, b, c will be 
.r = «, y = r]-Yb, z = C+t-’- 

'Ilic potential of the body A with respect to B may now be 

expressed as the sum of a number of terms, in eacli of which V 

is expressed in terms of a, h, c and rj, (, and the sum of these 

terms is a function of the quantities a, b, c, which are constant for 

each point of the body, and of 7;, whieh vary when the body is 

moved. 

Since Laplace’s equation is satisfied by each of these tenns it is 

satisfied by their sum, or 

d"-M iB-M d-M 

ilk' d-!]' d^- 

Now let a .small disj)laccrnent be given to A, so that 

d^ z= I dr, r/77 = mdr, d^ = ndr-, 

then dr will be the increment of the potential of‘y/ with respect 

to the .surrounding S3'.stcm B. 

If this be 230sitive, work will have to be done to increase r, and 

dM 
there will be a force -A— tending to diminish r and to restore A to 

its former position, and for this disj)laecmcnt therefore the cqui- 

lihrium will he stable. If, on the other hand, this quantity is 

negati\'e, the force will tend to increase r, and the eiprilihrinni will 

be unstable. 

Now consider a sphere whose centre is the origin and whose 

radius i.s and so small that when the point fixed in the body 

lies within this .sphere no part of the moveable body A can coincide 

with any part of the external .system B. Then, since within the 

sphere SP'M= 0, the surl'ace-intcgral 

dr 
dS= 0, 

taken over the surface of the sphere. 

lienee, il'at any jiart of the snrfaee of the sphere is po.silivc, 

there nm.st be some other part of the surface where it is negative, 
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iuul if the body // be disphiccd in a dircetion in wliiifh is 

uof^ative, it will tend to move from its origiiiiil position, and its 

equilibrium is therefore necessarily unstable. 

The body therefore is unstable even when eoiistraiued to move 

parallel to itself, afortum it is unstable when altogether free. 

Now let us suppo.se'that the body A is a conductor. We might 

treat this as a ease of ecjuilihriinn of a system of bodies, the move¬ 

able electricity being considered as part of that system, and we 

might argue that as the system is unshiblo when deprived of so 

many degrees of freedom by the fixture of its electricity, it mii.st 

u joiiiori be unstable wlicn this freedom is restored to it. 

lint we may consider this case in a more particular way, thus— 

I'^irst, lot the cleetricity be fixed in A, and let it move through 

the .small distance t/r. The increment of the potential of A due to 

n • • 1 tins eaiise is -dr- 
dr 

Next, let the cleetricity he allowed to move within A into its 

position of equilibrium, which is always stable. During this motion 

the potential will necessarily be iDminlshcd by a quantity which we 

may call Cdr- 

Ilcnce the total increment of the potential when the eleetricily 

is free to move will be 

and the force tending to bring A back towards its original position 

will be aM ^ 

dr 
where C'is alwa^'s positive. 

Now we have shewn that —^ is negative for certain direc- 
dr 

tions of r, hence when the electricity is free to move the instability 

in these directions will be inereased. 



CHAPTER VII. 

FOUMf) OF THE EQIJI POTENTIAL SUIH-’ACES AND IHNRS OF 

INDUCTION IN SIMI’LK CASES, 

117.] Wf, have seen tliat the determination of the distribution 

of eleetrieity on the surface of conductors may be made to depend 

on tlie solution of Liiphice’s equation 

d^r d'^ 
d.r^ + df 

r being a function ol' x, j/, and c, which is always finite and con¬ 

tinuous, which vanishes at an infinite distance, and which has 

a given constant value at the surface of each conductor. 

It i.s not in general possible by known mathematical methods 

to solve tills equation so as to fulfil arbitrarily given conditions, 

but it is always pos.s'ible to assign various forms to the function 

r which shall satisfy the equation, and to detenmine in each case 

the forms of the conducting surfaces, so that the function f' shall 

be the true solution. 

It appears, therefore, that what wc should naturally eall the 

inverse problem of determining the forms of the conductons from 

the potential is more manageable than the direct problem of de¬ 

termining the potential when the form of the conductors is given. 

In fact, every electrical problem of which wc know the solution 

has been constructed by an inverse process. It is therefore of 

great importance to the electrician that he should know what 

results have been obtained in this way, .since the only method by 

which he can expect to solve a new problem is by reducing it 

to one of the casc.s in which a similar problem has been con¬ 

structed by the inverse process. 

This historical knowledge of results can be turned to account in 

two ways. If wc are required to devise an instrument for making 

electrical measureniouts with the greatest accuracy, we may select 

(hose forms for the electrified surfaeos which correspond to cases 

of which we know the accurate solution. If, on the other hand, 
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\vc are required to estimate what will be the electrifieatiuii of bodies 

whoso (brms are g’ivcn, we may begin with sonic case in which one 

of tho cqnipotcntial surfaces takes a form somewhat resembling the 

g-iven form, and then by a tentative method we may modify the pro- 

lilcm. till it more nearly corresponds to the given case. This method 

is evidently very imperfect considered from a mathematical point 

of view, but it is the only one we have, and if we arc not allowed 

to choose our conditions, we can make only an approximate cal- 

eiihition of tho electrification. It appears, therefore, that what we 

want is a knowledge of the forms of equipoteutial surfaces and 

lines of induction in as many different cases as we can eolloet 

together and remember. In certain classes of eases, such a.s those 

relating- to siilieres, we may proceed by mathematical methods. In 

other ea.ses we cannot afford to despise the humbler method of 

actually drawing tonhitive figures on jraper, and selecting that 

which appears least unlike the figure we require. 

This latter method I think may be of some use, oven in cases in 

whieli the exact solution has been obtained, for I find that an eye- 

knowledge of the forms of the equipoteutial surfaces often leads to a 

right selection of a mathematical method of solution. 

I have tlierefore drawn several diagrams of systems of equipotentiul 

siirfnees and lines of force, so that the student may make liiniself 

familiar with the forms of the lines, Tire methods by which such 

diagrams may be drawn will be explained as we go on, as they 

belong to questions of dillerent klnd.s, 

118,] In the first figure at the end of this volume we liave the 

equipoteutial surfaces siirroiuiding- two jioints electrified with qumi- 

titics of electricity of the same kind and in the ratio of 20 to a, 

Here each point i,s surrounded by a system of equipoteutial 

surfaces \vhieh bceoiue more nearly spheres as they become smaller, 

but none of them are aeenratoly .s])heres. If two of tlte,se surfaces, 

one suri-oiinding each s])here, he taken to represent the .siirfhees 

of two conducting bodies, nearly but not quite spherical, mid if 

these bodies he ehnrged with the same kind of electricity, the 

ehai-ges being as -J to 1, then the diagram will repre.sent the 

equipoteutial surfaces, provided wc expunge all tho.se which are 

drawn inside the two bodies. It appears from the diagram that 

the action between the bodies will be the same as that between 

two points having the same charges, these points being not exactly 

ill the middle of the axis of each body, hut. .somewluit more remote 

than the middle point from the other body. 
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The .same cliugrum enable,-i u.s' to see what will l)e the distrihiition 

of eleetrieity on one ol' the oval (igiiro.s, larger at one cud than 

the other, whieh .s’lirrouiid both centre,s. Such a l)ody, if electrified 

with a charge 2~) and free from external inilnence, will have the 

,siirfaee-den,sity greatesl at the ,sniall end, less at the large end, 

and lea,st in a circle somewhat nearer the ,mnaller than the larger end. 

There is one eniiijadenlial surface, indicated by a dotted line, 

wdiiidi eoinsists of two lobes meeting at the eonieal iioint P. That 

])oint i.s a ])oint of e(jnilihrinm, and the surface-density on a body 

of Ihe f(jrni of this surface would he zero at this point. 

The lines of force in this ease form two distinct sy.stems, divided 

from one anolher by a surface of the .sixth degree, indicated by a 

doited line, passing thnaigh the point of ecpiilihrinm, and some¬ 

what rcsenilding one sheet of the hyperboloid oftwar sheets. 

This diagram may' also be taken to repre-sent the line.s of force 

and eqnipotential snrfhces belonging to two s]dieres of gravitating 

niult(>r w'hose masses are as 1 to I. 

119.] In the second ligurc we have again Iavo points whose 

charges arc ns 4 to 1, Imt the one positive and the other negative. 

In this case one of the eipiipoteutial surfaces, that, namely', corre¬ 

sponding to ])otontial zero, is a .siiliore. It is marked in the diagram 

by the clotted eirede Q. The importance of this spherical snrfiice 

w'ill be seen w'hen w'e come to the theory of Electrical Images. 

We may' see from this diagram tliat if two round bodies are 

charged with opjxisite kinds of eleetricity they will attract each other 

as much as tw'o points having the same charges but placed some- 

w'hat nearer together than the middle points of the round bodies. 

Here, again, one of the e([inpotential surfaces, indicated by' a 

dotted line, has two lobes, an inner one surromicling the point whose 

charge is .'5 and an outer one .surrounding both bodies, the two 

lobes meeting in a conical point P which is a point of eqinTihrinm. 

If the surface of a coiidnctor is of the form of the outer lobe, a 

roundish body having, like an apjde, a conical dimple at one end of 

its axis, then, if this eondnotor he electrified, W'O shall he able to 

determine the snperfieial density at anv jinint. That at the bottom 

of the dimple will be zero. 

Surrounding this surface w'c have others having a rounded 

dimple u'liich flattens and finally disappears in the equijiotonlial 

surface jiassing- through the point marked ]\f. 
The lines of force in this diagram form two systems divided by a 

surface which passes Ihroiigh the point of eipiilihrinm. 
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If wo CDUsicler points on tlie axis on tlie f’lirtlior side of tlie point 

/>, wo find that tlio ro-sidlaul foifc cliininishes to tlie doiiLlo pointP, 

whore it vnnislies. It tlieu (diangos .sif^n, and readies a maximum 

.it M, after wliicdi it oonlinually cliniinislios. 

Tliis inaxiinnm, liowevor, is only a niaxinmni relatively to other 

lioiuts on the axis, for if we draw a snrihee perpcndienlar to the 

!ixi.s, ]\I is a jioint of minininm (biee relatively to nei"hboiinny’ 

])nints on that surface. 

1^20.] riyure III ro'jaesents the eipiipotenlial siirfaoes and lines 

of force due to an tdeelrifiod point whose eharge is 10 placed at 

./, and .surrounded hy a Held of force, whicdi, before the intro¬ 

duction of the electrified iiolnl, was uniform in direction and 

uiai'l'uilude at e\'ery part. In this case, those lines of force which 

heloii^’ to A are contained within a surface of revolution which 

has an a.syui])tolie cylinder, luivinj*' its axis parallel to the nu- 

disturbcil lines of’ forec, 

The eipu'iioteut ial surfaces havi* each of them an asymptotic 

])lanc. One of them, indicated by a dotted line, has a conical 

]>oint and a lobe siirroundin”’ the jioint A. Those below this surface 

have one sheet with a deim-ssion near the axis. Those above have 

a dosed [lortion .surrounding’ A and a .scjiarate .sheet with a sligdit 

depre.ssion near the axi.s. 

If we take one of the surfaces below A n.s the surface of a con¬ 

ductor, and smother a lono- cvny below d sis the surface of another 

conductor at a ditferent iiotcntial, the .sy.s'tem of lines and surfaces 

hetween the two eondiietors will indicate the distribution of electric; 

forec. If the lower conductor is very far from d its snrfsice will 

he very nearly plane, so that we have here the solution of tin; 

di.strihiition of electricity on two snrfsicc.s, both of them nearly 

idaiie and jisrralhd to each other, e.\cept that the iipjior one has 

a protuheriincc* near its middle point, which is more or less pro¬ 

minent according’ to the inirticnlar eqnipotential line we choose for 

the .siirfiu’c. 

121.] Tig’ui’c lY rejircseuts the eqnipotential surfaces and lines 

of force due to three el(*etrilied points d, 7) suul C, the charge of d 

hciiig’ Is") units of positive electricity, that of Ji 12 units of negative 

electricity, smd Hint of C 20 units nf positive deetricity, These 

points sire phieed in one straight line, so that 

AJl = nC = H\, AC = 2o. 

In this case, the surface for which the iroteiitial is unity eonsi.sts 

of two spheri’.s whose (MMitres arc d and 0 and their radii 1 .'3 and 20. 

VOI,. 1. 1. 
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Tluw 8j)h(‘rcs interst'ol. in tlio circle \vliicli outs the plane of the 

pa])ei‘ in J) and D', so that /i is the coiitn* of this circle and its 

radius is 12. This circle is an oxairiplo of a liiu^ of ofpnlihviuru, for 

llu‘ rcsnllaiit force vaiiislu's at every ]>oinl of lliis line. 

]f w* su])poso the spluMV whose ciuitro is J to he a eouductor 

with a charo’c of 3 units of jiositivc deal ricily, and ])la('ed iimlin' 

the iuiluonco of 20 units of positive cdecl ricily at 6‘ the stale of 

the casi* will he roprc-icnled l)y the diagram if we leuvi' out all llu' 

lilies within the sphere d. The jiart of this sjiherical siu’lhec within 

the small circle /)// will he ueo^atively electrified hy the inflnonce 

of C. All the rest of the sphere will he positively clcetrified, and 

the small circle JJ/J' itself will he a line of no electrification, 

AVc may also consider the dia^rraiu to repre.sent the olectrifieation 

of the siihcrc wdio.se centre is t", eliaro'cd with 8 units of positive 

cleelrieity, and influenecd liy In iinit.s of jiosilive eh'ctrieity placed 

at ./, 

'I'hc diagram may also he tahen to rcjirescnt the easi' of a con¬ 

ductor whose surface consists of (lie larger segments of the two 

s]')liei‘es meeting in 1)1/, charged with 2.3 units of jms-ilivc elco- 

tricity. 

AVc shall return to the considcM'ation of thi.s diagram as an 

ill last rat ion of Thomson’s The'iri/ of E/o'.lflml Ima/icx. See Art. 1()8. 

122.] I am anxious that these diagrain.s should he studied as 

lllnstralions of the langiiugo of Faraday in .spcalcing of ‘lines of 

force,’ the ‘ forces of an chadriiied body,’ 4tc, 

In strict matlicrnalieal hinguag'e the word Force is used to signify 

the suppo.scd caii.se of the teiahmci' which a iiialc‘riiil hod}' i.s found 

to have towards alteration in its stale of rest or motion. It is 

indilhn-cnt wlictlier we s])eak of thi.s observed tendency or of its 

immediate cause, since the eaiiso is simply iiiierred from the eil'ect, 

and has no other evidence to siipimrt it. 

Since, however, we are ourselves in the practice of directing the 

motion of our own bodies, and of nioviiig other things in this way, 

we liave aequircsl a eo])i<>ns store of reiiieinhcred .sensations rchiting- 

to these a(!tioiis, and therefore our ideas of force arc connected in 

oiir minds with ideas of eoiiseious ])ow(*r, of exertion, and of falig-iie, 

and of overeoiniiig or yielding to pres.siii'o. Tlie.sc ideas, which give 

a colouring and vividness to the jnirely ab.stract idea of force, do 

not in niatheniatieally trained minds lead to any practical error. 

Jhit ill the vulgar language of the time when dynamical .sisonce 

was unknown, all the words ndatiiig to exertion, such as force, 
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energ'3'^, ])o\ver, Sec., were confonnJecl witli eaeli olliov, tlioiigli some 

of Ihe selioolmen en(l('.TVoiired lo iutrodiiee fi greater precision into 

their language. 

Tlie cultivation and ])0])ularization of eorreet dynamical ideas 

.since the. time of Galileo and Newton has efleeled an immense 

ehange in the language and ideas ()f eommon life, hut it i.s only 

within recent timc.s, and in eon.seqiienee of the increasing iin- 

portanee of machinery, that the ideas of force, energy, and power 

have hceoine accurately distinguished fi-om each other. Very few, 

however, oven of selentifie men, are carelul to ohserve these dis¬ 

tinctions ; hence we often hear (»f the f()re(‘ of a eannon-hall when 

either its energy or its inonientnni is meant, and of the force of an 

cleetrifled body when the (jimntity of its (deetrifieation is meant. 

Now the (piantlty of eleetrioity in a body is measured, according 

to Faraday’s ideas, ly the nnynfjcr of line.-i of force, or ratlu'r of 

induction, which proceed from it. These lines of force must all 

terminate somewhere, either on bodies in the neighhonrhood, or on 

the walls and roof of the room, or on the earth, or on the heavenly 

bodies, and wherever they terminate there is a quantity of elec- 

trielty exactly equal and op])o.sile to that on the part of t!ie body 

from which they jwoceeded. By examining the diagraims thi.s will 

be seen to he the ease. There i.s therefore no contradiction het .veen 

Faraday’s views and the mathematical results of the old theory, 

but, on the eoiit rary, the Idea of lines of force throws great light 

on these rendts, and seems to afford tlu^ means of rising by a eon- 

tinnons })roce.ss from the somewhat rigid eone('plion.s of the old 

theory to notions which may be capable of greater expansion, so 

ns to provide room for tin* increase of onr hnowledgo by further 

rescairehe.s. 

123.] These diagrams are eonstnieted in the following manner ; — 

First, take the ea.se of a sing-le centre of force, a small electrified 

body with a (diarge E. The potential at a distance is V— - 

E . . . ’ 
henee, if wc make ■ j. , we shall find r, the radius of the sphere 

for which the iiotential is If wc now give to 1 the values 

I, 2, 3, See,, and draw the corresponding- .sjdicres, we .shall obtain 

a .scrie.s of eipiipotential surfaces, the i)oleiitiiils eon-esponding to 

whiidi are measured by the natural nnniber.s. The .sections of these 

sjihercs ly a jdaue passing through their common centre will be 

circles, which we may mark with the immber denoting- the potential 



!•:< Jr IIHITENTh\ L S11RF,\CE!^ 148 [123. 

ol' ertoli. Tlieso ai'c iiulicaU'd liy Ihi' dolled eii'eles 011 tlio rig'lit 

lisind of Fig-. (!. 

If tliere be aiiotlier centre of force, we may in the same way draw 

the eqiiijiotentiid snrfaec.s licloiiging- to it, and if we now wisli to 

lincl tlie form of tlie cqnijiotciitial .siirfjuu'.s- due lo both centres 

togctlier, we must rcineinher lliat if /', he the potential due to one 

centre, and I'., tliatdue to tlie other, the 2iotential due to both will ho 

/ j q /„ = / . IJcnee, since at eveiy intersection of the eqiiipotenlial 

.snrfiiees belonging- to the two series we know both /', and / we 

also know the value of / . If therelbre we draw a surface which 

jiiisses throiigdi all those intersections for which the value of /’ is 

the same, this .surface will eoiiioide with a true e(|ni])otoiitial surface 

at all these inUn-scetions, and if the original systems of surfaces 

he drawn sullleienlly elo.se, the new snrfhee may he drawn with 

any re(|iiired degree of accuracy. The equipokmlial surfaces due to 

two 2>oints who.se charges are equal and ojipo.site are represented by 

the eoiitimious lines on the right hand side of Fig. (1. 

This method may be a])2died to the drawing of any .system of 

e(2ui2)otential .surfaces when the polontial is the .sum of two 210- 

tentials, for which we have already drawn the eqaipobmlial surfaces. 

The lines of force due to a single centre of force are sli-aight 

lines radiating fi-orii that centre. If we, wish to indicate by th(‘.s(‘ 

lines the intensity 11s well as the direelion of the Ibreo at any jioiiil, 

we niiist draw them so that they- mark out on the eipn'jioteiitiid 

surfaces 2'ortions over which the surface-integral of iiuliiction has 

definite values. The best way of doing this is to .suppose our 

plane figure to he the section of a figure in space (brined by- tlie 

revolution of the 2)hiue figure about an axis passing through the 

centre of force, Any straight line radiating from the centre and 

making an angle 0 with the axis will then trace oat a eoiie, 

and the surfacie-integral of the induction through that 2)nrt of any 

surface which i.s cut oil' by this i-one on the .side next the ])(),siti\’e 

direction of the axis, is 2 tt A'(1 —co.s O'). 

If we further sui>l>ose Ibis surface to lx- hounded by its intor- 

seelion with two planes 2>ussiiig through the axis, and inclined at 

the angle who,se are is eipial to half the radhi,*^, then the iiiduclioii 

through the surface so hounded i.s 

A’(I — eo.sd) =2 4^, say, 

and 0 = cos”’ (l — 2 

If we now give to 'P a serie-s of values 1, 2, -'I ,.. A’, wc shall find 
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ii (•()rrt'a])on(liuy sorioK oi'viilncs of 6, iincl if /? Ijg iiii integer, tlu; 

number oi' (;orre,spou(liug linos of force, iuehiding the axis, will he 

oqiiiil to A’. 

A\d; have llioroforti a niotliod oi' drawing linos oi' force so that 

the charge of any eentro is indicaited hy the mimher (jf lines which 

converge to it, and the hulnction through any surface out off in the 

way deserihed is measured by the nninhcr of lines of force which 

pass through it. The doited straight lines on the left hand side 

of Fig. () repre.sent the lines of force due to each of two electrified 

points whose charges are 10 and —10 respectively. 

If there are two centres of force on the axis of the figure wo 

may draw' the liue.s of force for each axis corre.spondiag to values 

of 4', and and thou, by drawing lines through the conseeutivu 

intersections of these linos, ibr which the value of + is tlie 

same, we may find the lines of force due to both centres, and in 

the same way we may orunhiue any two .systems of lines of force 

which are .symmetrically .situated about the same axis. The oon- 

tinuons curves ou the left hand side of Fig. 0 represent the lines 

of force due to the two oleotrifiod points acting at once. 

After the ecpiipotontial surface,s and lines of force have boon 

eonstriictod hy this method the acenracy of the drawing may be 

tested by observing whether the two .systems of Hues are every¬ 

where orthogonal, and whether the distance between conseeutive 

e(iupotential surface's is to the distance hetween eonseentivo lines 

of force as half the di.stanee from the axis is to the as.suined unit of 

long! h. 

In the ease of any such .system of finite dimensions the line of 

fnree whose index niimbor is T" has an a.symptote which passes 

through the centre of gravity of the .system, and is inclined to the 

. . . 
uxis at an angle whose cosine is 1—2 ,. , wh(‘re J'J is the total 

/y 

electrification of the .system, provided T' is le.ss than K Lines of 

force whose index is greater than are finite line's. 

The lines of foret; corresponding to a field of uniform force parallel 

to the axis are lines parallel to the axis, the distances from the 

axis being the sepmre root.s of an arithmetical series. 

The theory of ecpiipotontial surfaces and Hues of force in two 

dimensions will he given when wc come to the theory of conjugate 

functions*. 

* See ;i jiaper ' On tlie I'loW of Klectricity in Comhictinj^ Siirfnce.s/ Ijy I’rof. W. J?. 
iSmitli; /Vof,*. Ii, S, ICdln^, 7!i. 



CHAPTER VII[. 

.SIMPLE CASIW ()E ELECTIMEICATIOX. 

Ttcu I’di'allel PItums, 

124.] Wc* .shall consitk'r, in tho tirsL place*, two parallel piano 

conducting;' surfaces of liiduitc extent, at a distance c froin each 

other, maintained respectively at potentials A and P. 

It is manifest that in thi.s case the potential P will he a function 

of tho di.stanee c iVom the plane //, and will he the same for all 

points of any parallel plain; hetween y/ and P, except near the 

boundarie.s of the electrilied snriaee.s, which hy the snppo.sition 

are at an inlinitely distance from the point considered, 

lienee, Laplace’s ecjiiation heconics reduced to 

— - 0 

the integral of which is 
/ = C\ -p C., : ; 

and since when r = ii, I' = //, and when c = c, /' = /{, 

r = A + {B-A)y 

For all points hetween the planes, the re.snltant electrical force 

is normal to the planes, and its magnitude is 

H = , 
c. 

In the snhstance of the conductors theiasclves, /{ — a. Hence 

the di.stril)iition of electricity on the (inst plane has a surface- 

density ff, where 
1 ira = Ji = 

A- n 

On the other .surface, where the potential is P, the surface- 

density it' will be etpial and oppo.site to a, and 

l7i./ = -yi’ = 
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Let n.s next eonssiilor a portion of the first snrfiieo whose urea 

is .S', liikeii .so that no [tart of .S' is near the honmlary of the 

•siirfiiee. 

'I’he (jiuintily of eli’ctrleify on this Hiirfaeo is /'j = .S'(r, and, l)y 

_Ar1. 7i), the force acting on every unit of eleotrieity is A- A', so that 

the whole force acting- on the area S, luitl attracting it towards 

the other plane, is 

/’ = A h'Sa- = — A‘'^S = ^ 
“ 8 77 8 77 e- 

ilcrt! the Jittraction i.s expressed in t(‘rins f)f the area S, the 

dillerenee of potentials of the two suriUees — and the distance 

between them c. The attraction, exp res,sed In terms of the charge 

J'A on the area 6', is •> „ 

■/'’= /-V-'- 

The electrle:ii energy due to fhe distribution of elecfrieity on the 

area S, and lluit on an area S' on the surface li deiined by ^n'qjecting 

6'on fbe surface H by 7i .system of line.s of force, which in this case 

arc normals bj the ])!ane.s, l,s 

Q= h{l'\A+IUi), 

= *(•* 
' ^-l 77 <: 

= 
877 ' 

= Fc. 

The (last uf“ these ex[)ressions is the general expression of elce- 

1 rie-.d energy. 

The second g-ives the energy in terms of the area, the dustiuicc, 

and the dillerenee of potentials. 

The third gives it in terms of the resultant force A', and the 

volume Sc ineliided between the areas S and S', and shew.s that the 

energy in unit of volume is p whore H-njj = J{~. 
The attraelion between the planes is pS, or in other words, tliero 

is an electrical tension (or negativo pressure) ecpial to p on every 

imit of area. 

The fourth expression gives the energ-y in terms of the charge. 

The fifth .shews that the electrical energy is ecpial to the work 

which would be done by the electric force if tin- Iwo snrfiiee.s were 

to be brought together, moving parallel to themselves, with their 

electric charges eonslanl. 
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To express the (.‘luirge in terms of the didcreiicc of ])otoutial.s, 

wc have i v 

I s 
The coelfieient — — = 7 represents the charge tine to a tlider- 

•i 77 6" 

ence of jiolenlials ecpial to unity. Thi.s eoedieient is ealletl the 

Capacity ol“ the surface S, tliin t,o its position relatively to the 

opposite surface. 

Let ns now suppose that the medium between the two surfaces 

is no long-er air Init some other dielectric snhstanee whose speeilic 

indnetive capacity is K, then the elnirg-e due to a ^-iven diflerence 

of potentials will be K times as great as when the elielcetric is air, 

O'' KS 
/;. =-(yy-..,, 

The tohil energy will he 

The force hetwc'ca the surfaces will he 

■' 8 77 (A 

- A'.y • 
lienee the force betweeu two surfaces ke])t at g‘iven potentials 

varic.s directly as A', the speeilic capacity of the diedeetrie, hut the 

force between two snrfices charged with given fpiantities of elec- 

trieity varies inversely as K. 

'I'lCu Concciilrh Bphencal Sn if aces. 

125.] Let two ooneentrier spherical snrfueo.s' of radii a and /j, of 

which b is the greater, be maintained at jiotentials A and Ji 

respectively, then it is manifest that the potentud is a function 

of )• the distance from the centre. In this cjisc, Laplace’s ccpiation 

hccomes il'l 2 <// _ 

ilr- ^ r dr 

The integral of this is 

/'= + 

and the condition that V — A when r = a, and 1 = H when r = b, 

gdves for the space hetween t he .spherical .snrfaee.s, 
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r = yla-B6 
+ — 

A-Ji ■1. 

rir A-B 

//;• li '—/j 

](‘fTp (To are llie surfiLCc-dcnsitios on the opposed surfaces of a 

solid sphere of radius a, and a sjdierienl hollow of radius 6, then 

A-B 1 B-A 
’ 'iTT^f'a * — b ’’ ■ Auh- a"^—b * 

If /f, and 7C lie the whole charges of electricity on these surfaces, 

Yi. = Inrc-a-, = - =—A,, 
a ^ — 

'riio capacity of the cuelosod sphere is therefore 

If the outer siirlhce of the shell ho also sphorieal and of radius c, 

then, il‘ there are no other eonductors iii the neighbourhood, the 

(diarge ou Ihe outer surface is 

/f, = B o. 

lienee the whole eluirgo ou the inner sphere is 

and that of the outer 

+ 
(lb 

b- a 
{B-A) A Be. 

B = 

If wo put /j = ‘X), we have the case of a sphere in an iulinitc 

space, The cloetrie cajiiicity of such a sphere is a, or it is uu- 

nuM-ioally equal to its radius, 

The cloetrie tension on the inner sphere per unit (d'arca is 

1 b- [A-B)^ 

Stt ci~ {b — a)- 

The r(‘sultant of this tension over a hemisphere is ira-p = B 

normal to the base of the homisphero, and if this is halanecd by a 

surface temsion exerted across the circular boundary of the hemi- 

sjdicre, the tension on unit of length Ijciug 2’, we have 

F= 2k (iT. 

b- {A-Hf __ ^ 

8 ~ 8tf- ’ 

T- 
b'^ {A-B)- 

Kinr/ {b — a)- 

IIon CO 
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If a sjilua'ieal soap Inibbla is eloctriliocl to a potcMitial ^1, thou, if 

its radius is u, the oliaroo W'ill bo An, atid the surface-doiisity 

will bo ] ,/ 

■1 TT (I 

The msultaiil oleotrical force just outside the surface will be iTrrr, 

and inside the bubble it is Z(.‘ru, so that by Art. 70 the clec-trieal 

I'orec! on unit of area of the surface will bo 2'na~, aetinj^- outwards. 

Hence the olectrilioatiou will diminish the pressure of the air 

within the bubble by or 

1 A~ 

B TT “ 

But it may he .shown that if 2' i.s the tension which the licpiid 

film exerts across a line of unit length, then the pre.ssure from 

. , T . 
within retpiircd to keoj) the bubble from collapsing is 2 - . If the 

eleotrieal fores i.s just .suliicicnt to koop the bubble in ccpiilibrium 

when the air within autl without is at the same pros.sure 

A" = H‘yT>a T. 

Two Jiijinile CoKxaf. Cyiinilric >Sur/ac(;x, 

126.] Let the radius of the outer siirfaeoof a conducting cylinder 

be </, and let the radius of the inner .surface of a hollow cylinder, 

having the .same axis with the first, be h. Let their potentials 

be A and li re.spcetivoly. Then, since the potential V is in this 

ease a function of /, the distance from the axis, Laplace’s equation 

bccome.s 
.r-F \_ ,ir _ 

whence /' = 6]+ CF logr. 

Since / = A. when r = n, and F — Ji when r = F 

F = 
A log “ -j- JS log - 

lo<>- - 

If iTj, a. 

sin'faee.s, 

are the sindiioe-densitics on the inner and outer 

•IttiTj 
A~JJ 

) 

B-A 

b log — 

•1 71 rr,, 



127.] COAXAL aVLlNDJiltS. 155 

If J'\ and 74 arc the ehar<^cs on a portion of the two cylinders of 

lcu<4th measured along' the axis, 

/f, = 2TTal(T-. = i--^7 = ~K,. 
lo<y ~ 

® a 

'Jlie ea])acily ()f a leng'th I of the interior cylinder is therefore 

* ' 

log 
6 • 

If the space between the cylinders is oecupied by a dielectric of 

.specific capacity K instead of air, then the capacity of the inner 

cylinder is ^ 7 A' 

a 

The energy of the electrical distribulion on the part of the inlinite 

cylinder whicdi we have considered is 

. IK{A-Bf 
^ , 0 ' 

'"s;, 

log. S. 

127.] Let there be two hollow cylindric eoudnetors A and Ji, 

Fig. !), of indefinite length, having the axis of x for their common 

axis, one on the positive and the other on the negative .side of the 

orig-in, and separated by a .short interval near the origin of' co¬ 

ordinates. 

Let a hollow cylinder C of leng'th 21 be placed with its middle 

point at ix distance x on the positive side of the origin, so as to 

extend into both the hollow cylinders, 

Let the potential of the jiositive hollow cylinder be A, that of 

the negative one B, and that ol' the internid one C, and let ns jnit 

a for the ca])acity ]ier unit ol' length of C with re.spect to A, and 

ft for the same quantity with respect to Ji. 
The capacities of the parts of the cylindens near the origin and 

near the ends of the inner cylinder will not Ire affected by the 

value of .r [irovided a considerable length of the inner cylinder 

enters each of the hollow cylinders. Near the ends of the hollow 
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cylinders, and near the ends of the inner cylinder, there will bo 

distributions of (dectricity which wo arc not yet able to oalciihito, 

but the distribution near the orig'in will not bo altered by the 

motion of the inner cylinder ])rovided neither of its ends comes 

near the orig-iii, and the distributions at the ends of the iinior 

cylinder will move with it, so that the only clfcet of the motion 

will be jo increase or diminish the length of those parts of the 

imior cylinder where the distribution is similar to that on an in¬ 

finite cydinder. 

Hence the whole eiiorgy' of the system will be, so far as it depends 

on 

(2= ^ a(/ + .r) (6' —//)' -f i/J(/—a-') (C —-p fpiantities 

independent of./-; 

and the resultant (bveo parallel to tlio axis of the cylinders will he 

J= '2 = ha{C-Af-h^{C-n)\ 

If*the cylinders A and B are of ocjual section, a = ft, and 

A' = a(B-A) (C-iiA + B)). 

It apjiears, therefore, lhat Ihcre is a constant force acting on 

the inner cylinder tending to draw it into that one of the outer 

cylinders from which its potential differs most, 

If C ho numerically large and A+ B comjiaratively .small, then 

the foreo is apja-oxinmlely \ __ ^ 

so that the diHerenee of the jiotontials of the two cylinders can be 

measured if we can incasuro A", and the delicacy of the measurement 

will be increased by raising C, the potential of the inner cylinder. 

This principle in a modified form is ado])ted in Tliomson’s 

Quadrant Eleelrometer, Art. 21i). 

Tlic same arrangement of three eyliiulers may he used as a 

me:isurc of capneily by oonneefing B and C, If the potential of 

A is f^ero, and tliat of /i and C is T, tlien the quantity of clcctrieity 

on A will be E,, = + a (l+x)) 7'; 

so that hy^ moving C to tlie right til I x becomes a'+^tbe eajiacilr of 

the cy^linder C beeomes increased by the definite quantity a^, \rliore 

I 

, ' b ' 
2 log- 

a = 

Cl and h being the radii of the opjio.sod cyliiidrie surfaces. 



CHAPTER IX. 

srilBIUCAL II.VRMONICS. 

O/i Hhigidar PoUils at which the Puteutut! hecomes Injhiile, 

128.] Wo liavo iilrcatly shown l.liat llio potential duo to a 

(jnantity of olootrioity e, condoiisocl at a point wIioho coonliniilos 

aro id, b, e), is 
^ ^ /• = --; (I) 

r 

wliore /• is tlio distanco from the point {a, L, e) to llio jioint {x, tj^ x), 

and / i.s the jiotenlial at the point (./•, ?/, r). 

At tlio ])oiiit (o, b, c) tlie potential and all its derivatives heeomo 

infiriito, hut at every other point they are finite and eontinuou.s, 

and the seeond derivalivios of /' .satisfy Lajdaee’s equation. 

lienee, the value of J\ a.s’ given liy ecjualion (1), may he the 

aetnal value of the jioleutial in the space outside a clo.sed surface 

surrounding’ the jioint {a, b, c), hnt we cannol, cxcejit for jmrel}' 

mathcinatieal pur])o.ses, suppose thi.s form of the function to hold 

11]) to and at the ])oint {a, b, r) itself. For the re.sullant force close 

to the point would he infinite, a condition which would neec.ssitate 

a di-seliarge through the dielectric siirroiniding the point, and 

besides this it would require an inlinite expenditure of wuric to 

charge a jioint with a finite quantity of eleetrieity. 

We shall call a point of this kind an infinite jioint of degree zc>ro. 

The potential and all its derivatives at .sneh a point are infinite, 

hnt the product of the potential and the distance from the point 

is ultimately u finite (juantity e when the'distanee is diminished 

without limit. This quantity a is called the uhun/e of the inlinite 

point. 

Thi.s may he shewn thus. If/' he the potential due to other 

electrified bodies, then near the jioint / ' is everywhere finite, and 

the whole potential is _ _ 
J = / ' -)— ) 

r 

/■)•= /■'/•+c. whence 
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WIk'ii /• IS iiidcfinitcly (liminisli(‘!l / ' ivinaiiis finite, so that 

iiltini!il‘.'ly j- 

There arc oilier kinds of singular jioints, tlio jirojicrlics of 

wliicdi \ve sliiill now invo,-;tigiilo, hut, before doing so. we must define 

.^onie exjire.s.sioiis whieli we shall find useful in einaneijiating our 

ideas from ilu'thraldom of ,s3',st('nis of coordinati's. 

An (i.ri.s is any definite direi.'tion in s]>aee. AVi' may snjijioso 

if. defined in Cartesian coordinates hy its three direction-cosines 

/, 'j/i, /I, or, belter still, we may suppose a mark made on the sinTaee 

of a sjihere where the radius drawn^/rew/ the centre in the direction 

of till' axi.s meets the snrfiice. We may call this jioini the Jhde 

of the axis. An axi.s liiis therefore one pole only, not two. 

If through any jioint x, ij, z a jdane he drawn jicipendieular to 

flic axis, the ])cr|)en(licnlar from tin* orig-in on the plane is 

j) =+ it:. {2) 

The operation il . (f d 
* IY ' dh dx^'" d,, 00 

is called Dilferentliition with re.s‘pcct to nn axis h whose direetion- 

eosine.s are w, n 
Difiercnt axes arc distinguished hy diflcrent siiflixes. 

The cosine of the angle between the vector r and any nxi.s //, 

is denoted hy A,-, and the vector re.solved in the direction of the 

axis by yi,-, where 
A..r = /,..!•-t-w,.y+«-r (.|) 

The cosine of the angle between two axes /,■ and //, is denoted by 

du n-j = f (A) 

From t hese ilefinition.s if is evident that 

dx 
d/7, (<••) 

dpj 
dh; l^n = 

dpi 
dh, ") 

////,." /•' ■ 

Now let ns Knjijinse that flic jinleiifial nf the jioiiit {x,//, :) diu' 

to a singular point of any degree placed at the orignn is 

If such a jioint he jilaecd at the extremity of tdu' axi.s h, the 

jiotenfhil at (.'•, //, :) will he 

.1//’((.<■• —//), {//-jui). (r-fih))-, 
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iiiul if a point in all re.spocts equal and of opposite .sij^n bo placed 

at tlio orif^in, the potential due to the pair of points will be 

(‘- »fi)} '), 

=: — M/) F{ji\ y, *) d-lorni.s containing Ifi. 

Jf wo now diminish k and increase J/ without limit, their jn-odiict 

Mh romainiii”' constant and equal to M', the ultimate vahio of tin* 

potential of the jiair of points will be 

P) 

Ify(./•, ?/, r) .sattsfu's Laplaees o((ualiou, then / ', whieli is the 

dilloroiiee ol'two luiietions, each of which sojiarately .sal isfit's the 

eejuation, mn.st itself satisfy it. 

If we heo'iii with an infinite jioiiit of dooroc zero, for which 

= (10) 

we shall f^-et for a point of the first de^n'ce 

^ ^ ^ dh, r ' 

= ,iA 4; =-v, *1 ■ O') ,..i 

A point of the first depreo may be supjioscd to consist of two 

poiiifs of degree zero, having' equal and o])po.site charg'e.s d/,, and 

— .'1/,,, and jilaeed at the extremities of the axi.s h. The length 

of the a\'i.s is then .suppo.scd to diminish and the magnitude of the 

charges to increase, so that their jirodnet d/,// is always equal to 

d/]. The ultimate result of this jivoecss when the two points 

eoiucido is a point of the first degree, who.se moment is d/j and 

whose axis i.s dj, A jioint of the first degree may therefore be 

called a Double point. 

By jilaoing two ecpial and opposite points of tlie first degree at 

the extrcmitie.s of tlio seeoiid axis //,,, and making dA,/q, = d/,^, we 

gel liy tlic same jirocessa point of tin; second degree wliose potential 

d c=-4,-.r,. 

“ dh, dh., r 

— ]/ ^^1 
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Wt! may fall a jjoiiit oC tlif seooml dcoTOf a Quadruple p.iint, 

Loeausc it is eoiisl i'iicIihI by nialciii<j;- ibur jioints approach eaeli 

other It has two axes, //, and and .a moment 3f.,, The r/l- 

/■('<'/of these two axes and the /ii(i(fnihi(h‘ of the moment 00m- 

])h'lely define llie nature of the point. 

130,] Li't ns now eonsider an iniinite point of dog-ree / having' 

/ axes, each of wliieli is defined by ti mark on a sjdu're or hy two 

niigulnr coordinates, and having' also its moment J/;, so Unit it is 

defined hy 2 /-f 1 iiidepi'iulent (jiiantities. Its potential is obtained 

hy (liilerontiating' /', witli resjioct to the t axes in suecossion, so 

that it nniv he written 
>1* 1 

(i;i) 

The ri'siilt of the o])eration is of the form 

/; = '■ M: 
j: 

(M) 

where I], wliieli is called the Surface Ilaniionic, is a fimelioii of the 

/' cosines. A, ... A; of the angles hetwei'n r and the / axi's, and of the 

hi{i— 1) cosines, p,.., i>cc. of the ang'lc.s hi'twceii the dilferent axes 

t lieiiisi'lves, In what follows we shall .sujijiose the moment iinily, 

J'ivery term of J',. eonsist s of jirmhiets of 1 hese eosiiU'.s of the form 

t*] J' f'.il ~ 1 I 1 ■ • ■ '’'o 

in which there are .v eo,sines of angles hetween two axe,s, and / —2.s' 

cosines of angles hetween the axes and the radius vector. As each 

axis is introduced hy one of the i proee.s,ses of dilfereiitiation, the 

symbol of that axis mii.st oecnr once and only once among' the 

siillixi's ofllu'se eosiiii's. 

lienee in every suoli product of cosines all the indici's occur 

once, and none is repeated. 

The nnmher of dillereiit jirodnels of .v cosines wit h duiihle siifllxi's, 

and i—2.t eo,siiies with single .siiflixes, is 

For if we take any one* of the A* did’ei’i'iit terni.s we can fonii 

from it 2* arrangements hy altering the order of the siilllxes ot the 

cosines with double snilixes. From any one of these, again, wi* 

can form arraiigenieiits hy alteriog' tlie order of these cosines, 

and from any one of these we can form t-2,s' arrang-emc'iits hy 

altering the order of tlu' eosine.s with sing’le siiflixes. Hence, with¬ 

out altering' tin* valiii' of tin* term we may write it 111 2".t'-2.s* 
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(liireront ways, and if \vc do so to all the ti'mis, \vc shall obtain 

the wliolo permutations of i symbols, the number of which is . 

Let the sum of all terms of this kind he written in the ah- 

hreviated form 2 

If we wish to express that a partieular symibol j oeeiirs amone- 

the A’s only, or anion" the oidy, we write it as a suffix to the A 

or the fj.. Thus the eiiuation 

i:(A'-2>-) = 2 (A/--V-)-)-2 (A«-^V/) (IG) 

expresses that the Avhole system of terms may he divided into two 

jiortions, in one of which the symlioi y occurs ainoii" the direction- 

cosines of the radius vector, and in the other amoii" the cosines 

of the uiiyles between the axes. 

Let ns now assume that up to a certain value of i 

r. = y/,„ 2 (AO 4- //.,! (A‘-2 -t- &c. 

(17) 

This is evidently true when 7I = 1 and when 7 = 2. We shall shew 

that if it is true, for i it is true for 2 +1. We may write the series 

I^.= ,?{y/,,2(A«--->-)}, (18) 

where S indicates a summation in which all values of .? not pfreatcr 

than A /■ are to be taken, 

Mnltiplyiiipf by ;» and rcmcmhcriii" that j); = rX;, we 

obtain by (H), for the value of the solid harmonic of negative 

de"ree, and moment nnity, 

T:= 2(y/-'^V0}‘ (>G) 

Difrcrcntiating- J'- with respect to a new axis whose symbol is 

J, we shonhl obtain O'+i ibs sign reverseil, 

- = I V -S' {y/,,,(2.?-2i- 1 2 •->-+1 ^.) 

+ 2 (//'■'-V/’" ')}■ (20) 

If we wish to obtain the terms containing .v cosines with double 

.snfllxe.s we miust diminish .? by' unity in the second term, and we find 

- /:^J = i -S --•-=> [.I,,, (2.?- 22 -1) 2 (;2/--’'-^’ m') 

+ .4,_,2(;2---+V/)]}- (21) 
If we now make 

yI,_,(2«-22-l) = y/,.,^, =-(/+1) y/.-(22) 

then , = •i+_l.S{y/;+,,,/-’-2 (//^ ''->')}, (23) 

and thi.s value of is the same as that obtained by ebanging 2 

VOT.. T. -M 
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into i+l ill the jissiiined expression, eipiation (in), ibr /;. IIciicc 

llio asBiirned form of /■, in equation (10), if true for any value of /, 

is true for the next hiy;her value. 

To liiid the value of ,7, ,, put ^ = 0 in equation (22), and we find 

and therefore, siuec .-/j „ 

2 / -f 1 

7TT 
is unity, 

■1. = - 
'•« 2' I* tt 

A. 

) 

(2-1) 

(2i5) 

and from this we obtain, by equation (22), for the general value of 

the eoellieiciit 

V 2»-» I i ji-s' ^ 

and finally, the value of the trigonometrical expression for J'- is 

l2»-2,s- 
(27) 

This is the most general expression for the sjjliericiil surface- 

harmonic of degree i. If / points on a sphere are given, then, if any 

other jioiiit P is taken on the sphere, the value of for the jioiiit 

i-* is a fimetioii of the / dislauees of P from the / points, and of the 

^/(t—1) distances of the / points from each other. These / points 

may be called the Poles of the spherical harmonic. Each pole 

may be defined by two angular eoordiuutes, so that the spherical 

liai'inonic of degree v has 2/ inclepemleiit constants, exclusive of its 

moment, i)/,-. , 

131.] The theory of sjdierical harmonics was first given by 

Laplace in the third hook of his j)It'ca>iiiji(e Celesie. The harmoiiics 

themselves are therefore often called Laplace’s Coofiieicnts. 

They have generally been exju'essed in terms of the ordinary 

spherical coordinates d and </>, ami contain 2/4-! arbitrary con¬ 

stants. Gau-ss appears* to have had the idea of the harmonic 

being determined by the po.sition of its poles, but I have not met 

with any development of this idea. 

In numerical investigations I have often been perplexed on ac¬ 

count of the apparent want of defmitcness of the idea of a Laplace’s 

Coellicient or spherical harmonic, lly conceiving it as derived hy 

the successive diflcrcutiation of ^ with respect to / axes, and as 

expressed in terms of the positions of its i poles on a sphere, I 

* (i!Ui.s.H, Werkc, 1x1, V. K. 301. 
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liiive niiide the eoueeptiou of the g-eneral spherical luirmouio of niiy 

iiitcgnil clo^Toe ])errect]y doHnite to myself, aiicl I hope also to those 

who iiiuY have felt the vag’uene.ss of .some other forms of the ex- 

liri’bsion, 

AVhen the pole.s arc given, the value of the harmonic for a given 

point on the .sphere is a perfectly deliuite muiiorioal quantity. 

When the form of the fiiiietion, however, i,s given, it is by no 

nieaii.s .so easy to line! the poles except for harmonics of the first 

and seeond degrees and for particular eases of the higher degrees. 

Hence, for many purposes it is de.sirahle to express the harmonic 

as the sum of a number of other harmonics, each of which has its 

axes dis])o.sed in a symmetrical manner. 

S^tnmetrical Si/dtui. 

132.] The paitieular forms of harmonies to which it is usual to 

refer all others are deduced from the general harmonic by ])Iaeing 

i—(T of the poles at one point, which we .shall call tin* Positive Pole 

of the sphere, and the remaining o- poles at equal distances round 

one half of the ecpiator. 

In this case A,, Ao, A-_a are each of them e(jnal to cosd, and 

A;_,h i . - • A; are of the form sin 0 eo.s((/j—/S). We shall write g for 

cos 0 and v for sin 0. 
Also the value of ixjy is unity ify and / are both less than i—a, 

zero u'hen one is g-reater and the other less thiiu this quantity. 

and 00s « - when both are greater. 
(T 

When nil the poles are concentrated at the jwle of Ihe .s-]diere, 

the harmonic becomes a zonal harmoiiic for which o- = 0. As the 

zonal harmonic is of great importance we shall re.seiTc for it the 

.symbol Qi. 
We may obtain it.s' value either Irom the trigoiiometrioal ex¬ 

pression (2 7), or more directly by dilferentiatioii, thus 

T i 
28) 

Q.- 1.2.3...Z 

( ; 2i~ 

O' 71 'i- 

.(2;-!)^ 2A.(2i—]){2i—3) 
^•'-1 _&o. 

(29) 

) 

It is often eoiivenieiit to express as a homogeneous function of 

cos 0 and sin 0, which wo shall write g and v respectively. 

.’M 'i 
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V. = M'-2.2 ^ ^^’■■^2 . 2 . ‘I . -1 ^ 

In this oxpan.siou the ooollioicnt of \x^ is unity, iuicl all the other 

terms involve r. Heiioo at the polo, whore fx. = l and v=0, ^, = 1. 

It is shewn in treatises on Laphiee’s Coefficients that is the 

coelHeient of //•' in the expansion of (1 — 2/x//-f 

The other harmonies of the symmetrical .system arc most con¬ 

veniently ohtninod by the nse of tlio imaginary coordinates given hy 

Thomson and Talt, Natural PhUftsopln/, vol. 1. p. 148, 

^ = .r 4- V - 1 y, 77 = a; — a/ — 1 y. (31) 

The operation of ditforentlating with respect to n- axes in sne- 

eessiou, who.so direotion.s make an<rles - with each other in the 
” a 

plane of the ec[uator, may then he written 

- (32) 
dC ^ dr," 

The surface harmoiiio of degree ■} and ty[)e o- is found hy 

dilferentiating with respect to ?' axes, (r of which an; at equal 

Intervals in the plane of the equator, while the remaining i — rr 
coincide with that of r, innltiplying the result by nnd dividing 

by ; i. lienee 
.,.1 + 1 ili-a /7<t ,1a 1 

y (-'I =(-!)•• - - - - ~ (~ + O ('-'1, (3 3) 

, ..... i2s r/*'-" 1 
= (-] i)i'-« '-r 

'1 2“' 1 i : .1 

Now 

b 11 

+
 

b 

and 
r =( J)‘“ 

I { 
\ j * + O' 

Ilcncc ^ — 2 — 
2-- 1 *• ; <r 

. J__ 
|2(r 

where the factor 2 mn.st be omitted when <7 = 0. 

The quantity 3^'"* is a function of 0, the value of which is given 

in niomson and Tail’s Nalurai PhUosophj/, vol. i. ]>. Mt). 

It may bo derived from 0- by the eniiation 

where is expressed as a function of g only. 
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Pdrfbrining- the (liUbrontiatiou.s on Qi as g-ivon in equation (20), 
\VL* obtain 

(er) , |i—(T i o- 12i —2/1 ) 
3- —1 )'* -----M<-o—ail f I'an'i 

^ 2«-g h + ,T .71 i" (,oJ) 

Wo may also ox^'i'oss it as a lioinog-eneous function of ^ and v, 

5'"' = U-i)’* - '_u*— '^1 ' 2-°' n \a- + 7i i~cr~2ii^ (10) 

Ill this expression the eoeflioiont of the first term is unity, and 

the others may he wiitten down in order by the aiipliealion of 
Laplace’s oijuation. 

The following- relations will he found useful in Electrodynamics. 

T'liey may be deduced at onee from the exiiaiision of Q-. 

77;;-= 2 O,-. 

n ^ r, <IQ,i /' + 1 .^1 

(-11) 

(42) 

0)1 SuUil JIa)')/ioiiics L>f P<js')li\:ii Deyreo, 

133.1 We have hitherto considered the spherical surface harmonic 

}'■ as derived from the solid harmonic 
y. 

r. = i M - — ' . ' I — t I-1 

This solid harinonie is a lioniog-eneous function of the coordinates 

of the neg-ative degTce — (i+1). Its values vanish at an infinite 

distaiiee and Ueeome. infinite at the origin. 

We shall now shew that to every such function there corresponds 

another whieh vanishes at the origin and has inlinite values at an 

infinite di.stanee, and is the corrc.sponding solid liarmoiiie of positive 
degree i. 

A solid harmonie in general niiiy be delined as a homogeneous 

fiinclion of .'r, _y, and c, which satisfies Laplace’s eijuatioii 

d-r d-r d-r 
~rw + “/“TT + — b. 
dx~ dy~ dz~ 

Let y/, he a hoinog-eueoiis rniictioii of the degree /, such that 

/y. = ; 1 d/,. F fl- = + (4 3) 

Then = (2i+ l)r-^'->.r/:+ /-‘‘ H 
iLv (lx 

= (O; ) ((0;_,q 2(2/ + 1 )r--br ^ • 
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lIon(*(( 

+ 7^ + ^' = (2'+'){2;+2V--v, 

Now, .since /■ is a liomog-ciicons function of negative di'^rccf /+ 1, 

r ,^/■ (lo) 

Tho fir.st two tenn.s tln'rcforc of the rif^ht hand incnd)er of 

cijiiation (11) destroy each other, and, since /,■ satisfies Laidace’s 

eqiiiition, the third term is zero, .so that //; ahso .satisfies Laplaeo’s 

eqnatinn, and is ther<‘fore a solid harmonic of decree /. 

Wc .shall next shew that the value of If- thus derived from /,■ is 

of th(' most pfcneral form. 

A homogencons function of x,,//, r of degree I contains 

tenn.s. Ihit 
,1-U, <1-11, <1-11, 

- V“ Hi = 
,L>- + Jf + 

is a homogeneous function of degree /—2, and therefore, contains 

i /(i—1) term.s, and the condition v'-f/,. = 0 r('(|uire.s (hat each of 

the.se must vanish. Tlierc arc therefore i / (/ —1) eiinntion.s betwi'cn 

the coeffieimits of the i (/ + !)(/ +2) terms of the, homog-oneous 

function, h.mving 2i+l independent constant.s in (he mo.s-t gen(*rnl 

form of //;. 

But we have seen that f,- has 2/+1 independent eoiistaiits, 

therefore tho value ofis of the most gfcneral form, 

Appl'icai'ioii of Si ill (I ITormovicn lu Ihc Thconj <f J'JecIrified Spheres. 

134-,] Tho function /,’ satisfies the condition of vani.shiiig nf. 

infinity, hut do(‘s not .satisfy tho condition of being everywhere 

finite, for it hcenmes infinite at tin' origin. 

T1 10 function //,■ sati.sfh'.s the condition of heing- finite and oon- 

tinuon.s at finite distances from the origin, but does not .satisfy the 

condition of vanishing at an infinite distance. 

But if we determine a closed snrl’aec from (he ef[nation 

/; = //■,., (Hi) 

and make 7/, the jiotential function within (he elo.sed .surface and 
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J'; the potential outside it, then by mjildng. the snvfaee-density a- 
satisfy the elmraetevistie equation 

<lr 
dh 
dr 
- -P 'iTIfl- = 0, (47) 

we shall have a distribution of potential whieh satisfies all the 

conditions. 

It. i.s manifest that if 7/, and 1] are derived from the same value 

of } ., the surface Hi = ![ will be a spherical surface, and the 

siivl'acc-dcnsity will also he derived from the same value of i'. 

Let (!■ be the radius of the sphere, and let 

Jh = A^r„ i, = n^,, , = cr,, (.is) 

Then at the surface of the sphere, where r = a, 

B 
A(d = >' +1 ■ 

and 
dF dIT 

or 0A-— 47r6'; 

whence we find 7/,- and 7- in terms of C, 

4 7rC ?•' 

2/4-1 rt’-' 
IF 

■inC 
2/ + lr' + i ‘ 

(4 0) 

We have now obtained an eleetriliod system in whieh the potential 

is everywhere finite and continuous. This .system consists of a 

spherical .surface of radius r/, electrified so that the surface-density 

is everywhere C')'., where C is some constant density and Vf i.s a 

snrfiiee harmonic of deo-ree /. The potential inside this sphere, 

arising from this electrification, is cvcrywlicrc //,■, and the potential 

outside the sphere is F;. 
Th(*se values of the potential within and without the sphere 

might have been obtained in any given case by direct integration, 

hut the labour would have been great and the result applicable only 

to the particular case. 

13.0.] Wo shall next consider the action between a spherical 

snrlhcc, rigidly eloctrilicd according to a spherical harmonic, and 

an external electrified system which we shall call I"'. 
Let r bo the potential at any point due to the system .77, and 

/,■ that due to the s])hcricnl surface whose surface-density is rr. 
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Then, liy (rreen’-s tlieoreni, the ])oteiiti:il energy of li on the 

electrifieil .•surl'uce is equal to that of the electrified surliice on E, or 

fj f'(rJS= 
where the first intogrutioii is to be extended over every element. dS 
of the surface of the .sphere, and the sunnnation 2; i.s- to be extended 

to every ])art tlE of which the electrified system E is composed. 

]3ut the same potential fnnetion /■ may be jrroducod by ineiins 

of ii eonibinatiou of 2‘ eleetrillod points in the manner already 

deseribod. Let ii.s therefore find the potential energy of E on 

such a compound point. 

If is the eharg-e of a single point of degree zero, fheii J/,,/’ 

is the potential energy of Eon that point. 

If there are two such points, a po.sitive and a negative one, at 

the positive and negative ends of a line then the potential eiierg-y 

of E on the double point will he 

iind \v'hen J/,, increases and /q diminishes indefinitely, hnl so that 

the value of the potential energy M’ill he for a })oint of the linst degree 

1/ 

Siniihirl)' for a jioiut of degree i the potential energy with r(‘S])ee‘t 

to /f will he ,/i/,' 
M - 

' dh^Llh.,...dh^ 

This is the vnliK! of the ywteiitial energy of ,/i upon the singular 

))oiiit of degree 1. That of the .singular point on E) is ^Id/E, and, 

by Green’s theorem, these are equal. Hence, by equation (oO;, 

If ir = C E where C i.s a eoiislant (luanlitv, flien, by equations 

lleuee, if / is any potential function wliatever which satislles 

L:il)laee’.s (*(pi;diun witliin tlie .'ijdierieal surface of radin.s o, then tlie 
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iiitvyral of rY^dS, oxtuiidod over every element dS^ of llie siirfuL'e 

(jf a spliere of melius i.s given l)y tlie eijiiiitiun 

rVidS^ 
a'*- d'Y 

2/4-1 d/i^ ~, dhi ' 

wliei’e tlie diflerentiations of / are tiikcn witli resjx’et lo tlie axes 

of tlie luinnonie Y-, and the value of the difFereiitial eoeliioient is 

that at the eeutre of the sphere. 

136.] Let us now suppose that Y is a solid luirnioiiie of ]iositive 

(leyi'ee i of the I'oriii ...j r=^Y, p:.) 

At the s])herieal surliiee, r — it, the value of / is the surface liar- 

iiioiiie Yj, and equation (u2) becomes 

iTT d'[r-^;) 
i ‘ 2 /q-1 d/i^.. .d/t -, 

(5-1) 

^vhere the value of the dillereiitial eoeflicieiit is that at the eentre 

of the sjihere. 

Wlnm / is inmierieally dill'erent from J, the .siirfaee-inteynil of 

the jn'odiiet 1] Yj vanishes. For, when / is less than y’, tlu‘ result 

of the dilhacntiation in the second nieniher of (o l) i.s a homoo-cmimds 

lunetion of .r,//, and of deg'ree /•—/, the value ofwhieli at the 

eeiilre of the sphere is zero. If/ is equal to / the result is a constant, 

the value of which will he determined in the next article. If the 

differentiation is carried further, the result is zero. Hence the 

surfaee-integral vanishes when / is gn'eater tliany. 

137,] The iiin.st important ease is that in which the harinoiiie 

r'Yj is dillereiitiated with respect to / new axes in succession, the 

mnnerical value ofy heing the same as Unit of /, hut the directions 

of the axes heing in general different. The final result in this ease 

i.s a constant quantity, each term heing the jirodnet of / cosines of 

angles hot ween the ditl'erent axes taken in ])airs. The general 

form of such a jiroduet may he W'ritten syinholleally 

which indicates that there are .v cosines of angles hetween pairs of 

axes of the first system and s hetween axes of the second system, 

the remaining /—2 y cosines heing hetween axes one of vhicli 

helongs to the first and the other to the second system. 

In each jiroilnct the sufli.v of every one of the 2/ axes occurs 

once, and once only. 
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The inimbcr of diffiTont. j'jinduct.s for :i ^iv(,“U v;duo of is 

Tlic fiiiMl rc'sull- is easily oblniiu'd by tlu* sucocssivc dillbren- 
liation of 

niiren'iitiatiiif^ this / limes in su(*CL“s.siou witli vcspeel- to tlio new 

axes, SI) as to obtain any f^iven eombinnlion of the axes in pairSj 

we <Mid llial, in diHemitiatini^- r-’ -with rcspcft lo n nfllio now axis, 

wliioli are to ])o combined witli otlioi' axes of tlic non' system, wc 

inli-ndiico the mnnerieal fiietni' 2.^(2.s‘ —2)... 2, or 2'i£. In eon- 

timiin^' Iho (lilloreiil.ialion tlie boonmo oonvorted into /a’s, bid. 

no ininierical factor is inti'odneod. Iloiiee 

A' S 

l//f^ ,..//// 

Siibsliliiliiiiy this I'osnlt in equation (o l) wo find for tbo x'aliie of 

Iho sui-rneo-intooTal of the product of two surface lini'iiionies of llie 

same d(*nne(‘, lakcni over the surface of a splicve ol'radius a, 

// r..}\>/s= (,; +T) ( -' )'’^-4 ^(M,■ (r<-) 

This quantity diUbrs from zero onlr when tlic two harmonics are 

of the same de»'m', and even in tliis case, when tlic distribution of 

the axes of tliconi' system bears a certain I'olation to the distrilnition 

of the axes of the otlu'r, this iutef»ral vanishes. In this ease, tlic 

two harmonics arc said to be conjugate to caidi other. 

O// IIiiniKni'ii'H. 

138.] If one harnionie is pven, the condition that a. second 

harnionic of the same ileo-rce may be conjno'nto to it is expressed 

bv equating- the rig-lit hand side of equation (oT) to zero. 

If a third harmonic is to be found conjugate, to both of these 

there will bo two equations which must he .catisliod by its 2i 
variable.s, 

If wo go on oonstrncting nmv harmonics, each of which is con- 

jngritc to all the former harmonics, the- variables wilt be continnally 

more and more restricted, till at last the (2/+ l)th harmonic will 

b.avc all its variahlcs di-lormined liy the 2/ equations, whiidi must. 
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1)(‘ s:ilislic(l in orilcv tliat it may In' ooiijiiffato lo tlio2/ prcocdiiip;' 

liavinoiiii's, 

JTcncc a system of 2/+1 harmonics of deo-roc / may Ijo emi- 

stnictcd, caoli of wliieli is conjugate to all the rest. Any oIIkm' 

linrmonio of the same deo'roc may he cxpressoil as the sum of thi.s 

sy.stenr of eoiijugatc harmonies eaeh innlliplied hr a eoeflleient. 

d'lie .syslem dcserilted in Art. 1.32, eon.sistiiig of ‘2/-t-l har¬ 

monies symmetrieal about a single axis, of wliieli the fir.st i.s zonal, 

llio next /—I pains te.s.seral, and the last pair seetorial, i.s a jtar- 

lieular ease of a .sy.stem of 2?i + l harmonics, all of which are 

eonjngnlc to eaeh otlicr. Sir W, Thomson has shewn how to 

ex])res.s the eoiulilion-s that 2/-t-l perfeetly general hannonie.s, 

eaeh of whieh, however, is exjire.s.sed as a linear function of Ihe 

‘2/ + 1 harmonies of this symmetrieal .system, may he eonjugntc. 

to eaeh other, These conditions consist of /(2/-fl) linear eipia- 

tions Connecting the (2 / + ])- .eoellleicnts whieh enter into the 

ex])re.ssi()ns of the general hannonie.s in terms of the symmetrical 

ha rmonies. 

I’rofe.s.sor Clifloi-d has also shewn how to form a eonjngate system 

Ilf 2/+ I sectorial harmonies having ililferent ])oles. 

lloth these resiilt.s were eoininuuicated to the llritish A.ssoeiation 

in IH?]. 

131),] If we take for J',- the zonal harmonic Qj, we obtain a 

reniarkahle form of e(|nation 

Til this ease all the axes of the second sy,stem coincide with eaeh 

other. 

The eo.sines of the form /i,-,- will assume the form A where A is the 

cosine of the angle hetween the connnon axis of Q. and an axis of 

the first system. 

The cnslne.s of the form Hjj will all become equal to unity. 

The numher of eonibinatioii,s of .9 symbols, each of whieh is 

disting'ui,shed by two out of / .sufTixo.s, no suffix being repeated, i.s 

A" = 
2' SI -2.V ’ 

(aft) 

and when each eomhination is equal to unity this number represents 

the Slim of the products of the cosines g,-;, or (fJ-jf). 

The nninher of pernintationK of the remaining-i — 2.v symbols of 

the second set of a.xe,s tiikeii all together is Hence 

(30) 

I'lquatioii (."I therefore boeonios, when f, is tbo zonal harmouie. 
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'1 TTd- 

+ I):,i 

. 12/—2*' , 

■1 71 d~ 

2^4^ 
y, I'U) > (CO) 

where ilountes the value of 1'^ in e(juatioii (27) at tlie eomiiiou 

pole (if iill the !ixes of Q;, 
140.] I'his ve.sult is a very important one in the theory of 

spherical luirinoiiies, as it leads to the deterniiiiution of tlu^ form 

ol'a series of spherical harmoiih's, which expresses a funetioii having 

any arbitrai'ily assigned value at each point of a spherical surfaec. 

For let /'be the value of the function at any given point of the 

sphere, say at the centre of gravity of the clement of surface dS, 

and let Qj he the zonal hannonio of degree i whose pole is the jioiiit 

y on the sphere, then the snri'aee-iutegral 

exteiuhsl over the spherical surface will he a s])hcrieal hariuonic 

()fd(‘gre(‘ t, heennse it is the sum of a lumiher of zonal hui'iiionies 

whoso pohw are the various elements dS, (.‘ueh being innltiplied by 

FdS, Hence, if wo make 

“ - M Il FQidF, (Cl) 

we may exjmnd /'' in the form 

F _ 1,14 Ai} 1 4 &c. 4 .-Ij} ■, 
or 

:i///’Qp/6>&e. 4(-' /4 1 

(02) 

((ill) 

This is the celebrated formula of Laplace for the expansion in 

a series of spherical harmonies of any (jiiaiitity distributed over 

the surface of a s[diere. In making use of it we are supposed to 

take a certain point P on the sphere as the pole of the zonal 

liarmoiiie Q-, and to iind the surface-integral 

11 

over the wladc surface of the s[)here. The result of this operation 

when multiplied by 2/4 1 gives the value of Af)] at the point 7^, 

and hy inakiiig P li'avel over the siirlliee of the sphere the value ol' 

at any other point may he found. 



SniURICAL HARMONIC ANALYSIS, 

lint //(!'; is a geuoral .surface liarmouic of degree i, and we wisli 

to l)realv it ii]) into tlie snm of a .scries of nxiiltii)lc,s of the 2/ + 1 

eoujiigate harmonics of that degree. 

Let 7? l)e one of tlicsc conjugate harmonies of a particular typo, 

and let Ii; 1] be the ])art of //, )",■ belonging to thi.s ty[)e. 

We must first find /'/' 
(n-i) 

which may be done by means of equation (57), making the second 

.set of [)ole.s the sanre, each to each, as the first .set, 

^Ve may then find the cocfIici(‘ut from the tH^iintion 

= (05) = (05) 

For snppo.se F expanded in terms of spherical harmonics, and lot 

7ij-./] he any term of this expansion. Then, if the degree of 7j is 

(lillerent from that of /f, or if, the degree being the .same, Ij i,s 

con jugate to 7/, the result of the snrfacc-integi-atioii is zero. Hence 

the result of the surface-integration is to select the coofneient of the 

harmonic of the same type as 7/. 

The most remarkable example of the actual development of a 

function in a series of spherical harmonics is the calculation by 

tiiuiss of Ibc barmonics of the finst four degrees in the e.xpansion 

of the magnetic potential of the earth, as deduced from observations 

in various parts of the world. 

He has determined the twenty-four coefTieients of the three, 

conjugate harmonics of the first degree^ the five of the second, 

.seven of the third, and nine of the fourth, all of the symmetrical 

.sy.stcm. The method of calcnlation is given in liis General Therm/ 

of Terres/rial Mar/nalh'tni. 

141,] When the harmonic Ti belongs to the symmetrical sv'stt'm 

wc may determine the surface-integral of its s(|uarc extended over 

the sphere by the following method. 

The value of r' Yf is, by equations (.3 1) and (3(3), 

= z'T, r+'rt 

and by equations (3 3) and (5-1), 

(}7‘'))-//.S = + |)r)C,r,«). 
^ ^ 2i+I (h'-° ' '' 

Performing tbe dificrentiations, we find that the only term.s 

which do not disappear arc those which contain f Hence 
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fj dTrJS Stth- i (r i -ti 

2 /•+ r 2-‘"i /■ i f ’ 
((iO) 

i‘xeoj)l when 0- =: Oj 111 wilieli ciise \ve liave, liy eijiialioii ((iO), 

((i7) 

Tlio.se ox[ii‘os,sioi'.s g'ive the viilue of tlio siirfaeo-intoi^Tul of the 

sijuai’e of any .siiriiieii lianiiuiiie of tlie syniiiietrioal system. 

Wo nuiy ilocliieo iVom llii.s tlie value of the iutcy;ral of the sejuare 

of the function yiveii in Art. 132, 

.'-(-1 2 2~° i~cT(\(r]- 

2 i-f 1 1 + 0- 
((18) 

Thi.s value i.s identical with that gM\’eii hy Thomson and Tait, and is 

true without exceptifui for the ease in whieh it = 0, 

142, ] 'flic spherical Inirmonios whieh I have de.serihed are those 

of iiitcgnil degrees. To enti'r on the eoiisidi'ratiou of liarnionic,s 

of rriictioiiiil, irnitioiud, or impossible degrees is beyond my purpose, 

whieh is to give as clear an idea a.s I can of what those hariiionics 

are. 1 have done so hy referring the harmoiiie, not to a system 

of jiolar coordinate.s of latitude and longitude, or to C'arte.sian 

eooi’diiiate.s, hiit to a miniher of points on the sphere, which I 

have called the Pole.s of the harmonic. Whatever be the type 

of a harmonic of the degree it is always mutheiiratieally possible 

to (iiid i points 011 the .sphere which are its poles. The actual 

calculation of the jiosition of the.se poles would in g-eneral involve 

the solnlion of a sy.stem of 21 eniiiilion.s of the degree /. The 

eoiieeption of the general hannoiiic, with its poles placed in any 

niuuner on ^he sphere, is luselul rather in fixing our idens tluin in 

making- ealcuhitions. For the hitter purpose it i.s more convenient 

to consider the harmonic as the sum of2/41 conjugate harmonics 

of .selected types, and the ordinary symmetrical system, in whieh 

]M)lar coordinates are used, is the most eonveiiieut. In thi.s system 

the first type is the zonal Inirmonie Q,, in whieh all the a.xes 

coincide w'ith the axis of jiohir coordinates. The .second type is 

that in which /— 1 of the poles of the liarmouie eoiiieide at the pole 

of the sphere, and the reuiaining one is 011 the equator at the origin 

of longitude. In the third type the remaining pole is at V\)° <d' 

longitude. 

In the same way the type in whieh l — cr poles coincide at the 

pole of the sphere, and the remaining cr are placed with their axes 
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TT 
!it equal intervals round tlie equator, is the type 2(r, if one of the 

jioles is at the orig-iii of longitude, or the type 2(r-f.l if it is at 

longitude • 

143.] It appears from equation (GO) that it is always po,s.siIde 

to express a harmonic as the sum of a system of zonal hannoiiies 

(if the s:uue degree, having their poles distributed over the surface 

of the sphere. The siniplifiealion of this system, however, does not 

appear ea.sy. I have however, for the .sake; of (,‘xhihiling’ to the 

eye some of the features ofspherieal harmonies, ealeulated the zonal 

harinonic.s of the third and fourth degrees, and drawn, by the 

method already described for the addition of funetions, the equi- 

potential lines on the sphere for harnionics which are the sums of 

two zonal harmonies. See Figures VI to IX at the end of this 

volume. 

Fig. VI represents the sum of two zonal harnionics of the third 

degree whose axes are inclined 1 20“ iii the plane of the paper, and 

the Sinn is the harnionie of the second type in which (r = 1, the axis 

being perjiendicular to the paper. 

Ill Fig’. VII the harmonic is also of the third degree, hut the 

axes of the zonal harmonics of which it is the sum are iiielined 

!)u q and the result is not of any type of the symmetrical .system. 

One of the nodal lines is a great circle, but the other two which are 

intersected by it are not circles. 

Fig. VIII represents the dilference of two zonal liarmoiiies of 

the Ibnrtli degree whose axes are at right ang-les. Tlic result is a 

te.'j.seral harmonic for which i = 4, a = 2. 

Fig. IX represents the sum of the same zonal harmonie.s. ddie 

result gives some notion of one type of the more general Inir- 

monie of the fourth degree. In thus type the nodal line on the 

sphere consists of six ovals not intersecting each other. Within 

these ovals the harmonic is positive, and in the sexluply eoimeeted 

part of the spherical surface wbieli lies outside the ovals, the liar- 

moiiie is negative. 

All these figures are orthogonal projections of the spherical 

surface. 

I have also drawn in Fig. V a plane section through the axis 

of a sphere, to shew the equipotential surfaces and lines of foi'ce 

due to a spherical surface cleetrilied according to the values cd' a 

sj)herieal hannoiiie of the lii'st dcg’ree. 
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Witliin tlic splicve tlic cquipotcntiiil surracos aro (‘quidistanl 

plaiH's, and tlic lines of force aro straio'lit lines parallel to the axis, 

tlioir (lisiiiuccs from tlie axis boin" as the square roots of the 

natural iiuinhers. The lines outside the s])here may he taken as a 

represeniai ion of those which would he due lo the earth’s maofnetism 

if it were distrihnted aceordin;^ to the most sinqile type, 

]4t,| It appears from equation (02), hy makinep /'= 0, that if 

/’satisfies Laplace’s eipiation thron<^hoiit the spaei' occupied hy a 

sphere of radius a, then the integral 

(hf) 

where the inteenml is taken over the surface of the sphere, dS heing' 

an clement of that surface, and is the value of /’ at the centre 

of the sphere. This theorem may he thus exprossod. 

The value of the potential at the centre of a .sphere is the mean 

value of the potential for .all points of its surface, provided the 

potential he due to .an electrified .system, no part of which is within 

the sphere. 

It follows from this that if /".satisfies Laplace’s equation throufrh- 

oiit a eeriain eontinnous region of space, and if, throughout a 

finite portion, however small, of that .space, /'is constant, it will 

be constant throughout the whole continuous region. 

If not, let the space throughout which the jiotcntial has a 

constant v.ahie C be sciiaratcd hy a surface S from the rest of 

the ri'gion in which its values differ from C, then it will always 

he po.ssihlc to find a finite portion of space touching S and out¬ 

side of it in which /'is cither cver^nvlicrc greafer or everywhere 

le.s's than C, 

Now describe a sphere with its centre within S, and with jiart 

of its surface outside S, hut in a region throughout which the value 

of /' is everywhere greater or everywhere less than (\ 

Then the mean value of the potential over the surface of the 

sphere will he greater th.an its value at the eentro. in the first ea.se 

and le.ss in the second, and therefore Laplace’s orpiation c.annot 

he satisfied throughout the sp.ace occupied by the sphere, contrary 

to our hypothesis. It follows from this that if /'=C' throughout 

any portion of a cmmectcd region, /'=/’/ throughout the whole 

of the region which can be reached in an}' way hy a body 01 

finite size without ])assiug through electrified matter. (We sup- 

jiose the body to he of finite size heeauso a region in which /' is 

constant may he separated from another region in which it is 
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variable by an electrified surface^ certain points or lines of whicli 

are not electrified, so that a mere point inij<dit pass out of the 

reg'iou throng'll one of these points or lines without passing 

through electrified niattei’.) This remarkable theorem is dne to 

(iauss. See Thomson and Tait’s Nalurnf PhUusopJij/, § ■197. 

It ma}' be shewn in the same way that if tlironghont an}' finite 

jiortion of space the potential has n value which can he expressed 

by a eontinnons matheiiuitical formula satisfying Laplace’seipiation, 

the potential will be expressed by the same formula tlironghont 

every jiart of space which can be reached without juissing through 

electrified matter. 

Tor if in any part of this space the value of the function is J 

different from that given by the mathematical formula, then, 

since both F and V satisfy Laplace’s cquatioip U =. F'—F doe.s, 

lint within a finite portion of the space U = Q, therefore by wdiat 

we have proved U = 0 tlironghont the whole .space^ or F'= 1. 

145.] Let i] be a spherical harnionie of i degrees and of any 

type. Let any line be taken as the axis of the sphere^ and let the 

harmonic be turned into ». positions round the axis, the angular 

distance between consecutive positions being 
71 

If wc take the sum of the n harmonies thus formed the re.sult 

will be a harmonic of i degrees, which is a function of d and of the 

sines and cosines of «(/>. 

If « is less than i the result will be compoiiiKled of harmonics for 

w'hich s is xero or a multiple of 7i le.ss than /, but if ii is gre'ater 

than i the result is a zonal harmonic. Hence the following theorem : 

Let any point be taken on the general harnionie I], and let a 

small circle bo described with this point for centre and radius 0, 

and let ?/ iioints be taken at equal disiances round this circle, then 

if Q; is flic value of the zonal harmonic for an angle d, and if I’/ is 

the value of I] at the centre of the circle, then the mean of the 

n values of ]'■ round the circle is cipial to Q,- }]' provided ;/ is greater 

than i. 

If n is greater than and if the value of the harmonic at 

each point of the circle be multiplied by Fmscfi or cos «d> where 

s is less than i, and the arithmetical mean of these products be 

y/,, then if 3^^'^ value of for the angle 6, the coeflic-ient 

of sin 6*c/) or cob S(j> in the expansion of I] will be 
(«'i 

o , / 
» CvV) 

.v VOI,, 1. 
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Ill this way wc may analyse Y^ into its component conjug*ate 

liamonics by means of a finite number of aseortaiiied values at 

selceted points 011 the spliero. 

AjtjJ It cation of Sficrical Harmonic Analt/sis to the Deiermimliou 

of the Distribution of Electricity on Spherical and nearly Spherical 

Conductors under the Action of known Eicte-nial Electrical Forces. 

146.] ’We sliall suppose that every part of tlie elcetrilied system 

which acts on the eonduetor is at a greater distance from the 

centre of the eoiulnctor than the most distant part of the conductor 

itself; or; if tlie conductor is spherical, tlian the radius of the 

sphere. 

Then the potential of the external system, at points within this 

distance, may be expanded in a series of solid liarmonics of positive 

degree y ^ ^ ^ 

The potential due to the conductor at points outside it may be 

expanded in a series ol' solid liarmonics of the same tyjie, hut of 

negative degree 

(i’l) 

At the surface of tlie conductor the potential is constant and 

ecjual; say; to C. Let us first suppose the conductor spherical and 

of radius a. Then putting r = a, wc have Uy F=C, or, equating 

the coeflicieuts of the dilfereiit degrees, 

i?,i = a{C-A^), 

= ■—a'^A-^, (72) 

7y,. 
The total charge of electricity on the conductor is T?,,. 

The surface-density at any point of the sjihere may be found 

from the equation 

dV dU 

= ——&e. —(2f-f-l)a-'+L/. L;. (73) 

Distrilntion of Fleclricily on a nearly Sp/ierical Conductor. 

Let the equation of the surface of the conductor he 

= «(i+n (74) 
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where F is a function of the direction of r, and is a iiumerical 

quantity the square of which may be neglected. 

Let the potential due to the external electrilied system be ex¬ 

pressed, as before, in a scries of solid hai'moiiics of positive degree, 

and let the potential U he a series of solid harmonics of negative 

degree. Then the potential at the surface of the conductor is 

obtained by substituting the value of r from eciuatiou (7-1) in these 

series. 

Hence, if C is the value of the potential of the conductor and 

jSy the charge upon it, 

+ A^aFl\ + ...+iAia'Fr., 

it f4“ 

-B,F-2B,Fl\ + ...-{i + i)B,1) pr.+ ... 
(75) 

Since F is very small compared with unity, we have first a set 

of equations of the form (72), with the additional equation 

0 = —B^y - F + 3yij a Fi\ -!■ &c. 4- (/ + 1) Ai a' Fl\ 

+ S {Bj a-AJ*-'> Yj)_ V ((/ + 1) Bj a-U-^-U FYj), (7G) 

To solve this equation \vc must expand F, FY^ .,, FY^ in terms of 

spherical harmonics. If F can be expanded in terms of spherical 

harmonies of degrees lower than A, then cun be expanded in 

spherical harmonics of degrees lower than i + /i. 
Let therefore 

i F- 3A^ain\-...-[21+ 1) ,7.- rt‘'7T,- = + »}(,.), (77) 

then the coeflicients Bj will each of them be small compared with 

the coefficients on account of the smallness of F, and 

therefore the last tenn of equation (7G), consisting of terms in JijF, 

may be negleeted. 

Hence the coeflicients of the form B- may be found by expanding 

equation (70) in spherical harmonics, 

For exaniplo, let the body have a charge Ty,,, and be acted on by 

no external force. 

Let i'^be expanded in a soiies of the form 

F =. <S, I'l +&c, + )Sj,r^, 

Then B^l S,Y,A-ko..-v = v (7^^.,,-o + n r,), 

N 1 

(78) 

(70) 
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or the potential at any point outside the body is 

,k+l 

and if a is the surfaee-donsity at any point 

ilU 
4 TTtr = — 

dr 

(80) 

or 47r«(r = ,Zio(l+&!;+,..+ (-(•—l)iS;7J, (81) 

Hence, if the surfaec differs from that of a sphere by a thin 

stratum wliosc depth varies aeeording* to the values of a spherieal 

hannonie of degree /t-, the ratio of the differeiiee of the superfieial 

densities at any two points to their sum will be /•—1 times the 

ratio of the difference of the radii of the same two points to their 

sum. 



CHAPTER X. 

CONFOCAL (iUADlilC SURFACES'*-. 

147.] Let the general equation of a eonfoeal system be 

;//" z- _ 
+ aITZ^ - (1) 

wliere A i.s a variable parameter, whieh we shall distinguish by the 

sufTix Aj for the hyperboloids of two sheets, Ao ^he hyperboloids 

of one sheet, and A3 for the ellipsoids. Tlie quantities 

«, Aj, h, A2, c, A.j 

are in aseending order of magnitude. Tlie quantity a is introdueed 

for the sake of symmetry, but in our results we sliall always suppose 

a = 0. 

If we eonsider the three surfaees whose parameters are Aj, Ag, A^, 

wo find, by elimination between their equations, that the value of 

x‘‘ at their point of intersection satisfies the equation 

cd^{¥-a^){c-~a^) = (Ai'-«2)(A,,2_rt2) (2) 

Tlie values of and z^- may be found by transposing a, i, c 

symmetrically. 

DifTereiitiating this equation with respieet to A^, wc find 

, X. (3) 
fix _ Aj 

r/Aj A,^—a2 

If r/jj is the length of the intereept of the eurve of intersection of 

A^ and A-, cut off between the surfaces Aj and Aj + rAj, then 

(7jj (lx 
rfAj 

+ Al 
r/Ai 

i/z 

(Ai2-/^2HAi2_c2) (-1) 

■* This invetitigation is cliiefly borrowed from (i very interesting work.—Lcfons mir 
les Foiiclinnt invergee (lea Transcendantci et lea Surfacee laotherinca. Par G. Laind, 
r.anH, 1857- 
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The denominator of tliis fraction is the product of the scpiares of 

the semi-axes of the surface A,. 

Tf we put 

7),2 = a,2_A.^ i?/ = A/-A,^ and = A,"-A,^ (o) 

and if we make a = 0, then 

ds^ _ _ JX^1\_ 
(0) 

It is easy to see l.liat and i)., arc tlic semi-axes of the central 

section of A, wliich is conjiif»-atc to the diameter passing through 

tlic given jooiiit, and that .T)^ is parallel to and D-^ to r/s.,. 

If we also substitute for the three parameters A,, A^, A^ their 

values in terms of three functions a, /3, y, defined by the ctpiations 

(la c 

dK^^ yy^_Ai‘Ve--Ap 

- 
c 

(ik^ ~jk.^-b'^ A,; 

!bL- 
c 

(ik,^ fsjA-j" —• %/A.j" — c 

then ds^ = -DoD.^da, r/.?2 = 

Aj = 0 when a = 0, 

A3 = i when /3 = 0, (7) 

A., =: c when y = 0 ; 

/>i fljS, Dy Do (ly- (H) 

148.] Now let V be the potential at any point a, /I, y, then the 

resultant force in the direction of ds^ is 

_ dV _ _ d.r da _ _dV ^ _ 
' r/j, (la (Isj da 

Siiiec dx.^, and ds.^ are at right angles to each other, the 

surface-integral over the clement of area chods.^ is 

dV c D,l), 
d^ (ly 

A" ,., = ^(Ifidy. 
(la c 

(10) 

Now consider the element of volume intercepted between the 

surfaces a, /3, y, and a + da, j3 + d^, y + dy. There will be eight 

such elements, one in each oetant of space. 

AVe have found the .surface-integral for the clement of surface 

intercepted from the surface a by the surfaces /3 and /3 -f- f//3, y and 

y + dy. 
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Tlic surface-integral for the corresponding element of the surface 

a-j-da will he 

7 70 7 -d^ dy + -(la r//3 dy 
(la c Ua^ c 

since Z), is iiulepcnclent of a. The surface-integral for the two 

opposite faces of the element of volume, taken with respect to the 

interior of that volume, will he the (liircrcnec of these (piautitics, or 

ddVJj;- , , 
-7—0-da da dy. 
da‘‘ c 

Similarly tlu; snrfaco-integrals for the other two pairs of forces 

will be 
V D~ (P- V T) - 

^^-^-(lad^dy and da d/i dy. 

nicse six faces enclose an clement whose volume is 

7) 2 n 2 7) '2 
ls^(k.,ds., = ,/ad^d.y, 

and if p is the volume-density within that element, we find by 

Art. 77 that the total surface-integral of the clement, together with 

the ejuantity of electricity within it, multiplied by Itt is zero, or, 

dividing by da r//3 dy, 

which is the form of Poisson’s extension of Laplace’s equation re¬ 

ferred to ellipsoidal coordinates. 

If p = 0 the fourth term vanishes, and the equation is equivalent 

to that of Laplace. 

For the general discussion of this equation the reader is referred 

to the work of Lame already mentioned, 

149.] To determine the quantities a, /3, y, we may put them in 

the form of ordinary elliptic functions by introducing the auxiliary 

angles 0, (j), and \{/, where 

A, = i sinO, (12) 

Ay = v^“ sin'*^ <p + coB“ (p, (13) 

A, = -4-.. (14) 
sin xp 

If we put J = h-, and 1'- = 1, wo may call 1: and F the two 

complementary moduli of the confoeal system, and we find 

r® do fo do 
a= ,. - - 1 

‘ i) \/1 -— k- sm'^ 0 
(15) 
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an L-lliptie iiilcg'ral of tliu first kind, wliicli \vc m;iy write according 

to the usual notation F{L-0). 

In ilic same way wc find 

=r \/1 —cos'-(j) 

where FF is the conii)l(.“tc function for modnlns k', 

(1(J) 

=r 
I? <// 

%/1 — X'" sin- \lr 
(17) 

Ihnv a is rej)resented as a fmietion of the angle 0, which is a 

fdiiction of the parameter Aj, ^ as a fimetion of (f> and thence of Ao, 

and y ns a function of and tlienee of A;,. 

Hilt those angles and parameters may he considered as functions 

of a, /3, y. Tnie i)ro2)erties of such inverse functions, and of those 

connected with them, arc exphiiued in the treatise of M- Lame on 

that siihjcet. 

It is easy to see that, since the parameters are periodic functions 

of the auxiliary angles, they will he i)eriodic functions of the 

quantities a, ft, y : the 2icriods of Aj and A., arc I F{/r) and that of A., 

is 2 F(F). 

Pa i/icitlay So/ufions. 

150.] If / is a linear function of a, ft, or y, the equation is 

satisfied. Ileiioe we may dednee from the equation the distrihutioii 

of (deetricity on any two confocal surfaces of the same family 

maintained at given potentials, and the potential at any 2>oint 

between them. 

T/ie ni/})erboloi(h (if Two S/wdn. 

When a is constant the corresponding surface i.s a hyperboloid 

of two sheets. Let ns make the sign of a the same as that of x in 

the .sheet under consideration. We shall thus he able to study one 

of thc.se sheets at a time. 

Let Oi, a,, be the values of a corro.sponding to two single sheets, 

whether of dilierent hyperboloids or of the .same one, and let /'], 

he the iwtentials at which they arc maintained. Then, if we make 

J- _ ^1^2 L' “^ ^ (^ 1 J (18) 
Oj — CL, 

the conditions will be .satisfied at the two surfaces and thronghont 

the S2)ace between them. I f we make T constant and et^nal to /] 

in the S2)aee beyond the .surface a,, and con.stant and e(2nal to Fo 
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in the space beyond tlie surface a,,, we sliall liave obtained the 

cx)mploto solution of this partieiilar ease. 

Tlie resultant force at any point of either sheet is 

dr (ir da 
liy - 

or 

ds^ 

V -V 
7?i = ' 

da rA?, 
(19) 

(20) 
Qj —Oo IXj. 1).^ 

If y;j be the perpendieular from the centre on the tangent plane 

at any point, and I\ the product of the semi-axes of the surface, 

then D,^ j9,, = 

Ilonce wo find 7, ^Ih (21) 

or the force, at iiny point of the surface is proportional to the per¬ 

pendicular from the centre on the tangent plane. 

The surface-density <r may be found from the equation 

4 7r(r=7?,. (22) 

The total quantity of electricity on a segment cut off by a plane 

whose ccpiatioa is .r = a from one sheet of the hyperboloid is 

^ 2 aj-a^ J 
(23) 

The quantity on the whole infinite sheet is therefore infinite. 

The limiting forms of the surface arc ;— 

(1) When a = F(i.) the surface i.s the part of the plane of on 

the positive side of the positive branch of the hy2)crbola whose 

equation is 
-" = 1 /«> o ^ • 6** c?“ 

(24) 

(2) When a = 0 the surface is the plane of 

(3) When a = —/(j.) tho surface is the part of the plane of a-jz on 

the negative side of the negative branch of the same liyiicrbola. 

77/11 IL/perboIoids of One Sheet, 

By making /3 constant we obtain tho equation of the hyperboloid 

of one sheet. Tho two surfaces which form the boundaries of the 

clcetrie field must thoreforo belong to two ditrereiit hyperboloids. 

The investigation will in other respects be the same as for the 

hy2)crboloids of two sheets, and when the difrcrcncc of 2iotentials 

is given the density at any point of the surface will he 2iroportio]ial 

to the perpendicular from the centre on the tangent plane, and the 

whole quantity 011 the infinite sheet will ho infinite. 
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Timifing Forms. 

(1) Wlien ft = 0 tlic surface is the part of (he plane of xz 

hetwoen tlie two hvanelics of tlie liy2ievbola whose ocpiatiou is 

written nhovo, (•24). 

(2) Wlien ft = F(F) the surface is (he part of tlie 2ilanc of x// 

whieli is on tlic outside of tlie focal ellipse whose equation, i.s 

r- ifi 
■■,+-1- =1. (25) 
c~ C~~0“ 

The Ellipsoids. 

For any given ellipsoid y is constant. If two olli2isoids, and 

he maintained at iJotcntials J\ and F, then, for any point y in the 

S2)ace between them, wc have 

y\—yz 
The surface-density at any 2)oint is 

, (27) 
•iTT yi-y.^ 

where;?;, i.s (he pcr2iendieular from the centre on the tangent plane, 

and is the product of the semi-axes. 

The whole, charge of electricity on cither surface b 

Q (28) 
yi-y-j 

a finite quantity. 

When y = F{k) the surface of the ellipsoid is at an infinile 

distnnec in all direclions. 

If wc make 1\ = 0 and y, = F{lc), we find for the quantity of 

electricity on an ellipsoid maintained at potential /' in an infinitely 

extended field. 

The limiting form of the elli2isoids occurs when y = in which 

case the surface is the 2^firt of the plane of iry within the focal 

ellipse, whose equation is written above, (25). 

The surface-density on the elliptic plate whose equation is (25), and 

who.se eccentricity is k, is 

0- =_---—i- » (30) 
2t!\^C“—IP i' {k) / x'^ 

V 
and its charge is ^ V /qn 
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Particular Cam. 

151.] If k is climinislied till it becomes ultimately zero, the 

system of surfaces becomes transformed in tlie following manner :— 

Tlic real axis and one of the imaginary axes of each of the 

hyperboloids of two slieets are indefinitely diminished, and the 

surface ultimately eoineides with two pianos interseotiug in the 

axis of 2r. 

The quantity a becomes identieal with 0, and the equation of the 

system of meridional planes to whieh the first system is reduced is 

y- 

(sin a)'^ (cos a)- 

Tlie quantity /3 is reduced to 

= 0. 

whence we find 

(3 = f = log tan I 
j sni^ ^ 2 

sin cf) = -5 : COS0 = ^ 
e^— e-^ 

(32) 

(33) 

(34) 

If wo call the exponential quantity the hyperbolic 

cosine of /3, or more concisely the hyjioeosine of y3, or cos/i j3, and if 

we call ^ the hyposiiie of /3, or siii/^ /3, and if by the same 

analogy we call 

the hyposeeant of /3, or sec /i ft, 

^i^/fft hypocosccant of ft, or cosee/. ft, 

sin ft 

cos// ft 

.,nd 

the hyiiotangcnt of ft, or tan //■ ft, 

the hypocotangent of ft, or cot // ft ; 
sin h ft 

then A, = c sec k ft, and the equation of the system of h3'pcrboloids 

of one sheet is 

_-e^. (35) 
(sec // ft)'^ (tan A ft) - 

The quantity y is reduced to \{/, so that = c cosec y, and the 

equation of the S3'stcm of ellipsoids is 
0.0 o 

+T 4. _ 
\*> "I /j ^ , y, , f. 

(socy)“ (tany)" 

Ellipsoids of this kind, which are figures of revolution about their 

conjugate axes, are called Planetary ellipsoids. 
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The quantity of electricity on a planetary ellipsoid maintained at 

potential Fia an infinite field, is 

Q = cJ—, (37) 
TT 

2->' 

where c sec y is the equatorial radius, and c tan y is the polar radius. 

If y 0, the figure is a circular disk of radius c, and 

V 
rr = -7-—-’ (38) 

77" \/c^ — 

Q = c-- (39) 
77 

2 

152.] Second Case. Let h — c, then k = \ and k' = 0, 

TT —* 2 0 
a = log tan —^, whence Aj = c tan h o, (-10) 

and the equation of the hyperboloids of revolution of two sheets 

becomes ^ jr2 ^ 

(tan/ia)“ (sec/ia)“ ~ ^ 

The quantity /3 becomes reduced to </>, and each of the hyper¬ 

boloids of one sheet is reduced to a pair of planes intersecting in 

the axis of x whose equation is 

^— -= 0. (.12) 
(sini3)“ (cosi3)“ 

This is a system of meridional planes in which /3 is the longitude. 

The quantity y hccomes log tan , whence A,., = c cot /i y, 

and the equation of the family of ellipsoids is 

I (.13) 
{cot/iyf (coscc/^y)" 

These ellipsoids, in which the transverse axis is the axis of revo¬ 

lution, are called Ovary ellipsoids. 

The quantity of electricity on an ovary ellipsoid maintained at a 

potential F in an infinite field is 

Q = cL. (.pi) 
y 

If the polar radius is A = c coiky, and the equatorial radius is 

B ■= c coscc h y, 

, a\J7f-B'^ 
y = ioff — - (45) 
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If the ecjuatorial radius is very small compared to the polar radius, 

as in a wire witli rounded cuds, 

Y = and <2 = , 
yir 

log A —log li 
(4G) 

When botli d and c become zero, tlicir ratio remaining' finite, 

the system of surfaces becomes two systems of confocal cones, and 

a system of spherical surfaces of wliich the radius is inversely 

proportional to y. 

If the ratio of i to c is zero or unity, the system of surfaces 

becomes one system of meridian planes, one system of rig-ht coucs 

having a common axis, and a system of concentric spherical surfaces 

of which the radius is inversely ])roportional to y. This is the 

ordinary system of spherical polar coordinates. 

Cylhidric Surfaces. 

153.] When c is infinite the surfaces are cylindric, the generating 

lines being ])arallel to z. One system of eylinders is elliptic, with 

the equation 
Q •> 

(47) 
(eos^a)'^ (sin/^a)'^ 

The other is hyperbolic, with the equation 

f = bK (48) 
(cos/3)^ (sin/3)" 

This system is represented in Fig. X, at the end of this volume. 

Confocal Paraboloids. 

154.] If in the general equations we transfer the origin of co¬ 

ordinates to a point on the axis of x distant t from the centre of 

the system, and if we substitute for z, A, b, and c, t + x, t + b, 

and lA-c resi^eetively, and then make t increase indefinitely, we 

obtain, in the limit, the equation of a system of paraboloids whose 

foci are at the points x = b and z = c, 

+ ^ = m 

If the variable parameter is A for the first system of elliptic 

paraboloids, fx for the hyjjcrbolic paraboloids, and v for the second 

system of elliptic paraboloids, we have A, h, p, c, v in ascending 

order of magnitude, and 
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X = k-i-fM+V — C — l/j 'I 

,,,a . 

_ . (c-A)(c-m)(i'-^-). 
~ ■ a-d ’ 

A = i (i+ c) —4 (c —i) cos/.a, 'j 

fj, = ^ ll> + c)~i (c-6) con 1- 

V = )i {b +c) + \{c — b)iiOshy\ J 

X ~ i (i + c) + i (^—^) (<-'08 ^ 7—COS /3— cos// a),' 

y = 2 {c—h) sin h ° sin ^cos^ | j 

0 = 2 (c—i) cos ^ cos ^ sin ^ ^ • 
Q 2i £1 ^ 

(oU) 

(51) 

(52) 

When i = c we have the ease of paraboloids of revolution about 

the axis of x, and x = a (e^“—c^r), 

y = 2//t'“'*'y cos/3, (53) 

^ = 2ae“'''y.sin/3. 

Tlie surfaces for whieh fi is constant are jilaiies through the axis, 

/3 hciiig the angle whieh such a plane makes with a fixed plane 

through the axis. 

The surfaces fur whieh a is eonstant are eonfocal paraboloids. 

When a=0 the paraboloid is reduced to a straight line terminating 

at flic origin. 

Wc may also find the values of a, /3, y in terms of r, 0, and </), 

the .sjihericul i)olar coordinates referred to the focus us origin, and 

f ile axis of the ])arabolas as axis of the sphere, 

a = log (/d cos ^ 0), 

^ (5<I) 

y = log(/d sin IC), 

'We may compare the ease in whieh the potential is equal to a, 

with the zonal solid harmonic -;•< Q^, Both satisfy Laplace’s equa¬ 

tion, and are homogeneous functions of x, y, z, but in the ease 

derived from the paraboloid there is a discontinuity at the axis, and 

i has a value not differing by any finite quantity from zero. 

The surface-density on an electrified paraboloid in an infinite 

field (iiieluding the case of a straight line infinite in one direction) 

is inversely as the distance from the focus, or, in the ease of 

the line, from the extremity of the line. 



CHAPTER XI. 

THEOKY OP ELECTRIC IMAGES AND ELECTRIC INVERSION, 

1.55.] We have already shewn that when a conducting' sphere 

is under the inrtneiice of a known distribution of electricity, the 

distribution of electricity on the surface of the sphere can be 

determined by the method of spherical harmonies. 

For this purpose \ve require to expand the potential of the in¬ 

fluencing system in a series of solid harmonics of positive degme, 

having the centre of tlie sphere as origin, and we then find a 

corresponding scries of solid harmonics of negative degree, which 

express the potential due to the clcetrification of the sphere. 

By the use of this very powerful method of analysis, Poisson 

determined the eleetrificMtion of a sphere under the influence of 

a given electrical system, and he also .solved the more difficult 

problem to determine the distribution of electneity on two con¬ 

ducting spheres in presence of each other. These investigations 

have been pursued at great length by Plana and others, who have 

confirmed the accuracy of Poisson. 

In applying this method to the most elementary ease of a sphere 

nnder the influence of a single electrified point, wo require to expand 

the potential due to the electrified point in a scries of solid har¬ 

monics, and to determine a .second series of solid harmonics which 

express the potential, due to the elcetrificution of the sphere, in the 

space outside. 

It docs not appear that any of these mathematicians observed 

that this second series expresses the potential due to an imaginary 

electrified point, which has no physical existence as an electrified 

point, but whicli may be called an electrical image, because the 

action of the surface on external points is the same as that which 

would be jirodueed by the imaginary electrified point if the spherical 

surface were removed. 
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This (liscovory seems to have been reserved for Sir W. Tliomson, 

wlio has developed it into a method of great power for the solution 

of electrical prohlems, and at the same lime capable of heiiig pre¬ 

sented in an elementary geometneal form. 

His original investigations, which are eontained in the Cumhfuhje 

and Dublin Math a mat) cal JotD'iutl, 18‘J8, arc expressed in terms of 

the ordinary theory of attraction at a distance, and mrdcc no use of 

the melhod of potentials and of the general theorems of Cha2)ter IV, 

though they were probably discovered by these methods. Instead, 

however, of following the method of the author, I shall make free 

use of the idea of the potential and of equipotential surfaces, when¬ 

ever the investigation can be rendered more intelligible by siieh 

means. 

Theori/ of Electric Iniagn. 

156,] Let A and Figure 7, represent two points in a uniform 

dielectric niediimi of infinite extent. 

Let the charges of A and B )je Cj 

and Co respectively. Let 2^ be any 

point in space whose distances from 

A and B arc and respectively. 

Then the value of the potential at P 

will be 6', ^ 

r„ 
r = 

The equipotential surfaces due to 

this distribution of eleetrieity are represented in Fig. I (at the end 

of this volume) when and are of the same sigii, and in Fig. II 

when they are of oppo.site signs. Wo have now to consider that 

surface for which V = 0, which is the only .spherical surface in 

the system. When Cj and e.^ are of the same sign, this surface is 

entirely at an infinite distance, but when they are of opposite signs 

there is a plane or spherical surface at a finite distance for which 

the potential is zero. 

Tlie equation of this surface is 
c, _i. q. _ 0 (2) 

Its centre is at a point C in AB produced, such that 

AC: BC:: : c.f 
and the radius of the sphere is 

AB- 

The two points A and B arc inverse points with respect to this 
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splicre, that is to say, they lie in the same radius, and the radius is 

a mean proportional between their distances from the eentre. 

Since llii.s spherical surface Ls at potential zero, if wo suppo.«e 

it eonstriieted of thin metal and eounccted with the eartli, tliere 

will bo no alteration of the potential at any point cither outside or 

in.side, hut the eleetrieal action everywhere will remain that due to 

the two electrified points A and B. 

If we now keep the metallic shell in connexion with the earth 

and remove the point B, the potential within the sphere will become 

everywhere zero, but outside it will remain the same as before. 

For the surface, of the sphere still remains at the same potential, 

and no change has been made in the exterior cleetrifieation. 

Hence, if an eleelrificd point A be placed outside a spherical 

condnclor which is at potential zero, the electrical action at all 

points outside the sphere will be that due to the point A together 

with another point B within the sphere, which we may call the 

electrical image of A. 

In the same way we may shew that if B is a point placed inside 

the spherical shell, the elccirical action within the sphere is that 

due to B, together with its image A- 

157.] TJeJinillon of an Electrical Tmaf/e. An electrical image is 

an electrified ])oint or system of points on one side of a surface 

which would produce on the other side of that surface the same 

electrical action which the actual cleetrifieation of that surface 

really docs produce. 

In Optics a point or system of points on one side of a miri'or 

or lens which if it existed would emit the s}'stem of rays which 

actually exists on the other side of the mirror or lens, is called a 

virtual image. 

Electrical images correspond to virtual images in optics in being 

related to the space on the other side of the surface. They do not 

correspond to them in actual position, or in the merely approximate 

character of optical foci. 

There are no real electrical images, that is, imaginary electrified 

points which would produce, in the region on the same side of the 

electrified surface, an effeet equivalent to that of the electrified surface. 

For if the potential in any region of space is equal to that due 

to a certain electrification in the same region it must be actually 

ju'oduecd by that electrification. In fact, the electrification at any 

])oint may be found from the potential near that point by the 

apjilication of Poisson’s equation, 

VOT„ 1, o 
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Let a be tlie radius of tlie sphere. 

Lety be tlie distance of the eleetrificil jioint A from the centre C. 
Let e be tlie cliar^'e of this point. 

Then the iniaf^-e of the point is at B, on the same radius of the 

sjihere at a disiaiiee , and the cliarye of the image is —6' ■ 

We have shewn that this image 

will produce the same etfeet on the 

opposite side of the surface as the 

actual electrilication of the surface 

dues. We shall ne,\t determine the 

surllice-deiisity of this eleetrilica- 

tioii at any point P of the spherical 

surliice, and for this purjiose we shall 

make use of the theorem of Coulomb, 

Art. 80, that if A is the resultant force at the surface of a conductor, 

and <r the superficial density, 

P = 4 77 0-, 

B being ineas'iired away from the surface. 

M'e may consider Ji' as the rosultiint of two forces, a repulsion 

acting along JB, and an attraction aj-. acting along BB. 

Hesolviiig these forces in the directions of AC and CB, we find 

that the coiipjonents of the repulsion are 

Jpi and 

Those of the attraction are 

y j^,, BC i\\o\\g AC, 1111(1 -6'y^, along PP. 

Now PP = " AB, and BC = 

the attraetion may he written 

.so that the eonipoiients of 

1 

JP^ 
along A.C, and along CB. 

The components of the attraction and the repulsion in the 

direction of AC are ccpial and opposite, and therefore the resultant 

force is entirely in the direction of the radius CB. This only 

conliniis what we have already proved, that the sphere is an C(jui- 

jKiteiitial snrfaoe, and therefore a .surface to which the resultant 

force is evtu-ywhere periiciidiciilar. 
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The* resultant force measured along- Cl\ tlio normal to the siirface 

ill the dircotioii towards the side on which A is placed, is 

If A is talcen inside the sphere f is less than a, and we must 

measure /i inwards. For this ease therefore 

In all cases we may write 

AD. Ad 1 ... 

' - CV aF' ’ 
where AD, Ad are the segments of any line through A cutting the 

s])hcre, and their product is to he taken jiositive in all cases. 

158.] From this it follows, by Coulomb’s tbeorera, Art. 80, 

tluit the surface-density at P is 

Ai:. CP aF-'' ^ 

The density of the electricity at any point of the sphere varies 

inversely as the cube of its di,stance from the point A. 
The effect of thi.s superficial distribution, together with that of 

the point A, i.s to produce on the same side of the surface as the 

])oint A a potential ecpiivalent to that due to e at y/, and its image 

— 6' ^ at B, and on the other side of the surface the potential is 

every'wbere zero. Hence the effect of the superficial distribution 

by itself is to jiroduee a potential on the side of' A ecpiivalent to 

that due to the image Ji'ul on the opposite side a 

potential ccpial and opposite to that of e at A. 

The whole charg-e on the surface of the sphere is evidently — c-. 

since it is ecjiiivalent to the image at B. ' 

We have therefore arrived at the following theorems on the 

action of a distribution of electricity on a spherical surface, the 

surface-density being inversely as the cube of the distance from 

a point A either without or within the .sphere. 

Let the density be g-iven by the ecjuatioii 

" = £»• 
where C is some con,slant cpiantity, then by equation (G) 

,, AD. Ad / . 
C = -e ^ (8) 

O 2 
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The action of tliis superficial (listril)ution on any ))oiiil separated 

from A !)>• the surface is c(jual to tliat of a cpiantity" of clectrieily 

— e, or AtxoO 
UTTAiI 

conceiitriiti'd at A. 
Its action on any point on tlic same side of the surface witli A is 

equal to that of a quantity of electricity 

A nCa- 
J'AJJ.Atl 

concentrated at B the image of A. 
The whole quantity of electricity on the sphere is e(jual to the 

first of these quantities if A is within the sphere, and to the second 

if A is without the sj)hcrc. 

These propositions were estahlishcd by Sir W. Thomson in liis 

original geometrical investigations with reference to the distribution 

of electricity on spherical conductors, to which the student ought 

io refer. 

159.1 If a system in which the distribution of electricity' is 

known is i)laecd in the neighbourhood of a conducting sphere of 

radius a, which is maintained at potential zero by connexion with 

the eai’th, then the electrilications due to the several parts of the 

sy.stem will be supciposed. 

Let A^, A„, &e. be the eleetrilied points of the system, &c. 

their distances from the centre of the sphere, c,, e.,, &e. their 

charges, then the images /i,, &c. of these points will be in the 

same radii as the points themselves, and at distances 

from the centre of the sj)here, and their charges will he 
A 

&c. 

a a 
-c-—, — e- &e. 

J1 J'l 
The potential on tlie outside of the .sphere due to the superficial 

electrification will be the same ns that which would be produced by 

the .system of images , 7i.,, &e. This sy.stem is therefore called 

the clcetrieal image of the system y/,, A.,, &c. 

If the .si)hcre iusiead of being at. potential zero is at potential J\ 
we must superpose a distribution of eleetrieity on its outer surface 

having- ilie tinifnrin .surface-density 

_ _r_ 

•1 TTf/ 

The (dfeet of ihi.s- at all points outside the .sphere will be ecjual to 
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that of ii (jiiuntity Fd- of electi'ioity placed at its centre, and at 

all points inside the sphere the potential will he simply increased 

by 

The whole eharge on the sphere due to an external system of 

influencing- points A.,, Sic, is 

.K= Va-i 
A 

a 
&c., (i’) 

from which either the charge E or the potential V may he cal¬ 

culated when the other is given. 

When the electrified system is within the spherical surface the 

induced charge on the surface is equal and of opposite sign to the 

iuduciug charge, a.s we have before proved it to bo for every closed 

surface, with respect to points within it. 

160.] The energy due to the mutual action between an elec¬ 

trified point <?, at a distance f from the centre of the sphere greater 

than a the radius, and the electrification of the spherical surface 

due to the influenee of the electrified point and the charge of the 

sphere, is 

ea 

p-a 

iL au \ c /ti “ \ 

u = c (- j- 
e 

f 

e- Cl'' 
(10) 

where /'is the potential, and the charge of the sphere. 

The repulsion between the electhfied point and the sphere is 

therefore, by Art, 92, 

(11) 

lienee the force between the point and the sphere is always an 

attraction in the following cases— 

(1) When the sphere is uninsulated. 

(2) When the sphere has no charge. 

(3) When the electrified point is very near the surface. 

In order that the force may be repidsivc, the potential of the 

./■ sphere must be positive and greater than j and the 

eharg-c of the sphere must be of the same sign as e and greater 

than e -• 
pj.-a-y 

At the point of equilibrium the equilibrium is unstable, the force 
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being- an uttniction wlien (lie bodies arc nearer and a repulsion 

when they are farther off. 

When the glcetrified point is within tlic splierical surface tin; 

force on the electrified point is always away from the centre of 

the sphere, and is ccjual to 
e- uf 

The surface-density at the. point of the sjdiere nearest l.o tlic 

eleci.rified point where it lies outside the sphere is 

„ _ 1 i/v, ,, ''C/’+«) ) 

-4^^ \ i 

The surface-density at the point nf the sjdiere farthest from the 

electrified point is 
1 ^ u{f'—a\\ 

, 1 / a — e~, (• 
‘iTTrt- i (/-!-«)“ I 

'1 Tjd' 
i V , /' ■ (-3,/ + ^') i 13) 

AVhen 7;', the clinrg-o of the sphere, lies between 

d^2/-a) d^3/+u) 

" ' Aj'+^r 
the eleetrilieation will lie negative next the electrified point and 

positive on the o])posite side. There will be a circular line of division 

between the positively and the negatively electrified parts of the 

surface, and this line will be a line of eipiilibrinm. 

If i: = ea{ 

the etjuipotential surface wliieli cuts the sphere in the line of equi¬ 

librium is u sphere whose centre is the electrified point and whose 

radius is s/j"-—a-. 

The lines of force and equipoteutial surfaces b(‘longiug to a case 

of this kind are given in Figure IV at the end of this volume. 

ImofjeK hi (in Tujinile Plane Conducl'tnij Sinr/la'e, 

161.] If the two electrified ]>oints A and in Art. lot) nro 

electrified with equal chnrg-c.s of electrieity of opposite signs, the 

.sarfaec nf zero potential will be tlie plane, every point of which is 

equidistant from A and A. 
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Hence, if A be an electrified point whose cliarg'c is e, and AJJ 
a perpendicular on the plane, produce A.D 
if) B .‘fo that Dli = AJ3, and place at B 
a cliarg’c equal to —e, then this charge 

at B will be the image of A, and will 

produce at all points on the same side of 

the plane as A, an effect equal to that 

cf the actual electrification nf the plane, 

Por the potential on the side of A duo 

to A and B fulfils the eoiiditioiis that 

V-F= 0 everywhere except at A, and 

that F =■ 0 at the plane, and there is only 

one form of Vwhich can fnlfil these eonditfon.s. 

To determine the resultant force at the point P of the plane, we 
a 

observe that it is compounded of two forces each equal to -jjy,, 

one aeting along AP and the other along PJi. lienee the resultant 

of these forces is in a direction parallel to AJi and equal to 

J 
AP^ ' AP ' 

lienee It, the resultant force measured from the surface towards tin* 

space in which A lies, is 

AP'' ' 

and the density at the point 2^ is 

eAJJ 

m 

2-nAP' 
(IG) 

0)1 JiVeclj-ical Lirerslo)). 

162.^ The method of electncal images leads directly to a method 

of transformation hy wdiieh we may dei'ive from any electrical 

problem of which we know' the solution any mimher of other 

problems with their solutions. 

We have seen that the image of a point at a di.stance r from the 

centre of a sphere of radius It is in the same radius and at a disfanee. 

/ such that r/=Jt-. Hence the imago of u system of points, lines, 

or surfaces is obtained from the original system hy the method 

Iniown in pure g-eoinetry a.s the method of inversion, and de,scrihed 

hy f’hasles, Salmon, and other mathcniaticians. 
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H' .1 :iiul Ji arc* two points, A' and B' their imago,^, 0 being tlio 

^ centre of inversion, and It tlie radins of tlie 

sphere of inversion, 

OA.OA' = 7i- = OB.OJV. 

Hence tlie triangle,s OAB, OB' A' are similar, 

TT--fl AB ; A'B' : : OA : OB'; : OA. OB ; B-. 

If a quantity ol’electricity e be placed at A, 
its potential at B will be ^ 

AB 

If e be placed at A' its potential at 7/ will be 
/ 

“ A' /r 

In the theory of electrical images 

6' : 7 : ; OA : R : : R ; OA'. 

lienee V: V :; R ; OB, (17) 

or the potential at B due to the eloetrieity at A is to the potential 

at the image of/i due to the electrical image of 7 as R i.s to OB. 
Since this ratio depends only on OB and not on OA, the potential 

at B due to any system of cleetrilicd bodies is to that at i/ due 

to the image of the system as B is to OB. 
If r be the distance of any point A from the centre, and / that 

of its image A', and if e be the electrifieation of A, and e that ot' A', 
also if L, S, K he linear, superficial, and solid elements at A, and 

//, S', K' their images at A', and A, a-, p, A', a', p the corresponding 

line-surface and volume-densities of electricity at the two points, 

Fthe potential at./ due to the original .system, and B' the potential 

at A' due to the inverse system, then 

r 
)■ 

1J_ 

L 
R'^ 

o' 
/•* 

/ e 
e 
/ 

a 

'ip' 

r 

£ 
S 

'll' 

IP 

V' _ 
F ~ 

IP 
,1.4 

r 
R 

./* 

A' _ r 
J ““ It ' 

(>' _ r' 
p ~ JP 

_ 
— ' f 

r 

K' 
K 

7i>“ 

R 
-"/ > r 

R' 
^(18) 

J 

If in the original system a eevtain surface i.s that of a eonduetor, 

" .'Sirf Tlinm^on ami 'J'ait'.a .Vu/Hcnt Philoitopli;/, § SI.^. 
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and has tlierefore a constant potential JP, then in tlio tvansfovnied 

system tlie innige of tlie surface will have a potential P • But 

by plaeing at 0, the centre of inversiouj a rpiantity of electricity 

equal to —Fit, the potential of the transformed surface is redueed 

to zero. 

Hence, if we know the distribution of electrieity on a condnetor 

when insulated in open space and chary-ed to the potential P, we 

cun find by inversion the distrihution on a conductor whose form is 

the imaf' c of the first under the influence of an electrified point with 

a charge — Pit placed at the centre of inversion, the eonduetor 

being in connexion with the earth. 

163.] The fullowing geometrical theorems are useful in studying 

eases of inversion. 

Every sphere becomes, when inverted, another sjdiere, unless 

it passes through the centre of inversion, in which ease it becomes 

a plane. 

If the distances of the centres of the spheres from the centre of 

inveision are a and a', and if their radii are* a and and if we 

define the pmuer of the sphere with respect to the centre of in¬ 

version to be the product of the segments cut off by the sphere 

from a line through the eentre of inversion, then the power of the 

first sphere is cr—d-, and that of the second is a‘ — d'\ We 

have in this case 

a 

a 

IP a - — a - 
(.19) 

0“ —a- n- ^ ' 

or the ratio of the distances of the eentres of the first and second 

spheres is eijual to the ratio of their radii, and to the ratio of the 

power of the sphere of inversion to the power of the first sphere, 

or of the power of the second sphere to the power of the sphere 

of inversion. 

The eentre of either sphere corresponds to the inverse point of 

the other w'itli re,spect to the eentre of inver.sion. 

In the eiuse in which the inverse surfaces are a plane and a 

sphere, the perpendicular from the centre of inversion 011 the plane 

is to the radius of inversion as this radius is to the diameter of 

the sphere, and the sphere has its centre on this perpendicular and 

passes through the centre of iiiver.sion. 

Every circle i.s inverted into another circle unless it ])asses 

thrmigh the eentre of inversion, in wdiieh case it beeomes a straight 

line. 
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The angle between two siivfac&s, or two lines at their intevseetioii, 

is not eliangvd hy' inversion. 

Every eirele whieli pa.sse.s through a poiiitj and tlie image of i.liat 

point with resjicct to a splicroj euts tlu3 spliere at riglit angles. 

Hence, any eirele \vhi(di p!i.s.scs through a point and cuts the 

sphere at right angles 2)a.s.se.s through the image of the p(nnt. 

164.] We may ajiply the method of inversion lo deduce the 

distribution 1 f electricity on an nninsulatcd sphere under the 

intlnencc of an cleetrilied point from the uniform distribution on 

an insulated .sphere not influenced by any other body. 

If tbe electrified point be at ^7, lalce it for the eentre of inversion, 

and if A i.s at a distance./' from the centre of the sphere whose 

radiirs is a, the inverted figure will be a .sphere whose radius is a 
and whose eentre is distant /'', where 

r/ _ f _ 71'2 
(20) 

The centre of cither of tho.se spheres eorrespond.s to the inverse 

p)oint of the oilier with respect lo A, or if C is the centre and B the 

iuvcr.se point of the first sphere, C' will be the inver.se point, and B' 
the centre of the second. 

Now let a quantity A of electricity be eoniiniinicated to the 

second sphere, and lot it be nniiifluenced by' external forces. It 

will become niuTormly distributed over tbe sphere with a snrfiieo- 

densitA' 
/1^ t \ 

Its action at any point outside the sjdicre will be the same as 

that of a charge e' placed at 7/ the eentre of the sjdiere. 

At the spherieal surface and within it the potential is 
/ 

P' = (22) 
a ’ 

a constant quantity. 

Now let u.s invert this system. The centre Jf becomes in the 

inverted system the iiiver.se point //, and the ebarg-e e' at JP 

becomes c at B, and at any jioint seiiarated from 7/ by tbe 

surface the potential is that due lo this ebargo at 77. 

The potential at any ))ciiiit7'on the .spherical surface, or 011 the 

same .side as 77, is in the inverted .system 

«' B 
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If we now superpose on this system a eluirgc c at A, where 

(21) 
a 

the potential on the spherical surt'aeej and at all points on the same 

side as Ji, will be reduced to zero. At all points on the same side 

as A the potential will he that duo to a charge e at A, and a charge 

e at 7i. 

But 
, B it! a 

= —6 = —e-- 
J f f 

as \vc found before for the charge of the imago at B. 
To find the density at any point of the first spliere we have 

, B-' 
(r — (T 

AB-' 

(21) 

(25) 

iSiibstitnting for the value of rr' in terms of the quantities be¬ 

longing to the lirst sphere^ wo find the same value as in Art. 158, 

" “ 4 7r«///-'■• 
(20) 

On Finite Si/Bems of Successive Images. 

165.] If two eondneting planes intersect at an angle which is 

a .snbinnltiple of two right angles, there will he a finite system of 

images which will cornjdctely determine the electrification. 

For let AOB be a section of the two conducting planes per- 

peiidienlar to their line of inter¬ 

section, and let the angle of 

intersection AOB = -, let B 
n 

he an electrified point, and let 

BO = r, and BOB = 0. Then, 

if we draw a circle with centre 0 
;ind radius OB, and find jioints 

which are the successive images 

of B in the two planes heginning 

with OB, we shall find Qi for the 

imago of P in OB, B., for the image of in OA, Q-^ for that of 7b 

in OJi, B., for that of in OA, and Q.^ for that of 77, in OB. 
If we had hcgiiu with the image of P in AO we should have 

found the same ]ioinfs in the reverse order Q.,, 77,, Q.,, B.,, Qp 

jirovidcd .lOB is a .suhmnltiple of two right angles. 
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For the alternate imag’os P,, 7^3, 77, arc rangccl rouiul the circle 

at angular intervals 0(jual to 'lAOB, and the iutermccliato images 

Qp Q.., Q.f are at intervals of the same niagnitiule. Hence, if 

'2A0B is a suhmultiple of ‘iir, there will be a Unite mimhcr of 

images, and none of these will fall within the angle JOJi. If, 

however, AOB is not a suhmultiple of tt, it will be inij'ossible to 

represent the aetnal eleetrilieation as the result of a iinite series of 

electrified points. 

If ,707y = -j there will he n negative imagtes Q.,,, Scc^, each 

equal and of n[q)o,site sign to and w.— 1 positive images 77,, 

77,, &e., each equal to P, and of the same sign, 
i) 

The angle between successive innige.s of the .same sign is " •. 

If we consider either of the eoiidueting [danc.s us a jdanc of .sym¬ 

metry, we shall Fnul the positive and negative images [dneed 

symmetricnlly with regard to that phnie, so that for every positive 

image there is a negative image in the same normal, and at an 

equal distance on the oppo.sitc side of the plane. 

If we now invert this system with respect to any point, the two 

pianos heeoinc two spheres, or a S2)here and a plan(3 intersecting 

at an angle - , the intlnencing point P being within this angle. 
ilf 

The siieces.slvc images lie on the circle which pas.scs through P 
and intersects both sjjlieres at right angles. 

To find the position of tlm iniagcs we may cither make nse of 

the principle that a point and its imago arc in the same radius 

of the sphere, and draw sueoessive chords of the circle beginning 

at P and passing through the centres of the two spheres al¬ 

ternately. 

To find the charge which must be attributed to each image, take 

any ])oint in the cirelo of intersection, thou the charge of each 

image is proportional to its distance from this point, and its sign 

is positive or negative according as it belongs to the first or the 

second .system. 

166.]] Wc! have thus found the distribution of the iraagc.s when 

any space bounded by a conductor consisting of two spherical surfaces 

meeting at an angle and kcqrt at potential iJoro, is inllneneed by 

an electrified point. 

We may hy inversion deduce the ease of a conductor consisting 
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of two sjjherieal so^monts meeting at a rc-ontoring'angle , eliarged 

to jiotential unity and placed in free space, 

For tills purpose we invert the system with respect to 1^. The 

circle on wliicdi the images formerly hiy now hecomcs a straight 

line throug-li the eentri's of the spheres. 

If the figure (11) represents 

a section through the line of 

centres Ali, and if D,.// are the 

point,s where the eirele of in- 

tei‘seetion cuts the jihine of the 

paper, then, to find the sne- 

eessiA'c images, draw J)A a 

radius of the first eirele, and 

draw J)C, J)]i, &;e., maldng 

angles - > , &e. with J)A. 
n 11 

The points C, B, &e. at which they cut the lino of centres will 

he the positions of the iiositive images, and the charge of each 

will be represented hy its distances from J). The last of those 

images will be at the oenire of the second eirele. 

To find the negative images draw BP, &e., making-angles 

-) ~ , &c, with the line of centres. The intersoelions of these 
n n 
linos with the line of centre.s will give the positions of the negative 

images, and the charge of each will be represented by its distance 

from B. 
The snrfliee-density at any point of either sphere is the sum 

of the snrfaee-densities due to the system of images. For instance, 

the surfaeo-deusity at any jioint 8 of the sphere whose centre i.s 

A, is 

{1 ^{AB--AB'^)~^ +&C.} 
BC 

where A, B, C, &c, are the positive series of images. 

When S is on the circle of intersection the density is zero. 

To find the total charge on each of the spherical segments, we 

may find the surface-integral of the induction through that segment 

due to each of the images. 

The total charge on the segment whose oontre is A due to the 

ima'gi.' at A whose charge is BA is 



20G ELKCTRIC IMAOKS, [167. 

where 0 i.s tlic centre of the eirele of interseetioii. 

In the s£inu! way the char^^e on llie same segment due to the 

image at is 01i\ and so on, Hues such us OB measured 

from 0 to the lel't being reckoned negative. 

Hence the total cliarge on tlie segment wliose ecnire is A i.s 

i {JJA + BB + DC A- &c.) ->r\{OAA-OB^ QC-\ &e,), 

- i (DB + .£»§ + &e.) - i (OP + 0Q4- &c.). 

167.] The method of eleetrical images may be applied to any 

sjiace hounded hy plane or splierical siirfaees all of which cut one 

another in angles which are snbmultiples of two right angles. 

In order that such a system of siiherieal surfaces may exist, every 

solid angle of the figure must be trihedral, and two of its iiiigles 

must he right angles, and the third either a right angle or a 

.snbmultiple of two right angles. 

Hence the eases in which the number of images is finite iire— 

(1) A single spherical surface or ii jdane, 

(2) Two planes, a sphere and a jdaiic, or two siiheres intersecting 

at an angle - • 
n 

(3) These two surfaces with a third, which may be either plane 

or .spherical, cutting both orthogonally. 

(1) These three .surfacu.s with a I'ourlh cntling the first two 

orthogonal IV and the third at an angle , . Of these four surfiicos 

one at h a.st must be spherical. 

Wc have already examined the lirst and second cases, In the 

first ease we have a .single image. In the second ease we have 

2« —1 images arranged in two series in a circle wliich passes 

throiigli the inllueiicing point and is orthogonal to both surfaces. 

In the third ea,se we have, bosule.s these images, their images with 

respect to the third siirfiice, that is, ‘1« — 1 images in all besides the 

inlliicncing point. 

Ill the fourth case we fir.st draw through the influencing point 

a circle orthogonal to the first two snrl'accs, and determine on it 

tile jiositioiis and magnitiulcs of the u negative images and tlie 

w—I po.sitive images. Tlieii throngli each of these 2ti points, 

including the iiiflueiieing point, we draw a eirele oithoguiial to 

the third and Iburtli .Mirfaecs, and determine on it two .sene.s of 
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IniageSj n' in eaeli series, We sliall obtain in this way, besides tlie 

influeneing’ point, 'lnib — \ positive and 'Inn' negative images. 

Those 4 n 'll' points arc tlie intersoebion.s of' n circles witli n! otlier 

circleSj and tlies'e circles belong to the two systems of lines of 

curvature of a eyclidc. 

If each of these points is charged with the proi)er quantity of 

electricity, the .surface \vho.se potential i.s zero will consist of n-\-n' 
spheres, forming two series of which the sneee.ssive spheres of the 

first sot intersect at angles -, and those of the soeorid set at angles 
/I 

—while every sjihcre of the first .set is orthogonal to every sphere 

of the second set, 

Cast' of Two Sphcfcs cniUmj OtUioijonalljj. See Fig. IV at the 

end of this volume. 

168,] Let A and li, Fig. 1 2, be the centres of two siiheres cutting 

each other orthogonally in D and 

7/, and let the straight line BD' cut ^ 

the line of centres in C, Then C 
is the image of A. with respect to 

the sphere 7i, and also the imago 

of B with vespeet to the sphere 

whose centre is A. If AJD = a, 

JiJJ = /3, then AJi = \/+ inid 

if we place at A, B, C qnantitie,s t-- 

a '3 
of eleetrieity equal to a, (i, and — - - respectively, then both 

X'W •{-1^" 

.spheres will be eqiiipotential surfaces whose potential i.s unity. 

We nniy therefore determine from this system the distribution of 

electricity in the following eases : 

(1) On the conductor BBQiy formed of the larger segments of 

both .sphenis. Its potential is 1, and its eluirge is 

a-|-/3-AI) + BB~CD. 
\/ + /3" 

This quantity therefore measures the capacity of snoh a figure 

when free from the inductive action of other bodies, 

The density at any jioint of the sphere whose centre is A, and 

the density at any point Q of the sphere whose centre is B, are 

respectively 
1 

4 Tra 
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A1 ilio jioinls of iiitersoetiou, 1), 2/, (lie density is zcu'o. 

If one of the spIiercK is very iiuicli lai'ff'ei' (liaii the ollierj tlie 

deii.sity at tliu vertex of the smaller sphere i.s nltiniately three times 

that at the vertex of the larj^cr sphere. 

(2) The lens V'DQ'IY fornied l>y the two smaller se^-menls of 

the spheres, cduirged with a qnaiitity of electricity =-, 

iind acted on by points and Jf, charged with (juuntities a and /3, 
is also at jiotential nnity, and the density at any point is expressed 

hv the.sani(‘ forninhie. 

(It) The nteiiiseus jyPJj'Q' formed by the dilferenee of the 

segments charged with a quantity a, and acted on by jroints 7i 

and 6', charged ro.speetivcly with quantities ji and - , is also 

in equilihriiini at potential unity. 

(1) The other meiiiscns QVJ'']/ under the action of A and C. 
We may also deduce the distribution of electricity on the following 

internal surfaec.s. 

The hollow leii.s l)Q'J) under the inlluenee of the internal 

electrified ])oint 6'at the eeiitre of the circle DD'. 
The hollow meniseus under the influence of a point at the centre 

of the coueave surface. 

The hollow’ formed of the two larger segments of both spheres 

under the inlluenee of the throe points A, Ji, ('• 
ihit, iiustead of w'orkiiig out the solutions of these cases, w'c shall 

apply the princiidc of (deetrieal images to determine the density 

of the electricity induced at the jioint V of the external surface of 

the conductor J'BQJ/ by the action of a point at 0 charged with 

unit of (dcctriitity. 

Tjot OA = o, OB = b, OV = r,_Bl^ = p, 
AJ) = dj BJJ = /3, /I Jl = \/a“ -f 

Invert the system with respect to a sphere of radius unity and 

centre 0. 
The tw'o spheres will remain spheres, cutting each other ortho¬ 

gonally, and having’ their centres in the same radii with A and B. 
If we indicate by aeecnti’d letters the quantities corresponding to 

the inverted sy.stem, 

/ It_ ^ ^ nt_ 

'' - /A^ - cA-ai ’ - (A JTJa ’ 

' ~ ’ r — ■ „2 (Hi __ 
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If, in the inverted system, tlie iiotential of the surfaeo is unily, 

tlien the density at tlie point F is 

TTra ' ' ' 

If, in tlie original system, the density at P is o-/then 

rr 1 

TiT (T 
—.7 ^ 

and the potential is . lly plaeing at O a negative charge of' 

electricity e((n!il to unity, the potential will heconie zero over the 

surface, and the density at V will he 

1 a- — a-, 
a = ■ - (1 — 

V /Q2 .,2 . 
ft-' F . 

■It; a/-' ^ + 

This g-ives the' distribution of electricity on one of the spherical 

surfaces due to a charge placed at 0. The distribution on the 

other spherical surface may be found by exeliangdng a and 6, a and 

ft, and putting (j or ylQ instead of;). 

To find the total charge induced on the eonduetor by the elec¬ 

trified j)ointi at 0, let us examine the inverted system. 

In the inverted system we have a charge a'at and ft' at If, 

and a negative charge ^ at a point C in the line jfIf, 
\/a - + ft'~ 

such that AC ; 67) :: a" : ft'~. 

If 0,r= A, OF= //, 06"= o', wo lind 

u'-ft'-^+F-'cF-a-ft'- 
'd'^ + ft'^ 

Inverting this system the charges become 

a' _ a ft' _ ft , 
a' ~ a ’ h' ~ h ’ 

dft' 1 aft 

\/ir + ft‘~ \/a^ft~ + 6-a“ — a~ft~ 

Hence the whole eluirge on the eoudnetor due to a unit of 

neg-ative electricity at 0 is 

a /3_ “A_ 

i' + i6"a“—a“ ft'~ 

and 

vor,. 1, e 
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Disirihuiion of Elect net li/ on Three Spherical Surfaces which 
Ji/lerseet at IVajhi Angles. 

199,] Lei llie radii f)f the splicres be a, ji, y, then 

nc = f + CA = AB = /u- '-t 

Let EQJi, Lig. 13, be the feet 

nf (lie perpendiculars from ABC 
on the ()])posite side.s of tins tri¬ 

angle, and let O be the inter¬ 

section of perpendieulars. 

Tlion E is the imago of B in 

the sphere y, and also the image 

of C in the sphere /3. Also 0 is 

the image of P in the sphere a. 
Let charges a, /3, and y be 

placed at A, B, and C. 
Then the charge to be placed 

at P is 

1 

I’i},'. 13. 

By _ 
\//3“ -p y 

Also Al> = 
1 y 

side red as the iniag(> of P, is 

o-By 

VI 1 

y'^ 

- , so that the charge at 0, eon- 

1 

a/y~ + y“ -P or B~ 

V? 

1 1 
"h "h 

In the same way we ni.ay find the .'^y.stem of images whicdi are 

electrically eciuivalcut tti four spherical snrfuee.s at ))otcntial unity 

intersecting at right angle.s, 

Jl'the radiiKs of the fourth sphere i.s 6, and if we make the charge 

at the centre of thi.s sphere = 0, then the charge at the intersection 

of the line of centres of any two spheres, say a and j3, with their 

plane of intersection, is 1 

1 1 
7," “P r^ii a- ft- 

The charge at the intcrs(>etion of the plane nf any three centres 

y///6'with the pci-pendiciilar from Jj is 
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and tlie charge at the intersection of the four pci'pendiculars i.s 

1 

System of Foitr Sjit/eres Tn/erseclliiy at IVujht Angles under the 
Action, of an 'Eleclnjied Voint, 

170.] Let tlie four splieres he A, ]t,C,JJ, and let the electrified point 

he 0. Draw four sjdieres C\, of wliicli any one^ A^, 
pa.sse.s through 0 anti ents three of the spliere.Sj in tin’s case B, 
C, and 1), at right angles. Draw six spheres [ab), (rtc), {ad), {id), 
{id), (cd), of which each passes through 0 and through the circle 

of intersection of two of the original spheres. 

The three spheres Ji^, C^, will intersect in another point besides 

0. Let this point he called A', and let Ji', C', and 7/ be the 

intersections of Cj, D,, of 1)^, A^, and of A^, C'l re¬ 

spectively. Any two of these sjiheresj .'/j, will iuterseet one of 

the six {cd) in a point {u'i'). There will be six such points. 

Any one of the sphere,Sj A^, will intersect three of the six {ai), 
(«c), {ad) in a iioint a. There will he four such points. Finally^ 

the six spheres {ab), {av), {ad), {cd), {db), {id), will intersect in one 

point S. 
If we now invert the system with respect to a sphere of radius 

]\ and centre O, the four spheres A, B, C, D will be inverted into 

spheres, and the other ten spheres will become planes. Of the 

points of interscetion the first four A', Ji', C', Jf wdll become the 

centres of the spheres, and the others will correspond to the other 

eleven points in the preceding article. These fifteen points form 

the image of 0 in the system of four spheres. 

At the jioint A', which is the image of 0 in the sphere A, we 

must place a charge equal to the image of 0, that is, — where a 

is the radiu.s of the sphere A, and a is the di.stanee of its centre 

from 0. In tlie same way we must place the proper charges at 

jr, C', If. 
The charges for each of the other eleven points may be found from 

the expres-sions in the last article by substituting n', /3', /, S' for 

a, ji, y, b, and multiplying the result for each point by the distance 

of the jioint from 0, where 

ft 
■^2-/32’ 

y — o 0 
c~-y 

b 
d^-h^' 

I‘ 2 
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Tko Sjiha'cs lUil InlerncLihif/. 

171.] Wlion a .spaou is boiindijcl by two splievical tfurfaces wliiuli 

do not iiitei'secfc, the .successive ima»'Cs of an iiilluencin^>- point 

witliin tliis space funti two infinite sorie.Sj all of wliieli lie Leyoiul 

till' .spherical .surfaces, and tlierel'ore f'ulfd the condition of the 

applieal)ility of the method of electrical imagc.s. 

Any two non-interseeting spheres may be inverted into two 

concentric spheres by assuming as the point of inversion either 

of the two common inverse pwiiits of the pair of spheres. 

We shall begin, therefore, with the case of two uninsulated 

eoneentrie spherical surfaces, sulijeet to the induction of nil elec- 

trilied point placed hetweeii them. 

Let the radius of the lir.st be b, and that of the second and 

let the distance of the inllueneiiig point from the centre he r = be". 
Then all the snceessive images will be on the same radius as the 

inllueneiiig point. 

Let Q„, Fig. I t, lie the image of P in the first sphere, P^ that 

of in the second sjiliore, (), that of in the hrst .sphere, and 

so on ; then 

OP,.OQ, = b-, 
anil OJ\.OQ,_^=IPc-^, 
also = be~'‘, 

OP^ = 

OQi = be~^’'+-^^\ &e. 

Hence 6'/-’, = be<'''^-'‘^\ 

OQ^ = 

If the ehnrge of P is denoted by V, 
tlien 

P^ = Q. = — y-’e-'" 

Next, let Q{ lie the image of P in the .second sjdiere, J\' that of 

Q{ in the first, &e., 

OQ{= be~^~", 

OQ'= ic'--", 

OP' = be"-'^"^, 

P: = Pe-^^, 

Of these images all the P'a e 

all the y-'^’s and Q's hehnig to 

to the .second. 

0P{=: be"--^, 

()P.;=: be"- '‘^ ; 

oq:= 

q:= Pe>^--\ 
■ piositive, and all the Q\s negalive, 

ic first siihere, and all the P'^ and 
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Tlio imaj^os witliiu tlio first sifiiore form a cionvcrg-ing' scries, llie 

Slim of wliieh i.s 
ew-t._ 1 

-? 
1 

Tills tlicrel'ore is the r(uantil.y of electricity on the first or interior 

sjilicrc. The iiniigos outside the seeoiid sjihere form a diverging 

series, hut the siirlace-iiitegral of each with respect to the siiherical 

siirfiice is zero. The charge of electrieity on the exterior sphevical 

siirfnee is therefore 

p(:. - ‘ _ ]\= 

If we suli.stitiite for these expressions their values in terms of 

OJ, OB, ami OP, we find 
, ^ „ OA PB 

eharge on -Qp-JB^ 

eharge on Vf = - P — ^ ■ 

If wc suppose the radii of the spheres to hoeome infinite, the case 

becomes that of a point jilaeed between two parallel idaiics A and B. 
In this ease these expressions become 

eharge on A = —P 

AP 
eharge on B = ■— P —• 

172.] In order to pass from this case to that of any two spheres 

not intersecting caeh 

other, we begin by 

finding the two com¬ 

mon inverse points 0, 

0' through which all 

circles ])ass that are /' 

orthogonal to both ■ 

spheres. Then, invert- 

iiig the system with ' 

respect to cither of 

these points,the spheres ' 

Ijecome coneentric, as 

in the first ease. 

The radius OAPB on whieh the successive images lie bceonics 

an are of a circle through 0 and O', and the ratio of O'B to OP is 
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equal to Ce" wliere C is a miracrical quantity whicli for simplicily 

we may make equal to unity. 

We therefore put 

, cr , O'A ^ , C/B 
'< = '”SoF' “ = ^ = '»SaS- 

Let /3 —a = BT, n — a = 0. 

Then .all the suocos.sive images of 7^ will lie on tlie are OAPBO', 
The jiosition of the iiriagc of B in A is 'vlicrc 

«(Qj = log^ = 2a-u. 

That of Q,) in B is 1\ whore 

C/p 
«(P,)= log-y = 

Similarly 

u{V^ = xiA-2sts, ^((Q,) = 2a—?(! —2,?nr. 

Ill the same way if the sueeos.sive image.s of 7^ in B, A, B, &e. 

arc Qo'i Qi> 

iQo) ~ ^ — 2 BT ; 

= u — 2S'st, «(§/) = 2l3 — ?i + 2S‘sr. 

To find the charge of any imago 7^, we observe that in the 

inverted figure its eharge is 

W OP 
In the original figure we must multiply this by (TP,. Henee the 

charge of P, In the dipolar figure is 

p A 
A/ OP.(/P ' 

If we make i~\^OPA/P, and call ^ the parameter of the 

point P, then we may write 

P = P 
’ i ' 

or the charge of any imago is proportional to its parameter. 

If we make use of the curvilinear eoordinates u and v, such that 

aU+ V—I U _ X -p \/ — 1 y — k 

then 

X + — 1 y + 7 

k%\\\hii 7siny 

cos h u — cos V y - 
cos/o«—cos V ' 
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ai^ cotv)- = k'- eosee-i’, 

[x + Ic cot k iij- + ■=. k'^ cosec k-u, 

cot v — 
x^ -H y'^ — k'^ 

iky 

i = 

2 kx 

\f2k 

\/cOs/ni! —cos c 

Since tlio cliargc of each imago i.s jn'oportional to its parameter, 

and is to be taken positively or negatively according as it is of 

the form P or Q, we find 

P cos k u — cos V 

Q. = - 

K= 

q:=- 

\/cos k!{li+2s Bt) —cos V 

7■’^/COS kit—oos V 

\kcos k{2a — u — 2«ct) - cost; 

P \/ cos k It — cos V 

cos A (« —2 5-57) —cos V 

P\/cOB hu—cos V 

\/cosk{2ft — ui2s^P-co^ 

We have now obtained the positions and charges of the two 

infinite scries of images. We have no.x;t to determine the total 

charge on the sphere A by finding the snm of all the images within 

it which are of the form Q or P'. We may write this 

--1 
PVcos An—cos V 

■ P\/cos ku—cos V 

y/ cos k(ii — 2su) — cos y 

1 

'v/cos//(2a—tt —2s-57) —cost) 

In the same way the total induced charge on B is 
2*=a) 

,_1 

— Py/COS hu —COS V '^,-0 

y/ COS k(7t + 2^1^) — cos r 

1_ 

\/cosk{2ft—n+ 2scr)—cosv 

* In tlieso expressions we must rememher tli.it 

2cosft.ii = c’‘ + c~", 28in/i« = e“—c~'‘, 

and the other functions of a are derived from those liy the same definitions n.s tlie 
eorresponding trigonometrical fanctiona, 

Tile iiiotliod of applying dipolar coordinates to this case w.ih given by Thomson in 
Lioui'iUc’» Journal for 1.S17. Eee Thoinson’s reprint of Electrical Papers, § 211, 212. 
In the text I have inaile use of the investigation of Prof lietti, Nuovn Cimento, 
vol. XX, for the analytical mutliocl, hut I have retained the idea of electrical images as 
used by Thomson in liis original investigation, VhlL May,, 1853. 
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173.] Wc‘ shall npply these results to the determination of the 

coefTieionls of eapjunt}" and induction of two spherc.s whoso radii are 

a and and the distance of whose centres i.s e. 

In this case 

v/rt'’ +1^ +c^ — — 2r~(r — '2a-U- 

. 'Ic ’ 
/?• = 

sin h.a = 
k • , k sm hS= - 

h 

Let the .sphere y/ he at potential unity, and the .sphere H at 

potential zero. 

Then the sucees,sive iina^^cs of a charge a placed at the centre 

of the sphere y/ will he those of the actual distrihntioii of olectrieity. 

All the images will lie on the axis Ijotween the poles and the 

centres of the sphere.s. 

The values of n and v for the centre of the sphere A are 

u =z 2 a, V = 0. 

Ilcnec wc must substitute a or k . - for and 2a for u. and 
sin h a 

?' = n ill t he equatioas, reiiK'mhering that P itself forms part of the 

(diarge of A. IVe thins find for the eoetllcient of capacity of yl 

— k ^ 
'^*=e sill—a) 

for the eoeflieiciit of iiidiietioii of./ 011 ]i or of on A 

^ sin/irfBT 

and for the coefficient of capacity of Ji 

~ /■ ^ 
%h ‘^,=0 sin 7/(/3 + rf w) 

To ealoiilate these quantities in term.s of a and 6, the radii of the 

spheres, and of c the di.staiice between their centres, wc make use 

of the following quantities 

k 

7 = /\/f, +1 + 1’ 

y = '• = + 1 + J) (-x/yj + ^ ' 
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Wo may now write tlie hyperbolic sines in terms of7;, 7, r; tlims 

2 k 

2g=zoi 

1=1 

s=0 

■P 

»=» ‘Ik 

;•» — 

‘Ik 

qf- 
' qf 

Proeeeding- to tlio actual ealeulation we find, either by this 

proef.s,s or by the direct calculation of the suocessive iniafces as 

shewn in Sir W. Thomson’s paper, which is more eonvenieiit for 

the earlier part of the series, 

-f ice., 
rt" h 

'7.... = « + -ir, + 

Yu/. = 

If + ac) {c^-b~~ac) 

ah a-h- aVf 

c ui) c - b- + ah) (f- - -b'^- ah)' 

, ah- a-If 
'lib — " + -r, -7, + j~r,--7,-7-7 +&e. 

c- — a- (r- — br) (c- — a~~ he) 

174.] We have then the following equations to determine the 

charges 7^’, and 7f,. ol‘ the two spheres when electrified to potentials 

/], and Vi, respectively, 

^ ft 'Jita ^ b HfiU) 

J'a, = 7ii!. d- ^ b 'Jbi, ■ 

1 

-&c. 

7*l'l 'Jbb 1/111 77 -jy , If we put 

and 7>'„„ = !/u,7/, A,;. = — 7,,,. 77', y^w. = (?„,, 77', 

Pn.,Pbb-p.ir = 7>'j 

then the cquation,s to determine the potentials in terms of the 

charges arc y _ y , ,, y 

= 7^n(. 7i'„ + y^M, JS),, 

find Pa,i, findy),.), arc the eoefTieicnts of potential. 

The total energy of the system is, by Art. 85, 

Q = UKl^+Kr„), 

= e (7,1.1 + - h ^b Quh + K“ 'JbO> 
= 4 (A," p.t.t+2 /i,, A,,/)„i,+7t(," 
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The repulsion between the spheres is thereforCj by Arts. 112, 1)3, 

F — t ^ 4. |> r J-I 
h “ dc '■ ik I ’ 

_ _ I i TP 2 I 9 K' V I J,1 » ^^puh } 
~ ^ I If + 2A. 4 + /n ;7;r ^ » dc 

wliere c is tlie distance between the centres of the spheres. 

Of tlicsc two expressions for tlie rejiulsion, the first, wliich 

expresses it in terms of the potentials of the s]ihere.s and the 

variations of the coeffieients of capacity and indnetion, is the most 

convenient for calculation, 

Wc have therefore to differentiate the c/s with respect to c. 

These quantities are expressed as functions of /•, a, ft, and w, and 

must be dilforentiated on the supposition that « and d are constant. 

From the equations 

/t = a sin /i a b sin // ft 
sin /i a sin/i ft 

sin 1/ ET 

we find 
da _ sin ha cosh ft 

dc ~ hsin h rs 

dft _ cos h a sin // ft 

dc ~ ks\\\liTs 

dvT 1 

Tc^V 

whence we find 

d/i cos ha cosh ft 

dc siii/^ET 

dq„n __ cos h acosh ft y^t=a,{sc —a cos h ft) cos h{s ts 

dc ~ sin//O' k '^/=o c (sin/2(« ct—a))- 

dc/ah _ c^hacoshftq^ 

dc sin/^cr k ^•=\ 

& CO.S h SVT 

(sin/iiEr)^ 

dqu, _ coshacoshft ^ » (.ye + cos h a) cos h{ft-\-s et) 

dc ~ sink-a k ■^/=o c (,siu ^(/3 + rfBr))“ 

Sir William Thomson has calculated the force between two 

spheres of equal radius separated by any distance less than the 

diameter of one of them. For greater cli.stjmeos it is not necessary 

to use more than two or throe of the successive images. 

The scries for the differential coefficients of the q’s with respect 

to c are easily obtained by direct diffcrcatiation 
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_ 2a-bc (2c® — 2—a-) 

~(k (c®~A®p ~ ~ 

(lq„h (lb a® A® (3c®—a® —6®) 

(Ic c® c® (c®—a®—A®) 

A^{ (^c®-a®-A®) (c_2 -a^ - A®)-a® A®} 

+ T®"^® + aA)2 (c® - a® - A® - aA)® ~ ' 

dqu, __ 2aA®c 2a®A®c(2c® —2a® —A®) 

c?c (c® — a®)® (c® — a® -|- Ac)® (c® —a^ — bcY 

JJ'islrifjuiion of Elcctricifjj on Tivo Spheres in Contact. 

175.] If wc suppose the two spheres at potential unity and not 

innueiieed by any other point, then, if we invert the system with 

respect to the point of contact, wc shall have two jiarallel planes, 

distant — and from the point of inversion, and electrified by 

the action of a unit of clectrieity at that point. 

There will bo a scries of positive images, eaeh equal to unity, at 

distances from the origin, where s may have any integer 

value from —ooto +oo. 

There will also be a seiies of negative images each equal to — 1, 

the distances of which from the origin, reckoned in the direction of 

1 A K 
a, arc -+-»(- + r)* a br 

When this system is inverted back again into the form of the 

two spheres in contact, we have a con-esponding series of negative 

images, the distances of which from the point of contact arc of the 

form ———, where s i.s positive for the sphere A and negative 

+ a) 
for the sphere B, Tire charge of each image, when the potential 

of the spheres is unity, is numerically equal to its distance from the 

point of contact, and is always negative. 

There \yill also be a scries of positive images whose distances 

from the point of contact measured in the direction of the centre 

of a, arc of the form 
1 A K 
-+«(-+ t) 
a hr 

When s is zero, or a positive integer, the image is in the sphere A. 

When 5 is a negative integer the image is in the sphere B. 
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The nharg-c of eaeli image is measured by it.s distance from the 

origin and is always positive. 

The total clnirgo of the sphere .•/ is therefore 

1 -,-- ^ 
n 

2S=:CO 1 (lli ] 

s-s{> I 7i TT ~ = 0 1 /I Iv 
—f- <s (—h 7) 
a V/ o' 

Each of these series is infinite, but if we combine them in the form 

sla-\-~6j (is{u-\-Ij)—fl) 

the series becomes converging. 

In the same way wc find for the charge of the spliei'c B, 

-^s-x- ah ah l 

''' ~ '^*=1 s(a+h) — i a-\-i) ,s ’ 

2t=m alB 

*=1 s (a + h) {.v(^i ■Y-h)—h\' 

The values of J'h, and 7f,, are not, so far as I know, cxpi'cssiblc 

in terms ol' known functions. Their ditlerencc, however, is easily 

expre.sscd, for 

K-K = 2 

ah 

^t=-x h ^ s {(i-^ h) 

xah , TT^i 
-7 cot 

is 

When the spheres are erpial the charge of each for potential unity 

= «(i-Hi-1+&(■•), 

= a log^. 2 = l.n98()<^. 

When the sphere A i.s very small compared with the sphere B 

the charge on A is 

= ^1- 2!li 'I ; 

or Fj„ — 
G b 

The charge on B is nearly the same as if A were removed, or 

Bu = h. 

The mean density on each sphoi'c is found h}'" dividing tlic charge 

hy the surface. In thi.s way wc get 
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(Ti, = 

3 
Ar.ir 

3.^ 
‘i TT b'“ 

TT 

2\b' 

1 

•IttZ 

•71“ 

O’., = 
b 

Hence, if n very small sphere is made to toueli a very larji-o one, 

the mean dciisiiy on the small sphere is equal to that on the larye 
n 

TT" 
sj)hcre multiplied by — , or l.(ji493G. 

Jj)j)licrtiioii of Ehclrlcal Imermn to the cose (fa Spherical .lion-l. 

176.J One of the most remarkable illustrations of the power of 

Sir W. Thomson’s method of Electrical Images is furnished by his 

investigation of the distribution of electricity on a portion of a 

spherical surface bounded by a small eircle. The results of this 

investigation, without proof, were communicated to M. Liouville 

and published hi his Journal in 184 7. The complete investigation 

is given in the reprint of Tliomson'’s Electrical Eupers, Article XV. 

I am not aware that a solution of the problem of the di.stribution 

of eleetrieity on a finite portion of any curved surface has been 

given by any other mathematician. 

As I wish to explain the method rather than to verify the 

ealeulation, I shall not enter at length into either the g-eometiy 

or the integration, but refer my readers to Thomson’s work. 

Dislritjufiou (f Elect riel fj/ o:i an Ellipsoid. 

177.] It is shown by a well-known method’^ that the attraction 

of a shell hounded by two similar and .similarly situated and 

coiieentrlc ellip.soids is sueh that there is no resultant attraction 

on any point within the shell. If wo supimso the thickness of 

the .shell to diminish indcnuitcly while its density increases, we 

ultimately arrive at Ihc conception of a surface-density varying 

as the pcrpeiulieular from the centre on the tangent plane, and 

since the re.sultaut attraction of this superficial distribution on any 

point within the ellip.soid is zero, eleetrieity, if so distributed on 

the surface, will ho in ecpiilibriinn. 

Henec, the siirface-densily at any point of an ellip.soid undis¬ 

turbed by external influence varies as the distance of the tangent 

plane from the c-entre. 

* Tlioni.son and lait's Natural Philosnphi/, § .'>20, or Art. 150 of tliln book. 
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BUtnhnlmi of Bleclncily on a Dink. 

By making two of the axes of the ellipsoid equal, and making 

the third vanish, we arrive at the ease of a eireuhir disk, and at an 

expression for the snrfaee-density at any point B of such a disk 

when elcetrified to the potential Fund left imdistiirhed by external 

innuenee. If o- be the surface-density on one side of tlie disk, 

and if KPL be a chord drawn through the point P, then 

__V __ 

~ Vi^Q'^Kfyi 
Application of the Principle of Electric Inversion. 

178.] Take any point Q tlie centre of inversion, and let It 

be the radius of the sphere of inversion. Then the jdanc of the 

disk becomes a spherical surface passing through Q,, and the disk 

itself becomes a portion of the spherical surface bounded by a circle. 

We shall call this portion of the suifacc the bowl. 

If iS" is the disk electrified to potential F' ami free from external 

influence, then its electrical image S will be a spherical segment at 

potential zero, and electrified by the influence of a quantity V'li of 

electricity placed at 

We have therefore by the process of inversion obtained the 

solution of the problem of the distribution of electricity on a 

bowl or a plane disk when under the influence of an electrified 

point in the surface of the sphere or plane produced. 

Injlnence of an Electrified Point placed on the unoccupied part of the 

Spherical Surface. 

The form of the solution, as deduced by the principles already 

given and by the geometry of inversion, is as follows ; 

If C is the central point or pole of the spherical bowl S, and 

if Of is the distance from C to any point in the edge of the segment, 

then, if a quantity q of electricity is placed at a point Q in the 

surface of the sphere jn-oduced, and if the bowl S is maintained 

at potential zero, the density a at any point P of the howl will be 

_ 1 q /CQ^ — a^ 

~ ^ F 'V a^-CP^ ’ 
CQ, CP, and QP being the straight lines joining the points, C, Q, 

and P. 

It is remarkable that this expression is independent of the radius 

of tlie spherical surface of which the bowl is a part. It is therefore 

applicable without alteration to the ease of a plane disk. 
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Injluence of any Nimber of Electrified Points. 

Now let us consider the spliere as divided into two pait.S; one of 

wliicli, the spherical segment on whicli we liavc determined tlie 

electric distribution, wc slnill call the hoid^ and the other the 

remainder, or iinoeeu])ied part of the sphere on which the in¬ 

fluencing point. Cl is placed. 

If any number of infliiencing points are placed on the remainder 

of the sphere, the elcetrieity induced by these on any point of the 

bowl may be obtained by the summation of the densities induced 

by each separately. 

179. ] Let the whole of the remaining surface of the sphere 

be iniiforinly electrified, the surface-density being p, then the 

density at any point of the bowl may be obtained by ordinary 

integration over the surface thus electrified. 

We shall thus obtain the solution of the ease in which the bowl 

is at })oteiitial zero, and electrified by the influence of the remaining 

portion of the spherical surface rigidly electrified with density p. 

Now let the whole system be insulated and placed within a 

sphere of diameter f, and let this sphere be uniformly and rigidly 

electrified so that its surface-density is p'. 

There will he no resultant force within this sphere, and therefore 

the distribution of clectrieity on the bowl will he unaltered, but 

the potential of all points within the sphere will he increased by 

a quantity V where 

F = Ilf . 

Hence the potential at every point of the bowl will now be V. 

Now let n.s suppose that thi.s sphere is concentric with the .sjdiorc 

of which the howl lbrm.s a part, and that its radius exceeds that 

of the latter sphere by au infinitely small quantity. 

Wc have now the ca.se of the howl niaintained at potential Tand 

influenced by the remainder of the sphere rigidly electrified with 

superficial density p + p'. 

180. ] We have now only to suppose p + p'=z 0, and wc get the 

case of the bowl inaiiitaiiied at potential T'' and free from external 

infl lienee. 

If a is the den-sity on either surface of the bowl at a given point 

when the bowl Is at potential zero, and is iiilluciiced by the rest 

of the sphere clcidrified to density p, then, wjuui the bowl is inain- 

tainod at ]iotential F, we must increase the density on the outside 

of the howl by p', the density on the supposed enveloping sphere. 
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Tlie result of this iiive.stigatioii is Unit if /' is the diameter of 

tlie S])herc, a the cliord of tlio radius of tlie bowl, and tlic cliord 

of tlic distance of F from tlio p(de of the bowl, then the surfaco- 

deiisily a on the insUk of the howl is 

2 7r-y I V aF — r- V 
and the surface-density on the outside of the bowl at the same 

point is V 
or + 

l-n f 

In the calculation of thi.s result no operation is employed more 

abstruse than ordinary intof^ration over part of a sjiherical siirfaee. 

To coni])lete the theory of the electrification of a spherical bowl 

we only require the geometry of the inversion of Kpherical surfaces. 

181.] Lot it be required to find the surface-density induced at 

anj’' point of the bowl by a CjUantity q of electricity placed at a 

point Qi Jiot now in the .spherical surface produced. 

Invert the bowl with respect to t?, the radiii.s of the sphere of 

inversion being- R. The bowl iS’ will be inverted into its image , 

and the point F will have F for its image. AVe have now to 

determine the density g' at 2^' when the bowl -S’' is maiiilained at 

potential 1', such that (i= V'F, and is not inllnenced by any 

external force. 

The density a at the point F of the original bowl is then 

G 

this howl being at potential ;cero, and intliiencod by a quantity q of 

electricity placed at Q. 

The re.sult of this proces.s is as follows : 

Let the figure repre.sent a .sectioii 

through the centre, O, of the sphere, 

the ])ole, C, of the bowl, and the in- 

llueiiciiig point Q, 2) is a jioint 

whieh eorres])onds in the inverted 

figure to the iinoeciqiiod pole of the 

rim of the bowl, and may be found 

by the following con.sti’uction. 

Draw through Q the chords EQ2i' 

and FQF', then if we suppose the 

radius of the sphere of inversion to 

be a mean proportional between the. 

segments into which a chord is divided at Q, E'2^' will be the 

o "" o' 

Fig. 1(7. 
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image of EF. Bisect the are F'CE' in .D\ so that F'l/and 

draw jyQJJ to meet the sphere in 1), 1) is tlie point required. 

Also tlirongli 0, tlie centre of tlie sphere, and Q draw IlOQIi' 

meeting tlie sphere in 7/and //'. Then if E bo any point in. the 

bowl, the surface-density at P on the side w’hich is separated from 

Q by the completed spherical siirfaee, induced by a quantity q of 

electricity at Q, will be 

~ 2t,'-jjir.PQ-‘XuQv--cr‘-’ Lmqv-cj'--'JJ 
where a denotes the chord drawn from C, the pole of the bowl, 

to the rim of the bowl. 

On the side next to Q the siu'liiee-density is 

2 7t- iJJr.yq-E 

Q VO I., r. 
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TiiKoiiv OF co:^ji;gate functiox.s in two dimensions. 

183.] Thk miitiljin’ of iiidepeiicluiit eases iu wliieh the proLlom 

of eleeti’ieal L'qiiililjriiun has heeu .solved is very small. The method 

of .sphei’leal hai‘inoiiie.s lias been crnjiloyed for .sjiherieal eonduetors, 

and the metliods ol'elcetrieal inia^’es and of inversion are .still more 

poiverfnl in the ease.s to ivhich they can he applied. The ease oi' 

snri'aees ol' the seeond de^'ree i.s the only one, as far as T know, 

in which both the ecpiijiotential snrfaees and the lines of force are 

known when the lines offeree are not jdane curves. 

lint there is an important class of ])robleins in the theory of 

eleetrieal equilibrium, and in that of the eondnetiou of currents, 

in wliieh Ave have to consider space of two dliiiensi()ii.s only. 

For inslaiiee, if thronj>’hout the jmrt of the electric field under 

consideration, and for a eomsiderable distance hoyoiul it, the surfaces 

of* all the eondiietors are g-eiieraled by the motion of straig-lit lines 

parallel to the nici-s of z, and if the jiart of the field where this 

ceases to be the ease is so far from the part considered that the 

electrical action of the di.staiit part on the (leld may be negleeted, 

then the elcelrieity will be nuifornily distributed along each gene¬ 

rating line, and if we consider a part, of the field hounded hy two 

planes perpeiidieiilar to the axis of ~ and at distance unity, the 

potential and the distribution of electricity will he liiiietioiis of x 

and y only. 

If p (/.!• (/y deiiote.s the quantity of electricity in an element wdiose 

base i.s i/av/y and lieiglit unity, and a ih the quantity on an element 

of area whose base is the linear element <ls and height unity, then 

the equation of Poisson may he wi’itten 

d-r 
d,c- 

d-r 

df 
+ ‘t Trp 0, 
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Wlicii there is no free eleetrieity, tliis is redueed to the equation 

of Liiplaee, d- V d- F 

d,e- ^ df 

Tlie geiierul problem of eleeti'io equilibrium may be stated as 

follows:— 

A eontiiiuous space of two diraeiisioiis, bounded by elosed eurves 

C‘,, f!,, ite, beiii*>' <^iveii, to hud the form of a fuiietioii, f', siieli that 

at these boundaries its value may be / ,, &e. I'espeetively, being 

eoiistaiit for each boandiiry, and that within this sjiaee V may be 

everywhere finite, coiitiiinous, and single valued^ and may satisfy 

Laplaee's ecpiatiou. 

I am not aware that any peidectly general solution of even this 

(|nestioa has been given, but the method of trailsfonnation given in 

Art. ItK) is applicable to this ease, and is much more powerful than 

any known inethod ajiplieable to three dimensions. 

The iiietliud dej)eiKl.s on the properties of eoiijiigate fuiietions of 

two variables. 

Jjejiniliou of Conjtujale Finiclions. 

183.'] Two quantities a and /3 arc .said to be conjugate functions 

of .4* and >/, ifa+^/^/3 is a fnnetioii of .r + f — 1 y. 

It follows from this definition that 

da 

dx dH ’ 

da d^ 
and - - + - - = t) ; 

((// dx 

d-a 

dx- dx- d/- 
= 0. 

Hence lioth functions satisfy Laplace’s equation. Also 

da djS 

dx dy 

dadji da“ da~ dji^ di6~ 

dy dx dx, dy. dx dy 

0) 

(2) 

(3) 

Ifb-c and y are reetangnlar coordinates, and if r/q is the intercept 

of the curve (/3 = constant) between the curves a and a + r/a, and 

rA, the interceiit of'a between tlie curves ^ and /3+r//3, then 

dh _dif., _ 1 

da ~ di6 “ A ’ ^ ^ 

and the curves intersect at right angles. 

If we suppose the jiotcntial I' = a, where /(• is some con- 

.stiiiit, then /’will .satisfy Laplace’s equation, and the curves' (a) will 

be equijioteutial curves. The curves (/3) will be lines of forccq and 

Q 2 
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the surface-integral of a surface whose projection on the plane of 

A\/j is the curve AJi will be /rO/i —where /3,.( anil (3u are the 

values ol’/5 at the extremities of the curve. 

If a .series of eurve,s eorre,spoiiding to values oi‘ a iii arithnietical 

progre.s,sion is dra.wn on the plane, ami another serie.s'corresponding' 

to a serio.s of values of/•! having' the same common diflerenee, then 

the two series of curves will everywhere intersect at right angles, 

and, if the eomniou cliffereiiee is small cuoug-h, the elements into 

which the i)laue i.s divided will be ultimately little st|uures, whose 

sides, in dilferent parts of the field, are in dilferent clireetions and of 

clilfi'i'ent niag'nitiide, being' inversely iii'ojiortioiial to Ji, 

If two or more of the eijin'iiolential liiie.s (a) are clo.sed curves 

enelosiiig a contiuuoii.s space hetweeu them, we may take these for 

the surfaces of condueiors -at potentials + &e, 

respectively. The (piantity of electricity iiiion any one ol' these 

between the lines of force /3, and /3.. will he ~ —;3,). 

Tlie nmnher of ecpiipotential lilies hetween two eondiietors will 

therefore indicate their dllfcreiiee of potential, and the mmiber of 

lines of force which .emerge from a comhictor will indie,ate the 

(piantity of electricitv upon it, 

We must next state some of the nio.st important theorems 

relating to eoiijiigate fiiiietions, and in proving them we may u.se 

either the ecpiations (1), eoiitaining the dilferential eoelHeients, or 

the original detiiiition, which in.akes use of imaginary symhols. 

184s] Thuoiie.m I. iiudif (ire cddjunalc J'ancliuns with respect 

to X and p, and if /' anil p” are also conjupale J'laictions u'llh 

resjtrct to x and p, then the fnnelioiis x A-‘x" and p' Ap" eidl 

he conjnpate d'anelkuts v'il/i respeel to x and p. 

Toi' 

therefore 

Also 

therel’ure 

dx _ (hf ^ _ dp" . 

dx ~ dp ’ dx ~ dp ’ 

d{): Ax'") _ d{p'A-p") 

dx dp 

dx' _ _ dp 'iil _ _ '’f 
dp dx ’ *' dp dx ’ 

d{x'^x") __d{lfA-in , 

dp dx ’ 

or X A-x" and p' A-p" are eonjug'ate with respect to -x and p. 
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185.] 

Graphic, licpresenfafion of a Fnncllon vihlch is the Sum of Tiro 

(jirrii 7'’/otcfioi/s. 

Lot a fiiiiotioii (a) ol' x aiul y be* f^Tajiliieally rcpresontecl by a 

series of curves in tlic j)laiic oP x//, each oP these curves corro- 

spoiiiliiio' to a Vcabie oP a which belongs to a. series oP sueli values 

increasing by a eominon clilihreneo, 8. 

Let any other Pniietion, ft, oP x and y he I'epresentecl in the same 

way by a series oP curves eorr(!sponding to a series oi‘values oP ft 

having the same common dillerenee as those. oP a. 

Then to represent the Pnnetion a + ft in the same way^ w'c must 

draw a series oP curves through the intersoelions oP the two former 

series Prom the intcrsei-tion of the curves (a) and (/j) to that of the 

curves (a-f 6) and {ft~b), then through the intersection of (a + 2 6) 

and (ft —2 b), and so on. At each of these point,s the function will 

have the same value, namely a-f-/3. The next curve must bo drawn 

through the ])oints of intersection of a and ft + b, of a-f 6 and ft, 

of Cl+ 28 and ft — b, and so on, The function belonging to this 

curve W'ill be a-f^f 8. 

In this way, when tin' .series of curves (a) and the .scu-ies {ft) are 

drawn, the scries (af/3) may lx; constructed. Tlu'.se three serie.s of 

curves may be drawn on separate ]necc.s of Iranspaiamt paper, and 

when the first and second have been properly .superposed, the third 

may be drawn. 

The combination of conjugate limetions by addition in this way 

enables us to draw figures of many intemsting’ cases with very 

little trouble when we know how to draw the simpler cases of 

which thc3'^ arc compounded. W(“ have, however, a far more 

poW(>rful method of tran.s format ion of solutions, depending on the 

follow'ing theorem. 

185.] Tiikorkm it. /f .v" and if oro coiijupalr finir.tlons mfh 

respect to the rarlahtes x and if, and If x and if are coiifiKjafc 

faiictiom vith resjiect to .v and >/, then ,t" and p" lelll he con- 

jnpute funetioiis irlth respect to :t; and y. 

dx" dx" dx dx” df 

'Jf ~ d/ dx dif dx. ’ 

_ dj'^ dif ^ oV 

~ dif d/ d J dp ’ 

c.' 
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•1 d -- 
dy ~ (lx (ly 'ly' (ly ’ 

~ dy' (lx dx' (lx 

- _ . 
~ ~dx ’ 

and the.sc are the conditions llmt x" ami y' should he conjiif^ate 

functions of x and^. 

This may also ho shewn from the ovijrinal definition of eoiijn<^ato 

functions. For l y" is a function of F+ \/-~\y', and 

x' y is a function of .r + — 1 ,y. Hence, x"-i- a/ — 1 y” 

is a function of \/— 1 y. 

In the same way we may shew that if x' and y arc conjugate 

functions of ,r and y, thou x anil y are eonjng-ate functions of x' 

and y. 

This theorem may he intevprotod grapliically as follows :— 

Let .('h//' ho taken as rectangidar coordinates, and let the curves 

corresiionding to values of x" and of /' talom in regular arithniotical 

scries be drawn on pupor. A double system of eni'ves will thus he 

drawn cutting the pnjier into little scpiares. Let the paper he also 

ruled with liorizontal and vortical linos at ofinal intervals, and let 

these lines be marked with the eorresponiling values of .r' and /. 

Next, let another piece of jiapov he taken in which x and y arc 

made rectangular coordinates and a ilouhlo s^'stem of curves x, y' 

is drawn, each curve being inavk'od with the corresponding value 

of .r' ovy/. This system of curvilinear coordinates will correspond, 

point for point, to the reidllinear system of coordinates x\ y' on the 

first piece of paper. 

Hence, if rve lake any niimher of points on the cairvo x" on the 

first paper, and note the vahu's of x and / at those points, and 

mark the corresponding points on the second paper, we shall find 

a number of points on the transfoi'ined curve x". If we do the 

same for all the curves .r", y" 011 tlio first paper, we sludl obtain on 

the second paper a double series of curves xd, y" of a dill'eri'iit form, 

but having the same projierty of cutting the paper into little 

sepia res. 
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186.] Tiieorkm III. If r !.<i ana funct'tnu- of x' and f, and if x' 

and jf nra conjntjatc functions of x and j/, (hen 

I.l da^ + 7^^) =// dm + *' 

the inicf/mlinn heintj between the same tint its. 

dr dt'dr dvdf 

dx dx' dx df d.i! 

dx~ ilj'“^dx' “ dr' df dr dr df~ dr] 

dr tiff dr (Iff _ 

dx dr- (If dr- ’ 

1 fl' - dyf df If dr df <r- rf/f 
'ff~ ~ dx - df. " dr df dtj dt/ df~ df 

dr dff_ drd-f 

d.v! (If- df (If 

Adiliiip;- tlic last two cfiiialiou.s, ami romembcriiig the conditions 

of conjn^’.'ite fnnelions (1), we find 

d- r d- r _ dfff ((h- “ di/'S dff (Tff \Wf] 
dx- Vf ~ dr'- ftx ■*" 'dfi ! df^ ^dr 'df ! ' 

r d- If fir df dx' dt/'^ 

~ \lx"- df-^^dr djj dj/ dx! 
Hence 

i'i,d-r d-r , , , d-l\flr df dx'df-.. , 

JJ ' '' ~JJ ^d.v'- c//-) ^ dx fi '7h/ dxl 

rrf^r , tr if ,. ,, 

If /' is a potential, then, by Poisson’s equation 

d'-r d-r 
-ffr + ;/-2 + 1 = 0, 

and we mav write the result 

I j p dr dt! = fj p dx' df, 

or the (iiiantity of electricity in corresponding* portions of two 

systems is the same if the coordinates of one system are conjugate 

liinctioiis of tlio.se of the other. 
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Additional Theorems oti Covjugaie Functions, 

187.] Tiieoukn TV. 7/ and and also x., and ij.,, are con¬ 

jugate functions of X and if, then, if 

X = .t, , and J" = .r, 1/,,+ x., , 

X mid Y will he conjurfate functions of x and y. 

Tor X-i- f ~\Y = (.Pj-f v/ — 1 ^1) (a-g■+ \/ — 1 y.f. 

Theorem V, Tf tp he a solution of the equation 

d.-4> d-cl> 

dx^ ^ df^ ’ 

and if 2B. = log , and 0 = tan-^ A 

71 and 0 leill be covjuifate functions of x and y. 

d<^ 

II 
dcj) 

fij/ 

For Ji and 0 avc conjugate Aiiictions of and f, and these 
*' fit* lit 

di\'i 

arc conjugate functions of .r and if. 
dx 

ExAjri’LF, I.—Inversion. 

188.] As an example of the general method of transformation 

let us take the case of inversion in two dimension.s. 

If 0 is a fixed point in a plane, and OA a fixed direction, and 

if r = 01^ — aec, and 0 = AOP, and if .r, y are the rectangular 

coordinates of F with respect to 0, 

p = log-v/a:“ + y“, 0 = tan-^-» 
(r X ■ (5) 

X ■=■ ae^c.Ci'oQ, y — aee F\\iQ, 

p and 0 are conjugate functions of x and y. 

If p = np and 0' = 116, p' .and 6' will he conjugate funetions of p 

and 0. In the case in -which n = — 1 we have 
o 

/ = — , and 6' = —6, (6) 
r 

which is the case of ordinaiy inversion combined -with turning the 

figure 180° round OA. 

Inversion m Two Dimensions. 

In this case if r and / represent the distanees of corresponding 
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points from 0, e and / tlie total electrification of a body, S and S' 

superficial oloments, r and V' solid olomonts, a and a surfiice- 

dcnsitics, p and p' volume densities, </) and <ji' corresponding- pio- 

tentials, 

T S' /;> 

•r J r- V 

e 

e 
1 . 

/ 
(T 

(T 

f> 
r~ 

r - 

/ 

P 
> ^ (0 

E.K.\JrPi.K II.—FJectric hiaf/ox in Tiro iDimensioihi. 

189.] Lot A bo the centre of a circle of radius AQ = b, and let 

E 1)0 a cliarg'o at A, then the potential 

at liny point P is 

(j> = 2E\og(8) 

and if the circle is a section of a hollow 

conducting cylinder, the surface-density 

at any point Q i.s — 
E 

2T:b 
Fig. 17. 

Invert the system with respect to a point O, making 

AO =: w,h, and «-= (m” — \)b“ •, 

then we have a charge at A' equal to that at A, where A A' = ~ 

The density at is 

E 1P-AA'\- 

2t;/j' A'Q'- ■’ 

and the potential at any point P' within the circle is 

(j/ = (p = 2E{\ogb—\og AP), 

= 2E {\og OP'-log A'P'-hgw). 

This is equivalent to a combination of a charge E at A', and a 

charge —E at 0, which is the image of A', with respect to the 

circle. The imaginary charge at 0 is equal and opjrositc to that 

at A'. 

If the point P' is defined by its polar coordinates referred to the 

centre of the circle, and if we put 

p = log;* —logand p^ = logAA'—hg b, 

then AP' = beP, AA'= bePo^ AO = be-Po(10) 
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and tlio polonfial at tlie ])oint (p, 0) is 

cj) = /i’lni>’ 2rP pos 0-f r-P] 

2 i’P» I'P c‘Os 0 + c'P) + 2 (11) 

Tills is tli(‘ poli'iilial ai tlu' pdiiit (p, 0) iliu'to a fliar^'o J'.', plaeod 

at tlu> point (p,,, o), witli tlie oondilion tliat wlicn p = 0, (/> = 0. 

In tin’s ease* p and 0 are the eoiijnonte functions in e(|iiiitions (5) : 

p is the loo'ariilnn of the ratio nf the radius vector of a jioint to 

the radius of the circh', and 0 is an angle. 

The centre is the only siiignlj^v point in tln.s syst(‘m of cnordiuates, 

and the line-integral of j runnel a closed cnrvi' is zero or 2 7r, 

according as the closed curve oxelnde.s or includes the centre. 

T‘]xAMPr;K HI.—Ncinuaini'x 'rntins/ormulim of Ihh C'/o<tc‘*. 

190.] Now let a and ft he any conjugate functions of .r and 1/, 

.such that the cnrve.s (a) are cquipotential curves, and the curves 

(ft) are lines of force duo to a system consisting of a charge of half 

a unit at the origin, and an (deet rifled .system dis])o.sod in any 

luaiiner at a certain distance from the origin. 

Let n.s .suppose that the curve for which the jiotcntial is a,, is 

a closed curve, such that no part of the electrified .system cxcejii the 

half-unit at the origin lies within tlii.s curve. 

Then all the eiirve.s (a) hetween tlii.s curve and the orig’in will ho 

closed curves siirroiiiuling the origin, and all the cnrve.s (/3) will 

mei't in till' origin, and will out the cnivi's (a) orthogonally. 

The coordinates of any jioiiit within the curve (a„) will bo determ¬ 

ined hy the value's of a and ft at that jioiiit, and if the jioiiit travels 

round one of the curves a in the positive direction, the value of ft 

will increase hy 2t7- for each eoinjilete circuit, 

If’ we now sniijiose the eiivve («„) to be the .section of the inner 

siirfiree nf a hollow e\dinder of any ferin maintained at jioteiiiial 

zero under the iiiihieiiee of a charge of linear density J'J on a line of 

wliieli the origin is the projoetion, then we may leave the external 

eleetrified .system out of consideration, and wchavc for the potential 

at any jioiiit (a) within the enrve 

<l> 2?:(a-a,), (12) 

and for the quantity of elcetrieity 011 an\’’ part of the curve a,, 

between the points corresponding to /3, and ft.,, 

Q,=2E{ft,-ft.f ■ (Kl) 

• Sre (Vi llc's Joiiriuil, ISi',1. 
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If in tlii.s way, or in any othor, wc linve ilotevniineil tlic dis- 

l.ribntion of poleiitial for tlie oasu of a p;‘ivuii curve of section when 

tlic cliarg'c is ])Iiico(l at a <^iveu point taken as origin, wo may pass 

to the ease in which tlic cliar^o is jilaood at any otlicr point by an 

application of tlio ^oncnil metliod of traiKsfornuition. 

Let tlic \'ahios of a and ft for the point at whicdi the charge is 

placed be a, and /3|, them snhstitiitiiig in equation (11) ft—a,, for p, 

and /3—/3, for (?, wc find for the potential at any point whose co¬ 

ordinates are a and ft, 

ij) = E]nfr (1 — cos(/3—/3,)-f-c'-'t"""'') 

— /f log’ (I _2c“ cos (/3—/3j) -[- +2E (cq — a„). (I ■!) 

This (‘xprossion for the potential becomes zero when a = a,|, and is 

finite and coatinnons within the curve a,, except at the point cq/^,, 

at which jioiiit the* first term becomes infinite, and in its immediate 

iieig'hbonrhood is nlliinately equal to 2 7:^'log/, where / is the 

distance from that point. 

We have therofoi'i' obtained the means of dednciiig' the solution 

of Greenes problem for a charge at aru' point within a closed curve 

when the solution for a charge at any other point is known. 

The (diargc induced upon an element of the eiirve a„ between the 

jioints ft and ft + i/ft by a eliarge E placed at the point a, ft^ is 

A’ 

2 7! 1 - 2cX“i- '‘'0 cos {ft - /:!,) 
(15) 

From this expression wc inii}’ find the jiotential at any point 

fl,/3, within the closed curve, when the value of the potential at 

e\’ery pioiiit of the closed carve is g-iven as a fimetion of ft, and 

there is no electrification witliiii the clo.sed curve. 

For, by Theorem II of Chap. Ill, the part of the potential at 

a, /3j, due to the miiiatcniiiice of the piortion i/ft of the closed carve 

at the Jiotential V, is ?//, where n is the eliargc induced on dft by 

unit of elcetriiieation at aj ft^ llciiee, if / is the potential iit a 

jioiiit on the closed curve deiined as a fimetion of ft, and i/i the 

lioteatial at the point a, ft, within the chnsed curve, there beiiig- no 

elcetriiieation within the curve, 

1 r-'" (1 

~ 2 77 I — 2 COS {ft - 

— A7//3 
ft ft + e2(<i,-a„l 

1 
(Id) 
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ExAJtin.E IV,—J)isf)‘iLtifio)t of EJoctrH'lf)/ near an Juhje of a- 

Covdnetor formvi] hi/ Tiro Elaite Farcu. 

191,In Ihc case ef an infinilc plane laei’ of a coTuluclor cliarg'od 

with electricity to the- surfaco-density o-,,, wo lincl for the potential 

at a (listaiiee// from the i)hme 

/-= C-‘\ 7r(r„,y, 

whore 6'is the value of the iiotentiiil of the conductor itself. 

Assume a straight lino in the plane a.s a polar axis, and transform 

into polar coordinates, and we lind for the potoiitial 

/ ’ = 6’ — 177 a t’P .sin 0, 

and for the quantity of electrieity on a jiarallelog-ram of breadth 

unit}', and length ae^ measured from the axis 

K = (T|, 

Now let ns makt> p = vp' and 0 = nO', then, since p' and 0' an' 

eonjngiite to p and 0, tin; eqnation.s 

J — C— Iti a■^,ac’'P' sin 7i0' 

and A = 

express a possible distribution of elcetrieity and of potential. 

If we write' r for aaP', r will he tin* distance from the* axis, and 

0 the angle, and wc shall have 
r" 

/ = d'— 1-rr fT,, --TSiim/d, 
' a''~ ‘ 

A’ _ 
„>'■- ) ■ 

7' will he equal to C whcuevi'r itO = -n or a ninltiplc of tt. 

Let the edge he a salient iinglo of the conductor, tin; inclination 

of the faces laung a, then the angle of the dielectric is ‘Jtt —a, so 

that when d = 27r —a the point is hi the other face of the eondnetor, 

IVe mu,st tliercfure make 

11 ('Itt—a) = TT, or ii =-- 
^ ^ 277 — 0 

n 

Then E = 6'- 177 fl-,, a (-) .sin --, 
V'' 2 77 —S' 

r 

A. l5fr —a 

E = a, a (-) . 

The surface-density cr at any distance r from the edge is 
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When the angle is a salient one a is loss than tt, and the siirfaee- 

deiisity varies according to some inverse power of the distanee 

from the edge, so that at the edge itself the density becomes 

infinite, all hough the whole charge reckoned from the edge to any 

iinite distance from it is always iiiiite. 

Thus, when a=0 the edge is iniinitely shari), like the edge of a 

mathematical i>hine. In this case the densily varies inversely as 

the sipiai'c roof of the distance from the edg-e. 

AVhen a= the edge is like that of an e(piilateral [)risni, :iiid the 

density varies inversely as the power of the distanee. 

^Vhen a = ^ fl'i-' edge is a right angle, and the density is in¬ 

versely as the cube root of the di.stauee. 

12 TT . • t 
AVheii a= the edge is like that of a regular hexagonal pri.sin, 

and the density it! inver.scly as the ibarth root of the dislaiioe. 

When a = 7T the edge is obliterated, and the den,sity is constant. 

AV'lien a= f^TT the edge is like that in the inside of the hexagonal 

[irisin, and the density is diraci// as the scpiare root of the distance 

from the edge. 

When a= il tt the edge is a re-entrant right angdc, and the density 

is directly as the distance from the edge. 

When a= r; tt the edge is a re-eiilrant angle of G0°, and the 

density is directly as the sipiare of tin; distanee from the edge. 

In reality, in all eases in which the density becomes infinite at 

any point, there is a discharge of electricity into the dielectric at 

that point, as is explained in Art. 55. 

Ex.vmi'I.e V,—Elliimcs and Ili/jiO'holaH. Fig', X. 

1!)2.] AVc> have seen that if 

.r, = 6’'^ cos .sin \//, (1) 

x and // will he conjugate functions of (/> and y\i. 

Also, if .v.^ = f.'-'i'con \jj, ——e-'^ iiliwj/, (2) 

aiulyo will be conjugate funetioii.s. Ilciiee, if 

2 ar=.r, -f a’._,= (c''' + cos \|/, 2y=y, -J- y^=(e'^‘—c"'*') sin \//, {A) 

X and // will also be conjiigalo iuiiclioiis of and \//. 

Ill this case the points for which i/i is constant lie- in the ellipsi; 

whose axes are and — 
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The points lor whioli is consliint li(! in the liyperhulii whoso 

axes tire 2 amxj/ and sin \//. 

On the axis oi' .r, l)e{wcoii ,v --r. — 1 and .r = + 1, 

(j> ~ 0, \// = eus"*.i'. (■}) 

On tile axis ol'r, hoyond these limits oii either side, we have 

.r> 1, ijf — i>, ,p = (,/‘+^/.r~—l), (5) 

.(* < — 1 , \// = TT, (j) = lo^’ — 1 — .r), 

Ifoiice, if d' i« the potential Ihnctioii, ninl \j/ the I’nnetion of How, 

wo have the ease uf elootrieily iluwiny i'roin the nei^-ative to the 

positive side of the axis oi’,o through the space between the ])(a'nt.s 

— ] and -f-1, the parts oi' the axis beyond those limits Iieiiig 

iinporviuiis to idoetrioity. 

Since, in this case, the axis of// i.s n lino of How, we may suppose 

it also iinpervioiis to eloetrioity. 

AA'e may also ooiisidi.-r the ellipses to ho so'etions of the ecpii- 

poteiitial snri'aees due to an indeiinitely lon;^’ Hat eoiuhietor of 

breadth 2, ehar^-od with half a unit uf eleotrioity per unit of leng-th. 

If wo make \j/ the potential Ihiietion, and -.j) the liinetioii of ilow, 

the ease hecuino's that of an iniinite plane from wluVdi a strip of 

breadth 2 has Ihtu ent awa\’ and the plane on one side eharf^’od to 

potential ?r while the other roniains at zero. 

3’he.sc cases may be eonsiilered as jiartienlar eases of the (juadrie 

surfaces treated of in Chapter X, The forms of the curves are 

yiveii in Fio-. X, 

ExAMri.K M.—Fio-. XI. 

193,j Let U.S next consider J and j/' as funetioii.s of ,c and //, where 

,r'= log'//-, /'=(<< 1 au '’> (’') 

.e' and//' will be 'also eonjiigutc i’unetiuns of (/) and x}/. 

The curves resulting' from the. tran.sforniation of Fig-. X with 

i'es))ect to the.se new coordinates are given in Fig. XL 

If ./ and // are reetangulai' eoordinate,s, then the propertie.s of the 

axis of./' in the lir.sl figure will belong to a series of line.s jmrallel 

to ,/ in the second tigure for which //= fn/'-. where n is any 

integer. 

The j)n.sltlve values of ./ on the.se lines will eorrospoud to values 

of A* greater than unity, for wliieli, n.s We liavg already seen, 

i/j = log (./• p 1) = log r — l). (7) \j/ = 7/77, 
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The neg-iitlve values ot‘ x' on the same lire.s will corw.-sjioncl to 

valiieH ol'.i' le,s.s Lliaii iinily, lor wliieli, as we have .seen, 
.1*' 

(j) ■— 0, \j/ = (.'OS'"’ = eo.y ‘ c''. (Hj 

The projierties oi'llio axis (if//in tin; iirst ii^aire will helnii^r to 

a series of'liiie.s in the se(‘oiul ii>^^ai'e parallel to x', i'or which 

y/ 477 («'+.*). (!)) 

The value of'i// aloiin- these lines is xj/ = tt (u -{■},) for all points 

both positive and nett’alive, and 

(/) = lo<i-(/+ + 1^) = 1".R' '' +1^- (J'O 

194, ] Ii‘ we eonsider (p a.s the potential function, and xj/ as the 

fnnelion of lluw, we nni}' eonsiihn- th(‘ ca-se to he that of an in- 

deliiiitely loii^' .strip of metal of breadth nO with a noii-coiidiietin^' 

division extendiiii^ from the oritfin indcTiuitely in tin; ])ositive 

direction, and thus dividing* the positive jiart oi' the strip info two 

.sejiarale ehauiiels. AVe may sujipose this division to he a narrow 

slit ill the .sheet of metal. 

If a current of elect rieity is made to ilow along* one of tla'se 

divtsioiis and hack ag-ain along- the other, the eiitraiiee aiul exit of 

the current heiiig- at an iiuleiiiiite distance on the jiositive side of 

the origin, the di.strihntion of potential and of current will he given 

by the iiinctions (/> and xj/ respectively. 

Jf, on the other hand, we make xj/ the potential, and cj) the 

funetiou of ilow, then the ease will be that of a enrront in the 

general direction of //, iloxving- through a sheet in whieh a number 

of non-conducting- divisioius are idaeed parallel to .r, extending from 

the axis of y to mi imleliuile distanee in the negative direction. 

195. ] AA'^e may also ajiph' the results to tavo important cases in 

statical eleetrieily. 

(1) Let n eoiidiictor in the form of a jilane sheet, honiuled by a 

straiglil edge but otherwise iinliinited, be ])laced in the plane of xc 

on the positive side of the origin, and let tw'o iniiiiite eonductiiig 

])laiies be ])liieed parallel to it and at distanees on either side. 

Then, it'xjj i.s the poleiilinl fiinclioii, its value is 0 for the middle 

eondnetor and 4 z for the two ])hiiies. 

Let us consider the cpiaiitily of eleetrieily on a part of the niuldle 

eondnetor, exleiuling to a di.stanee 1 in the direction of .c, and from 

the origin to x = a. 

The eleetrieity on the part ol‘ this strip extending from a-j to 

■J 77 

IS 
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Hence from tlie origin to .?•'= a the iiinonnt is 

’ logC'^+ x/e''-l) . 
‘1 TT 

If a is hirgo compared with h, thi.s becomes 

/-■= * h)g2cV 
■1 TT 

// -f log^. 2 

\ Ti h 

(11) 

(12) 

lienee the (piaiitity of electricity on Ihe plane Ijoiincled by the 

straight edge is greater than it would have been if the clcotncity 

liad been iiniionnly distrihuled over it with the same density that 

it has at a distance from the boundary, and it is etjiial to the 

(piaiitity of electricity having the same uniform surface-density, 

but extending to a breadth equal to b log^ 2 beyond the actual 

boundary of the plate. 

This imaginary uniform distribution is indicated by the dotted 

straight lines in Fig^. XI. The vertical lines represent lines of 

force, and the horizontal lines cciuipoteutial .surfaces, on the hypo¬ 

thesis that the density is uniform over both planes, produced to 

inlhiity in all directions. 

196.] hllcetrical eondcnser.s are soinctinics formed of a pinto 

placed midway between two parallel plates extending considerably 

beyond the intermediate one on all sides. If the radius of curvature 

of the boundary of the intermediate plate is great compared with 

the distanee between the plates, we may treat the boundary as 

approximately a straight line, and calculate the capacity of the 

condenser by supposing the intermediate jilate to have its area 

extended by a strip of uiiiforiu breadth round its boundary, and 

assiiniirig the snrface-den.sity on the extended plate the same us 

it is ill the jmrts not near the bonndaiy. 

Thus, if H be the aetnal area of the jdnte, L its circiiinfereucc, 

and Ji the distance between the large ]>lates, we have 

//='/A 113) 
TT 

and the breadth of the additional .striji i.s 

a = 
log, 

TT 

') 

■ E. (1-1) 

•so that the extended area i.s 

tH' — S->r BL - log/i. 
77 

(lo) 
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The eapaeity of the middle plate is 

1 

B 
1 r T I I 1 (10) 

Correction for the 2’hichiess of the Plate. 

Since the middle plate is generally of a thickness which cannot 

be neglected in comparison with the distance between the plates, 

wc may obtain a better rcpreseiitatiou of the facts of the case by 

supposing the section of the intermediate plate to correspond with 

the ciii-vc \j/ = \j/'. 

The plate will be of ncarl}' uniform thickness, at a 

distance from the boiindar}^, hut will be rounded near the edge. 

The position of the actual edge of the plate is found by putting 

/= 0, whence x'= h log cos f. (17) 

The value of (f) at this edge is 0, and at a point for whieh a’'= a 

it is a + 6 log^ 2 

b 

Henee the quantity of eleetrieity on the plate is the same as 

(18) 
if a strip of breadth ^/3 

a'= .^ log,(2cos-C) 

had been added to the plate, the density being assumed to be every¬ 

where the same as it is at a distance from the boundary. 

Dcnsitji near the Edge. 

The surface-density at any point of the plate is 
x' 

J_ (h\, _ 1 e^ 
'1 7r (IE ~ At:b 1 2.r 

V e — 1 

_ 1 

•1 r.b 
The quantity within brackets rapidly approaches unity as x 

increases, so that at a distance from the boundary equal to n times 

the breadth of the strip a, the actual density is greater than the 

normal density by about -.7,7^ of the normal density. 

In like manner we may calculate the density on the infinite planes 
X 

\T,b I a.r' 

V c + 1 

AVhen a!' = 0, the density is 2~^ of the normal density, 

vot. I. n 

1 + 

21: 
-T+ie 

-■K ) 
— &c./. (19) 

(20) 
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At n limes the breadth of the strij) on the positive side, the 

density is less than the normal density by about - • 

At 11 times the breadth of the strip on Iho negative side, tlic 

density is about of the normal density. 

These results indieate the degree of aeeuracy to be expeeted in 

a])ph'ing (his method to plates of limited extent, or in which 

irregnlaritie.s may exist not veiy far from the bonndary. The same 

distribution would exist in the ease of an infinite series of similar 

plates at ecpial distances, the potentials of these plates Iming 

alternately + /"and —In this ease we must take the distance 

between (lie jdates equal to Ji, 

197. ] (2) The second ease we shall consider is that of an infinite 

series of plane.s parallel to xz at distances ll — Tib, and all cut olfby 

the plane cS. tjz, so that tiny extend only on the nogativc side of this 

plane. If we make (/> the potential function, wc may regard these 

planes as condnetors at potential zero. 

Let ns con.'iidcr the curves for which 0 is constant. 

When y=: n-nh^ that is, in the prolongation of each of the planes, 

wc have i, ion- ^ q (21) 

when y= that i.s, in the intermediate positions 

x~ h log i [€''<‘ — 6'-’^). (22) 

Hence, when 0 is large, the curve for which 0 is constant is 

an undulating line whose mean distance from the a.xis of y is 

approximately ^ ^ ^ (0-log„ 2), (23) 

and the amplitude, of the undulations on either side of this line is 

i i log m 
AVlien 0 i.s large this becomes so that the curve approaches 

to the form of a straight line parallel to the axis of y at a distance 

u from ah on the positive .side. 

If we snpjiose ii ])lanc for which = a, kept at a constant 

potential while the sy.slem of parallel planes is kept at a ditferent 

potential, then, since i0 = a -y h log^ 2, the .surfaeL'-dciisity of 

the electricity indneed on the plane is equal to that whieh would 

have been induced on it hy a plane ])arallel to itself at a potential 

equal to that of the series of planes, hut at a distance greater 

than that of the edges of the planes hy h log^ 2. 



A QROOVEI) SURFACE. 243 199-] 

If £ is tlio distance between two of tlie planes of the series, 
B = Tri, so that tlie additional distance i.s 

(25) 
TT 

198.] Lot us next consider the space included between two of 

the equipotential siirlace.s, one of which consists of a series of parallel 

waves, while the other corresponds to a larg-e value of (p, and may 

be considered as approximately plane. 

If D is the depth of tlie.se undulations from the crest to the trough 

of each wave, then we llnd for the corresponding value of (p, 
ij 

(f>= i log -y-—- • (2G) 

e*- — 1 

The value of x' at the crest of the wave is 

i log 4 (t''*’+ (27) 

Hence, if A is the distance from the (.'rests of the waves to the 

opposite plane, the capacity of the system eoinposcd of the plane 

surface and the undulated surface is the same as that of two planes 

at a distance A + a where 

^ 1 = — log, — 
TT 

l + e 

(28) 

199.] If a single groove of this form be made in a conductor 

having the rest of its surface plane, and if the other conductor is 

a plane surface at a di.stance A, the capacity of the one conductor 

witli respect to the other will bo diminished. The amount of this 

diminution will be less than tbe - th part of tbe diminution due 
u 

to n such grooves side b}’- side, for in the latter case the average 

electrical force between the conductors will he less than in the 

former ease, so that the induction on the surface of each groove will 

be diminisbed on account of the neighbouring grooves. 

If L is the length, B the breadth, and J) the depth of the groove, 

the capacity of a portion of the opposite plane whose area is S will be 

S _ a' 

4 TT A -1 TT A .A + Cl 

11' A is large compared with B or a, the correction becomes 

A ^ 
-iTT- A‘^ 

log Go 
2 

I't-C 

Z) ’ 

ji 

(29) 

u 2 

(30) 
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(31) 

and for a slit of infinite depth; patting' J) = 00, the correction is 

To find the surface-density on tlic scries of parallel plates we 

must find a = -- when 0 = 0. AVc find 
■1 -rr (lx 

1 1 
cr = 

4TTd 
n/ 6'““'' — 1 

(32) 

The average density on the ])lanc plate at distance A from the 

edi^cs of the series of iilatcs is ? = —^ . Hence, at a distance from 

the edge of one of the plates equal to 11a the surface-density is 

of this average density. 
^2“" - 1 

200.] Let us next attempt to deduce from these re.sults tlie 

distribution of electricity in the figure formed by rotating the 

plane of the figure about the axis //= ~Ii. In this case, Poisson’s 

equation will assume the form 

JV d-r (l‘^V 

d,x- df- R + y dy 
7 -f 4 77^ = 0. (33) 

Let US assiiinc r=0, the function given in Art. 193, and determine 

the value of p from this equation. We know that the first two 

terms di.sappcar, and therefore 

p=-J_(34) 
4tt li + y dy 

If we suppose that, in addition to the surface-density already 

investigated, there is a distribution of electricity in space according 

to the law just stated, the distribution of potential will be repre¬ 

sented by the curves in Fig. XI. 

Now from this figure it is manifest that ~ is generally very 

small except near the houndarics of the plates, so that the new 

distribution may be approximately represented by what actually 

cxi.sts, namely a certain superficial distribution near the edges of 

the plates. 

If therefore we integrate JJpda'dy' between the limits y=0 and 

and from x' — —<x> to *= -foo, we shall find the whole 

additional charge on one side of the plates due to the curvature. 
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Since 

L + QO 
pfW 

■<Xi 

Jl_ 1 d \l/ 

1 1 

8 li + Y 

Integrating with respect to i/, we find 

+ CD 

p dx dy' = 
1 iyi’ + 7i, 7? + 7? 

I B 
4 

i() yi* 4 8 yi? 

1 ]i~ 
--&e. 

(35) 

(36) 

(37) 

Tliis is tlic total quantity of electricity which wo must suppose 

distributed in space near the positive side of one of the cylindric 

plates per unit of circuinfcrencc. Since it is only close to the edge 

of the plate that the density is .sensible, we may suppose it all 

eondensed on the surface of the plate •withnut altering sensibly its 

action on the opposed plane surface, and in calculating the attraction 

between that surface and the cylindric surface we may suppose this 

electricity to belong to the c^dindric surface. 

The superficial charge on the positive surface of the plate per 

unit of length would have been — if there had been no eurvature. 

lienee this eharge must be multiplied by the factor (l 4-i 

to got the total eharge on the po.sitive side. 

Ill the case of a disk of radius Ji placed midway between two 

infinite parallel plates at a distance B, we find for the capacity 

of the disk 
(38) 

Ji TT 

Theory of Thommn'a Guard-ring. 

201.] In some of Sir W. Thomson’s electrometers, a large piano 

surface is kept at one potential, and at a distanee a from this surfaec 

is jilaeed a plane disk of radius R surrounded by a largo plane plate 

called a Guard-ring with a circular aperture of radius R' concentric 

with the disk. This disk and plate arc kept at potential zero. 

The interval between the disk and the gnard-plate may be 

regarded as a circular groove of infinite dc2ith, and of breadth 

R—R, which we denote by B. 
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The cliarge on the disk due to unit potential of the large disk, 

]i^ 
supposing the density uniform, would ke • 

U /I 

Tlic cliarge on one side of a straight groove of breadth B and 

length L ~ 27ri2, and of infinite depth, would he 

, BB 

' a ■ 

But since the groove i.s not straight, but has a radius of curvature 

It, this must be multiplied by the factor (l + ^ • 

The whole charge on the disk is tlierefore 

ir- , liB . B s 

+ '• AW 27t) 4 A. 
(39) 

ir-^ir- ir-F^ a' 

8 y/ 8 y/ y/ + ci 
(40) 

The value of a cannot be greater than 

, B log 2 75 1 

a = — , = 0.22 .7i nearly. 
7T 

If.S is small compared ivith either A or It this expression will 

give a siifllciently good apjiroxiniation to the charge on the disk 

due to unity of diiTerciioe of potential. The ratio of A to It 

may have any value, but the radii of the large disk and of the 

guard-ring must exceed It by several multiples of A. 

Example VII.—Fig. XII. 

202.] Helmholtz, in his memoir on discontinuous fluid motion*, 

has jiointcd out the application of several formulae in which the 

coordinates are expressed as functions of the potential and its 

conjugate function. 

One of these may be applied to the case of an electrified plate 

of finite size placed parallel to an infinite plane surface connected 

with the earth. 

Since a:, = A cj) and y, = A y}/, 

and also x., = A cos \(/ and y., = /I sin \j/, 

arc conjugate functions of 0 and \j/, the functions formed by adding 

a\ to and. y^ to yg will be also conjug'iite. Hence, if 

X = A (l)+A cos yf/, 

y — A \f/ + A ^ sin xj/, 

• Koniyl. Akud. der WtaseMchaflen, zu Berlin, April 23, 1868. 
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then X and y will be eonjug^ate with respeet to </> and \f/, and cp and 

i// will be eonjn^atc with respeet to x and 3/. 

Now lot X and y he roctang'iilar eoorclinatcs, and let ho the 

potential, then X’l/) will he conjugate to A\l/, /c being any oonstant. 

Let ns put \jr = TT, then y = Att, x = A 

If f/j varies from —co to 0, and then from 0 to +00, a? varies 

from —00 to —A and from —A to —so. Hence the cqiiipotcntial 

surface for which k\j/z=~ is a plane parallel to x at a distance d= nr A 

from the origin, and extending from —00 to x = —A. 

Let us consider a portion of this plane, extending from 

X = — [A A «) I'o X = —A and from c = 0 to = e, 

let us suppose its distance from the plane of xz to l)c y = h =. Av, 

and its potential to be 7"= i\l/ = k'x. 

The charge of elcctrieity on any portion of this part of the plane 

is found by ascertaining the values of t/j at its extremities. 

If these are t/j, ami (f).,, the quantity of electricity is 

—(/q). 
“i TT 

We have therefore to determine <p from the equation 

X = — {A A a) = A ((/) — e'l‘), 

(fi will have a negative value and a positive value at the edge 

of the ]danc, where x = ~A, (/> = 0. 

lienee the charge on the negative side is —cL-ijti, and that on 

the positive side is cla]).,. 

If vve suppose that a is large compared with A, 

c/)i _ — —1+6' 

a ^ — ~\ + tcc. 
— - -1 +c -‘t 

cj>., = log + 1 Alog{-j -+ 1 + &c.)} • 

If wc neglect the exponential terms in <j>i wc shall find that the 

charge on the negative surface exceeds that which it would have 

if the superficial density had been uniform and equal to that at a 

distance from the boundary, by a quantity equal to the charge on a 

strip of breadth A = ^ with the uniform superficial density. 
IT 

The total capacity of the part of the plane considered is 
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The total charge is CV, and the attraction towards the infinite 

plane is 

A 

dC 

db 
r^— I 

477^2 1 
1 + 

a 

A . a 
1 + -• log 

a A 

I- e A&c.) 

V~c r h P , a , „ i 
=--,-r, {«• H--;r- lOh “V +&C.> • 

A. fTr /l** < -TT IT ^ /7 /i ■* 4 TT 1^2 I ' 77 71“ a A 

The eqiiipotcntial lines and lines of force are given in Fig. XII, 

Exa.mple VIII.—Theorjj of a Grating (>/'Parallel IPires. Fig. XIII. 

203. ] In many eleetrieal Instruments a wire grating is used to 

prevent certain parts of the apparatus from being cleetrified by 

indnetion. We know that if a eonduetor bo entirely surrounded 

by a metallic vessel at the same potential with itself, no electricity 

can be induced on the surface of the conductor by any electrified 

body outside the vessel. The conductor, however, when completely 

surrounded by metal, cannot be seen, and therefore, in certain eases, 

an aperture is left which is covered with a grating of fine wire. 

Let us investigate the eflect of thi.s grating in diminishing the 

effect of electrical induction. W(! shall suppose the grating' to 

consist of a series of parallel wires in one plane and at ecpial 

intervals, the diameter of the wires being small compared with the 

distance between them, while the nearest portions of the electrified 

bodies on the one side and of the protected conductor on the other 

are at distances from the plane of the screen, wdiich -are considerable 

compared with the distance between consecutive wires. 

204. ] The potential at 'a distance •/ from the axis of a straight 

wire of infinite length charged with a quantity of electricity A per 

unit of length is y rr. -2K log /+ 6'. (1) 

"VVe rnay express thi.s in terms of polar coordinates referred to an 

axis whose dislancc from the wire is unity, in which case we must 

miikc /■ = l+2roos0-{-r‘-, (2) 

and if wo suppose that the axis of reference is also charged with 

the linear density A', we find 

F = —A log (1 — 2rcos r^) — 2 A' log r-f- C, (3) 

If we now ni'akc 

r 6 = 
a 

(4) 
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then, by the theory oi' eonjugate functions, 

y = —A log \ 1 — “ eos-+ e “ / —2 A'' logtf “ + C, (5) 

where x and y are rectangular ooordiiiates, will be the value of the 

potential due to an infinite series of fine wires parallel to z in the 

plane ofy^, and passing through points in the axis of x for whieh 

a: is a multiple of a. 

Each of those wires is oharged with a linear density A. 

The term involving A' indieates an oleetrifioation, produeing a 

eoustant force — - in the dirootion of //. 

The forms of the equipotential surfaees and lines of force when 

A'= 0 are given in Fig. XIII. The equipotential surfaees near the 

wires are nearly cylinders, so that we may consider the solution 

approximately true, even when the wires are cylinders of a dia¬ 

meter which is finite but small compared with the distance between 

them. 

The equipotential surfaces at a distance from the mres become 

more and more nearly planes parallel to that of the grating. 

If ill the equation we make y = , a quantity large compared 

with a, we find approximately, 

J\ = (A -f- A') -f- C nearly. (6) 
(t 

If we next make y = — where b._, is a negative quantity large 

compared with a, we find approximately, 

r, = _ (A - A') + C nearly. (7) 

If c is the radius of the wires of the grating, c being small 

compared with a, we may find the potential of the grating itself 

by supposing that the surface of the wire coincides with the cqui- 

poteiitial surface which cuts the plane ofy^ at a distance c from the 

axis of z. To find the jiotcntial of the grating we therefore put 

X = c, and y = 0, wdieneo 

F = — 2 A log" 2 sin + C. (8) 

205.] We have now obtained expressions representing the elec¬ 

trical .state of a system consisting of a grating of wires whose 

diameter is small compared with the distance between them, and 

two plane conduetiiig surfaces, one on each side of the grating-, 

and at distances whieh are great compared with the distance 

between the wires. 



250 C'O.V.rLrOATE FUNCTION'S. [205- 

Tlio .surfiicc-dcnsity on tho fii'rii pluno is ^'o! from 

lion ((■)) 
4 TT rr, = -jj- =-— (A 4 A ). 

c/i^j a 

That on the second plane from the equation (7) 

dV„ ‘i-T: , 
■1 TTCTn—->7-“ =-(A—A ). 

air, a 

the cqua- 

(0) 

(10) 

If w’l! now write a , . -ncs 

and eliminate A and A' from tho equations (0), (7), (8)^ (0), (10), 

wo find 
/■, , 2^14,s 

4 TT fTj J +br^^- 
,r r „b.,\ r-2i„ 

— ^ 1 C1 "b ^ ~ J ^ ^-’ ^ " a 
(12) 

4 rT<r.,(b, + d,+ -~-) (13) 

When tho wires are infinitely thin, a boeomos infinite, and the 

terms in which it is the denominator disappear, so that the ease 

is reduced to that of two ])arallel pianos without a grating in¬ 

terposed. 

If the grating is in metal lie ooinmnnioatioii with one of the 

pianos, say the first, !■'= , and the right-hand side of the equation 

for fTj boeomos J\ — F.,. Hoiioo tho density (Tj induced on tho first 

plane when the grating is interposed is to that whioh would have 

been induced on it if the grating wore removed, tho second plane 
2 bj 

a (i j 4" '^•2) 

Wo should have found the same value for the effeot of tho grating 

in diraini.shing tho olootneal influence of the first surface on the 

second, if W(? had supposed the grating oonnocted with the second 

surface. This is evident since 6^ and k, enter into the expression 

in the same way. It is also a direct result of the theorem of 

Art. 88. 

The induction of the one electrified plane on the other through 

the grating is the same as if the grating w'cre removed, and the 

distance between the planes increa.scd from + to 

being luaintamod at the same potential, as 1 to 1 4- 

i,4-«i2 + 2^'-• 
CL 

If the two planes arc kept at potential zero, and the grating 

olcetriiicd to a given potential, the quantity of electricity on the 

grating will be to that which would be induced on a plane of equal 

area placed in the same position as 

2 ij ^2 is to 2 (^2 + ® (^h d" K)- 
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This investigation is approximate only when b■^ and b., arc large 

compared with «, and when a is large compared with c. The 

quantity a is a lino which may he of any magnitude. It becomes 

infinite when c. is indefinitely diminished. 

If we suppose c r=: ^ a there will be no apertures between the 

wires of the grating, and therefore there will be no induction 

through it. We ought therefore to have for this case a = 0, The 

formula (11), however, gives in this ease 

=-0.1 la, 

which is evidently erroncou.s, as the induction can never be altered 

in sign hy means of the grating. It is easy, however, to proceed 

to a higher degree of approximation in the case of a grating of 

cylindrical wires. I shall merely indicate the steps of this process. 

Method of Approximation. 

206.] Since the wires arc cylindrical, and since the distribution 

of electricity on each is symmetrical with respect to the diameter 

parallel to y, the proper expansion of the potential is of the form 

/'= C;, log + 2 C'^r’eos/d, (14) 

where r is the distance from the axis of one of the wires, and 0 the 

angle between r and y, and, since the wire is a conductor, when 

r i.s made equal to the radius V must he constant, and therefore 

the cocliieient of each of the multiple eo.siucs of 0 must vanish. 

For the sake of conciseness let us assume new coordinates &c. 

.such that 

a ^ — 2tix, rtr; = 2 Try, ap = 2 tt r, a(3 = 2-1:6, &c. (15) 

and let ip = log (e’’'^^+ +^>—2 cos ^). (10) 

Then if we make 
dF d-F 

(If) 

by giving proper values to the coefficients A vve may express any 

potential which is a function of 7; and cos and docs not become 

infinite except when r; -{-/3 = 0 and cos ^ = 1. 

^Vlicn /3 = 0 the expansion of F in terms of p and 6 is 

i] = 2 logp+ iVf cos 2 0—rAir P* 00s 4d-f &c. (18) 

For finite values of /3 the expansion of F is 

1+e-^ . e-P 2 
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In thu ease of the grating with two eondueting j)lanes wliose 

equations arc rj — ~i3i and r]= that of the plane of tlic grating 

being 7=0, there will be two infinite scries of images of the 

grating. The first series will eonsist of the grating itself together 

with an infinite series of images on both sides, equal and similarly 

eleetrifiecl. The axes of these imaginary cylinders lie in planes 

whose equations are of the form 

7 = ± (20) 
n being an integer. 

The seeond series will eonsist of an infinite series of images for 

whieh the coefficients A.^, A^, &c, are equal and opposite to the 

same quantities in the grating itself, while A^, A^, &e. are equal 

and of the same sign. Tlie axes of these images are in planes whoso 

equations are of the form 

7 = 2/3, ± 2w(^H A,), (21) 
7/1 being an integer. 

The potential due to any finite series of sueh images will depend 

on whether the number of images is odd or even, Henee the 

potential due to an infinite series is indeterminate, but if wo add to 

it the function Br}+ C, the conditions of the problem will be sufficient 

to determine the electrical distribution. 

We may first determine Tj and the potentials of the two 

conducting planes, in terms of the coefficients A^^, A^, &e., and of 

B and (7. We must then determine (Tj and cr,,, the surfaeo-density 

at any point of these plane.s. The mean values of and (r„ are 

given by the equations 

= A(^ — B, 4 77 0-2 = Aq + B, (22) 

We must then expand the potentials due to the grating itself 

and to nil the images in terms of p and cosines of multiples of 6, 

adding to the result jj p eos 0 + C. 

The terms independent of 0 then give F the potential of the 

grating, and the coefficient of the eosiiie of each multiple of 0 

equated to zero gives an equation between the indeterminate co- 

effieieiits. 

In this way as many equations may he found as are sufficient 

to eliminate all these coefficients and to leave two equations to 

determine o-j and o-, in terms of F,, and V. 

These equations will be of the form 

F^ — F = 4 77 0-, (ij-t-a—y)+4 77 0-2(a + y), 

I,— ^ = •4 770-j(a + y) + 47rfT2(i.2 + o—y). (23) 
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Tlie quantity of electricity induced on one of the planes protected 

by the grating, the other plane being at a given difference of 

l)otential, will be the same as if the plates had been at a distance 

a+y 2 

The values of a and y are approximately as follows, 

a f a 5 71^ c* 

* 2Tr \ 2'itc 3 15a* + 'n*c* 

-p 2 
/ -inb \ ) 

“ (l + e « + e « + &c./+ &e. y ’ (24) 
&1 . 60 

Sirac^ I e “ e “ \ , o. 
_4/a 

\l —e « 1 — e «/ 

(25) 



CHAPTER XIII. 

K L ECT I{ OST AT IC IXST K U E NT.'^. 

On ElectroslaLic ImtrumenU, 

Tuf; inslruinents which we have to eonsider at jii'esciit may he 

divided into the lollowing- classes : 

(1) Electrical machines for the production and au^'inentation ol' 

elect rifioalion. 

(2) Multipliurs, for inereuKinj^- elcelhfieation in a known ratio, 

(3) Electrometers, for the niea.snremeut of electric potentials and 

eliavf^es. 

(•1) Aceiiniulutors, for holdini’’ hir^''e electrical ehar^'es. 

Electrical IMac/i'mes. 

207.] In the common electrical machine a ,])late or cylinder of 

o-lass i.s made to revolve so us to rub ag’aiiist a surface of leatlier, 

on which is spread an ainal/^ain of zinc and nieronry. The sniTace 

of the g-lass heeonie.s electrified positively and that of the rnhhev 

negatively. As the electrified surf'aee of the gdass moves away 

fi'<jni tlie negative electrification of the rubber it aotjnires a high 

po.sitive potential. It then comes opposite to a set of sharp luetul 

points in connexion with the eonduetor of the inaehine. The posi- 

five electrification of the gda.ss indnees a negative elcotrification 

of the points, which is tlie more intense the sharper the points 

and the nearer tliey are to the glass. 

When the mac-hiiie works properly there is a discharge throng'h 

the air l)elween the glass and the points, the g'las.s loso.s part of 

its jiositive charge, which is transferred to the ])oints and so to 

the insulated prime coiidnctor of the machine, and to any other 

body with which it is in electric eoniimmieatiun. 

The portion of tlie glass which is advancing towards the rubber 

has tliiis a sniuller positive elnirge than that which is leaving it 

at the same time, so that the rubber, and the eoiidaetors in coni- 

nninieation with it, become negatively electrified. 



ELliCTKOPnOims. 255 208.] 

The highly positive surface of the glass where it leaves the 

rubber is more attracted by the negative charge of the rubber than 

the i)artially diseharged surface whieli is advaneing towards the 

rubber. The electrical forces therefore act as a resistance to the force 

emidoycd in turning the machine. Tlic work done in turning the 

maeliiiio is therefore greater than that spent in overcoming ordinary 

friction and other resistances, and the excess is employed in pro¬ 

ducing a state of cleetrilicatiou whose energy is equivalent to this 

excess. 

The work done in overcoming friction is at once converted into 

heat in the bodies rubbed together. The electrical energ-y may 

be also converted either into meclianical eiu.'i'gy or into heat. 

If the machine does not store np mechanical energy, all the 

energy will he converted into lioat, and tlie only dillcrcnee between 

the liout due to friction and that duo to electrical action is that the 

former is generated at the rubbing .surfiiee.s while the latter may be 

generated in coudnetors at a distance *. 

We have seen that the electrical charge on the surface of the 

gla.ss is attnicted by the rubber. If thi.s attraction were snflieiently 

intense there would he a discharge between the g-lass and the 

rubber, instead of bet ween the glass and the collecting points. To 

prevent this, llnp.s of silk are attached to the rubber. These become 

negatively electrified and adhere to the g'la.sSj and so diminish the 

potential near the rubber. 

The potential thercibre increases more gradually as the glass 

moves away from the rubber, aiul therefore at any one point there 

is less attraetiou of the charge 011 the glass towards the rubber, and 

consequently less danger of tlircct discharge to the rubber. 

In .some electrical machines the moving part is of ebonite in.stead 

of glass, and the rubbers of wool or fur. The rubber is then elee- 

trified positively and the prime conductor negativclJ^ 

The Electrophoi'Hs of I'olta. 

208.] The clectropliorus consi.st.s of a plate of resin or of ehonito 

backed with metal, and a plate of metal of the same .size. An 

insulating handle can he .screwed to the back of eitlior of these 

plates. The ehonite plate has a metal pin which connects the mebil 

* It is proliiiblc tliivt ia lu.iiiy ca.ses wliui'e (lyn.niiic.-i] uiiur^y is converted into heat 
hy friction, part of tliu energy may bu first tr.iiisfonnud into electrical energy and 
tlien converted into heat as the electrical energy hs spent in niaintaitiing currents of 
short circuit L'hise to the rubhing surfaces. .See Sir W, Thonisun. ‘ ()ii tlie Eleelro- 

dyiiauiie Qualities of Metals.’ Phil. 7')Wis., 1850, p. G5U. 
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plate witli the metal back of the ebonite plate when the two plates 

are in contact, 

The ebonite plate is electrified negatively by nibbing it with 

wool or cat’s skin. The metal plate is then brought near the 

ebonite by moans of the insulating handle. No direct discharge 

passes between the ebonite and the metal plate, but the potential 

of the raetal plate is reiulercd negative by induction, so that when 

it eomc,s within a certain distance of the metal jiin a spark passes, 

and if the metal plate be now carried to a distance it is Ibiind 

to have a positive charge which may be cominiinieatcd to a con¬ 

ductor. The metal at the back of the ebonite. ])late is found to 

have a negative charge equal and opposite to the charge of the metal 

jilate, 

In using the instrument to charge a condenser or accumulator 

one of the plates is laid on a conductor in communication with 

the earth, and the other is finst laid on it, then removed and ap[)lied 

to the electrode of the condenser, then laid on the fixed plate and 

the process repeated. If the ehonite plate is lixod the condenser will 

he charged positively. If the metal ])hite is fixed the condenser will 

be charged negatively. 

Tlie work done by the hand in separating the plates is always 

greater than the work done hy the electrical attraction during the 

approach of the plates, so that the operation of charging the con¬ 

denser involves the expenditure of work. Part of this work is 

accounted for by the energy of the charged condenser, part is spent 

in producing the noise and heat of the sparks, and the rest in 

overcoming other resistances to the motion. 

Oil Machines producing Kleclrijlcntion by Mechanical (rorh. 

209. ] In the ordinary frictional electrical niaeliiiie the work done 

in overeoming friction is far greater than that done in increasing 

the electrification. Hence any arrangement hy which the elec¬ 

trification may be produced entirely hy mechanical work against 

the electrical forces is of scientific importance if not of practical 

value. The first maeliine of this kind seems to have been NicholsoiPs 

Revolving Doubler, tlescribed in the Philosophical Transactions for 

1788 as 'an instrument which by the turning of a Winch produces 

the two .states of Electricity witliout friction or communication with 

the Earth.’ 

210. ] It was by means of the revolving doubler that Volta 

succeeded in developing from the electrification of the pile un 
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eloctrifieation capable of affecting- liis elcclroineter, Instruments 

on the same ])rinei])le liav'c been invented iiidejiendently by Mr. 

C. F. Varley^j and SirW, Tlionison. 

Tliese instnnnents consist essentially of’ insulated eondnetors of 

various Ibrins, some fixed and others moveable, The moveable 

eondnetors are called Ciirricrs, and the fixed ones may be called 

luduclors, lleeeiversj nnd llegcncrators. The inductors and receivers 

are .so formed that when the carrier.s arrive at eerlain points in 

their revolution they are almost eomplelely surrounded by a con¬ 

ducting body. As the inductors and receivers eannot completely 

surround the carrier and at the same time allow it to move freely 

in and out without a complicated arrangement of move-able pieces, 

the instrument is not theoretically perieet without a pair of re¬ 

generators, which store up the small amount of electricity which 

the carriers retain when they emerge from the receiver.s. 

For the present, however, we may suppose the inductors and 

receivers to surround the carrier completely u-hen it is within tliem, 

in which case the theory is much simplified. 

"We shall sn2)pose the nnu-hine to consist of two inductors A and 

C, and of two receivers B and J), with two carriers F and 0. 

Suppose the iiiductm- A to be jiositively' electrified so that its 

potential is yf, and that the carrier /'is within it nnd is at potential 

F. Then, if Q •*’’ flic eoellicicnt of indnetion (taken jjositive) between 

A and F, the (juautity of eleetricily on the carrier will he Q[F—A). 

If the carrier, while within the iiuluetor, is put in coimex;ion with 

the earth, then /'= 0, jiiid the charge on the carrier will he —QA, 

a negative cpiantity-. Let the carrier he carried round till it is 

within the receiver B, and let it then come in eoiitaet with a sprlng- 

s-o as- to he in eleetrieid connexion with B. It will then, as was 

shewn in Art. 32, become eoiiipletely dLseharged, and will com- 

nuniieate its whole negative eliarge to the receiver F. 

Th(.- earner will next enter the inductor C\ wliicli we shall suppose 

charged negiitively-. "While within C it is put in connexion with 

the earth and thus aecpiires a positive charge, which it carries off 

and eommiinicates to the receiver JJ, and so on. 

In tliis way, if the potentials of the inductors remain always 

constant, the receivers B and J) receive sucees.sive charges, W'liieh 

are tlu* .same for every revolution of llie carrier, and thus every 

revolution prodnees an e(pial increment of electricity in the re¬ 

ceivers. 

■* SpL-clficatiuii of Patoiit, Jan. 27. 1800, No. 20C. 

VOL. I. 
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But by putting- the imluctoi- jI in conimuuioatioii witli the re¬ 

ceiver JJ, niul the iiuhu-tor C Avith the receiver 7i, the potentials 

of the iniluctoi’s will be eoiitiiumlly increased, and the (puintity 

of electricity communicated to the receivers in each revolution will 

continually increase. 

For instance, lot the potential of A jind 0 bo U, and that of 7i 

and 6’, F, and Avhon the carrier is within A let the charge on A 

and C 1)0 x, and that on the carrier z, then, since the potential 

of the carrier is zero, being in contact with earth, its charge is 

c = — QU. The carrier entens with this charge and eomnumicates 

it to B. If the eajAaeity of 7i and C is 7i, their potential will be 

changed from V to F— U, 

If the other carrier has at the same time carried a charge —QF 

from C to B, it will change the potential of A and 0 from U to 

U— V, if Q' i.s the eoeflieient of induction between the carrier 

and (7, and A. the capacity of A and B. If, therefore, and 

he the potentials of the two inductors alter 11 half revolutions, and 

and F^^.^ after u+ 1 half revohition.s, 

rr rr Q' 7^ 

If we write = 

V — T — - U 
' )i+l — ' n 

^ and f , 
Ji A 

we find 

p +1 -1 = (F ^4 - i ’ + P'j) = (p ^4 - <1 ^0) (1 +7-?)" ’ • 

Hence 

((1 -pqYF (1 Apqr) +1 4i ((1 -pqT-^^ 

-1 {(1 -pqY-{^ FpriT) -f r„ {{\-nYA- o +pqr)- 

It appears from these equations that the quantity pU+qF con¬ 

tinually diminishes, so that whatever be the initial state of elec¬ 

trification the receivers are ultimately oppositely electrified, so that 

the potentials of A and 7i are in the ratio ot'p to —q. 

On the other hand, the quantity continually increases, 

so that, however little pU may exceed or fall short of (jFa.t first, 

the dififereuee will be increased in a geometrical ratio in each 
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revolution till the electromotive forees Ijeeome so great that the 

insulation of the ajiiiaratus is overcome. 

Instruments of this kind may he used for various purposes. 

For producing' a eopioiis supjily of eleetricity at a high potential, 

as i.s done Ijy means of Mr. Varley’s large machine. 

For adjus-ting the charge ol' a condenser, as in the case of 

Tlioms'on’s eleetrometer, the charge of wliieli can he iiicrea.sed or 

diminished l)y a few turns of a very small machine of this kind, 

which is then called a llcpleni.sher. 

For multiplying small dillercnces of potential. Tlie inductors 

may he charged at lirst to an exceedingly small potential, as, for 

instance, that due to a thermo-eleetrie pair, then, by turning the 

machine, the didcrcnce of potentials may be continually multijdied 

till it becomes capable ol‘measurement by an ordinary electrometer. 

Fy determining by exi)crimLMit the ratio of increase of this difference 

due to each turn of the machine, the original electromotive foiee 

with whieli the inductors were charged may be deduced from the 

numher of turns and the final electrification. 

In most of these instruments the carriers are made to revolve 

about an axis and to come into the proper positions xvitli respect 

to tlie inductor.s by turning an axle. The conne.xions are made hy 

moans of springs so placed that the carriers come in contact with 

tliem at tlie proper instants. 

211.] Sir W. Tliomson*, however, has eonstruotecl a machine for 

multiplying' electrical charges in which the carriers are drojjs of 

water falling out of tlie iimide of an inductor into an insulated 

receiver. The receiver is thus coiitimially supi)licd with eleetricity 

of opposite sign to tliat of the inductor. If the iiuhietor is electrified 

positively, flic receiver will receive a eontiunally increasing charge 

of negative electricity. 

The water is made to escape from the reeeix'cr hy means of a 

funnel, the nozzle of which is almost surrounded by the metal of 

the receiver. The drops falling from this nozzle are tlierefore 

nearly free from electrification. Anotlit*r inductor and receiver of 

tlie same eonstriietioii are arranged so that the inductor of the 

one system is in connexion with the receiver of the otlier. The 

rate of increase of charge of the receivers is thus no longer constant, 

hilt increases in ii geometrical progit'-ssion with the time, tlie 

charges of the two receivers being of opposite signs. This increase 

goes on till the falling drops are so diverted from their course hy 

* Proc, It. S,, .Tmi(! 20, 1807. 

.S’ 2 
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the electrical action that tliey fall outside of the receiver or even 

strike the inductor. 

Ill this in-stniment the energ-y of the electrification is drawn 

from that of the falling' drop.s. 

212, ] Several other electrical iiiachines have been constructed 

in which the principle of electric induction is emploj'od. Of these 

the most remarkable is that of Holtz, in whicdi the carrier is a glass 

plate varnished with gum-lac and the inductors are pieces of 

pasteboard. Spark.s are prevented from j)assiiig between the parts 

of the apparatus by means of two glass i)hites, one on each side 

of the revolving carrier plate. This machine is foiiml to be very 

elFective, and not to ho much uftected by the .state of the atmo¬ 

sphere. The principle is the s'ame as in the revolving doubler and 

the instruments developed out of the same idea, hut as the carrier 

is an insulating plate and the inductors are iiiiporfcct conductors, 

the complete explanation of the action is more dilfieult than in 

the case where the carriers are good conductors of known form 

and are charged and discharged at definite points. 

213. ] In the electrical machines already described sparks occur 

whenever the carrier comes in 

coiitaet with a conductor at a 

dillcrciit potential from its 

own. 

Now we have shewn that 

whenever this occurs there is 

a loss of energy, and therefore 

the whole work employed in 

turning the machine is not con¬ 

verted into electrification in an 

available form, but part is spent 

in i)roducing the heat and noi,se 

of electric sparks. 

I have therefore thought it desirable to shew how an electrical 

machine may be constructed which is not subjc'ct to this loss of 

eliiciency. I do not propose it as a useful form of machine, but 

as an exam])le of the method by which the contrivance called in 

heat-(‘ngines a regenerator may be ajjplied U) an electrical machine 

to prcv(mt loss of work, 

In the. figure let J, B, C, A\ Jf, C represent hollow' fixed 

eomluctors, so arraiigod that the carrier B passes in succession 

w'itliin each of them. Of these //, jL' and B, B' nearly .surround the 
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oarrier when it is at the middle point of its passage, but C, C' do not 

cover it so much. 

We shall .suppo.se A, Ji, C to be connected with a Leyden jar 

of groat eai)aeity at potential T\ and A', Ji\ C to be eonnocted with 

another jar at potential — V', 

P is one of the earriens moving in a eirede from A to C\ &e,, 

and touching in its course certain .springs, of which a and a' are 

connected with A and A' respectively, and e, d arc connected with 

the earth. 

Lot us suppose that when the oarrier P is in the middle of A 

the coefficient of induction between P and A is —A, The capacity 

of P in this position is greater than //, since it is not completely 

surrounded by the receiver A. Let it bo A + a. 

Then if the potential of P is U, and that of A, F, the charge 

on /■* will be (A + rt)l/—AF. 

Now' let P he in eontant wu’th the spring a wdien in the middle 

of the receiver A, then the potential of P is I\ the same as that 

of y/, and its charge is therefore a F. 

If P now leaves the sjiring a it earries with it the charge aF. 

As P loaves A its potential diminishes, and it diminishes still more 

wlum it comes within the innuenee of C', which is negatively 

electrified. 

If wdien P comes within C its eoefficieiit of induction on C is 

— C', and its capacity is 6" + c', then, if f/is the potential of P 

the charge on P is 
{C'A-c')U-\-C'F'=^ aF. 

If CPF'^aF, 

then at this point U the potential of P will he rediieed to zero. 

Let P at thi,s' point come in contact Avith the spring c' which is 

connected w'ith the earth. Since the potential of P is equal to that 

of the spring there wall be no spark at contact. 

This conductor C\ b\' whi(di the earner is enabled to be connected 

to earth wdthoiit a s]iark, answers to the contrivance called a 

icgencralor in heat-engines. We shall therefore call it a Re¬ 

generator. 

Now let P move on, still in contact with the earth-spring c', till 

it comes into the middle of the inductor 7^, the potential of which 

is F, If —7? is the coefficient of induction hetw'cen P and 77 at 

this ])oint, then, since U =. 0 the charge on P will he —PF. 

When 7’ moves away from the carth-siiring it carries this charge 

with it. As it moves out of the positive inductor 7? towards the 
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negative* receiver A' its potential will he increasingly negative. At 

the middle of A', if it retained its charge; its potential would he 

A’V' + Br 

A’ + a ’ 

and if 7^ris graiter than a V its numerical value will he greater 

than that of V. lienee there is some point before P reaches the 

middle of/f where its potential is — / At this point let it come 

in contact with the negative receiver-spring a . There will he no 

spark siii(!0 tlie two bodies are at the .same potential. Let F move 

on to the middle of A', still in contact with the spring, and therefore 

at the same potential with A'. Luring this motion it eomminiioatc.s 

a negative eliurgc to A', At the middle of A' it leaves the spring 

and curries away a charge —a'V' towards the positive regenerator 

C, where its potential is reduced to zero and it touehos the earth- 

.spring e. It then slides along the carth-s])ring into the negative 

inductor B', during* which motion it accpiires a positive charge B'V' 

which it liiially communicates to the positive receiver A, and the 

C3'clc of operations is repeated. 

During this cr'cle tdie ])o.sitive receiver has lost a charge al and 

gained a charge B'F'. Hence the total gain of positive electricity 

is jrr-ar. 
Similarly the total gain of negative electrieit}’ is BI'—a'F'. 

B.y making the indnetors so as to he us close to the .surface of 

the carrier as is consistent with insulation, B and maj' be made 

large, and hy making the receivers so as nearly to surround the 

carrier when it is within them, a and a' may be made verj' small, 

and then the charges of both the Leyden jars will he increased in 

every revolution. 

The conditions k) he fnllilled hy the regenerators are 

C'F'~aF, and CF^a'V'. 

Since a and a' an* .small the regenerators do not require to he 

cither large or veiy elo,se to the ean*icrs. 

O/i Bhctronwf.ers ami K/eciroscupaSs 

214,] An electrometer is an instrument by moans of which 

electrical charges or electrical potentials may he measured. In¬ 

struments hy means of which the exi.stence of electric charges or 

of dilforene,*s of ])otential may he indicated, hut which arc not 

c;ij)able of aliordiiig numerical mcasiire.s, art* called lClectroscopc,s. 

An electroscope if sii(Helentl}*- sensible may ho used in cleetneal 

measurements, provided we can make the measurement depend on 
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the absence of electrification. For instance.^ if wc have two charged 

Ijodics A and Ji we may use tlic metliod described in Chapter I to 

determine whicli body lias the greater charge. Let the body A 

be carried by an Insulating support into the interior of an insulated 

closed vessel C. Let C be connected to earth and again insulated. 

There will then he no external electrification on C. Now let yl 

he removed, and introduced into the interior of C, and the elce- 

trificution of C tested by an electroscope. If the charge of B is 

c(pial to that of A there will be no electrification^ but if it is greater 

or less there will he electrification of the same kind as that of or 

the oj)po.site kind. 

Methods of this kind, in whicli the thing to be observed is the 

noii-cxistcncc of some phenomenon, arc called null or zero methods. 

They require only an instrument capable of detecting the existence 

of the phenomenon. 

In another class of instruments for the registration of phe¬ 

nomena the instrument may he dejiended upon to give always the 

same indication for the same value of the quantity to he registered, 

but the readings of the scale of the instrument are not proportional 

to the values of the cpiantlty, and the relation between these 

readings and the corresponding value is unknown, except that the 

one is some continuous function of the other. Several electrometers 

depending on the mutual repulsion of parts of the instrument 

which arc similarly electrified arc of this class. The use of such 

instruments is to register phenomena, not to measure them. Instead 

of the true values of the quantity to be measured, a series of 

nnmljcrs is obtained, ■which may be u.sed afterwards to determine 

these values when the scale of the instmmeiit has been properly 

investigated and tabulated. 

In a still liighcr class of imstruments the scale readings are 

jiroportional to the quantity to be measured, so that all that is 

required for the complete mcasuremont of the quantity is a know¬ 

ledge of the coefficient by which the scale readings must he 

multiplied to obtain the tnic value of the quantity. 

Instruments so constructed that they contain within thcm.selvcs 

the means of independently determining the true values of quan¬ 

tities arc called Absolute Instruments. 

Coiiloml/s Torsion Balance, 

215,] A great uninber of the exixjriments by which Coulomb 
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established the fundamental laws of electi-ieity were made by mea¬ 

suring the force between two small s])hei'es eharginl with electricity, 

ouc of which was fixed while the other was held in equilibrium by 

two forces, the oleetrieal action between the spheres, and the 

torsional elasticity of a glas.s fibre or metal wire. See Art. 38. 

The balance of torsion consists of n horizontal arm of gum-lac, 

suspended by a fine wire or glass fibre, niul carrying at one eiul a 

little sphere of elder pith, smoothly gilt. The suspension wire is 

fa.stened above to the vertical axis of an arm which can be moved 

round a horizontal graduated circle, so as to twist the ujipcr end 

of the wire about its own axis any number of degrees. 

T1 le whole of this apparatus is cnclo-sed in a case. Another little 

sphere is .so mnuiifed on an insulating stem that it can be charged 

and introduced into the case through a hole, and hrought so that 

its centre coineides with a definite point in the horizontal circle 

described by the suspended sjibore. The jwsitioii of the suspended 

sphere is aseertaiiiod by means of a graduated circle engraved on 

the cylindrical glass case of the instriinieiit. 

Now sui)po.se both .sjilieres charged, ami the siuspcnded sphere 

in equilibrium in n known position sneli that the torsion-arm makes 

an angle Q with the radius through the centre of the fixed sphere. 

The distance of the centres is then 2n siu ^ 0, where a is the radius 

ol‘ the tor.sion-arm, and if /'is the force between tlic spheres the 

moment of this force about the axis of torsion is Fa cos ^ 0. 

Let both spheres he completely diseliargoil, and let the torsion- 

arm now he in equilibrium at an angle with the radius through 

the fixed sphere. 

Then the angle through which the electrical force twisted tlie 

torsion-arm must have been 0—(f>, and if Jf is tlic moment of 

the torsional elasticity of the fibre, we slnill liave tlic equation 

Fa cos = M(0 — <f>). 

Hence, if we can ascertain 3f, we can determine F, tlie actual 

force between the spheres at tlic distance 2<« sin ^ 0, 

To find il/, tlie moment of torsion, let 7 lie the moment of inertia 

of the torsion-anu, and T the time of a double vibration of the arm 

umlor tlic action of tlie torsional elasticity, then 

1 
M 

1 —2 
H 77“ 

,/rA 

In all electrometers it is of the greatest importance to know 

what force we are mca.suring. The force acting on the snspcndeil 
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sphere is due partly to tlio direct action of the fixed splierc, but 

partly also to the electrification, if .any, of the sides of the ease. 

If the ease is made of glass it is impossible to determine the 

electrification of its surface other\vi.sc than by very difficult me.a- 

snrements at every point. If, however, either the ease is made 

of metal, or if a metallic case which almost completely encloses the 

apparatus is placed ,a,s a screen hetween the spheres and the glass 

ease, the electrification of the inside of the metal screen will depend 

entirely on that of the spheres, and the electrification of the glass 

case will have no influence on the spheres. In this w.ay we may 

avoid any indefinitcue.ss due to the action of the ease. 

To illustrate this hy an example in which wo can calculate all 

the efleets, let us suppose that the case is a sphere of radius h, 

that the centre of motion of the tor.sion-arm coincides with the 

centre of the sphere and tliat its radius is a; tliat the cliarge.s on 

the two .spheres arc J\ and and that the angltf hetween their 

positions is Q\ tluat the fixed sjdicrc is at a dist.ancc r/, from the 

centre, and that r is the dist.ancc between the two small spheres. 

Neglecting for the present the cflect of induction on the dis¬ 

tribution of electricity on the small spheres, the force hetween 

them will be a repulsion 

and the. moment of this force round .a vertic.al axis through the 

centre will he 
m/j sin d 

The im.age of due to the spherical surface of the ease is a point 

in the same radius at a distance with a charge —7?, —, and the 

moment of the attraction between 7f and this image about the axis 

of suspension is 

h 
a - - sill 0 

f . 
—2 -0080 + 

= EE, 
nn, sin Q 

— 2 - vy cos 0 + 

If b, the radius of the spherical c.ase, is large compared with a 
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and rtj, tlic! distances of the spheres from the centre, we may negleet 

tlie sceoiul and tliird terms of the fuetor in the cleuoniinator. Tlie 

whole moment tending to turn tlic tovsion-avm may tlien he written 

E7i’, sin 0 I I = M{0— (jj). 

Electi‘(jMctei‘}< for lha Meumremeul of JEifenfittls. 

216.] In all electrometers the moveable jjavt is a body charged 

with electricity, and ihs potential is diirerent from that of certain 

of the fixed ])iu‘ts round it. When, as in Coul()nih’.s method, an 

insulated body having a certain eliarge is used, it is the charge 

which is the direct object of measureiuent. We may, however, 

connect the balls of Coulonih’s electrometer, hy means of line wires, 

with different eonductors. The charges of the halls will then 

depeml on the values of the potenlials of these couduetovs and on 

the potential of the ease of the instrument. The charge on each 

hall will he appro.ximately eijual to its radius n\ultiplied by the 

cxces.s of its potential over that of the ease of the instrument, 

provided the radii of the halls are small compared with their 

distances from each other and from the sides or oi)oning* of the 

ease. 

Coulomb’s form of a])paratu.s, however, is not well adajited for 

mca.siiremcnts of this kind, owing to the smallness of the force 

between spheres at the proper distances when the diflerence of po¬ 

tentials is small. A more convenient form is that of the Attracted 

Disk Electrometer. The first electrometers on thi.s principle xvere 

eonstrncted by Sir W. Snow Harrhs*. They have since been 

brought to great perfection, both in theory and construction, by 

SirW. Thomson t- 

When two disks at dilferent potentials are brought face to lace 

with a small interval between them llierc will he a nearly uniform 

eleetrificatiou on the opposite faces and \'ery little oleetrifieation 

on the hacks of the disks, provided there are no other conductors 

or electrified bodies in the neighbourhood. The charge on the 

positive disk will he apjiroximatelj' proportional lo its area, and to 

the dilfcrenee of potentials of the dislos, and inversely as the distance 

between them. Hence, hy making the areas of the disks large 

* Phil Tnins. ISSt. 
+ .Sou .ni) uxeelloiit ruport on Elucli'oajotoi’H by .Sic \V, ThuiiiMii. Jlcjiorl of the 

Jlriliitli A SMciiilion, DiimJeo, lS(i7. 
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and the distance between them small, a small diffei-ence of potential 

may give rise to a measurable force of attraction. 

The mathematical theory of the distribution of electricity over 

two disks thus arranged is given at Art. 202, but since it is im¬ 

possible to make the case of the apparatus so large that we may 

suppose the disks insulated in an infinite space, the indications of 

the instrument in this form are not easily interpreted numerically. 

217.] The addition of the guard-ring to the attracted disk is one 

of the chief improvements which Sir W. Thomson has made on the 

ajiparatns. 

Instead of suspending the whole of one of the disks and determ¬ 

ining the force acting upon it, a central portion of the disk is 

sej)arated from the rest to form the attracted disk, and the outer 

ring forming the rem.aindcr of the disk is fi.\ud. In this way the 

force is meiisured only on that part of the disk where it is most 

regular, and the want of uniformity of the electrification near the 

COUHTERPOISe 

edge is of no importance, as it occurs on the guai’d-ring and not 

on the suspended part of the disk. 

]lesidc.s this, h}’- connecting the guard-ring with a metal case 

surrounding the back of the attracted disk and all its suspending 

apparatus, the electrification of the back of the disk is rendered 
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impossible, for it is part of tlio imior surface of a closed hollow 

conductor all at the same potent ial. 

Thomson’s Absolute lilectroincter therefore consists essentially 

of two parallel plates at different potentials, one of which is made 

so that a certain area, no part of wliicdi is near the cd^e of’ the 

plate, is moveable under the action of electric force. To fix onr 

ideas we ina}" snjipose the attracted disk and ^'■nard-riii" np|)ormost. 

The fixed disk is horizontal, and is nio\intcd on an insulatiuo' .stum 

which has a mca.surablc vertical motion g-iven to it hy means of 

a mieroiuctcr screw. The guard-ring' i.s .at least as large as the 

fixed di.s'k; it.s* lower surfiicc is truly ])hine and p.arallel to the fixed 

disk. A delioate balance is erected on the guard-ring to which 

is suspended a light moveable di.slc which almosl. fills the circular 

aperture in the guard-ring without mbbing- against its sides. The 

lower surface of the suspended di.sk must be truly plane, and we 

must have the means of knowing when its phme coincides with that 

of the lower .“iiirface of the gnard-riiig, .so as to form a singde plane 

iiitcrrni)ted only by the narrow interval between the disk and its 

g-iiard-ring. 

For this purpose the lower disk is screwed up till it is in contact- 

with llic gnai'd-riiig, and the suspended disk i.s allowed to rest 

upon the lower cli.sk, so that its lower surface is in the same plane 

as that of the giiard-riiig. Its po.sition with rc.speet to the guard- 

ring is then ascertained by ineaas of a sj^stem of fiducial marks. 

Sir W. Thomson generally uses for this purpose a black hair 

attached to the movealdc part. This hair moves up or down just 

ill front of two Mack dots on a white enamelled ground and is 

viewed along with these dots by means of a piano convex lens with 

the plane side next the eye. If the hair as seen throngdi the lens 

appears straight and bisects the interval lietwccn llie black dots 

it is said to be in its sightedjiosilioii, and indicates that tlie sus¬ 

pended disk withwliicli it moves is in its projicr position as regards 

height. The horizontality of tlio .suspended cli.sk m.ay lie tested by 

comparing the reflexion of part of aiu' object from its upper surface 

with that of the remainder of the same object from the upper 

surface of the guard-ring. 

The balance is then arranged so that when a knowm wciglit is 

placed on the centre of the snspeiidecl disk it is in eijiiilibriiim 

in its sighted position, the whole apparatus being freed from 

electrification hy putting every part in metallic communication. 

A metal case is placed over the guard-ring so as to enclose the 
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bahiiu'u and siispeiuled disk, sufficient apertures being left to see 

the fidueinl murks. 

The giiurd-ring', ease;, and suspended cli.sk are all in metallic 

cuminunieutioii with each other, but are insulated from the other 

parts of the ap2iiira(ii,s. 

Now let it be reejnirod to measure <he difrerence of potentials 

of two eoudiiclors. The cmiduetors are put in commimiciition witli 

the n])per and lower disks re.speetively by mean.s of wires, the 

weig*ht is taken off the .suspended disde, and the lower disk is 

moved uj) by means of the mierometor serew till the eleetrical 

attraction briug-s the suspended disk clown to its sig’htecl position. 

We then know that the attraction between the disks is e(pial to 

the weight which broug-lit the disk to its sighted position. 

If IF be tbe numerical value of the weight, and fj the force of 

gravity, the force is IFt/, and if A is the area of the .su.spended 

disk, /) the distance between ihe disks, and V the difference of the 

potentials of the disks. 

jr L'iL 
8 TT Jy^ 

or /'= 
Stt// if 

~ A ' ■ 

If the susjjcncled disk is circular, of radius It, and if the radius of 

the. aperture of the guard-ring is R', then 

A = and F ^ 

218.] Since there is always .some uncertainty in determining the 

micrometer reading corresponding to = 0, and since any eri’or 

* Let UH ilenotu the railiuH of tlio .su,si)eiKled disk ty Jt. ami that of the .aperture 
of tlie giinrd-rini,' Ijy 11', then the breadth of the aiiiiuhir ioterval between the 
disk and the rinj' will he li=U' — R, 

If the distance between the suspendeil disk .and tbe large fixed disk is 1), .‘iinl 
the illfFereiiee of jjotoiitial.s between the.se disk,s Ls V, then, by the iuve.stigatioii in 
Art. 201, tlio quantity of electricity on the susjieiuled disk will be 

^ “ 1 8 7/ "8 71 77 +a r 

wliere ar=B IT or 0 = 0.220035 (/f'-A’). 

If tlie surface of the guard-ring is not e,xaetly in the plane of the surface of 
tile su.spoiided disk, lot us .suppo-.o tlmt the disUneo between the fixed ilisk and 
tlio guanl-ring is not D but lJ+z=/y, then it ajipbars from tlie invc.stigation in 
Art. 225 tliat there will be an additiunal charge of electricity near the edg’C of 
tlio di.sk on iieeount of its lielglit z above the general surface of the guard-ring. 
Tbe wliolo charge in this case i,s tlierefore 

Q = 
R^+R"‘ 

'8 D~' 
R’'‘-R'‘ a A' 
'877 'ziTfl'*’ 

nr nxi 47r(7LH7i')p (77-71) log„ I 
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in the position of the suspended disk is most important when D 

is small; Sir W. Thom.son prefers to make all his measurements 

depend on dilferences of the electromotive force J. Thus, if V and 

i ' arc two potentials, and B and 1/ the corresponding distances, 

A 

For instance, in order to measure the electromotive foree of a 

g-alvaiiic battery, two electrometers are used. 

By means of a condenser, kept charged if necessary hy a rc- 

lilenislicr, the lower disk of the principal electrometer is maintained 

at a eoiistant potential. This i.s tested hy connecting the lower 

di.sk of the principal electrometer with the lower disk of aseeondary 

electrometer, the suspended disk of which is connected with the 

earth. The distance between the di.sks of the secondary elec¬ 

trometer and the force reejuired to bring the suspended disk to 

its sighted po.silion being constant, if wo raise the potential of the 

condenser till the secondary electrometer is in its sighted position, 

wo know tliat the pfAential of the lower disk of the j)riuclpal 

elootrometcr eKcceds that of the earth hy a constant quantity which 

we may call V. 

If we now connect the positive electrode of the battery to earth, 

and connect the sinspemlod disk of the principal electrometer to tlie 

negative electrode, tlie diirerence of potentials between the disks 

will he / if V is the oleetromotivo force of tlie battery. Let 

he the reading- of the micrometer in tliis case, and let ]f he the 

reading when the suspended disk is connected with earth, then 

In this way a small electromotive foree v may be measured 

by the electrometer with the disks at conveniently measurable 

distances, IVhen the distance is too small a small change of 

absolute distance makes a great eliange in the force, since the 

anil in tlie ox|>rPHsjon for tlie attraetiou wo inunt Hubstitiite for A, live area of tlie 
(link, tlie corrected quantity 

+ -+8(R + /e')(»'--0)log, }- 

where if = raciiiiH of suspeiuled dink, 
A" = riuiiiiH of aperture in the guard-ring, 
D = distance between fixed and suspended diskfi, 
J)'= distance between fixed disk and guard-ring, 
a = 0,22(lf.3.'i(if'-7f). 

When n is sumll conijinrcd witli 1) we may neglect the second term, and when 

jy — TJ is small we may neglect the last tenn. 

= a/ 
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force varie.s inversely as tlie scpiare of the distance, so tliat any 

error in the absolute distaneo introduces a laro^e error in tlie result 

unless the distance is larg-e coinjmred with the limits of error oC 

the micrometer screw. 

The effect of small irrcg’ularitics of form in the surfaces of the 

disks and of the interval between them diminish according to the 

inverse cube and higher inverse powers f)f the di.stance, and what¬ 

ever be the form of a corrugated surface, the eminences of which 

just reach a ]ilaue snrfhee, the electrical effect at any distance 

Avliieh is considerable compared to the breadth of the corrugations, 

is the same as that of a plane at a certain small distance behind 

the plane of the tops of the cminonees. See Arts. 197, 1!)8. 

B}' moans of the auxiliary electrification, tested by the auxiliary 

eleetroineter, a j)ro])er interval between the disks is secured. 

The anxiliar}’ electrometer may be of a simpler construction, in 

which there is no provision for the determination of the force 

of attraction in absolute measure, since all that is wanted is to 

secure a constant electrification. Such an electrometer may be 

called a (jmtr/c electrometer. 

This method of using an auxiliary electrification besides the elec¬ 

trification to be measured is called the Heterostatie method ol‘ 

electrometry, in opi)Osition to the Idiostatic nielliod in which the 

whole effect is produced by the electrification to he measured. 

In several fornns of the attracted disk electrometer, the attracted 

disk is placed at one end of an arm which is snp])orted by being 

attached to a platinum wire passing through its centre of gravity 

and kept strotehed by means of a spring. The other end of the 

arm carries the hair Avhich is brought to a sighted position by 

altering the distaneo between the disks, and so adjusting- the force 

of the electric attraction to a constant value. In tlie.se electro¬ 

meters this force is not in general determined in absolute measure, 

but is known to be conshint, provided the torsional elasticity of 

the platinum wire docs not change. 

The whole apparatus is placed in a Leyden jar, of which the inner 

surface is charged and connected with the attracted di.sk and 

guard-ring. The other disk is worked by a micrometer screw and 

is connected first with the earth and then with the condiietor whose 

])otcntial is to ho measured. The difference of readings mnltiidied 

by a constant to be determined for each eleetroracter gives the 

potential required. 

219.] The electrometers already dcserihod aro not self-acting. 
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but require for each observation an adjustment of a micrometer 

screw, or some otlicr movement which must be made by the 

oljserver. Tliey arc therefore not fitted to act as self-registering' in¬ 

struments, wliich must of themselves move into tlie proper position. 

This condition is fnlfdled by Tlionison’s Quadrant Electrometer. 

The eleetrieiil principle on which this instrument is founded may 

be thins explained :— 

y/ and ]i are two fixed oondiictovs which may be at the same 

or at cliflei'ent potentials. C is a moveable conductor at a high 

jiotential, which is so placed that jiart of it is opposite to the 

.surface of A and jairt ojiposite to that ofi/, and that the proportions 

of these, jiarts are altered a.s C'moves. 

For this purjio.se it is most convenient to make C'moveable about 

an axis, and make the opjiosed snvfaee.s of A, of B, and of C portions 

of surfaces of revolution about the same axis. 

In this way the distance between the. surface of C and the 

opjioscd surfaces of A or of B remains always the same, and the 

motion of C in the positive direction simply increases the area 

opiiosed to B and diminishes the area oppo.sed to A, 
If the potentials of A and B are equal there will be no force 

urging C from A to B, but if the potential of C differs from that 

of B more than from that of A, then C will tend to move so as 

to increase the area of its surface opposed to B, 
lly a snitublc arrangement of the aiqiaratus this force may be 

made nearly constant for dilferent positions of C within certain 

limits, so that if C is snsjiciided by a torsion fibre, its defle.xions 

will be nearly proportional to the difference of potentials between 

A and Ai multiplied by the dillerence of the potential of C from 

the mean of those of A and B. 
C is maintained at a high potential by means of a condenser 

provided with a replcnislier and tested by a gauge electrometer, 

and A and B arc connected wdth the two conductors the diflerenec 

of whose potentials is to be measured, The higher the potential 

of C the more sensitive is the in.strumcnt. This electrification of 

<7, being indeiiendcnt of the electrification to be measured, irlaces 

this electrometer in the hetcrostatie class. 

We may apply to this electrometer the general theory of systems 

of conductors given in Arts. 93, 127. 

Let A, B, C denote the potentials of the three conductors re- 

siiectively. Let a, h, c Ire their rcsiiectivc capacities, p the coefficient 

of induction between B and C, q that between C and A, and r that 
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between A and B. All these coefficients will in general vary with 

the position of C, and if C is so arranged tliat the extremities of A 
and B are not near those of C as long as tlie motion of C is confined 

within certain limits, wo may ascertain the form of these coefficients. 

If 0 represents the deflexion of 0 from A towards B, then the part 

of the surfaee of A opiiosed to C will diminish as 0 inoreases. 

Hence if is kept at potential 1 while B and C are kept at potential 

0, the charge on A will be a=za^^~a$, where and a are 

constants, and a is the capacity of A- 
If A and B are symmetrical, the capacity of .5 is ^ = l^+aO, 
The capacity of C is not altered by the motion, for the only 

effect of the motion is to bring a different part of C opiiosite to the 

interval between A and B. Hence c = . 

Tlie quantity of electricity induced on C when B is raised to 

potential unity is p = —ad, 

TIic coefficient of iudnetion between A and C \s q = ^o + ad. 

TIic coellieient of induction between A and B is not altered by 

the motion of C, but remains = /y. 

Hence the electrical energy of the system is 

Q = hA"a-^\JPlj + \C^‘c-^BCjj + CAq-^ABr, 
and if 0 is the moment of the force tending to increase 0, 

A,J{, C being supposed constant, 

1 1 dc .-ndr 

= -hA'^a^^B~a~BCa+CAa-, 

or 0 = a {A~B) [C- h (A + B)). 

In the present form of Thomson’s Quadrant Eloetrometer the 

conductors A and JJ are in the form of 

a cylindrical box completoly divided 

into four quadrants, separately insu¬ 

lated, but joined by wires so that two 

opposite quadrants are counceted with 

A and the two others with B. 
The conductor C is suspended so as 

to be capable of turning about a 

vertical axis, and may consist of two 

opposite flat qniidrantal arcs supported 

by their radii at their extremities. 

In the position of equilibrium these quadi'ants should be partly 

\'OL. I. T 
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within A and partly within B, and the supporting radii should 

be near the middle of the quadrants of the hollow base, so that 

the divisions of the box and the extremities and siipix)rts of C 
may bo as far from oaeh other as possible. 

The conductor C is kept pcnnunontly at a high potential by 

being connected with the inner coating' of the Leyden jar wliicli 

forms the case of the instrument. B and A arc conneetedj the first 

with the earth, and the other with the body whose potential is to be 

measured. 

If the potential of this body is zerOj and if the instrument be 

ill adjustment, there ought to be no force tending to make C move, 

but if the potential of A is of the same sign as that of C, then 

C will tend to move from A to B witli a nearly uniform force, and 

the susjiensioii apparatus will be twisted till an equal force is 

called into play and produces equilibrium. For dollexions within 

certain limits the deflexions of C will be proportional to the 

^_B) [C-i(A + B)). 

By increasing the potential of C the sensibility of the instrument 

may be increased, and for small values of ^ {A -f B) the force will be 

nearly proportional to (A—B) C. 

0)1 the Measuremeyil of Elec trie Boteiitlal. 

220.] In order to determine large differences of potential in ab¬ 

solute measure we may emidoy the attracted disk clcctrometerj and 

compare the attraction with the effect of a weight. If at the same 

time we measure the difference of potential of the same conductors 

by means of the quadrant electrometer, we shall ascertain the 

absolute value of certain readings of the scale of the quadrant 

electrometer, and in this way we may deduce the value of the scale 

readings of the quadrant electrometer in terms of the potential 

of the suspended part, and the moment of torsion of the sus2)eusion 

apjiaratus. 

To ascertain the potential of a charged conductor of finite size 

we may connect the conductor with one electrode of the electro¬ 

meter, while the other is connected to earth or to a body of 

constant potential. The electrometer reading will give the potential 

of the conductor after the division of its electricity between it 

and the part of the electrometer with which it is put in contact. 

If K denote the capacity of the conductor, and K' that of this part 
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of the electrometer, and. if V, V' denote the potentials of these 

bodies before making contact, then their common potential after 

making contact will be 

^ _ KV + K'V' 
" K+K' 

Hence the original potential of the conductor was 

r==r+^(v-r'). 
If the conductor is not large compared with the eleetrometerj 

K’ will be comparable with if, and unless we can ascertain the 

values of K and K' the second term of the expression will have 

a doubtful value. But if we can make the potential of the electrode 

of the electrometer very nearly equal to that of the body before 

making eontaetj then the rrneertainty of the values of K and K' 
will be of little eonsetpienee. 

If we know the value of the potential of the body approximately, 

wc may charge the electrode by means of a ‘ replenisher' or other¬ 

wise to this approximate potential, and the next experiment will 

give a closer approximation. In this way we may measure the 

potential of a conductor whose capacity is small compared with 

that of the electrometer. 

To Meusure the Potential at any Point in the Air, 

221.] First Method, Place a sphere, whose radius is small com¬ 

pared with the distance of electrified conductors, with its centre 

at the given point. Connect it by means of a fine wire with the 

earth, then insulate it, and carry it to an electi’ometer and ascertain 

the total charge on the sphere. 

Then, if V be the potential at the given point, and a the 

radius of the sphere, the oliarg-o on the sidiere will be 

and if V' he the potential of the sphere as measured by an elec¬ 

trometer when placed in a room whose walls are connected with 

the earth, then ^ jr, 
Q = F a, 

whence V-\-F' = 0, 

or the potential of the air at the point where the centre of the 

sphere was placed is equal but of opposite sign to the potential of 

the sphere after being connected to earth, then insulated, and 

brought into a room. 

This method has been employed by M. Delmann of Creuznach in 
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raea.suriiig' the potential at a certain height above the earth’s 

surfaee. 

Seoond Method. We have .siippo.secl the sphere placed at the 

given point and first eoiinected to earthy and then insulated, and 

carried into a space surrounded with coudueting matter at potential 

zero. 

Now let us suppose a fine in.sulated wire carried from the elec¬ 

trode of the eloetrometer to the place where the potential is to 

he measured. Let the sphere he first diseharged eonlpletel3^ This 

may be done by putting it into the inside of a vessel of the same 

metal which nearly surrounds it and making it touch the vessel. 

Now let the sphere thus discharged he carried to the end of the 

wire and made to touch it. Since the sphere is not electrified it 

will be at the potential of the air at the place. If the electrode 

wire is at the same potential it will not be affected by the contact, 

but if the electrode is at a diflerent potenfial it will by contact 

with the sphere be made nearer to that of the air than it was 

before. By a succession of such operationsj the sidiere being 

alternately discharged and made to toiudi the electrode, the poten¬ 

tial of the electrode of the electrometer will continually approach 

that of the air at the given point. 

222.] To measure the iioteiiLial of a conductor without touching 

it, we may measure the jiotential of the air at any jiniiit in the 

neighbourhood of the conductoi-j and calculate that of the conductor 

from the result. If there be a hollow nearly surrounded by the 

conductor, then tho potential at any point of the air in this hollow 

will be very nearly that of the conductor. 

In this way it has been a.scertained by Sir W. Thomson that if 

two hollow conductors, one of eojiper and the other of zinc, are 

in inetallic contact, then the potential of the air in the hollow 

surrounded by ziiie is positive with reference to that of the air 

in the hollow surrounded by copper. 

Third Method. If by any means we can cause a sueces.sion of 

small bodies to detach themsedves from the end of the electrode, 

the potential of the electrode will appro.ximate to that of the sur¬ 

rounding air. This may be done by causing shot, filings, sand, or 

water to drop out of a funnel or pipe connected with the electrode. 

Tlie point at which the potential is measured is that at which 

the stream ceases to be continuous and breaks into separate parts 

or drops. 

Another convenient method is to fasten a slow match to the 
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electrode. The jiotential is very soon made equal to that of tlie 

air at tlie burning end of tlie match. Even a fine metallic point 

is sufficient to ereaie a discharge l)y means of the particles of the 

air when the dificTcnec of potentials is considerable, but if we 

wish to reduce this difiercnee to zero, we must use one of the 

methods stated above. 

If we only wish to ascertain the sign of the difference of the 

potentials at two places, and not its numerical value, we may cause 

drops or filings to be discharged at one of the places from a nozzle 

connected with the other place, and catch the drops or filings 

in an insulated vessel. Each drop as it falls is charged with a 

certain amount of electricity, and it is completely di.seharged into 

the vessel. The charge of the vessel therefore is continually ac¬ 

cumulating, and after a sufficient number of drops have fallen, the 

charge of the vessel may be tested by the roughest methods. The 

sign of the charge is positive if the potential of the nozzle is positive 

relatively to that of the surrounding air. 

JIKA-SURKMIONT OF SUItF.VCE-DENSITY OF ELECTIIIFICATION. 

Theory of the Vroof Plane, 

223.] In testing the results of the mathematical theory of the 

distribution of electricity on the surface of conductors, it is necessary 

to be able to mea.sin'e the surface-density at different points of 

the conductor. For this purpose Coulomb employed a small disk 

of gilt paper fastened to an insulating stem of gum-lae. He ap- 

jdied this disk to various points of tlie conductor by placing it 

so as to coincide as nearly as possible witli the surface of the 

conductor. He tlien removed it by means of tlie insulating stem, 

and measured tlie cliarge of tlie disk by means of liis electrometer. 

Since tlic .siirfae.e. of tlie disk, when applied to tlie eouduetor, 

nearly coincided with that of the conductor, he concluded that 

tlic surface-density on tlie outer surface of tlie disk was nearly 

equal to that on tlie surface of the conductor at that place, and tliat 

the charge on tlie disk wlicu removed was nearly equal to that 

on an area of tlie surface of tlie eonduetor equal to tliat of one side 

of the disk. Tliis disk, when employed in this way, is called 

Couloinli’s Proof Plane. 

As olijoetions liave been raised to CoulomlPs use of the proof 

plane, I sluill make some remarks 011 the tlicory of the experiment. 
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Tlie experiment consists in l)ringing' a small conductings body 

into contact •with the surface of tlie conductor at the point where 

the density is to be measured, and tlien removing- the body and 

determining- its cliarge. 

We have first to sliew that the charge on the small body when 

in contact with the conductor is proportional to the surface- 

density which existed at the point of contact before the small body 

was placed there. 

We shall suppose that all the dimensions of the small body, and 

espeeially its dimension in the direction of the normal at the point 

of contact, arc small compared ■ndth either of the radii of curvature 

of the conductor at the point of contact. Hence the variation of 

the resultant force due to the conductor supposed rigidly olectrified 

within the space occupied by the small body may bo neglected, 

and we may treat the surface of the conductor near the small body 

as a plane surface. 

Now the charge which the small body will take by eoutaet with 

a plane surface will be jrroportional to the resultant force normal 

to the surface, that is, to the surface-density. We shall aseeitaiu 

the amount of the charge for particular forms of the body. 

\\c have next to shew that when tlie small body is removed no 

spark will pass hetweeii it and the conductor, so tliat it will carry 

its charge with it. This is evident, because when the bodies arc 

in contact their potentials are the same, and therefore the density 

on the parts nearest to the point of contact is extremely small. 

When the small body is removed to a vei-j- short distance from 

the conductor, which we shall suppose to be olcctridcd positively, 

then the electrification at the point nearest to the small body is 

no longer zero hut positive, but, since the charge of the small body 

is positive, tlie po.sitive electrification close to tlie small liody will 

bo less than at other neighbouring points of the surface. Now 

the passage of a spark depends in general on the magnitude of the 

resultant force, and this on the surface-density. Hence, since we 

suppose that the conductor is not so liighly electrified as to be 

discharging electi-icity from the other parts of its surface, it will 

not discharge a spark to the small body from a part of its surface 

which we have shevm to have a smaller surface-density. 

224.] We shall now consider various forms of the small body. 

Suppose it to he a small hemisphere applied to the conductor so 

as to touch it at the centre of its Hat side. 

Let the conductor he a large sphere, and let us modify the form 
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of the liomispliero so that its surface is a little more than a lieml- 

sphero, and moots the surface of the sphere at right angles. Then 

we have a ease of which we have already obtained the exact solution. 

See Art. ]G8. 

If A and B be the centres of the two .spheres cutting each other 

at right angles, 1)1/ a diameter of the circle of intersection, and C 
the centre of that circle, then if V is the potential of a conductor 

whose outer surface coincides with that of the two spheres, the 

quantity of electricity on the exposed surface of the sphere A is 

\ r[AD+ BI) + AC-CD-BC), 

and that on the exposed surface of the sphere B is 

\r {A I)+ BB AC), 

the total charge being the sum of these, or 

r{AB-^BB~CB). 

If a and fi are the radii of the spheres, then, when a is large 

compared with /3, the charge on B is to that on A in the ratio of 

3 /32 

4 a~ 0 + j 1 g 1 £ 
3 a 6 

4- fee.) to 1. 

Now’ lot (T be the uniform surface-density on A when B is re¬ 

moved, then the charge on A is 

4 TT (T, 

and therefore the charge on B is 

37r/3^crfl-|--^--t- See.) > 
' 3 a •' 

or, M’hen B is very small compared with a, the charge on the 

hemisphere B is equal to three times that due to a surface-density a 
extending over an area equal to that of the circular base of the 

hemisphere. 

It appears from Art. 175 that if a small sphere is made to touch 

an electrified body, and is then removed to a distance from it, the 

mean surfaee-den.sity on the sphere is to the surface-density of the 

body /it the point of contact as tt* is to 6, or as 1.G45 to 1. 

225,~) The most convenient form for the proof plane is that of 

a circular disk. 'We shall therefore shew how the charge on a 

circular disk laid on an cleetrified surface is to be measui'ed. 

For this purpose we shall construct a value of the potential 

function so that one of the equipotential surfaces resembles a circular 

flattened protuberance whose general form is somewhat like that of 

a disk lying on a plane. 
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Lot cT be the surface-density of a plane, wliieh we shall suppose 

to bo that of xy. 
The potential due to this electrification will be 

f = —4 TT (T 

Now let two disks of radius x be rig'idly clcetrified ^vith surface- 

densities — it' and -f <t'. Let the first of these be placed on the plane 

of ,ry with its centre at the origin, and the second parallel to it at 

the very small distance a. 

Then it may be shown, as we shall see in the theory of mag¬ 

netism, that the potential of the two disks at any point is coit'c, 

where w is the solid angle subtended by the edge of either disk at 

the point. Hoiiee the potential of the whole system will bo 

— 4 TT (T C -p (I) (T^ 0. 

The forms of the eqiiipotcntial surfaces and lines of induction 

arc given on the left-hand side of Fig. XX, at the end of Vol. II. 

Lot us trace the form of the surface for which 0. This 

surface is indicated by the dotted line. 

Putting the distance of any point from the axis of xr = r, then, 

when ?■ is much less than «, and ^ is small, 

(o = 27r —27r - -f &o, 
a 

Hoiiee, for values of r considerably loss than a, the erpiatioii of 

the zero eqiiipotential surface is 
zc 

0 = — 4 7rfr--f-27ro-'c — 2 Vt it-p&e.; 
a 

or z. = 

2(t-\- a - 
a 

Hence this oquijiotontial surface near the axis is nearly flat. 

Outside the disk, where r is greater than a, w is zero when xr is 

zero, so that the plane of xy is part of the erpiipotential surface. 

To find where these two parts of the surface meet, let ns find at 

(IV 
what point of this plane = 0. 

When T is very nearly erpial to a 

Hence, when 

(IV 2a'e 
= — 4 77 (t4- 

(Iz r—a 

(IV 
0, >-0 = «+ , 

(T C 

2 77 <T 

The eqnipotenlial surface /'= 0 is therefore composed of a disk- 
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like fig'ure of radius and nearly uniform, tliiokness and of the 

part of the infinite plane of .vy wliieh lies beyond this figure. 

The surfaeo-integral over the whole disk gives the eharge of 

electricity on it. It may he found, as in the theory of a circular 

current in Part IV, to he 

Q = 4 rr a a'c | log -2j + 7r arg". 

The eharge on an equal area of the plane surface is Tro-r,,-, hence 

the eharge on the disk exceeds that on an equal area of the plane 

in the ratio of , „ ^ , Sirr . 
1 + 8 - log- to unit}", 

where j is the thiekiicss and r the radius of the disk, z being sup¬ 

posed small compared with r. 

On lUeclric Acaumulalors and the Measurement of Capacity. 

226.] An Aeeiimiilator or Condenser is an apparatus consisting 

of two eondiieting surface's separated by an insulating dielectric 

medium. 

A Leyden jar is an aeeumulntor in which an inside coating of 

tinfoil is separated from the outside coating by the glass of which 

the jar is made. The original Leyden phial was a glass vessel 

containing water which was separated by the glass from the hand 

which held it. , 

The outer surface of any Insulated conductor may be considered 

as one of the surfaces of an accumulator, the other being the earth 

or the walls of the room in which it is placed, and the intervening 

air being the dielectric medium. 

The capacity of an accumulator is measured by the quantity of 

electricity \vith which the inner surface must be charged to make 

the difFerenee between the potentials of the surfaces unity. 

Since every electrical potential is the sum of a number of parts 

found by dividing each electrical element by its distance from a 

point, the ratio of a quantity of electricity to a potential must 

have the dimensions of a line. Hence electrostatic capacity is a 

linear quantity, or we may measure it in feet or metres without 

ambiguity. 

In electrical researches accumulators are used for two principal 

purposes, for receiving and retaining large quantities of electricity 

in as small a compass as possible, and for measuring definite quan¬ 

tities of electricity by means of the potential to which they raise 

the accumulator. 
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For ihe retention of electrical charges nothing has been devised 

more perfect than the Leyden jar. The principal part of the loss 

arises from the electricity creeping along the damp nneoated surface 

of the glass from the one coating to the other. This may he checked 

in a great degree by artificially drying the air within the jar, and 

by varntshing the surface of the glass where it is exposed to the 

atmos])hore. In Sir W. Thomson's electroscopes there is a veiy 

small percentage of loss from day to day, and I believe that none 

of this loss can he traced to direct conduction either through air 

or through glass when the glass is good, but that it arises chiefly 

from superficial conduction along the various insulating stems and 

glass surfaces of the instniment. 

In fact, the same electrician has communicated a charge to 

sulphuric acid in a large bulb with a long neck, and has then her¬ 

metically sealed the neck by fusing it, so that the charge was com- 

])lctcly surrounded by glass, and after some years the charge was 

found still to he retained. 

It is only, however, when cold, that glass insulates in this 

way, for the charge escapes at once if the glass is heated to 

a temperature below 100°C. 

When it is desired to obtain great capacity in small compass, 

aecnmulatovs in which the dielectric is sheet caoutchouc, mica, or 

])apcr impregnated with paraflin arc convenient. 

227.] For accumulators of the second class, intended for the 

measurement of quantities of electricity, all solid dielectrics must be 

employed with great caution on account of the property which they 

possess called Electric Absorption. 

The only safe dielectric for such accumulators is air, which has 

this inconvenience, that if any dust or dirt gets into tlie narrow 

space between the opposed surfaces, which ought to be occupied only 

by air, it not only'' alters the thickness of the stratum of air, but 

may'' establish a connexion between the opposed surfaces, in which 

ease the accumulator will not hold a charge. 

To determine in absolute measure, that is to say in feet or metros, 

the capacity of an accumulator, we must either first ascertain its 

form and size, and then solve the problem of the distribution of 

electricity on its opposed surfaces, or we must compare its capacity 

•with that of another accumulator, for which this problem has been 

solved. 

As the problem is a very difiRoult one, it is best to begin with an 

accumulator constructed of a form for which the solution is known. 
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Thus the capneity of an insulated sphere in an unlimited space is 

known to be measured by the radius of the sphere. 

A sphere suspended in a room was actually used by MM. Kohl- 

rauseh and Weber, as an absolute standard with which they com¬ 

pared the capacity of other accumulators. 

The capacity, however, of a sphere of moderate size is so small 

when compared with the capacities of tho accumulators in common 

use that the sphere is not a convenient standard measure. 

Its capacity might be greatly increased by surrounding the 

sphere with a hollow concentric spherical surface of somewhat 

greater radius, The capacity of the inner surface is then a fourth 

proportional to the thickness of the stratum of air and the radii of 

the two surfaces, 

Sir W. Thomson has employed this arrangement as a standard of 

capacity, hnt the diflicultics of working the surfaces truly spherical, 

of making them truly concentric, and of mea.suring their distance 

and their radii with sufficient accuracy, are considerable. 

We are therefore led to prefer for an absolute measure of capacity 

a form in which the opposed surfaces are parallel planes. 

Tlie accuracy of the surface of the planes can he easily tested, 

and their distance can be measured by a micrometer screw, and 

may be made capable of continuous variation, which is a most 

important property of a measuring instrument. 

The only difficulty remaining arises from tlie fact that the planes 

must necessarily be bounded, and that the distribution of electricity 

near the boundaries of tho planes has not been rigidly calculated. 

It is true that if we make them er|ual circular disks, whose radius 

is large compared with the distance between them, we may treat 

tho edges of the disks as if they were straight lines, and calculate 

the distribution of electricity by the method due to Helmholtz, and 

described at Art. 202. But it will be noticed that in this case 

part of the electricity is distnhiited on the back of each disk, and 

that in the calculation it has been supposed that there arc no 

conductors in the neighbourhood, which is not and cannot bo the 

case in a small instrument. 

228.] We therefore prefer the following arrangement, duo to 

Sir W. Thomson, which we may call the Guard-ring arrangement, 

by means of which the quantity of electricity on an insulated disk 

may be exactly determined in terms of its potential. 
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The Guard-ring Accumuhi/or. 
Bb is a cylindrical vessel of conducting material of wliich the 

outer surface of the upper face is accurately plane. This upper 

surface consists of two parts, 

a disk A, and a broad ring- 

BB surrounding the disk, 

scjiarated from it hy a very 

small interval all round, just 

snflicient to prevent sparks 

])assing-. The upper surface 

of the disk is accurately in 

the same plane with that of 

the guard-ring. The disk is 

supported hy pillars of insulating material GG, C is a metal disk, 

the under surface of which is accurately plane and parallel to HB. 
The disk C is considorahly larger than A. Its distance from A 
is adjusted and measured hy means of a micrometer screw, which 

is not given in the figure. 

This aeeumulator is used as a measuring instrument as follows : — 

Suppose 0 to he at potential zero, and the di.sk A and vessel Bb 
both at ])otential /'. Then there will he no electrification on the 

back of the disk because the ves.sel is nearly closed and is all at the 

same potential. There will be very little electrification on the 

edges of the disk because BB is at the same pohmtial with the 

disk. On the face of the disk the electrification will be nearly 

uniform, and therefore the whole charge on the disk will he almost 

exactly represented by it.s area multiplied hy the surface-density on 

a plane, as given at Art. 124. 

In fact, we learn from the investigation at Art. 201 that the 

charge on the disk is 

r < g I ^ 
I H A 8 A y/ -f- a 1 

where Ji is the radius of the disk, B' that of the hole in the guard- 

ring, A the distance between xL and C, and a a quantity which 

cannot exceed {B' — B) - • 
IT 

If the interval between the disk and the guard-ring is small 

compared with the distance between A and C, the .second term will 

Ijo very small, and the charge on the disk will he nearly 

B' + B''^ 
'~'8xl 

!■ ie, 20. 
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Now lot tho vessel Bbhe put in conne.xion with the earth. The 

charge on the disk A will no longer be uniformly distributed, hut it 

will remain the snnie in quantity, and if we now discharge A wc 

shall obtain a quantity of electricity, the value of which we know 

in tern).s of V, the original difference of potentials and the measur¬ 

able quantities 7f, R and A. 

On the Cimpansoii of the Capacilp of Acciumlolors. 

229.] The form of accumulator wdiich is best fitted to have its 

capacity determined in absolute measure from the form and dimen¬ 

sions of its prarts is not generally the most suitable for clectrieal 

experiments. It is desirable that the measures of capacity in actual 

use should he accunmhitors having only two conducting surfaces, one 

of which is as nearly as possible surrounded by the other. The 

guard-ring* aeeuninhitor, on the other liaiid, has three uidepemleut 

conducting portions which must he clmrged and discharg*ed in a 

certain order. Hence it is dcisirable to he able to compare the 

eapiaeities of two accumulators hy an eleetrical pu'oees.s, so a.9 to test 

accumulators W'hieh may afterwards serve as secondary standards. 

I shall first shew how to test the equality of the capiacity of two 

guard-ring uceumulatorri. 

Let A ho the disk, B the guard-ring with the rest of the con¬ 

ducting vessel attached to it, and C the large disk of one of these 

aeeumuhitor.s, and let A.', R, and C' be the corresponding piarts of 

the other. 

If cither of these accumulators is of the more simpde kind, having 

only two conductors, we have only to sup)pre.ss Ji or B', and to 

suppiose A to be the inner and C the outer conducting surface. C 
ill this case being understood to surround A. 

Let the following connexions be made. 

Let B bo kept always connected with C', and R with C, that is, 

let each guard-ring be eoniieeted \vith the large disk of the other 

condenser. 

(1) Let A be connected with B and C' and with J, the electrode 

of a Leyden jar, and let A' be eouiiccted with R and C and with 

the earth. 

(2) Let A, B, and C be insulated from «/. 

(3) Let A be insulated from B and C', and A' from B' and C'. 
(4) Lot B and C' be connected with B! and C and with the 

earth. 

(5) Let A be connected with A'. 
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(0) Let A and A' be connected with an clcetroscope E. 

We may express these connexions as follows :— 

(1) 0 = 6'=if=^r j A=:E=C'=J. 

(2) 0 = C=.B'=A' I A=B==C'\J. 

(3) 0=6^ = J^'|/r I A\JJ=C'. 

(-1) 0 = 0 = 1/ I A' I A I B=C' = 0. 

(5) 0 = 0=1/ I A’ = A I B=C' = 0. 

(0) 0 = O = B' I A'= E= A I B=C'=0. 

Here the sign of equality e.xpresses electrical connexion, and the 

vortical stroke expresses iiisuhition. 

Ill (1) the two accumulators are cliarg-cd oppositely, so that is 

positive and A' negative, the charges 011 A and A' being uniformly 

distributed on the upper surface opposed to the large disk of each 

accuniiilator. 

Ill (2) the jar is removed^ and in (3) the charges on A and A' aru 

insulated. 

In (4) the guavd-riiigs arc conueeted ^\^th the large disks, so that 

the charges on A and A', though unaltered in magnitude, are now 

distributed over their whole surface. 

Ill (5) A is connected with A'. If the charges are equal and of 

opposite signs, the electrification will bo entirely destroyed, and 

in (6) this is tested by means of the electroscope E. 
The electroscope E will indicate positive or negative electrification 

according as A or /f has the greater capacity. 

By means of a key of jiroper construction, the whole of these 

operations can be performed in due succession in a very small 

fraction of a second, and the capacities adjusted till no electri¬ 

fication can be detected by the clectroscoiic, and in this way the 

caiiaeity of an accumulator may be adjusted to be equal to that of 

any other, or to the sum of the capacities of several accumulators, 

so that a system of accumulators may be formed, each of which has 

its capacity determined in absolute measure, i. e. in feet or in metres, 

while at the same time it is of the construction most suitable for 

electrical experiments. 

This method of comparison wilL probably be found useful in 

determining the specific capacity for electrostatic induction of 

different dielectrics in the foini of plates or disks. If a disk of 

the dielectric is interposed between A and 0, the disk being con¬ 

siderably larger than A, then the capacity of the accumulator will 
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be altered and made equal to that of the same accumulator when A 

and C are nearer tog'ether. If the accumulator with the dielectric 

platej and with A. and C at distance x, is of the same capacity as 

the same accumulator without the dielectric, and with A and C at 

distance .V) then, if a is the thickness of the i)late, and K its specific 

dielectric inductive capacity referred to air as a standard, 

K= —• 
a -j- ar — A’ 

Tlic combination, of three cylinders, described in Art. 127, lias 

been employed by Sir W. Thomson as an accumulator whose capa¬ 

city may be increased or diminished by measurable quantities. 

The experiments of MM. Gibson and Barclay with this ap¬ 

paratus are described in the Proceedings of the Royal Society, Feb. 2, 

1871, and l^hil. Trans., 1871, p, 573. They found the specific in¬ 

ductive capacity of paraffin to be 1.975, that of air being unity. 
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ELECTHOK INEMATICS. 

CHAPTER I. 

THE ELECTRIC CURRENT. 

230. ] We have seen, in Art. 45, that when a conductor i.s in 

electrical ocjuilihriiim the jiotcntial at every point of the conductor 

must he the same. 

If two conductors A and li am charged with electricity so that 

the potential of A is higher tlian tliat of B, then, if they are put 

in eommuiiication by means of a metallic wire C touching hoth of 

them, part of the charge of A will be transferred to B, and the 

potentials of A and Ji will become in a very .short time equalized. 

231. ] During this jn-oocss certain phenomena are observed in 

the wire C, which arc called the phenomena of the cleetric conllict 

or current, 

The first of these jdienomena is the transference of positive 

electrification from A to li and of negative electrification from B 
to A. Tliis transference may be also effected in a slower manner 

by bringing a small insulated body into contact with A and B 
alternately. By this process, which we may call electrical con¬ 

vection, successive small poiiions of the electrification of each body 

are transferred to tlic other. In cither ease a certain quantity of 

electricity, or of the state of electrification, passes from one place 

to another along a certain path in the space between the bodies. 

Whatever therefore may be our opinion of the nature of elec¬ 

tricity, we must admit that the process wdiich we have described 

constitutes a current of electricity. This current may be described 
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as a current of positive electricity from A to B, or a current of 

nog-ativc electricity from B to A, or as a eombinatiou of tlicBC two 

currents. 

According’ to Fechner’s anil Weber’s theory It is a combination 

of a ciiiTcnt of positive electricity with an exactly equal current 

of ueg'ative electricity in the opposite direction through the same 

Kubstaiiec. It is necessary to renieinhcr this exceedingly artificial 

hypothc.sis reg-arding the constitution of l.lie current in order to 

understand the statement of some of Weberns most valuable ex¬ 

perimental results. 

If, as in Art. .3(), we suppose P units of positive electricity 

transferred from A to B, and A units of negative electricity trans¬ 

ferred from B to A in unit of timcj then, according to Weber’s 

theory, P = Nj and P or N in to be taken as the numerical measure 

of the current. 

Wcj on the contrary, make no assumption ns to the relation 

between P and N, but attend only to the ro.snlt of the current, 

namely, the transference of P-\-N of positive electrilication from A 
to B, and we shall consider P-\-N the true measure of the current. 

The current, therefore, which Weber would call 1 \vc shall call 2. 

On Steady Currents. 

232.] In the case of the current between two insulated con¬ 

ductors at dillercnt potentials the operation is soon brought to 

an end by the equalization of the potentials of the two bodies, 

jind the current is therefore essentially a Transient current. 

But there arc methods hy which the difference of potentials of 

the conductors may be maintained constant, in which case the 

current will continue to flow with unifonn strength as a Steady 

Current. 

The Voltaic Battery, 

The most convenient method of producing a steady current is by 

means of the Voltaic Battery. 

For the sake of distinctness \vc shall describe Daniell’s Constant 

Battery :— 

A solution of sulphate of zinc is placed in a cull of porous earth¬ 

enware, and this coll is idaced in a vessel containing a saturated 

solution of sulphate of copper. A piece of zinc is dipped into the 

sulphate of zinc, and a piece of copper is dipped into the sulphate 

of copper. Wires are soldered to the zinc and to the copper above 

VOL. I. u 
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the surface of the liquid. This coinbinution is called a cell or 

element of Daniell’s battery. See Aii. 272. 

233.J If the cedi is in.suliited by beiuf^- placed on a non-con¬ 

ducting stand, and if l.lic wire coiiucetcd with the eop])er is put 

in contact with an iiisidated conductor A, and the wire oouneeted 

■with the zinc is pul; in contact with 7/, .'mother insulated eonduetor 

of the same metal us .7, then it may be shewn by means of a (lelie,ate 

electrometer that the potential ol‘ A exceeds that of by a certain 

quantity. This dilferenee of potentials is called the Electromotive 

Force of the DaniclTs Cell, 

If A and 7J are now disconnected from the cell and i)nt in 

eomnnnheation liy means of a wire, a transient current passes 

throngh the wire from A to 7i, and the potentials of A and B 

become equal. A and B may then bo charged again by the cell, 

and the ])roeess roj)eiited as long as the cell will work. But if 

A and 7/ be eoniiocted by means of the wire C, and .'rt the same 

time conneeted with the battery as before, Ihen the cell will main¬ 

tain a eoristiinl current throngh C, and also a constant dill'erence 

of ])otentials between A. and Ji. This dillcrciiec will not, as we 

shall .sec, he (‘qiial to the whole electroniotivc* force of the cell, for 

])arl (if this force is spent in niuiutiiining the current through the 

cell itself. 

A nuiulKn’ of cells jilaced iu series so that the zinc of the fir.st 

cell is conneeti'd by metal with the coiipcr of the second, and 

so on, is called a A^oltaic Battery. The electromotive force of 

such 11 battery is the sum of the electromotive forces of the cells 

of which it is eompo.sed. If the battery is insul.atod it may be 

charged with electricity as a whole, but the jioteiitial of the eopiicv 

end will always exceed that of the zinc end by the electromotive 

force of the battery, whatever the absolute value of either of these 

jioteiitials may be. The cells of the battery may be of very various 

coustruetioii, containing dilleront chemical substances and diffeieiit 

metals, provided they arc such that chemical iiction does not go 

on when 110 current pa-sses. 

234.1 Let ns now eoinsider a voltaie h.attory with its ends insulated 

from each other. The copper end will be positively or vitreously 

elect rificd, and the zinc end will he nog-atively or resinou.sly electrified. 

Ijct the two ends of the battery be now conneeted by means 

ol a wire. An electric cnrrciit will comnieiice, and will in a very 

.short tinio attain a constant value. It is then said to be a Steady 
Current. 
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Fropcrlies of the Current. 

235. ] llie CTiiTont fovni.s 11 closed circuit in the divectiou from 

copper to zinc through the wires, aucl from ziuc to copper through 

llie solutions. 

If the circuit be hrokeu by cutting any of the wirc.s which 

connect the cop})cr of one coll with the zinc of the next in order, the 

current will be stopped, and the potential of the end of the wire 

ill coiiuoxiuii with the eoiipcr will be found to exceed that of the 

uud of the wire in connexion with the zinc by a constant quantity, 

namely, the total electromotive force of the circuit. 

lilectrotijlic Action of the Current. 

236. ] As long as the circuit is broken no chemical action goes 

on ill the cells, but as .soon as the circuit is completed, zinc is 

dissolved from the zinc in each of the Dauiell’s cells, and copper is 

depo,sited on the copper. 

The quantity of sulphate of zinc increases, and the quantity of 

.sulphate of copper diminishes unless more is constantly snpirlied. 

The quantity of ziuc dissolved and also that of copper deposited is 

the same in each of the Daniel Vs cells throughout the circuit, what¬ 

ever the size of the plates of the cell, and if any of the cells be of a 

dilfereiit construction, the amount of chemical action in it bears 

a coiKstiint proportion to the action in the Danicll’s cell. For 

instance, if one of the cells consists of two platinum plates dipped 

into sulphuric acid diluted with water, oxygon will be given off 

at the surface of the plate where the current enters the liquid, 

namely, the plate in metallic connexion with the copper of DaniclVs 

cell, and hydrogen at the surface of the plate where the current 

leaves the liquid, namely, the plate connected with the zinc of 

Daniell’s cell. 

The volume of the hydrogen is exactly twice the volume of the 

oxygen given off in the .same time, and the weight of the oxygen is 

c.xactly eight times the weight of the hydrogen. 

In every cell of the circuit the weight of each substance dissolved, 

deposited, or decomposed is ccpial to a certain quantity called the 

electrochemical equivalent of that substance, multiplied by the 

strength of the current and by the time during which it has 

been flowing. 

For the experiments which established this principle, see the 

seventh and eighth series of Faraday’s Experimental liescarches; 
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iind for an investin^atioii of the aiiparont exceptions to the rule, see 

Millei’’.s Chemical Physics aiul Wiecleinanu's G'alcunisnms. 

237, ] Snljstanecs which are deeomposecl in this way are eallecl 

Electrolytes, The process is called Electrolysis. The jdaccs where 

the enrrent enters iind leaves the chiclrolyte are called Electrodes. 

Of these the electrode by which the cuvrenl. enters is called the 

Anode, and that by which it leaves the electrolylc is called the 

Cathode. The components into which the electrolyte is resolved 

are called Ions ; that which aj)poars at the anode is called the 

Anion, and that which appear,s at the cathode is called the Cation. 

Of these terms, which were, I believe, invented by Faraday with 

the help of Dr. AVhewell, the first three, namely, electrode, elec¬ 

trolysis, and electrolyte have been generally adojited, and the mode 

of conduetion of the current in which this kind of deconii)osition 

and transfer of the components takes place is called Electrolytic 

Conduetion. 

If a homogeneous eleclrol^'te is placed in a tube of variable 

section, and if the electrodes are placed at the cuds of this tube, 

it is found that when the current passes, the anion ajipears at 

the anode and the cation at the cathode, the quantities of these 

ion.s being electrochemieally equivalent, and such as to be together 

eipiivalont to a certain quantity of the electrolyte. In the other 

parts of the tube, whellvcr tlie section be large or small, uniform 

or varying, the eomposition of the electrolyte remains unaltered. 

Hence the amount of electrolysis whieh takes place across every 

section of the tube is the same. Where the section is small the 

action must therefore he more intense than where the section is 

large', but the total amount of each ion which crosses any complete 

section of the electrolyte in a given time is the same for all sections. 

Tlie strength of the enrrent may therefore be meiisured by the 

amount of electrolysi.s in a given time. An instrument by which 

the quantity of the electrolytic products can be readily measured 

is called a Yoltaractcr. 

The strength of the current, as thus measured, is the same 

at every part of the circuit, and the total cjiiantity of the elec¬ 

trolytic products in the voltameter after any given time is pro¬ 

portional to the amount of electricity which passes any section in 

tlie same time. 

238. ] If we introduce a voltameter at one part of the circuit 

of a voltaic battery, and break the cirenit at another part, we may 

su]i])ose the raeiisurement of the current to be conducted thus, 
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Let the ends of the broken eimiit be A and Ji, and let A be the 

anode and B the entbodo. Let an insulated ball be made to toneh 

A and B alternatcdy, it will earry from A to B a eortain measurable 

quantity of oleetrieity at each journey. This quantity may be 

measured by an electrometer, or it may bo ealenlated by mul- 

tiidyinf,' the eleetromotive force of the eirenit by tlio eleetrostatic 

aipaeity of tbe ball. Electrieity is thus earried from A to B on the 

insulated ball by a process wbieb may be ealled Conveetioii, At 

tbe .same time eleetrolysis goes on in the voltameter and in tbo 

eells of tbe battery, and tbe amount of eleetrolysis in eaeb eell may 

bo compared witb the amount of electricity earried acros,s by tbe 

insulated ball. Tbe cpiantity of a siib-stancc wbieb is electrolysed 

by one unit of electricity is called an Electroebcmical equivalent 

of that substance. 

This experiment would be an extremely tedious and troublesome 

one if conducted in this way with a ball of ordinary magnitude 

and a manag-cable battery, for an enormous number of journeys 

would have to be made before an appreciable quantity of tbe electro¬ 

lyte wa,s decorai)osed. Tbe experiment must tbe.rcforo be eomsidcred 

as a mere illu.stration, tbe actual measurements of electroebcmical 

equivalents being conducted in a ditlerent way. But tbe experi¬ 

ment may be considered a.s an illustration of the process of elec¬ 

trolysis itself, for if wc regard electrolytic conduction as a species 

of convection in wbieb an cleetrocbemical equivalent of the anion 

travels with negative electricity in the direction of the anode, while 

an cfjuivalcnt of the cation travels with positive electricity in 

the direction of the catbodo, tbe whole amount of transfer of elec¬ 

tricity being one unit, wc shall liave an idea of tbe i)roecss of 

electrolysis, which, so far as I know, is not inconsistent with known 

facts, though, on account of onr ignorance of the nature of oloetricity 

and of chemical compounds, it may be a very imperfect repre¬ 

sentation of what really takes place. 

Maf)i)el\c Actlnn of (he Current. 

239.] Oersted discovered that a magnet placed near a straiglit 

electric current tends to i)lace itself at right angles to tbe plane 

passing tbrougb the magnet and tbe current. Sec Art. <175. 

If a man were to place his body in tbe line of the current so 

that the current from coiqior tbrougb tbe wire to zinc should flow 

from bis head to bis feet, and if lie were to direct bis face towards 

the centre of the magnet, then that end of tbe magnet which tends 
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to point to the north would, when the current flow.s, tend to point 

towards the man’s right hand. 

The nature and la\v.s of tliis clcctromiignctie action will he dis¬ 

cussed when W(! come l.o the fourth ])art of this treatise. ^Vllat 

we are eoneernod with at present is the fact that, the electric 

current has a magnetic action which i.s excrt(.*d outside the cnrreiit, 

and hy w'hich its oxi.stence can he ascertained and its intensity 

measured without breaking the circuit or iutrodnciiig anything into 

the current itself. 

The amount of the magnetic action has been ascertained to be 

strictly proportional to the strength of the current as mon.surcd 

by the products of electrolysis in the voltameter, and to l)c cpiite 

independent of the nature of the conductor in which the current 

is flowing, whether it be a metal or an electrolyte. 

240.] An instrument which indicates the strength of an electric 

current by its magnetic cHcets is called a Galvanometer, 

Galvanometers in general consist of one or more coils of silk- 

covered wire within which a magnet is suspended with its axis 

horizontal. When a current is ])assed through the wire the magnet 

tends to set itself with its axis pcrpciidieular to the iilane of the 

coils. If we suppose the plane of the coils to he jilaced parallel 

to the plane of the earth’s erjuator, and the current to How round 

the coil from cast to west in the direction of the apparent motion 

of the sun, then the magnet within will tend to set itself with 

its magnetization iu the same direction as that of the earth con¬ 

sidered as a great magnet, the north pole of the earth being similar 

to that end of the eoni])ass needle which points .south. 

The galvanometer is the most convenient instrument for mea¬ 

suring tlic strength of electric currents. Wc shall therefore assume 

the possibility of constructing such an instrument in studying the 

laws of these currents, reserving the discussion of the principles of 

the instrument for our fourth part. W’^lien therefore we say that 

an electric current is of a certain strength wc .suppose that the 

measurement is effected by the galvanometer. 



CHAPTER II. 

CONDUCTION AND RESISTANCE, 

J341.] If by means of an oleetroincter \vc delorniinc the cleetnc 

potential at cliirbrcnt points of a circuit in wliioli a constant electric 

current is maintained, %ve shall find that in any portion of the 

circuit consi.stino- of a single metal of uniform temperature through¬ 

out, the potential at any point exceeds that at any other point 

farther on in the direction of the current hy a quantity depending 

on the strength of the current and on the nature and dimensioim 

of the intervening portion of the eirenit. The ditrcrencc of the 

potentials at the extremities of this portion of the circuit is called 

the External eleetroniotive force acting on it. If the portion of 

the eirenit under consideration is not homogeneous, hut contains 

transitions from one substance to another, from metals to elec¬ 

trolytes, or from hotter to colder parts, there may he, besides the 

external electromotive force, Internal electromotive forces which 

must he taken into account. 

The relations hetween liloctromotive Eorcc, Current, and Resist¬ 

ance were tirst investigated hy Dr. G. S, Ohm, in a work published 

in 1827, entitled JJle Galranische Kelte Mufhematiscit Bearheltet, 

translated in Taylor’s HelenI'Jh Memoirs. ^Tlic result of these in¬ 

vestigations in the ease of homogeneous conductors is commonly 

called ‘ Ohm’s Law.’ 

Ohm's Law. 

The electromotive force acthirj hetween the extremities of aii)j part 

(f a circuit is the product of the strength of the current anti the 

Itesistance of that part of the circuit. 

Here a new term is introduced, the Resistance of a conductor, 

which is defined to he the ratio of the electromotive force to 

the strength of the current which it prodiieos. The introdnctioii 
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of this term would have been of no scientific value unless Ohm 

had shewn, as lie did experinieiitally, that it corresponds to a real 

jihysical cpiantity, that is, ihat it has a definite value wliieh is 

altered only when the nature of the coiidiietor irs alfcred. 

Ill the first place, then, the resistance of a eonduotor is inde¬ 

pendent of the strength of the eurrent flowing tlivoiigh it, 

In the sceoiid place the resistance is independent of the cleetrie 

potential at which the coiidnetor i.s maintained, and of the density 

of the distrihiitioii of edeetrieity on the surfaee of the condiietor. 

It depends entirely 011 the nature of the material of which the 

eoiidiictor is composed, the state of aggregation of its parts, and its 

temperature. 

The resistaiiee of a eondiicior may ho measured to within one 

ten thoiisaiidtli or oven one liiiiidred tlioiisundth part of its value, 

and so many eondiiolors have hoeii tested that our assuraiiee of the 

triiili of Oh lids Law is now very high. In the sixth oliaptcr we 

shall trace its applications and coiisequciiees. 

(ioicration of JI eat by Uie Current. 

fl42.] We have seen that when an eleotroinotive force causes 

a current to How through a conductor, electricity is transferred 

from a place of higher to a place of lower potential. If the transfer 

had been inudo by convection, that is, by earrjung successive 

charges 011 a ball from the one place to the other, work would have 

been done by the electrical forces on the ball, and this might have 

been turned to account. It is actually turned to account in a 

partial manner in those dry pile circuits where the electrodes have 

the form of hells, and the carrier ball is made to swing like a 

pendulum between the two bells and strike them alternately. In 

this way the electrieal action is made to keep up the swinging 

of the pendulum and to propagate the sound of the bells to a 

distance. In the ca.se of the conducting wire we have the same 

transfer of electricity from a place of high to a place of low potential 

without any external work heing done. The principle of the Con¬ 

servation of Energy therefore leads us to look for internal work in 

the conductor. In an electrolyte this internal work consists partly 

of the separation of its components. In other conductors it is 

ontirely converted into heat. 

The energy converted into heat is in this case the product of 

the electromotive force into the quantity of electricity which passc,s. 

But the electromotive force is the product of the current into the 
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resistance, and the quantity of oleetricity is the product of the 

eurreiit into the time. Hcnee the quantity of heat multiplied hy 

the mechanieal equivalent of unit of heat i.s equal to the square of 

the strength of the eurrent multiplied into the resistauee and into 

the time. 

The heat developed by eleetrie currents in overcoming the re- 

si-stance of conductors has been determined by Dr. Joule, who 

first c.st<al)lished that the heat produced in a given time is pro¬ 

portional to the square of the eurrent, and aftenvards by careful 

absolute measurements of all the quantities concerned, verified the 

equation 

where J is Joule’s dynamical equivalent of beat, 11 the number of 

units of heat, C the strength of the current, li the resistance of the 

conductor, and t the time during which the cuiTcnt flows. These 

relations between electromotive force, work, and heat, were first fully 

explained by Sir AV. Thomson in a paper on the application of the 

' principle of mechanical effect to the measurement of electromotive 

forces *. 

243. ] The analogy between the theory of the conduction of 

electricity and that of the conduction of heat is at first sight almost 

complete. If we take two systems geometrically similar, and such 

that the conductivity for heat at any part of the first is projjortional 

to the conductivity for clcctneity at the corresponding part of the 

second, and if we also make the temperature at any part of the 

first proportional to the electric potential at the corresponding ])oint 

of the second, then the flow of heat across any area of the first 

w'ill be proportional to tlic flow of electricity across the corre¬ 

sponding area of the second. 

Thus, in the illustration wc have given, in which flow of elec¬ 

tricity corresponds to flow of heat, and electric potential to tem¬ 

perature, electricity tends to flow from jrlaces of high to places 

of low potential, exactly as heat tends to flow from places of high 

to places of low temperature. 

244. ] Tlie theory of potential and that of temperature may 

therefore be made to illustrate one another; there is, however, one 

remarkable difibrenee between the phenomena of electricity and 

those of heat. 

Suspend a eoiidueting body within a closed condueting vc.sscl by 

a silk thread, and charge the vessel with electricity. The potential 

Vhi\. Maej., Pfc, 1851. 
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of the vessel and of all within it M'ill he inslautly raised, hut 

however Ion" and howev('r iJowevfully the vessel he eleetrilied, and 

whether the body within he allowed to eonie in contact with the 

vessel or not, no signs of eleetvitiention Avill ajipear within the 

vessel, nor will the body within shew any eleelrical efleet when 

taken out. 

But if the vessel is raised to a high tomperatnre, the bod\' 

within will rise to the same tonipei-atnre, but only after a con- 

siderahle time, and if it is then taken ont it will be found hot, 

and will remain so till it has continued to emit heat for some time. 

The diderenec helween the phonninena oonsi.st.s in the I'net. that 

bodies are cupahlo of absorbing and emitting heat, wherea.s tiny 

have no eorrespoiuliiig projierty with respect to eleetrieit^". A hotly 

cannot he nnulc hot wltliont a certain amoniit of heat heiii" 
O 

sii]i])lied to it, depending- on the mass and speeltie heat of the body, 

but. the olectrie potential ol' a body may he raised to any (‘xtenl 

in the way already deserihed without conmninieating any eleetrieity 

to the body, 

245.] Again, siip]iose a body first heated and then placed in.s'ido 

the elo.sed \'o.s.sel. The outside of the vessel will he at fir.st at the 

temperalnrc of .surrounding ])odie.s, but it will .c-ooii get hot, and 

will remain hot till Iho heat of the interior body has e.scaped. 

It' is iinpo,sslble to perform a eorre.spoiuling electrical experiment. 

It. is impossiljle so to electrify a liody, and so to jdace it in a 

hollow vessel, that the outside of the vessel shall at first .shew no 

signs of electrification hnt shall afterwards become electrified. It 

wa,s for some phenomenon of this kind that. Faraday sought in 

vain under the name of an ah.solute charge of electricity. 

Heat may he hidden in the interior of a body so as to have no 

external action, but it is impossible to isolate a epuntity of clco- 

tricity so a.s to ju-event it from ludug coii.stantly in inductive 

relation with au equal quantity of eleetrieity of the opposite kind. 

There is nothing therefore among electric phenomena which 

corresponds to the capacity of a body for heat. Tins follow.s at 

once from the doctrine which is asserted in this trenliso, that 

electricity obeys the same condition of coutinuit.y as an incom¬ 

pressible fluid. It is therefore iinpos.sible to give a bodily charge 

of eleetrieity to any- substance by forcing an additional ipiantity of 

electricity into it. Sec Arts. Gl, 111, 329, 33.J, 



CHAPTER III. 

ELKCTItOMOTIVE FOUCE ]}ET^^’•EEN■ HODIE.S IN CONTACT 

T//e Poteniia/s of DilfereuI Snfjslanccn in ConPtcL 

246,] If wc define the potential of a hollow eomlucting’ vc.^^.sel 

as the potential of the air inside the ves.sel, we may ascertain this 

potential hy means of an cleetroineter as deseribed in Part I, 

Art, 222. 

If we now take two hollow vessels of diflerent metals, say eojjper 

and zine, and put them in metallic coniact with each other, and 

then test the potential of the air inside each vessel, the potenthil 

of the air inside the zinc vessel will he positive as eom[)arcd with 

that inside the copper vessel. The dilference of potentials depcinl.s 

on the nature of the surface of the insides of the vessels, hein^r 

greatest when the zinc is bright and when the C02)2)er is coated 

with oxide. 

It appears from this that when two different metals arc in 

contact there is in general an electromotive force acting from llio 

one to the other, .so as to make the potential of the one exceed 

that of the other by a certain quantity. This is Volta’s theory of 

Contact Electricity'. 

If wc take a certain metal, say copper, as the standard, then 

if the potential of iron in contact with coi)pcr at the zero potential 

is /, and that of zinc in contact with coj>per at zero is Z, then 

the potential of zinc in contact with iron at zero will be Z—1. 

It aiqiciirs from this result, w'hich is true of any three metals, 

that the diirercncc.g of potential of any two metals at the same 

temperatnre in contact is equal to the differenoe of their potentials 

when In contact with a third metal, so that if a circuit be formed 

of any luimhcr of metals at the same temperature there will be 

electrical equilibrium as soon as they have acquired their ])roper 

potentials, and there will be no ciirrent kept up in the circuit. 
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247, ] If, however, the civciiii consist of two metals aiul an elee- 

trolyte, the oleetrolyto, according to Volta’s theory, tends to reduce 

the potentials of the metals in coutaet with it to equality, so that 

the electromotive force at th.o inetallie junction is no longer hnlanced, 

and a continnons current is kept up, The energy of thi.s current 

is supplied by the chemical action which takes place hetiveen the 

electrolyte and the metals. 

248, ] The electric effect may, however, he produced without 

chemical action if by any other means wc can produce an equali¬ 

zation of the potentials of two metals in contact. Thus, in an 

experiment duo to Sir W. Thomson*, a copper funnel is placed in 

contact with a vertical zinc cylinder, so that when copper flling.s 

arc allowed to pass through the funnel, they separate from each 

other and from the funnel near the middle of the zinc cylinder, 

and then fall into an insulated receiver placed below, Tlic receiver 

is then found to be charged negatively, and the charge increases 

as the filings continue to pour into it. At the same time the zinc 

cylinder with the coiiper funnel in it become,s charged more and 

more positively. 

If now the zinc cylinder were connected with the receiver Iw a 

wire, there would he a positive current in tliewirc from the cylinder 

to the receiver. The stream of copper filing.^, each filing- charged 

negatively by induction, constitutes a negative current from the 

funnel to tlie receiver, or, in oilier words, a po.sitivc current from 

the receiver to the copper faimel. The positive current, tliorcfonq 

passes tlirougli tlie air (by Ihc filiag.s) from zinc to copper, and 

througli the metidlic junction from copper to zinc, just as in the 

ordinary voltaic arrangement, but in tlii,s- case tlie force wliieh kecjis 

up llic current is not cliemical action but gravity, wliicli cau.so.s the 

filings to fall, in .spite of the electrical attraction between the 

positively charged funnel and the negatively charged filings. 

249, ] A remarkable confinnation of tlio tlicory of contact elec¬ 

tricity is supplied liy the discovery of Peltier, tliat, wlicn a cun-cat 

of electricity crosses the junction of two metals, the junction i.s 

heated when the curi-ent is in one direction, and cooled when it 

is in the other direction. It must he remembered that a current 

ill its passage through a metal always produces heat, because it 

meets with resistance, so tliat tlie cooling effect on tlie wliole 

coiiduetor must always be less than tlie heating elfcet. We must 

therefore distinguisli between the geiici-ation of heat in cacli metal, 

Nurlh lintieh Itniew, 18G4, j). 353; .and ZVoc. 11. Juiii! 20, ]SC“. 
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due to ordiiiiiry resistance^ and tlic generation or absorption of lieat 

at tlic junction of two metals, We sliall call the first the frictional 

generation of heat by the eurreut, and, as we have seen, it is 

])roportional to the square of the current, and is the same whctlicr 

the current bo in the positive or the negative direction. The second 

we may call the Peltier effect, which changes its sign with that 

of the current. 

The total heat generated in a portion of a compound conductor 

consisting of two metals may be expressed by 

7/ = 4 G-t~Y\Ct, 
J 

whore IF is the quantity of heat, J the mechanical equivalent of 

unit of heat, li the resistance of the couduetor, C the current, and 

(■ the time ; FI being the cocflicicnt of the Peltier effect, that is, 

the heat ab-sorbed at the junction due to the passage of unit of 

current for unit of time. 

Now the heat generated is mechanically equivalent to the work 

done against electrical forces in the conductor, that is, it is equal 

to the product of the current into the electromotive force producing 

it. lienee, if 7f is the external electromotive force which causes 

the current to flow through the conductor, 

///= CEi = RCU-JnCf, 

whence E = ItC—J ff. 

It ai^pcars from this equation that the external electromotive 

force required to drive the current through the compound conductor 

is less than that due to its resistance alone by the electromotive 

force Jn. lienee J FI represents the electromotive contact force 

at the junction acting in the jiositivc clircction. 

This a])plication, due to Sir W. Thomson*, of the dynamical 

theory of heat to the determination of a local electromotive force 

is of great scientific importance, since the ordinary method of 

connecting two points of the compound conductor with the elec¬ 

trodes of a galvanometer or cloctroscoj)c by wires would be useless, 

owing to the contact forces at the junctions of the wires with 

the materials of the compound conductor. In flic thermal method, 

on the other hand, we know that the only source of energy is the 

current of electricity, and that no work is done by the current 

in a certain jjortioii of the circuit except in heating that jiortiou 

of the conductor. If, therefore, we can measure the amount of the 

• Pyoc. R. ,S'. I'Jilin., Dee. 15, 1851 ; ami Trtnm. R. S. ICdhi., 18.5-1. 
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current and the amount of licat jiroduccd or absorbed, we can 

determine the electromotive force, required to urge the current 

tliroug-li tliat portion of the conductor, and this measurement is 

entirely independent of the effect of contact forces in other parts of 

the circuit. 

The electromotive force at the junction of two metals, as dc- 

tcriuiued by this method, does not account for Volta’s electromotive 

force as described in Art. 2 If3. The hitter is in general far greater 

than that of this Article, and is sometimes of opposite sign. Hence 

the assumption that the poteutiiil of a metal is to be measured by 

that of the air in contact with it must be erroneous, and the greater 

part of Volta’s electromotive force must bo sought for, not at the 

junction of the two metals, but at one or both of the surfacc.s which 

.separate the metals from the air or other medium which forms the 

third elemeut of the circuit. 

tiaO.] The discovery hy Seeboek of tlicrmoLdcctric currents in 

circuits of different metals with their junctious at different tem- 

jieratures, shews that these contact forces do uot always balance 

each other in a comjilete eireuit. It is manifest, however, that 

in a complelc circuit of diilcrcnt metals at uniform temperature the 

contact forces must balance each other. For if this were not the 

ea.se there' would be a current formed in the oircuit, and this current 

might be emjiloyed to work a niaeliiue or to generate beat in the 

eireuit, that is, to do worlc, while at the same time there is no 

cx])enditiirc of cuergy, as the circuit is all at the .'^amc temperature, 

and no chemical or other change takes place. Hciicc, if the Peltier 

clfeeL at the junction of two metals a and b be represented by ri„(, 

when the current flow.s from a to b, then for a circuit of two metals 

at the same tcinpcraluvc we mast have 

H,,;, + n,,„ = 0, 
and for a eireuit of three metals a, h, c, we must have 

H;„. + n,.„ -j- ri„,, = 0. 
It follows from this equation that the three Peltier effects are not 

independent, luit that one of Ihem can be deduced from the other 

two. For in.stancc, if we suppo.se c to be a standard metal, and 

if we write = /n„„ and then 

/n,„, = P„-A. 
The quantity 7’,, is a fimetion of the temperature, and depends on 

the nature of the metal a. 

251.] It has also been shcwui by JIagnus that if a circuit is 



TJI KHMOELUC'TllIC PHENOMENA. 303 251-] 

formed of a single raolul no current will Ire formed in it^ liow'evoi- 

the ficction of tlio eouductor and the tempeniturc may vary in 

diflerent parts. 

Since in this case there is conductioa of licat and consequent 

dissipation of energ'y, ue cannot, as in tlar former case, consider this 

result as self-evident. Tlic electromotive (breo, for instance, between 

two portions of a circuit might have depended on whether the 

current rvas passing from a thick prortion of the conductor to a thin 

one, or the reverse, as ^vell as on it.s pa.s!3ing‘ rapidly or slowly from a 

hot prortion to a cold one, or the reverse, and this would have made 

a current prossilrle in an unequally heated circuit of one metal. 

Heiiec, by the same reasoning as in the ease of Peltier’s phe¬ 

nomenon, rve find that if the pas.sage of a current through a 

conductor of one metal produces any thermal elfect which is re¬ 

versed when the current is reversed, this can only take place when 

the current Hows from places of high to priaces of hrw tempemUire, 

or the reverse, autl if the heat generated in a conductor of ouc 

metal in flowing from a place where the tempicrature is x to a 

pilaee where it is y, is II, then 

/// = 

ami the eleetromotivc force tending to maintain the current will 

he 

If a-, 7/, z be the temperatures at three p)oints of a lioniogeneous 

eircuit, we must have 

aeoording to the result of IMagims. Hence, if \vc suppose z to be 

the zero temperainre, and if we p)ut 

Qx = S,, and = -S;,, 

we find ^xu=Qx-Q,n 

where fiiiiotion of the tciuperatiii'c x, the form of the 

function dep)ending on the nature of tlie metal. 

If we n')w consider a eirciiit of two metals a and b in win’eh 

the 1 emp)eratiiro is x where the current p)a,s.sos from a to b, and 

// where it p)a.sse.s from h to a, the eleetromotivc force will he 

— /«—(?;,;/+ — Qaxi 

whore siguifie.s the value of P fur the metal a at the tempera¬ 

ture X, or 

= P.ix— Q.ax'~{J\iu~ Q,ii)~{Pbx.— Ql,x) + ^\,,i—Ql,il' 

Since in unequally heated circuits of dilfereiit metals there are in 
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general tlicrrnocloctvic currents, it follows that P and Q are in 

general dilferent for the same metal and same temperature. 

252, ] The existence (T the quantity Q was first demonstrated by 

Sir W. Tliomson, in the memoir we have referred to, as a deduetion 

from the phenomenon of thermoelectric inversion discovered by 

Cumming-*j who found that the order of certain metals in the thcr- 

mocdeetric scale is dilferent at high and at low ternperature.Sj so that 

for a certain temperature two metals may bo neutral to each other. 

Tlinsj in a circuit of copper and iron if one junction be kept at the 

ordinary tein])eratnro while the temperature of the other is raised, 

a current sets from copper to iron through the hot junction^ and 

the electromotive force continues to increase till the hot junction 

has reached a temperature T, whiclq according to Thomson^ is 

jihont 28 l'C. When the temperature of the hot junction is raised 

still further the electromotive force is reduced, and at lastj if the 

temperature be raised high enough^ the current is reversed. The 

reversal of the current may be obtained more easily by raising the 

temperature of the colder junction. If the temperature of both 

junctions is above 2' the current sets from iron to copper through 

the hotter junction, that is, in the reverse direction to that ob¬ 

served when both jimcl ions arc below 2'. 

Ilencc, if one of the junctions is at the neutral temperature T 

and the other is either hotter or colder, the current will set from 

eopper to iron through the junction at the neutral temperature. 

253. ] From this fiiet Thomson reasoned as follows:— 

Suppose the other junction at a temperature lower than T. 

The current may be made to work an engine or to generate heat in 

a wire, and this expenditure of energy must be kept up by the 

Iransfonnation of heat into electric energy, that is to say, heat 

must disappear somewhere in the circuit. Now at the tempera¬ 

ture T iron and copper are neutral to each other, so that 110 

rcvcnsible thermal ellect is produced at the hot junction, and at 

the cold junction there is, by Peltier’s principle, an evolution of 

heat. Ileiiec the only place where the heat can disappear is in the 

coppLM' or iron pjortions of the circuit, so that either a current in 

iron from hot to cold must cool the iron, or a eiirreiit in copper 

from cold to hot must cool the copper, or both these efiects may 

tube place, lly an elaborate series of ingenious experiments Thom¬ 

son siieccoded in detecting the reversible thermal action of the 

ciirreiit in ])assing between parts of dilferent temperatures, and 

* Camhrid'je Trtinsiictiont, 1823. 
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lie found that the current produced opposite effects in copper and 

in iron *. 

When a stream of a material fluid passes along a tube from 

a hot part to a cold part it heats the tube, and when it passes 

from cold to liol it cools the tube, and these effects depend on 

the specific capacity for heat of the fluid. If we supposed elec¬ 

tricity, whether positive or negative, to be a material fluid, we 

might measure its specific heat by the thermal cfleet on an im- 

equally heated eoiiduetor. Now Thomsoii'’s experiments slicw that 

])ositivc electricity in copper and negative electricity in iron cari-y 

heat with them from hot to cold. Hence, if we siipjioscd cither 

positive or negative electricity to be a fluid, capable of being 

heated and cooled, and of comiuunicating heat to other bodies, we 

should find the supposition contradicted by iron for positive elec¬ 

tricity and by copper for negative electricity, so that wc should 

have to abandon both hypotheses. 

This scientific prediction of the reversible effect of an electric 

current upon an unequally heated conductor of one metal is another 

instructive example of the apidieatioii of the theory of Conservation 

of Energy to indicate new directions of scientific research. Thomson 

has also ajiplied the Second Law of Therinodynamies to indicate 

reliitioiis between the quantities which we have denoted by P 

and Q, and has investigated the possible thermoelectric properties 

of bodies whose sfriictiire is different in different directions. He 

ha.s also investigated experimentally the conditions under which 

these properties are developed by jircssurc, magnetization, &c. 

254.] Profes.sor Tiiitf has recently investigated the electro¬ 

motive force of thermoelectric circuits of different metals, having 

their junctions at different temiiei-atiires. He finds that the elec¬ 

tromotive force of a circuit may be expressed very accurately by 

the formula 

E — a (/Ij — /j,) [^() — i + 4)]> 

where i.s the absolute temperature of the hot jnnetioii, that 

of the cold junction, and Z,) the temiicratnrc at which the tw'o metals 

are neutral to each other. The factor a is a cocffieiont depending 

on the nature of the two metals comjiosing the circuit. This law 

has been verified through considerable ranges ol‘ temperature by 

Professor Tait and his students, and he hopes to make the thcrnio- 

eleetric circuit available as a tliermomctrie instrument in his 

* ' On the Klectrodyiiftinic QmilitieH of MetalH.' Phil. 1850. 
t Proc, It. S. lidiii.; iSotisiuii 1870-71, i).308, Jilso Dec. 18, 1871. 
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experiments 011 the conduction of heat, and in other eases in which 

the mcreurial thennometer is not. conveiiieiit or has not a siiflieient 

rano-e. 

Aeeordin|> to Tait’s theory, the cjiiantity which Thomson calls 

the sjjceifie heat of eleetrieily is [)TOp(jr(ioiial to (he aUsolute tem¬ 

perature in eac.di imre met ill, tlioUf^-h its ma}^-uitude and even its 

sif>-n vary in dill'ereiit met:ds. From this he has deduced by ther- 

luodyiiaiiile jiriiieiides the followiiif^* msidts. Let k^l 

he the siiecific heats of electricity iu three metals (/, b, c, and let 

'l\j, be the temi)eniture.s at which pairs of these metals are 

neiilral to eaeh other, then the eiiuations 

I (/•,, — k„) 7'.,, 4- (X‘, — /•(,) 7',^ = (I, 

'/lba= 

— {l'\i ~ ki) (fj ~ 4) [. ~ i (^'l + 4)1 
ex])ress the relation of the neutral tcmiioratiires, the value of the 

I’eltier effect, and the eleetroniotivc force of a thermoclectrie cirouit. 



CHAPTER IV. 

KLECTIfOl.YS-IS. 

Elect rotjt'ic Ci))iiluctto)i. 

I IIAVK iilreiidy .staled that when an elcctrio current in 

any part of its c-ireiiit jjasses throng'll certain eoiiipound suhstanecs 

called Elec-lroljtos, (he 2)a.s.s-ag'e of the current is accompanied by 

a certain eheinieal jirocess called Electrolysi.s, in which the substance 

i.y re.solved into two coiinioneiits ealled Ions, of which one, called 

the Anion, or the electronegative component, appears at the Anode, 

or place where the eiirreiit enters (he electrolyte, and the other, 

ealled the Cation, appears at the Cathode, or (he place where the 

current leave.s the electrolyte. 

The complete investigation of Electroly.si.s belongs cpiite as innch 

to CherriLstry n.s to Electricity. We shall eoiisidi.'r it from au 

electrical ]ioiiit of view, without di.seu.ssing its apiilication to the 

theory of the constitution of elieniieal compounds. 

Of all elrt^trieal pheiioineiia eleetroly.sis appears the most likely 

to liirni.sli n.s with a real insight into the true nature of the electric 

current, beeau.se we. find enrrents of ordinary matter and currents 

ol‘electricity forming e.s.seii(inl parts of the .same phenomenon. 

It is probably for this very reason (hat, in the pre,seiit imperfectly 

formed state of our ldea,s about electricity, the theories of electro¬ 

lysis arc so nii.sati.sfactory. 

The fundamentiil law of elcctrolysi.s, which w'as e,stahlished by 

I'amday, and conlinned by the ex])eriineiits of Beetz, Ilittorf, and 

others down to the present time, is as follou's :— 

The iiunihcr ol‘ eleetroehcmieal ecjuivaleiits of an electrolyte which 

arc deeompo.s-ed by the passage of an electric current during a given 

time is equal to the niimher of units of electricity which are trans¬ 

ferred by the current in the siimc time. 

The electrochemical equivalent of a sabstance is that (piuntity 
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of the substance which is electrolysed by a unit current passing- 

through the siibstaiiee for a unit of time, or, in other words, by the 

pasisag-e of ii unit of electricity. When the unit of electricity is 

delincd in absolute measure the ahsohite value of the clectro- 

elieniical equivalent of each substance can be determined in grains 

or in grainnie.s. 

Thu eleetrocheinical equivalents of difTerent substances arc pro¬ 

portional to tbeir ordinary chemical equivalents. The ordinary 

chemical equivalents, however, are the mere luimcrieal ratios in 

which tlie substances eomhiiie, whereas the electrochemical equi¬ 

valents are (jiiaiitities of matter of a determinate magnitude, de- 

poiiding on the definition of the unit of electricity. 

Every electrolyte consists of two eomponents, which, during the 

electrolysis, appear where the current enters and leaves the elec¬ 

trolyte, mill nowhere else, Ilcncc, if wc conceive a surface described 

within the substance of the electrolyte, the amount of electrolysis 

which takes place through this .surface, as measured by the elec¬ 

trochemical eijiiivalents of the components transferred acro.ss it 

in oppo.site direetions, will be proportional to tho total electric 

current through the surface. 

The actual transfer of the ions through the .substance of the 

electrolyte in opposite direetions is therefore part of the phenomenon 

of the conduction of an electric current through an electrolyte. At 

every point of the electrolyte through which an electric current 

is passing- there arc also two opposite material currents of the anion 

and the cation, which have the same lines of ilow with the electric 

current, and arc proportional to it in magnitude. 

It is therefore extremely natural to suppose that the currents of 

the ions arc convection currents of electrieity, and, in particular, 

that every molecule of the cation is charged with a certain fixed 

quantity of po,sitivc electrieity, which is the same for the molecules 

of all cations, and that every molecule of the anion is charged with 

an equal quantity of negative electricity. 

The opposite, motion of the ions through tho electrolyte would 

then he a complete pliysieiil representation of the electric current. 

Wo may compare this motion of the ions with the motion of gases 

and liquids through each other during the process of diffusion, 

there being this difference between the two processes, that, in 

diffusion, the dilferent substances are only mixed together and the 

mixture is not homogeneous, whereas in electrolysis they are chemi¬ 

cally eomhined and the electrolyte is homogeneous. In diffusion 
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the determining eiiuse of the motion of a substaiieo in a given 

direction is a diininntion of the quantity of that substance per 

unit of volume in that direction, \vherea.s in elcctroly.sis the motion 

of each ion is due to the electromotive force acting on the charged 

raolecules. 

256. ] Clausius*, who has bestowed much .study on the theory 

of the m(jleeuhir agitation of l)odie.s, supposes that the moleeules 

of all bodies are in a state of constiint agitation, but that in solid 

bodies each molecule never passes beyond a certain distance from 

its original position, whereas in Unids a molecule, after moving 

a certain distance from its original position, is just as likely to 

move still faither from it a.s to move back again. Hence the 

molecules of a Iluid apparently at rest are eontinnally changing 

their positions, and piussing irreg-ularly from one i)art of the Ihiid 

to another, In a compound tlnid he supposes that not only the 

compound molecules travel about in this way, but that, in the 

eollisions which occur between the compound mnleoulos, the inole- 

enles of which they are composed are often separated and cliaiig-e 

])artnors, so that the .same individiml atom is at one time associated 

with one atom of the opposite kind, and at another t ime with another. 

This process Claiusius snj)poses to go on in the liquid at all times, ljut 

when an electromotive force acts on the liquid the motions of the 

moleeules, which before were indillerently in all directions, are now 

indueneed hy the electromotive force, so that the positively charged 

molecules have a greater teiuleney towards the cathode than towards 

the anode, and the nogntivcly charged moleeiilos have a greater 

tendency to move in the opposite direction. Hence the molecules 

ol'the cation will during their intervals of freedom struggle towards 

the cathode, but will continually be checkod iu their course by 

l)airing' for a time with molecules of the anion, wdiieh are also 

struggling through the crowd, hut in the opposite direction. 

257, ] I'liis theory of Chmsins enables us to understand how it is, 

that whereas the actual decomposition of an electrolyte requircs an 

electromotive force of finite magnitude, the conduction of the 

current in the electrolyte obeys the law of Ohm, so that every 

electromotive force within the electrolyte, even the feeblest, produces 

a current of proportionate magnitude. 

According to the theory of Clausius, the decomposition and 

recomposition of the electrolyte is continually going on even when 

there is no current, and the very feeblest electromotive force is 

• I’ogg. Jm. I)cl. ci, 8, 338 (1867). 
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sufficient to g-ive this process a certain ilegreo. ol' direction, and so 

to produce the currents of the ions and the electric eiirreut, which 

is part of the same plicnoineuoii. Within the electrolyte, however, 

the ions are never set free hi liiiite quantity, and it is t.his liberation 

of the ions winch requires a nnite electroinotive force. At the 

electrodes the ions aeeiiiuulatc, fur the suct;e.ssive portions of the 

ions, as (hey arrive at the electrodes, iiustead of llinling' luoleeules of 

(he opposite ion ready to eondiiiie with them, are Ibreed into com¬ 

pany'' with moleenh'S of their own kind, with which tiny cannot 

cotnhinc. The electronio(l\‘e I'orce ro([iiireil to produce this cU'eet 

is of finite inag-nitnde, and forms an oppo.sing' electromotive force 

which produces a rcver.seil current when other electromotive forces 

are removed, W'lieii this rcver.scd elect roinotive force, owing’ to 

the accinnnlatioii of the ions at the electrode, is observed, the 

electrodes are .said (o he I’elarizcd. 

258. ] One of the licst nudliods of delcrniining wlicther a body 

is or is not an idcctndytc is to ])lacc it between jdatinum electrodes 

and to ])ass a current (lirougli it for some time, and (lien, dis¬ 

engaging’ (he electrodes from the vidtaie hattery, and connecting 

them witli a galvanometer, to oliserve wlietlier a reverse enrrent, 

due to polarization of the electrodes, jia.sses through the galvano¬ 

meter. Such a cnrn'nt, being due to accumulation of diH'crciit 

substances on the two electrodes, is a ju’oof that the substance has 

been clcctridytically decomposed 1)\' the original enrrent from the 

hiitteiy. This niethcd can often he ap])lied where it is dillieidt, 

ly direct eliomk'id methods, to detect the presence of the products 

of deeomposidoii at the idect redes. Sec Art, 271, 

259. ) So fur as we have gone the theory of elect roly.sis iqqicars 

very' patisfaetory. It ex])lains the cleeti'ie current, (he nature of 

which we do not understand, hy means of the currents of the 

matm’i.'d coinjionents of the electrolyte, the motion of which, 

though not vi.sihle ki the eye, is easily' deinoiistrated. It gives a 

clear explanation, ns Faradnv has shewn, why an elcctrolvte which 

conducts in (he liquid slate is a non-coiuluctor when s<didilled, for 

indc.ss the inolceides can pa.ss from one jiart (0 nnntlicr no elec- 

trolylie conduction can take place, so that the .sulcstance must 

be in a liipiid state, either by fnsimi or by .solution, in order to be 

a coiidnetor. 

Ihit if we go on, and assume that the moleeiilcs of the ions 

within the electroly’te are actually charged with ecrtaiii definite 

quantities of electricity, positive and negative, so that the elec- 
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trolytic eurront is simply a eiirrcnt of convection, we find that this 

(emptinf' hy])otlicsis leads us into very difficult "round. 

In the first place, we mast assume that in eveiy electrolyte each 

molecule of the cation, as it is lihcnitod at the cathode, commu¬ 

nicates to the cathode a oliar"e of positive electricity, the amount 

of which is the same for ever}" molceulo, not only of that cation 

hut of all other cations. In the same way each molecule of the 

anion when liberated, comnnmieate.s to the anode a char"c of 

negative ek'otricity, the iinmerical magnitude of which is the same 

as that of the ])ositive charf^e due to a molecule of a cation, but 

wifli sifi'ii reversed. 

If, iiKsfead of a single molecule, we consider an a.sseiublage of 

moleciile.s, constituting an elect rochcinical (‘([iiivalciit of the ion, 

then flic total t'lmrge of all the molecules is, as we have .soon, one 

unit of electricity, j)o,sitive or negative. 

260.] We do not as yet know how many molecules there are 

in an eloctroeheinical eijuivalent of any sub.stance, hut the inoleoulav 

theory of ehiuni.'^try, which is eorrohfirated by many ]ihysieal con- 

sideration.s, suj)j)oses that the numher of molecules in an elee- 

troidiomievil e([uivah'nt is the same for all suhstaiices. We may 

thcreliu'c, in molecular sjieeulafions, assume that the number of 

niolt'cnlcs in an electroehemical ciiuivalciit is A, a numher uiiknowu 

at jn'csimt, but which we may herc'al'fer find means to determine*. 

Kaeh moleeiile, therefijre, on being lihi‘rated from the state of 

eomhinafion, parts with a charge wlnwe magnifudo is , and is 

positive for the cation and negiifivc for fho anion. Thi.s definite 

(juaiitit)" of elcefrieity we shall call the niolecuhir charge, If it 

were known it would he the most natural unit, of ideetrieity. 

Hitherto we have only iuei'ea,scd the jii'eeision of our ideas hy 

c.\orciKing’our imagination in fraeingfhe electvilieatinii of moleeides 

and the dtseharg-e of that eleetrification. 

The lihcratioii of the ions and the ])a.s.sage of positive electricity 

from the anode and into the outhode are simiilf:meons facts. The 

ions, when lihernted, are not eluirged wit h eh'ctrieif}', hence, wlum 

they are in eomhination, they have the moleeidar eharg-e.s as above 

de.seril)('d, 

Tlu' electrlfieaf ion of a molecule, however, though easily spoken 

of, is not .so easily eoneei\'ed. 

\\‘e know that if two metals are In-onglit into contact at any 

Sec note to Art. fi. 
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point, the vest oftlicir snrfaecs will be electrified, and if the metals 

are in the form of two plates separated bj'' a narrow interval of air, 

the charfre on eaeh plate may become of considerable mag-iiitiide. 

Somethin" like this may be siip]»sed to oecur when the two 

eomponciits of an electrolyte arc in combination. Each pair of 

molecules may be supposed to touch at one point, and to have the 

rest of their surfuec charged with electricity due to the electro¬ 

motive force of contact. 

But to explain the plienomenon, we ought to .skew why the 

charge thus produced on each niolocule is of a fixed amount, and 

why, when a molecule of chlorine i.s combined with a molecule of 

zinc, the molecular charges are the .same as when a molecule, of 

chlorine is coiuhintal with a moli'cnle of copper, although the elec¬ 

tromotive force between chlorine and ziiio is inucb greater than 

that hotween eliloriiio and copper. If the charging’of the molecules 

is the eflect of the electromotive force of contact, why should 

electromotive forces of diflcrent intensities ])roduec exactly equal 

charges ? 

Sn])pose, however, that we leap over this difiiciilty by simply 

asserting the fact of the constant value of the molecular oliargCj 

and that we call this constant molceular charge, for convenience in 

description, one molecule 0/ eleclrieit j. 

This ])hrase, gross as it is, and out of harmony with the rest of 

this treatise, will enable us at least to state clearly what is kno^vn 

about electrolysis, and to apin-eciale the outstanding diflicnlties. 

Every electrolyte must be considered as a binary compound of 

its anion and its cation. The anion or the cation or both may be 

compound bodies, so that a molecule of the anion or the cation 

may be formed by a number of molecules of simple bodies. A 

molecule of the anion and a moleonlc of the cation combined to- 

geflicr form one molecule of the electrolyte. 

In order to act ns an anion in au electrolyte, the molecule which 

so act.s must be cluirged with what we have called one molecule 

of negjitive electrieitv, and in order to net as a cation the molecule 

must be charged with one moleeiilo of positive electricity. 

These charges are eoiiiiected with the molecules only when they 

are combined as anion and cation in the electrolyte. 

When the moleeule.s are electrolysed, they part with their charge.s 

to the electrodes, and appear as unelectritied bodies when sot free 

from combination. 

If the same moleeuje is capable of acting as a cation in one 
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elech’ol^'to and as an anion in anothur, and also of 01110011" into 

foinpouiul liodios which are not cloctrolytos, tlion wo must suppose 

tluit it roccivcs a positivo eliargo of eleotrioity whon it aots as a 

cation, a nogative cliarge whon it acts as an anion, and that it 

is witliont charge whon it is not in an electrolyte. 

Iodine, for instance, aots as an anion in the iodides of the metals 

and in hydriodie aeid, but is said to aet as a cation in the bromide 

of iodine. 

This theory of moleeular eharges may serve as a method by 

which we may remember a good many facts about electrolysis. 

It is extremely improbable that when we come to understand the 

true nature of eleetroly.sis we shall retain in any form the theory of 

molecular eharges, for then we shall have obtained a secure basis 

on which to form a true theory of electric currents, and so become 

independent of these provi.sional theories. 

261.] One of the most important steps in oiir knowledge of 

(dcctrolvsis ha.s been the recognition of the secondary chemical 

])rocesses which ari.so from the evolution of the ions at the elce- 

trovlcs. 

In many eases the substances which are found at the electrodes 

are not the actual ions of the electrolysis, but the products of the 

action of these ions on the electrolyte. 

Thus, u'hen a solution of sulphate of soda is electrolysed by a 

current which also passes through dilute sulphuric acid, equal 

quantities of oxyg'en are given olf at the anodes, and equal quan¬ 

tities of h^'drogen at the cathodes, both in the sulphate of soda 

and in the dilute aeid. 

But if the electrolysis is conduetccl in suitiible vessels, such iis 

U-shaped tubes or vessels \vith a porous diaphragm, so that the 

substance surrounding each electrode can be examined separately, 

it is found that at the anode of the .sulphate of soda there is an 

C(pnvalent of sulphuric aeid as well as an ecpiivalcnt of oxygen, 

and at the cathode there is an equivalent of soda as well as two 

equh'alents of hydrogen. 

It would at first sight .seem as if, according' to the old theory 

of the constitution of salts, the sulphate of soda were electrolysed 

into its const ituents sulphuric acid and .soda, while the water of the 

solution is eleetrolysed at the same time into oxygen and hydrogen. 

But this explanation would involve the admission that the same 

current which passing through dilute sulphurie acid electrolyses 

one equivalent of water, when it passes through solution of sulphate 



KLKUTJ{()Ly.Sl.S. :ii4 [261. 

of soda electrolysos one equivalent of tlie salt as well as one equi- 

valoiii of the water, and this \voidd be contrary to the law of 

elt‘c;trofd 1 em icnl crjui valon 1 s, 

But if we suppose that the eoiuponents of sulphate of soda are 

not SO;, and NaO hat SO^ and Na,—not sulphurie aeid and soda 

hut sidphiou and sodium—then the snljdncui travels to the anode 

and is set. free, hut heiu" unable to exist in a free state it breaks 

up into siilpluirie neid and oxye-en, one erpiivaleiit of eaeli. At 

the same time the sodium is set free at the cathode, and there 

decomposes the water of the solution, forming one wjuivahuit of 

soda and two of hydrogen. 

In the dihih^ snlphiirie aeid the gase.'? eollceted at the electrodos 

are the eoiistitnents of water, namely one volume of oxygon and 

two volnme.s of hvdrogen. There is also an increase of snlphiirie 

aeid at the anode, hat its amonnt. is not equal to uu equivalent. 

It is doubtful whether ]uire water is an electrolyte nr not. The 

g-reater the jnirity of the water, the greater the resistaiiee to oleo- 

trolylie eonductioii. The minutest Iraeos of foreign matter are 

siidicieut to jiroduce a gri'at diiniiiutiou of tlie eleetvieal resistance 

of water. The eloefrie resistaiiee of water ns delcriiiiiied hy different 

oliservers has values so different that we cannot consider it as a 

detcnniiu'd (piiintity. The juirer the w.ater the greater its resistaiiee, 

and if we could obtain really pure water it i.s doubtful whether it 

would eondiiet at all. 

As long us u'ater was considered an electrolyte, and was, indeed, 

taken as the type of electrolytes, there was a strong reason for 

maintaining that it i.s a binary eompoinid, and that two volumes 

of hydrogen are chemically efiuivalent to one volume of oxygen. 

If, however, we admit that water i.s not aii electrolyte, we are free 

to siijiposi' that equal volumes of ox\'geri and of hydrogen are 

eheinieally equivalent. 

The dyniiniical theory of gases leads ns to suppose that in perfect 

gases equal volumes always contain an equal immher of molecules, 

mid that the jirineipal part of the specific heat, that, namely, which 

depimds on th(‘ motion of agitation of the moleonles iiinoiig' each 

other, is the same for eipial iiiinibers of molecules of all g.ases. 

Hcmee we are led to prefer a ch(‘iiiieal sysUnu in wbith equal 

volumes of oxygen and of hydrogen are regarded as equivalent, 

and in which water is regarded as a eomponml of two equivalenhs 

of hydrogen and one of oxyg-en, and therefore probably not capahlo 

of direct electroly.sis. 
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While electrolysis fully establishes the close rchitionsliip between 

eleetriciil phenomena and those of ebemieal eotnbinalion, the fact 

lliat eveiy chemical compound is not an electrolyte shews that 

eliemieal combination is a process of a bi<^lier order of complexity 

than any ])nr(>ly electrical pbeiiomonon. Thus tlie combinations of 

the metals with eaeh other, though the}" are good eonduetors, and 

their components stand at ditrerent points of the scale of eleetri- 

fiealion by eontaefc, are not, even when in a fluid state, decomposed 

by the enrront, Most of the combinations of the substances which 

ii(!t !is anions are not condnetors, and therefore are not electrolytes, 

beside,s these we have many eomj)ounds, coiitiiining the same eoni- 

poiients as electrolytes, h\it not in ecjui valent jiroportions, and these 

are also non-eondiictors, and therefore not electrolytes. 

0)1 the C'(j))MnyiOu/i of Eoovji i)i. ElecOvIj/sls. 

2(!2.] Consider any voltaic eircnit consisting partly of a battery, 

])artly of a wire, and partly of an cleetrolytie cell. 

During the pas,sage of unit of eleetrioity through any section of 

the eireiiit, one eleetroehemical equivalent of each of the substaiiees 

in the cells, whether voltaic or electrolytic, is electrolysed. 

The amount of mceliaiiical energy equivalent to any given 

chemical ]>rocess can ho ascertained hy converting the whole energy 

duo to the ])roees3 into heat, and then expre.ssiiig the heat in 

dynamical measure by multiplying the number of thermal units hy 

Joule’s meelianieal equivalent of heat. 

Where this direct method is not ai)plieable, if we can c.stiinate 

the heat given out by the suhstanecs taken first in the state before 

the process and then in the state after the process during their 

reduction to a final state, which is the same in both eases, then the 

thermal ecjuivaleut of the process is the difference of the two quan¬ 

tities of heat. 

In the ease in which the chemical action maintains a voltaic 

circuit, Joule found that the heat developed in the voltaic eelhs is 

less than that due to the chemical proees.s within the cell, and that 

the remainder of the heat i.s developed in the connecting wire, or, 

when there is an elcetremagnetie engine in the circuit, part of the 

heat may he accounted for hy the mechanical work of the engine. 

For instance, if the electrode.s of the voltaic cell are first eon- 

iiocted hy a short thick wire, and afterward.s by' a long thin wire, 

the heat developed in the cell for eaeh grain of zinc dissolved is 

greater in tlui first ease than the second, hut the heat developed 
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in the wire is ;i^reater in the second ease than in the first. The 

Slim of the heat developed in the cell and in the wire for caeh grain 

of zinc dissolved is the same in both eases. This has been esta- 

bli.shed by Joule by direct experiment. 

The ratio of the heat generated in the cell to that generated 

in the wire is that of the resistance of the cell to that of the wire, 

so that if the wire were made of sufficient resistance nearly the 

whole of the heat would be generated in the wire, and if it were 

made of .sufficient conducting power nearly tlie whole of the licat 

w'ould be generated in the cell. 

Let the wire be made so as to have great resistance, then the 

heat generated in it is equal in dynamical measure to the product 

of the quantity of electricity which is transmitted, multiplied by 

the electromotive force under which it is made to pas's through 

the wire. 

263.] Now during the time in which an eleetrochemieal equi¬ 

valent of the substance in the cell undergoes the chemical process 

which gives rise to the current, one unit of electrielty passes 

through the wire. Hence, the lieat developed hy the passage 

of one unit of electricity is in this case measured hy the eloetro- 

motive force. But this heat is that wliich one eleetrochemieal 

eipiivaleiit of the siihstance generates, whether in the cell or in the 

w'ire, while undergoing the given chemical process. 

Hence the following important theorem, first proved by Thomson 

{F/tiL Dee. 1851);— 

‘ The electromotive force of an eleetrochemieal apparatus is in 

absolute measure equal to the meehanieal equivalent of the chemical 

action on one eleetrochemieal equivalent of the substance.' 

The thermal equivalents of many ehemieal actions have been 

determined by Andrews, Hess, Favre and Silbermann, &e., and from 

these their mechanical equivalents can be deduced by multiplication 

by the meehanieal equivalent of heat. 

This theorem not only enables us to ealeulate from purely thennal 

data the electromotive force of different voltaic arrangements, and 

the electromotive force required to eflfeet electrolysis in different 

eases, but affords the means of actually measuring chemical affinity. 

It ha.s long been known that ehemieal affinity, or the tendency 

which exists towards the going on of a certain ehemieal change, 

is stronger in some eases than in others, but no proper measure 

of this tendency' could be made till it was shewn that this tendency 

in certain eases is exactly equivalent to a certain electromotive 
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ibree, and can therefore be measured aceording" to the very same 

principles used in the measurement of electromotive forces. 

Chemical affinity being therefore, in certain easas, reduced to 

the form of a measurable quantity, the whole theory of chemical 

processes, of the rate at which they go on, of the displacement of 

one substance by another, &e., becomes much more intelligible than 

when chemical affinity was regarded as a quality sui generis^ and 

irreducible to numerical measurement. 

When the volume of the products of electrolysis is greater than 

that of the electrolyte, work is done during the electrolysis in 

overcoming the pressure. If the volume of an electrochemical 

equivalent of the electrolyte is increased by a volume v when 

electrolysed, under a pressure then the work done during the 

passage of a unit of electricity in overcoming pressure is vp, and 

the electromotive force required for electrolysis must include a 

part equal to vp, wdiieh i.s .spent in performing this mechanical 

W'ork. 

If the products of electrolysis are gases which, like oxygen and 

hydrogen, are much rarer than the electrolyte, and fulfil Boyle’s 

law very exactly, vp will be very nearly constant for the same 

temperature, and the electromotive force required for electrolysis 

will not depend in any sensible degree on the pres.snrc. lienee it 

has been found impossible to cheek tlie electrolytic decompo.sition 

of dilute sulphuric acid by confining the decomposed gases in a 

small space. 

When the products of electrolysis arc liquid or solid the quantity 

vp will increase as the pressure increases, so that if a is positive 

an increase of pressure will increase the electromotive force required 

for electrolysis. 

In the same way, any other kind of work done during electro¬ 

lysis will have an efieet on the value of the electromotive force, 

as, for instance, if a vertical current passes between two zinc 

electrodes in a solution of sulphate of zinc a greater electromotive 

force will be required when the current in the solution flows 

upwards than when it flows downwards, for, in the first case, it 

carries zinc from the lower to the upper electrode, and in the 

second from the upper to the lower. The electromotive force 

required for this purpose is less than the millionth jiart of that 

of a Daniell’s cell per foot. 
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264, ] WifEN nil cloctrie current is jia-ssed tliroii^rh an electrolyte 

honiided hy medal electrodes, thee aecmniilution of the ion.s at the 

eleetrude.s produces tlie phenomenon called Polarization, whieh 

consists in an electromotive force acting in the opposite direction 

to (he current, and prodiiciiio- an apparent increase of the resistance, 

When a coiitimions current is employed, the resistunce appears 

to increase rapidly from the coinmencemcnt of the current, and 

at last reaehes a value marly constant. If the form of the vessel 

in which the electrolyse is eoiitaincd is changed, the resistance is 

altered in the same way as a similar change of foi-in of a metallic 

conductor would alter its resistuiiee, hut un additional apparent 

rc-sistanec', depimding on the nature of the ch'ctrodes, has always 

to bo added to the true resistance of the electrolyte. 

265, ] These phenomena have led .some to suppose tlnit there is 

a Hiiitc electromotive force reiiuired for a current to pass through 

an electrolyte. It has been shewn, however, hy the researches of 

Lenz, Nciimunii, Ilcetz,‘Wietleniann *, Paalzowt, and recently by 

those of MM. F. Kohlrauseh and W. A. Nippoldt];, that the con¬ 

duction in the electrolyte itself ohoy's Ohm’s Law with the same 

precision as in metallic conductors, and that the apjiareiit resistance 

at the bounding surface of the cleeti'olyle and the electrodes is 

entirely due to polnrlzation. 

266, ] The phenomenon called polarization niaiiilests itself in 

the case of a eontinnons current by a climimition in the current, 

indicating a force opposed to the current. Resistance is also per¬ 

ceived as a f(jrec opposed to the current, but we can distingni.^h 

* O’dlrauiKiiius, lid. i. t /lerlin MnualKlierir/it^ 4uly, 1SG8. 
t Ann. 1m|. (rxxxviii. «. ".S(i (Octnlidr, 
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l)ct\vcon the two phcnouieiia by instantaneously removing or re¬ 

versing^ the eleetroinotive force. 

Tlic’ re.sistint> fonje is alwjiys opposite in direction to the eurrent, 

and the external electromotive foree rerpiirod to overcome it is 

j)roportioniil to the strcmotli of tlie current, and eliang'es its direc¬ 

tion when the direetion of the current is oliaiiffcd. If the external 

eleetromotive foree becomes zero the enrrent simply stops. 

The eleetromotive force chic to polarization, on the other hand, 

is in a fixed direetion, opposed to the enrrent which produced it. 

If the eleetromotive force whieh produced the current is removed, 

the polarization produces a current in the opposite direction. 

The diflcrence between the two phenomena may he compared 

with the diflerencc between forcing' a current of water through 

a long eiipillary tube, and forcing water through a t uhe of moderate 

length up into a eistern. In the first ca.<e if we remove the pressure 

which produecs the flow tin; eurrent will simply stop. In the 

second case, if we remove the pressure the water will begin to How 

down again from the cistern. 

To make the meelianical illustration more complete, we have only 

to suppose that the ei.stern is of moderate depth, .so that when a 

certain amount of water i.s riii.scd into it, it hegims to overflow, 

This will represent the fact that the total eleetromotive foree cine 

to polarization has a maximum limit. 

207.] The eanse of polarization appears to he the existence at 

the electrodes of the prodnets of the electrolytic deeonipositioii of 

tin; fluid between them. The surfaces of the eleetrodus arc thus 

rendered electrically different, aucl an electromotive force hetween 

them is called into action, the diroetioii of which is opposite to that 

of the eurrent which caused the polarization, 

The ions, whieh by their presence at the electrodes produce the 

phenomena of polarization, are not in a perfectly free state', but 

are in a condition in which they adhere to the surface of the 

electrodes with considerable force. 

The eleclrumotivo foree due to polarization depends upon the 

density with whieh Ihc electrode is covered with the ion, but it 

is not proportional to this den.sity, for the electromotive furce dues 

not increase so rai)idly as this density. 

This deposit of the ion is constantly tending' to heeomc free, 

and cither to diffuse into the liquid, to escape as a gaa, or to be 

precipitated as a solid. 

The rate of this dissipation of the polarization is cxeeediugly 
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small for slight degrees of polarization, and exeeedingly rapid near 

the limiting value of polarization. 

i268.] We have seen, Art. 202, that the eleetromotive force acting 

in any electrolytic process is numerically ecpial to the meeliauieal 

equivalent of the re.sult of that pi'oce.ss on one elcetrocheinieal 

equivalent of the snl).stance. If the process involves a diniiuntion 

of the intrinsic energy of the substances which take part in it, 

as ill the voltaic cell, then the electromotive force is in the direction 

of the current. If the process involves an increase of the intriii.sic 

energy of the suhstaiiccs, as in the case of the electrolytic coll, 

the clcelromotive force i.s in the direction opposite to that of the 

current, and this eleetromotive force i.s called polarizaitiou. 

Ill the case ol‘ a steady current in wlileh electrolysis goe.s on 

continuously, and the ions are separated in a free state at the 

electrodes, we have only hy a suit able process to measure the 

intrinsic energy of the separated ions, and compare it with that 

of the electrolyte in order to calculate the eleetromotive force 

required for the electrolysis. This will give the maximum polari¬ 

zation. 

lint during the first instants of the proce.ss of electrolysis the 

ions when dcjiosited at the electrodes are not in a free state, and 

their intrinsic energy is less than their energy in a free .stale, 

though greater than their energy when combined in the electrolyte. 

In fact, the ion in contact with the electrode is in a state which 

when the deposit is very thin may he compared with that of 

clieinieal combination with the electrode, but as the deposit in¬ 

creases in density, the snceeediiig portions arc no longer so in¬ 

timately combined with the cletdrode, hut simply adhere to it, and 

at last the deposit, if gaseous, escapes in hubhles, if liquid, dilfuses 

through the electrolyte, and if solid, forms a precipitate. 

In studying polarization wc have therefore to consider 

(1) The superficial density of the deposit, which we may call 

(T, Tliis quantity cr represents the number of electrochemical 

equivalents of the ion deposited on unit of area. Since each 

electrochemical equivalent deimsited corresponds to one unit of 

electricity transmitted hy the current, wc may consider cr as re¬ 

presenting cither a surface-density of matter or a surface-density of 

elcetrieity. 

(2) The electromotive force of polarization, which we may call p. 

This (puintity p is the difference between the electric potentials 

of the two electrodes when the current through the electrolyte 
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i.s so feeble tliat tlio jiropcr resistaucc of tlic electrolyte nialces no 

.sensible difference between these 2)otciitials. 

The electromotive force p at any instant is numerically equal 

to the mechanical equivalent of the electrolytic process ffoing on at 

that inshint which corresjiouds to one eloetroclieiuical equivalent of 

the electrolyte. This electrolytie process, it must be remembered, 

consists in the deposit of the ions on the eleclrodes, and the state 

in which they are deposited depends on the actual state of the 

surliice of the olectrode.s, which may be moditied by jircvious 

deposits. 

ireuec the electromotive force at any instant depends on the 

ju'evious histoiy of the electrode. It is, speaking' very roughly, 

a function of <r, the density of the deposit, such that p = 0 when 

(T = n, but ]> apj>roaches a limiting value ninch sooner than o- docs. 

The statement, however, that p is a function of cr cannot be 

considered accurate. It would be more correct to .say that p is 

a function of the chemical state of the sujx'rfioial layer of the 

dejiosit, and that this state depends on the density of the dcj)Osit 

according to some law involving the time. 

269. ] (3) The third thing wc must take into account is the 

dissipation of the polarization. The polarization when left to itself 

diminishes at a rate depending partly on the intensity of the 

polarization or the density of the dep)Osit, and partly on the nature 

of the surrounding medium, and the chemical, mechanical, or thermal 

action to which the surface of the electrode is cxjwscd. 

If we determine a time T such that at the rate at which 

the deposit is dissipated, the whole dejrosit would be removed in 

a time '1\ wc may call the modulus of the time of dissipation. 

When the density of the deposit is very small, T is very large, 

and may be reckoned by days or months. AVhen the density of 

the deposit approaches its limiting value T diminishes very rajiidly, 

and is prol)ably a minute fraction of a second. In fact, the rate 

of dissipation increases so rapidly that when the strength of the 

current is maintained constant, the separated gas, instead of con¬ 

tributing to increase the density of tlie deposit, escapes in hubbies 

as fast as it is formed. 

270. ] There is therefore a great dilFerencc between the state of 

polarization of the electrodes of an eh'etrolytic cell when the polari¬ 

zation is feeble, and wlicn it is at its ma-ximum value. Tor instance, 

if a number of eleetrol^’tic cells of dilute suljduiric acid wuth 

platinum electrodes are arranged in scries, and if a small alectro- 

VOT.. I. V 
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inolivc Ibrco, siu-li :is tlinl. of one Danicirri i-dl, be made to ael. 

on the cii'cuit, the eleetroiiiolive foree will proiluee ii current of 

exceedingly bdiort dural ion, for after a very .diort lime the elec¬ 

tromotive foree arising- from the iiohiir/ation of the cell will balance 

that of the DunicH's cell. 

The dissijjatiun will be very small in the ease of so hadjle a state 

of jHilari/.alioiij and it will take ]dnee by a very slow ab.S()rjiliou 

of the g-ases and dilTnsion throng-h llu' rnpiid, Tlie rale of this 

dissifiation is indicated by the exceedingly feelile current which 

.still eontinnes to flow without any ^'isibl(.“ .sejiaration ol‘gases. 

If we neglect this dis.sipation for the .short time during which 

the stale of jadarization is set n]i, and if W(! call Q the total 

(jimntity ol' eleetrieily which is transmitted by the eiirrent daring 

this tinny then if J i.s the area ol‘ one of the cha^trodes, and tr 

the density of the de[nxsil, sii[i[)osed nniform, 

Q = e/.r. 

If we now di,seonncet the electrodes ol' the electrolytic apparatus 

from the IhinieH’s cell, and i-omieet them with a galvanomeler 

cajjahlc ol' measuring tin; rvhole discharge through it, a ([iirmtity 

of electricity nearly ecgial to Q will he discharged as the jioluri- 

zntion disappears. 

271.J lienee we may compare the action of this apparatnsj which 

is a form of Hit ter’.s Secondary Pile, with that of a Leyden jar. 

lloth the secondary pile and the T^eyden jar an; caj>ablo of being 

charged with a certain nmonnt of electricity, and of being after¬ 

wards diseliarged. Daring the discharge a (jnanlity of eletdrieity 

nearly ecjual to the charg-e janses in the ojjpo-site direction. The 

dilleronee between tlu' charge and the discharge arisa'.s jiartly from 

dissipation, a jn-oeess which in thu ease of small eliarges is very 

slow, bill whieli, when the elnng-e ('Xeeeds n, ec.-itain limit, becomes 

exceedingly rajiid. Another part ol’the dill'erenee liotweeii the charge 

and the diseharge arises from the fact that after the electrodes 

have heen eonnected for a time .suflicient to proiluce an ajipareiitly 

complete diseharge, so that the current has conijdetely di.sajipeared, 

if W(‘ sejiarate the electrodes for a time, and al'lerwavds connect 

them, we obtain a second discharge in the same direction as the 

original diseharge. This i.s called the re.sidual discharge, and i.s a 

phenomenon of the Leyden jar us well as of the secondary pile. 

The secondary jnle may therefore he compared in several resjieets 

to a Leyden jar. There are, however, certain inijioitmit dilfereiiecs. 

The charge of a Leyden jar is very e.vactly proportional to the 
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i;k>c1roinotive fovce of the c-liai'^e, tlint Is, to llio (liflerentr of 

potentials of tlio two .siirfaeos, ami tlie eliai‘‘,''e (.•orresjioiidiiig’ to unit 

of electromotive force is called the eupacit)' of the jar, a constant 

iliiantity. The eorrespondin" (lUaiitily, whieh may he called the 

capa(tity of tla; seeoiularv ifile, iiiemiscs when the cleetroniotive 
force iiiereases, 

'i’he cajiacil}' of the jar depends on the area of the njiposed 

sniTaees, on the distance between them, and on the nature of the 

sabslanec between them, hut not on the nature of the inetullie 

.sniTnces Ilicinselves. The ca])acity of the secondary pile depends 

on the :ir(‘a of the surfaces of the electrodes, hut not on the distaiiee 

between them, and it dejjcnds on the nature of the surface of the 

(deetrodes, as well us on that of the lim'd between them. The 

maxhnnm dili'ereneo of the pot('utials of the electrodes in each 

element of a secondary pile is very small compared with the maxi- 

junni ditrereuee of the potentials of tho.se of a eharg;ed Leyden jar, 

so that in order to obtain Jiineh electromotive force a i)ile of many 

element.s must be used. 

On the other hand, the superlieial density of the eharge in the 

secondary pile is immensely greater than the ntmo.st superlieial 

density of the eharg-e vvliieh eaii be aecmnulated on the surfaces 

of a Lc^'den jar, insomueh that JVfr. C. F. X'arley*, in describing 

the construction of a condenser of great cajiaeity, reeoimncnds a 

series of gold or platinum jdate.s immersed in dihile acid as prefer¬ 

able in point of cheapness to indnetion plates of tinfoil seiairated 

by insulating material. 

The form in whieh the energy of a Leyden jar is stored up 

is the state of constraint of the dieleetrie between the conduetiug 

surfaces, a state whieh 1 have already deserihed under the name 

of electric polarization, i)ointing out those phenomena attending 

this state whieh are at present known, and indicating the im¬ 

perfect state of onr knowledge of what really takes place. See 

Art.s. 02, 111. 
The form in which the energy of the secondary idle is stored 

np is the ohcmieal condition of the material stratum at the surface 

of the electrodes, consi.sting of the ions of the electrolyte and the 

substance of the electrodes in a relntioii varying from chemical 

combination to superlieial eomlemsation, inechaiiieal adherciiee, or 

simple juxtaposition. 

The seat of this energy is close to the surfaces of the electrodes, 

* .S|iirciticrition of C, F, Viirley, ‘ Electric Telograpli.s, Sic,,’ Jan, 18G0, 
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and not throughout the substance of the eleetrol3'te, and the form 

in M’liicli it exists may he called eleetrolytie polarization. 

After studying the secondary pile in eoniicxion -with the Leyden 

jar, the student should again eomiuirc the voltaic battery A\'ith 

some form of the electrical inachinc, such as that dc.scribcd in 

Art. 211. 

Mr. Varley has lately* found that the capacity of one square 

inch is from 175 to 5-12 niicrofarads and ujiwards for ijlatinum 

platc-s in dilute sulphuric acid, and that the cajjacity increases with 

the electromotive force, being about 175 fir 0.02 of a DanieH’s 

cell, and 542 for l.G Daniell’s cells. 

]lut the compari.son bctwi'cn the Leyden jar and the secondary 

pile may be carried still farther, as in the following exj)erimcut, 

due to Ilufft. It is only when the ghuss of the jar is cold that 

it is capable of retaining a charge. At a tein])erature below 100*C 

the glas.s becomes a conductor. If a test-tube containing mercuiy 

is placed in a ve.-^scl of luercury, and il’ a ])air of electrodes are 

connected, one with the inner and tlie other with the outer portion 

of mereury, the arrangement constitutes a Leyden jar which will 

hold a charge at ordinary tem])cratures. If the eleetmdes arc con¬ 

nected with tIio.se of a voltaic battery, no cuiTcnt M'ill pass as long 

as the ghuss is cold, but if the ajiparatus is gradualU' heated a 

current will begin to pa,ss, and will Increase rapidly in intensity' as 

the temperature rises, though the glass remains ajiparently' as hard 

as ever. 

This current is manifestly electrol^'tie, for if the electrodes are 

di.scoimeeled from the battery, and connected with a galvanometer, 

a considerable reverse current ])asses, due to polarization of the 

surfaces of the glass. 

If, while the battery is in action the apparatus is cooled, the 

current is stopped by the cold glas,s as before, but the jiolarizatiou 

of the surfaec,s remains. The mercury mav he removed, the .surfaces 

may be washed with nitric acid and with water, and fresh mercury 

introduced. If the apparatus is then heated, the current of polar¬ 

ization ajipears as soon as the glass is suflieiently warm to eoiuhict it. 

We may therefore regard gla.ss at lOO’C, though apparently a 

solid body, as an electrol\'te, and there i.s considerable reason 

to believe that in most instances in which a dielectric has a 

.slight degree of conductivity the conduction is electrolytic. The 

• Pruc. It. -S,, J.-in. I2, 1S71, 
+ Aiiixitcii iltr C/ieiiii'c iiiid r/tuniMcic, bil, xc, 257 (ISOi), 
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existence of polarization may be reg-arded as conclusive evidence of 

electrol^'sis, and if the conductivity of a substance iuci’eascs as the 

tcinperaturc rises, we have good gvonuds for su.spccting that it is 

clcetrolytic, 

0)1 Cuusktnl VoUatc FJements. 

272.] When a serie-s of experiments is made with a voltaic 

battery in which polarization occurs, the polarization diminishes 

during tlie time that the current is not flowing, so that when 

it begins to flow ag’ain the current is stronger than after it has 

flowed for some time. If, on the other hand, the resistance of the 

circuit is diminished by allowing the current to flow through a 

short shunt, then, when the current is again made to flow through 

the ordinary circuit, it is at first weaker than its normal strength 

on account of the great polarization produced by the use of the 

short eireuit. 

To get rid of these irregularities in the current, \vhi(;h arc 

exceedingly troublesome in experiments involving exact measure¬ 

ments, it is necessary to get rid of the polarization, or at least 

to reduce it as much as possible. 

It docs not appear that there is much polarization at the surface 

of the zinc plate when immersed in a solution of sulphate of zinc 

or in dilute .sul])huric acid. The principal scat of polarization is 

at the surface of the negative metal. When the fluid in which 

the negmtive metal is immersed is dilute sulplinrie acid, it is seen 

to become covered with hnbhlcs of hydrogen gas, arising from the 

clcetrolytic decomposition of the fluid. Of course these huldrles, 

by preventing the fluid from toncliing the metal, diminish the 

surface of contact and increase the resistance of the eireuit. But 

besides the visible bubbles it is certain that there is a thin coating 

of hydrogen, probably not in a free state, adhering to the metal, 

and as we have seen that thi.s coating is able to produce an elec¬ 

tromotive force in the rever.se direction, it must necessarily diminish 

the electromotive force of the battery. 

^'ariou.s plans have been adopted to got rid of this coating of 

hydrogen. It may ho diminished to some extent by mechanical 

meaii.s, such as stirring the liquid, or ndrbing the surface of the 

negative plate. In Sniee’s battery the negative plates are vertical, 

and covered with finely divided philimim from which the hiihhles of 

hydrogen easily escaiie, and in their ascent produce a current of 

liquid which heljis to brush off other bubbles as they are formed. 

A far more eflieaeious method, however, is to employ chemical 
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moans. Tliesc iiro of two kinds. In llin bnttorios of (irovo and 

IIiiiis'cii llie iicg'jitivo pliile is iininorsi'd iii a fluid ricli in oxygon, 

and llio liydrogvn, instead of forming a ooatnig on the plalo, 

coinl)iiie.s witli lliis snlistaneo. In Grove’s liattory llio plate is 

of pliitiiuira iinniorsod in .strong nilrio acid. In Bnnson’.s lir.^t 

battery it is of carbon in llio .san'ie ao.id. f'liromie aoid is also used 

for the same piirpo.se, and lias tlie advantage of being free from the 

acid fumes jirodiieed bj' the rednetiou of nitric acid. 

A ditl’erent mode of gettiipg rid of the hydrogen is by using 

cojiiier ns the negative motul, and covering the surface with a coat 

of oxido. This, however, rapidly di.saiipenrs when it i.s used ns 

the nogailive cloclrodo. I'o renew it Joule has jiropo.sed to make 

the cojiper plates in the form of disks, half immersed in the licpiid, 

and to rotatft them slowly, so that the air inny act on the parts 

exiiosed to it in tiini. 

The other method is by using as the liquid an elecb'olyto, the 

eiition of wliicli i.s a metal highly negative to zinc, 

In DanieH’s battery a copper jilate is immersed in a .saturated 

solution (if sulphate of cojiper. IVIu'ii the current flows llirougli 

the solution from the zinc to the copper no hydrogen appears on 

the eo])])t>r ]ilate, but copper is deposited on it, M’lieii the .solution 

is saturated, and the current i.s not too strong-, the copper appears 

to act as a true cation, the anion SO.1 travelling towards the zinc, 

When Iheso eonditions are not I'ulfilled hydrogen is evolved at 

the cathode, bat iinniediately acts on the solution, throwing down 

copper, mid uniting- with SO4 to form oil of vitriol, "When this 

is the case, the siiljihale of copjier next the copper plate is replaced 

by oil of vitriol, the li(piid becomes eolourle.ss, and pohirizalioii by 

bydrogeii gas again take.s idace. The enjqiei- diqiosited in this way 

is ot'a looser and more friable stnieturc- tliiin that deposited by true 

electrolysis. 

To ensure tlinl the liquid in contact with the copper .shall be 

saturated with sulpbiile of eopjier, ery.slals of this sub.«iam'e imist 

be placed in the liijnid elo.se to the eojqicr, .so that when the solution 

is made weak by the deposition of the eopjier, more of the crystals 

may be dissolved. 

We have .seen that it is net‘t>.s.sary that the liquid next the copper 

should be saturated with sulphate of copper. It is still more 

ncoe.ssary that the liquid in which the ziiie is immersed .should he 

free from snlpliute of eopjier. If any of this salt makes its way 

to the siii-ra(-e of the zinc it is rediiced, and coppeu- is (hqiosited 
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on till.? zinc. Tlie zinc, (!n]i]i(*r, and ilnid tlien lorm a little circuit 

in wliicli rapid clcctrolylic action f^'oes on, and the zinc is oaten 

away by an action wliicli contributes iiotliing- to tlic useful utlcct 

of the Imttcry. 

To prevent tlii.^, llic zinc i.s immersed eitlier in dilute .snlplmric 

acid or in a .solution of .snlpliate of zinc, and to prevent the solution 

of sulphate of copper from niixiiiii’ with this li(juid, the two hqnids 

arc .separated by a divi.sion eoinsistin^' of bladder or porous eartlicn- 

Wiirc, which allows cleetrnly,si.s tu talcc place tlirongdr it, but 

eHecdually prevents mixture of the fluids liy visible currents. 

In .S(nne batteries sawdii.st i.s- u.s('d to prevent c-nrreuts. The 

exporiiucnts of firahum, however, .shew that the process of diflmsion 

goe.s on nearly a.s rapidly wln-n two hhjnids are separated by a 

division of thi.s kind as when they are in din-ct contaet, provided 

there arc no vi.sihle eiirrents, and it is prohable that if a septum 

is ciuplo3'ed which diminishes the diffusion, it will Increase in 

exactly the .*^01110 ratio the vesi.‘<tauee of the clement, because elec¬ 

trolytic conduction is a ])roces.s the mathematical law.s of which 

have the .same form as those of diffusion, and whatever interferes 

with one must interfere etpially with the other. The only dilfer- 

enee is that diffusion is alway.s going on, while the current flows 

onlv when the battcrj- is in action. 

In all forms of Daniell’s battery the final result is that the 

sulphate of copper finds its wa\’ to t he zinc and spoils the battery. 

To retard this result indefinitely, SirW. Thomson’^ has constructed 

DanieH’s battery in the follovVing form. 

In each cell the copper plate is placed horizontally at the bottom 

• Pi'or. /i. .y, .Ian, 10, 1871. 
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and a satin',itod solution of sulphate of zinc is poured over it. The 

zinc is in the form of a grating- and is placed horizontally near the 

surface of the solution, A g'l.ass tiihe is placed vertically' in the 

solution with it.s lower end just ahovo. the snri’ace of the copper 

plate. Cry.stals of sulphate of copper arc drop[>ed down thi.s tiihe, 

and, dissolving- in the liquid, form a solution of g'rcater density 

than tluat of .sulphate of zinc alone, .so that it cannot g-ct to the 

zinc except by dilfu.sion. To retard this proeos of ditfiision, a 

siphon, consisting of a glass tube stnifed with cotton wick, is 

placed with one extremity midway between the zinc and coj)por, 

and the other in a vessel outside the cell, so that the li(|uiil is 

very slowly drawn off near the middle of its depth. To sujiply 

its jilace, water, or a weak solid ion of sulphate of zinc, is added 

above Avhen required. In this way the greater part of the sulphate 

of c-opper rising through the liquid hy ditlusion is drawn otfhy the 

sijihun before it reaches the zine, and the zinc is surrounded by 

liquid nearly free from sulphate of copjicr, and having a very slow 

downward motion in the cell, which still further retards- the upward 

motion of the snljihate of copper. During the. action of the battery 

copper is deposited on the eopjier plate, and SO^ travels slowly 

tln-ougl) the liquid to the zinc with which it comhino.s, forming 

sulphate of zinc. Thn.s the liquid at the bottom becomes le.ss dense 

])y the deposition of the copper, and the liquid at the top bec-umes 

more dense by- the addition of tlic zinc. To jn-cvent this action 

from changing the order of density' of the strata, and so producing 

insbiliility'and visible enn‘eiit.s in the *\-es‘sel, care imist be taken to 

keep the tube well snpjilied with crystat.s of sulphate of copper, 

and to feed the cell above with a solution of siiljdiate of zine sufU- 

eiciitly dilute to be lighter than luiy other stratinn of the liquid 

ill tlie cell. 

Daiiiell's battery is by' no means the mo.st powerful in common 

use. Tlie eleetrouiotive force of Grove’s cell is l‘)2j000,000, of 

Daiiiell's 1 or,(l(i<i,oo<) and that of Ihiiiscii’s 188,000,0(10, 

The resistanee of Daiiiell’s eidl i.s in general greater tliaa that of 

Grove’s or Bunsen’s of the same .size. 

Tliese tlcfeeis, liowever, are more tlian coiinterlialiinced in all 

cases where exact mcasurcinents are reipiired, by the fact tliat 

Daiiiell’s cell exceeds every otlicr known arrangi-ment in conslaney 

of L‘leeti-omotive force. It has also the advantage of' continuing 

in working order for a long time, and of emitting 110 gas. 



CHAPTER VI. 

IJNEAIl UI.ECTJilC C'L'RKENTS, 

On. Hi/Mons of Linear Conthidors. 

273. ] Any conductor may be treated as a linear conductor if it 

is arranged so tliat tlic current must alwa^-s pass in tlic same manner 

between two portions of its surface wliicli are called its electrodes. 

Fur instance, a mass of metal of any form the surface of which is 

entirely covered with insulating material except at two places, at 

which the exposed surface of the conductor is in metallic contact 

with electrodes formed ol‘ a perfectly conducting material, may be 

treated as a linear conductor. For if the current be made to enter 

at one of these electrodes and escape at the other the lines of flow 

will be determinate, and the relation between electromotive force, 

current and resistance will be expressed by Ohm’s Law, for the 

current in every ])art of the mass will be a linear function of /f. 

But if there be more possible electrodes than two, the conductor 

may have more than one independent current through it, and thasc 

may not be conjugate to each other. See Art. 282. 

Ohm's Jitiii'. 

274. ] Let J'J be the elcetromotive force in a linear conductor 

from the electrode yf to the electrode /f. (See Art. (ill.) Let 

C be the strength of the eleetrie current along- the conductor, that 

is to say, let C units of electricity pass across every section in 

the direction y/j /L in unit of time, and let li be the resistance of 

the conductor, then the expression of Ohm’s Law is 

E = OIL (1) 

Linear Coinluctors arranged in. Series. 

275.] Let //j, yl.j, be the electrodes of the first conductor and let 

the second conductor be placed with one of its electrodes in contact 
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witli //,, so tliat tlic sopond condiiolor has for its oleolrodps A.^, A-^. 

Tlip plecti’odp,s oi' tile (liird conduetor may l)c denotctl liy A,^ 

and d,. 

Lot tlie tdeclroniolivo fore-e nlon^'' oaoli of tliosc conduetors lie 

doiioled l)y and so on for tlic otlier conductors. 

Let tlie resi.s‘taiice of tlio eonduelors be. 

h\.,, 7.V,, &c‘. 
Tlien, since tlie coiidiictov.s are arranged in scries so that the same 

ciirveiit C flows through each, we have by Ohm’s Liiw^ 

If /f is the rc.siiltant electromotive force, and R the rcsiillaiit 

resi-stance of the system, we. miust huvo hv Ohm’s .Law, 

A’ = CJ{. (3) 

Now /f=/f,,+ 4,+ /f.4, (1) 

the smn of the separate electromotive i'orecs, 

= 6'(/i’io + i‘’-2;)+ hy equations (2). 

(’omparing this result with (3), wc find 

(5) 

Or, (hr rc.v.'!fa})ce oja xenes of cundndors is l/ie sum (f (he rcsishinccs 

of (he conductors (ukeu srparaldij. 

Palential at auji Point (f the Series. 

Lot A and C he the electrodes of the series, Ji a point between 

them, fl, c, and 6 tlic potentials of these points rcsjicctivcly. Let 

yf, he the resistance of the part from A (o 7f, It, that of tlie part 

from P to C, and R that of tlie whole from A to C, llieii, since 

a — b = fi\C, h — c — R.,C, and a — c — liC, 

the potential at R is ,, , ,, 

which determines the potential at B when those at A and 6' are 

given, 

liesistnnee (fa Multipte Conductor, 

27R.] Let a mini her of conductors ABZ, ACZ, ADZ bo arranged 

side l.iy side with their extremities in contact with the same two 

jioints J and Z, They are then said to lie arranged in multiple 

arc. 

Lei the resist a nee,^ of these eoiuliietoi'B he Bn, B-, respect- 



2 77-] .SrKCJFIC llJiSISTANCE AND CONDUCTIVITY. 331 

ively, and the currents 6',, 6'^, 6y, and let tlie resistance of the 

multiple eondnetor be li, and the total current C. Then, since the 

potentials at A and / are the same for all the conductors, they have 

the same difference, which we may call E. We then have 

E= r?, 7?, = a. = cn, 
but c = c\-ia.,+ c\, 

whence 
J_1 1 I 

H ~ L\ Ji,, (') 

Or, l/ie reciprocal of the resistance of a vinltipU couchtetor is the sum 

of the reciprocals of the component comluelors. 

If wc call the reciprocal of the resistance of a conductor the 

eoudueti\nty of the conductor, then we may say that the con¬ 

ductivity/ of a multiple conductor is the snm of the condnctivities of 

the component conductors. 

Current in any Branch of a Multiple Conductor. 

From the equations of the preceding article, it appears that if 

C\ is the current in any branch of the multiple conductor, and 

7i'j the resistance of that branch, 

= (8) 

where C is the total current, and R is the resistance of the multiple 

conductor as previously determined. 

Loncjitudinal Resistance of Conductors of Uniform Section. 

277,] Let the resistance of a cube of a given material to a current 

parallel to one of its edges be p, the side of the cube being unit of 

length, p is called the ‘ specific resistance of that material for unit 

of volume.’ 

Consider next a prismatic conductor of the same material whose 

length is I, and whose section is unity. This is erpiivalent to I 

cubes arranered in series. The resistance of the conductor is there- 

fore Ip. 

Finally, consider a conductor of length I and uniform section s. 

This is equivalent to s eonduetors similar to the last arranged in 

multiple arc. The resistance of this conductor is therefore 

s 

When wo know the resi,slan(*e of a uniform wire wc can determine 
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tile Hpocidc rc.sifctanc'c of tlie niiitenal of wliieli it is made if we can 

measure its leiig-tli and its section. 

The scctionul area of small wires is most accurately determined 

by eiileulatiou from the length, weight, aud specific gravity of the 

siieeimeu. Thu determination of the specific givavily is sometimes 

inennvenient, aud in such eases the ve.si.s’tauce of a wire of unit 

length and niiifc mass is used as the ‘ speeifie ivsi.s-tanec per unit of 

weight.' 

If r is thi.s resistance, I the length, and m the mass of a wire, then 

HI 

Oil the Dimeumons of the Quiiutitics involved in these liquations. 

278.] The resistanee of a eondnetor is the ratio of the, eleetro- 

niotivc force acting on it to the envrent produced. The eoiuhiet- 

ivity of the conductor is the reciprocal of tlii.s quantity, or in 

other word.s, the ratio of the current to the electromotive force 

producing' it. 

Now WL' know that in the electrostatic .system of measurement 

the ratio of a quantity of eleetrioity to the. potential of the eoii- 

chictor on winch it i,s .spread is the capacity of the conductor, and 

is measured by a line. If the cnndiietor is a sphere placed in an 

unlimited field, this hue is the radius of the .s})hcre. The ratio 

of a quantity of eleetrii.'ity to an electromotive force is therefore a 

line, but the ratio of a quantity of electricity to a current is the 

time during which the current Hows to transmit that quantity. 

Hence the ratio of a current to an electromotive force is that of a 

line to a time, or in other words, it is a vcloeit}’. 

The fact that the eonductivit3’' of a conductor i.s expressed iii the 

electrostatic system of iiieasurtMiient bv a velocity may be verified 

by sujipo.^iiig a .s[)here of radius / charged to potential f, and then 

coiiiK'cted with the earth by the given eondnetor. Let the sjiherc 

eontraet, so that as the electricity escapes through the conductor 

the jiotential of the .sphme is always kept cipial to T’hcn the 

charge on t he .sjdierc i.s r T at au}’ instant, and the current is 

(r/'), but, since /' is constant, the current is F, and the 

idectroiiiutivc force through the eondnetor is F, 

3'he eondnetivily of the conductor i.s the ratio of the current to 

the electruiiiotiVC force, or y- , that is, the velocili/ with which the 
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radius of the sphere must diminish in order to maintain the potential 

constant when the charg-c is allowed to pass to cartli through the 

conductor. 

Ill the electrostatic system, therefore, the condnctlvity of a con¬ 

ductor is a velocity, and of the dimensions [7/T”'], 

The resistance of the coiuluetov is therefore ol‘ the dimensions 

The speeihe resistance i)cr unit of vohunc is of the dimension of 

[2’], and the specific conductivity jier unit of volume is of the 

dimension of 

The numerical magnitude of these eoeflieicnts dciieiuls only on 

the unit of Lime, which is the .same in different countries. 

The specific resistance per niiit of weight is of the dimensions 

279.] Wc shall afterwards find that in the electromagnetic 

Bystem of measurement the resistance of a conductor is expressed 

by a velocity, so that in thus system the dimemsious of the restst- 

anee of a conductor arc [A2'"'], 

The conductivity of the conductor is of course the reciprocal of 

this. 

The specific resistance jicr unit of volume in this system is of the 

dimensions [i/-2'"^], and the specific resistance per unit of weight 

is of the dimensions 

Ou JAnear 81/stems of Conductors in general. 

280.] The most general case of a linear system is that of n 

points, A^, A.,, ... An, connected together in pairs by —1) 

linear conductors. Let the conductivity (or reciprocal of the re¬ 

sistance) of that conductor which connects any pair of points, say 

y/,, and A,^, he called A],,,, and let the current from y/,, to he 6',,,. 

Let and 2,) he the electric potentials at the points yf,, and y/^ 

respectively', and let the internal clcctroinotive force, if there he 

any, along the conductor from y/,, to A,, he 

The current from y/,, to A^ is, by Ohm’s Law, 

+ (l) 

Among these quantities we have the following sets of relatioms: 

The conductivity of a conductor is the same in cither direction, 

or A],, = A],,. (2) 

The electromotive force and the current arc directed quantities , 



334 LINEAR ELECTRIC CURHENTA [280. 

Let 1\, be the potentials at y/j, A^,... A„ respectively, 

and let Q,, Qo, ... Q„ he the quantities of elcctrieily which enter 

the system in unit of time at caeli ol“ these points respectively. 

These arc necessarily subject to the condition of‘continuity ’ 

• • • + Qn = *^^1 ('L 

since electricity can neither be indefinitely accumulated nor j)ro- 

dueed within the .system. 

The condition of ‘ eontinuity' at any point is 

Qi> — ^1-1 + 0^,,^ + &:c. f . (5) 

Substituting’ the values of the currents in terms of equation 

(1), this becomes 

Qp — (^;n + h) ~ iU ^ p2 ^^2 d’ + -^ J.M ^■’n) 

The symbol A^,, docs not occur in this equation. Let ns therefore 

give it the value 

A'pp = -(Ap, q. A'p., + &e. + A'pJ (7) 

that is, let be a quantity equal and opposite to the sum of 

all the conduotividcs of the couduetors which meet in A,,. We 

may then write the condition of contiuuily for the point A^, 

A,,i A* 1 + Ap2 A^2 + + App A^pq- &c. + Ap„ 

— Api Aij,,+ &C.-f Ap„Ap„—Qp. (8) 

]3y substituting 1, 2, &e. n fov p in this equation we shall obtain 

n equation.s of the same kind from which to determine the u 

potentials Pj, &c., P„, 

Sinec, however, there is a necessary condition, (•}), connecting the 

values of Q, there will be only n— 1 independent equations. These 

will be suflicient to determine the dillerences of the potentials of the 

points, but not to determine the absolute potential of any. This, 

however, is not required to calculate the currents in the system. 

If W’e denote by D the determinant 

1 Aiii — A,(„_j), 

T) = 

1 1 

.... A.j (1, _ j), 
(f) 

A(,i_i)i) A(,i_i)2> •• 

and by Pp,,, the minor of A',,, we find for the value of A-’p —7\,, 

(A^p-A",.) 1) = (A'-j.^P,., + &C, - Qj)Pp, + (A;, 74 -f &c.- Q2)».2 + &C. 

+ (A + &c. + A"y„ Ai’^p — Q^) Pp^ q- &c. (10) 

In the same way the cxccs.s of the potential of any other point, 
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say A,I, over tluit of y/,, may bo clctorminod. We may then de- 

tcnniuc tlio current between y/,, and from equation (1), and so 

solve the problem conqdctcly. 

JJ81.] We. shall now demonstrate a rceiproeal property of any 

two couduetor.s of tliu system, answering'' to the reciprocal property 

we Iiave already demonstrated for statical electricity in Art. 88, 

The eoenieieiit of in the exiu-essioii for P,, is . That of 

in the cxpre.ssion for 7^,^ is • 

Now 77,did'ers from 17,,, only by the substitution of ( he sy^mbols 

such a.s A'„, fur A",,,. But, by equation (2), those two symbols arc 

equal, since the conductivity of a conductor i.s the same both ways. 

Hence D,„, = ll,,,. (11) 

It follows from thi.s that the part of the potential at A^ ari.sing- 

from the introduction of a unit current at y/,, is equal to (he part of 

the potential at 1,, arising- from the introduction of a unit current 

at A,,. 

We may deduce from this a pro}j(jsitiou of a more practical form. 

Let A, Ji, Cy D be any four points of the sy.stem, and let the 

otfect of a current Q, made to enter the system at .7 and leave it 

at B, be to make the potential at C exceed that at 7J hy P. Then, 

if an equal current Q he made to enter the system at 0 and leave 

it at 7), the potential at // will exceed that at 17 by the same 

quantity P. 

We may also establish a ]n’oj)crty of a similar kind relating to 

the etl'eet of the internal cleetroinotive force .77,.,, acting along the 

conductor rvhieli joins the points A,, and in producing an ex¬ 

ternal electroniotive force on the coudnetor from J,, to A^, that is 

to say, a dilleronec of potentials 7-’,,—P,. For since 

p:r, = -7L. 
the part of the value of which de[)cnds on this electromotive 

force is 1 n \ A’ 

and the jiart of the value of P, is 

(ii,,-p,.)p;.. 

Therefore the eocfficient of 77„ in the value of P,, — P, is 

7; (12) 

This is identieid with the coefficient of P,,,, in the value of P,. —P^. 
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If therefore aii electromotive force E he introduced, acting* in the 

conductor from A to E, and if this caii.scs the potential at C to 

exceed that at D hy V, then the same electromotive force E iatro- 

duced into the conductor from C to I) will cause the potential at A 

to exceed that at E hy the .same quantitj* E. 

The electromotive ibree E may he that of a voltaic* battery intro¬ 

duced hetweeu the point,? named, care heing' taken that the resist¬ 

ance of the conductor is the same before and after the introduction 

of the battery. 

282. ] If = 0, (13) 

the conductor //,,is said to be conjugale to A,, and vre have 

seen that thi.s relation is reciprocal. 

An eleef roniotivc force in one of two conjugate conductors jrro- 

duees no electromotive force or current along the other. \Ye shall 

find the practical application of this principle in the case of the 

electric bridge. 

The thormy of eonjugale conduetors has been investigated by 

Kirehholf, who has stated the conditions of a linear .system' in the 

following manner, in which the consideration of the potential is 

avoided. 

(1) (Condition of ‘ continuity.’) At any point of the system the 

.sum of all the currents which How towards that point is zero, 

(2) In any eomjiletc circuit formed by the conductors the sum 

of the electromotive forces taken round the circuit is equal to the 

sum of the products of the current in each conductor multiplied by 

the resistance of that conductor. 

We obtain this result by adding equations of the form (1) for the 

complete circuit, when the potentials nece.ssarily disaiqiear. 

Ileai Generated in the Syatcni, 

283. ] The mechanical equivalent of the quantity of heat gene¬ 

rated in a conductor whose resistance i.s li by a current C in unit of 

time is, by Art. 212, /// _ jiQi^ ^1,^^ 

We have therefore to determine the sum of such quantities as 

liC- lor all the conduetors of the sj'stem. 

For the conductor from A^, to A^ the conductivity is A',,,, and the 

resisbance where (15) 

The current in this eonduotor is, according to Ohm’s Law, 
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We shall suppose, however, that the value of the eurrent is not 

that given by Ohm’s Law, but where 

(17) 
To determine the heat generated in the system we have to find 

the sum of all the quantities of the form 

7? ^2 
nQ i‘Q' 

or ///= }£ + (18) 

Giving C),, its value, and remembering the relation between AT,,, 

and this becomes 

:* (G,,+2 j;,)(la) 

Now since both C and X must satisfy the condition of eoutinuity 

at .4, we have ^ + C,„ + &e. + C-,,,, (20) 

Qp — -^/'i + “b (21) 
therefore 0 = l^^ + Sce. + 7,,,,. (22) 

Adding together therefore all the terms of (ID), wc find 

v: (74, = 2 P,, Q„ + 2 74,. (23) 

Now since /f is always positive and 7- is essentially positive, the 

last term of this equation must be essentially positive. Hence the 

first term is a minimum when 7 is zero in every conductor, that is, 

when the current in every conductor is that given by Ohm’s Law. 

Hence the following theorem ; 

284.] In any system of conductors in which there are no internal 

electromotive forces the lieat generated by currents distributed in 

accordance with Ohm’s Law is less than if the currents had been 

distributed in any other manner consistent with the actual con¬ 

ditions of supply and outflow of the current. 

The heat actually generated when Ohm’s Law is fulfilled is 

mechanically equivalent to 2 Pj, Q,j, that is, to the sum of the 

products of the quantities of electricity supplied at the different 

external electrodes, each multiplied by the potential at which it is 

supplied. 

VOT.. 1. 



CHAPTER VII. 

CONDUCTION IN TITlfEE DIMENSIONS. 

Notation of Electric Currentx, 

285. ] At any point let an element ol' area dS be taken normal 

to the axis of a', aiul let Q units of eleetricity pass across this area 

from the negative to the positive side, in unit of time, then, if 

becomes ultimately equal to n when dSxs, indefinitely climinisliecl, 
(IS 

% is said to bo the Component of the electric cun-ent in the direction 

of X at the given point. 

In the same way wc may determine v and w, the components of 

the current in the directions of_y and c respectively. 

286. ] To determine the component of the current in any other 

direction OR through the given point O. 

Let I, n be the direetion-cosincs of 01\^ then cutting off from 

the axes of .r, z portions equal to 

r r 

V ni 

respectively at A, B and C, the triangle ABC 

will be normal to OR. 

The area of this triangle ABC will be 

and - 
11 

dS= i 
linn' 

and by diminishing r this area may be diminished without limit. 

The quantity of electricity which leaves the tetrahedron ABCO 

by the triangle ABC must be equal to that which enters it through 

the three triangles OBC., OCA, and OAB. 
o 

The area of the triangle OBC is ^ , and the component of 
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the current normal to its plane is so that the quantity which 

enters through this triaiig-lc is ^ . 
mn 

The quantities which enter through the triangles OCA and OAB 
respectively are y ^ 

hr" —T> and A-7— • 
111 - Im 

If y is the component of the velocity in the direction OR, then 

the quantity which leaves the tetrahedron through ABC is 

Since this is equal to the quantity which enters through the tiiroe 

other trianglcSj 

i r!z = r ,.2 -S > 
* hin I in n nl ^ ’ Im ) 

multiplying by , we get 

1) 

(2) 

y = ln-\-vhv-\-nw. 

If we put -j- + w'^ z= r-, 

and make l\ in', n'. such that 

11 I'T, V = m'r, and w = n'T] 

then y = r(ll' -i-iiiin'+iiii'). 

Hence, if we define the resultant current as a vector whose 

magnitude is F, and whose direction-cosines ate in', 11', and if 

y denotes the current resolved in a direction making an angle 0 

with that of the resultant current, then 

y = r eos 0 ; (3) 

shewing that the law of resolution of currents is the same as that 

of velocities, forces, and all other vectors. 

287.] To determine the condition that a given surface may 

he a surface of flow. 

Let F{x,y,z) :=\ (-1) 

he the equation of a family of suidhees any one of which is given by 

making A constant, then, if we make 

dx] dy\ (5) 

the direction-eosincs of the normal, reckoned in the direction in 

which k increases, are 

l = N 
(Ik 

(lx ' 
m ■= N 

(Ik 

du' 
11 = N 

(Vk 

(h 
(fi) 

7. 2 
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Hence, if y i.s the component of the current normal to the .surface, 

( d\ (Ik (Ik. ) 
7/ = y- + I- . {7) 

( dx (Ijj (Iz ) 

If y = 0 there will be no current tliroug-h the surface, and the 

surface may he called a Surface of Plow, because the lines of motion 

are in the surface. 
288.] The equation of a surface of flow is therefore 

dk dk (Ik 
n , + V + = 0. 

d.v dy (I: 
(8) 

If this equation is true for all values of A, all the surfaces of the 

family will be surfaces of flow. 

289.] Let there be another family of surfaces, whose parameter 

is A', then, if these are also surfaces of flow, we shall have 

dk' dk' dk' 
11 ——V V , yw -- = 0. 

<Iy dz dx 
(9) 

If there is a third family of surfaces of flow, whose parameter 

is A", then 
n-j- ^-V -y- 0. (10) 

(lx (ifj dz 

Eliminating* between thc.se three equations, u, v, and 70 disappear 

together, and we find 

(11) 

or A" = ^(A, A') j (12) 

that is, k" is some function of A and A'. 

290.] Now consider the four surfaces whose parameters are A, 

A-poA, A', and A' + 8A'. These four surfaces enclose a quadrilateral 

tube, which we may call the tube 6\.8A'. Since this tube is 

bounded by surfaces across w'hich there is no flow, we may call 

it a Tube of Flow. If we take any two sections across the tube, 

the quantity which enters the tube at one section must be equal 

to the quantity which leaves it at the other, and since this quantity 

is therefore the same for every section of the tube, let us call it 

i/SA . 6A' where i is a function of A and A', the parameters which 

determine the particular tube. 

dk dk dk 
dx ’ ’ Hz 

dk' d>: dk' 
dx ’ dz 

dk" dk" dk" 
(Ix ’ iv ’ dz 

A" 
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291.] If dS denotes the section of a tube of flow by a plane 

normal to a-’, ^\•o have by the theory of the eliange of the inde¬ 

pendent variables, 

dA,6\'=dS(~''^' 
tlK (l\' 

)■ Vy (h dz (Iff- 

and by the definition of the eomponents of the eurrent 

(13) 

Hence 

Similarly 

nhH = LhK.hW 

= ]j ( dk /Ik' 

dj dz 

r /(Ik (Ik! 

y /dk dk' 

^ dk'. 

dz'd^~y 
dk dk'. 

diizy 
(Ik dk'. 

dy dx' 

(H) 

(15) 

292.] It is always possible when one of the functions k or A' is 

known, to determine the other so that L may be equal to unity. 

For instance, let us take the plane of yz^ and draw upon it a series 

of equidistant lines parallel to y, to represent the sections of the 

family A' by this plane. In other words, let the function A' be 

determined by the condition that when x = 0 k'= z. If we then 

make L = I, and therefore (when a; = 0) 

tlien in the plane {x = 0) the amount of electricity which passes 

through any poidion will be 

JJu dy dz — JJtlkdk'. (16) 

Having determined the nature of the sections of the surfaces of 

flow by the plane of yz, the form of the surfaces elsewhere is 

determined by the conditions (8) and (9). The two functions A 

and A' thus determined are sufficient to determine the eurrent at 

every point by equations (15), unity being substituted for L. 

On Lines of Flow. 

293.] Let a scries of values of A and of A' be chosen, the .suc¬ 

cessive diflerences in each series being unity. The two series of 

surfaces defined by these values will divide space into a system 

of quadrilateral tubes through each of which there will be a unit 

current. By assuming the unit sufficiently small, the details of 

the eurrent may be expressed by these tubes with any desired 

amount of minuteness. Then if any surface be drawn cutting the 
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system of tubes, the quantity of the current which passes through 

this surface will be expressed by the nvmber of tubes whieh eut it, 

since each tube carries unity of current. 

The actual intersections of the surfaces may be called Lines of 

Flow. When the unit is ttiken sufficiently small, the nuiuher ot 

linos of How which cut a surface is approximately equal to the 

numher of tubes of flow which cut it, so that we may consider 

the lines of How as expressing not only the direction of the current 

but its strcnijth, since each line of How through a given section 

corresponds to a unit current. 

On Cnrrcnl-Shcetis and Cun'cni-Functiuus. 

5*94.] A stratum of a conductor contained between two eou- 

seeutive surfaces of How of one system, say that of A.', is called 

a Current-Sheet. The tuljcs of How within this slieet are deter¬ 

mined by the function A. If A.^ and A/, denote the values of A at 

the points A and P respectively, then the current from right to 

left across any line drawn oil the sheet from A to P is Ai-—A^i. 

If AP lie an element, ds, of a curve drawn on the sheet, the current 

whieh crosses this cleineut from right to loft is 

r/A , 
da. 

da 

This function A, from which the distribution of the current in 

the sheet can be completely deteriniued, is called the Cnrrent- 

Funotion. 

Any thin sheet of metal or conducting matter bounded on both 

side.s by air or some other non-conducting medium may bo treated 

as a current-sheet, in which the distribution of the current may 

bo cxjirossed by moans of a curront-fuuotion. See Art, (347. 

Eijnation of ‘ Cotdinuiijj 

295.] If we dififorentiate the throe equations (1.5) with respect to 

x,y, z rospootively, romomberiiig that P is a function of A and A', 

wo find ,]n dm _ 

The corresponding equation in Hydrodynamics is called the 

E([n:ition of ‘Continuity.’ The continuity which it expresses is 

the continuity of existence, that is, the fact that a material sub¬ 

stance cannot leave one part of space and arrive at another, without 

going through the space between. It cannot simply vanish in the 
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one place and appear in the other, but it must travel alor^ a con¬ 

tinuous path, so that if a olo.sed surface be drawn, including the 

one place and excluding the other, a material substance in passing 

from the one place to the other must go through the closed surface. 

The most general form of the equation in hj drodynamies is 

+ + = (,8) 
(Lv (h/ (h (It 

where, p sig-uifies the ratio of the quantity of the suhstanee to the 

volume it occupies, that volume being in this case the dill'oreutial 

element of volume, and [pn], {pv), and {pw) siguily the ratio of the 

quantity of the substance which oro.ssos an element of area iu unit 

of time to that area, the.se areas h(*ing normal to the axo.s of a\ //, and 

z rospe<;tively. Thins understood, the equation is apjilieahle to any 

material sub.stance, solid or fluid, whether the motion be continuous 

or discontinuous, provided the existence of the parts of that sub¬ 

stance is continuous. If anything, though not a substance, is 

subject to the condition of continuous existence in time and space, 

the equation will express this condition. In other parts of Physical 

Science, as, for instance, in the theory of electric and magnetic 

quantities, equations of a similar form occur. We shall call such 

equations ‘equations of continuity’ to indicate their form, though 

wo may not attribute to those quantities the projiorties of matter, 

or even continuous existence in time and sjiaco. 

The equation (17), which wo have arrived at in the ease of 

electric currents, is identical with (18) if wo make p — 1, that is, 

if we suppo.se the .substance homogeneous and incompressible. The 

equation, in the case of fluids, may also be established by either 

of the modes of proof given in treatises ou Hydrodynamics. In 

one of those we trace the course and the deformation of a certain 

tdemont of the fluid as it moves along. In the other, we fix our 

attention ou an element of .sjiaco, and take account of all that 

enters or leaves it. The former of those methods cannot be applied 

to electric currents, a.s wo do not know the velocity with which the 

electricity pas.ses through the body, or even whether it moves in 

the positive or the negative direction of the current. All that we 

know is the algebraical value of the quantity which crosses unit 

of area in unit of time, a quantity corresponding to {pn) in the 

equation (18). We have no means of ascertaining the value of 

either of the factors p or it, and therefore we cannot follow a par¬ 

ticular portion of electricity in its cour.se through the body. The 

other method of investigation, in w'hieh wo consider what passes 
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through the walls of an clement of volume, is applicable to dee trie 

currents, and is perhaps preferable in point of form to that which 

we have given, but as it may bo found in any treatise on Hydro¬ 

dynamics we need not repeat it here. 

Quaniily of Electricity which jMmes throuyh a given Surface. 

296.] Let r bo the resultant current at any point of the surface. 

Let dS be an clement of the surface, and let f be the angle between 

r and the normal to the surface, then the total current through 

the surface mil be rr 
IJr cos e dS, 

the integration being extended over the surface. 

As in Art. 21, we may transform this integral into the form 

fjTaos.dS =fff(~ + ^ (19) 

in the case of any closed surface, the limits of the triple integration 

being those included by the surface. This is the expression for 

the total efflux from the closed surface. Since in all cases of steady 

currents this must be zero whatever the limits of the integration, 

the quantity under the integral sign must vanish, and we obtain 

in this way the equation of continuity (17). 



CHAPTER VIII 

UESISTANCE AND CONDUCTIVITY IN THIIE13 DIJIEN.SIONS, 

Oil the most General Relations between Current and Electro- 

motive Force, 

297.3 TiET the components^ of the current at any point be n, v, v). 

Let the comiionents of the eleclromotive force be X, Y, Z. 

The electromotive forec at any point is the resultant force on 

a unit of positive electricity placed at that point. It may arise 

(1) from electrostatic action, in which case if V is the potential, 

A = - 
dF 

dx' dij' Tz’ 

or (2) from electromagnetic induction, the laws of which we shall 

afterwards examine; or (3) from thermoelectric or electrochemical 

action at the point itself, tending to produce a current in a given 

direction. 

We shall in general suppose that X, Y, Z represent the com¬ 

ponents of the actual electromotive force at the point, whatever 

be the origin of the force, but we shall occasionally examine the 

result of supposing it entirely due to variation of potential. 

By Ohm’s Law the current is proportional to the electromotive 

force. Hence X, Y, Z must be linear functions of u, v, tv. We 

may therefore assume as the equations of Resistance, 

X = R^u+ Q^va-PoW, j 

Y = l\u + u + Q, jy, I (2) 

(I) 

We may call the coeflieients R the cocflicicnts of longitudinal 

resistance in the directions of the axes of coordinates. 

The coefficients R and Q may be called the coefficients of trans¬ 

verse resistance. They indicate the electromotive force in one 

direction required to produce a current in a different direction. 
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If wo wore at liberty <0 assume that a solid body ma}" be treated 

as a system of liru'ar coiuluetors, i.luui, from the reciprocal property 

(Art. ‘J8I) of any (wo ooiiduetor.s of a liueav system, we mi^'lit shew 

that the eleetromotive force aloiin' j' re(|iiir(‘d to ])ro(luee a unit eurreut 

parallel (o ij mii.st be c(pial to the eleetromotive force aloii^’ re¬ 

quired to piroduce a unit eurreut ]>arallel to Tlii.s would shew 

that 1\=- Q^, and similarly we .should find ./A = Q.^, and = Q.^. 

When thos(' conditions are satisfied the system of eoeflleients is said 

to be Symmetriwd. Wlieii they are not satisfied it is called a 

Skew system. 

’WA' have great reason to believe that in every actual case the 

system is symmetrical, but we shall e.xamine some <if the con- 

so(ilienees of admitting the possibility of a skew sy.stom. 

298,] The (piantities ?/, ?\ to may be exjnessed as linear fimetioiis 

of X, y, Z by a system of equations, wliieh we may call Ivjnations 

of Conductivity, 
u = A'+ q,Z, \ 

A -j- )'.i} 'f Z, ( (3) 

w = /c_, A -j- y,) -|~ r.j X j / 

we may call the coefficients r the coefficients of Longitudinal con¬ 

ductivity, and /j and y those ofTransver.se coudiietivity. 

The coetlicicuts of resistance are inverse to tho,se of eondnetivity. 

This relation may be defined as follows ; 

Let [PQ/f] bo the determinant of the coeffieients of resistance, 

and [y;yr] that of the coefficients of eondnetivity, then 

IPQRI + (.1; 
[/jy/J = q'z'h-y >'i Jh 'h —Pi '7:; “/'a • (") 

\PQIi-\ [pqv] = 1, 

YPqR]j\ = {PJ\-/f,), [jiqr] l\ = {piP.,i-qi r,), (7) 

&C. &c. 

The other cijuations may be formed by altering the symbols 

P, q> X, P, q, r, and the snffixe.s 1, 2, 3 in cyclical order. 

Pale af (jeneration of Ileal. 

299.] To find the work done by the current in unit of time 

in overcoming n-sistance, and so generating heat, we multiidy the 

eoinponeuts of the enrrent by the coiTesiionding- components of the 

electromotive, force. We thus obtain the following cxin'e.ssions for 

//', the quantity of work expended in unit of time ; 
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= Xu + Yv + Zio ; (8) 

— + Ti.j}- + 72., w~ + (P] + (2i) + (Pu + Q’2 ^ (P3 + Q:^ ) 

— >'iX- + i\_,Y-‘ + r.^Z- +{/>i +7i)^ X + (/^ + + (p^ +7:)) 
i^) 

(10) 

By a proper choice of axes, cither of the two latter equations may 

be dojirivcd of the terms involving’ the products of n, v, w or of 

A] Y, Z, The system of axes, however, which reduces /7'to the form 

is not in general the same as that which reduces it to the form 

It is only when the coefficients Pj, 7^, 7\ arc equal resi)cctively 

Qi> Q-.i fl'at the two systems of axes coincide. 

If with Thomson * wc write 

F^S+T, Q = S-T-,} ,,j. 

and p z= s + f; q = H \ 

then wc have 

{pqiq = F,it,^jis-\-2S,s,s,-6'^^F,-s.//i,-s,yi,, 

+ 2 0Si7’P3 + 5,7'3ri+53T,7h) + 72iy'H72,7-,-+P,.,7!,2 
(12) 

and [FQF]r, = Ji,F,-S,^+T,^ s 

[FQR]s, = Zr.,-i-S,S,-F,S„ [ (13) 

[PQR]f,=-J>YJ\+S,T, + SJ.,. ‘ 

If therefore we cause Sj^, <S,, to disappear, will not also dis¬ 

appear unless the coefficients 7'are zero. 

CoiiiUCioii of SImIUUi/, 

300.] Since the cquilihrinm of olcetricity is stable, the work 

spent in maintaining the current must always he positive. The 

conditions that lY must he po.sitive arc that the three cocllicients 

72i, 7^2» P;)> three expressions 

4 7?;,72j-(P2 + <2J% j (14) 

4 72i 7^2 —(P 3 + 

must all be positive. 

There arc similar conditions for the coefficients of conductivity. 

• 'J’rans. h. S. Ktlin., 1853—1, p, Ui5. 
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Equation of Coiiiinnilj/ in a Homogeneous Medium, 

301,] IF we express the components of the electromotive force 

as the derivatives of the potential /'] the equation oi continuity 

du do dw_ 

dx + dg ^ 

becomes in a honiog'cneons mediinn 

d'’-F d:M d'^F dn' 

^ dx- ^ dz- Flydz ' dzdx ''d,vdg 

If the medium is not homogeneous there will be terms arising 

from the variation of the coefficients of conductivity in passing 

from one point to another. 

Tliis equation corresponds to Laplacc>’s equation in an isotropic 

medium. 

302.] If we put 

[rs] = r,r3ri+25j5,s_.| —r,.Vi“—rgS,,-, (17) 

and {ABI = A., A, + 2 7/, Ji,B, - A, B^- - A.H^^ - A.^B^^, (18) 

where ^ ^ a' 
o 2 
Sj j [rs] //, 

[r^] B^ = ^2 ^2 A'j ) I (19) 

and so on, the system A, B will be inverse to the system r, s, and 

if we make 

Aix~ -p A.,g- + 2/3 z- + 2 l^igz + 2B.^zxZf 2B,^xg = 9^i (20) 

we shall find tliat 

r=-- (21) 
4 77 p 

is a solution of the equation. 

In the ca.se in whieli the ooeffieieuts T are zero, the coefficients A 

and B become identical with B and S, When T exists this is not 

the case. 

In the case therefore of electricity flowing out from a centre in an 

infinite homogeneons, hut not i.sotropie, medium, the equipotential 

surfaces are ellipsoids, for each of which p is constant. The axes of 

these ellipsoid.s are in the directions of the principal axes of con¬ 

ductivity, and these do not coincide with the principal axes of 

resistance unless the system is symmetrical. 

Ily a transformation of this equation we may take for the axes 

of X, y, z the principal axes of conductivity. The coefficients of the 

forms s and B wdll then be reduced to zero, and each coeflieient 
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of the form A will ho the reciprocal of the coiTcsponding coeffi¬ 

cient of the form r. The cxj)rossion for p will bo 

!V- j~ z~ p~ 
-[- *-1- ■ = 

n r., >-3 7\r,7' 
(22) 

303.] Tlie theory of the complete system of equations of resist¬ 

ance and of conductivity is that of linear functions of three vari¬ 

ables, and it is exemplified in the theory of Strains*, and in other 

parts of physics. The most appropriate method of treating; it is 

that by which Hamilton and Tait treat a linear and vector function 

of a vector. AVe shall not, however, expressly introduce Quaternion 

notation. 

The eoeffieieuts T,, 2'.,, may bo regarded as the rectangular 

components of a vector T, the absolute magnitude and direction 

of which are fixed in the body, and independent of the direction of 

the axes of roferonoe. The same is true of /j, Zy, which are the 

components of another vector Z. 

The vectors T and t do not in general coincide in direction. 

Lot ns now take the axis of z so as to eoineido with the vector 

T, and transform the equations of resistance accordingly. They 

will then have the form 

A'’ = 7?j 7! + <9., 7’ + <S1, 70 — Tl>^ \ 

Y = 5;, 71 + JR^V + Sy70 + T 71, > (23) 

Z = (92 77 + iSj T; + ' 

It appears from those equations that wo may consider the eloo- 

tromotive force as the resultant of two forces, one of them depending 

only on the coefficients 7Z and 6', and the other depending on ?'alone. 

The part depending on R and S is related to the current in the 

same way that the perpendicular on the tangent plane of an 

ellipsoid is related to the radius vector. The other part, depending 

on T, is equal to the product of T into the resolved part of the 

current perjiondionlar to the axis of 2\ and its direction is per¬ 

pendicular to T and to the current, being always in the direction in 

which the resolved part of the current would lie if turned 00° in 

the positive direction round T. 

Considering the current and 2' as vectors, the part of the 

electromotive force due to T is the vector part of the product, 

T X current. 

T.fiio coefficient T may ho called the Kotatory eooffioiont. AVe 

• See Tlioinson niul T.iit's Nafnrnl PhilosnpJn/. § irA, 
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have reason to believe tliat it does not exist in any known snb- 

staneo. It should be founds if anywhere^ in magnets, whieh have 

a polarization in one direction, probably due to a rotational phe¬ 

nomenon in the substance. 

304.] Let us next consider the general eharaeteristic equation 

of r, 
d , (ir dJ' (ll\ (1 , r/r (ir 

(lx * (lx ' d'X ~ dj/ 

d f dV (ir (in 

dJ\ 

where the eoeffieients of conductivity p, q, r may have any positive 

v'alucs, continuons or diseontinuons, at any point of space, and V 

vanishes at infinity. 

Also, let a, h, c be three functions of x, 1/, z satisfying the condition 

(la (lb flc 

and let 
(IF (IF (IF 

II 

(IF (IF (IF II 
"C: 

(IF (IF (IF 

II ti. (Ij, 7lz + 
Finally, let the triple-integral 

(25) 

(2G) 

jr=Jff{Ii,a^- + R,b^- + R/^ 

+ (-^1 + <?i) +(-?\+ Q-) ^^ + (^3 + Q3) dx(h/(h (27) 

be extended over spaces bounded as in the enunciation of Art. 97, 

where the coefficients P, Q, li are the eoeffieients of resistance. 

Then //"will have a unique minimum value when a, h, c are such 

that V, V, 10 are each everywhere zero, and the eharaeteristic equation 

(24) will therefore, as shewn in Art. 98, have one and only one 

solution. 

In this ease //' represents the mechanical equivalent of the heat 

generated by the current in the system in unit of time, and we have 

to prove that there is one way, and one only, of making this heat 

a niinimum, and that the distribution of currents {abc) in that ease 

is that which arises from the solution of the characteristic equation 

of the ])oteutial V. 

The quantity //" may be written in terms of equations (25) and (2G), 
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dl'r at' 
" c/// a: 

dV dV dV dV drav\ 
'• dxdijfh 

+ + 'dz dx + d>/ 

+ {J\ + Q\) + (^•.-+ Q'J) «•« + (A + ‘^^rdj/dz 

■m 
dr dv di\ , , , 

"*+"4+”’*)*■'?*"'- 
(28) 

Since 
di(. dv dw 

ITv (Iji Tz 
ft, 

(29) 

the third term of//' vanishes within the limits. 

The .second term, Itciiif? the rate of conversion of cleeirical energy 

into heat, is also essentially positive. It.s minimum value is zero, 

and this is attained only when ?/, and iv are everywhere zero. 

The value of \V is in this case reduced to the lirst term, and is 

then a minimum and a unicjue mininiinn. 

305.] As this proposition is of great importance in the theory of 

electricity, it may he nsefnl to present the following proof of the 

most general case in a form free from analytical operations. 

Let irs consider the propagation of eleetrieity through a conductor 

of any form, homogeneous or heterogeneous. 

Then we know that 

(1) If we draw a line along the path and in the direction of 

the electric current, the line must pass from places of high potential 

to places of low potential. 

(2) If the potential at every point of the system he altered in 

a given nnilbrm ratio, the currents will be altered in the same ratio, 

according to Ohm's Law. 

(3) If a certain distribution of potential gives rise to a certain 

distribution of currents, and a second distribution of potential gives 

rise to a second distribution of currents, then a third distribution in 

wdiich the potential is the sum or dilferenee of those in the first 

and second will give rise to a third distribution of currents, such 

that the total current passing through a given finite surface in the 

third case is the sum or difference of the currents passing through 

it in the first and second cases. For, by Ohm’s Law, the additional 

current due to an alteration of potentials is independent of the 

original current due to the original distribution of potentials. 

(4) If the potential is constant over the whole of a closed surface, 
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and if there are no eleetrodas or intrinsic electromotive forecs 

within itj then there will be no currents within the closed surface, 

and the potential at any point within it wdll be equal to that at the 

surface. 

If there are eiirrents within the closed surface they must cither 

be closed curves, or they must begin and end either within the 

closed surface or at the surface itself. 

But since the current must pass from places of high to places of 

low potential, it cannot flow in a closed curve. 

Since there are no eleetrodos within the surface the current 

cannot begin or cud within the closed surface, and since the 

potential at all points of the surface is the same, there ean be 

no current along lines passing from one point of the surface to 

another. 

Hence there are no currents within the surface, and therefore 

there ean be no difference of potential, as such a difference would 

produce currents, and therefore the potential within the closed 

surface is everywhere the same as at the surface. 

(5) If there is no electric current through any part of a closed 

surface, and no electrodes or intrinsic eleetroinofivc forecs within 

the surface, there will be no currents within the surface, and the 

potential will be uniform. 

We have seen that the currents cannot form closed curves, or 

begin or terminate within the surface, and since by the hypothesis 

they do not pass through the surlace, there can be no currents, and 

therefore the potential is constant. 

(6) If the potential is uniform over part of a closed surface, and 

if them is no current throng’ll the remainder of the surface, the 

potential within the surface will he uniform for the same reasons. 

(7) If over part of the surface of a Ixidy the potential of every 

point is knowui, and if over the rest of the surface of the body the 

current passing through the surface at each point is knowm, then 

only one distribution of potentials at points within the body ean 

exist. 

For if there 'W’crc two different values of the potential at any 

point within the body, let these be 1\ in the first case and 

the .second ease, and let us imagine a third ease in which the 

potential of every point of the body is the excess of potential in the 

first ease over that in the second. Then on that part of the surface 

for which the potential is known the jiotential in the third ease will 

lie zero, and on that part of the surface through which the currents 
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arc* known tho currents in the third c*jisc will bo zero, so that by 

(li) the potential everywhere within the surface will be zero, or 

there is no excess of 1\ over V.,, or the reverse. Hence there is 

only one po.ssihle distribution of potentials. This proposition is 

true whether the solid be bounded by one closed surface or by 

several. 

0>i the Apjiroxhuate Calculalion nf the Remlance of a. Conductor 

of a (j'wen Funn. 

t306.] The conductor here considered has its surface divided into 

three portions. Over one of these portions the i)otcntial is main¬ 

tained at a constant value. Over a second portion the potential has 

a constant value difi’erent from the lirst. The whole of the remainder 

of the surface is impervious to electricity. We may suppose the 

conditions of the first and second portions to be fulfilled by aiiplying- 

to the conductor two electrodes of ])erfectly conducting’ material, 

and that of the remainder of the surface by coating it with per¬ 

fectly non-eondneting material. 

Under these circumstances the current in every part of the 

conductor is simply proportional to the dliferenee between the 

potentials of the electrodes. Calling this diflerenee the electro¬ 

motive force, the total current from the one electrode to the other 

is the product of the electromotive force by the conductivity of the 

conductor as a whole, and the resistance of the conductor is the 

reciprocal of the conductivity. 

It is only when a conductor is approximately in the circumstances 

above defined that it can be said to have a definite resistance, or 

conductivity as a whole, A resistance coil, consisting of a thin 

wire terminating in large masses of copper, approximately satisfies 

these conditions, for the potential in the massive electrodes is nearly 

constant, and any dilferenees of potential in different points of the 

same electrode may be neglected in comparison with the clifi'erence 

of the i)otcntials of the two electrodes. 

A very useful method of calculating the resistance of such con¬ 

ductors has been given, so far as I know, lor the first time, by 

the Hon. I. W, Strutt, in a paper on the Theory of Resonance *. 

It is fonnded on the following considerations. 

If the specific resistance of any i)ortion of the conductor be 

changed, that of the remainder being unehaiigcd, the resistance of 

'■ Phil. 'J’niiif., 1871, i*. 77. .See Art, 102, 

A a vor,. I. 
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the whole eoiiduetor will be increased if that of the portion is 

increased, and diminished if that of the j^ortion be diminished. 

This principle may be regarded as self-evident, but it may easily 

be shewn that the value of the expression for the resi.slanec of a 

system of conductors between two points selected as electrodes, 

increases as the resistance oi' each member of the system in¬ 

creases. 

It follows from this that if a surface of any form be described 

in the substance of the conductor, and if we further suppose this 

surface to be an infinitely thin sheet of a perfectly conducting 

substance, the resistauee of the conductor as a whole will be 

diminished unless the surface is one of the ecjnii)otential surfaces 

in the natural state of the conductor, in which case no effect will 

be produced by making it a perfect conductor, as it is already in 

electrical equilibrium. 

If therefore we draw within the coudnetor a series of surfaces, 

the first of which coincides with the first electrode, mid the last 

with the second, while the intermediate surfaces are bounded by 

the non-condiieting surface and do not intcr.soet each other, and 

if we suppose each of these surfaces to be an infinitely thin sheet 

of perfectly conducting matter, we shall have obtained a .s-yste*m 

the resistance of which is certainly not greater than that of the 

original eondnetor, and is equal to it only when the surfaces we 

have chosen are the natural O([iiipotenlial surfaces. 

To calenlate the resistance of the artificial .system is an operation 

of much less difficulty than the original problem. For the resist¬ 

ance of the whole is the sum of the resishinces of all the strata 

contained between the eonsecutive surfaces, and the resistance of 

each stratum can be found thus : 

Let flS bo an element of the surface of the stratum, v the thiek- 

ne.ss of the stratum pori)ondieular to the element, p the speeifie 

resistance, /i the ditlbrence of i)olentiiil of the perfeefly eondiieting 

surfaces, and dC the current through dH, then 

dC=E~dS, (1) 
pv 

and file whole current through the .stratum is 

o= e[I ^ ds, (2) 
JJ pv 

the integration being extended over the whole stratum bounded by 

the non-eondiieting surface of the conductor. 
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Hoiicc! tlio eoiKliietivity of the stratum is 

? = ff' 
and the rcsislaiiee of tlic stratum is tho reciprocal of this quantity. 

If the stratum he that hounded by the two surfaces for which 

the fmu-liou jf''has the values /’and /'+(^/’respectively, then 

(IF ,, rw//V“ r>lF'^ rn 

and the rosislanee of the stratum is 

jji v /o(.v 

To find tho resistance of tho whole artilieial eonduetor, we have 

only to integrate with resireet to /’, and wo find 

.. r F i,>\ 

I]} 

The re.sistanee F ol' the eonduetor in its natural state is greater 

than the value thus obtained, unless all the surfaces we have chosen 

are the natural eejuipotontial surfaces. Also, since the true value 

of /’ is the ab.sohit(.‘ nuixinunn of the values of /i*i which can thus 

be obtained, a small deviation of tho cho.seu surfaces from the true 

cquipotential surfaces will produce an error of Ji which is ooni- 

paratively small. 

This method of determining- a lower limit of the value of the 

resistance is evidently perfectly general, and may be applied to 

conductors of anj’' form, even when p, the specific resistance, varies 

in any manner within tho conductor. 

The most familiar example is the ordinary method of determining 

the resistance of a straight wire of variable section, In this ease 

tho surfaces chosen arc planes perpcudienlar to the axis of the 

wire, the strata have parallel faces, and tho vesistaneo of a stratum 

of section S and thickne.s.s (/.v is 

,(/(, = (') 

and that of tho whole wire of length -v is 

whore iS" is the transverse .seetion and i.« u function of .v. 

.\ a 2 
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This method in the case of wires whose seetion varies slowly 

with the length gives a result very near the truth, but it is really 

only a lower limit, for the true resistance is always greater than 

this, except in the case whore the section is jwrfeetly uniform. 

307.] To find the higher limit of the resistance, let us sui)pose 

a surface drawn in the conductor to he rendered impermeable to 

eleetricity. The elicet of this must be to increase the resistance of 

the conductor unless the surface is one of the natural surfaces of 

flow. By means of two systems of surfaces we can form a set of 

tabes which will completely regulate the flow, and the effect, if 

there is any, of this system of impermenhle siirlaces must be to 

increase the resistance above its natural value. 

The resistance of each of the tubes may he calculated by the 

method already given for a fine wire, and the resistance of the 

whole conductor is the reciprocal of the sum of the reeijiroeals of 

the resistances of all the tubes. The resistance thus found is greater 

than the. natural resistance, except when the tubes follow the 

natural lines of flow. 

In the ease already considered, where the conductor is in the 

form of an elongated solid of revolution, let us measure x along the 

axis, and let the radius of the section at any point be 6. Let one 

set of impermeable surfaces be the planes through the axis fur each 

of which (/> is constant, and let the other set be surfaces of revolution 

which r = («) 

where \(/ is a numerical quantity between 0 and 1. 

Let us consider a portion of one of the tubes bounded by the 

surfaces cf) and cp + dcp, \j/ and Kj/d\jr, x and x+dx. 

The section of the tube taken pevpeiulieular to the axis is 

^d^d(f) = ^b~d\l/dil>. (10) 

11' 0 be the angle which the tube makes with the axis 

tan 0 = 
dx (11) 

The true length of the element of the tube is dx see 6, and its 

true seetion is 

so that its resistance is 

dx 

\ dxjfdcf) eos 0, 

Let 

^ b'dxj/ (1(f) 

r dx 

scc'^ d = 2p ~ 
dx / , di .\ 

A and 

6'-^ (Ii// d(f) 

(12) 

:i3) 
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the integration being’ cxtcncleil over tlio whole length, x, of the 

(‘ondnetor, then the resistanec of the tube is 

niid its conclnetivitj is 
dxj/ (h\y 

2{A + ^'ji) ■ 

To find the conductivity of the whole condnetor, which is the 

sum of the condiietivities of the separate tubes, we must integrate 

this expression between if) = 0 and <p ~ 2-17, and between \f/ = 0 

and ^ = 1. The result is 

1 

li' 

■n 

Ji 
log (1 + (M) 

which may be less, but cannot be greater, than the true con¬ 

ductivity of the condnetor. 

When is always a small quantity -j- will also be small, and we 

may expand the exju-cssion for the conductivity, thus 

7/ .7?2 , 
•+ &C.) ■ (15) 

The first term of this expression, , is that which we should 

have found by the former method as the superior limit of the con¬ 

ductivity. Hence the true conductivity is less than the first term 

but greater than the wliole scries. The superior value of the 

resistance is the reciprocal of this, or 

7?'= —(1 
TT ' A 

1 JP J_ JT' 

12 ■^21 jP 
&c.)- (1C) 

If, besides snpjiosing the How to be guided by tbo .surfaces (p and 

\jj, wo had assumed that the (low' through each tube is proportional 

to dxj/dff), W'c should have obtained as the value of the resi.stance 

under this additional constraint 

J?."=:l(A + iB), (If) 
TT 

whic’h is evidently greater than the former value, as it ought to he, 

on account of the additional constraint. In Mr. Strutt's paper this 

is the supposition made, and the superior limit of the resistance 

there given h.as the value (17), which Ls a little greater than that 

which we have obtained iu (K'l). 
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308.] Wo sh:ill nn\v iippl}" llu‘,‘;!inie method lo find the forroetiou 

which must ho upplied lo the l(Mij4'lh of a ojliiclricfil eomliu‘tf)r of 

radius a when it.'" cxtreinity i.s [)hu!od in metal lie (M)iittict with a 

nia.s.sive olodrodo, whioh we may suppose of a diderent mol ah 

For th(' lowt'r limit of the resi.staiuM' wo shall .suppo.se that an 

infinilfly thin disk of ]ierfoftl3'' eoiidiiolino' mailer i.s placed hotwoim 

the end of the oylindiT and the massive electrode, so as lo hrino’ 

the end of the eyliiuk'r lo one and the same poteiilial Lhrono-honl. 

The jiotonlial within the cylinder will thou he a fniietion of its 

leiiffth only, and if wo .suppose the surface of the (deetrodc where 

the cylinder meets it lo lie iipjiroximatidy plane, and nil its diineii- 

siou.s lo be laro'o eonipured with the diameler of the cylinder, the 

(listril)ution of jioteiitial will he that due to a enudnelor in the form 

of a disk placed in an infiniti' inedinni. See Arts. lo'J, 1 77. 

If E is the dilferenoe of the potential of the disk from that of 

the distant parts of the eleetrode, C tlnyciirrent is.siun;j^ from the 

surface of the diskjiilo the eleetrode, and p the .S[)eeilie re.si.slaneo 

of the electrode, (18) 

Ih.'nci', if the leiie>lh of the win; from n iviveii point to the 

electrode is //, and its .sjieeifie re.sislanee/i, the re.si.slmice from that 

point to any jioint of the (deetro(I(' not near thcjiinetion i.s 

Ji = P .. d 
TT(l- 

P - > 
■1 It 

and this may la; written 
/ 

P 

P 

TTtls 

.1 )’ 
(1!») 

where tli(> second term within lirackots is n (pinntity which must 

he added In the loivo-th of tin* eylimh-r or win* in ralenlatino- its 

resistance, and this is certainly too small a correct ion. 

To understand the nature of the oiit.standiiio- error we may 

olxserve, that whereas we have supposed the How in the wire up 

to the disk to he uniform throiirrlioiit the seetion, the flow from 

the di.sk to the (deetrodc is not imiforni, hut is at any jioint in¬ 

versely proportional to the miriiminn (dinrd throiio-h that point. In 

the aetiinl (ta-se the flow llironodi the di.sk will not lx; uniform, 

but it will not vary .so niueli from jioint to point as in this sipipo.sed 

ea.se. The potential of the 'disk in the actual ease will not Ix' 

uniform, hut will diminish from the niiddh' to the edo-c. 

30!),] AVe shaJl next determim" a (piaiility fi'reater than the true 

n'si.stnnco by eomstraiiiiii*;- the (low throiiirh llu' disk to lie uniform 



309-] COIUIKCTION poll THE ENDS OF THE ’WIRE. 359 

at evc'vy point. "We may sn])po.‘;e electromotive forces introduced 

for this purpose nctiiif,'' pc‘rj)oiulieular to the surface; of the (li.sk. 

d'hc rcsistanee wilhiii tlie wire will be the same as before, but 

in the electrode the rale of g'eneralion of bent will be flic surfaee- 

intof>'rnl of the product of the How into the potential. The rate of 

C 
(low at any point is —imd the potential is the same as that of 

■na 

an electrified surface whose surface•di'iisity is a, where 

2 71(7- = £1. 
Txa'^ 

(20) 

/)' hc'ing’ the speeiflc rc.sistanec. 

^Ve have therefore to determine the potential eiicriyy of the 

electrification of the di.slc with the iiiiifonn surface-density a. 

The potential at the edge of a disk of uniform density <r is easily 

found to be two-. The work done in adding a strip of breadth 

d u at the circumference of the disk is 2 tt a a da .‘ia a, and the 

whole potential energy of the disk is the integral of this, 

(21) 8 7r 
or a ’ <T*. 

In the case of eleetrieal conduction the rate at which work is 

done in the electrode whose resistance is B' is 

C-Jt'= (22) 
f‘ 

whence, by (20) and (21), 
Up' 

3T!-n 

and the correction to be added to the length of the cylinder is 

P « 
— ,, 
p OTT 

this correction being greater than the true value. The true cor- 

r(!ctioii to ho added to the length i.s therefore ~aii^ where ii is a 
P 

TT 8 ’ 
number lying between • and . , or between 0.785 and 0.8'19. 

‘1 3 77 

Afr. Strutt, by a second approximation, has rodneed the superior 

limit of II to 0,8282, 



CHAPTER IX. 

CONDUCTION THROUGH nETEl!OORNKOU.S MEDIA. 

On the OmditioHs to be Futjitled at the Surface of Separc/lion 

helwceu Two Conducting Media, 

310.] There .ire two conclitinns wliieh the distribiition of currents 

must fulfil in general, the condition that the potential mu.st be 

continuous, ami the comlitiou of' continuity’ of the electric currents. 

At the .surface of separation hetwoen two media the first ofthe.se 

conditions requires that the }intcntinl.s at two points on oppn.site 

sides of the surface, hut infinitely near each other, .shall be equal. 

The potentials are here uiulorstood to be measured by an elec¬ 

trometer put ill eonnexion with the given point by means of an 

electrode of a given metal. If the potentials arc measured by the 

method (Icscrihcd in Art.s. 222, 2-l(), where the electrode terminale.s 

ill a cavity of the conductor filled with air, then the potentials at 

coiitigiioiis points of different nretals moa.sured in this way will 

differ by a quantity depending on the temperatnro and on the 

nature of the two metals. 

The other condition at the surface is that the current through 

any element of the surface is the same when inoasurod in either 

raedinnr. 

Thus, if J'\ and Vo are the potentials in the two media, then at 

any point in the surface of separation 

(1) 
and if and iio,v,,,w., are the components of currents in the 

two media, and I, m, n the direction-cosines of the normal to the 

surface of separation, 

w, / + c, III q- /c, n = 11^ t q- /•, m q- n\, n. (2) 

111 the most general ease the eoinponeuts u, v, vj are linear 
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functions of the (Icrivativas of V, the forms of which arc fjiven in 

the equations ^ ^ r,X+p,r+q,Z,^ 

V = q.^X+r.J+pM W 
w = p.^ X+ |?I 7+ r.) Z,) 

where X, Y, Z arc the derivatives of T with respect to x, t/, z 

respectively. 

Let us take the case of the surface which separates a medium 

having these coefficients of conduction from an isotropic medium 

having a coefficient of coudnetion ccpial to r. 

Let X', Y', Z' be the values oi' X, Y, ^ in the isotropic medium, 

then we have at the surface 

r (4) 
or X(]x-\-Y il;i-\-Z (Iz = X'dx-\-Y'd>j-pZ'clz, (o) 

when I dx -f m dy -f- ii dz = 0, (G) 

This condition gives 

X'=. X-{-TT (T I, Y'= Y-i-i TTCT m, Z'— ZA a u, (7) 

where (T is the surface-density. 

We have also in the isotropic medinnr 

u = rX', v'^rY', w'=rZ', (8) 

and at the boundary the condition of flow is 

+ v'm, + v/n = ul->rvm + wn, (0) 

or r {I A'-f- ?«JT-f- n Z-\- A tt a) 

~ ^{xiX Yp-^ii + Pi d"d” i7i L-f T.^Z), (10) 

whence 

‘l7ro-r= {I {ri — r) + inq.^ + np.^) X -f- -f pi (r,,—r) + 7ifjj) Y 

d- + mPi d- « ('y-^0) Z. (11) 

The quantity o- represents the surface-density of the charge 

on the surface of separation. In crystallized and organized sub¬ 

stances it depends on the direction of the surface as well as on 

the force perpendicular to it. In isotropic substances the coeffi¬ 

cients^; and q are zero, and the coefficients r arc all equal, so that 

4 7Ttr = (^ - \){lX+my+uZ), (12) 

where rj is the conductivity of the stdjstance, r that of the external 

medium, and I, m, n the direction-cosines of the normal drawn 

towards the medium whose conductivity is 

When both media are isotropic the conditions may be greatly 
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simplified, (or if k is the specilie resi-sisince per unit of volume, then 

,JV 
" - k dx 

1 dr 
w = (13) 

(M) 

dr 

k (b/ k dz 

and if v is the normal drawn at any point of the surface of separiitioii 

from the first medium toward,s the .second, the coiiduetion of con¬ 

tinuity is 1 ,//•, ^ 1 dV., 

dv k.^ dv 

]f 0, and 6., are the ang'lc.s which the line,s of (low in the first and 

second media re.si)ec!ti\'cly make with the normal to the surface 

of .sejiaration, then the tanj^ents to these lines of (low are in the 

same plane with the normal and on opposite sides of it, and 

tan 0, = k,, tan Oo. (la) 

Tliis may he called (he law of refraction of linos of flow, 

311.] As an exnmjtle of the conditions which must be fulfilled 

when electricity crosses the surface of separation of two media, 

let ns sup}>ose the svirfaee splnwicnl and of radius a, the specific 

re.sistance heiiif^ /•, within and without the surface. 

Let the iiotential, both within and without the surface, he ex- 

jtanded in solid harmonies, and lot the part which depends on 

(he surface harnionic -S) he 

within and without the sphere re.spectively. 

At the .surfiiee of separation where r = a we must liave 

1 d/\ _ 1 dJ^ 

k^ dr k., dr 

From these conditions we "ct the ecpiations 

^'+7^-74= 

/■j = /] and 

(1) 

(2) 

(2) 

(•') 

These oq\nitions are suflieienl, when we know tw'o (jf the four 

(piaiitities .7,, ./„, 7^,, Ji.,, to dednee the other two. 

Ijct us snj)po.se ./j and di^ known, then we iiiid the following'' 

e.xjiressions for .!., and Ji.,, 

(/•‘l (f -j- 1 ) -f- /‘a ?') T ('^1 -k.J) {t -^ \ ) Ji^d (“' + D 

^'1 (2' + 1) 

(/'i — L) t Ap/“‘'' * -j- (7) i -j- k., (i + 1)) 74 

7, (-'M n 

A., 

/!.. = 
r.) 
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In tlii.'i Wily we can Unci the conditions which each term of the 

h.irmonic expansion of the potential must satisfy for any number of 

strata bounded liy concentric .sjiherical surfaces. 

312. ] Let us suppose the radius of the first .spherical surface 

to bo Ui, and let there be a second .spherical surliujo of radius u., 

greater than a^, beyond which the specific resistiince is If there 

iire no sources or sinlcs of electricity within these s]dieres there 

will be no infinite values of V, and we shall have = 0. 

A¥e then find for A ^ iind 7/p the eoeflicients for the outer medium, 

^'..>(2^ + 1)^ = + 1) + (' + i j + ^3 ' 1 

+ i {i+ 1) (/f’j —A.,) yh> , 

+ i (I'l — {k.,i + k.^{iA 1)} • - 

(G) 

The value of the potential in the outer medium depend,s partly 

on tlie external souree.s of electricity, which produc;e currents iii- 

di!]iendently of the existence of the sphere of heterogeneous matter 

within, and partly on the disturbance cau.sed by the introduction of 

the heterogeneous sphere. 

The first j)art inu.st depend on solid harmonies of positive (legree.s 

only, boe:in.se it cannot have infinite values within the sphere. The 

second part must depend on harmonics of neg'ative degrees, bocanse 

it must vanish at an infinite distance from the lientre of the sphere. 

Jlence the potential due to the external electromotive forces must 

he expanded in a serio.s of solid harmoaie.s of po.sitive deg-ree. Let 

/ly be the eoeflleient of‘one these, of the form 

A,^ iS;. A. 

Thiui wc can find A^, the enrre.spondiug eocllicieiit for the inner 

.sphere by eijuation (li), and from this deduce A.,, Jij, and 71,. Of 

the.se 71, rcjireseiits the offeet on the potential in the outer medium 

due to the introduction of the licterogeneous spheres. 

Let ns now supjmse 7., = 7*,, so that the case i.s that of a hollow 

shell for which 7 si'parating an inner from an outer portion of 

the same medium for which 7= 7*,. 

IP we pul. 
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then ^4 = 7, 4 (2i+])2CV/3, 

tM
 

<< II ?' + 1) (7, (?4 1) + 7._. ?) Csi;, 
(7 

.71, = 7^, i ( 2 ; + 1) (7,-7,)«,2''+i6V/.,, 

>^4 = i (7._, — 7|) (X'j (/ + 1) +72 i) C'sl;. 

The difTerenee between .-1.^ the undisturbed eoeflieient, and its 

value in the hollow within the spherical shell, is 

A,-A, = (4-/-,)- / (i-f 1) (1 - Qy"''')CA,,. (8) 

Since this (juaiitity is always positive whatever he the values 

of 4 and 4) follows that, whether the spherical shell eondnets 

bet ter or worse than the rest of the medium, the electrical action 

within the shell is less than it would otherwise be. If the shell 

is a bettor conductor than the rest of the medium it tends to 

equalize the potential all round the inner .sphere. If it is a worse 

eoiiductor, it tends to prevent the electrical currents from reaching' 

the inner sphere at all. 

The case of a solid sphere may be deduced from this by making 

r/j = 0, or it may be worked out independently. 

313.] The most iniportaiit term in the harmonic e.Kpansion is 

that in which / = 1, for whieh 

C = -J^ , 
1144+2(4-4)2 (i 

si, = t) 4 hCA^, A., = 2, 4 (2 4 + 4)6'^, 

Jl„ = 3 4(4 —4) (4 — 4)(^4 ”h 4)(^2^ — 
The case of a solid .sphere of msistanee 4 be deduced from 

this by making «j = n. We then have 

34 

(9) 

“ 4+24/'^''’ 

(10) 

It i.s ea.sy to shew from the general expressions that the value 

of 74 in the case of a hollow sphere having a nuelens of resistance 

4, .surrounded by a shell of rc.sislauce 4j hs the .same as that of 

a uniform solid sphere of the radius of the outer surface, and of 

resistanee A', wlu'rc 

_ (- I + 4) ^2'"t (4—4) * ; 
(2 4 + 4h^2' —(^1 —4)'h ' ^ (11) 



365 3I4-] MUDIUM eONTAININO SMALL Hl'HEltKS. 

314.] If'there lire « spheres of rudiiis unci resistiinee /(•,, placed 

in a medium who.se resistance is L, at sueli distances from each 

other that their effeets in disturbing- the course of the current 

may be taken a.s independent of cacdi other, then if these spheres 

are all contained wthin a sphere of radius a.^, the potential at a 

g-reat distance from the centre of this sphere will be of the form 

V=(A + nU-^[)cos0, (12) 

where the value of B is 

The ratio of the volume of the n small sphere.s to that of the 

sphere which contains them is 

(M) 
v/.fl, •’ 

The value of the potential at a great distance from the .sphere 
may therefore be written 

(15) 

Now if the whole sphere of radius a., had been made of a material 

of speeifie resistance K, we should have had 

dliat the one expression should be cfpiivalent to the other, 

_ 2 /'j + k,^ + (^‘j “ /I'.j) 

(IG) 

17) 
2 />', + k„—2p[k^~ k.^ 

This, therefore, is the specific resistance of a compound medium 

consisting of a substance of speeifie re.sistanee k.^, in which are 

disseminated small spheres of specific resistance k^, the ratio of the 

volume of all the small spheres to that of the whole being- p. In 

order that the action of these spheres may not jn-oduee effeets 

depending on their interference, their radii must be small compared 

with their distances, and therefore must be a small fraction. 

This result may be obtained in other ways, but that here givmn 

involves only the repetition of the result already obtained for a 

single sphere. 

When the distance between the spheres is not g-reat compared 

with their radii, and when A-- is considerable, then other 
2 /l-i + k., 

terms enter into the result, which we shall not now consider. 

In eonseipienc-e of these ferm.s cerfaiii .systems of arrangement of 
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thu spliores cause tlio vo.sistance ol‘ tlu* conipnimd niediuni to be 

(Htrcrent in ditrcrcnt directions. 

sljijilicdtioii of (Ik; Prhinple of Imacjcs. 

315.] Let U.S take as an example the ea.se of two media .separated 

by a plane surface, and let ns suppose that there is a soiiroe S 
of electricity at a distance u from the plane siirfac(! in the first 

medium, the quantity of electricity Hewing from the source in unit 

of lime being -S’. 

If the first medium had been infinitely extended the eurreiit 

at any point 7-’ would have been in the direction 8V, and the 

potential at P would have been 
E 

where Er= 
S/:, 
‘1 TT 

and r, = tS]\ 

In the actual ease the conditions may be satisfied by taking 

a point T, the image of -S’ in the .second medium, such that IS 
i.s normal to the plane of separation and is bisected by it, Let r., 
be the distance of any jioint from /, then at the surface of separation 

r, = r,,, (1) 

(2) 
tlr.^ 

(Iv (tv 
Let the potential T\ at any' point in the first niediiini be that 

due to a quantity of eleetrieity E placed at -S’, together with an 

iniagiiiary (luaiitity E., at /, and let the potential at any iioiiit 

of the second inedinni be that due to an imaginary quantity at 

S, then if v v p 
/', = - + ^ and , i'.i) 

i'l fj “ /-j 

the superficial condition /] = J], gives 

E + J'y., = /q, (1) 
and the condition 

1 ,ll\ 

d v 

1 dK 

/q (/ V 
(•> 

gives 1 1 

-if- 
('5 

whence II _ ^ 3 ^'1 p 
Jv.) - j , Jj, 

- 7-, + k.. 
(7 

llie jiotcntial in the first medium is therefore the same a.s would 

be jirodiiced in air by a charge E jilaced at -S', and a charge E^ 
at f on the idectrostatic theory, and the potential in the second 

medium is the .same us that which naaild he jirodnced in air by 
a charge /f, at -S', 
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The euiTcnt at any point of llie first niediinn i.s the same as would 

k.,-/c 
have been nruclueed by the source S together with a source 

^•] ^’2 

-S' 

placed at / if tlie first medium had been infinite, and the current 

at any point of the second iriodiimi i.s the same as would have been 

produced by a source “ ‘ , ])laeed at S if tlic second medium had 
(A’, -f- K.j) 

been infinite. 

We have thus a complete theory of'eloetrieal images in the ease 

of two media separated hy a plane honndary. Whatever be the 

nature of the electromotive forec.s in the first medium, the potential 

tluy' produce in the fir.st medium may be found by combining their 

direct effect with the effeed, of their image. 

If we suppose tin- second niedium a perfect cnudiietor, then 

= 0, and the inuige at / is equal and ojiposite to the course 

at -S'. This is the ease of elcetrie images, as in Thomson’s theory 

in electrostatics. 

If we sui)pose the second medium a perfect insulator, then 

/•„ = cc, and the image at I is ef|iial to the .source at -S’ and cd’ the 

same sign. This is the case of images in hydrokincties when the 

fluid is bounded hy a rigid plane surfiieo. 

316,1 The method of inversion, which is of so much n.sc in 

electrostatics wdien tin* hounding surface is siijtposed to he that 

of a perfect conductor, is not applicalde to the more general ease 

of the surface separating two conductors of imeipial electric resist¬ 

ance. The method of inversion in tw'o dimensions is, however, 

applieiihh!, as well as the more general me.thod of transformation in 

two dimensions given in Art. 190*. 

Co)i(luclio7i Ikrour/h a Flute sejmratiny Two Media, 

317.] Let us next consider the etl'eet of a plate of thickness AF ol' 

a medium whose re.sist- 

ance is-?',,, and separating ^ 

two media whose resist¬ 

ances are h\ ami ti'-,^, in U ' 

altering the potential due 

to a source & in the first 

medium. 

The potential will be 
2.3. 

• Sc-u Kircliliutr, I’-KK. Ami. Ixiv, 407, -iikI Ixvii. lOM 

mill Sinitli. Pror. H.T'. /'Min , ]>. 7i'. 

Quincke, I’oj,'!,'. .\<;vii. 382; 



CONDUCTION IN IIKTKUOOENEOU.S MEDIA. 368 CONDUCTION IN IIETEUOOENEOUS MEDIA. [SiS. 

equal to that due to a system of charges ])laeed in air at certain 

points along the normal to the plate through 6'. 

Make 

AJ=SA, 1U^ = SB, AJ, = I^A, BL = J^B, AJ,=BA,Sic.i 

then we have two series of points at distances from each other equal 

to twice the thickness of the plate. 

318.] The potential in the first medium at any point i-* is ecjual to 

BS P/ P/i ^ PL 
that at a point in the second 

17 V // 7/ 

P'n 'P’l ^ P'J\ ^ P'L ^ 

and that at a point 1^' in the third 

E" J, L ^ 
F's p"/j f'j:, ^ 

where /, /', &e. represent the imaginary charges placed at the 

jioints y, &c., and the accents denote that the potential is to be 

taken within the plate. 

Then, by the last Article, for the surface through A we have, 

For the* surface through B we find 

T/ _ 7.V yn _ ^ ^.1 77/ 

Similarly for the surface through A again, 

T / _ ^'l T r j _ ^ _ / / 

and for the surface through B, 

T / k k li ■, , y 2 k .J y , 

If we make ^'i—^2 /_ k-^ k,. /fl -/I/O 1 / /'O •*'0 
"■“* "=4+X’ 

we find for the potential in the first medium, 

> = p-f.-p JJ +\^~P“)P -pf^-kP \^~P~)PP 

+ p'il-fr)i,>pr-^JL. (I.'-,) 
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For the potential in the third medium we find 

r= (1 +,0(1-/-)® j + ov; +«‘C.+ (IC) 

If the first medium is the same as the third, tlien k-y = k.^ and 

p = p', and the potential on the other side of the plate will be 

(17) 

If the plate is a very much better conductor than the rest of the 

medium, p is very nearly equal to 1. If the plate is a nearly perfect 

insulator, p is nearly equal to —1, and if the plate differs little in 

conducting power from the rest of the medium, pie a small quantity 

positive or negative. 

The theory of this case was first stated by Green in his ' Theory 

of Magnetic Induction’ {Essaj/, p, 65). His result, however, is 

correct only when p is nearly equal to 1 *. The quantity y which 

he uses is connected with p by the equations 

_ _ ^'i — ^ ^2 

3 — p -|- 2 ^ 2 y "b '^2 

2 TT/C 
If we put p = -—-— , we shall have a solution of the problem of 

1 + 27r/c '■ 

the magnetic induction excited by a magnetic pole in an infinite 

j>late whose eoeffieient of magnetization is k. 

Oil Stratified Conductors. 

319.] Let a conductor be composed of alternate strata of thick¬ 

ness c and c' of two sribstanees whose coefficients of conductivity 

are different. Required the coefficients of resistance and conduc¬ 
tivity of the compound conductor. 

Let the plane of tho strata he normal to Z. Let every symbol 

relating to the strata of the second kind be accented, and let 

every symbol relating to the compound eonduetor be marked with 

a bar thus, K. Then 

X = X = X\ (a ■f-c')u = en + cV, 

r=r=¥', (c + c')v = cv + c'v' ; 

{c + c')Z— cZ+c'Z\ 10 = 70 z:: lo'. 

We must first determine n, v, v', Z and Z' in terms of 

X F and w from the equations of resistance. Art. 297, or those 

* Koo Sir W'. Thom.son’rt ‘ Note on Induced Magnetism in a Plato,’ Cuvih. and 
Dab. Math. Joiirn., Nov. 1845, or licpnnt, art. ix. § 150. 

VOL. I. U b 



CONDUCTION IN IIETEROOENKOUS MEDIA. 370 [320. 

of conductivity, Art. 298. If we put D for the determinant of the 

coefficients of resistance, wc find 

u L — li.. A— Qs A+ w 1), 

V rg Z) = Y— P3 X + w j)i D, 

Z/'a ~ ^^3 A — |7j F+ lo. 

Similar equations with the symbols accented g'ive the values 

of v/, and /. Having’ found w, v and lo in terms of A”, Y and A, 

we may write down the equations of conductivity of the stratified 
/ 

c c 
conductor. If we make h = - ■ and h' =—7, we find 

/i/q + h'p{ hq^^?i'q( 
Ih = h + k' ’ + 

h po + h'p.l h q., 4- Yq.l 
Pi = ’ 5'2- 4 + 4' ’ 

+ P:( hh'{q^-q^){q.,-q.') 
Ih = c + c' + 4 ) {c-\-c ) 

cqz+ c' qj 
Qi — c + c/ (h + //) (c + C'') 

C/-J + c'i\' 
1\ = 

c + c' (Ji 4 h ){c + (/) 

cr.,-Vc r,l hh'{p^-p{){q^-q;) 
= C + tf' " (4 4//)(« +0 

f 4 c' 

~ %Tl'' 

320.] If neither of the two substances of which the strata are 

formed has the rotatory property of Art. 303, the value of any 

F or p will be equal to that of its corresponding Q or q. From 

this it follows that in the stratified conductor also 

7h — hy P‘2. — Pi> Pn — 
or there is no rotatory property developed by stratificatioUj unless 

it exists in the materials. 

321.] If wc now suppose that there is no rotatory property, and 

also that the axes of x, y and z are the principal axes, then the 

p and q coefficients vanish, and 

CZ-j+cV/ _ c'z’g' _ C + 6-' 

r, = 
c + c 

ro = 
c + o' 

r., = 

+ 
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If we liegin wilh hotli sulistiinces isotro])ie, l)ut of different 

conductivities, then the result of slrutification will be to make 

the resistance greatest in the direction of u normal to the strata, 

and the resistance in nil direetions in the plane of the strata will 

be ecpinl. 

322,] Take an isotropic substance of couduetivity r, eat it into 

exceedingly thin slices of thickness (t, and place them alternately 

with slices of a substanee whose conductivity is s, and thickness 

cl. 

Let these slices be normal to x. Then eut this eompouiul con¬ 

ductor into thicker slices, of thickness 5, normal to j/, and alternate 

these with slices whose conductivity is « and thickness 

Lastly, cut the new conductor into still thicker slices, of thick¬ 

ness c, normal to z, and alternate them with slices whose con¬ 

ductivity is s and thickness/(-gC. 

The result of the three operations will be to cut the substance 

whoso couduetivity is r into rectangular parallelepipeds whoso 

dimensions are n, h aiul c, whore h is exceedingly small compared 

witli Cj and a is exceedingly small compared with b, and to embed 

these parallelepipeds in the substance whose conductivity is s, so 

that they are separated from each other h\a in the direction of x, 

k.^b in that of jj, and k.^c in that of z. The conductivities of the 

eoucluctor so formed in the direetions of x, y and z are 

— LLlir^'i ~t k,^ (1 (<1*2+ <1*3 -t k,^ k^) s 

^ ( 1 -p (1 -p /i'g) (ytj'/ -p #) 

(1 -f- k.j ~|- /*2 ^*3) ^ d* {^1 "f" k^ -p k,^ -j- k^ -p k^ s 

^ (1-p/g) {/('^r-p (1 4--f-A'l ^2)"^} 

_ (t + k^ (r -|- (/I’j -p k,^ -p ^2) '^) 
® 1*3 r -p (1 -p -p -p ^*2 /I’g -p <^3 + ki k^ -P k^ k.j. k^ s 

The accuracy of this investigation depends upon the three 

dimensions of the parallelepipeds being of different orders of mag¬ 

nitude, so that we may neglect the conditions to be fulfdled at 

their edges and angles. If we make k.^, k.^ and k^ each unity, then 

5r-p38 3;*-p58 2/4-68 
/i = -r- = X-=-s. 

^ 4r-i-‘ls 2 2/4-Gs ^ /-p78 

If r ~ 0, that is, if the medium of which the parallelepipeds 

are made is a perfect insulator, then 

'*1 = •!•«. = /,, = 5 

II 1) z 

AV 
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If y = 00, that is, if the parallelepipeds are perfect conductors, 

= f = r^ = 2s. 

In every case, provided = k.^ = k.^, it may be shewn that 

r,, r.^ and are in ascending order of magnitude, so that the 

greatest conductivity is in the direction of the longest dimensions 

of the parallelepipedsj and the greatest resistance in the direction 

of their shortest dimensions. 

323.] In a rectangular parallelepiped of a conducting solid, let 

there be a conducting channel made from one angle to the opposite, 

the channel being a wire covered with insulating material, and 

let the lateral dimensions of the channel be so small that the 

conductivity of the solid is not affected except on account of the 

current conveyed along the wire. 

Let the dimensions of the parallelepiped in the directions of the 

coordinate axes be a, i, c, and let the conductivity of the channel, 

extending from the origin to the point {abc), be aicK. 

The electromotive force acting between tho extremities of tho 

channel is aX+bY+cZ, 

and if C' be the current along the channel 

C' = Kabc(aX+dr+cZ}. 

The current across tho face dc of tire jmrallelepiped is dcu, and 

this is made up of that due to the conductivity of the solid and 

of that due to the conductivity of the channel, or 

bcu = dc{r^X+p.^Y-^q,^Z) +Ka6c{aX+liY-^cZ), 

or u = Ka“) X + (pg+Kab) Y Kca) Z. 

In the same way we may find the values of v and w. The 

coefficients of conductivity as altered by the cflect of the channel 

will be 
'/•j + K a^, u r., + Kc-, 

j)^-\-KbCy 2)2-^Kca, 2hYXab, 

q^-\-Kbc, q.^-k-Kca, (i^-\-Kab, 

In these expressions, the additions to the values of &e,, due 

to the effect of the ehannel, are equal to the additions to the values 

of jfj, &e. Hence the values of and yj cannot be rendered 

unequal by the introduetion of linear channels into every element 

of volume of the solid, and therefore the rotatory property of 

Art. 30 3, if it does not exist previously in a solid, cannot be 

introduced by sueh means. 
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324.] To construct a framework of linear conductors which shall 

have any given coefficients of conductivity forming a symmetrical 

system. 

Lot the space be divided into equal small 

eiibesj of which let the figure represent one. 

Let the eoordinates of the points 0, L, M, N, 

and their potentials be as follows: 

X y z Potential. 

0 ■ 0 0 0 0 

L Oil 0 + Y+Z, 

M 10 1 O+Z+X, 

N 110 0+X+Y. 

Let these four points be eonneeted by six eonduetors, 

OL, OM, ON, MN, NL, LM, 

of whieh the eonduetivitics are respeetively 

A, B, C, P, Q, R. 

The eleetromotive forces along these eonduetors will be 

Y+Z, Z+X, X+Y, Y-Z, Z~X, X-Yj 

and the eurrents 

J(Y+Z), B(X+X), C(X+Y), P{Y~Z), q{Z-X), R{X-Y). 

Of these eurrents, those whieh convey eleetricity in the positive 

dircetion of x are bliosc along Zhf, LN, OM and ON, and the 

quantity eonveyed is 

n = {B+C-{-Q-{-R)X-^{C-R)Y +{B-Q)Z. 

Similarly 

v^{C-R)X -{.{C+A + R + P)Y-{■{A-P)Z, 

w = {B^Q)X -k{A-P)Y +^^B + P+q)Z-, 

whence vrc find by comparison with the equations of eonduetion. 

Art. 298, 

4^ = #-3 + r;,--}-i + 2y3i, 4P = r2 + r^--r^~2pi, 

\B — r^ + ^1 — 4 Q + 

4 C = rj + y2-y3 + 2j03, AR- ri+?'2—r3~2j03. 

Fig. 24, 



CHAPTER X. 

CONDUCTION IN DIELECTRICS. 

825.] We have seen that when electromotive force acts on a 

dielectric medium it jirodnces in it a state which we have called 

electric polarization, and which we have described as eonsisting* 

of eleetrie displacement within the medium in a direction which, 

in isotropic media, coincides with that of the electromotive force, 

combined with a superficial eharg-e on every element of volume 

into which we may suppose the dielectric divided, which is negative 

on the side towards which the force acts, and positive on the side 

from which it acts. 

When electromotive force acts on ft conducting medium it also 

produces what is called an clectiie current. 

Now dielcetrie media, with very few, if any, exceptions, are 

also more or less imperfect conductors, and many media which are 

not good insulators e.vhibit phenomena of dielectric induction. 

Hence we are led to study the state of a medium in wdiich induction 

and conduction arc going on at the same time. 

For simpolieity wc shall suppjoso the medium isotropic at every 

proint, but not necessarily homogeneous at ditToreut pwiuts. In this 

case, the equation of Poisson becomes, by Art. 83, 

where AT is the ‘specific inductive capiacity.’ 

The ‘equation of continuity’ of electric currents becomes 

tl A dJ\ (I A (IT\ d A dT\ dp _ 

du V dz TzJ ' (2) dx '^r dx‘^ ' dy dy^ ' dz dz^ dt 

where r is the specific resistance referred to unit of volume. 

When K or r is discontinuous, these equations must be trams 

formed into those approjiriate to surfaces of discontinuity. 
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In a strictly homogcneoiie medium r and K are both constantj so 

that we find 

dji^ df~ "*■ 

p = Ce~^r\ whence p z=i Ce ; (4) 

or, if we put Tz= -—, p z=Ce ^ . (5) 

This result shews that under the action of any external electric 

forces on a homogeneous modiunij the interior of which is originally 

charged in any manner with electricity, the internal eharges will 

die away at a rate which does not depend on tho external forces, 

so that at length there will be no charge of eleetrieity within 

the medium, after which no external forces enn either produce or 

maintain a charge in any internal portion of the medium, pro¬ 

vided the relation between electromotive force, electric polarization 

and conduction remains the same. When disruptive discharge 

occurs these relations cease to be true, and internal charge may 

be produced, 

Oh Condnctlon throvgJi a Condenser. 

326.] Lot C be the cajjacity of a condenser, R its resistance, and 

E the electromotive force which acts on it, that is, the dilTerence of 

potentials of the surfaces of the metallic electrodes. 

'Then the quantity of electricity on the side from which the 

electromotive force acts will be CE, and the current through the 

substance of the condenser in the direction of the electromotive 

^ ... , E 
force will bo 

If the electrification is supposed to be produced by an electro¬ 

motive force E acting in a circuit of which the condenser forms 

part, and if ~ represents the current in that circuit, then 

Let a battery of electromotive force E^ and resistance r, he 

introduced into this circuit, then 

dq _E,-E_ E dji 

dt " ri dt' 

Hence, at any time /j, 

= (l-.-ir) where y. =|f^- (8) 
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Next, let the cirenit be broken for a time iJgi 

Li. 
= wliere CB. (0) 

Finally, let the Piirfaces of the eoiulenser be eonnected by means 

of a wire whoso resistanee is for a time L 

CJtra 
Ei=Es)=Eoe ^3 where = 

If §3 is the total disoharge tlirougli this wire in the time 

(10) 

Qi — Eq 
cw- 

~ [l—e 'k) e k{l~e n) ■ (H) 
(.K-f rj) (/^ + rg) 

In this way we may find the di.soharge through a wire whioh 

is made to oonnect the surfaoos of a oondon.ser after being oharged 

for a time and then insulated for a time time of 

oharging is sufficient, as it generally is, to dcvelope the whole 

charge, and if the time of discharge is sufficient for a complete 

discharge, the discharge is 

CR^ ->» (12) 
^3 = ^0, ei CH 

* (-/^-f-rj) + 

327.] Ill a condenser of this kind, first charged in any way, next 

discharged through a wire of small resistance, and then insulated, 

no new electrification will appear. In most actual condensers, 

however, we find that after discharge and insulation a new charge 

is gradually developed, of the same kind as the original charge, 

but inferior in intensity. This is called the residual charge. To 

account for it we must admit that the constitution of the dielectric 

medium is different from that which we have just described. We 

shall find, however, that a medium formed of a conglomeration of 

small pieces of different simple media would possess this property. 

Theory of a. Composite Eielectric. 

328.] We shall suppose, for the sake of simplicity, that the 

dielectric consists of a number of plane strata of different materials 

and of area unity, and that the electric forces act in the direction 

of the normal to the strata. 

Let o-j, «2) the thicknesses of the different strata. 

A\, A'o, &c. the resultant electrical force within each stratum. 

PitPn, &c. the current duo to conduction through each stratum. 

/],/<>, &c. the electric displacement. 

7<,, n.,, &c. the total current,, due partly to conduction and partly 

to variation of displacement. 
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fi, f2, &c. the specific resistance referred to unit of volume. 

-STi, iToj &c. the specific inductive capacity. 

^’i, /Ij, &c. the reciprocal of the specific inductive capacity. 

B the electromotive force due to a voltaic battery, placed in 

the part of the circuit leading from the last stratum towards the 

first, which we shall suppose good conductors. 

Q the total quantity of electricity which has passed through this 

part of the circuit up to the time t. 

Bq the resistance of the battery with its connecting wires. 

0-12 the surface-density of electricity on the surface which separates 

the first and second strata. 

Then in the first stratum we have, by Ohm's Law, 

•^1 = (0 
By the theory of electrical displacement, 

Xi=4Tr>^i/i. (2) 

By the definition of the total current, 

— Pi + 
<1/1 

(U (3) 

with similar equations for the other strata, in each of which the 

quantities have the suffi-v belonging to that stratum. 

To determine the surface-density on any stratum, we have an 

equation of the form (4) 

and to determine its variation we have 

(l(T 

(U = Pi-lh- (5) 

By difiorontiating (4) with respect to and equating the result 

to (5), we obtain 

<¥l _ . . <lf2 7^1+ ;^/=A + -;^/ = «,say, (6) 

or, by taking account of (3), 

= &c. = u. (7) 

That is, the total current u is the same in all the strata, and is 

equal to the current through the wire and battery, 

We have also, in virtue of equations (1) and (2), 

ry 

1 dX, 

■j 4 dl 

from which we may find Xj by the inverse operation on jq 

X, = ( 
1 

+ 
1 d. 

4 TT /t di 
-r. u. 

(8) 
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The total electromotive force B is 

E = «i Xj + a., Aj + &c., (10) 

or 

ail equation bctiveen E, the external electromotive force, and the 

extei-iial current. 

If the ratio of r to k is the same in all the strata, the equation 

reduces itself to 
1' (1K 

I'j + — ('^1 ''i + ^'2 'a + (12) 

■which is the case ive have already examined, and in which, as we 

found, no phenomenon of residual charge can take place. 

If there arc n sulistanccs having different ratios of r to k, the 

general equation (II), when cleared of inverse operations, will he 

a linear diflerential equation, of the ?ith order with resjicet to E 

and of the («~ l)th order with respect to n, t being the independent 

variable. 

Troni the form of the equation it is evident that the order of 

the dilfcrcnt strata is indifferent, so that if there arc several strata 

of the same substance wc may supiiosc them united into one 

without altering the phenomena. 

329.] Let us now suppose that at first &c. arc all zero, 

and that an electromotive force E is suddenly made to act, and let 

ns find its instantaneous effect. 

Integrating (8) with respect to <!, wc find 

Q = JV (U = 1 A] (H + A] + const. (13) 

Now, since A\ is always in this case finite, f 2] di must he in- 

sensible when i is insensible, and therefore, since Xj 

zero, the instantaneous effect will be 

is originally 

A'j = 4 TT >i-i Q. (14) 

Hence, by equation (10), 

E = i-ir fli -f- k^ + &c.) Q, (15) 

and if C he the electric capaeit}' of the system as measured in this 

instantaneous way, 

Q 1 
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This is the same result that we should have obtained if wc had 

neglected the conductivity of the strata. 

Let us next suppose that the electromotive force E is continued 

uniform for an indefinitely long time, or till a uniform current of 

conduction equal to7; is established through the system. 

We have then Xj = and therefore 

E = (rj + n f/j, 4- &c.)p. (17) 

If E be the total resistance of the system, 

E 
R-= ~ + '2 ®'2 + (18) 

In this state we have by (2), 

./; = 4 TT X'j 

so that '.3 = (jI 52 4 7r/q h)p- (ID) 

If we now suddenly connect the extreme strata by means of a 

conductor of small resistance, E will be suddenly changed from its 

original value to zero, and a quantity <2 of electricity will pass 

through the conductor. 

To determine Q we observe that if X' be the new value of Xj, 

then by (13), X/= Xj + 4 ttk, Q. (20) 

Ilcncc, by (10), putting E = 0, 

0 =. A"j •+ &c. 4- 4 TT (c!j /i\ 4- «2 + &C') 

or 0 = X-y + -^ Q. 

(21) 

(22) 

E 

Hence Q =~ CE^^ wdiere C is the capacity, as given by equation 

(IG). The instantaneous discharge is therefore equal to the in¬ 

stantaneous charge. 

Let us next suppose the connexion broken immediately after this 

discharge. We shall then have u = 0, so that by equation (8), 

X.^X'e- 'n ' , (23) 

where X' is the initial value after the discharge. 

Hence, at any time t, 

Xi = 4|A-4^^-,C-{e n 

The value of E at any time is therefore 

-•iTT.q/tqC'), 

•Itr 
/(I., 

"f ^^'2 ^*2 ^ * 

4trA'.> 

H &c. 
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and the instantaneous diseharge after any time i is EC. Tin’s is 

called the residual discharge. 

If the ratio of r to h is the same for all the strata, the value of E 

will be reduced to zero. If, however, this ratio is not the same, let 

the terras Ije arranged aecording to the values of this ratio in 

deseending order of magnitude. 

The sum of all the eoeffieients is evidently zero, so that when 

i< = 0, ^ = 0. The eoeffieients are also in descending order of 

magnitude, and so are the expoueutial terms when t is positive, 

lienee, when t is positive, E will be positive, so that the residual 

discharge is always of the same sign as the primary diseharge. 

'When t is indefinitely great all the terras disappear unless any 

of the strata are perfect ins\ilators, in which case is infinite for 

that stratum,' and R is infinite for the whole system, and the final 

value of E is not zero hut 

E = E(,{\-'!iT:a^JcyC). (25) 

Henee, when some, but not all, of the strata are perfeet insidators, 

a residual discharge may be permanently preserved in the system, 

330.] Wo shall next determine the total discharge through a wire 

of resistance kept permanently in connexion with the extreme 

strata of the system, supposing the system first charged by means 

of a long-eoutin\iod application of the electromotive force E. 

At any instant wc have 

E = a-^ Tipi + a.^ r.^po + &e. + 7?^ = 0, (26) 

and also, by (3), = Pi + ^' 

Henee {R + Rq) v = -f &e. (28) 

Integrating with respect to ^ in order to find Q, we get 

{R+Rq) Q (/i'-/i) + (.fi-A) +&e., (29) 

where is the initial, and^/]' the final value of. 

In this case f{ = 0, and = Roir^] - 

Henee (R+R^) + ^&ci,.)-E,CR, (30) 

= - 22 [a, flg ~'O']’ ) 

whore the smnmation is extended to all quantities of this form 

belonging to ever}' pair of strata. 
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It appears from this that Q is always negative, tliat is to say, in 

the opposite diroetion to that of the current employed in ehargiiig 

the systena. 

This investigation shews that a dieleetrie composed of strata of 

different kinds may exhibit the phenomena known as eleetric 

absorption and residual diseharge, although none of the substances 

of which it is made exhibit these phenomena when alone. An 

investigation of the eases in whieh the materials are arranged 

otherwise than in strata would lead to similar results, though 

the ealeulations would be more eomplicated, so that we may 

eonelude that the phenomena of eleetric absorption may be ex¬ 

pected in the case of substances eomposed of parts of different 

kinds, even though these individual parts should be mieroseopieally 

small. 

It hy no means follows that every substanee whieh exhibits this 

phenomenon is so eomposed, for it may indicate a new kind of 

eleetric prolarizatiou of whieh a homogeneous substance may be 

capable, and this in some eases may perhaps resemble eleetro- 

ehemical polarization much more than dieleetrie polarization. 

The object of the investigation is merely to point out the true 

mathematieal character of the so-called electric absorjAion, and to 

shew how fundamentally it differs from the phenomena of heat 

whieh seem at first sight analogous. 

331.] If we take a thick plate of any substanee and heat it 

on one side, so as to produce a flow of heat through it, and if 

we then suddenly cool the heated side to the same temperature 

as the other, and leave the plate to itself, the heated side of the 

plate will again become hotter than the other hy conduction from 

within. 

Now an electrical phenomenon exactly analogous to this can 

be produced, and actually occurs in telegraph oahles, but its mathe¬ 

matieal laws, though exactly agreeing with those of heat, differ 

entirely from those of the stratified condenser. 

In the ease of heat there is true absorption of the heat into 

the substance with the result of making it hot. To produce a truly 

analogous phenomenon in electricity is impossible, but we may 

imitate it in the following way in the form of a lecture-room 

experiment. 

Let A.,, See. be the inner eonduoting surfaces of a series of 

condensers, of whieh &c. are the outer surfaces. 

Let Ai, A.^, &e. be connected in series hy eoniicxions of resist- 
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anee B, and let a current bo passed along this series from left to 

right, 

Let us first suppose the plates i?o, each insulated and 

free from charge. Then the total quantity of electricity on each of 

the plates B must remain zero, and since the electricity on the 

plates A is in each ease equal and opposite to that of the opposed 

surface they will not be electrified, and no alteration of the current 

will be observed. 

But let the plates B he all connected together, or let each be 

connected W’ith the earth. Then, since the potential of is 

positive, while that of the plates B is zero, A^ will be positively 

electrified and 2?j negatively. 

If Pi, &c. are the potentials of the plates A^, A^, See., and C 

the capacity of each, and if we suppose that a quantity of electricity 

equal to Qq passes through the wire on the left, through the 

connexion /\\, and so on, then the quantity which exists on the 

plate Ai is Qq—Qi, and we have 

Similarly §1 — 

and so on. 

But by Ohm’s Law we have 

If w'e suppose the values of C the same for each plate, and those 

of R the same for each wire, we shall have a scries of equations of 

the form 
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Qo-^Qi + Q2=Rc'^f, 

If there arc n quantities of electricity to be determined, and if 

either the total electromotive force, or some other equivalent con¬ 

ditions be g'iven, the differential equation for determining any one 

of them will be linear and of the «th order. 

By an apparatus arranged in this way, Mr, Varley succeeded in 

imitating tlic clectneal action of a cable 12,000 miles long. 

When an electromotive force is made to act along the wire on 

the left hand, the electricity which flows into the system is at first 

principally occupied in charging the different condensers beginning 

with A^, and only a very small fraction of the current appears 

at the right hand till a considerable time has elapsed. If galvano¬ 

meters he jdaced in circuit at &c. they will be aflected 

by the current one after another, the interval betw'cen the times of 

equal indications being greater as we proceed to the right. 

332.] In the case of a telegraph cable the conducting wire is 

separated from conductors outside by a C3']indrical slicath of gutta- 

pereba, or other insulating' material. Each portion of the cable 

thus becomes a condenser, the outer surface of which is always at 

potential zero. Hence, in a given jiortion of tlic cable, tlie quantity 

of free electricity at the surface of the conducting wire is equal 

to the product of the potential into the capacity of the portion of 

the cable considered as a condenser. 

If ffj, flg are the outer and inner radii of tlic insulating sheath, 

and if K is its spcciflc dielectric capacity, the capacity of unit of 

length of the cable is, by Art. 12G, 

(1) 
2 log 

a.. 

Let be the potential at any point of the wire, which we may 

consider as the same at every part of the same section. 

Let (3 be tire total quantity of electricity which has passed 

through that section since the beginning of the current. Then the 

quantity which at the time t exists between sections at a: and at 

a;-)-Bar, is 

<2- 
or 

dx 
bx, 

and this is, by what we have said, equal to evix. 
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Hence cv = 
(lx 

(2) 

Again, the olcctromotivo force at any section is — , and by 

Olim'sLaw, m 

wliero k is the resistance of unit of length of the conductor, and 

(iq, 
is the strength of the current. Eliminating Q between (2) and 

ill 
(3), we find j do _ d-v 

dl ^ ilx^-' 
(4) 

This is the partial dilTcrcntial equation which must be solved 

in order to obtain the potential at any instant at any point of the 

cable. It is identical with that which Fourier gives to determine 

the temperature at any point of a stratum through which heat 

is flowing in a direction normal to the stratum. In the ease of 

heat c represents the capacity of unit of volume, or what Fourier 

calls CJ), and i represents the reciprocal of the conductivity. 

If the sheath is not a perfect insulator, and if is the resist¬ 

ance of unit of length of the sheath to conduction through it in a 

radial direction, then if is the specific resistance of the insulating 

material, 

A=2/.,1«R^' (5) 

The equation (2) will no longer be true, for the electricity is 

expended not only in charging the wire to the extent represented 

V 
hy cv, but in escaping at a rate represented I>y • Hence the rate 

of expenditure of electricity will be ^ 

d~Q _ ^ 

dx (it ~ (U 
(6) 

whence, by comparison with (3), we get 

, dv d"o k 

(It icl ^ ^ 

and this is the equation of conduction of heat in a rod or ring 

as given by Fourier *. 

333.] If we had supposed that a body when raised to a high 

potential becomes electrified throughout its substance as if elec¬ 

tricity were compressed into it, we should have arrived at equa¬ 

tions of this very form. It is remarkahle that Ohm himself, 

* Tktorie de la ChaUiir, art, lOfl. 
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mislocl by the nnalog'y between elcetrieity and heat, entertained 

an opinion of tin's kind, and was thus, by moans of an erroneous 

opinion, led to emjdoy the equations of Fourier to express the 

true laws of eonduetion of elcetrieity tlirongh a long wire,, long 

l)eforc the real reason of the appropriateness of these equations had 

boon suspected. 

Mechamcal lUuslrntlon of ihe l^ropcrtic,t of a Dielectric, 

334.] Five tul)os of equal sectional area A, B, (7, D and B arc 

arrang(’d in circuit as in the figure, 

y/, B, C and D are wertieal and equal, 

and B is horizontal, 

The lower halves of A, B, C, D 

are filled with mcreiiry, their upper 

halves and the horizontal tube 7’are 

filled with water. 

A tube with n stopeoek Q con¬ 

nects the lower part of A and B 

witli that of C and ]), and a 2n,ston 

]’ i.s made to .slide in the horizontal 

tube. 

Let us liegiii by supposing that 

the level of the mercury in the four 

tubes is the .same, and that it is 

indicated by //„, 7?,,) D„, that 

the piston is at B„, and that the 

stopcock Q is shut. 

Now let the pi.ston he moved from P,, to B^, a distance a. Then, 

since t he .sections of all the tubes are equal, the level of the mereury 

ill A and 6'will rise a distance a, or to y/, and C\, ami the mereiiiy 

in B and D will sink an equal distance a, or to Ttj and 2>j. 

The diireronce of pre.s,siiro on the two sides of the piston will 

be rcpre.sented by la. 

This arrangement may serve to reiiresent the .state of a dieleetrie 

acted on by .an eloetromotive force •jr/. 

The cxees.s of w’nter in the tube D may be taken to represent 

a positive charge of elcetrieity on one side of the dielectric, and the 

excess of mercuiy in the tube A may reiiresent the negative charge 

on the other .side. The exee.ss of pressure in the tube B on the 

side of the pi.ston next I) will then repro.sent the exees.s of potential 

on t he positive side of the dieleetrie. 

von. I. e e 
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If tlio ])i.ston is free to move it will move back to and be 

in equilibrium tlicre. This represents the eoniplcte discharge of 

the dieleetrie. 

During the discharge there is a rev'ersed motion of the liquids 

thronghoiit the whole tube, and this represents that oliange of 

electric displaceincnt which wo liave supposed to take place in a 

dielectric, 

I have supposed every part of the system of tubes fdlcd with 

ineompressiblo liqnid.s, in order to represent the ])ro])orty of all 

clcetrie displacement that there is no real aceiimiilation of elec¬ 

tricity at any place. 

Let ns now consider the ctlbet of opening the stopcock Q while 

the ])iston P i.s at . 

The level of and will remain nnehanged, bat that of B and 

C will become the same, and will coincide with /I,, and C'„. 

The opening of the .s'(o])cock Q, corresponds to the existence of 

a part of the dielectric which has a sligdit conducting power, but 

which docs not extend through the whole dielectric so as to form 

an ojien channel. 

The charges on the opposite sides of the dielectric remain in¬ 

sulated, blit their diflcrence of potential diniinishes. 

In fact, t he difrerence of pressure on the two sides of the pi.ston 

sinks from -la io 'la during the pas.sage of the fluid through Q. 

If we now shut, the stopcock Q and allow the jiiston P to move 

freely, it will come to equilibrium at a point 7h, mid the discharge 

will be ajipareiilly only half of the charge. 

The level of the mercury in A and B will be above its 

original level, and the level in the tubes C and I) will be 

below its original level. This is indicated by the levels 

If the piston is now fixed and the stopcock opened, mercury will 

flow from Bio C till the level in the two tubes is again at B^^ and 

C^^. There will then be a difference of pressure = a on the two 

sido.s of the piston P. If the stopcock is then closetl and the piston 

P left free to move, it will again come to cquilihriura at a point Py, 

half way between 7L and This corresponds to the residual 

charge which is observed when a charged dielectric is first dis¬ 

charged and then left to itself. It gradually recovers part of its 

charg-c, and if this is again discharged a third charge is formed, the 

succc.ssive charges diminishing in ({iiantity. In the case of the 

illustrative experiment each charge is half of the preceding, and the 
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discharges, which are &c. of the original charge, form a scries 

whose sum is equal to the original eh.arge. 

If, instead of oj)eiuug and elosingthe stopcoek, we had allowed it 

to remain nearly, hut not (|uite, closed during the whole experiment, 

we should have had a case resembling that of the electrifiention of a 

dielectric which is a perfect insulator and yet exhibits the phe- 

nonionoii called ‘ electric absorption/ 

To represent the case in which there is true conduction through 

the dielectric we must cither make the piston leak}', or wc must 

establish a communication between the top of the tube A and the 

top of the tube J). 

In this way we may construct a mechanical illustration of the 

properties of a dielectric of any kind, in which the two electricities 

arc represented by two real fluids’, and the electric potential is 

represented by fluid pressure. Charge and discharge are repre¬ 

sented by the motion of the piston P, and electromotive force hy 

the resultant force ou the ])iston. 

c c 3 
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THE MEASUliEMJJNT OK JCLECTinC ItE.SLSTA NX’E. 

335. ] In the present slate of eleetrieal seienee, the (hjterminatlon 

of the eleetrie resislanee of a eoiuluetor may he eoinsiilered as the 

cardinal operation in elcetrieity, in the same sen.se that the deter¬ 

mination of weig'ht is the cardinal operation in eliemistry. 

The reason of tliis is that the determination in ah.soUito measure 

of other eleetrieal magnitudes, sneli as quantities of eleetrieit}", 

eleetromotive forces, currents, &c., requires in each ease a com¬ 

plicated scries of operalion.s, iiivolvinff {generally ohservations of 

time, measurcmont.s of distances, and determinations of moments 

of inertia, and these operation.s, or at least some of them, nni.st 

ho repeated for eveiy new determination, boeaii.^e it is impossihle 

to jn'cserve a unit of electricity, or of electromotive force, or of 

current, iu aii unelmn<^eable state, so as to he available for direct 

comparison. 

But when the electric resistance of a properly shaped conductor 

of a properly chosen material has been once determined, it is found 

that it alwaj's remains the same for the same temperature, so that 

the eoiuluetor may he used as a standard of resistance, with which 

that of other conductors can he compared, and the eompari.son of 

two resistances is an operation which admits of extreme accuracy. 

When the unit of electrical resistance has been (iscd on, material 

copies of this unit, iu the form of ‘ llcsistance Coils,’ arc prepared 

for the use of electricians, so that in every part of the world 

electrical rcsi.stances may he expressed in terms of the same unit. 

These unit resistance coils arc at present the only examples of 

material electric standards which can he preserved, copied, and used 

for the purpose of measurement. Measures of electrical capacity, 

which are also of great importance, arc still defective, on account 

of the disturbing influence of electric absorption. 

336. ] The unit of resistance may he an entirely arbitrary one, 

as in the case of Jacobi’s Etnloii, which was a certain copper 

wire of 22,4932 grammes weight, 7,(510/o metres length, and 0.(507 
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inilHiiietres diameter. Copic.s of thi.s have been made by Leyser of 

Leipsio-, and arc to be found in diffcrcut places, 

Ac‘cor(linf>' to another method the unit may be defined ns the 

resi.stanee of a portion of a detinitc substance of dellnitc dimension.s. 

Tlius, Siemens'’ unit is defined a.s the resistance of n column of 

mercury of one metre long, and one square millimetre section, at 

the teinpeniture ()°C. 

337.] Innally, the unit may he defined with referenee to the 

electrostatic or the electromagnetic system of units. In ])ractiee 

the olectromagnetle system is used in all telegraphic operations, 

and therefore the only systematic units actually in use are those 

of this system. 

In. the elcctromagnetie system, as we shall shew at the proper 

place, a resistance is a quantity homogeneous with a -velocity, and 

may therefore bo expressed as a velocity. See Art. ti28. 

338,1 The first actual measurements on this sy'stem were made 

by' Weber, who employed as his unit one millimetre per second. 

Sir W, Thomson afterwards lused one foot per second as a unit, 

but a large number of electricians have now agreed to use the 

unit of the British Association, which professes to represent a 

resistance which, cxpre.ssed as a velocity, is ten millions of metres 

per second. The magnitude of this unit is more coiivem'cnt than 

that of Weber’s unit, which is too small. It is sometimes refeired 

to as the B, A. unit, but in order to connect it with the name of 

the discoverer of the laws of resistance, it is called the Ohm. 

339,] To recollect its value in absolute measure it is useful 

to know that ten millions of metres is professedly' the distance 

from the pole to the equator, measured along the meridian of Paris. 

A body', therefore, which in one second travels along a mciidian 

from the pole to the equator would have a velocity which, on the 

electromagnetic sy'stem, is professedly represented by an Ohm. 

I say professedly', hecanse, if more accurate researches should 

prove that the Ohm, a.s constructed from the British Association’s 

material standards, is not really represented by this velocity, elec¬ 

tricians would not alter their standards, hut woidd apply a cor¬ 

rection. In the .same way the metre is professedly one ten-millionth 

of a certain quadnintal arc, but though this is found not to he 

exactly true, the length of the metre has not lecn altered, but the 

dimensions of the earth are expressed by a less simple number. 

According to the sy'stem of the British Association, the absolute 

value of the unit is on<jiuull^ chosen so as to represent as nearly 
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as pos.sible a ([iiautity derived fVijm the eleetroiiuiyiietie ahsoliite 

sy-stcM n. 

34-().] 'When a material unit repi-eseutiiii^- thi.s ah.straet quantity 

has been inackq other standard.^ are coustrueted l)y eopyin;^ this unit, 

a process capable of extreme aeeiiruoy—of‘ nuieb ynailev accuracy 

than, for instance, the copying oC foot-rules from a .standard foot. 

These copies, made of the ino.st jiermanent materials, an^ dis- 

trihuh'd over all 2)arts of the world, .so that it is Tiot likely that 

any difliculty will he found in obtaining copi(>.s of thuin if the 

original standards should be lost. 

]3iit such units as that of Siemens ean without very great 

labour be rceonstrueted with cou.siderablc aeenrac.y, so that as the 

relation of the Ohm to Siemens unit is known, the Ohm can he 

reprodiicctl even without having a standard to cojiy, though the 

labour is much greater and the accuracy much lo.ss than by the 

finally, the Ohm may be reproduced 

by the electromagnetic method by which 

it was originally determined. This method, 

which is coiisiderahly more laborious than 

the determination of a foot from the seconds 

pendnhnn, is probably inferior in accuracy 

to that la.st mentioned. On the other hand, 

the determination of the olcotromagnetie 

unit in terms of the Ohm with an amount 

of aeciiraey corresponding to the ])rogress 

of electrical scionec, is a most imi)ortaiit 

plu'sieal research and well worthy of being 

repi'atcd. 

The actual resistance coils constructed 

to rcpi'C'sent the Ohm were made of an 

alloy of two parts of silver and one of j)la- 

tininn in the form of wires from .5 milli¬ 

metres to .8 millimetres diameter, and from 

one to two metres in length. These wires 

were soldered to .stout copper electrodes. 

The wire itself was cov(!ved with two hiyev.s 

of .silk, iinhedded in solid paratlin, and enclosed in a thin brass 

ea.se, so that it can he ea.sily brought to a teni])cratnn! at which 

it.s re.si.stanco is accurately one Ohm. This teinpcratnre is marked 

on the insulating supjiort of the coil. (See Fig. 27.) 

method of copying, 
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On l/ie Forms of lleslsLance Coils. 

34.1.] A Resistance Coil is a conductoi’ capable of being' easily 

placed in the voltaic circuit, so as to introduce into the circuit 

a known resistance. 

The electrodes or ends of the coil must bo sncli that no iipprc- 

ciahlc error may arise from the mode of making the connexions. 

For resistances of eoiisidcrahle magnitude it is sullicient that the 

electrodes should be made of stout cojiiter wire or rod well amal¬ 

gamated with mercury at the ends., and that the ends should be 

inado to prc.ss on flat amalgamated copper surfaces placed in mercury 

cups. 

For very great resistances it i.s sufficient that the electrodes 

should he thick pieces of brass, and that the connexions should 

ho made by inserting a wedge of bras.s or copper into the interval 

between them. This method is found very convenient. 

The resistance coil itself consists of a wire well covered with 

.silk, the ends of which are soldered permanently to the elec¬ 

trodes. 

The coil must be so arranged that its temperature may be easily 

observed. For this purpose the wire is coiled on a tube and 

covered with another tube, so that it may be placed in a vessel 

of water, and that the water may have access to the inside and the 

outside of the coil. 

To avoid the electromagnetic elfeets of the current in the coil 

the wire is first doubled back on itself and then coiled on the tubc^ 

so that at every part of the coil there arc equal and opposite 

currents in the adjacent parts of the wire. 

When it is desired to keep two coils at the same temperature the 

wires are .sometimes jilaced side by side and coiled up together. 

This method i.s especially useful when it is more imi)ortant to 

secure equality of resistance than to know the absolute value of 

the resistance, as in the ease of the equal arms of Wheatstone’s 

Bridge, (Art. 317). 

'When measurements of resistance were first attempted, a resist¬ 

ance coil, consisting of an uncovered wire coiled in a spiral groove 

round a cylinder of insulating material, was much used. It was 

called a Rheostat, The accuracy with which it was found possible 

to compare resistancc.s was soon found to be inconsistent with the 

use of any instrument in which the contacts are not more perfect 

than can be obtained in the rheostat. The rheostat, however, is 
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still used for aJinstiug- the i-csistaiiee where neeiivatc ineasureinent is 

not required. 

Kosistance coils are generally made of tho.se metals whoso resist- 

auec is greatest ami which vary least with teni])eraturo. (Jennan 

silver fuliils these eoiulitioii.s very well, but .some speciiuciis arc 

Ibuiid to change their propertie.s during the lapse of years. Ileiiee 

for standard coils, several pure metals, and also au alloy of ])latinnni 

and silver, have been employed, and the relative resistance of these 

during several years has been found eonstaut up to the limits of 

modern accuracy. 

34.2.] For very great resistances, such as several lulllions of 

Ohms, the wire must be either vc-ry long or very thin, :nul the 

comstruction of the coil is expensive and difficult, lienee tellnrium 

and selenium have been proposed as materials for construetiiig 

standards of great resistance. A very ing(;nions and easy method 

of construction has been lately proposed by Phillips*. On a piece 

of ebonite or ground gla.ss a fine peneil-line is drawn. The ends 

of this fdameut of plumbago are connected to metallic electrodes, 

and the whole is then covered with imsulating varnish. If it 

should be fouiid that the resistance of such a pencil-line remains 

constant, this will be the best method of obtaining a resistance of 

several millions of Ohms*. 

343.] There arc various arrangements by which resistance eoils 

may beeasily introduced into a circuit. 

For instance, a series of eoils of whieli the rcsi.stance.s are 1, 2, 

■1, 8, Hi, &c., arranged according to the powers of 2, may be placed 

in a box in series. 

iG a 4 / 

Fig. 28. 

The electrodes consist of stout brass plates, so arranged on the 

outside of the box that by inserting a brass plug or wedge between 

PhU, Mag., July, 1870. 
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two of them iis a shunt, the resistance of tlie cinTes|)oii(liiiii' coil 

may be put out of the circuit. This arraiigeinunt was iutrodiiced 

hy Sieinous. 

Eaeli interval betwooa the electrodes is marked with the resist¬ 

ance of the eorres])ouding coil, so that if we wish to make the 

resistance box ccpial to 1(17 we express 1(17 in the binary scale as 

(M + 32 + 8 4-2 4-1 or 1101011. We then take the 2)lug's out 

of the holes corresponding to ti l, 32, 8, 2 and 1, and leave the 

pings in 10 and 4, 

This method, founded on the binary scale, i.s that in which the 

smallest number of separate coils is needed, and it is also that 

which can be most readily tested. For if we have, another coil 

C([ual to 1 we can test the equality of 1 and l', then that of 1 -t l' 

and 2, then that of 1 4- l'4-2 and 1, and so on. 

The only disadvantage of the arrangement is tliat it requires 

a familiarity with the binary scale of notation, which is not 

generally possessed by those accustomed to exf)rcs.s every number 

in the decimal scale, 

344.] A box of resistance coils may be arranged in n different 

way for the purpose of mea¬ 

suring eonduetivities instead of 

re.si.stauees. 

The coils are placed so that 

one end of each is eonnoeted 

with a long thick piece of 

metal which forms one elec¬ 

trode of tlie box, and tlie other 

end is connected witli a stout i)iecc of brass plate as in the former 

ease. 

The other electrode of tlie box is a long brass ])late, sueli that 

by inserting brass plugs between it and the electrode.s of tlie coils 

it may be connected to the first electrode through any given sot of 

coils. The conductivity of the box is then the sum of the con¬ 

ductivities of the coils. 

In the figure, in which the resistances of the coils are 1, 2, -J, &e., 

and the plugs are inserted at 2 and 8, tlie coiiduetivity of tlie 

box is i + ri = and the resistance of tlie box is therefore g 

or 1.(5. 

This method of combining resistance coils for the measurement 

of fractional resistances was introduced by Sir W. Tlioinson under 

the name of the method of multiple ares. See Art, 27(5. 
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i)n the Ciii/ipaj'isuii of Jiesistnnocn, 

345. ] If E i.s the clcclromotive force of a hiittciy, and It the 

rcsrstanc'c of llie buttery and its conn(!.\;ioii&', including;’tlic ^'alvaii- 

oineter used in nu‘u,snriu" tlic current, and if tlic strenetli of tlic 

eiirront i.s / wlieii tin; l)attory connexions arc elo.se(l, and f, 
wlien additional resistances a, arc introduced into the circuit, 

then, hy Olnn’s Ijaw, 

J'j = IR — /, (A* -f- /'|) = {R r^). 
Eliniinatiaj^' E, the electromotive force of the battery, and R 

the resistance of the battery and its connexions, we get Olnn’s 

fornnila __ (/_ [^) /, 

r,- 
This method requires a ineasnreineut of the ratios of /, i, and 

and this iinplie.s a galvanouieter graduated for absolute inca- 

.snrcineiits. 

If the resistances r, and arc equal, then f and are equal, 

and we can test the orjiialit}' of currents by a galvanometer wliieli 

is not eajiublc of dcterininiag their ratios. 

But this i.s rather to be taken as an example of a faulty niethed 

than as a practical method of deterniiuiiig resistance. The electro¬ 

motive force. E cannot be inuintuined rigorously constant, and the 

internal resistance of the battery is also exceedingly variable, .so 

that any methods in which these arc assumed to be even for a short 

time eonstiint are not to be depended on. 

346. ] The comparison of resistances can be made with extreme 

c 

Fiy. liO, 

accuracy by either of two methods, in which the result is in¬ 

dependent of variations of R and J'J. 
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Tile firrit uf’these metliods depends on the use of the dillereiitiul 

galvanometer, an instrument in whieh there are two eoils, the 

eiirreiits in which are independent of each other, so that when 

the eiinents are made to flow in opposite direetions they net in 

opposite directions on the needle, and when the ratio of these 

cnirenls is that' of n to n they have no resultant effect on the 

galvanometer needle. 

Let/,, T., he the currents through the two coils of the galvan¬ 

ometer, fhen the deflexion of the needle may he written 

0 = m 7j — n 

Now let the hattery current 7 he divided hetween the coils of 

the galvanometer, and let resistance.s /I and Ji he introduced info 

the first and .second coils re.s])eetively. Let the remainder of the 

rc.si.stanee of their eoils and their connexions he a and (i respect¬ 

ively, and let the resisfiiiice of the battery and its connexions 

hefrwei'n C and U he r, and its electromotive force Ji. 
Then we find, hy Ohm's Law, for the difference of potentials 

hetween 6'and J9, 

0-1) = 7, {J+a) = f., {B + ft) = li-lr, 

and since l^-\-1., — 7, 

A = E 7^ + /3 
1) 

7.-7. . 7= E 
7 -f a -f 7^ -f /d 

1) 

where 1) = (.Z + a) (7f-f/5i) 4^’(4d-a-f-7j-f/3). 

The deflexion of the galvanometer needle is therefore, 

j) «(//+a)}, 

and if there is no observable deflexion, then we know that the 

rpiantity enclo.sed in hrackels cannot differ from zero hy more than 

a certain small quantity, depending on the power of the battery, 

the snilahleness of the arrangement, the dclieney of the galvan¬ 

ometer, and 'the accuracy of the oh.server. 

Suppose that E has been adjusted so that there is no apparent 

deflexion. 

Now let another conduetor A' he snlastitiited for A, and k't 

A' he adjirsted till there is no ap])arent deflexion. Tlieii evidently' 

to a first a|iproximation A' = A. 
To ascertain the degree of acaairacy of this estimate, let the 

alt(‘red qiiantiti(‘.s in the second oh.servati(ai he aecented, then 
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VL — {A +a) =-g^> 

w{B + fi)-n{A'-i a) = 6'. 

/) 1/ 
Iloncc n{A"~A) = <5 — 

h Jj 

If 0 and 0, iiisteud of heiii"- both apparently zero, had hecoi only 

observed to be erjual, tlien, unless we also con Id assort that 7f = E', 
the ri<>-lit-haud side of the ecjuation might not be zero. In fact, 

the method would be a nier(3 modification of that already dcserihed. 

The merit of the method consists in the fact that the thing; 

observed is the absence of any deflexion, or in other words, the 

method is a Null nicthocl, one in whieh the non-existeneo of a force 

is asserted from an observation in wliich the force, if it had been 

dilfercnt from zero by more than a certain small amount, would 

have produced an observable efleet. 

Null methods are of great value where the}' can be employed, but 

they can only be em])l(jyed where we cun cause two ecpial and 

opposite (piuntitics of the same kind to enter into the experiment 

together. 

In the case before us both 0 and S' are quantities too small to he 

observed, and therefore any change in the value of E will not affect 

the accuracy of the result. 

The actual degree of accuracy of this method might be as(.-er- 

tained by taking a number of ob.ser vat ions in each of which A' 

is separately adju.sted, and comparing the result of each observation 

with the mean of the whole .series. 

But by imtting A' out of adjustment by a known (piantity, a.s, 

for instanee, by ins(;rtiiig at A or at B an additional re.sistanee 

equal to a lumdredtli part of A or of B, and then ob,serving 

the resulting deviation of the galvanometer needle, we can e.stimat(? 

the number of degrees con'c.sponding to an error of one per cent. 

To find the actual degree of precision we must estimate the smallest 

deflexion which eoiild not escape observat ion, and compare it with 

the deflexion due to an error of one per cent. 

*If the comparison is to be made between A and /i, and if the 

jaisitions of A and B arc exchanged, then the second equation 

becomes 

* 'J’iiis invcstig.ition i-f t.ikeii from W'uber'u treatwo mi Galviiiiumctry. Gutliiujci 
Tmnsiicliunf, x. p. 115. 
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w(.-l + ^)-7i (Ji + a) = ^ ?/, 

(,« + ,;) (7/-_,/) = 8 
/> .tJ 

wliena* 

If ;// aiic] y, // aiul li, a and /3 are approximately ofjual, then 

2 j,j + “ + 2 /■) (o — ^i'), 

11 era f5 —S' ina}’’ Le taken to lie tlio smallest observable deflexion 

of the "■alvanoineter. 

If the "alvnnometor wire be made loiig'or and lliinner, relaiiiiiig- 

the same total mass, then ?/ will vary as the leiif^th of the wire 

and a as Ihescpiare of the lenf’ tli, Iloiice there will he a minimum 

1 p (-^I + ('I "t a + 2 r) 
value ot when 

71 

a = 4(../+r).U^,-2^,-, j- 
If we suppose' r, the battery resistaiiec', small eompared with //, 

this ‘ilves a = A A ; 

or, t/ic /‘c’.slx/rii/ce of each coil o/' the f/ali'nJiO))iclc7' sltonhl he loir-l/iird 
of the rcAniauce to he 77)caion-e(l, 

Wc then find 

If we allow the current to flow thron^-h one only of the ooils 

of the g’alvanonielor, and if the deflexion thereby ]irodneed is A 

(supposing the dellexion strictly ])roportional to the defleeting 

force), then 

A 
771B 

y/ + a + r 
3 7jJ^ 
■1 A 

if r = n and a = - A. 

Hence 
Ji—A _ 2 S—S' 

A “3 a"' 

In the difTerential galvanometer two eurrents are made to 

produce equal and opposite effeets on the suspended needle. The 

force with which cither current acts on the needle depends not 

only on the .strength of the current, hut on the position of the 

windings of the wire with respect to the needle. Hence, nnless 

the coil is very carefully wound, the ratio of 771 to n may change 

when the position of the needle is changed, and thoreforo it i.s 

necessary to determine thi.s ratio_ by jiroper methods during each 
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coiirsc; of experiments if uuy alteration of llio position of the needle 

IS suspeeted. 

The other null method^ in whieh Wheatstone’s dWdo'e is used, 

recjiiiros only an ordinary ^galvanometer, and the ohsc'rved zero 

dellexion of the needle is due, not to the opposiiifr notion of two 

currents, hnt to the non-existence of a current in the wire. lienee. 

\vc have not morel}" a null dellexion, hnt a null current as tin? 

phenomenon observed, iunl no errors can ari.se from want ol' 

regularity or change of any kind in the coils of the galvanometer. 

The galvauoineter is only required to he s'emsitive enough to detect 

the exi.steaee and direction of a current, without in any way 

determining' its value or comparing its value with that of another 

current. 

347.d Wheat.stonc’.s ]3ridge consi.sts o.s.sentially of six conductors 

^ eonneeting four points. An cleetroinotive 

force* E i.s made to act hotween two of the 

])oiuts hy ineains of a voltaic battery in¬ 

troduced between 71 and C. Tlie eurrent 

between the other two points 0 and A is 

measured by a galvanometer. 

Under certain eircunistanecs this eurrent 

becomes zero. The conductors ]iC and OA 
are then said to be conjiuiiilc to each other, 

whieh implies a eertaui relation between tin? resistances of the 

other four conductors, and this relation is made n.se of in incasnring 

resistances. 

If the current in OA is zero, the potential at 0 must he equal 

to that at y/. Now when we know the potentials at B and C we 

can determine those at 0 and A by the rule given at Art. 27^, 
provided there is no current in OA, 

.. By+0/3 , m^Cc 
f3 + y 

whence the condition is /y/3 = vy, 

where h, c, y are the resistances in CA, AB, BO and OC re¬ 

spectively. 

To determine the degree of accuracy attainalde by this method 

wo must ascertain the strength of the current in OA when this 

condition is not fulfilled exactly. 

Lot A, B, C and O bo the four points. Lot the currents along 

7iC, CA and AB bo .r, 1/ and c, and the rc.sistaupes of those 
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coiuluctoi’s (ly b anil c. Lot tlio currents along OA, OB and OC be 

T), C and tlie resistances a, and y. Ivot an electromotive force 

]i act along BC\ Rcqiiii’cd the current £ along OJ. 

Let the potentials at the points A, B, C and 0 he denoted 

by tlie symbols A, B, C and 0. The equations of conduction arc 

ax = B—C + T', a £ = 0 — J, 

b)/ = C — A, j3r) = 0 — B, 

cz = A—B, y( — 0—C 

with the equations of continuity 

^+i/-z = 0, 
r] z — X = 0, 

= 0. 

H3" considering the system as nrade up of three cironits OBU, 
OCA and OAJi in wliicli the currents arc z respectively, and 

applying Kirchholf’s rule to each cycle, wc climiniite the values 

of the potentials 0, A, B, C, and the currents jj, obtain the 

following' equations for a‘, y and z, 

{iiA^ + y)x~yi/ = B, 

— yx q-((i + y+a);y —=0, 

— I3x —a// + (c + a = 0, 

Hence, if wc put 

B = a + j3+ y —y -13 

— y i+y-fa — a 

-/i c + a + ^ 

wc find f ^ {b^-cy), 

E 
and X ~ {{b+y)(c + l3) + a{b\-ni-^-\-y)}. 

348.] The value of B may be expressed in the symmetrical form, 

B = (tbc + bp(l3 + y) + ca{Y + a)+ab(a + (3)-\-(a + b -y <!){^y + ya + aj!i) 
or, since we suppose the battery in the conductor a and the 

galvanometer in a, we may put B the battery resistance for a and 

G the galvanometer rcsi.stance for a. Wc then find 

Z) = BG{b + c+p+y) + B(b + y){c+l^) 
+ r/(i5 + c) (i3 + y) + be (/3 ■]-■/) +13y (b + c). 

If the electromotive force B were made to act along OA, the 

resistance of OA being still a, and if the galvanometer were placed 
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ill JiC, tlio rcsistinu'c of BC lii’ing still a, ilifii the value of ]) 
would remain tlic same, and the eiirrciit in 7i6'due to the cleotro- 

motive forco E aetiii"- alonp;- OA would be equal to the eurrent 

in OA due to the (dectroniotive force E aeiing- in JiC, 

But il' wo simply (liseoniieot the battery and the g-alvanometci’j 

and without altering- their respective reeistuuecs conneet the battery 

to 0 and A and the galvanometer to 7/ and then in the value of 

J) we must exchange the values of B and C. If 7/ bo the value 

of 7) after this cxehange, wo find 

.])'-]}= (r;-70 {(''v-tc)(/3+v)-(/'y + y)(/3-| 0)}, 

Let us .snp]io.se that the resistaiiee of the galvanometer is greater 

than that of the battery. 

Let us also sujipose that in its original position the galvanometer 

connects the junction of the two eonductors of least resistaiiee /3, y 
with the junction of the two conductors of greatest resistance d, c, 
oi-j in other wordsj we shall suppose that if the quantities d, c\ y, ft 
are arranged in order cf magnitude, h and c stand together, and 

y and ^ .stand together. Ilenoo the quantities fj — ft and c—y arc 

of the same sign, so that tlicir product is jiositivo, and tbercforc 

jy—]) is of the .same sig-ii as B— G, 
If therefore the galvanometer is made to connect the junction of 

the two greatest re.si.stances with that of the two least, and if 

the galvanometer resistance is greater than that of the battery, 

then the value of Ji will be Ics.s, and the value of the deflexion 

of the galvanometer greater, than if the connexions arc exchanged. 

The rule therefore for obtaining the greatest galvanometer de¬ 

flexion ill a given system is as follows ; 

Of the two resistances, that of the battery and that of the 

galvanometer, conneet the greater resistance so as to join the two 

greatest to the two least of the four other resistances. 

349.] "We shall suppose that we have to determine the ratio of 

the resistances of the coiuhietors AB and A C, and that this is to be 

done by finding a point 0 on the conductor HOC, such that when 

the points A and 0 arc conneeted hy a wire, in the course of which 

a gudvaiiometer is inserted, no sensible deflexion of the galvano¬ 

meter needle occurs when the battery is made to act between B 

and G. 
The eonduetor BOC may be sujiposcd to be a wire of uniform 

resistance divided into equal parts, so that the ratio of the rcsist- 

anoes of BO and 00 may be read off at oiici'. 
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Instead of the whole eonduetor being a iinirorm wircj we may 

make the part near 0 of sucli a wire, and tlie paris on eaeh side 

may be coils of any tbrnij the resistance of whieli is accurately 

known, 

We shall now use a different nolation instead of the symmetrical 

notation with which we commenced. 

Let the whole re.sistnnee ^)^ JhIC be J^, 

Let c = wJi and b =. {\ — w) I\, 

Let the whole resistance oi JiOC be S, 

Let = 5/ *S' and y = (1 — S, 

The value of u is read oli'directlyj and that of w is deduced from 

it when there is no sensible deviation of the galvanometer. 

Let the resistance of the batteiw and its connexions be B, and 

that of the galvanometer and its connexion.s G. 

We find ns before 

JJ= G{B]i+BSUS] + m (1 - m)^{B -p ^) + « (i -u)S:^(B + B) 

+ (w + — 2 vi u) Bits, 

and if £ is the current in the galvanometer wire 

. Bits ^ 
i= jj-i/i-w)' 

In order to obhiin the most accurate results we must make the 

deviation of the needle as great as possible compared with the value 

of («—?«). This may be done by properly' elioosiiig the dimensions 

of tlie g-alvanometcr and the standard resistance wire. 

It will be shewiij wlien we come to Galvanomctryj Ai't, 710, 

that wlicn the form of a galvanometer wire is changed while 

its mass remains constant, tlic deviation of the needle for unit 

current is proportional to the length, but tlic resistance increases 

as the scpiarc of tlic lengtli. Hence tlio maximum deflexion is 

sliewn to occur when tlie resistance of the galvanometer wire is 

equal to the constant resistance of the rest of tlie circuit. 

In the present ease, if S is tlie deviation, 

8 = eJ'G^, 

where C is some constant, and G is the galvanometer resistance 

which varies as tlic square of tlic length of tlic wire. Hence wo 

find tliat in the value of 1), when 8 is a maximum, tlic part 

involving G must lie made equal to the rest of tlie expression. 

II' wc also put m = Ji, as is the case if we have made a correct 

observation, we find the best value of G to he 

G — It—It) {lt-{-S), 
I) d VOL, I. 
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This result is easily obtained by eon.sidoring- the resistance from 

A to 0 throng'll the system, remembering that BC, being eonjugate 

to AO, hns no efleet on this re.sistance. 

In the same way wo should find lliat if the total area of the 

acting surfaces of tlie battery i.s given, tlic mo.st advantageous 

arrangement of the battery is when 

B = 
JiS 

B+S' 

Finally, wc shall determine the value of S such that a given 

change in the value of n may produce the greatest galvanometer 

deflexion. By differentiating the expression for f ivc find 

02 _ /p I _^_\ 

If wc have a great many determinations of resistance to make 

in which the actual resistance has nearly the same value, then it 

may he worlli while to prepare a galvanometer and a battery for 

this purpose. In this ease we find that the best arrangement is 

S = B, B=\B, r; = 2«(1-h)7?, 

and if v = G = \B. 

On ihe Use of jr/tee/s/n?ic\s Bridge. 

350.] Wc have already explained the general theory of Wheat- 

stonc^s Bridge, wc shall now comsidcr some of its applications. 

The comparison which can be effectcd with the greatest exact¬ 

ness is that of two equal resistanoes. 
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Let us suppose tliat /3 is a standard resistance eoil, and tliat 

we wisli to adjust y to be equal in rosistaiiee to (3, 
Two otlier eoils, b and c, arc ])rcpai’ed wliioli are equal or nearly 

ccpial to each otlier, and the four coils are placed witli their electrodes 

in niorciiry enps so that the enrreut of the battery is divided 

between two hranehes, one consistin^f of [3 and y and the other 

of b and a. The coils b and c are ecnnected by a wire PJi, as 

uniform in its resistiince as ])ossil)le, and furnished with a sealo 

of equal jiarts. 

The galvanometer wire connects the junction of /3 and y witli 

a point Q of the wire P/f, and the jioiiit of contact at Q is made 

to vary till on closing first the battery circuit and then the 

galvanometer eircuitj no dello:){ion of the galvanometer needle is 

observed. 

The eoils (3 and y are then made to change places, and a new 

position is found I’or Q, If thi.s new position is the .same as the 

old one, then we know that the exchange of /3 and y has produced 

no change in the proportions of the resistances, and therefore y 

is rightly' adjii.sted. If Q lias to be moved, the direction and 

ainoniit of the change will indicate the natui-e and amount of the 

alteration of the length of the wire of y, which will make its 

rc.sistance equal to that of [3. 
If the resistances of the coils b and c, eacdi including part of the 

wire PP up to its zero reading, arc equal to that of b and c 
divi.sion.s of the wire respectively, then, if .r is the scale reading 

of Q in the first ca,ee, and // that in the .second. 

wheneo 

c+.T ^ e+y _ y 

b—iV ~ y b—j! 13 

r _ 1 I 

j3^'~ l>‘ + r}(b-j/)' 

Since b—y is nearly equal to and both are great with 

rc.sj)cct to ,v or t/, we may write thi.s 

y 
/3 

o' 1 + -1 b-\-c 

and 

When y is adjusted as well as we can, we substitute for b and c 
other coils of (say) ten times greater rc.sistance. 

The remaining diflerence between /3 and y will now produce 

a ten times greater diderence in the position of Q than with the 

n d 2 
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oi-ig-inal eolls h and c, and in tliis way we can continually increase 

the accuracy of the eoniparison. 

The adjustment by means of the wire with sliding contact piece 

is more quickly made than by means of a resistance box, and it is 

capable of continuous variation. 

The battery must never be introduced instead of the galvano¬ 

meter into the wire with a sliding contact, for the passage of a 

powerful current at the point of contact woidd injure the surface 

of the wire, Henee this arraiigcincnt is adapted for the case in 

which the resistance of the galvanometer is greater than that of the 

battery. 

On the Measure7nent 0/ Small Rcmtances, 

351.] When a short and thick comliielor is introduced into a 

eireuit its resistance is so small compared with the resistance 

occasioned by unavoidable faults in the eouuexions, such as want 

of contact or imperfect soldering, that no correct value of the 

resistance can be deduced from experi¬ 

ments made in the way described above. 

The ol)joct of such experiments is 

generally to determine the specific re- 

si.staiiec of the subshincc, and it is re¬ 

sorted to in ca.ses when the substance 

cannot be obtained in the form of a 

long thin wre, or when the resistance 

to transverse as well as to longitudinal 

conduction has to he measured. 

_a 

a'_t’ 

V 

Fi'b'. 34. 

Sir W. Thomson,* has described a method ajiplicable to such 

ca.scs, which we may take as an example of a system of nine 

condiicUjrs. 

• I‘roc. R. S., Juno 0, JS81, 
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The most important part of the mctliod consists in measuring 

tlie resistance, not. of the wliolc Icngtli of tlic eoiuluctor, lint of 

tlifi part between two marks on tlie conclnetor at some little clis- 

tauce from its ends. 

Tho resistance which w'c wish to measure is that experienced 

hy a current wliose intensity is uniform in any section of the 

conductor, and which flows in a direetion parallel to its axi.s. 

Now close to tlic extremities, when the current is introduced 

hy means of clectrodc.Sj either soldered, amalgamiitccl, oi* simply 

pressed to the ends of the conductor, tliere is generally a want of 

uniformity in the clistrihntion of the ciuTcnt in the conductor. 

At a short, distance from the extremities the cniTcnt heeotnes 

sensibly uniform. The student may examine for himself the 

investigation and tlic diagrams of Art. 1011, where a current is 

introduced into n stiip of metal with parallel sides through one 

of the .sides, but soon becomes itself parallel to the sides. 

The resistance of the e.oiidnctors hetween certain marks S, S' 
and Tl’' is to he compared. 

The conductors are placed in series, and with connexions as 

perfectly conducting as possible, in a battery cirenit of small resist¬ 

ance. A wire SJ 'J' is made to touch the coiuhictors at S and 

and S'V"f' is another wire touching them at S' and 'T'. 
The galvanometer wire connects the points and V' of these wires. 

The wires SF'f and S'l'"!" arc of resistance so great that the 

resistance due to imperfect connexion at S, '1', S' or 'f' may be 

■neglected in comparison with the resistance of the wire, and T, P 

arc taken so that the vosistunce in the liranehes of cither wire 

leading to the two conductors arc nearly in the ratio of the resist¬ 

ances of the two conductors. 

Callin'? //and /'the resistances of the conductors SS' and 

„ A ami C those of the hranelics SF and F'P. 
„ P and ]{ those of the branches S'V' and F'T'. 
„ Q that of the connecting piece S"l'', 
„ B that of the battery and its oonnc'xions. 

„ G that of the galvanometer and its connexions. 

The symmetry of the system may lie understood from the 

skeleton diagram. Fig, 3.3. 

Tlic condition that B the battery and G the galvanometer may 

be coiijiigatc conductors i.s, in thi.s case, 

' ^ A Q 
~C A'^^C 

= 0. 
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Now tlio resistance of tlio connector Q is as small as we ean 

make it. If it wore zero tin’s cfjiiatioii would be redueed to 

F 11 
C ~ a' 

and the ratio of the resistaiiees of the eondiictors to be compared 

would be that of C to A, as in Wheatstone’s Eridye in tlic ordinary 

form. 

In the present ease the value of Q is small compared with F 
or with F, so that if we a.ssiimo the points 1, I " so that the ratio 

of 7i’ to G is nearly equal to that of F to A, the last term of the 

equation will vanish, and we .shall have 

F -.IF.: C: A. 
The success of this method depends in some degree on the j)or- 

fectioii of the contact between the wires and the tested (mndnetors 

at SS', T' and T. In the following method, cmidoyed by Messrs. 

Matthiessen and Hockiii *, this condition is dispensed with. 

Fig. ys. 

352.] The eoiiduetors to he tested arc arranged in the manner 

already desseriheclj with the connexions as well made as possible, 

and it is reqinred to comi)are the resistance between the marks 

iS'6'' on the iir.st conduetor with the resistance between the marks 

T'T on the second. 

Two coiidneting points or sharp edges arc fixed in a piece of 

ins'ulating material so that the distance between them ean be 

accurately measured. This apparatus is laid on the conduetor to 

he tested, and the points of contact with the conduetor are then 

at a known distance SS', Each of these contact pieces is conneeted 

* I.ahm'alufij, MiittlaesKeii and Uockiii un Alloys, 
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with a mcrcuiy cup, into wliich one electrode of tlic <*-alvanomctcr 

may be plnng’cd. 

The rest of tlio apparatus is arranged, as in Wlieatstone’s Bridge, 

with resistance coils or boxes A and f7, and a wire Fit with a 

sliding contact piece Qj to which tlie other electrode of the galva¬ 

nometer is connected, 

Now let the galvanometer be connected to S and Q, and let 

and Cj he so arranged, and tlie position of Q so determined, that 

there is no current in the galvanometer wire. 

Then we know tliat y,9 -hFQ 

= C\TQli 
wliere A"iS', FQj &e. stand for tlie resistances in these conductors. 

From tliis we get 

AT “ A.A C'i^FE' 

Now let the electrode of the galvanometer be conucctcd to S', 
and let resistance be transferred from C to yJ (by carrying resistance 

coils from one side to tlic other) till eleiAric erpiilibrium of tlie 

galvanometer wire can be obtained by jilaeing Q at some point 

of the wire, say Q.,. Let the values of C and yl be now Ch and /L, 

and let -h <^2 + 

Then we have, as before, 

XS' _ yt + FQ^ 
AT “ " 

AVheiiec 
^ _ yL-J^+QiQ,> 
XT ~ Ji. 

In tlie same way, placing the apparatus on the second conductor 

at T'F and again transferring resistance, we get, when the electrode 

is in 'F, 
XT _ A^l% 
xr ~ It ' 

and when it is in T, 

Whence 

AT _ A^^F(U 
XY ~ It 

F'f 
AT F 

We can now deduce tlie ratio of the resistances SS' and T"l\ for 

SS' __ A., — vij + Q.<, 
FT-Zi;:-yi,+ q, q,‘ 
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When great aecnraoy is not required we may dispense with tlie 

resistance coils A and C, and we tlien find 

rT-Q,Q, 
The readings of llie position of Q on a wire of a metre in length 

eannot he depended on to less than a tenth of a millimetre, and the 

resistance of the wire may vary considerably in different parts 

owing to inequality of temperature, friction, &c. Hence, when 

great accuracy is required, coils of considerable resistance arc intro¬ 

duced at A and C, and the ratios of tho resistances of these coils 

can be determined more accurately than the ratio of the resistances 

of llie parts into which the wire is divided at Q. 
It will be observed that in this method tlie aecaracy of the 

determinal,ion (kq)euds in no degree on the perfection of the con¬ 

tacts at SS’ or TT'. 
This method may he called the differential method of using 

Wheatstone’s Bridge, since it depends on the eomi)arison of ob¬ 

servations se])aratcly made. 

An essential condition of accuracy in this method is that the 

resistance of the connexions should eontimie the same during the 

course of the four olxservalions required to complete the determ¬ 

ination. Hcmce the series of observations ought always to be 

repeated in order lo delect any change in the resistances, 

(Jh (he (Jampur if 0)! of Great Jidrixianees. 

3b3.] When the re.sislances lo be measured are very great, the 

comparison of the ])otcnlinls at dilFerent points of the .sy.stem may 

he made by means of a delicate electrorneter, such as the Quadrant 

Electrometer described in Art. 21!). 

If the conductor.s whose resistance is to be measured are [)laced 

in series, and the same current passed through them by means of a 

battery of great ('Icdromolivc force, the dilferciice of the potentials 

at the extremities of each eoiuluctor will be proportional to the 

resi.staiicc of that condnclor. Ilcnce, by connecting the electrodes 

of the electrometer with the cxtrc'-mitie.s, first of one conductor 

and then of the other, the ratio of their rc.sistancos may be de¬ 

termined. 

This is the most direct inclliod of determining resistances. It 

involves the use of an clecdrometer wlio.so r(*ading.s may be depended 

on, and we must also have some gnavantco that the current remains 

con.staiit (luring the experiment. 
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Four conductors of great rcsistfincc may also Idc arranged as in 

Wlicatstonc’s Bridge, and tlie liridgc itself may consist of the 

clcclvodes of an cleetroinctor instead of those of a galvanometer. 

The advantage of this method is that no permanent current is 

required to produce the deviation of the cleetroinctor, whereas the 

galvanometer cannot be (lellected unless a current passes through 

the wire. 

354.] When the resistance of a coiulnetor is so great that the 

current which can he sent through it hy any available electromotive 

force, is too small to be directly measured hy a galvanometer, a 

condenser may be used in order to acenmnhite the electricity for 

a certain time, and then, hy discharging the condenser through a 

galvanometer, the quantity aecunuihited may he estimated. This 

is Messrs. Bright and Clark’s method of testing the joinks of 

submarine cables, 

3.5.0.] But the simplest method of measuring the resistance of 

such a conductor is to charge a condenser of great capacity and to 

connect its two surfaces with the electrodes of an electrometer 

and also a ith the extremities of the coiulnetor. If I'J is the dif¬ 

ference of potentials as slicwn by the electrometer, S the capacity 

of the condenser, and Q, the charge on cither surface, R the resist¬ 

ance of tlie conductor and .?■ the current in it, then, by the theory 

of condensers, n — c A’ 

By Ohm’s Law, 7f = R.r, 

and hy the definition of a current. 

'IQ. 
dt. 

I fence 

and 

<2 = 

/(.S 

where is the cbaige at first when ( = i). 
I 

.Similarly A‘=A]6' 

where A], is the origunal rending of the eleetroinetcr, and A' the 

same alter a time A h'rom this we find 

7.’ = 

which gives 77 in ah.sohite measure. In this expression a knowledge 

of the v.'diie of the unit of the elect roiiieler scale is not reipiired. 
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If iS', the capacity of the condenser, is <,nven in eiectrostutic 

measure as a certain number of metres, then J{ is also g-iven iu 

electrostatic measure as the reeiproeul of a velocity. 

If S is given in electroinagiietie iuea.s‘urc its dimensions are 

T- 
j , and Ji is a velocity. 

Since the eondcnser itself is not a perfect insulator it is necessary 

to make two exj>eriments. In the lirst we determine the resistance 

of the eumlenser itself, nnd in the seeond, that of the condenser 

when the conductor is made to eouneet its surfaces. Let this be O', 
Then the resistaiiee, ii’, of the condiietor is given hy the equation 

1 _ 1 _ 1 

'n ~ ir ~ li\,' 

This method has been employed by MM. Siemens. 

Thomsoiis* Method for the Ueteniiiiuitian (f the liesisiunce of 

the Gah'iDiuineler. 

356.] An arrangement similtiv to Mnieal.stone’s llriclge has been 

oniployed with advantage hy Sir W. Thomson in determining the 

resistance of the <nilvauoinoter when in actual use. It was sim- D 
g-e.stcd to Sir W. Thomson by Mance’s Method. Sec Art, 357, 

Let the battery he placed, as hefore, between Ji and C in tlie 

iigiire of Article 317, hut let the galvaiioiiieter be placed in CA 
Instead of in OA. If 6fi-~cy is zero, then the conductor OA is 

conjugate to JiC^ and, as there i,s no current ])rodnced iu OA hy the 

battery in JJC, lire strength of the current in any other conductor 

• Pruc. It. Juii, ID. 1S71. 
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is iiulciicndcnt of the rcsistiiucc in OA, Honce, if tliu j^alvaiio- 

metiT is placed in CA its deflexion will remain the same whether 

the I'csistnuee of OA is small or j^reat, AVe therefore observe 

wliether the deflexion of the ^'alvanoineter reinuins the same when 

0 and .1 are joined by a condnetor of small resistance, as when 

iliis connexion is broken, and if, by properly adjustiiif^' the ve- 

s'istanees of the conduetors, we obtain this result, we know that 

the resistance of the yalvanometei’ is 

where e, y, and /3 are resistanee eoils of known resistance. 

It will be observed that thonyb this is not a null method, in the 

sen.se of there beiny; no current in the g-alvanomoter, it is so in 

the semse of the faet observed beiiiy the negative one, that the 

deflexion of the g”,il vanometer is not changed when a certain con¬ 

tact is made. An ohservation of this kind is of greater value 

than an ohservation of the equality of two different deflexions of 

the .same g-alvanometer, for in the hitter ease there is time for 

alteration in the strength of the battery or the sensitiveness of 

the galvanometer, whereas when the deflexion remains constant, 

in .spite of certain changes which we can repeat at pleasure, we are 

sure that the current is quite independent of these changes. 

The determination of the resistanee of the coil of a galvanometer 

cun easily be effected in the ordinary way of using AVheatstone’s 

]3riilge by placing another galvanometer in OA. By the method 

now described the galvanometer itself is employed to measure its 

own resistanee. 

Mu/icc’x* ISIcthod of deknnhi 'iiKj the Jhalstutico of the Balterij. 

357.1 The measurement of the resistance of a battery when in 

action is of a much higher order of difficulty, since the resistanee 

of the battery is found to change considerably for some time after 

the strength of the current through it is chang'ed. In many of the 

methods commonly used to measure the resistance of a battery such 

ulloration.s of the strength of the current through it occur in the 

eour.se of the operations, and therefore the results are rendered 

doubtful. 

In AI anee’s method, whieh is free from this objection, the battery 

is placed in BO and the galvanometer in CA. The eonne.xion 

between 0 and B is then alternately made and broken. 

* I'l'oc. 11. <V,, Jan. in, lt>7t 
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If the deflexion of llie g-jilvniiomotor remains unaltered, we know 

Hint QJi is eonjiig-ate to C\l, whence cy = aa, and n, the resistanee 

of the hattoiy, is obtained in terms of known resistances c, y, n. 

When tlie eondition ry = aa is fidfilled, then the enrrent tliroiifii'h 

tlie galvanometer is 
T!a 

~ ha + c{/j-^ a + y) ’ 

and this is independent of the resistance /3 between 0 and B, To 

test the sensibility of the method let ns suppose that the condition 

cy — aa. is nearly, hut not aeenrately, fnlhlled, and that is the 

enrrent through the galvanometer when 0 and 7? are eonneeted 

by a eondnetor of no sensible resistanec, and y, the enrrent when 

0 and 7? are oomplctely diseonnoeted, 

'I'd find these values we must make /3 erjnal to 0 and to so in the 

general formula for y, and compare the results. 

In this way we find 

■hz:l\-°L 
!J y(c + a)(a+7)’ 

where y„ and y, aro snj^posed to he so nearly equal that we may, 

when their difference is not in rjiiestion, put either of them equal 

to y, the value of the current wlien the adjustment is perfect. 

'llic resistance^ c, of the eondnetor AB should he equal to a, 
that of the batteiy, a and y, should he equal and as small as 

possible, and h should he equal to a + y. 

Since a galvanomeb'r is most .sensitive when its deflexion is 

small, wo shoidd bring the needle nearly to zero by means of fixed 

magnets before making eonlaet between 0 and B, 
In this method of measuring the resislanee of the battery, the 

current in the battery i,s not in any way interfered with during the 

operation, so that we may aseertain its resi.'^tance for any given 
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streuyth of cuneiitj so as to dotorniine how tlio stroiijjth of current 

cffeets the resistance. 

If y is the current in the galviiuometer, the actual current 

tlirough the battery is with tlic Iccy clown and a\ with the 

key up, where 

3'o = y(l + —I—)’ s-'i / ,.n)’ '• a + y' '' y y (a+ (•)■' 

the resistanee of the battery is 
ey 

a = 

and the electromotive force of the battery is 

J'] = y{f)-\-c-\- ^ "b y))' 

The method of Art, 3;)(j for lindiiig' the resistanee of the galva¬ 

nometer difi'ers from this only in making and breaking contact 

between 0 and A instead of between 0 and JB, and b}' exchanging' 

a and ^ we obtain for this ease 

_ ft 
y y {c-\-ft){ft-^-y) 

On the Comparison of Electromotive Forces. 

358.] The following method of comparing- the electromotive forces 

of voltaic and tbermoelectric arrangements, when no enrrent passes 

through them, requires only a set of resistance coils and a constant 

battery. 

Let the electromotive force E of the battery be greater than that 

of either of the electromotors to be compared, then, if a sufficient 

e, 

*—IHHHI—J 
Fig, 38. 

resistance, 7?j, be interposed between the joints A^, of the 

primary circuit EBiA^E, the electromotive force from to Ai 
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maybe made equal to that of the electromotor If the elec¬ 

trodes of this electromotor arc now couiiccted with the ])oints 

y/,, 7ij no current will flow thmuo-h the electromotor. Ily i)hiein<^ 

a fi-alvanorneter b'j in the circuit of the electromotor /f,, and 

adjusting' the resistance between .'/j nnd l\, till the ^'alvannmeter 

b'j indicatc.s no current, \vc obtain the equation 

li, = 

where /i', is the rcsistaneo between and //,, and C is the stren^rih 

of the current iii the primary circuit. 

In the .‘.'amc way, by taking a second electromotor/f, and placing 

its electrodes at A.^ and B.,, so that no current is indicated by the 

galvanoinett'i' G.,, 
B, = /l,C, 

whore 7i’., is the resistanec hotween and If the oh.scrvat ions 

of the galvanometers and G., are .simultaneous, the \'aluc of G, 
the current in the ]irimarv circuit, is the same in both equations, 

and we find 

In tin's way the electromotive force of two electromotors may be 

com]iared. The absoluie electromotive force of an electromotor 

may be measured cither electrostatically by means of the clcetro- 

metor, or electromagnetieally by means of an absolute galvano¬ 

meter. 

This method, in which, at the time of the comparison, there 

is no current througdi either of the electromotors, is a modification 

of Poggendorff’s method, and is due to Mr. Latimer Clark, who 

has deduced the following values of electromotive forces: 

/Uiitiell r, AliinljfMimitoil 1 Zh\r IISO(+ 4 nij. 

CoiKviilrntcd 
HOllltUlII of 

C'u SO, (.‘(i|>pLT 

VultK. 

= 1,070 

11, ITSO(+ ]2aii. Cii SO, Oo|>per = 0,078 

HI, I ISO, + 12 aq. C'u NO, ('u|)per = 1,00 

Ihinsen I, .» »» 11 NO. Ciirljun = 1.0 Cl 

11. .» *» sp, l,0S ('.irliou = 1,888 

Crore .. IISO, + 1 .iq. 11 NO. I’liitiniim ^LOCG 

A I'lill in fiv cJ(cli'cmotirc force rrjnul lo lOo,000,000 iniils of He ccDtimeirc-gmmmc- 
ffcoiid tyslfiit. 
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ON TUB ELI'X'TRIC liESISTANCE OF SIJB.STANCK.S. 

359.] Theiir arc three classes in wliicli we may place {liffcront 

substances in relation to the passage of electricity tlironf^h them. 

The first class contains all the metals and their alloys, some 

snlphurets, and other compoimds containing metals, to wliieb we 

must add eavhon in the form of gas-colce, and selenium in the 

er^’stallino form, 

In all these substances conduction takes place without any 

decomposition, or alteration of the chemical nature of the substance, 

either in its interior or where the current enters and leaves the 

body. In all of them the resistance increases as the temperature 
rises. 

The second class consists of substances which arc called electro¬ 

lytes, because the current is as,«oeiated with a decomposition of 

the snb.stanee into two components which appear at the electrodes. 

As a rule a substance is an elcetrol^de only when in the liquid 

form, thong-h certain colloid suhstances, such as glass at 100°C, 

which arc apparently solid, arc electrolytes. It would appear from 

the experiments of Sir II. C, Brodie that certain g-ases are capable 

of electrolysis hy a powerful electromotive force. 

In all sidjstances which conduct by electrolysis the resistance 

dimini.shes as the temperature rises. 

The third class consists of suhstances the resistance of which is 

so great that it is only hy the most refined methods that the 

passage of electricity through them can be detected. These are 

called Dielectrics. To this class belong a considerable number 

of solid bodies, many of which are electrolytes when melted, some 

liquids, such as turpentine, naphtha, melted paraffin, &c., and all 

gases and vapours. Carbon in the form of diamond, and selenium 

in the amorphous form, belong to this class. 

The resistance of this cLnss of bodies is enormous compared with 

that of the metals, It diminishes as the temperature rises. It 
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is {lifllcult, on iiccouiit of the great resistance of lliese substances, 

to (letariniiie wlietlier the feeble current which we can force througli 

them is or is not associated witli elcetr()l\’sis. 

0)1 the TAeclr 'io Jtenitiltnx'e af 

360.] Tlierc is no part of electrical research in which more 

lunncrous or more accurate experiments have been made than in 

the deterininalion of the resistance of metals. It is of the ulmo.st 

importance in the electric telegraph that the metal of which the 

wires are made should have the smallest attainable re.sistaiice. 

Measurements of resistance iiiust therefore he iniide before select ing 

the materials. When any fault occurs in the line, its ])ositioii is 

at once ascertained by measurements of resistance!, and these mca- 

surenicnts, in which so many persons are now (‘inployed, rcajuire 

the use of rcsi.stance coils, made of metal the electrical properties 

of which have been carefully tested. 

The electrical properties of metals and their alloys have been 

studied with great care b}' MM. Matthiesseii, Vogt, ami Ilockin, 

and by ]\IM, Siemon.s, who have done so much to introduce exact 

electrical measurements into juaetieal work. 

It ai)pcars from the researches of Dr. Matthiessen, that the elfeet 

of temperature on the resistance is nearly the same for a considerable 

number of the pure metals, the resistance at 100°C being to that 

at 0°C in the ratio of I.’IM to 1, or of 1 to 70.7. For pure iron 

the ratio is 1.0-15, and for pure thallium 1.-158. 

The resistance of metals has been observed by Dr. C.W. Siemens* 

through a much wider range of temperature, extending from the 

freezing point to 350°C, and in certain cases to 1000°C. He finds 

that the resistance increases as the temperature rises, but that the 

rate of increase diminishes as the temperature rises. The formula, 

which he iinds to agree very closely both with the resistances 

observed at low temperatures by Dr. Matthiessen and with his 

own observations through a range of 1000°C, is 

where T is the absolute temperature reckoned from — 273°C, and 

a, j3, y arc constants. Thus, for 

Platinum.r= 0.039309^^4 0.002104072'—0.2-113, 

Copper.r = 0.02G5772'54-0.0031-1.132'—0.22751, 

Iron.r = 0.0725-152’i4-0.00381332'—1.23.071. 

♦ /Vur, Jl. .S'., April 27, 1S71. 
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From (lata of this kind the temperature of a furnace may be 

delermined hy means of an ohscrv'ation of Ihe resistanee of a 

platinum wire, plaeed in the furnace. 

Dr. Matthiesson found that when two metals arc combined to 

form an alloy, the resistance of the allo}" is in most oases greater 

than that calculated from the resistance of the component metals 

and their proportions. In the case of allo3^s of gold and .silver, the 

rcsi.^tauce of the alloy is greater than that of either pure gold or 

pure silver, and, within cerhiin limiting proportions of the con¬ 

stituents, it varies very little with a slight alteration of the pro¬ 

portions. For this reason Dr. Matthicasen recommended an alloy 

of two parts hy weight of gold and one of silver as a material 

for reproducing the unit of resistance. 

The offeet of change of temperature on electric resistance is 

generally loss in alloys than in pure metals. 

Hcnec ordinary' resistance coils are made of German silver, on 

account of its great resistance and its small variation with tem- 

peratnn*. 

An alloy of .silver and platinum is also used for standard coils. 

361.] The electric resistance of some metals changes when the 

metal i.s annealed; and until a wire lias been tested by being 

repeatedly raised to a high temperature without iJcrmancntly 

altering its resistance, it cannot be relied on as a measure of 

Tcsistaiice. Some wires alter in resistance in course of time without 

having been cx])oscd to changes of temperature. FIcnee it is 

important to ascertain the specific resistance of mercury, a metal 

which being fluid has always the same molcoular structure, and 

which can he easily' purified by' distillation and treatment with 

nitric acid. Great cave has been bestowed in determining the 

vcsistancc of this metal by W. and C. F. Siemens, who introduced 

it as a standard. Their rcsenr(thc.s have been supplemented by 

those of Matthiessen and Hoekin. 

The specific resistance of mercury was deduced from the observed 

resistance of a tube of length I containing a weight w of mercury, 

in the following manner. 

No glass tube is of exactly equal bore throughout, but if a small 

quantity of mercury' is introduced into the tube and occupies a 

length A of the tube, the middle point of which is distant ® from 

one end of (he tube, then the area s of the section near this point 

C 
will he a — - - , where C is some constant. 

\ 

E e VOI.. T. 
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The wcig-lit of mcvcury wliicli (ills the whole tube is 

V) = p/.,&=pCS(i)^. 

where n is the number of points, ut equal distanees alon<>‘ llio 

tube, where A bus been measureil, aiul p is the mass of unit of 

volume. 

The resistanee of the whole tube i.s 

s C 

wbeve r is the speeifie resistanee per unit of volume. 

Jlenec 

and r = 
wR 

gives the speeifie resistance! of unit of volume. 

To find the resistance of unit of length and unit of nia.ss we must 

multiply this by the density. 

It appears from the experiment.s of Mattbiessen and Iloekiu that 

the resistance of a uniform column of mercury of one metre in 

length, and weighing one gramme at 0°C, is 13.0 71 Ohms, whence 

it follows that if the specific gravity of mercury is 13.595, the 

resistance of a column of one metre in length and one square 

millimetre in section is 0.9(1 MG Ohms. 

303.] In the following table R is the resistance in Ohms of a 

eohimn one metro long and one gramme weight at O'^C, and r is 

the resistance in centimetres per second of a cube of one centi¬ 

metre, according to the experimenls of Mattbiessen *. 

Pei'cciiUge 
increment of 

•Spet'ilie resistiiico for 
gravity U r TC .it 20T. 

Silver. 10.50 bard drawn 0.1G89 1G09 0,377 

Copper . 8.95 bill'd drawn 0.MG9 1G12 0.388 

Gobi .. . 19.27 Imrd drawn 0.4150 2151 0.3G5 

Lead . 11.391 I)r(!s.scd 2.257 19817 0,387 

Mercury. 13.595 lirpiid 13.071 9GI1G 0.072 

Gold 2, Silver 1.. 15.218 bard or annealed 1,GG8 10988 0.0G5 

Selenium at 100°C CVy.stallinc form GxlO” 1,00 

* Phil. May, 
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Oil the Eleclric liesisUince of Eleolrolytes, 

363. ] The mcasiircinciit of the cleetric resistance of electrolytes 

is I’endeved (litllculb on account of the 2)olarization of the clcctroclcs, 

which causes the observed (lifrercnee of potentials of the metallic 

electrodes to be greater than the electromotive force which actually 

produces the cnrreiit. 

This difliculty can be overcome in various ways. In certain 

eases we can get rid of polarizaliou by using electrodes of pro2)er 

material, a.s, for instance, zinc electrodes in a solution of sul])liate 

of zinc. By making the surface of the electrodes very large com¬ 

pared with the section of the part of the electrolyte whose rcsist- 

aneo is to be measured, and by using only currents of short duration 

in O2)2)ositc directions alternately, we can make the measureiuciits 

before any considerable intensity of polarization lias been excited 

by the jiassagc of the current. 

Tinallj', by making two different experiments, in one of which 

the path of the current through the electrolyte is much longer than 

in the other, and so adjusting’ the electromotive force that the 

actual current, and the time during which it flows, are nearly the 

same in each case, wc can eliminate the effect of polarization 

altogether, 

364. ] In the experiincnts of Dr. Paalzow * the electrodes were 

ill the form of hirg-c disks placed in separate flat vessels filled with 

the electrolyte, and the connexion was made hy means of a long 

siphon filled with the electrolyte and dijiping into both vessels. 

Two such .siphons of different lengths were used. 

The observed resistances of the electrolyte in these si^iboiis 

being yf, and Zf.^, the siphoii.s were next filled with mercury, and 

their resistances wlieni filled with mercury were found to be 11' 

and Zf./. 

nie ratio of the resistance of the electrolyte to that of a mass 

of mercury at fl'"C of the same form was then found from the 

formula ^ 

^ ~ ii(-ii:' 

To deduce from the* values of p the resislance of a centimetre in 

length having a section of a square centimetre, wc must multiply 

them hy the value of r for mercury at 0°C. Sec Ai’t. SGI. 

* Ilcriin M{HuUehci'i<‘hl, July, 18(iS. 

U e 2 
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The results given Ijy Panlzow are as follow ;— 

Mixtures of Siil2jhuric Acid and Water. 

Kcsistaiicc C(jiiijmrod 
with iiiurcnrj’, 

9G950 

14157 

13310 

184773 

Sulphate, of Zinc and Wcttm\ 

ZnSO, + 23H-0_23“C 194400 

ZiiSO, + 24H'‘=0 .... 23°C 191000 

ZuSO, +10i3H2O , , , , 2.3°C 3,54000 

Sulpluite of Copper and Water. 

CuSO, + 45H^O .... 22‘’C 202110 

CiiSOj+105H-O .... 22°C 339.311 

Sulphate of Ma<jnestuin and W<ite-r. 

MgSO, + 34 IPO .... 22°C 199180 

MgS0,+ 107H'-O .... 22^0 324000 

IlydrocJdoric Acid and Water. 

HCl + 15H=0 .... 23°C 13G26 

HCl +500H-O ,. .. 23"C 8GG79 

365.] MM. F. Kohlrausch ami W. A. Nippoklt * liavc de¬ 

termined the resistance of mixtures of sulphario aeid and water. 

They used alternating magiieto-electrie currents, the electromotive 

force of which varied from i to of that of a Grove’s coll, and 

hy means of a tlierinoelectric copper-iron pair they reduced the 

electromotive force to xTsViro of that ot‘a Grove’s cell. They found 

that Ohm’s law was ap|)licablo to this electrolyte tliroiighout the 

range of these electromotive forces. 

The resistance is a minimum in a mi.vtiire containing about one- 

third of .snlphnric acid. 

The resistance of electrolytes diminishes as the temperature 

increases. The percentage iuerement of conductivity for a rise of 

1°C is given in the following table. 

Teinji. 

H,SO, ..,.1.5'’C 
HjSO, + 14H-0 .... 19“C 
H.SO, + 13H-0 .... 22’0 
H,SO,+49911-0 .... 22'’C 

* l*"(^g., .4;iji. cxxxviii, j). 280, Uct. l.SGt*. 
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Jiesistance of Mixture,h of Sulphuric. Acid and, Water at 22^C in terinr 

of Mercury at (fC. 1[M. Kohlrnii.sch mid Nijijioldt. 

Specific gravity 
at 18“5 

Percentnjje 
ofIL SO., 

llesiKtanci! 
at 22 C 
(Hg = l) 

Perceii tage 
increment of 
coinliictivity 

forl°0. 

0.9985 0.0 746300 0,47 
1.00 0.2 4G5100 0,47 

1.0504 8.3 34530 0.G53 

1.0989 14.2 1894G 0.G4G 

1.1431 20.2 14990 0,799 

1.2045 28.0 13133 1.317 

1.2G31 35.2 13132 1.259 

1.31G3 41.5 1428G 1,410 

1,3547 4(5,0 157G2 1,G74 

1.3994 50,4' 1772G 1.582 

1.4482 55.2 2079G 1.417 

1.502G GO. 3 25574 1.794 

On the Eleclrical Rcitiskuicc of LiolectncK. 

366.] A great number of determinations of the resistance of 

gutta-perelia, and other matenals used as insulating' media, in the 

manufacture of telegraidiic ealdes, Inive been made in order to 

ascertain tlie value of tlicse materials as insulators. 

The tests are generally apjdicd to the material after it has been 

used to cover the conducting wire, the wire being used as one 

electrode, and the water of a tank, in which the cable is plunged, 

as the other. Thus the current is made to pass through a cylin¬ 

drical coating of the insulator of great area and small thickness. 

It is found that when the electromotive force begins to act, the 

current, as indicated by the galvanometer, is by no means constant. 

The first elfcet is of course a transient current of considerable 

intensity, the total quantity of electricity being that required to 

charge the surfaces of the insulator with the superficial distribution 

of electricity corresponding to the electromotive force. This first 

current therefore is a measure not of the conductivity, hut of the 

capacity of the insulating layer. 

But even after this eurrent has been allowed to subside the 

residual current is not constant, and docs not indicate the true 

conductivity of the substance. It is foand that the current eon- 

tiiiiies to dccrea.se for at least half an hour, so that a determination 
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of tlic rosisliuiwi dediieccl from the eiirrcut will ^nve a yrealer value 

if a certain time is nllowecl to elapse tlinn if taken immediately after 

apidying' the battery. 

Thus, with Hooper’s insulating- material the apparent resistauec 

at the end of tea minutes was four tiiue.s, and at the end of 

nineteen honr.s twenty-three times that observed at. the end of 

one minute. AVhea the direction of the eleetromolive force i.s 

reversed, the, rcsistimee falls as low or lower than at (irst and then 

gradually rises. 

The.se phenomeini seem to be due to a condition of the g-atta- 

pereha, which, for want of a better name, we may call polarization, 

and whieli we may compare on the oae hand with that of a series 

of Leyden jars charged by caseadc, and, on the other, with Hitter’s 

seeoadary ]>ile, Art. 271. 

If a number of Le3'den jars of great capacity are connected in 

series by means of conductors ol‘ great re.sistance (such as wet 

cotton threads in the exjierimerits of M. Guugaia), then an electro¬ 

motive force aeting- on the series will produce a current, as indicated 

by a galvanometer, wliieh will gradually diminish till the jars are 

fully charged. 

The a])iiareat re.sistauce of such a series will increase, and if the 

dielectric of the jar.s Ls a perfect insulator it will increase without 

limit. If the electromotive forec be removed and connexion made 

between the ends of the serie,s, a revcr.se current will be ob.served, 

the total quantity of which, in the case of iierfect insulation, will be 

the same as that of the direct current. Similar effects arc ob.served 

in the case of the secondary pile, with the dilference that the final 

insulation is not so good, and that the capacity per niiit of .surface 

is immensely greater. 

In the case of the cable covered with gutta-percha, &c., it i.s found 

that after aiqdying the battery for half an hour, and then con¬ 

necting the wire with the external electrode, a reverse current takes 

place, which goes on for some time, and gradually reduces the 

system to its original state. 

These phenomena are of the same kind with those indicated 

by the ‘'re.sidual discharge’ of the Lo^-den jar, except that the 

amount of the polarization is much greater in gntta-percha, &c. 

than in glass. 

This state of polarization .seems to be a directed property of the 

material, which requires for its production not onl}' electromotive 

force, but the passag-e, bv displacement or otherwise, of a con- 
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sideniblc quantity of elcctrieity, and tin’s piissa<?e requires a cou- 

sidcraldo lime, Wlion tlic polarized state lias been set np, Ibere 

is an internal eleetromotivo force acting in the snbsliince in the 

reverse direction, whieh will continue till it has either produced 

a reversed current eqnul in total quantity to the first, or till the 

sfafe of ])olarization has quietly subsided by means of true eon- 

dnetion through the substanoe. 

The whole theory of what has been called residual discharge, 

absorjition of electricltj’, electrification, or polarization, deserves 

a careful investigation, and will probably lead to important dis¬ 

coveries relating to fhe internal structure of bodies, 

3(57.] The resistance of (he gi'eater number of dielectrics di- 

rninislies as the temperature rises. 

Tims the resistance of gutta-])ercha is about twenty times as great 

at O^C as at Mes.srs. Bright and Clark have found that the 

following formula gives re.sults agreeing with their experimeiibs. 

If r is the resistanee of gntta-pereha at temperature Z’centigrade, 

then the resi.s-tanee at temperature 'I'+i will be 

7i’ = /• X 0.8878‘, 

the number varies between 0.8878 and 0.0. 

Mr. Ilockin has verified the curious fact that it is not until some 

hours after the gutta-percha has taken its temperature that the 

resistanee reaches its corresponding value. 

The efieet of temperature on the re.sistance of india-rubber is not 

so great as on that of gntfa-irerehn, 

The resistance of gnfta-perelia increases considerably on the 

application of pressure. 

The rcsisfanee, in Ohms, of n cubic metre of various specimens of 

gutta-percha used in different cables is as follows*. 

N.-iiiie of Cable, 

Red Sea.2l>7 x 10>- to .3(52 x 10'’- 

Malta-Ale.xandria. 1.23 x 10^- 

Persian Gulf. 1.80x10^- 

Second Atlantic . 3.42x10^“ 

Hooper’s Persian Gulf Core,.. 7-1.7 x 10^- 

Gutta-percha at 2 1°C . 3.53 x 10'- 

368,) The following table, calculated from the cxpcn'inents of 

* .lonIdii’N Cttiifoi' hixturcf. 
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IM. BiUr, (lescriliod in Art. 271, sliews the rcsislanec of a cubic 

metre of g-lass in Ohms at (lilfcrcnt teniperatiiros. 

Tein|)tTaturc. licHistaiico. 

200“C 227000 

250“ 13000 

300“ 14 80 

350“ 1035 

4 00“ 735 

309.] Mr.C. F. Varlcy * has recently investig'aled the conditions 

of tlie eiirrent throug-li rarefied g-ases, and finds tliat tlic cdeclro- 

inotive force is equal lo a constant together with a part 

depending on the envrent according to Ohm’s Law, thus 

E=E,,+ EC. 

For instance, the olcctrnniotivc force required to cause the 

current to begin in a certain tube was that of 323 Danicll’s cells, 

but an electromotive force of .304 cells was just .sufficient to 

maintain the current. The intensity of the current, as measured 

by the galvanometer, was proportional to the number of cells above 

304. Thus for 305 cells the dedcxioii was 2, for 300 it was ■!, 

for 307 it was (5, and so on up to 380, or 304 + 70 for which the 

dedexion was 150, or 7(5 x l.t)7. 

From these experiments it appears that there is a kind of 

polarization of the eleetrode.s, the elcetromotivc force of which 

is c’qnal to that of 304 Danicll’s cells, and that up to this eleetro- 

motivc force the battery is occupied in establisliing this state of 

polarization. When the maximum polarization is established, the 

exoc.ss of ek'ctromotive force above that of 304 cells is devoted to 

maintaining the current according to Ohm’s Law. 

Tho law of the current in a rarefied gas is therefore very similar 

to tho law of t.he current througli an electrolyte in which we have 

to talco account of the polarization of the eleetrodc‘.s. 

In connexion with this subject we should study Thomson’s residts, 

described in Art. 57, in wliieb the elecli'omotivc force required 

to iiroducc a spark in air was found to be proportional not to the 

distance, but to the distance together with a constant quantity. 

The electromotive force con’osponding to this constant quantity 

may be regarded ns tho intensity of polarization of the electrodes, 

370,] MM. Wiedemann and lliihlmann have recently f invosti- 

• /Vor, n, S., .Jail, 

t IWriihlc do' I'iiinii/I. t'nc/m, dfidlgi^hujl, Oet. 'JO, IK“1, 
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gated the passage of electricity tliroiigli gases. The cleetrio current 

was produced by Holtz’s maehino, and the discharge took place 

between spherical electrodes w ithin a melallic vessel containing 

rarefied gas. The discharge was in general discontinuous, and the 

interval of time between successive discharges was measured by 

means of 11 mirror revolving along with the axis of Holtz’s machine. 

The images of the scries of discharges were observed by means of 

a heliometer with a divided object-glass, which was adjusted till 

one image of each discharge coincided with the other image of 

the next discharge. By this method very consistent results were 

obtained. It was found that the quantity of ebn.-tricify in each 

discharge is independent of the strength of the current and of 

the material of the electrodes, and that it depends on the nature 

and density of the gas, and on the dislance and form of the 

electrodes. 

These researches confirm the statement of Faraday* that the 

electric tension (see Art. 4 8) required to cause a disruptive discharge 

to begin at the electrified surface of a conductor is a little less 

when the electrification is negative than when it is positive, but 

that when a discharge docs take place, much more electricity passes 

at each discharge when it begins at a positive surface. They also 

tend to support the hypothesis stated in Art. 5 7, that the stratum 

of gas coudomsed on the surface of the electrode plays an important 

part in the phenomenon, and they indicate that this condensation 

is greatest ut the jiositivc electrode. 

» iV'p. jRa., 1501. 

vor,. t. 
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