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PREFACE.

THE present treatise is the outcome of lectures delivered in

McGill University during the last ten or twelve years, and

although intended primarily for the use and convenience of

the student of hydraulics, it is hoped that it may also prove

acceptable to the engineer in general practice.

In order to render the treatment of the subject more com-

plete, free reference has been made to standard authors on the

subject. The examples introduced to illustrate the text have

also been selected in part from the works of such well-known

writers as Weisbach, Osborne Reynolds, and Cotterill, but the

greater number are such as have occurred in the course of the

author's own experience. The tables of coefficients of discharge
have been prepared from the results of experiments carried

out in the Hydraulic Laboratory of the University. These

experiments are still being continued and may probably form

the subject of a special paper.
The author desires to acknowledge many suggestions

offered by Professor Bamford, and to express his deep obliga-

tion to Professor Chandler for much labor and time given to

the revision of proof sheets.

HENRY T. BOVEY.

MONTREAL, November, 1895.
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HYDRAULICS.

CHAPTER I.

FLOW THROUGH ORIFICES, OVER WEIRS, ETC.

I. Fluid Motion. The term "
hydraulics," as its derivation

(vdoop, water
; avXos, a tube or pipe) indicates, was primarily

applied to the conveyance of water in a tube or pipe, but its

meaning now embraces the experimental theory of the motion

of fluids.

The motion of a fluid is said to be steady or permanent
when the molecules successively arriving at any given point
are animated with the same velocity, are subjected to the

same pressure, and are the same in density. As soon as the

motion of a stream becomes steady a permanent regime is said

to be established, and hydraulic investigations are usually

made on the hypothesis of a permanent regime. With such

an hypothesis any portion of the fluid mass which leaves a

given region is replaced by a like portion under conditions

which are identically the same.

The terms "steady motion" and "
permanent regime" are

often considered to be synonymous.
The general problem of flow is the determination of the

relation which exists at any point between the density, press-
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ure, and velocity of the molecules which successively pass that

point.

The actual motion of a fluid is exceedingly complex, and

in order to simplify the investigations various assumptions are

made as to the nature of the flow.

2. (a) Stream-line Motion. The molecules may be re-

garded as flowing along definite paths, and a succession of such

molecules will form a continuous fluid rope which is termed an

elementary stream or a fluid filament, or, if the motion is steady
and the paths therefore fixed in space, a stream-line.

Experiment shows that the velocity of flow in any cross-

section varies from point to point, and hence it is often assumed

that the section is made up of an infinite number of indefi-

nitely small areas, each area being the section of a fluid

filament.

(b) Motion in Plane Layers. In this motion it is assumed

that the molecules which at any given moment are found in a

plane layer will remain in a plane layer after they have moved
into any new position.

(c) Laminar Motion. On this hypothesis the stream is

supposed to consist of an infinite number of indefinitely thin

layers. The variation in velocity from point to point of a

cross-section may then be allowed for by giving the several

layers different velocities based upon the law of fluid resistance

between consecutive layers.

3. Density; Compressibility; Head; Continuity.

The weight of ice per cubic foot at 23 F. is 57.2 Ibs.;

"freshwater" " " "
39.2 F. is 62.425 Ibs.;

" " "salt " " " " "
53 F. is 64 Ibs.;

"fresh " " " " "
53 F. is 62.4 Ibs.,

or 1000 kilog. per cubic metre.

The following table from the article on "
Hydromechanics

"

in the Encyc. Brit, gives the density of water at different

temperatures:
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Temperature.
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AV
is called the cubical compression, and

V -- is termed the elasticity of volume. This is sensibly

constant.

The vertical distance between the free surface of a mass of

water and any datum plane is called the head with respect to

that plane. If the water extends down to the level of the

plane, a pressure/ is produced at that level, and the value ofpr

so long as the water is at rest, is given by the equation

^ = A+4,
u -fir.J^

w being the. specific weight of the water and / the pressure
at the free surface. Thus the pressure may be measured in

terms of the head, and hence the expression "head due to

pressure or pressure head."

The mean value of the atmospheric pressure is 14.7 Ibs. per

square inch.

A , , ( is equivalent toA head Of
a pressure of

2.3 ft. of fresh water I Ib. per sq. in.

2.25 ft. of salt water I Ib. per sq. in.

About 34 ft. of fresh water 14.7 Ibs. per sq. in.

"
33 ft. of salt

"
14.7 Ibs. per sq. in.

A head of water is a source of energy. A volume of water

descending from an upper to a lower level may be employed
to drive a machine which receives energy from the water and

utilizes it again in overcoming the resistances of other machines

doing useful work.

Let Q cu. ft. of water per second fall through a vertical

distance of 1i ft. Then the total power of the fall = wQIi

ft.-Ibs. = h. p., w being the weight of the water in

pounds per cubic foot.

Let K be the proportion of the total power which is

absorbed in overcoming frictional and other resistances. Then
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the effective power of the fall = ze/(2^ (
r ~ ^0> and the efficiency

is i - AT.

Imagine a bounding surface enclosing a space of invariable

volume in the midst of a moving mass of fluid. The principle
of continuity affirms that in any interval of time the flow into

the space must be equal to the outflow during the same inter-

val. Giving the inflow a positive and the outflow a negative

sign, the principle may be expressed symbolically by

= o.

The continuity of a mass of water will be preserved so long
as the pressure exceeds the tension of the air held in solution.

It is on account of the pressure of this air that pumps cannot

draw water to the full height of the water barometer, or about

34 ft.

Generally speaking, the pressure at every point of a contin-

uous fluid must be positive. A negative pressure is equivalent
to a tension which will tend to break up the continuity pre-

supposed by the formulae
;
and should negative pressures result

from the calculations, the inference would be that the latter

.are based upon insufficient hypotheses.
The pressure in water flowing through the air cannot at

any point fall below the atmospheric pressure. There are cases,

however, as in water flowing through a closed pipe (Art. 3,

Chap. Ill), in which the pressure may fall below this limit and

become almost nil. But there is then a danger of the air held

in solution being set free, thus tending to interrupt the

continuity of the flow, which may be wholly stopped if the air

is present in sufficient volume.

Consider a length of a canal or stream bounded by two

normal sections of areas A lf A t ,
and let vlt v^ be the mean

normal velocities of flow across these sections. Then by the

principle of continuity

and the velocities are inversely as the sectional areas.

Again, assume that a moving mass of fluid consists of an



O HYDRA ULICS.

infinite number of stream-lines, and consider a portion of the

mass bounded by stream-lines and by two planes of areas A lt

AI at right angles to the direction of flow. If v^ ,
^

2
are the

mean velocities of flow across the planes,

V^AI = Q = VyA 9
if the fluid is incompressible.

Assuming that the fluid is compressible, and that the mean

specific weights at the two planes are w
l
and w

9 ,
then the

weight of fluid flowing across A
l
is equal to the weight which

flows across A^ ,
since the weight of fluid between the two

planes remains constant. Hence

4. Bernouilli's Theorem. This theorem is based on the

following assumptions :

(1) That the fluid mass under consideration is a steadily

moving stream made up of an infinite number of stream-lines

whose paths in space are necessarily fixed.

(2) That the velocities of consecutive stream-lines are not

widely different, so that viscosity, or the frictional resistance

between the stream-lines, is sufficiently small to be disregarded.

(3) That the fluid is incompressible, so that there can be no

internal zvork due to a change of volume.

In any given stream-line let a portion AB, Fig. I, of the

fluid move into the position A'B' in / seconds.

B B'

i'

'

FIG. i.

Let a
l , p l ,

v
l ,

z
l
be the normal sectional area, the intensity

of the pressure, the velocity of flow, and the elevation above
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a datum plane ZZ of the fluid at A. Let tf
a ,/3 ,

z>
2 , z^ denote

similar quantities at B.

Since the internal work is nil, the work done by external

forces must be equivalent to the change of kinetic energy.
Now the external work
= the work done by gravity -f- the work done by pressure.

But when the fluid AB passes into the position A'ft', the

work done by gravity is equivalent to the work done in the

transference of the portion BB'
,
and therefore, t beng the

time.

the work dw by gr^^ty = wa^AA'-z^ wa^-BB'
'

= wQt (*>-*,),

since AA' = vj, BB' = vj, and a
l
v

l
= Q = a.^-

Again, the work done by the pressures on the ends A and B

The work done by the pressure on the surface of the stream-

line between A and B is nil, since the pressure is at every point
normal to the direction of motion.

The change of kinetic energy

= kinetic energy of A'B' kinetic energy of AB
= kinetic energy of BB' kinetic energy of AA'

,

since the motion is steady, and there is therefore no change in

the kinetic energy of the intermediate portion A'B. Thus,

w v w V
the change of kinetic energy = - a^BB'^- -- a.AA

w

Hence, equating the external worl{ and the change of kinetic

energy,

>Qt (*,
-

*,) + & (A ~ A) = & --
,
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which may be written in the form

w v? ,
w v? . .

,+/>,+ -
-y
= ^,+A + --> ... (i)

But A and B are arbitrarily chosen points, and therefore,

at any point of a stream-line, the motion being steady and

the viscosity nil, the gradual interchange of the energies due

to head, pressure, and velocity is expressed by the equation
w V* fa i

W2 j_ p _L = wH, a constant ; / ... . (3)~r r \ g 2 VJ/
+/ I Is,

**
I V^ \Mfrb*' f - vXm r- J V -i

or n -iVj / /

z being the elevation fef the
v
point above the datum line, / the

pressure at the point, w the specific weight, and v the velocity

of flow. This is Bernouilli's theorem.

Thus the total constant energy of wH ft.-lbs. per cubic foot

of fluid, or H ft.-lbs. per pound of fluid, is distributed uniformly

along a stream-line, wH being made up of wz ft.-lbs. due to

w z?

head,/ ft.-lbs. due to pressure,
--

ft.-lbs. due to velocity,

and H being made up of z ft.-lbs. due to head, ft.-lbs. due

v*
to pressure, and ft.-lbs. due to velocity.

Assuming that

(a) the motion is steady,

(ft)
the frictional resistance may be disregarded,

(c) the fluid is incompressible,

Bernouilli's theorem may be applied to currents of finite size

at any normal section, if the stream-lines across that section

are sensibly rectilinear and parallel. There is then no interior

work due to a change of volume, and the distribution of the

pressure in the section under consideration will be the same as
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if the fluid were at rest, that is, in accordance with the hydro-

static law. This is also true whether the flow takes place under

atmospheric pressure only, or whether the fluid is wholly or

partially confined by solid boundaries, as in pipes and canals,

or whether the flow is through another medium already occu-

pied by a volume of the fluid at rest or moving steadily in a

parallel direction. In the last case there must necessarily be

a lateral connection between the two fluids, but the pressure

over the section must follow the hydrostatic law throughout
the separate fluids, and there can be no sudden change of

pressure at the surface of separation, as this would lead to an

interruption of the continuity.

The hypotheses, however, upon which these results are based

are never exactly realized in actual experience, and the results

can only be regarded as tentative. Further, they can only ap-

ply to an indefinitely short length of the current, as the viscosity,

-which is proportional to the surface of contact, would other-

wise become too great to be disregarded.

5. Applications. If a glass tube, open at both ends, and

called a piezometer (TrieCeiv, to press ; jterpor, a measure)
is inserted vertically in the cur-

rent, Fig. 2, at a point N, z ft.

above the point O in the datum

line, the water will rise in the

tube to a height MN dependent

upon the pressure at N. The
effect of the eddy motion produced
at N by obstructing the stream-

lines may be diminished by mak-

ing this end of the tube parallel

to the direction of flow. Neglect-

ing altogether the effect of the o

eddies, and taking/ to be the in-
FlG - 2 -

tensity of the pressure at TV, and/ the intensity of the atmos-

pheric pressure, then,

w w
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w w

= ON+ MN + -
1 w

= QM + -.
1 w (5)

The locus of all such points as M is often designated
" the

line of hydraulic gradient," or the " virtual slope," terms also-

used when friction is taken into account.

Let the two piezometers AB, CD, Fig. 3, be inserted in the

current at any two points B and D, z^ ft., and z
%

ft. respect-

ively above the points E and F in the datum line.

FIG. 3.

Let /, be the intensity of the pressure at B in pounds per

square foot, /2
that at D, and let the water rise in these tubes

to the heights BA, DC. Then

w
and therefore

= z
l+, and l

w w w

+ - + =^-^=^' . . (6)

the line AG being parallel to the datum line.



FLOW THROUGH ORIFICES, OVER WEIRS, ETC. II

Thus
, (zl -|- J

Ls
2 +

J
is equal to the fall of the free

surface level between the points B and D.

Let v
l ,

7'
2 be the velocities of flow at B and D. Then by

Bernoulli's theorem

W 2g W 2g

and therefore the fall of free surface level between B and D

(7)

W 2g

Equation (7) may also be written in the form

V? V?
,

I
,

Pi\ ( . Pl\
V? . rr SQ\- = r (Zi H J l*i H }

= r k . (8)
2g 2g ^ W' * W' Zg

so that the velocity at D is equal to that acquired by a body
with an initial velocity v

l falling freely through the vertical

distance CG.

Froude illustrated Bernouilli's theorem experimentally by
means of a tube of varying section, Fig. 4, conveying' a current

FIG. 4.

between two cisterns. The pressure at different points along
the tube is measured by piezometers, and it is found that the
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water stands higher and the pressure is therefore greater, where

the cross-section is larger and the velocity consequently less.

If the section of the throat at A is such that the velocity is

that acquired by a body falling freely through the vertical dis-

tance h between A and the surface level of the water in the

cistern, and if / be the pressure at A, and z the elevation of A
above datum, then, neglecting friction,

W 2g W

But v* = 2gh, and therefore / = p Q ,
so that the pressure at

A is that due to atmospheric pressure only. Thus, a portion
of the pipe in the neighborhood of A may be removed, as in

the throat of the injector.

Again, let the cross-section in the throat at B be less than

that at A. The pressure at B will be less than the atmospheric

pressure, and a column of water will be lifted up in the curved

piezometer to a height k' .

Let tf
, ,
z

l ,p l ,
v

l
be the sectional area, elevation above datum,

pressure, and velocity at B.

Let #
3 , z^ ,pi ,

z>
a be similar symbols at E.

Then

I J ,, + A +^+A ^ = ,
l + A_*' + !i

2

. (9)V W 2g W '

2g W '

2g

Put //, = #,-[- -, the height above datum to which the
w

water is observed to rise in the piezometer inserted at E, and

also let #;=*, + A - h'. Thenw

since ap^ = a
l
v

l , #a being the sectional area at E. Therefore

ft., a,
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an equation giving the theoretical velocity of flow at the throat

B. Hence the theoretical quantity of flow across the section

at B is

- a (10)

This is the principle of the Venturi water-meter and also of

the aspirator.

The actual quantity of flow is found by multiplying equa-
tion (10) by a coefficient C whose value is to be determined

by experiment.
If the pressure at E is positive, then //, is merely the

height to which the water is observed to rise in an ordinary

piezometer inserted at E.

Again, Froude also points out that when any number of

combinations of enlargements and contractions occur in a pipe,

the pressures on the converging and diverging portions of the

pipe will balance each other if the sectional areas and directions

of the ends are the same.

6. Orifice in a Thin Plate. If an opening is made in the

wall or bottom of a tank containing water, the fluid particles

FIG. 6. FIG. 7.

immediately move towards the opening, and arrive there with

a velocity depending upon its depth below the free surface.

The opening is termed an "
orifice in a thin plate

" when the

water springs clear from the inner edge, and escapes without

again touching the sides of the orifice. This occurs when the

UNIVERSITY
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bounding surface is changed to a sharp edge, as in Fig. 5, and

also when the ratio of the thickness of the bounding surface

to the least transverse dimension of the orifice does not exceed

a certain amount which is usually fixed at unity, as in Figs.

6 and 7.

Owing to the inertia acquired by the fluid filaments there

will be no sudden change in their direction at the edge of the

orifice, and they will continue to converge to a point a little

in front of the orifice, where the jet is observed to contract to

the smallest section. This portion of the jet is called the vena

contracta or contracted vein, and the fluid filaments flow across

the minimum section in sensibly parallel lines, so that here, if

the motion is steady, Bernouilli's theorem is appli-

c cable.

The dimensions of the contracted section and
F its distance from the orifice depend upon the form

and dimensions of the orifice and upon the head

of water over the orifice.

Let Fig. 8 represent the portion of the jet be-

tween a circular orifice of diameter AB and the

contracted section of diameter CD, EF being the distance

between AB and CD. Then, taking the average results of a

number of observations, it is found that AB, CD and EF are

in the ratios of 100 to 80 to 50.

Thus the areas of the contracted section and of the orifice

are in the ratio of 16 to 25, and, generally speaking, this is

assumed to be the ratio whatever may be the form of the

orifice.

7. Torricelli's Theorem. Let Fig. 9 represent a jet issu-

ing from a thin-plate orifice -in the side of a vessel containing
water kept at a constant level AB.

Let XXbz the datum line, J/A^the contracted section, and

consider any stream-line mn, m being in a region where the

velocity is sensibly zero, and n in the contracted section. Then

by Bernouilli's theorem, the motion being steady,
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/, /, being the pressures at n and ;, and z
t
2

l
their elevations

above datum. Hence

(2)

FIG. 9.

If the flow is into the -atmosphere,

/ the atmospheric pressure = / ,
and

p, = w.Om +/.,

O being the point in which the vertical through m intersects

the free surface. Thus,

= z . z + Om =
2g (3)

h being the depth of n below the free surface.

The result given by equation (3) was first deduced by Tor-

ricelli.

The depth below the free surface is very nearly the same

for all points of the contracted vein, and the value of v as

given by (3) is taken to be the theoretical mean velocity of

flow across the contracted section.

Equation (3) is equivalent to the statement that when the

orifice is opened the hydrostatic energy of the water, viz., // ft.-

7'
2

Ibs. per pound, is converted into the kinetic energy of
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ft.-lbs. per pound. Thus, if the jet is directed vertically upwards,
it will very nearly rise to the level of the free surface, and would

reach that level were it not for air resistance, or for viscosity, or

for friction against the sides of the orifice, or for a combination

of these retarding causes.

If the jet issues in any other direction, it describes a para-

bolic arc of which the directrix lies in the free surface.

Let OTV, Fig. 10, be such a jet, its direction at the orifice

FIG. 10.

at O making an angle a with the vertical. With a properly
formed orifice a greater or less length of the jet will have the

appearance of a glass rod, and if this portion were suddenly
solidified and supported at the ends, it would stand as an arch

without any shearing stress in normal sections.

Again, the horizontal component of the velocity of flow at

any point of the jet is constant (= v sin
or),

so that, for the

unbroken portion of the jet, equidistant vertical planes will

intercept equal amounts of water, and the height of the C. G.

of the jet above the horizontal line O V will be two thirds of

the height of the jet.

8. Efflux through an Orifice in the Bottom or in the Side

of a Vessel in Motion. If a vessel containing water zit. deep
ascend or descend vertically with an acceleration /, the press-

ure/ at the bottom is given by the equation

w
-*/ = p - p - wz

y
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being the atmospheric pressure. Therefore

/-A
w =( 4

If now an orifice is opened at

the bottom, the velocity of efflux v

is still taken as due to the head of

the pressure /, and therefore by
Torricelli's Theorem

Let W, be the weight of the

vessel and water, and let the vessel be connected with a

counterpoise of weight W^ by meansof a rope passing over a

pulley. Then by Newton's second law of motion, and neglect-

ing pulley friction,

g~ W, W, W.+ Wt'

T being the tension of the rope.

Next let a cylindrical vessel,

Fig. 12, of radius r and containing

water, rotate with an angular veloc-

ity oo about its axis. The surface

of the water assumes the form of a

paraboloid of which the latus

2fT
rectum is ^. If an orifice is made

GO

at Q in the side of the vessel, the

water will flow out with a velocity

v due to the head of pressure at
FIG. 12.

the orifice. This head is PQ, and

PQ = ON z =
CA)

z being the vertical distance OM between the orifice and the

vertex of the paraboloid. Hence by Torricelli's theorem
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*'

or

9. Application to the Flow through a Frictionless Pipe
of Gradually Changing Section (Fig. 13). Let the pipe be

supplied from a mass of water of which the free surface isH ft.

above datum.

Let a
l9 pv v

v
be the sectional area, pressure, and velocity of

flow at any point A, z
l
ft. above datum and h^

ft. below the free surface.

Let#a ,/3 ,
z/

3 be similar symbols for a second point B, ^ ft.

above datum and h^ ft. below the free surface.

FIG. 13.

Then by the condition of continuity

a&i = atvt ,

and by Torricelli's theorem

2g

/J
t

IV
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and

2g
~ *" W

Hence

so that Bernouilli's theorem, viz.,

+ - + 2 = &+ = a constant,2- ' w ' ' w

holds true for the assumed conditions.

10. Hydraulic Resistances (a) Coefficient of Velocity.

In reality, the velocity v at the vena contracta is a little less

than V2gh (Art. 7, eq. 3) and the ratio of v to V
'

2gh is called

the coefficient of velocity, and may be denoted by cvt so that

v = cv

Again, the equations for the velocity of discharge in the

case of moving vessels now become

2g
and

A mean value of cv for well-formed simple orifices is .974.

An easy method of determining the value of cv , experi-

mentally, may be indicated by reference to the jet represented
in Fig. 10, p. 1 6.

Measure the vertical and horizontal distances from the

orifice of any two points A, B in the jet.

Let
jj>,, x^ denote the co-ordinates of A.

Let yv x^ denote the co-ordinates of B.

Then if t
l
is the time occupied by a fluid particle in moving

from the orifice to A, and t^ the time from the orifice to B,
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v sin a . t
l ; j^ = v cos <* . /,

-- '/
1

2
;

^
= v sin a . /

3 ; J2
= ^ cos ar . /

3
--

gt*.

x
,=^ cot a-

, .
a ,

2 z;
2
sin

2 a

P-= x cot a -
2

2 v* sin
3 a'

By means of the two last equations

and

2 sin a (xl
cot a yj

so that

*t

'

Hence /> ,

and

4^ sin
2 a (x l

cot a y^
'

and since the values of x^ yv x y^ are known, equation I

will give the value of a, and equation 2 the value of cv .

Note. If the jet issues from the orifice horizontally, a = 90, and the

last equation becomes

so that the position of one point only relatively to the orifice need be

observed.

(b) Coefficient of Resistance. Let hv be the head required

to produce the velocity v. Let hr be the head required to

overcome the frictional resistance. Then

h, the total head, hv -\- hr
= hv (i -}- cr),

where hr = trhv .
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cr is termed the coefficient of resistance, and is approxi-

mately constant for varying heads with simple sharp-edged
orifices. Again,

Hence

and therefore

so that cr can be found when cv is known, and vice versa.

(c) Coefficient of Contraction. The ratio of the area a of

the vena contracta to the area A of the orifice is called the co-

efficient of contraction, and may be denoted by cc .

The value of cc must be determined in each case, but in

sharp-edged orifices an average value of cc ,
as already pointed

out, is
- = .64. C<zteris paribus, cc increases as the orifice area

and the head diminish.

The following are some of the conditions which tend to

modify the value of cc :

(1) The contraction is imperfect and will be suppressed
over the lower edge of a square orifice at the bottom of a ves-

sel, and over a side as well if the orifice is in a corner. In fact,

the contraction is more or less imperfect for any orifice within

three diameters from the side or bottom of the vessel. Thus,

the cross-section of the vena contracta is in-

creased, and experiment shows that the dis-

charge is also increased.

(2) ce is increased or diminished according
as the surface surrounding the orifice is convex

or concave to the interior of the vessel.

(3) The contraction is imperfect and ce is FIG. 14.

increased if the orifice is placed in a confined

part of the vessel or if it approaches the orifice through a chan-

nel, as in Fig. 14, the velocity of the fluid filaments being

thereby considerably increased.
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(4) If the inner edge of an orifice is rounded, as shown by

Figs. 15 and 16, the contraction is more or less imperfect.

FIG. 15. FIG. 16.

The value of ce varies from .64 for a sharp-edged orifice to very

nearly unity for a perfectly rounded orifice.

(5) The contraction is incomplete when a border or rim is

placed round a part of the edge of the orifice, projecting in-

wards or outwards. According to Bidone,

and

cc = .62(1 + .152 -)
for rectangular orifices,

ce = .62! i -j- .128
-)

for circular orifices,

n being the length of the edge of the orifice over which the

border extends, and p the perimeter of the orifice.

(6) If the sides of the orifice are curved so as to form a

bell-mouth of the proportions shown by Fig. 17, and corre-

j*
1-.6

FIG. 17.

^

spending approximately to the shape of the vena contracta,

the whole of the contraction will take place within the bell-
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mouth, and cc is unity if the area of the orifice is taken to be,

the area of the smaller end.

For such an orifice Weisbach gives the following table of

values of c, :

Head over Orifice in Feet.

.66

i .64 ,

11.48

5577

FIG. 18.

cv .

959

967

975

994

337-93 994

The dimensions of the jet at the contracted section or at

any other point may be directly measured by
means of set-screws of fine pitch, arranged
as in Fig. 18. The screws are adjusted so as

to touch the surface of the jet, and the dis-

tance between the screw-points is then meas-

ured.

(d) Coefficient of Discharge. If Q is the

quantity of flow per second across the con-

tracted section, then

cccvA V2gh = cA

where c cccv is the coefficient
of/discharge,j

and is to be de-

termined by experiment.
The values of c in thousandths for orifices of different

forms, given in tables A and B, have been deduced by the

author from an extended series of experiments carried out in

the hydraulic laboratory, McGill University.

The experimental tank is about 30 ft. in height and its

horizontal section is square, with an interior area of 25 sq.

ft. The inside faces of the tank are plumb, and there are

no projections to interfere with the stream-lines.

The letters T and S at the head of the columns respec-

tively indicate that the orifice is in a plate of thickness .16 in.,

or is sharp-edged.
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TABLE A.

OF VALUES OF c FOR ORIFICES OF .197 SQ. IN. IN AREA.
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The jet springs clear from the orifice in all cases repre-
sented in Tables A and B.

The following inferences may be drawn from an inspection
of Tables A and B :

(1) The coefficient of discharge diminishes as the head in-

creases, but at a diminishing rate.

(2) The coefficients for the thick-plate orifices are in all

cases greater than the corresponding coefficients for sharp-

edged orifices, excepting in the case of the longest rectangular
orifice in Table B. Under a head of I ft. the coefficient of

discharge for this orifice still exceeds that of the same orifice

with sharp edge, but for heads exceeding I ft. the coefficient

seems to be a little less, but is practically the same. It may
be noted that the thickness of the plate is 2.56 times the

width of the orifice, and the contraction for the thick-plate

orifice is consequently increased.

(3) The coefficient for rectangular orifices seems to be

practically the same whether the longest side is vertical or

horizontal.

(4) The coefficient increases with the area of the orifice,

excepting when the head is very small. The coefficient for

orifices of small area then rapidly increases, as shown in

Table B.

(5) With rectangular orifices the coefficient increases as

the width of the orifice diminishes, i.e., as the orifice becomes

more elongated.

The two last results are in accordance with similar results

deduced by Weisbach, Buff, and others.

The coefficient of discharge is modified when the edges of

the orifices are not sharp, but have a sensible thickness, and

the formula giving the discharge may be written

Q = cA J^H>
H being the depth of the axis of the orifice below the free

surface.

II. Miner's Inch. The miner's inch is a term applied to

the flow of water through a standard vertical aperture, one

square inch in section, under an average head of 6 inches.
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Taking c = .62,

the flow = Q = .62A

= -62 x

= i cu. ft. per minute, approximately.

The term is more or less indefinite, as the different companies
in disposing of water to their customers do not always use the

FIG. 19.

same head, and the flow is thus found to vary from 1.36 to 1.73

cu. ft. for each square inch of aperture.

The aperture is usually 2 in. deep and may be of any re-

quired width, Fig. 19. The upper and lower edges of the

aperture are formed by ij-in. planks, the lower edge being 2

in. above the bottom of the channel, and the plank forming
the upper edge being 5 to 5^ in. deep, so that the head over

the centre of the aperture is from 6 to 6^ inches.

12. Energy and Momentum of the Jet.

The energy of the jet = wav ft.-lbs. per second

wav
ft.-lbs. per second

s. ^

*<
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= wavhc* ft.-lbs. per second

wavhc* , N=-- h. p. (horse-power)

p (= wh} being the hydrostatic pressure due to the head h.

w
The momentum of the jet ~ - av . v wa - = 2wakc*

< o

and this is equal to the pressure in pounds produced by the jet

against a fixed plane perpendicular to its direction. Neglect-

ing cv *, the thrust is double the hydrostatic pressure due to

the head h.

13. Inversion of the Jet. The phenomenon of the inver-

sion of the jet was first noticed by Bidone, and has been subse-

quently investigated by Poncelet, Lesbros, Magnus, Lord

Rayleigh, the author, and others. When a jet issues from an

orifice in a vertical surface, the sections of the jet at points

along its path assume singular forms dependent upon the

nature of the orifice.

Figs. 20 to 27 are from photographs (taken from the same

point) of jets issuing under the same head, viz., 12 ft., from

orifices of different forms and sizes. The dimensions of these

jets are comparable with the jets shown by Figs. 20 and 21,

which are issuing from circular orifices of I in. and J in.

diameter, respectively.

With a square orifice, Fig. 22 (side = I in.), Fig. 23 (side
=

.443 in.), and Fig. 24 (side = .25 in.), the section is a star of

four sheets at right angles to the sides.

With a triangular orifice, Fig. 25 (side = .676 in.), the sec-

tion is a star of three sheets at right angles to the sides.

In general, with a polygonal orifice of n sides the section

will be a star of n sheets at right angles to the sides.

Fig. 26 is a jet from a rectangular orifice (J in. X J in.), its

section near the orifice being a star of four sheets.

Fig. 27 is a jet from a semi-circular orifice (diar. .388 in.),



FIG. 20.

FIG. 21.

FIG. 22.

FIG. 23.

FIG. 24.

FIG. 25.

Fro. 26.

FIG. 27.
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the section near the orifice being a rounded boundary and a

single sheet at right angles to the diameter.

The changes in the form of the jet are doubtless due to the

mutual action between the fluid particles. A filament issuing

horizontally and freely at B, Fig. 28, has a velocity 2g . AB, and

FIG. 28.

describes a certain parabola BD. A filament issuing horizon-

tally and freely at a lower level C has a velocity 2g . AC, and

describes a parabola CD of less curvature than BD. Now the

two filaments cannot pass simultaneously through the point of

intersection D, and must necessarily press upon each other-

They are thus deviated out of their natural paths, and the jet

spreads out into sheets, as described above.

If the orifice is small and the head not large, the jet, on

leaving the contracted section at the orifice, spreads out

into sheets, and then diminishes to a contracted section similar

to the first, after which it again spreads out into sheets, bisect-

ing the angles between the first set of sheets, and again dimin-

ishes to a contracted section. This action is repeated so long
as the jet remains unbroken.

14. Emptying and Filling a Canal Lock. When the

head varies, as in filling or emptying a reservoir or a lock, in

filling a vessel by means of an orifice underwater, or in empty-

ing water out of a vessel through a spout, Torricelli's theorem

is still employed.
If the lock or vessel is to be filled, Fig, 29, let X sq. ft. be

the area of the water-surface when it is x ft. below the surface

of the outside water.
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If the lock or vessel is to be emptied, Fig. 30, then X sq. ft.

is the area of the water-surface when it is x ft. above the orifice.

FIG. 29. FIG 30.

In each case JIT ft. is the effective head over the orifice, and

is the head under which the flow takes place.

In the time dt the water-surface in the lock or vessel will

rise or fall by an amount dx. Then

A .dx = quantity which has entered the lock

= cA <J~2gx . dt,

A being the area of the orifice.

Hence

t =
Xdx

cA

an equation giving the time of filling or emptying the lock

between the level x and h. The value of c for submerged
orifices seems to be somewhat less than when the flow occurs

freely, but it is usual to take .6 or .625 as a mean value.

15. General Equations. Bernoulli's theorem may be

easily deduced from the general equations of fluid motion, as

follows:

Let/ be the pressure and p the density at any point whose

co-ordinates parallel to the axes are x, y, 2.

Let
, v, w be the velocities of flow at the same point

parallel to the axes, and let X, Y, Z be the accelerating forces.

Then three equations result from the principle of the equality

of pressure in all directions, viz. :
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I dp d(u) du du du du

-p-dX
^ x --^r

= x dt- uTx - v^- w^ <o

I dp d(v) dv dv dv dv

pdj=
Y ^i= Y-7t- uTx - v

-dj-
w

-dz'
&

I dp d(w) dw dw dw dw
~j~ = Z j' = Z T~ ~ u 3 v ~i w ~r\ fa}

pdz dt dt dx dy dz' u;

If the motion is steady, so that the velocity at any point is

r ^ r 4.1, v 1 4.U du dv dw
a function of the position only, then ^- = o = -=- and

dt dt dt

u, v, w may be expressed as the differential coefficients of a

function F. Thus,

dF dF dF
u = j-', v = j', w = -7-;dx dy dz

and therefore

du
d*_F_ _ ^

dy
~~

dydx
~~

dx'

du d*F _ dw
dz .

dzdx
~~

dx '

dv _ d*F _ dw
dz

~~
dzdy

~~

dy
'

Hence equations i, 2, and 3 may be written

I dp du dv dw
~~:rXu-j v-j w -7- ; ... (4)
p dx dx dx dx

i dp du dv dw
--^-=Yu-j v-r w -7-; . . . (5)
p dy dy dy dy'

i dp du dv ' dw
r- = Z u , v r w jr. . . . (6)

p dz dz dz dz ^ }
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Multiplying eq. 4 by dx, eq. 5 by dy, and eq. 6 by dz, and

adding, then

r
dy

' ' dz

Idv , . dv dv
\

vi-j-dx 4- -j-dy + -rdz\\dx '

dy
J ' dz /

/
,
dw dw

which may be written

dp- Xdx-\- Ydy+ Zdz (udu + v dv + wdw).

Integrating, and assuming the fluid to be homogeneous,

u* 4- v* 4- wz

-
^- + a constant.

Hence, if gravity is the only force, and if V is the resultant

velocity at the point, then

and the last equation becomes

P C V*
- J gdz ---\-

a constant

and therefore

= gz + a constant ;

p Fa

z -\ -I = a constant.
Pg ^g

16. Loss of Energy in Shock. An abrupt change of sec-

tion at any point in a length of piping destroys the parallelism

of the fluid filaments, breaks up the fluid, and energy is dis-

sipated in the production of eddy and other motions. The

energy thus wasted is termed "
energy lost in shock."
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In a short length of piping, where the section suddenly

changes from A'B' to EF, consider the fluid mass between the

two transverse sections AB, where the motion of the fluid fila-

FIG. 31.

ments has been undisturbed and is in parallel lines, and CD*
where the parallelism has been again re-established.

In an indefinitely short interval of time t let the mass move'

forward into the position bounded by the plane sections A'R"
and CD'.

Let # 2/,, /\ be the sectional area, velocity of flow, and mean

intensity of pressure at A'B'.

Let a
9 , ^,, A be similar symbols for CD'.

Let z, , <8-
2
be the elevation above datum of the C. G.s of

the sectional areas at A'B' and CD'.
Let //be the vertical distance between the C. G.s of the areas

Let P be the mean intensity of pressure over the annular

surface between F and A'B'.

The resultant force acting in the direction of motion upon
the mass of fluid under consideration

= component of weight of mass in this direction

-f- pressure on A'B'

-[-pressure on annular surface between EF and A'B'

pressure on CD'
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~ l

assuming that P= fi l ,
or that the mean intensity of pressure is

unchanged throughout the whole of the section EF.

The normal reaction of the pipe-surface between EF and

CD' has no component in the direction of motion, and fric-

tional resistances are disregarded.
Hence the impulse of the resultant force

(p,
- A) /

= change of momentum in the same direction

of the fluid masses CDD'C' and ABB'A',

since the momentum of the mass between

A'B' and CD remains unchanged

w w= -a,v,.v,t--a lv,.v l
t

IV= - a&S - v^t,
o

since by the condition of continuity

a
l
v

l
= a^.

Dividing throughout by the factor waj, the equation be-

comes

* ,/, A < ^.
z. z n H = --

,1 w w g g

which may be written in the form

Now the pipes are nearly always axial, and in such case

h = o, so that the last equation becomes

.A ,
V = - A

i

.'
,

(.-.)'
'~*~W~r 2g

' *~f~W~r 2g~T 2g
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If there had been no abrupt change of section, or if the

change between A'

B' and CD had been gradual, then no in-

ternal work would have been done in destroying the parallelism

of the fluid filaments, and no energy wasted. Therefore, by
Bernoulli's theorem, the relation

would have held good.

Thus, ^-2--- ft.-lbs. of energy per pound of fluid is the

loss in shock between A'B' and CD.

Experiment justifies the assumption P =pl
.

17. Mouthpieces. (a) Bordas Mouthpiece. This is merely
a short pipe projecting inwards, as in Fig. 32, representing

FIG. 32.

a jet flowing through a re-entrant mouthpiece of sectional

area A, fixed in the vertical side of a vessel of constant hori-

zontal section and containing water kept at a constant level.

The mouthpiece is as long as will allow of the jet springing
clear from the end EF without adhering to the inside surface.

The velocity of the fluid molecules along AC and DK is

sufficiently small to be disregarded, so that the pressure over

this portion of the vessel is distributed in accordance with
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the hydrostatic law. The same may also be said of the pressure
on the remainder of the vessel's surface.

Again, the only unbalanced pressure is that on the surface

HG immediately opposite the mouthpiece, and the resultant

horizontal force in the direction of the axis of the mouthpiece

= (A + wti)A pQ
A = whA,

h being the depth of the axis below the water-surface and /a

the intensity of the atmospheric pressure.

The jet converges to a minimum or contracted section MN
of area a.

In a unit of time let the fluid mass between AB and MN
take up the position bounded by A 'B and M'N' . Then

whA = impulse of force in direction of motion
= change of momentum in same direction in a unit

of time.

= difference between the momenta of MNN'Mr

and ABB'A', since the momentum of the mass

between A'B' and MN remains unchanged
= momentum of MNN'M' ,

since the momentum of

ABB'A' is vertical

w w= av . v = av ,

g g

v being the mean velocity of flow across the contracted section.

Hence

w w
whA = av = a. 2gh,

g g
and therefore

A 2a,

or

1 a
- = -j = coefficient of contraction.
2 A

This result has been very closely verified by experiment, the

coefficient having been found to be .5149 by Borda, .5547 by
Bidone, and .5324 by Weisbach.
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Borda's mouthpiece gives a smaller discharge than a sharp-

edged orifice, but a discharge which is much more uniform, and

hence it is generally used in vessels from which water is to be

distributed by measure.

Note. Let Fig. 33 represent a jet flowing through a re-

entrant mouthpiece of sectional area A fixed in the sloping

side of a reservoir containing water kept at a constant level, and

suppose that the reservoir is of such size that GHKL may
represent a cylindrical fluid mass coaxial with the mouthpiece
and so large that the velocity at its surface is sensibly nil.

Let ti, h be the depths below the water-surface of the C. G.'s

of the areas GH and KL, respectively.

T7\.i

FIG. 33-

Then the resultant force along the axis of the mouthpiece

pressure on GH pressure on CK and on DL

pressure on EF
-f- component of the weight of the fluid

mass GHKL

(p o _[_ wh f

)
area GH (p + wJi) (area CK

'

+ area DL)

p, . area EF+ w . area GH . GK . -75^-1 very nearly
LrK.

whA.
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Hence, in a unit of time,

whA = impulse of this force

= change of momentum in direction of axis

w w w
av . v = av = a . 2gh,

g g g

a being the area of the contracted section, while h is also very

approximately the depth of its C.G. below the water-surface.

Thus, as before,

the coefficient of contraction = = -.
A 2

(b) Ring-Nozzle. The ring-nozzle (see Fig. 34) is often

used with a fire-engine jet, and

consists of a re-entrant pipe of

sectional area #, fixed in a pipe
of sectional area av The length
of the re-entrant portion is such

that the water springs clear from

the inner end and, without again

touching the surface of the

. mouthpiece, converges to a mini-

FIG. 34 mum or contracted section of

area a at MN.
Consider the fluid mass between MN and a transverse sec-

tion AB, and in a unit of time let it move into the position
bounded by the planes MN1 and A'B'.

It is assumed that the motion is steady and that there is no-

internal work due to the production of eddies or other motions.

Let /> , v be the intensity of the atmospheric pressure and

the velocity at MN.
Let p^ , v l

be the mean intensity of pressure and the veloc-

ity at AB.
Let P be the mean intensity of the pressure over the annu-

lar surface EF, GH.
Let #

,
2

l
be the elevations above datum of the C. G.s of

the sections MN and AB.



FLOW THROUGH ORIFICES, OVER WEIRS, ETC. 39

Then

ow.fo - *.) +P& -
P(a,

-
a,) p.a,

impulse in direction of motion

change of momentum in same direction in a unit of time

difference of the momenta of the fluid masses MNN'M' and
ABB'A'

~(av* - a,*,")-

Assuming that P = piy the last equation becomes

IV

wa,(2 l

-
*.) + a,(p,

-
p.) = (av* a,v*). . . (i)

o

By Bernoulli's theorem,

A *>? p. v*

and therefore

W 2g

Now s, z is very small and may be disregarded without

sensible error, and then by eqs. (i) and (2)

v* v? _ pl p _ i av*

2g w
~
g a,

Hence

2
_

a
~

av* av
~~

aa a*av*
~~

a

since a
9
v

t
= av.

If the sectional area #a
of the pipe is very large as compared

with a, so that -- may be disregarded without sensible error,

then = -, and therefore the coefficient of contraction
a, a

= = -, as before.
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(c] Cylindrical Mouthpiece. Whe-n water issues from a

cylindrical mouthpiece (see Fig. 35) at least two to two and
one half diameters in length, the

jet issues full bore or without

contraction at the point of dis-

charge.

If A be the sectional area of

the mouthpiece, h the depth of

its axis below the water-surface,

and Q the amount of the dis-

charge. Then experiment shows

that

Q = .S2A |/^. . (i)

The coefficient .82 is the pro-
duct of the coefficients of veloc-

ity and contraction, but the co-

efficient of contraction is unity,
FIG 35.

and therefore the coefficient of velocity is .82. Now the

mean coefficient of velocity in the case of a simple sharp-

edged orifice is .947, and the difference between .947 and .82

cannot be wholly accounted for by frictional resistances, but

is in part due to a loss of head. In fact, the water as it clears

the inner edge of the mouthpiece converges to a minimum sec-

tion MN of area a and then swells out until at M'N' it again
fills the mouthpiece.

Energy is wasted in eddy motions between MN and M'N',
where the action is similar to that which occurs at an abrupt

change of section.

Let /, v be the intensity of the pressure and the mean

velocity of flow at the point of discharge.
Let />, ,

v
1
be similar symbols for the contracted section MN.

Let /> be the intensity of the atmospheric pressure.

Remembering that is the loss of head "due to

shock
"
between MN and M'N, then by Bernoulli's theorem

(2)
,
A = A v = /_, v

"

W ~ W '

2g W*2f 2g
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Hence

W 2g
and

(I-)'!

where 4. = coefficient of contraction = =
. Therefore

an equation giving the velocity of flow at the point of discharge.

If the discharge is into the atmosphere,^ =/ and equation

4 becomes

* '

where

/ \.

1--IJ
(5)

^.=-+(7,-.)'

If cc = .62, then cv = .85, while experiment gives .82 as

the value of cv . The small difference between .85 and .82 is

probably due to frictional resistance. The value .82 for cv

makes cc approximately .617.

Again, the discharge from a simple sharp-edged orifice of

same sectional area as the mouthpiece is .62A V2gh, or more

than 24 per cent less than the discharge from the cylindrical

mouthpiece..
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The loss of head between MN and M'N'

(by eqs. 5 and 6)

= h(i O = h X .3276

=
, approximately.

Thus the effective head is only \h, instead of h.

By eq. 3 the difference between the pressure-heads at

MN and at the point of discharge

= . h = //
-

w

= ^, very nearly.

Now if one end of a tube is inserted in the mouthpiece at

the contracted section (Fig. 35) and the other end immersed

in a vessel of water, the water will at once rise to a height /z,
in

the tube, showing that the

pressure at the contracted

section is less than that due to

the atmosphere. By careful

measurement it is found that

h^ is very nearly equal to \h y

which verifies the theory.

(d] Divergent Mouthpiece.

Suppose that for the cylin-

drical mouthpiece in (c) there

I is substituted a divergent
FIG - 36. mouthpiece of the exact form

of the issuing jet (see Fig. 36), Then
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(1) The mouthpiece will run full bore.

(2) There will be no loss of head between the minimum
section MN and the plane of discharge AB, as there is now no

abrupt change of section.

Hence by Bernoulli's theorem, and retaining the same

symbols as in (c),

=+ = + (.)W W 2g W 2g

If the discharge is into the atmosphere,/ = / ,
and therefore

v* = 2gh\ .... '. . . . (2)

or introducing a coefficient cv (= .98, nearly, for a smooth

well-formed mouthpiece),

and the discharge is

. , ;, ._., . (4)

From the last equation it would appear as if the discharge
would increase indefinitely with A, but this is manifestly

impossible.

In fact, by eq. I, the flow being into the air, and taking

, (c)W W 2g\V*

since av^ = Av. But/, cannot be negative, and therefore

so that

a '\ wk+
l (7)

gives a maximum limit for the ratio of A to a.
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Now = 34 feet very nearly, and the last equation may be

written

By eqs. 4 and 7,

(9)

which is also the expression for the discharge through the

minimum section a into a vacuum.

If, however, the sectional areas of the mouthpiece at the

point of discharge and at the throat are in the ratio of A to a,

as given by eq. 7, it is found that the full-bore flow will be in-

terrupted either by the disengagement of air, or by any slight

disturbance, as, for example, a slight blow on the mouthpiece,
and hence, in practice, it is usual to make the ratio of A to a

sensibly less than that given by eq. 7.

(e) Convergent Mouthpiece. With a convergent mouth-

piece (Fig. 37) two points are to be noted :

(i) There is a contraction within the mouthpiece, followed

by a swelling out of the jet until it again fills the mouthpiece.

FIG. 37.

Thus, as in the case of cylindrical mouthpieces, there is a
"
loss of head

"
between the contracted section and the point
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of discharge, and also a consequent diminution in the velocity
of discharge.

(2) There is a second contraction outside the mouthpiece
due to the convergence of the fluid filaments. The mean

velocity of flow (V) across the section is

v' = C,'

Cv
r

being the coefficient of velocity and h the effective head

above the centre of the section.

Also, the area of this section

= CC'X area of mouthpiece at point of discharge

= CC'.A,

Cc being the coefficient of contraction. Hence the discharge

Q is given by

Q = Cv
fCc'A = C'A

C'(= Cv'Cc

f

) being the coefficient of discharge.

The coefficients Cv
' and Ce

'

depend upon the angle of con-

vergence, and Castel found that a convergence of 13 24' gave
a maximum discharge through a mouthpiece 2-6 diameters in

length, the smallest diameter being .05085 foot.

TABLE GIVING CASTEL'S RESULTS.

Angles of

Convergence.
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18. Radiating Current. As an application of Bernouilli's

theorem, consider the steady plane motion of a body of water

flowing radially between two horizontal planes a ft. apart and

symmetrical with respect to a central axis (Fig. 38).

Let v ft. per second be the velocity at the surface of a cyl-

FIG. 38.

FIG. 39-

inder of radius r ft. described about the same axis. Then the

volume Q crossing the second per surface is

Q = 2nr . av,
and therefore

Q
rv = =- = a constant,

since Q is constant.
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Thus v increases as r diminishes, and becomes infinitely

great at the axis; but it is evident that the current must take

a new course at some finite distance from the axis.

If p is the pressure at any point of the cylindrical surface

3 ft. above datum, then, by Bernoulli's theorem,

z + + = a constant = h = y + ,

denoting the dynamic head z + by y. Hence
w

, v* Q* a constant

2g Zn'a'r'g r'

and therefore

r*(h y) = a constant

is an equation giving the free surfaces of the pressure columns

(Fig. 39). These surfaces are thus generated by the revolution

of Barlow's curve.

The surfaces of equal pressure are also given by an equa-
tion of the same form.

19. Vortex Motion. A vortex is a mass of rotating fluid,

and the vortex is termed free when the motion is produced

naturally and under the action of the forces of weight and

pressure only.

In the radiating current already discussed, assume that the

direction of motion at each point is turned through a right

angle. so that the mass of water will now revolve in circular

layers about the central axis. Also, if there is a slow radial

movement, so that fluid particles travel from one circular stream-

line to another, it is assumed that these particles freely take the

velocities proper to the stream-lines which they join. Such a

motion is termed a free circular vortex.

The motion being steady and horizontal, the equation

z + -|
= a constant = //, . . . . (i)
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holds good at every point of a circular stream of radius r.

Again,

w.d\z-\-
)

= increment of dynamic pressure between two-

consecutive elementary stream-lines

= deviating force

= centrifugal force of an element between the

two stream-lines

Hence

,/ p\ w , wv1

jw . d\z 4- I = vdv = -- . dr
y

\ wi g gr
and therefore

so that vr a constant, and v varies inversely as r, as in the

case of the radiating current. Therefore the curves of equal

pressure will also be the same as in a radiating current.

Free Spiral Vortex. Suppose that the motion of a mass

of water with respect to an axis O is of such a character that at

any point J/the components of the velocity in the direction of

OM, and perpendicular to OM, are each inversely proportional

to the distance OM from O. The motion is thus equivalent to

the superposition of the motions in a radiating current and in

a free circular vortex
;
and if is the angle between <9J/and the

direction of the stream-line at M, v cos 6 and v sin 9 are each

inversely proportional to OM, and therefore 6 must be con-

stant. Hence the stream-lines must be equiangular spirals and

the motion is termed a free spiral vortex.

This result is of value in the discussion of certain turbines

and centrifugal pumps. A steady free surface in the case of a
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free spiral vortex is impossible, as the stream-lines cross the

surfaces of equal pressure, which are the same as before.

Also if /, z/
,
r are the pressure, radius, and velocity at any

other point at the same elevation 2 above datum, then

W 2g W 2g

and the increase of pressure-head

w 2g 2gr* 2g

Forced Vortex. A forced vortex is one in which the law

of motion is different from that in a free vortex. The simplest
and most useful case is that in which all the particles have an

equal angular velocity, so that the water will revolve bodily, the

velocity at any point being directly proportional to the distance

from the axis.

As before,

wl g r

But

v oc r = cor,

co being the constant angular velocity of the rotating mass.

Therefore

p\ GO*
--_7I I r \

^JtJ JdU + --1 = r . dr.
\ wl g

Integrating,

z + = - - + a constant = -
f
+ a constant.

Hence, if/ ,
r

,
v are the pressure, radius, and velocity for

any second point at the same elevation z above datum, then

W 2v 2<> '

<5 <5
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If the second point is on the axis of revolution, then r
a
= o,

and the last equation becomes

W 2P~

1 hus the free surface of the pressure columns is evidently a

paraboloid of revolution with its vertex

at O, as in Fig. 40.

A compound vortex is produced by
the combination of a central forced vor-

tex with a free circular vortex, the free

surface being formed by the revolution

of a Barlow curve and a parabola.

For example, the fan of a centri-

fugal pump draws the water into a forced
FIG. 40. vortex and delivers it as a free spiral vor-

tex into a whirlpool-chamber (Chap. VII.).

In this chamber there is thus a gain of pressure-head, and

the water is therefore enabled to rise to a corresponding addi-

tional height. James Thomson adopted the theory of the corn-

compound vortex as the principle of the action of his vortex

turbine.

20. Large Orifices in Vertical Plane Surfaces. The

issuing jet is approximately of the same sectional form as

the orifice, and the fluid filaments converge to a minimum
section as in the case of simple sharp-edged orifices.

(a) Rectangular Orifice (Fig. 41). Let E, F be the upper and

lower edges of a large rectangular orifice of breadth B, and let

H^ , H^ be the depths of E and F, respectively, below the free

surface at A. If u be the velocity with which the water reaches

the orifice, then H = -- is the fall of free surface which must

have been expended in producing the velocity u.

Hence, Hl -\- H and H^ + H are the true depths of the

edges E and F below the surface of still water.

Let A/TV be the minimum or contracted section, and assume

that it is a rectangle of breadth b.
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Let h
l , h^ be the depths of M and N, respectively, below

the free surface at A.

Then h
l -\- H, h^ -\- H are the true depths of M and N

below the surface of still water.

First, let the flow be into the air, the orifice being clear

above the tail-water level.

Consider a lamina of the fluid at the section MN of the
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The coefficient c is by no means constant, but is found to

vary both with the head of water and also with the dimensions

of the orifice, and can only be determined by experiment.

Second, let the orifice be partially (Fig. 42) submerged, and

and let //, be the depth between the

surface of the tail-race water and the

free surface at A.

By what precedes, the discharge Q t

through EG, the portion of the orifice

clear above the tail-race, is

. (2)

Every fluid filament flows through
the portion GF of the orifice under an

effective head H
z -f- H, and therefore

with a velocity equal to

FIG. 42.

Hence the discharge <23 through GF is

... (3)

and the total discharge Q is equal to Q, + Qt
.

The coefficients c
lt c^ are to be determined by experiment,

and if c
l
=

c^
= c,

. (4)

Third, let the orifice be wholly submerged (Fig. 43). Then
the total discharge Q is evidently

Q = '. + Jf, (5)

c being a coefficient to be determined by experiment.

If the velocity of approach, ,
is sufficiently small to be

-- a



FLOW THROUGH ORIFICES, OVER WEIRS, ETC. 53

disregarded without sensible error, then H = o, and equations

i, 4, and 5, respectively, become

(8)

(b) Circular Orifices. Let Fig. 44

represent the minimum section of

the circular jet issuing from a circu-

lar orifice.

Let 26 be the angle subtended at the centre by the fluid

FIG. 43-

FIG. 44.

lamina between the depths x and x + dx below the surface

of still water.

Let r be the radius of the section so that 2r= h^ h^ h^

and h^ being, as in (a), the depths of the highest and lowest

points of the orifice below the free surface at A.

H, as before, is the head corresponding to the velocity of

approach.
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Then the area of the lamina under consideration

= 2r sin 9 . dx,

and the elementary discharge, dq, in this lamina, is

dq = 2r sin 6. dx^2gx*

h.+H+k.+HBut*=- -^ -

and therefore

dx

Hence

dq= 2r'sin'ftt
V

' *

2
-rcos

and the total discharge Q is

- r cos ffV (9)

21. Notches and Weirs. When an orifice extends up to

the free-surface level it becomes what is called a notch.

A weir is a structure over which the water flows, the

discharge being in the same conditions as for a notch.

Rectangular Notch or Weir. The discharge may be found

by putting Hl
= o.

Thus equation I becomes

(10)

If the velocity of approach be disregarded, then H =. o,

and the last equation becomes

(ii)
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and //, is the depth to the bottom of the notch or to the crest

of the weir.

The effective sectional area of the water flowing through a

rectangular notch, or over a weir, is less than BH.t ,
because of

(a) crest contraction, (b) end contraction, (c) the fall of the free

surface towards the point of discharge.

It is reasonable to assume that the diminution of the actual

sectional area, BH^ ,
due to crest contraction and to the fall of

the free-surface level is proportional to the width B of the

opening, and that the effect of end contractions is very nearly

the same both for wide and narrow openings.

Francis, in his Lowell weir experiments, found that for

depths H^-\- H over the crest, varying from 3 in. to 24 in.,

and for widths B not less than three times the depth, a per-

fect end contraction had the effect of diminishing the width of

the fluid section by an amount approximately equal to one

f-f I J-T

tenth of the depth, or
2 "*"

,
so that the effective width

IO

Thus, if there are n end contractions, the effective width

= B (//, + H), and the equation giving the discharge

becomes

Q = -c
\
B - (#. +/0 }

S&\(Ht + H)*- H*\. (12)

According to Francis, the average value of c in this equa-

tion is .622.

Circtilar Notch. In equation 9, Art. 20, put h^ = o and

h = 2r. Then

Tsin 2Q = 2r
2

^2g sin
2 BH + 2r sin'
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and if the velocity of approach be disregarded, so that H = o,

C* 6
Q = 2r* -v/4- / sin

2 6 sin - . dB
*/ o

2

sn -sin sn

(13)

22. Triangular Notch, Disregard the velocity of ap-

proach and let B be the width of the free surface.

As before, consider a lamina

of fluid between the depths x and

^^
B

The area of the lamina = -77-

\ x}dx, and the discharge in

this lamina is

7}

dq = C(H* x

Hence the total discharge Q is

r"* ry

"

(14)

c is a coefficient introduced to allow for contraction, etc., and

Professor James Thomson gives .617 as its mean value for a

sharp-edged triangular notch.
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r>

Now the ratio jy is constant in a triangular notch and varies
**\

in a rectangular notch. Hence Thomson inferred and proved

by experiment that the value of c is more constant for trian-

gular than for rectangular notches, so that a triangular notch

is more suitable for accurate measurements.

Example. A sharp-edged triangular notch is opened in

the side of a reservoir, and the water flows out until the free-

surface level sinks to the bottom of the notch.

The discharge in the short interval dt, when the depth of

water in the notch is x ft.,

= cmx

mx being the width of the free surface corresponding to the

depth x, and m a coefficient depending upon the angle of the

notch.

Again, S . dx is the quantity of the water which leaves the

reservoir in the same time dt, S being the horizontal sectional

area of the reservoir corresponding to the depth x. Hence

4 ,/

and therefore

\/2gcmx
ldt = Sdx,

\f2gcmdt = Sx~*dx,

so that the time in which the free surface sinks to the required
level

x
15 c= --7^ /

4 V2gcmJQ

X being the initial depth.
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If 5 is constant, then

the time =

23. Broad-crested Weir. Let Fig. 46 represent a stream

flowing over a broad-crested weir. On the up-stream side the

FIG. 46.

free surface falls from A to B. For a distance BD on the crest

the fluid filaments are sensibly rectilinear and parallel; the

inner edge of the crest is rounded so as to prevent crest con-

traction.

Consider a filament ab, the point a being taken in a part of

the stream where the velocity of flow is so small that it may be

disregarded without sensible error.

Let A be the thickness MN of the stream at b.

Let the horizontal plane through N be the datum plane.

Let # z be the depths below the free surface of a and b.

Let h
l
be the elevation of a above datum.

Let/ , /,, p be the atmospheric pressure and the pressures
at a and b.

Let v be the velocity of flow at b.

Then, by Bernoulli's theorem,

W W 2g
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But

= *
i + and = , + ;W WWW

therefore

and hence

_ = k, + z
l

- A = H, - A,

//", being the depth of the crest of the weir below the surface

of still water.

Thus, if B be the width of the weir, the discharge Q is

(16)

From this equation it appears that Q is nil both when
A = o and when A = //,. Hence there must be some value

of A between o and //, for which Q is a maximum. This value

may be found by putting

and the expression for the discharge becomes

,
= .3855 V^rf, .

'

. (17)

which is the maximum discharge for the given conditions.

Experiment shows that the more correct value for the dis-

charge is

. . . (18)
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This formula agrees with the ordinary expression for the

discharge over a weir as given by equation u, if c = .525.

It might be inferred that for broad-crested weirs and large

masonry sluice-openings the discharge should be determined

by means of equation 18 rather than by the ordinary weir

formula, viz., equation n.

It must be remembered, however, that in deducing equa-
tion 17 frictional resistances have been disregarded and the

gratuitous assumption has been made that the stream adjusts

itself to a thickness / which will give a maximum discharge.

The theory is therefore incomplete.
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EXAMPLES.

I. A frictionless pipe gradually contracts from a 6-in. diameter at A
to a 3-in. diameter at B, the rise from A to being 2 ft. If the de-

livery is i cubic foot per second, find the difference of pressure between

the two points A and B. Ans. 500 Ibs. per sq. ft.

. 2. In a frictionless horizontal pipe discharging 10 cubic feet.of water

per second, the diameter gradually changes from 4 in. at a point A to i/C

6 in. at a point B. The pressure at the point ^5*is 100 Ibs. per square
inch

;
find the pressure at the point A. Ans. 4118 Ibs. per sq. ft.

3. A ^-in. horizontal pipe is gradually reduced in diameter to
-J-

in.

and then gradually expanded again to its mouth, where it is open to the

atmosphere. Determine the maximum quantity of water which can be

forced through the pipe (a) when the diameter of the mouth is \ in., (b)

when the diameter is f in. Also determine the corresponding velocities

at the throat and the total heads (neglect friction, which, however, is

very considerable). Ans. (a) .24 cub. ft. per min.; 46.7 ft. per. sec.

(b) .239 cub. ft. per. min.; 46.66 ft. per sec.

4. A short horizontal pipe ABC connecting two reservoirs gradually
contracts in diameter from i inch at A to inch at B and then enlarges
to i inch again at C. If the height of the water in the reservoir over C
be 12 inches, determine the maximum flow through the pipe and sketch

the curve of pressures. Also obtain an equation for this curve, assum-

ing the rates of contraction and expansion of the pipe to be equal and

uniform. Ans. 3.75 cub. ft. per min.

5. The pipe DE in the figure is gradually contracted in diameter

from D to E, where it is enclosed in

another pipe ABC, expanding from B
towards A and C\ at C it is open to the

atmosphere and at A it is connected with D/

a reservoir R ; the water surface in R
being h' below the horizontal axis of DE.
If the velocity in DE at E be v and the

velocity in AB at B be F, what will be the

common velocity after uniting? Explain
what becomes of the energy lost in im- ^
pact. If the diameters at E, B, arid C
are \ in., f in., and i in., the distance between the outside of E and inside
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of B being T\ inch, find the ratio of the quantity pumped from R to the

flow through DE.
6. A 3-in. pipe gradually expands to a bell-mouth ;

if the total head,

//, be 40 ft., find the greatest diameter of the mouth at which it will

run full when open to the atmosphere. Compare the discharge from

this pipe with the discharge when the pipe is not expanded at the mouth.
Ans. 4.8 in.; discharge is 18.63 cu b. ft- Per minute with bell-

mouth and 7.337 cub. ft. per minute without bell-mouth.

7. The pressure in a 12- in. pipe at A is 50 Ibs.; the pipe then en- ^
larges to a i5-in. pipe at B, the rise from A to B being 3 ft.; the dis- /

charge is Q cubic feet per minute. Find the pressure at^; also find the

pressure at a point C, the rise from B to C being 6 ft,

(6637.5
+ T

Ans. 6637.5 + lbs ' er sc - ft '

8. Two equal pipes lead, one from the steam-space, the other from

the water-space of a boiler at pressure/; Ss is the density of the steam

and Sw that of the water. Assuming Torricelli's theory to hold for rate

of efflux of steam and water, show that

vel. of steam-jet _ */ _ quantity of water-jet _ energy of steam-jet
vel. of water-jet

~~
* Ss

~
quantity of steam-jet

~~

energy of water-jet,

and that the momentum of each jet is the same.

9. Find the head required to give i cub. ft. of water per second

through an orifice of 2 square inches area, the coefficient of discharge [/

being .625. (g = 32.) Ans. 206 ft.

10. The area of an orifice in a/fcnin plate was 36.3 square centimetres,

the discharge under a head 0^/^396 metres was found to be .01825 cubic

metre per second, and the velocity of flow at the contracted section, as
\^/

determined by measurements of the axis of the jet, was 7.98 metres per
second. Find the coefficients of velocity, contraction, discharge, and re-

sistance. (^ = 9.81.) Ans. .978; .631; .617; .045.

11. The piston of a 12-in. cylinder containing saltwater is pressed
down under a force of 3000 lbs. Find the velocity of efflux and the \J
volume of discharge at the end of the cylinder through a well-rounded

i -in. orifice. Also find the power exerted.

Ans. 60.373 ft. per sec.; .1691 cub. ft. per sec.; 1.166 H. P.

12. In the condenser of a marine engine there is a vacuum of 26^ in.

of mercury ; the injection orifices are 6 ft. below the sea-level. With
what velocity will the injection-water enter the condenser? (Neglect re-

sistance.) Ans. 25.3 ft. per sec.

13. Water in the feed-pipe of a steam-engine stands 12 ft. above the
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surface of the water in the boiler ; the pressure per sq. in. of the steam is

20 Ibs., of the atmosphere 15 Ibs. Find the velocity with which the

water enters the boiler. Ans. 5.376 ft. per sec.

14. The injection orifice of a jet condenser is 5 ft. below sea-level

and vacuum = 27 in. of mercury. Find velocity of water entering con-

denser, supposing three fourths of the head lost by frictional resistance.

Ans. 23.86 ft. per sec.

15. A vessel containing water is placed on scales and weighed. How
will the weight be affected by opening a small orifice in the bottom of

the vessel ?

1 6. Water is supplied by a scoop to a locomotive tender at 7 ft. above

trough. Find lowest speed of train at which the operation is possible.

Ans. 14.44 miles per hour.

Also find the velocity of delivery when train travels at 40 miles per

hour, assuming half the head lost by frictional resistance.

Ans. 35.68 ft. per. sec.

17. The head in a prismatic vessel at the instant of opening an orifice

was 6 ft. and at closing it had decreased to 5 ft. Determine the mean
constant head h at which, in the same time, the orifice would discharge
the same volume of water. Ans. 5.434 ft.

18. A prismatic vessel 5.747 in. in diameter has an orifice of .2 in.

diam. at the bottom; the surface sinks from 16 in. to 12 in. in 53

seconds. Find the coefficient of discharge. Ans. .6.

19. A prismatic basin with a horizontal sectional area of 9 sq. ft. has

an orifice of .09 sq. ft. at the bottom ; it is filled to a depth of 6 ft. above

the centre of the orifice. Find the time required for the surface to sink

2 ft., 3^ ft., 5 ft. Ans. 260 sec.; 502 sec.; 838 sec.

20. The water in a cylindrical cistern of 144 sq. in. sectional area is

16 ft. deep. Upon opening an orifice of I sq. in. in the bottom the

water fell 7 ft. in i minute. Find the coefficient of discharge. The co-

efficient of contraction being .625, find the coefficients of velocity and

resistance. Ans. .6 ; .96 ; 0.85.

21. How long will it take to fill a paraboloidal vessel up to the level

of the outside surface through a hole in the bottom 2 ft. under water?

(g = 32 and c = .625.)

1 76 |/2 B
Ans.

j,
B being the parameter of the parabola and A the

sectional area of the orifice.

22. How long will it take to fill a spherical Vessel of radius r up to

the level of the outside surface through a hole of area A at bottom 2 ft.

under water ? (g = 32 and c = .625.)

Ans '
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23. A vessel full of water weighs 350 Ibs. and is raised vertically by
means of a weight of 450 Ibs. Find the velocity of efflux through an

orifice in the bottom, the head being 4 ft. Ans. 17.02 ft. per sec.

24. A vessel full of water makes loo-revols. per min. Find the velocity
of efflux through an orifice 2 ft. below the surface of the water at the

centre. Ans. 33.4 ft. per sec.

What will be the velocity if the vessel is at rest ?

Ans. 1 1.35 ft. per sec.

25. The jet from a circular sharp-edged orifice, in. in diameter, un-

der a head of 18 ft., strikes a point distant 5 ft. horizontally and 4.665

in. vertically from the orifice. The discharge is 98.987 gallons in

569.218 seconds. Find the coefficients of discharge, velocity, contraction,

and resistance. Ans. .6014; .945; .636; .118.

26. A square box 2 ft. in length and i ft. across a diagonal is placed
with a diagonal vertical and filled with water. How long will it take for

the whole of the water to flow out through a hole at the bottom of .02

sq. ft. area ? (c .625.) Ans. 97.48 sees.

27. A pyramid 2 ft. high, on a square base, is inverted and filled

with water. Find the time in which the water will all run out through
a hole of .02 sq. ft. at the apex. A side of the base is i ft. in length.

(c. .625.) Ans. 15.08 sec,

28. Find the discharge under a head of 25 ft. through a thin-lipped

square orifice of i sq. in. sectional area, (a) when it has a border on one

side, (b) when it has a border on two sides.

Ans. (a) .3575 cu. ft. per sec.; (b) .3706 cu. ft. per sec.

29. A vessel in the form of a paraboloid of revolution has a depth of

16 in. and a diam. of 12 in. at the top. At the bottom is an orifice of

i sq. in. sectional area. If water flows into the vessel at the rate of 2TV
cubic feet per minute, to what level will the water ultimately rise ? How
long will it take to rise (a) 11 in., (b) 11.9 in., (c) 11.99 m -> (X) I2 in-

above the orifice? If the supply is now stopped, how long (e) will it

take to empty the vessel ?

Ans. 12 inches; (a) 83.095 sec.; (b) 124.2 sec.; (c) 263.9 sec.;

(d) an infinite length of time ; (e) 11.3 sec.

30. If the vessel in Question 29 is a semi-sphere i ft. in diameter, to

what height will the water rise ? How long will it take for the water to

rise (a) 11 in., (b) 12 in. above the orifice ? How long (c) will it take to

empty the vessel ?

Ans. 12 inches ; (a) 67.16 sec. ; () 81.46 sec. ; (c) 24.13 sec.

31. In a vortical motion two circular filaments of radii ri , r2 , of ve-

locities Vi,Vt, and of equal weight Ware made to change place. Show
7/

2

that a stable vortex is produced if =const.; and if r2 > r\ , show that

the surfaces of equal pressure are cones.
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32. Prove that for a Borda's mouthpiece running full the coefficient

of discharge is .

4/2

33. The surface of the water in a tank is kept at the same level;

obtain the discharge at 60 in. below the surface (a) through a circular

orifice i sq. in. in area, (U) through a cylindrical ajutage of the same
sectional aYea fitted to the outside, (c) through the same ajutage fitted

to the inside, and determine the mechanical effect of the efflux in each

case. Ans. (a) 4 36 Ibs. per sec.

(ff) 6.356
" " "

(rf 3.488
" "

20.514 ft.-lbs. per sec.

21.369
" " "

1744
" " "

34. Water is discharged under a head of 64 ft. through a short cylin-

drical mouthpiece 12 in. in diameter. Find (a) the loss of head due

to shock, () the volume of disdharge in cubic feet per secJnd, (c) the

energy of the issuing jet. (g = 32.)

Ans. (a) 20.96 ft.
; (8) 51.54 cub. ft. ; (c) 393.8 H. P.

35. If a bell-mouth is substituted for the mouthpiece in the preced-

ing question, find the discharge and the mechanical effect of the jet.

Ans. 61.6 cub. ft. per sec. ; 470.6 H. P.

36. Compare the energies of a jet issuing under an effective head of

100 ft. through (i) a 12-in. cylindrical ajutage, (2) a 12-in. divergent aju-

tage, (3) a 12-in. convergent ajutage, the angle of convergence being 21.

Draw the plane of charge in each case.

Ans. (i) 393.8 H. P.; (2) 672.28 H. P.; (3) 618.23 H. P.

37. Find the discharge through a rectangular opening 36 in. wide

and 10 in. deep in the vertical face of a dam, the upper edge of the

opening being 10 ft. below the water surface.

Ans. 40.2 cub. ft. per sec.

38. Find the discharge in pounds per minute through a Borda's

mouthpiece i in. in diameter, the lip being 12 in. below the water-

surface. Ans. 87.714 Ibs.

39. Sometimes the crest of a dam is raised by floating a stick L into

the position Zi ,
where it is supported against the

verticals. The stick then falls of itself into position

Li and rests on the crest. Explain the reason

of this.

40. A sluice 3 ft. square and with a head of 12

ft. over the centre has, from the thickness of the

frame, the contraction suppressed on all sides when

fully open ; when partially open, the contraction

exists on the upper edge, i.e., against the bottom of the gate, which is

formed of a thin sheet of metal. Find the discharge in cubic feet when
opened i ft., 2 ft. and also when fully open. Ans. 57.77 ; 114.45 ; '75-9.
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41. What quantity of water flows through the vertical aperture of a

dam, its width being 36 in. and its depth 10 in. ;
the upper edge of the

aperture is 16 ft. below the surface. Ans. 50.65 cub. ft. per sec.

42. 264 cubic feet of water are discharged through an orifice of 5 sq.

ins. in 3 min. 10 sec. Find the mean velocity of efflux.

Ans. 64 ft. per sec.

43. One of the locks on the Lachine Canal has a superficial area of

about 12,150 sq. ft., and the difference of level between the surfaces of

the water in the lock and in the upper reach is 9 feet. Each leaf of the

gates is supplied with one sluice, and the water is levelled up in 2 min,

48 sees. Determine the proper area of the sluice-opening. (Centre of

sluice 20 ft. below surface of upper reach.)

Ans. Area of one sluice = 43.73 sq. ft.

44. The horizontal section of a lock-chamber may be assumed a

rectangle, the length being 360 ft. When the chamber is full, the sur-

face width between the side walls, which have each a batter of i in 12,

is 45 ft. How long will it take to empty the lock through two sluices in

the gates, each 8 ft. by 2 ft., the height of the water above the centre of

the sluices being 13 feet in the lock and 4 feet in the canal on the down-

stream side. Ans. 594 sec., c being .625.

45. Water approaches a rectangular opening 2 ft. wide with a velocity

of 4 ft. per second. At the opening the head of water over the lower

edge = 13 ft., and over the surface of the tail-race = 12 ft.; the discharge

through the opening is 70 cub. ft. per second. Find the height of the

opening. Ans. 1.022 ft.

46. The water in a regulating-chamber is 8 ft. below the level of the

water in the canal and 8 ft. above the centre of the discharging-sluice.

Determine the rise in the canal which will increase the discharge by 10

per cent. Ans. 1.68 ft.

The horizontal sectional area of the chamber is constant and equal to

400 sq. ft.; in what time will the water in the chamber rise to the level of

that in the canal, if the discharging-sluice is closed; the sluice between

the canal and chamber being 3 sq. ft. in area? Ans. 150.83 sec.

47. A lock on the Lachine Canal is 270 ft. long by 45 ft. wide and has

a lift of 8 ft.; there are two sluices in each leaf, each 8f ft. wide by
2 ft. deep ; the head over the horizontal centre line of the sluices is

19 ft. Find the time required to fill the lock. Ans. 164.6 sec.

48. Show that the energy of a jet issuing through a large rectangular
orifice of breadth B is i2$B(ff Hi*), Hi , H* being the depths below

the water-surface of the upper and lower edges of the orifice, and the

coefficient of discharge being .625.

49. A reservoir at full water has a depth of 40 ft. over the centre of

the discharging-sluice, which is rectangular and 24 in. wide by 18 in.

deep. Find the discharge in cubic feet per second at that depth, and also
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when the water has fallen to 30, 20, and 10 ft., respectively; find the
mechanical effect of the efflux in each case.

Ans. 94.8 cub. ft.; 82.1 cub. ft.; 67 cub. ft.; 47.4 cub. ft.; 431.2

H.P.; 280 H.P.; 152.5 H.P.; 53.95 H.P.

50. Require the head necessary to give 7.8 cubic feet per second

through an orifice 36 sq. in. in sectional area. Aps. 38.9 ft.

51. The upper and lower edges of a vertical rectangular orifice are

6 and 10 feet below the surface of the water in a cistern, respectively ;

the width of the orifice is i ft. Find the discharge through it.

Ans. 5642 cub. ft. per sec.

52. To find the quantity of water conveyed away by a canal 3 ft.

wide, a board with an orifice 2 ft. wide and i ft. deep is placed across

the canal and dams it back until it attains a height of 2 ft. above the

bottom and if ft. above the lower edge of the orifice. Find the dis-

charge, (c = .625.) Ans. 17.59 cub - ft- per sec.

53. Six thousand gallons of water per minute are forced through a

line of piping ABC and are discharged into the atmosphere at C, which
is 6 ft. vertically above A. The pipe AB is 12 in. in diameter and 12 ft.

in length ; the pipe J5C is 6 in. in diameter and 12 ft. in length. Disre-

garding friction, find the "
loss in shock

"
and draw the plane of charge.

Ans. Loss of head in shock = 57.9 ft.

54. What should be the height of a drowned weir 400 ft. long, to

deepen the water on the up-stream side by 50 per cent, the section of

the stream being 400 ft. x 8 ft., and the velocity of approach 3 ft. per
second ? Ans. 8.396 ft.

55. The two sluices each 4 ft. wide by 2 ft. deep in a lock-gate are

submerged one half their depth. The constant head of water above the

axis of the sluice is 12 ft. Find the discharge through the sluice,

the velocity of approach being 4 ft. per second.

Ans. 16626.2 cub. ft. per minute.

56. Find the flow through a square opening, one diagonal being ver-

tical and 12 in. in length, and the upper extremity of the diagonal be-

ing in the surface of the water. Ans. 1.727 cub. ft. per sec.

57. The locks on the Montgomeryshire Canal are 81 ft. long and 7f
ft. wide ; at one of the locks the lift is 7 ft.; a 24-in. pipe leads the water

from the upper level and discharges below the surface of the lower level

into the lock-chamber ; the mouth of the pipe is square, 2 ft. in the side,

and gradually changes into a circular pipe 2 ft. in diameter. Find time

of filling the lock, (c = i.) Ans. 130 sees.

58. A canal lock is 115.1 ft. long and 30.44 ft. wide; the vertical

depth from centre of sluice to lower reach is 1.0763 ft., the charge being

6.3945 ft.
; the area of the two sluices is 2 x 6.766 sq. ft. Find the time

of filling up to centre of sluices, (c = .625 for the sluice, but is reduced
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to .548 when both are opened.) Also, find time of filling up to level of

upper reach from centre of sluice-doors. Ans. 25 sec.; 298 sees.

59. A reservoir half an acre in area with sides nearly vertical, so that

it may be considered prismatic, receives a stream yielding 9 cub. ft. per

second, and discharges through a sluice 4 ft. wide, which is raised 2 ft.

Calculate the time required to lower the surface 5 ft., the head over the

centre of the sluice when opened being 10 feet. Ans. 1079 sees.

60. Show that in a channel of V section an increment of 10 per cent

in the depth will produce a corresponding increment of 5 per cent in the

velocity of flow and of 25 per cent in the discharge.

61. The angle of a triangular notch is 90. How high must the

water rise in the notch so that the discharge may be 1000 gallons per
minute? Ans. 1 2 inches very nearly.

62. Show that upon a weir 10 feet long with 12 inches depth of water

flowing over, an error of i/iooo of a foot in measuring the head will

cause an error of 3 cubic feet per minute in the discharge, and an error

of i/ioo of a foot in measuring the length of the weir will cause an error

of 2 cubic feet in the discharge.

63. In the weir at Killaloe the total length is noo ft., of which 779 ft.

from the east abutment is level, while the remainder slopes i in 214, giving

a total rise at the west abutment of 1.5 ft. Calculate the total discharge

over the weir when the depth of water on the level part is 1.8 ft., which

gives .3 ft. on highest part of weir. (Divide slope into 8 lengths of 40
ft. each, and assume them severally level, with a head equal to the

arithmetic mean of the head at the beginning and end of each length.)

Ans. 7483 cub. ft. per sec.

64. A watercourse is to be augmented by the streams and springs

above its level. The latter are severally dammed up at suitable places

and a narrow board is provided in which an opening 12 in. long by 6

in. deep is cut for an overfall ; it was surmised that this would be suf-

ficient for the largest streams; another piece attached to the former

would reduce the length to 6 in. for smaller streams. Calculate the

delivery by the following streams:

In No. i stream with the 12-in. notch, depth over crest = .37 ft.

" No. 2 " " "
6-in.

" " " " = .41 ft. -;

" No. 3
" " "

12-in.
" " " " = .29 ft.

" No. 4
" " " 6 in.

" " " " = .19 ft.

(Take into account the side contractions.)

Ans. No. i, .695 cub. ft.
;
No. 2, .3658 cub. ft. ; No. 3, .4904 cub.

ft.; No. 4, .1275 cub. ft.

65. The horizontal sectional area of a reservoir is constant and =
10,000 square feet. When the reservoir is full, a right-angled notch 2

ft. deep is opened. Find the time in which the level of the water falls-

to the bottom of the notch. Ans. 15.3 min.
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66. A weir passes 6 cubic feet per second, and the head over the crest

is 8 inches. Find the length of the weir. Ans. 3.3068 ft.

67. A weir 400 ft. long, with a 9-in. depth of water on it, discharges

through a lower weir 500 ft. long. Find the depth of water on the latter.

Ans. .6457 ft.

68. A stream 30 ft. wide, 3 ft. deep, discharges 310 cubic feet per

second ;
a weir 2 feet deep is built across the stream. Find increased

depth of latter, (a) neglecting velocity of approach, (b) taking velocity

of approach into account. Ans. (a) 1.26 ft. to 1.265 ft-J

(6) 1. 19 ft.

69. A weir is 545 ft. long; how high will the water rise over it when
it rises .68 ft. upon an upper weir 750 ft. long? Ans. .8413 ft.

70. In a stream 50 ft. wide and 4 ft. deep water flows at the rate of

loo ft. per minute ;
find the height of a weir which will increase the

depth to 6 ft., (i) neglecting velocity of approach, (2) taking velocity of

approach into account. Ans. (i) 4.4126 ft; (2) 4.4509 ft.

71. A stream 50 ft. wide and 4 ft. deep has a velocity of 3 ft. per

second ;
find the height of the weir which will double the depth, (i)

neglecting velocity of approach, (2) taking velocity of approach into ac-

count. Ans. (i) 5.615 ft.; (2) 5.7688 ft.

72. A stream 80 ft. wide by 4 ft. deep discharges across a vertical

section at the rate of 640 cubic feet per second ;
a weir is built in the

stream, increasing its depth to 6 ft. Find the height of the weir.

Ans. 4.233 ft.

73. Salmon-gaps are constructed in a weir ; they are each 10 ft. wide

and their crests are 18 in. below the weir crest. Calculate the discharge
down three of these gaps, the water on the level rjart of the weir being
8 in. deep. Ans. 238.15 cub. ft. per sec.

74. A pond whose area is 12,000 sq. ft. has an overfall outlet 36 in.

wide, which at the commencement of the discharge has a head of 2.8 ft.

Find the time required to lower the surface 12 in. Ans. 354.72 sec.

75. How much water will flow in an hour through a rectangular

notch 24 in. wide, the surface of still water being 8 in. above the crest

of the notch ? (Take into account side contraction.) Ans. 3.386 ft.

76. Show that when the water flowing over has a

depth greater than .3874 ft. it is carried completely
over the longitudinal opening, .83 ft. in width. At
what depth does all the water flow in ? ,

Ans. .221 ft. FIG. 49.



CHAPTER II.

FLUID FRICTION.

I. Fluid Friction. The term fluid friction is applied to

the resistance to motion which is developed when a fluid flows

over a solid surface, and is due to the viscosity of the fluid.

This resistance is necessarily accompanied by a loss of energy
caused by the production of eddies along the surface, and

similar to the loss which occurs at an abrupt change of sec-

tion, or at an angle in a pipe or channel.

Froude's experiments on the resistance to the edgewise
motion of planks in a fluid mass, the planks being T\ in. thick,

19 in deep, and I to 50 ft. long, each plank having a fine cut-

water and run, are summarized in the following table :
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the heading, each plank having a standard speed of 10 ft. per
second. The resistance at other speeds can be easily calculated.

An examination of the table shows that the mean resistance

per square foot diminishes as the length of the plank increases.

This may be explained by the supposition that the friction in

the forward portion of the plank develops a force which drags
the water along with the surface, so that the relative velocity

of flow over the rear portion is diminished. Again, the de-

crease of the mean resistance per square foot is .132 Ib. when
the length of a varnished plank is increased from 2 to 20 ft., while

it is only .028 Ib. when the length increases from 20 to 50 ft.

Hence, for greater lengths than 50 ft. the decrease of resistance

may be disregarded without much, if any, practical effect.

Thus, generally speaking, these experiments indicate tha-t

the mean resistance is proportional to the #th power of the

relative velocity, n varying from 1.83 to 2.16, and its average
value being very nearly 2.

Colonel Beaufoy, as a result of experiments at Deptford,
also assumed the mean resistance to be proportional to the nth

power of the relative velocity, the value of n in three series of

observations being 1.66, 1.71 and 1.9.

The frictional resistance is evidently proportional to some
function of the velocity, F(v), which should vanish when v is

nil, as when the surface is level, and should increase with v.

Coulomb assumed the function F(v) to be of the form

av -f- bv*
,
a and b being coefficients to be determined by experi-

ment. Experiment shows that when v does not exceed 5 ft.

per minute the resistance is directly proportional to the veloc-

ity, but that it is more nearly proportional to the square of the

velocity when the velocity exceeds 30 ft. per minute
; or,

F(v) = av when v < 5 ft. per minute,

and

F(v) = bv^ when v > 30 ft. per minute.

Again, observations on the flow of water in town mains

indicate that no difference of resistance is developed under
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widely varying pressures, and this independence of pressure is

also verified by Coulomb's experiment showing that if a disk

is oscillated in water there is no apparent change in the rate of

decrease of the oscillations, whether the water is under atmos-

pheric pressure or not.

From the preceding and other similar experiments the fol-

lowing general laws of fluid friction have been formulated :

(1) The frictional resistance is independent of the pressure

between the fluid and the surface over which it flows.

(2) The frictional resistance is proportional to the area of

the surface.

(3) The frictional resistance is proportional to some func-

tion, usually the square, of the velocity.

To these three laws may probably be added a fourth, viz.:

(4) The frictional resistance is proportional to the density

of the fluid.

A fifth law, viz., that " the frictional resistance is indepen-

dent of the nature of the surface against which the fluid flows,"

has been sometimes enunciated, and at very low velocities

the law is approximately true. At high velocities, however,

such as are common in engineering practice, the resistance has

been shown by experiment, and especially by the experiments
carried out by Darcy, to be very largely influenced by the

nature of the surface.

Let p be the frictional resistance in pounds per square foot

of surface at a velocity of I ft. per second.

Let A be the area of the surface in square feet.

Let v be the relative velocity of the surface and the water

in which it is immersed.

Let R be the total frictional resistance.

Then from the laws of fluid friction

R = p . AV*.

2j?

Take/= p, w being the specific weight of the fluid. Then

R = fwA.
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The coefficient f is approximately constant for any given

surface, and is termed the coefficient of fluid friction. The

power absorbed by the frictional resistance

v*= pAv' X v = pAv* = fwA .

o

TABLE GIVING THE AVERAGE VALUES OF / IN THE CASE OF
LARGE SURFACES MOVING IN AN INDEFINITELY LARGE
MASS OF WATER.

Surface. Coefficient of Friction (/").

New well-painted iron plate..............00489
Painted and planed plank ...............0035
Surface of iron ships ... .................00362
Varnished surface........................00258
Fine sand surface........................00418
Coarse sand surface .... .................00503

2. Surface Friction of Pipes. Assuming that the laws of

fluid friction already enunciated hold good when water flows

through a pipe, it has been shown by numerous experiments
that the coefficient of friction /lies between the limits .005 and

.01, its average value under ordinary conditions being about

.0075. No single value of f is applicable to very different

cases. Indeed, /depends not only upon the condition of the

surface, but also upon the diameter of the pipe and the veloc-

ity of the water. Some authorities have expressed its value by
a relation of the form

a and b being constants whose values are to be determined by

experiment.
The following table gives some of the best numerical results

obtained for a and b\
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Authority. a b

Prony ........ ..........00021230 .00003466
D'Aubuisson............0002090 .000037608

Eytelwein...............00017059 .00004441

In pipes of small diameter in which the velocity of flow is

less than 4 in. per second the term a may be disregarded so

that

In ordinary practice and when the pipes have been in use

for some time, the velocity usually exceeds 4 in. per second,

and the term may then be disregarded, so that

Now Darcy's experiments have shown that it is more cor-

rect to assume that a and b, instead of being constant, are

variable, and Darcy expressed them as functions of the diam-

eter of the pipe.

Thus, for pipes in which the velocity exceeds 4 in. per

second, Darcy took

/
,

g
'' ^d'

d being the diameter of the pipe, and a and ft coefficients.

Darcy also gave the following values for a and ft :

a '

ft

For drawn wrought-iron or smooth

cast-iron pipes 0001545 .000012973
For pipes with surfaces covered by

light incrustations 0003093 .00002598
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These coefficients can be put into the following very simple
form without sensibly altering their values :

For clean pipes ........... f= .005(1 -[-
-

)

For slightly incrusted pipes /= .01(1 -f-
-

J

d being the diameter in feet.

Darcy proposed to include all cases by expressing /"more

generally in the form

in which, for new and smooth iron pipes,

a = ,00003959, ft .00002603125 ;

a f = .000064375, ft'
= .000000335625.

These values are rarely of any practical use.

TABLE GIVING DARCY'S VALUES OF / FOR VELOCITIES
EXCEEDING 4 IN. PER SECOND.

Diam.
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Again, Weisbach has proposed the formula

-*
Vv

where a = .003598 and b = .004289.

3. Resistance of Ships. The motion of a ship through
water causes the production of waves and eddies, and the total

resistance to the movement of a ship is made up of a frictional

resistance, a wave-making resistance, and an eddy-making re-

sistance. Although there is no theory by which the resistance

at a given speed of a ship of definite design can be absolutely

determined, Froude's experiments render it possible to make
certain inferences and furnish some useful data.

According to Froude, the frictional resistance is sensibly

the same as that of a rectangular surface moving with the same

speed, of the same length as the ship in the direction of motion,

and of an area equal to the immersed surface of the ship.

Experiments seem to indicate that as the speed increases, the

frictional resistance of well-designed ships with clean bottoms

is from 90 to 60 per cent of the total resistance, and that the

percentage is greater when the bottoms become foul.

The wave-making resistance is especially affected by the

form and proportions of the ship, depending, for a given

length, upon the proportions of the entrance, middle body, and

run. For every ship there is a limit of speed below which the

resistance is approximately proportional to the square, of the

speed, being chiefly due to friction, and beyond which it in-

creases more rapidly than as the square.

The eddy-resistance in the case of well-formed ships should

not exceed about 10 per cent of the total resistance, and is

often much less.

Froude's law of resistance may be enunciated as follows :

Let / /, be the lengths of a ship and its model.

Let A
lt A^ be the displacements of a ship and its model.

Let /? R^ be the resistances of a ship and its model at the

.speeds
iv

l
and v

t .
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Then, if

_i _i_ __ \
_

V
"

/

~~
/f

*'
2 *s ^a

the resistances are in the ratio of

Hence, too, the H. P., and therefore also the coal consumption

per hour, is proportional to Rv, that is, to

A1 or /
5

,

and the coal consumption per mile is proportional to

A or to /
3

.

Again, R is proportional to /
3

;

that is, to / X /
3

1

that is, to v* X ^ ;

and it is sometimes convenient to express the resistance irt

pounds in the form

v being the speed in knots, A the displacement in tons, and k

a coefficient depending upon the type of ship and varying from

.55 to .85 when the bottom is clean.
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FLOW OF WATER IN PIPES.

1. Assumptions. In the ordinary theory of the flow of

water in a pipe it is assumed that the water consists of thin

plane layers perpendicular to the axis of the pipe, that each

layer is driven through the pipe by the action of gravity and by
the difference of pressure on its plane faces, and that the liquid

molecules in any layer at any given moment will also be found

in a plane layer after any interval of time. In such motion the

internal work done in deforming a layer may be generally dis-

regarded.
It is further assumed that there is no variation of velocity

over the surface of a layer, and this is equivalent to saying that

each liquid molecule in a cross-section has the same mean ve-

locity.

The disagreement of these assumptions with the results of

recent experimental researches will be referred to in a subse-

quent article.

2. Steady Motion in a Pipe of Uniform Section. Since

the motion is to be steady, the same volume Q cub. ft. of water

will always arrive at any given cross-section of A square feet

with the same mean velocity v ft. per second. Then

Q = Av.

But since the pipe is of constant diameter, A is constant, and

hence also v is constant, so that the mean velocity is the same

throughout the whole length of the pipe.

Consider an elementary mass of the fluid AABB, bounded

by the pipe and by the two cross-sections AA, BB. Let dl

78
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FIG. 50.

be the length AB of the element, the length / ft. of the

pipe being measured along the

axis from any origin O.

Let z, z + dz be the eleva-

tions in feet above a datum
line of the centres of pressure
in the cross-sections AA, BB,

respectively.

Let p, p + dp be the intens-

ities of the pressures on these

cross-sections in pounds per

square foot.

Let P be the perimeter of

the pipe.

Let w be the specific weight of the water in pounds per
cubic foot.

Work Done by Gravity. In one second wQ Ibs. of water

are transferred from AA to BB, falling through a vertical dis-

tance of dz ft. Thus the work done by gravity per second

= wQ . dz,

a positive quantity if dz is negative, and vice versa.

Work Done by Pressure. The total pressure on AA paral-

lel to the axis = pA ;
the total pressure on BB parallel to

the axis = (p + dp)A.

Therefore ^the total resultant pressure parallel to the axis

in the direction of motion = A . dp, and the work done per
second on the volume Q by this pressure = Q . dp.

Note. The work done by the pressure at the pipe surface is nil, as

its direction is at right angles to the line of motion.

Work Absorbed by Frictional Resistance. From the laws of

fluid friction this work per second is evidently

pP . dl . F(v) X v = -r . Q . F(v) . dl,

the sign being negative as the work is done against a resistance.
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Since the motion is steady, the work done by the external

forces must be equivalent to the work absorbed by the fric-

tional resistance, and hence

wQ . dz Q . dp - Q . F(v) . dl o,

or

, dp P F(v}
(Jn I * _l V ' /y/ Q

w A
"

w

Integrating,

^ + -f-j../ =a constant = H,w A w

so that H ft.-lbs. per pound of fluid is the uniformly distributed

total constant energy.
A

is called the hydraulic mean radius of a pipe and will be

denoted by m.

Take

W 2g

the value adopted in ordinary practice, f being the coefficient

of friction. Then

w in 2g

Let #, ,
A

l ,/, be the elevation above datum, the area of the

cross-section, and the intensity of the pressure
at any pointX on the axis of the pipe distant

/
x
from the origin (Fig. 51).

Let
2 , AS, pi be the elevation above datum, the area of the

cross-section, and the intensity of the pressure

at any other point Y on the axis distant 4
from the origin (Fig. 51).
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Then, from the equation just deduced,

81

,.+* + *=*=*+> + !.w m 2g w m 2g

Hence

w m 2g

L being the length /
2 ^ of the pipe between the two points

K

FIG. 51.

Let vertical tubes (pressure-columns) be inserted in the.pipe
at X and at Y. The water will rise in these tubes to the levels

C and Z>, and evidently

being the intensity of the atmospheric pressure.
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Hence, if CX and D Fare produced meet the datum line in

E and F,

I
A i/^j^iA ri? j A#. -+- =

-Sj -h CA -f-
= Czi -t- -JL

ze; w w
and

#a + =
a + jC>F+ = Z>F+ .w w w

Therefore

w wi m 2g

G being the point in which the horizontal through C meets FD
produced.
DG is called the " virtual fall

"
of the pipe, being the fall of

level in the pressure-columns; and since there would be no fall.

of level if the friction were nil, DG is said te be the head lost

in friction in the distance XY.
Denote this head by h\ then

=
m 2g

and therefore

_/
L m 2g

This ratio - is designated the virtual slope of the pipe, and
JL/

is the head lost in friction per unit of length It will be

denoted by *',
so. that

If the section of the pipe is a circle of diameter d, or a

square with a side of length d, then
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A d

__ =
L

~

d 2g

3. Influence upon the Flow of the Pipe's Position and
Inclination. In Fig. 5 1 join CD. Now since the fall of level

(h) is proportional to L
y
the free surface in any other column

between X and Y must also be on the line CD. Thus the

pressure/
7
at any intermediate pointM distant x(==. XM) from

X is given by

w w w

Hence, at every point of a pipe laid below CD, the fluid pres-

sure (p
r

)
exceeds the atmospheric pressure (/ ) by an amount

w . MN, so that if holes are made in such a pipe the water will

flow out and there will be no tendency on the part of the air

to flow in. In pipes so placed vertical bends may be intro-

duced, care being taken to provide for the removal of the air

which may collect in the upper parts of the bends.

If the line of the pipe coincides with CD, i.e., with the vir-

tual slope or line of free surface level, MN = o, and the fluid

pressure is equal to that of the atmosphere. If holes are now
made in the pipe it can easily be shown by experiment that

there will be neither any tendency on the part of the water to

flow out nor on the part of the air to flow in.

Next take CC' = DD' = and join CD'.w J

If the pipe is placed in any position between CD and C 'D r

MN becomes negative, and the fluid pressure in the pipe is less

than that of the atmosphere. If holes are made in this pipe,

there will be no tendency on the part of the water to flow out,
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but the air will flow in. Thus, if a pipe rises above the line of

virtual slope, there is a danger of air accumulating in the pipe
and impeding, or perhaps wholly stopping, the flow. No verti-

cal bends should be introduced, as the air is easily set free and

would collect in the upper parts of the bends, with the effect

of impeding the flow and of acting detrimentally upon the water

itself, which the liberation of the air renders less wholesome.

If the line of pipe coincide with CD', then the fluid pressure

is nil.

Finally, if the pipe at any point rises above CD', the press-

ure becomes negative, which is impossible. In fact, the con-

tinuity of flow is destroyed, and the pipe will no longer run full

bore. Air will be disengaged and will rise and collect at the

point in question, so that in order to prevent the flow being

wholly impeded, it will be necessary to introduce an air-chamber

at this point from which the air can be removed when required.

Note. In the preceding it has been assumed that the pipe is straight.

If the pipe is curved, so also is the line of virtual slope. In ordinary

practice, however, the vertical changes of level in a pipe at different

points are small as compared with the length of the pipe, and distances

measured along the pipe are sensibly proportional to distances measured

along the horizontal projection of the pipe. Hence the line of virtual

slope may be assumed to be a straight line without error of practical

importance.

4. Transmission of Energy by Hydraulic Pressure.

Let Q cub. ft. of water per second be driven through a

pipe of diameter d ft. and length L ft. under a total head of

H ft. Also let n per cent, of the total head be absorbed in

overcoming the frictional resistance in the pipe. Then

the head expended in useful work = H h

H-h
and the efficiency =
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Again,

- h - - -
100

:

~d~ 2g
~''

Since Q = z/, and g is assumed to be 32, thus,

^ InHd*
-

toy T~'

ancf the work transmitted in foot-pounds per second

14

If ^V= the number of horse-power transmitted, then

jv - _L i;_5 /^ 1 A^8^
"550 HV /^ "28V "7^~'

and this equation also gives the distance L to which TV horse-

power can be transmitted with a loss of n per cent of the total

head.

Again,

ffi
. // 2fL V* 2/Lw v*

the efficiency = I = I :

-77 T l -^H gH d g pd>

p( = wH) being the pressure corresponding to the head H.

Thus, the efficiency is constant if - is constant.
pa

Assuming this to be the case, take v* = c* .pd. Then the

total energy transmitted = wQH
' = w vH

4
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If it be also assumed that the thickness / of the pipe-metal
is so small that the formula

pd = 2ft

holds true,f being the circumferential stress induced in the

metal, then

the energy transmitted =

F being the volume of the pipe per unit of length.

Hence, for a given volume (V) of metal and a constant

efficiency, the energy transmitted is a maximum when pd is a

maximum.

If / is increased beyond a certain limit, the ratio
-^

is no

longer small and the thickness t will have a greater value

than that given by the equation pd = 2.ft. Then the cost of

the pipe will also increase. On the other hand, if d is increased

the ratio
-^,

and therefore also the pressure/, will remain small,

and thus the cost of the pipe will not increase. Hence it is

more economical to employ large pipes and low pressures than

small pipes and high pressures.

Note. The efficiency diminishes as v increases, so that, as far as the

efficiency is concerned, it is advantageous to transmit the energy at a

low speed.

5. Flow in a Pipe of Uniform Section and of Length Z,

connecting two Reservoirs at Different Levels. Let z ft.

be the difference of level between the water-surface in the two
reservoirs.
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FIG. 52.

The work done per second is evidently equal to the work

done by the fall of wQ pounds of water through the vertical

distance z, and is expended

(1) In producing the velocity of flow v feet per second

which requires a head of z
l
feet and an expenditure

of wQzl foot-pounds of work per second
;

(2) In overcoming the resistance at the entrance from the

upper reservoir into the pipe, which requires a head

of s
a
feet and an expenditure of wQz^ foot-pounds

of work per second.

(3) In overcoming the frictional resistance which requires a

head of z^ feet and an expenditure of wQz^ foot-

pounds of work per second. Thus

wQz = wQz l + wQz^ +
or

z = z * *.

Now #,
- -

feet, and the corresponding energy wQz^ is

ultimately wasted in producing eddy motions, etc., in the

lower reservoir.

v*

z^ may be expressed in the form n feet, n being a coeffi-

cient whose value varies with the nature of the construction of

the entrance into the pipe. If the pipe-entrance is bell-mouth

in form, n = .08, but if it is cylindrical, n = .5. Finally,
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f, = ft .,, m w d 2g

F(v) v*

Baking
-- =f ,

as is usual in practice. Hence

2g\ d

since Q = --
v, and g is assumed to be 32.

4
For given values of Q and z a first approximate value of d

may be obtained from the last equation by neglecting the term

Q*
rr;(l + ) Call this value dv and substitute it for the d in

A/L
the term j- within the brackets. A second approximation

may now be made by deducing d from the formula

and the operation may be again repeated if desired.

Generally speaking, I + n is usually very small as compared

with ,
and may be disregarded without error of practical

importance.
The formula then becomes

_

which is known as Chezy's formula for long pipes.

In fact, the term I + n need only be taken into account in

the case of short pipes and high velocities.
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6. Losses of Head due to Abrupt Changes of Section,

Elbows, Valves, etc. When the velocity or the direction of

motion of a mass of water flowing through a pipe is abruptly

changed, the water is broken up into eddies or irregular mo-

tions which are soon destroyed by viscosity, the corresponding

energy being wasted.

CASE I. Loss due to a sudden contraction. (Art. 16, Chap. I.)

(a) Let water flow from a pipe (Fig. 53), or from a reser-

voir (Fig. 54) into a pipe of sectional area A.

FIG. 53- FIG. 54.

Let cc be the coefficient of contraction.

Then the area of the contracted section = ccA, and

the loss of head = (--. ,Y
2 V I2g V,

where m = ( 2 I .

= m
V2

2?

The value of m has not been determined with any great

degree of accuracy ;
but if cc = .64, then m = .316.
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When the water enters a cylindrical (not bell-mouthed) pipe
from a large reservoir, the value of m is

about .505.

(b) Let the water flow across the abrupt

change of section through a central ori-

fice in a diaphragm placed as in Fig. 55.

Let a be the area of the orifice.

Then c,a is the area of the contracted section, and

the loss of head = (W
(A ywhere m = I I

J

V^z t

According to Weisbach,

IA Vv* v*= I I
J

= m
,

\cea I 2g 2g'

f- =
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Generally m must be determined by experiment, but Weis-
bach gives the following results :

if = - 1 -2 .3 .4 .5

ce .624 .632 .643 .659 .681

m= 225.9 4777 30.83 7.801 3.753

if ^ .6 .7 .8 .9 i.oo

cc = -712 .755 .813 .892 i.oo

m = 1.796 .797 .29 .06 oo

CASE II. Loss due to a Sudden Enlargement. (Fig. 57.)

Let A
l
= external area of small pipe.

"
A, = " " "

large
"

FIG. 57-

r , , i fvA 9 V v* (A, V
Then, loss of head = \- v\ = -^- i]*f\A. I 2jr\A. I2-

= m ,

(A Y
where m \-~ i) .A

Note. The losses of head in Case I (a) and in Case II may be

avoided by substituting a gradual and regular change of section for the

abrupt changes.

CASE III. Loss of Head due to Elbows. (Fig. 58.) The
loss of head due to the disturbance caused by an elbow is ex-

v*

pressed by Weisbach in the form m
,

o

where m =. 9457 sin
2 + 2.047 sin4

>

being the elbow angle.

Weisbach deduced this formula from the results of experi-

ments with pipes 1.2 in. in diameter.
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The velocity v
l
with which the water flows along the length

AB may be resolved into a component v with which the water

flows along BC and a component u at right angles to the

FIG. 58.

direction of v. The component u and therefore the corre-

sponding head, viz., ,
is wasted. The component u evidently

diminishes with the angle and becomes nil when a gradually

and continuously curved bend is substituted for the elbow.

CASE IV. Weisbach gives the following empirical formula

for the loss of head at a bend in a pipe :

hb
= m

t

, d\k
where m = .131 -f 1.847

for a circular pipe of diameter d, p being
the radius of curvature of the bend, and

FIG. 59.

m = .124+ 3-104

for a pipe of rectangular section, s being the length of a side

of the section parallel to the radius of curvature (p) of the bend.

CASE V. Valves, Cocks, Sluices, etc. The loss of head in

each of the cases represented by the several figures may be

traced to a contraction of the stream similar to the con-
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traction which occurs in the case of an abrupt change of sec-

v*

tion. The loss may be expressed in the form m , and the

following tables give the results obtained by Weisbach.

(a) Sluice in Pipe of Rectangular Section. (Fig. 60.) Area

of pipe = a
;
area of sluice = s.

= i .9 5 -4 .2 .1

m = .oo .09 .39 .95 2.08 4.02 8.12 17.8 44.5 193

FIG. 60.

(b) Sluice in Cylindrical Pipe. (Fig. 61). s =
ratio of height of opening to diameter of pipe.

s= i .875 -75 -625 .5 .375 .25 .125

m = .00 .07 .26 .81 2.06 5.52 17.00 97.8

(c) Cock in Cylindrical Pipe (Fig. 62).

s = ratio of cross-sections;

6 = angle through which cock is turned.

FIG. 61.

FIG. 62.

If = 5

s = ,926

m = .05

If/= 40

.85

.29

45

= 385 .315

= 17.3 31.2

15

.772

75

50

.25

52.6

FIG 63.

20 25 30 35

.692 .613 .535 .458

1-56 3-1 547

55

106

60 65

.137 .091

206 486

82

00

oo

(d) Throttle-valve in Cylindrical Pipe (Fig. 63)

angle through which valve is turned.
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If 61 =5 10 15 20 25 30 35 40

^ = .24 .52 .90 1.54 2.51 3.91 6.22 10.8

If 0=45 50 55 60 65 70 90

#2=18.7 32.6 58.8 118 256 oo

CASE VI. The fall of free surface-level, or loss of head, due

to sudden changes of section, frictional resistance, etc., may be

graphically represented as in Fig. 64.

FIG. 64.

Let a length of piping AE connect two reservoirs, and let

h be the difference of surface-level of the water in the reser-

voirs.

Let Llt r
l
be length and radius of portion AB of pipe.

T ~ it nr" " <(
/- rt ZJCx

"
L,, r,

" " " " " " CD "

" L T " " " " " " JD fi
4i "

" u
t ,u9,ut ,

u
t be the velocities of flow in AB, BC, CD,

DE, respectively.
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The reservoir opens abruptly into the pipe at A.

There is an abrupt change at B from a pipe of radius r
v

. to

one of radius r^.

There is an abrupt change at C from a pipe of radius r
a
to

one of radius r
a
.

At D the water flows through an orifice of area A in a dia-

phragm. At E the velocity of the water as it enters the lower

reservoir is immediately dissipated in eddies or vortices.

Draw the horizontal plane amnop at a distance from the

water-surface in the upper reservoir equal to the head due to

atmospheric pressure.

Draw vertical lines at A, B, C, D, E. Take

ab =loss of head at the entrance A = .49
-

;

= u tt due to faction from A to B =fci-j ;

r> ^g

r * \a^
a

cd=. " " " due to change of section at B=l-^ il -*-

V i
I -%3

re " " " due to friction from B to C =^- a ;

= " " " due to change of section at ^=.316- ;

o

" due to friction from C to D =^ . ^-Z

" " due to change of section at D=(^ -
1)

;

tk = " " " due to friction from D to E ^- ^L, ;

z/
2

kl-= " " "
corresponding to u -

.
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Through / draw a horizontal plane Ix. This plane must

evidently be at a distance from the water-surface in the lower

reservoir equal to the pressure-head due to the atmosphere.
Then the total loss of head = Ip

ef+ gh + M+ C + re + sg+ tk,

i

, 2g
r r% 2g

' r
9 2g

2 3 3

The broken line abcdefghkl is the hydraulic gradient.

7. Remarks on the Law of Resistance. Poiseuille's ex-

periments on the flow of water through capillary tubes showed

that the loss of head was directly proportional to the ve-

locity.

In the case of pipes used in ordinary practice the loss is

undoubtedly more nearly proportional to the square of the

velocity, and must be mainly due to the formation of eddies.

These eddies, again, are formed more or less readily according

as the water possesses less or greater viscosity.
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The experiments of Unwin and others have shown that the

surface friction is diminished by about i<f> for every rise of 5 F.

in the temperature, and it is also known that the viscosity

diminishes as the temperature rises and vice versa. Reynolds
has propounded a single law of resistance to the flow through

pipes, which embraces the results of Poiseuille and of Darcy,
and takes into account the effects of viscosity, temperature,
etc. This law may be expressed in the form

Bn vn

slope = * =____

where d is the diameter of the pipe, A = 67,700,000, B = 396,

and P= (i + .0336^ + .00022 1/
2

),
the units being metres and

degrees centigrade (/).

Unwin considers that the index of the diameter d is not

exactly 3 n, and should be determined independently. For a

rough surface n 2, for a smooth cast-iron pipe n = 1.9, and

for a lead pipe n = 1.723 ;
a limitation which is analogous to

that found by Froude in his experiments upon surface fric-

tion.

Experimenting with glass tubes, Reynolds found for veloc-

ities below a certain critical velocity given by the formula

that the motion of the water is undisturbed, i.e., that it was in

parallel stream-lines. At and above this critical velocity eddies-

are formed, and the parallel stream-line motion is completely
broken up within a very short distance from the mouth of the

tube.

In capillary tubes = 43.79.

In ordinary pipes = 278.
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8. Flow of Water in a Pipe of Varying Diameter.
The variation in the diameter is supposed to be so gradual

that the fluid filaments may still

be assumed to flow in sensible

parallel lines.

Consider a thin slice of the

moving fluid, bounded by the

transverse sections AB, CD, dis-

tant s and s -f- ds, respectively,

from an origin on the axis of the

pipe.

FIG. 65. Let/ be the mean intensity of

pressure, A the water area, P the wetted perimeter for the sec-

tion AB.
Let these symbols become / + dp, A + dA, P+ dP, re-

spectively, for the section CD.

Let z be the height of the C. of G. of the section AB
above datum.

Let z -f- dz be the height of the C. of G. of the section CD
above datum.

Let
,
u + du be the velocities of flow across the sections

AB, CDy respectively.

Then

The rate of increase of

momentum of the slice

ABCD in the direction of

the axis

f momentum generated by
the effective forces acting

Iupon
the slice in the same

direction.

The acceleration in time dt = Au . dt-j- = Au . du.
g dt g

The total pressure on AB = p .A, and acts along the axis.

The total pressure on CD = (p+ dp) (A + dA\ and acts along
the axis.

The total normal pressure on the surface ACBD of the pipe

= 27t[r-\ J \p+ j
A C = 2nrp .A C, very nearly.
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The component of this pressure along the axis

= 2nrpAC .sin 6

= 2 npr . dr, nearly,
6 being the angle between AC and the axis.

Thus the total resultant pressure along the axis
= pA - (p -\-dp\A + dA) + 2npr.dr
= p.dA A.dp-}- 27rpr . dr
= -A.dp,

since A 7tr\ and therefore dA = 27tr . dr.

The component of the weight of the slice along the axis

dA\ I dA\w sm i =
\A H )/ dz= ivA . dz.

The frictional resistance = P.AC. F(u) = P . ds . F(u), very
nearly. Hence

wAu . du~ - = A . dp wA . dz P. ds . F(u\o

and therefore

dpu.du. PF(u) y

Integrating,

p ,u' CP F(u} jz + w+^+J A ~^ ds = a Constant

Then
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The integration can be effected as soon as the relation be-

tween r and s is fixed.

Example. Take r = a -f- bs
t
and assume /and Q to be con-

stant. Then

_L"C__L + -r 3 / = a constant,
' w~ 2g~ b gnJ r"

and therefore

z i <_
_|_

i _ _ a constant.
' w 2 '

- 2 4

9. Equivalent Uniform Main. A water-main usually con-

sists of a series of lengths of different diameters.

As a first approximation the smaller losses of head due to

changes of section, etc., may be disregarded, and the calcula-

tions may be further simplified by substituting for the several

lengths a single pipe of uniform diameter giving the same fric-

tional loss of head. Such a pipe is called an equivalent main.

FIG. 66.

Let /,,/, /
3

be the successive lengths of the main.

Let d
t , d^ , d^ be the diameters of these lengths.

Let z/
v ,

v
t ,

v
3
be the velocities of flow in these lengths.

Let //, , h^ , h^ be the frictional losses of head in these lengths.

Let Z,, d, v, h be the corresponding quantities for the

equivalent uniform main.

Then
h = //, + h, + h, + . . . ,

and therefore

r _ , , , ,~~ ~ 1
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Hence

where it is assumed that /is the same for the several lengths
of the main and also for the equivalent pipe.

But

nd* nd? nd?

TV = Q = Vi = v,
= c .

Hence

L I, /2 /
3

an equation giving, the length L of an equivalent pipe having
the same total frictional loss of head.

10. Branch Main of Uniform Diameter. In a branch main

AB of length L and diameter d, receiving its supply at A.

Let Qw be the way-service, i.e., the amount of water given

up to the service-pipes on each side.

Let Q be the end-service i.e., the amount of water dis-

charged at the end B.

Then it may be assumed, and it is approximately true, that

the way-service per lineal foot, viz.,
-JT-,

is constant.

Thus the amount of water consumed in way-service in a

length AC of the main, where BC = s, is

while the total amount of water flowing across the section of

the pipe at C

v being the velocity of flow at C.
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Now dh, the frictional loss of head at C for an elementary

length ds of the pipe, is given by the equation

= 32.

Integrating, the total loss of head is

SPECIAL CASES.

CASE I. Let <2/ be the total discharge for the same fric-

lional loss of head, ^, when the whole of the way-service is

stopped. Then

or = & + Q.Q. + Qj
f-

and therefore

Hence

and <2/ lies between g + and Qe+ 7=QW ,
its mean value

V 3

being &
CASE II. If there is no end-service, all the water having

been absorbed in way-service, Qe = o, and therefore Q'e
= r=
V $

and
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CASE III. If Qe
= o,

fQdh = vTsT^ds == elementary ffictional loss of head.

Integrating between o and s,

and the vertical slope, or line of free pressure, becomes a cubical

parabola.

CASE IV. Let the main receive its supply at A from a

reservoirX in which the surface of the water is h l above datum,
and let it discharge at the end B into a reservoir Fwith its

surface I? above datum.

Since (QeJ = Q? + CQW + ^, therefore

If Qw = TsQ.', Qe
= o; and if Qw > 3 g/, then the res-

ervoir Fwill furnish a portion of the way-service.

Suppose that X gives the supply for the distance AO
(= /,)

and that Ksupplies BO (= /
a).

Let z be the height above datum of the surface in a press-

ure column inserted at O.

Then, neglecting the loss of head at entrance,

w
i fQ V"= loss of head between A and O = r /a ,

3 ^ a L,

and

J fQ 2/S= loss of head between B and O = rybi
3 n d L

Also A +/, = L.
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II. Nozzles. Let a pipe AB, of length / and diameter d,

lead from a reservoir h ft. above the end B.

First, let the pipe be open to the atmosphere at B.

FIG. 68.

Then

(v*= n
2g
I

-f- head to overcome resistance due to bends, etc. = m
V 2

4- head to overcome frictional resistance (= >)
\ d 2gl

-|- head corresponding to the velocity v in the pipe and at

the outlet f=
*

J

4/A I

^
d } 2g

Hence the height to which the water is capable of rising

B

v\

or, again, is

=f=A--

h

4/^-
td r

~d

Second, let a nozzle be fitted on the pipe at B.

Let V be the velocity with which the water leaves the

nozzle.
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Let D be the diameter of the nozzle-outlet.

This diameter is very small as compared with the diameter

d of the pipe. But

T7V = v,
4 4

and therefore

so that Fis very large as compared with i>.

Also,

h = head to overcome the resistance to entrance at A
-\- head to overcome the resistance due to bends, etc.

-f- head to overcome the frictional resistance in pipe

+ head to overcome the frictional resistance in nozzle

(=*)V 2g )

-f- head corresponding to the velocity V with which the

/ V**\
water leaves the nozzle

, 4/A ,F
3

. V
n -f m + ^- + m' + ,

2g\ dl 2g^ 2g

and the height to which the water is now capable of rising at

j5is

v*

7 v*( . . 4/A ,F
a

= h (n-\- m-4- ^} m'
2g 2g\ d I 2g

h

Let
,
= //, be the pressure-head at the entrance to thew

nozzle. Then the effective head at the same point

Hence
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It will be observed that the delivery from the nozzle is less

than that from the pipe before the nozzle was attached, but

that the velocity-head at the nozzle-outlet is enormously in-

creased. The actual height to which the water rises on leav-

ing a nozzle is less than the calculated height, owing to air-

resistance and to the impact of particles of water as they fall

back.

The force required to hold the nozzle is evidently

g 4

If the water flowing through a pipe, or hose, of length / ft.,

with a velocity of v ft. per second, is quickly and uniformly
shut off by a stop-valve t sec., the pressure in the pipe near the

valve is increased by an amount - - Ibs. per square foot.
<3

Of two forms of nozzle in general use, the one (Fig. 70) is a

FIG. 69. FIG. 70.

surface of revolution with a section which gradually diminishes

to the outlet, while the other (Fig. 69) is a frustum of a cone,

having a diaphragm with a small circular orifice at the outlet.

Denoting the former by A and the latter by ,
the following-

table gives the results of Ellis's experiments :
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Third, if an engine, working against a pressure of pc Ibs. per

square foot, pumps Q cubic feet of water per second through
a nozzle at the end of a hose / feet in length, then

the pumping H.P. of the engine == .

The total head at the engine end of the hose = the head

corresponding to the pressure p in the hose -f~ the head re-

quired to produce the velocity of flow v

W 2g

and this head is expended in overcoming the frictional resist-

ance of the hose (all other resistances are disregarded) and in

producing the velocity of flow Fat the outlet. Hence

W W 2g d 2g 2g

and therefore

W d 2g 2g

- _ JL

gn*
*

.- Ttd 41.J-S T -
since Q = v = F.

4 4

The pumping H.P.

8wff_(j_ 4/7\
-o7t*\D* d* r

12. Motor Driven by Water from a Pipe. Let the

nozzle in the preceding article be replaced by a cylinder hav-

ing its piston driven by the water from the pipe.

Let u = the velocity of the piston per second.

Let pm = unit pressure at the end of the pipe, i.e., in the

cylinder.

Let dm diameter of cylinder.
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Then, velocity of flow in pipe = ~jp-u* Hence

, _ d^ u l

,
4// dm <

u* pm

(other losses of head being disregarded).

13. Siphons. A siphon is a bent tube, ABCD, Fig. 71, and

>- r is often employed to convey
water from one reservoir to

another at a lower level.

Let hv //
3 , respectively, be

the differences of level be-

tween the top of the siphon
and the entrance A and outlet

D to the siphon. Then, so

long as the height k
1
does not

exceed the head of water

(= 32.8 ft.) which measures

the atmospheric pressure, the
FlG * 7I> water will flow along the tube

in the direction of the arrow, with a velocity v given by the

equation

/being the length of the tube ABCD, and all resistances, ex-

.cept that due to frictional resistance, being disregarded.

If
//, > 32.8 feet, each of the branches AB and DC becomes

a water-barometer, and the siphon will no longer work.

Even when the siphon does work, an arrangement must

be made for withdrawing the air which will always collect at

the upper part of the siphon,

14. Inverted Siphons. The existence of a cutting or a

valley sometimes renders it necessary to convey the water

from a course AB to a course DE by means of an inverted

siphon BCD of length.

Let u be the velocity of flow in AB, and h the height of B
above a datum line.



FLOW OF WATER IN PIPES, 109

Let v be the velocity of flow in the siphon, and ht the height
of D above datum.

FIG. 72.

Then

h^ 7z
a
= loss of head at B

-\- frictional loss of head in siphon
loss of head at D

= ,

zg d 2g
""

2g

4/7 v*= ZL--
, approximately,

assuming the entrance and outlet to the siphon formed in

u* v*
such a manner as to considerably reduce the losses and ,

zg 2g
and to allow of these losses being disregarded without practical

error. Find, by chaining along the ground, the length of the

siphon from B up to a point F not far from D. Call this

length /, ,
and let \ be the height above datum of F, obtained

with a level. Generally speaking, DF is nearly always of

uniform slope. Call the slope a. Then,

DF= (k^ h^) cosec a.

But

= h
l h^ DF. sin #,

an equation from which DF can be found, as /^ h^ can be

determined by means of a level.
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15. Air in a Pipe. The effect of an air-bubble in a pipe
ABCD may be discussed as follows:

Let the air occupy the portion BC of a pipe.

Let the surface of the water in the reservoir supplying the

pipe be h^ ft. vertically above E, and h
z ft. above D.

FIG. 73.

Also, let h^ be the difference of level between C and D, h
t

the difference of level between B and C, and / the thickness of

the water-layer EF.
Let H designate the head equivalent to the elastic resist-

ance of the air in BC. Then, approximately,

and

A

/! being length of portion of pipe from A to E, and /, the length
from E to D.

Adding the two equations,

L IL f - 4/ *>* ,,
,

... _ 4// v*
/*,+;,,-/-.__ (

/
l + /,). __,

/ being total length of pipe.

But //! / + h< = //, h^ , very nearly. Hence

an equation showing the variation of v with a variation in the

height /*
4
of the space occupied by the air.

Note. H o>{ course varies with the temperature.



FLOW OF WATER IN PIPES. Ill

16. Three Reservoirs at Different Levels connected by
a Branched Pipe. Let a pipe DO of length /

x
ft. and radius

r
l ft., leading from a reservoir A in which the water stands h

l

ft. above datum, divide at O into two branches, the one, OE,
of length /

2 ft. and radius r
2 ft., leading to a reservoir B in

which the water stands //
2

ft. above datum, the other, OF, of

length /
3

ft. and radius r
3 ft., leading to a reservoir C in which

the water stands h ft. above datum.

I

-.

FIG. 74.

Let v
lt v^ v

z
be the velocities of flow in DO, OE, OF, re-

spectively.

Let Qlt <2a , Q, be the quantities of flow in DO, OE, OF,

respectively.

Let z be the height above datum to which the water

will rise in a tube inserted at the junction.

Two problems will be considered, and all losses of head

excepting those due to frictional resistance will be disre-

garded.
PROBLEM I. Given h,, h^ h

z ;
r
lf

r
9 ,

r
3 ; to find Qlf <23 , Q3 1

z.', ,
z>2 ,

i>
3 ,
and -S".

fo ^ ^ a

For the pipe DO, -~ =a- . . (i) and Q^Ttrfv,. . . (2)
** ^\

= V
. . (3)

"
Q.= r:Vf (4)
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For the pipe OF,
Z
-^-^=a^*- . . (5) and Q3

=nr
3
*v

s
. . . (6)

Also, 1= <2,+ <2.. V.
; V ; , . (7)

From these seven equations the seven required quantities

can be found.

In equations (3) and (7), the upper or lower signs are to be

taken according as the flow is from O towards or from R
towards O.

This may be easily determined as follows :

Assume z 7z
a ,
and then find v

l
and v^ by means of equa-

tions (i) and (5), and hence Q^ and <23 by means of equations

(2) and (6). If it is found that Q l
> Q9 ,

then the flow is from

O to E, and equations (3) and (7) become

s=^ and =

while if <2, < <23 ,
the flow is from E to O, and the equations

are

-? = <* and

(-9-. It is assumed that a -
is the same for each

pipe.

SPECIAL CASE. Fig. 75. Suppose the pipe OE closed at E.

Also let r^ = ra
= r

a
= r, and let V be the velocity of flow

from A to C.

The "
plane of charge

"
for the reservoir A is a horizontal

plane MQ distant from the water surface, / being the at-

mospheric pressure.

The "
plane of charge

"
for the reservoir C is a horizontal

plane TS distant from the water-surface.
w

Fa

In the vertical line VTQ, take TN and join MN.
2g'

Then, neglecting the loss of head at entrance, MN is the
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"
line of charge," or hydraulic gradient, for the pipe DF, and

is approximately a straight line.

Let the "
plane of charge

" KK for the reservoir B, distant

from the water-surface, meet MN in G.

If the junction O is vertically below G, there is no head

._-- _<?___

1

I
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and therefore

y - k
*

~ k
* j'

A+A
'

''

If HL < F, the flow is from O towards .

If HL > F,
" " " " E "

O.

Again,

w 2gl r

and therefore, approximately,

Next assume the junction O to be on the left of G, and

open the valve at E. Then

and Q,= Q,+ Q,,

or z/
t
= v, + vt .

Thus

y(A+ O = *,-*, = "(/^,
1+ A*,*) =

"
j
A(.+ fJ'+Af,'

}
;

and therefore

^.'(A + A) + 2/w, + A^.
1 -

(A + A)^ = o.

Hence, assuming z/
a very small as compared with V,

or

where Q = nr* V.
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Thus it appears that if a quantity <23 of water is drawn off

by means of a branch from a main capable of giving a total

end service Q, this end service will be diminished by j-<2 2 , \Q^
\Qv etc. according as the junction O divides the pipe DF into

two portions in the ratio of I to I, I to 2, I to 3, etc.

Note. The more correct value of v^ is

/,+/

and the maximum value of : -L
TT- does not exceed .

4

Orifice Fed by Two Reservoirs. Neglect all losses of head

except the losses due to frictional resistance.

FIG. 76.

When the valve at is closed the flow is wholly from A to

and the delivery is

The line of charge (hydraulic gradient) is -M/V, where

. w
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Open the valve a little : a volume <2a
will now flow through

<9, and a volume (23
mto where

The " line of charge" becomes the broken line MiN.
As the opening of the valve continues, the pressure-head at

O diminishes, and when it is equal to /z
3+ the line of charge

\sM2N, 2N being horizontal. Hydrostatic equilibrium is now
established between O and C, and the whole of the water from

A passes through O, the delivery being given by

Opening O still further, both reservoirs will serve the ori-

fice, and the line of charge will continue to fall.

When the valve is full open the "line of charge" is

where 3(9 = ,
and the discharge isw

The supply from A is equal to that from C when -1 = *.

The above investigation shows the advantage of a second

reservoir in emergent cases when an excessive supply is sud-

denly demanded, as, e.g., on the occasion of a fire.

PROBLEM II. Given /z,, //
2 , h^\ Q2 , Qs ,

and therefore

Q t (= a+G3); tofirtdr
I ,r;,rt ,f>l ,9t ,f'.,jr.

As before, let z be the pressure-head at O. Then

... (i) and <2,
= >,; ... (2)

(3)
"

e, = *r,'Vt ; ... (4)

... (5)
"

C. = ^>.. . . . (6>
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These six equations contain the seven required quantities,

viz., r
1 ,

ra ,
r

5 , z\ ,
v

9 ,
v

t ,
and z. Thus a seventh equation

must be obtained before their values can be found. This

equation is given by the condition " that the cost of the piping

laid in place should be a minimum/' it being assumed that the

cost of a pipe laid in place is proportional to its diameter.

Hence

l
l
r

l + 4ra + 4ra
a minimum (7)

From equations (i) and (2),
-L

j-^;

(3) (4),
-

-^
"

(5)
"

(6), *- b̂ =
^
3 rr,

Differentiating these three equations,

dz _ $aQ* ,

t

But by equation (7)

/X^ -|_ l^dr^ + /
3
^r3
= O.

Hence

6 6

which is the seventh equation required.
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This last equation may be written in the forms

and

a = a v a
^

3

z/,

1
^

3

3
"

17. Mains with any Required Number of Branches.

Let there be n junctions and m pipes.

Let h
l ,

//
a ,

. . . hm be the m pressure-heads at the end of

each successive length of pipe.

Let #!,,,...# be the n pressure-heads at the 1st, 2d y

3d, . . . 72th junctions.

Let /!,/,,.../, be the lengths of the ;// pipes.

PROBLEM I. Given //, , h^ ,
. . . hm , r

l ,
r
2 ,

. . . rm , to find

?i;tf9 ,. *,*, *,.**
_i. ^ nz >

2

There are 772 equations of the type - - - = a.

Also, the quantity flowing through the first portion of the

main is equal to the sum of the quantities flowing through all

the branches at the first junction, and an analogous equation

will hold for each of the remaining n I junctions. Thus n

additional equations are obtained.

From these m -f- n equations, v
l , vz , . . . vm , z^ , ^ ,

. . . zn

may be found analytically or by the method of repeated ap-

proximation.
PROBLEM II. Given h^ , h^ ,

. . . hm , Ql , <22 , . . . Qm ,
to find

There are now only m equations of the type

-[- h If % _ V*

~T~
a

~r
'

involving m -\- n unknown quantities, and the problem admits

of an infinite number of solutions.

It is therefore assumed that the cost of the piping laid

in place is to be a minimum. Thus n new equations are ob-
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tained, and the m -\- n equations may be solved analytically or

by repeated trial.

18. Variation of Velocity in a Transverse Section.

Assumption. That the water in any portion of a pipe is made

up of an infinite number of hollow concen-

tric cylinders of fluid, each moving parallel

to the axis with a certain definite velocity.

Let u be the velocity of one of these cyl-

inders of radius x and thickness dx. Then

the flow across a transverse section is given

by the equation FlG ?7

dq = 2nx dx . u,

and the total flow

Q27tl uxdx, (i)

r being the radius of the pipe.

If vm be the mean velocity for the whole transverse section

of the pipe,

nr* (2)

Again, assuming with Navier that the surface resistance

between two concentric cylinders is of the nature of a viscous

resistance and may be represented by k per unit of area at
dx

the radius x, k being a coefficient called the coefficient of vis-

cosity, then the total resistance at the radius x for a length ds

of the cylinder

, du du= 2nx . ds . k - = 2nk . as . x--.
dx dx

The total resistance at the radius x -f- dx

du , <
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Hence the total resultant resistance for the length ds of the

cylinder under consideration

= 2nkds

The component of the weight of the slice of the cylinder

in the direction of the axis

= w . 2nx . dx . ds . sin 0,

being the inclination of the axis to the horizon.

Let dz be the fall of level in the distance ds. Then

dz = ds . sin 6.

Therefore, component of weight in direction of axis

= w . 2nx dx . dz.

The resultant pressure on the slice in the direction of motion

= P (P ~\~ d) . znx . dx = 2nx .dx .dp.

Then, since the motion is uniform,

w . 2nk . ds . r\x-\dx w . 2rtx .dx.dz 2nx .dx .dp o,
dx\ dxi

and therefore

k . ds d f du\ dp/t* _ ,/V ty f.

-T-U-H
- dz - - = o.

x ax\ axI w

Integrating only for the cylinder under consideration,

ks d f
du\

( p\--
\
x-r] (z + )

= a constant.
x ax\ axI \ w'

But z + is evidently independent of x, and is a linear
w

function of s (Art. 2, Chap. III.). Hence

I d I du\-- (x = a constant = A, suppose.x dx\ dx>
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Therefore

d I du\

-(,-J
= ^.. . . . . . .. (3)

Integrating,

du x*x- = A
\- B.dx 2

Assuming that the central fluid filament is the filament of

maximum velocity, then when x = o,
- is also nil. Therefore

B = o and x^ = Ax\dx
and therefore

Integrating,

u = A- + C.
4

Let wmax be the velocity of the central filament, i.e., the

value of u when x = o.

Then

(5)

where D = .

4

Again, by equation I,

Q = 27tJ (#max Dx^x.dx = 7rr*\2 max
J

:

and by equation 2,

Dr*
vm = umax (6)

2

If ;/,
= surface velocity, then, by equation 5,

U, = max
- DS (7)

Hence, by equations 6 and 7,

u s + inax zvm (8)
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12. A reservoir has a superficial area of 12,000 ft. and a depth of 60

ft. ;
it is emptied in 60 minutes through four horizontal circular pipes,

equal in diameter and 50 ft. long. Find the diameter. Ans. 1.75 ft.

Explain how the total head is made up, and draw the plane of charge.

13. A 3-inch pipe is very gradually reduced to i inch. If the press-

ure-head in the pipe is 40 ft., find the greatest velocity with which the

water can flow through. Ans. 1.4 ft. per sec.

14. Water flows through a 24-inch pipe 5000 yards in length. At 1000

yards it yields up 300 cubic feet per minute to a branch. At 2800 yards

it yields up 400 cubic feet per minute to a second branch. At 4000 yards

it yields up 600 cubic feet per minute to a third branch. The delivery at

the end is 500 cubic feet per minute. Find the head absorbed by friction.

(/=.oo75.) Ans. 176.801 ft.

1 5. Find the H. P. required to raise 550 gallons per minute to a height

of 60 feet, through a pipe 100 feet in length and 6 in. in diameter, the

coefficient of friction being .0064. , Ans. 10.74.

1 6. What head of water is required for a $-in. pipe, 150 ft. in length,,

to carry off 25 cub. ft. of water per minute ? Ans. 1.56223 ft.

What head will be required if the pipe contains two rectangular

knees? Ans. 1.84918 ft.

17. Determine the delivery of a 2- in. pipe, 48 ft. long, under a 5-ft.

head. Ans. .1349 cub. ft. per sec.

What will be the delivery if the pipe has five small curves of 90 cur-

vature, the ratio of the radius of the pipe to that of the curves being
1:2? Ans. .1327 cub. ft. per sec.

1 8. The curved buckets of a turbine form channels 12 in. long, 2 in.

wide, and 2 in. deep; the mean radius of curvature of the axis is 8 in.

the water flows along the channel with a velocity of 50 ft. per minute.

What is the head lost through curvature ? Ans. .00138 ft.

19. Find the maximum power transmitted by water in a 36-inch pipe,

the metal being \\ inches thick and the allowable stress 2800 Ibs. per

square inch. If the pipe is \\ miles in length, find the loss of power.
Ans. 576 H. P. ; 720.2 ft. -Ibs.

20. Find the diameter of a pipe \ mile long to deliver 1500 gallons of

water per minute with a loss of 20 feet of head. (/ = .005.)

Ans .1.0135 ft-

21. Water is to be raised 20 ft. through a 3O<ft. pipe of 6 in.

diameter. Find the velocity of flow, assuming that 10 per cent of

additional power is required to overcome friction.

Ans. 8.44 ft. per sec.

22. In a pipe 3280 ft. in length the loss of head in friction is 83 ft.

Taking/ .0064, find the diameter. Ans. 1.527 ft.

23. A pipe 2000 ft. long and 2 ft. in diameter discharges at the rate

of 1 6 ft. per second. Find the increase in the discharge if for the last
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1000 ft. a second pipe of same size be laid by the side of the first and

connected with it so that the water may flow equally well along either

pipe. Ans. 7.24 cub. ft. per sec.

24. A pipe of length / and radius r gives a discharge Q. How will

the discharge be affected (i) by doubling the radius for the whole

length ; (2) by doubling the radius f :>r half the length ; (3) by dividing it

into three sections of equal length, of which the radii are r, , and ,

.respectively ? (f = coefficient of friction.)

Ans. i. New discharge =

r + 64/A1

-4 9' + 4//

4228//y

25. A 24-inch pipe 2000 ft. long gives a discharge of Q cubic feet of

water per minute. Determine the change in Q by the substitution for

the foregoing of either of the following systems : (i) two lengths, each

of looo ft., whose diameters are 24 in. and 48 in. respectively; (2) four

lengths, each of 500 ft., whose diameters are 24 in., 18 in., 16 in., and

24 in.

Draw the "
plane of charge

"
in each case.

Ans. (i) Discharge is increased 33.2 per cent taking loss at

change of section into account;

Discharge is increased 35.7 per cent disregarding loss

at change of section.

(2) Discharge is diminished 45 per cent disregarding
losses at change of section.

26. Q is the discharge from a pipe of length / and radius r \ examine

the effect upon Q of increasing r to nr for a length ml of the pipe.

*

Ans. New discharge = Q
(n* - i)

2

*

27. A reducer, I ft. in length, discharges at the rate of 400 gallons per

minute, and its diameter diminishes from 12 in. to 6 in.; find the total

loss of head due to friction. Ans. .0055297.

28. A reservoir of 10,000 square feet superficial area and 100 feet /

deep discharges through a pipe 24 in. in diameter and 2000 feet long.
*

Find the velocity of flow in the pipe.

What should be the diameter of the pipe in order that the reservoir

might be emptied in two hours ? Ans. 15.36 ft. per sec.; 3.67 ft.

29. Eight cubic feet of ore is to be raised at the rate of 900 ft. per
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minute by a water-pressure engine with four single acting cylinders of

6 in. diameter and 18 in. stroke, making 60 revolutions per minute.

Find the diameters of a supply- pipe 230 ft. long for a head of 230 ft.,

disregarding friction of machinery, etc. Ans. 4 in.

30. A 2-inch pipe A suddenly enlarges to a 3-inch pipe B, the quan-

tity of water flowing through being 100 gallons per minute. Find the

loss of head and the difference of pressure in the pipes (i) when the

flow is from A to B ; (2) when the flow is from B to A.

Ans. (i) Loss of head = 8.639 in -

Gain of pressure-head = 13.83
"

(2) Loss of head = 7.428
"

Diminution of pressure-head = 29.88
"

31. A 3-inch horizontal pipe rapidly contracts to a i-inch mouih-

piece, whence the water emerges into the air, the discharge being-

660 Ibs. per minute. Find the pressure in the 3-inch main.

If the 3-inch pipe is 200 ft. in length and receives water from an

open tank, find the height of the tank.

Ans. 1003.5 Ibs. Per sq. ft.; 19.92 ft.

32. The efficiency of an engine is f ;
it burns 8 Ibs. of coal per hour

per H.P., and works 8 hours a day for 300 days in the year; the cost of

the engine is $12.00 per H.P., and the cost of the coal is $3.00 per ton ;

4500 gallons of water per minute have to be raised a height of 200 ft.

through a pipe of which the diameter is to be a minimum. Cost of

piping = $> per lineal foot, D being the diameter. Find the value of D.

Ans. 2.923 ft.

33. A reservoir is to be supplied with water at the rate of 11,000

gallons per minute, through a vertical pipe 30 ft. high; find the

minimum diameter of pipe consistent with economy. Cost of pipe per
foot = &/, d being the diameter; cost of pumping = i cent per H.P.

per hour; original cost of engine per H.P. = $100.00; add 10 per cent

for depreciation. Engine works 12 hours per day for 300 days in the

year. Ans. 4.375 ft.

34. A horizontal pipe 4 in. in diameter suddenly enlarges to a

diameter of 6 in.; find the force required to cause a flow of 300

gallons of water per minute through the sudden enlargement.
Ans. .06 H.P.

35. 1000 gallons per minute is to be forced through a system of

pipes AB, BC, CD, of which the lengths are 100 ft., 50 ft., 120 ft., and

the radii 4 in., 6 in., and 3 in., respectively. Draw the plane of

charge.
Ans. Loss in friction from A to B = 111.96 ft.; loss at B 4.499 ft.;

" " " " B to C 7.372
" " " C 14.56

"

" " " " C to D = 566.17
"
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36. A pipe 4 in. in diameter suddenly contracts to one 3 in. in

diameter; find the power necessary to force 250 gallons per minute

through the sudden contraction. Ans. 1.23997 H.P.

37. If a pipe whose diameter is 8 in. suddenly enlarges to one whose

diameter is 12 ins., find the power required to force 1000 gallons per
minute through the enlargement, and draw to scale the plane of charge.

Ans. Energy expended = .1377 H.P.

38. 1000 gallons per minute are forced through a system of pipes

AB, BC, CD, of which the lengths are 100 ft., 50 ft., and 120 ft., and the

radii 6 in., 3 in., and 4 in., respectively. Draw to scale the plane of

charge.
Ans. Loss in friction from A to B = 14.744 ft.; loss at B = 14.56 ft.

" " " " B to c = 235.9
"

;

" " c= 8.819"
" " " " CtoZ>= 134.36

"

39. Water flows from a 3-inch pipe through a i^-inch orifice in

a diaphragm into a 2-inch pipe. What head is required if the delivery
is to be 8 cubic feet of water per minute ? Ans. 2.826 ft.

40. 500 gallons of waiter per minute are forced through a continuous

line of pipes AB, BC, CD, of which the radii are 3 in., 4 in., 2 in., and

the lengths 100 ft., 150 ft., and 80 ft., respectively. Find the total loss

of head (a) due to the sudden changes of form at B and C, (b) due to

friction. Find (c) the diameter of an equivalent uniform pipe of the

same total length.

Ans. (a) .1378 ft.; 1.152 ft.

(b) 3.688 ft. in AB; 1.313 ft. in BC\ 22.393 ft - in CD.

(c) .4212 ft.

41. AB, BC, CD is a system of three pipes of which the lengths are

looo ft., 50 ft., and 800 ft., and the diameters 24 in., 12 in., and 24 in.,

respectively; the water flows from CD through a i-inch orifice in a

thin diaphragm, and the velocity of flow in AB is 2 ft. per second.

Draw the plane of charge and find the mechanical effect of the

efflux.

Ans. Loss at B = -& ft.; at C = -/fa ft.; in friction from A to

B = .8 ft. ; from B to C = 1.28 ft.; from C to D = .64 ft. ;

energy of jet = 14,81 if H.P.

42. looo gallons per minute flows through a sudden contraction from
12 inches to 8 inches at A, then through a sudden enlargement from 8

inches to 12 inches at B, the intermediate pipe AB being 100 ft. long.
Draw the plane of charge.

Ans. Loss at A = .288 ft. ; at B = .281 ft. ;
in friction from A

to B = 3.499 ft.

43. Water flows from one tube into another of twice the diameter;
the velocity in the latter is 10 ft. Find the head corresponding to the

resistance. Ans. 14.0625 ft.
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44. In a given length / of a circular pipe whose inner radius is r

and thickness <?, a column of water flowing with a velocity v is sud-

denly checked by the shutting off of cocks, etc. Show that

\e

in which ^ = head due to the velocity v
t
E = coefficient of elasticity,

E\ = coefficient of compressibility of water, A = extension of pipe cir-

cumference due to E.

45. A loo-gallon tank, 100 feet above the ground, is filled by a i^-in.

pipe connected with an accumulator consisting of a 3-ft. cylinder with a

piston loaded with 50 tons. How long will it take to fill the tank,

assuming that frictional resistances absorb nine tenths of the head and
that the mean height of the piston above the ground is 10 feet?

Ans. 13.9 sees.

46. Determine the discharge from a pipe of 12 in. radius and 3280 fty

in length which connects two reservoirs having a difference of level of

128 ft. Take into account resistance at entrance. Draw the plane of

charge. Ans. 48.571 cub. ft. per sec.

47. Determine the diameter of a clean iron pipe 5000 ft. in length
which connects two reservoirs having a total head of 40 ft. and dis-

charges into the lower at the rate of 20 cub. ft. per second. Draw to

scale the line of charge. Ans. 1.9219 ft.

48. The difference of level between the two reservoirs is 100 ft., and

they are connected by a pipe 10,000 ft. long. Find the diameter of the

pipe so as to give a discharge of 2000 cubic feet per minute (a) by

Darcy's formula, (b} assuming / = .0064. (Allow for loss of head at

entrance.) Ans. (a) 2.266 ft.; (b) 2.360 ft.

49. Two reservoirs are connected by a 1 2-inch pipe ij miles long.
For the first 500 yards it has a slope of i in 30, for the next half mile a

slope of i in 100, and for the remainder of its length it is level. The
head of water over the inlet is 55 ft. and that over the outlet is 15 ft.

Determine the discharge in gallons per minute. (Take/ = .0064.)

Ans. 1950.66.

50. Two reservoirs are connected by a 6-inch pipe in three sections,

each section being three quarters of a mile in length. The head over

the inlet is 20 ft., that over the outlet 9 ft. The virtual slope of the first

section is i in 50, of the second i in 100, and the third section is level.

Find the velocity of flow, and the delivery.

Ans. 4.5 ft. per sec. ; 332 gallons per minute.

51. A pipe 5 miles long, of uniform diameter equal to 12 in., conveys
water from a reservoir in which the water stands at a height of 300 ft.

above Trinity high-water mark, to a reservoir in which the water stands
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at a height of 1 50 ft. above the same datum. To what height will water

rise in a supply-pipe taken one mile from the lower end? For what

pressure would you design the main at this point, if it lies 20 ft. above

the level of the lower reservoir ? Ans. 179.93 ft.; 19 Ibs. per sq. in.

52. The water surface in one reservoir is 500 ft. above datum, and is

100 ft. above the surface of the water in a second reservoir 20,000 ft.

away, and connected with the first by an i8-in. main. Find the delivery

per second, taking into account the loss of head at the upper entrance.

53. Water surface of a reservoir is 300 ft. above datum, and a 4- in.

pipe 600 ft. long leads from reservoir to a point 200 ft. above datum.

Find the height to which the water would rise (a) if end of pipe is open
to atmosphere, (b) if it terminates in a i-inch nozzle. In latter case find

longitudinal force on nozzle. Ans. (a) 2f ft.; (b} 87.52 ft.; 59.693 Ibs.

54. The surface of the water in a tank is 388 ft. above datum and is

connected by a 4-in. pipe 200 ft. long with a turbine 146 ft. above

datum. Determine the velocity of the water in the pipe at which the

power obtained from the turbine will be a maximum. Assuming the

efficiency of the turbine to be 85 per cent, determine the power.
Ans. 19.928 ft. per sec.; 31.895 H. P.

55. A pipe 12 in. in diameter and 900 ft. long is used as an inverted

siphon to cross a valley. Water is led to it and away from it by an

aqueduct of rectangular section 3 ft. broad and running full to a depth
of 2 ft. with an inclination of i in 1000. What should be the difference

of level between the end of one aqueduct and the beginning of the

other ? Ans. 575.8 ft.

56. Water flows through a pipe 20 ft. long with a velocity of 10 ft.

per second. If the flow is stopped in -^ sec. and if retardation during
the stoppage is uniform, find the increase in the pressure produced.

(g = 32 and the density of the water = 62.5 Ibs. per cub. ft.)

Ans. 62$ cu. ft. of water.

57. An hydraulic motor is driven by means of an accumulator giving

750 Ibs. per square inch. The supply-pipe is 900 ft. long and 4 in. in

diameter. Find the maximum power attainable, and velocity in pipe.

(/= .0075.) Ans. 242.4 H. P.; 21.203 ft- Per sec -

58. A 2-inch hose conveys 2 gallons of water per second. Find the

longitudinal tension in the hose. Ans. 9.18 Ibs.

59. Find the pumping H. P. to deliver i cub. ft. of water per second

through a i-inch nozzle at end of a 3-inch hose 200 ft. long,/ being .016,

Ans. 97.335 H. P.

60. A volume of water 50 ft. in length flowing through a pipe with a

velocity of 24 ft. per second is quickly and uniformly stopped in one

tenth ol a second by closing a stop-valve. Find the increase of pressure

per square inch in the pipe near the valve. Ans. 162.5 Ibs.

61. The surface of the water in a tank is 286 ft. above datum. The
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tank is connected by a 4-in. pipe 500 ft. long with a 36-in. cylinder

170 ft. above datum. Find (a) the velocity of flow in the pipe for which
the available power will be a maximum

; (b) the power. If the piston
moves at the rate of i ft. per minute, find (c} the pressure on the piston.

Also find the height to which the water would rise if (d) the cylinder

/end of the pipe were open to the atmosphere and if (e) the pipe termi-

nated in a nozzle I inch in diameter, neglecting the frictional resistance

of the nozzle. Finally, find (/) the power required to hold the nozzle.

(Coeff. of friction = .005.)

Ans. (a) 8.93 ft. per sec. ; (ff) 6.85 H. P.; (c) 22.8 tons per sq. ft.;

(d) 3.74 ft.; (e) 103.8 ft.; (/) 70,8 Ibs.

62. The conduit-pipe for a fountain is 250 ft. long and 2 in. in diam-

eter ;
the coefficient of resistance for the mouthpiece is .32 ; the entrance

orifice is sufficiently rounded, and the bends have sufficiently long radii

of curvature to allow of our neglecting the corresponding coefficient of

resistance. How high will a ^-in. jet rise uuder a head of 30 ft. ?

Ans. 1 9. 14 ft.

63. The difference in level of two reservoirs is 250 ft. and they are

connected by a 24-inch pipe AB, 6000 ft. long. Iff= .0064, draw the

plane of charge. A third reservoir is so placed that the difference

between its level and that of the first (or highest) is 100 ft., and is con-

nected to the main at a point O by a branch OC, 3000 ft. long and 12 in.

in diameter. Examine the distribution.

Ans. Upper reservoir will supply the two lower reservoirs if

AO < %BO.
The two upper reservoirs will both discharge into the

, lower reservoir if AO > %BO.
(x If AO = 2000 ft'., the pressure-head at O =161 ft.; 2/1= 14.9

ft. ; 2/2 = 3.02 ft.; v* = 14.18 ft.

If AO=4ooo ft., the pressure-head at 0=96 ft.; 2/1=13.8 ft.;

2/2 = 6.7 ft.; 2/3 = 15.4 ft.

64. A pipe 24 in. in diameter and 2000 ft. long leads from a reservoir

in which the level of the water is 400 ft. above .datum to a point B, at

which it divides into two branches, viz., a 12-in. pipe J3C, 1000 ft. long,

leading to a reservoir in which the surface of the water is 250 ft. above

datum, and a branch BD, 1500 ft. long, leading to a reservoir in which

the surface of the water is 50 ft. above datum. Determine the diameter

of BD when the free surface-level at B is (a) 300 ft., (b) 250 ft., and (c)

200 above datum. Ans. (a) 1.454 ft.; (&) 1.783 ft.; (c) 2.096 ft.

65. Two reservoirs A and B are connected by a line of piping MON,
2000 ft. in length. From the middle point O of this pipe a branch OP,
looo feet in length, leads to a reservoir C. The reservoirs A and (Tare

200 feet and 100 feet, respectively, above the level of C. The deliveries

in MO, OP, ON, in cubic feet per second, are ^-it, ^-TT, and TC, respec-
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lively. Find (a) the velocities of flow in MO, OP, ON\ (b] the radii of

these lengths; (c) the height of the free surface-level at O above C.

Ans. (a) 1 1. 121 ft. per sec. in MO; 10.158 ft. per sec. in OP;
14.145 ft. per sec. in OAr

.

(b) .49976^.; .41831 ft.; .26588 ft.

(c) 150.5 ft., very nearly.

66. A main, 1000 ft. long and with a fall of 5 ft. discharges into two

branches, the one 750 ft. long with a fall of 3 ft., the other 250 ft. long
with a fall of i ft. The longer branch passes twice as much water as

the other and the total delivery is 47^ cu. ft. per minute. The velocity

of flow in the main is i\ ft. per second. Find the diameters of the main

and branches. Ans. .63245 ft.; .288ft.; 488ft.

67. How far can 100 H.P. be transmitted by a 3^ in. pipe with a loss

of head not exceeding 25 per cent under an effective head of 750 Ibs. per

square inch ? Ans. 5426.3 ft.

68. A city is supplied with water by means of an aqueduct of rect-

angular section, 24 ft. wide, running 4 ft. deep, and sloping i in 2400.

One-fourth of the supply is pumped into a reservoir through a pipe 3000

ft. long, rising 25 ft. in the first 1500 ft., and 75 ft. in the second 1500 ft.

The pumping is effected by an engine burning 2| Ibs. or coal per H.P.

per hour, and working constantly through the year. A percentage is to

be allowed for repairs and maintenance; the cost of the coal per ton of

20oolbs. is $4 ;
the prime cost of the engine is $100 per H.P. ; the effi-

ciency of the engine is f ;
the coefficient of pipe friction is .0064, the

cost of the piping is $30 per ton. Determine the most economical diam-

eter of pipe, and the H.P. of the engine. Ans. 4.84 ft. ; 456.455 H.P.



CHAPTER IV.

FLOW OF WATER IN OPEN CHANNELS.

i. Flow of Water in Open Channels. A transverse sec-

tion of the water flowing in an open channel may be supposed
to consist of an infinite number of elementary areas represent-

ing the sectional areas of fluid filaments or stream-lines. The
velocities of these stream-lines are very different at different

points of the same transverse section, and the distribution of

the pressure is also of a complicated character. Generally

speaking, the side and bed of a channel exert the greatest

retarding influence on the flow, and therefore along these

surfaces are to be found the stream-lines of minimum velocity.

The stream-lines of maximum velocity are those farthest

removed from retarding influences. If the stream-line velo-

cities for any given section are plotted, a series of equal

velocity-curves may be obtained. In a channel of symmetrical

FIG. 78.

section, the depth of the stream-line of maximum velocity

below the water-surface is less than one fourth of the depth of

the water, while the mean velocity-curve cuts the central

vertical line at a point below the surface about three fourths of

the depth of the water.

In the ordinary theory of flow in open channels, the

variation of velocity from point to point in a transverse section

is disregarded, and it is assumed that all the stream-lines are

sensibly parallel and move normally to the section with a

common velocity equal to the mean velocity of the stream.

With this assumption, it also necessarily follows that the

131
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distribution o 4

"

pressure over the section is in accordance with

the hydrostatic law.

Again, it is assumed that the laws of fluid friction already
enunciated are applicable to the flow of water in open chan-

nels. Thus, the resistance to flow is proportional to some
function of the velocity (F(v)}, to the area (S) of the wetted

surface, is independent of the pressure, and may be expressed

by the term S.F(v). An obvious error in this assumption is

that v is the mean velocity of the stream and not the velocity
of the stream-lines along the bed and sides of the channel. In

practice, however, the errors in the formulae based upon these

imperfect hypotheses are largely neutralized by giving suitable

values to the coefficient of friction (/).

When a constant volume (Q) of water feeds a channel of

given form, the water assumes a definite depth. A permanent

regime is said to be established and the flow is steady. If the

transverse sectional area (A) is also constant, then, since

Q = vA, the velocity v is constant from section to section and

the flow is said to be uniform. Usually the sectional area A is

variable and therefore the velocity v also varies, so that the

motion is steady with a varying velocity. Any convenient

short stretch of a channel, free from obstructions, may be

selected, and treated without error of practical importance, as

being of a uniform sectional area equal to that of the mean
section for the whole length under consideration.

2. Steady Flow in Channels of Constant Section (A).

The flow is evidently uniform
;
and since A is constant, the

depth of the water is also con-

stant, so that the water-surface

is parallel to the channel-bed.

JH Consider a portion of the

stream, of length /, between the

two transverse sections aa, bb.

Let i be the inclination of

the bed (or water-surface) to

the horizon.

Iff

FIG. 79.

Let Pbe the length of the wetted perimeter of a cross-section.
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Then, since the motion is uniform, the external forces

acting upon the mass between aa and bb in the direction of

motion must be in equilibrium.

These forces are :

(1) The component of the weight of the mass, viz.,

wAl sin i = wAli = wAl = wAk,

h being the fall of level in the length /.

Note. When i is small, as is usually the case in streams,

-j
= tan / = sin / = /, approximately.

(2) The pressures upon the areas aa and bb, which evi-

dently neutralize each other.

(3) The frictional resistance developed by the sides and

bed, viz.,

Hence
wAh -

PlF(v) = o,

or

FM Ah
-^ =w= m*>

m being the hydraulic mean depth.
It now remains to determine the form of the function F(v).

In ordinary English practice it is usual to take

W 2g

f being the coefficient of friction. Then

or

jig
v = \i

~~fy mi = cy mi.
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c being a coefficient whose value depends upon the roughness
of the channel surface and upon the form of*its transverse

section.

Prony and Eytelwein adopted the formula

F(v]- = av -j- bv* = mi,w

and carried out different experiments to determine the values

of a and b.

According to Prony,
- = 22472.5 and -r 10607.02,

"
"Eytelwein,

- = 41688.02
" -= 8975.43.

For a velocity of about 70 ft. per minute Prony's and

Eytelwein's results give the same value for mi. For other

velocities, Prony's values of mi are greater or less than those

of Eytelwein, according as the velocity v is greater or less

than 70 ft. If v, however, does not differ very widely from

70 ft., the change of value is small and of no practical

importance.
For values of v exceeding 20 ft. per minute the term av

may be disregarded without practical error, and the formula

then becomes
mi = bv*

t

or

Hence
v = 105 \/mif according to Prony,

and

v = 95 ^/mi, according to Eytelwein,

giving as a mean

v = loo^mz, which is Beardmore's formula.

The total head H in a stream is made up of two parts, the
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one required to produce the velocity of flow, and the other

absorbed by the frictional resistance. Thus,

2g ?;/ w

In long canals, and in rivers with slopes not exceeding 3 ft.

v*

per mile, the term is very small as compared with the term

/ Mv)
,
and may be disregarded without sensible error.m w

Note. The retarding effect of the air upon the free surface

of a stream or river has yet to be determined by careful

observation and experiment. It may, however, be assumed
that the resistance offered by calm air per unit of free surface

is approximately one tenth of the resistance offered by similar

units at the bottom and sides of smooth channels. Thus, in

smooth channels, if X is the width of the free surface, the

Y
wetted perimeter is more correctly P -\-

In general, the wetted perimeter may be expressed in the

form P -f- -ip ft being 10 for smooth channels and greater

than 10 for rough channels. The value of ft is obviously
diminished by opposing winds and increased by following
winds.

3. On the Form of a Channel. In the formula

F(v)mt '

=
*T'

=
J

and ilss -yl
are similarly related in the deter-

mination of v, the mean velocity of flow. If v is constant, the

product mi must also be constant, so that if m increases i must

diminish, and vice versa. Thus, in a very flat country the flow

may be maintained by making m sufficiently large, while again
if the channel-bed is steep m is small.
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The erosion caused by a watercourse increases with the

rapidity of flow. At the same time the sectional area (A)
of the waterway also increases, so that the velocity of flow v

diminishes. Thus there is a tendency to approximate to a
"
permanent regime

" when the resistance to erosion balances

the tendency to scour.

Hence, throughout any long stretch of a river, passing

through a specific soil, the mean velocity of flow will be very

nearly constant if the amount of flow (Q) does not vary. Gen-

erally speaking, the volume conveyed by a river increases from

source to mouth on account of the additions received from

tributaries, etc. Since Q increases, A must also increase
;
and

if mi or v is to remain constant, i must diminish. It is also

observed that the surface slopes of large rivers diminish gradu-

ally from source to mouth.

Again, various problems relating to the proper sectional

form of a channel may be discussed by means of the formulae

'A .

v = c \mi =

and

Suppose the slope to be constant. Then
A

v* is proportional to 75

and

A 9

Q* is proportional to
p.

'

PROBLEM I. The section of the waterway being a rectangle

of width x and depth y, and of given area (A xy\ it is

required to find the ratio of x to y for which the velocity of

flow (v) will be a maximum. Then dv = o, and therefore

P.dAA.dP
P*

'
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Hence
PdA-AdP=o.

But dA o = xdy -\-ydx, and

therefore also ^

dP o = dx + 2dy, J

since

P=x + 2y.

Hence,

FIG. 80.

and the mean hydraulic depth

_ A _ xy _y
~P~x-\-2y~2
= one half of the depth of the water.

The same results follow if the discharge Q instead of v

is to be a maximum. In such case

dQ
M'\- o -

d\-p)
= .dA - A*.dP

and therefore $PdA AdP o.

But dA = o, and therefore dP = o. Hence, etc.

Note. The same results also follow if, instead of A being

given, the wetted perimeter P is to be a minimum, since then

dP = o, and therefore also dA = o.

PROBLEM II. The waterway being trapezoidal in section,

FIG. 81.

of bottom width x, depth y, and sides sloping at a given angle
Q to the horizontal, it is required to find the ratio of x to y

which, for a given wetted perimeter (P^ or area (A), will make
the velocity of flow or the discharge a maximum.
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As in Problem I,

dA = o and dP = o.

But A = (x +y cot 6)y and P= x + 2y cosec 6.

Hence

^4=0= ydx + <^/O + 27 cot 0)
and

</P = o dx + */j/ . 2 cosec 0.

Therefore

x -4- 2y cot # dx
! ---- = -j- = 2 cosec 0.

dyy
Hence

x := 2i/(cosec cot 0) = 2i/

and therefore

- cos
^ == 2v tan t

sin 2

x = 2 tan .

/ 2

Then mean hydraulic depth

A (*-\-y cot 0)y j/2 cos 6K y=
2(2 - cos 0}

~
2P x -|- 27 cosec

= one half of the depth of the water.

The section may be easily sketched as in Figs. 82 and 83.

G
FIG. 82.

From the middle point C of AB, the bottom width, draw

CF at right angles to AB and equal in length to the depth of

the water. Then

AB _- 2 tan
,

being the given slope of the sides.
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With F as centre and FC as radius describe a circle. From
the points A and B draw tang.ents to touch this circle at D
and E. FA evidently bisects the angle CAD. Therefore

CAD CF CF 6
tan - = tan CAP = = - = = cot

2'

Hence TT CAD = #, and ^/?, /? have the slope required.

PROBLEM III. To find the proper sectional form of a

channel of bottom width 2a so that the mean velocity of flow

may be constant for all depths of water.

Let x, y, Fig. 84, be the co-ordinates of any point P in the

profile referred to the middle point O of AB, the bottom width,.

as origin and let s be the length of AP.

FIG. 84.

Since v is to be constant m must also be constant, and
therefore

A = ,[y^_ =

which may be written

/ ydx = m(s + a).

Differentiating,

ydx = mds m^dx*

and therefore

dx dy
m ~~

(/ _ w?

Integrating,

x
m~ *>e \s

c being a constant of integration.
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When x = o, y = a, and therefore

o = log, (a + *V - M2

) + c = loge & + c,

where b = a -f- j/#
a ^2

. Hence

= te

or

is the equation to the required profile, which, as may be easily

shown, is a curve which flattens very rapidly.

PROBLEM IV. If water flows through a circular aqueduct,
find the angle 6 subtended at the centre by the wetted perim-

eter, for which the velocity of flow is a

maximum.
Let r = radius of aqueduct.

Area of waterway = (6 sin 0).

Wetted perimeter = r6.

FIG. 85. Then

r sin r I sin
m =

-ft2 C^

sin

Now v is to be* a maximum and therefore
-^

must be a

minimum. Hence

cos - sin ,/sin 0\ 0COS4)==-
and therefore cos sin = o.

Hence 6= tan 0, and the angle in degrees is about 77 27'.
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Also, the mean hydraulic depth = ^i
----r )

= -
(i
_ cos d)

= rsin = . 39 X r.

PROBLEM V. A channel of given slope has a given surface-

width AC, vertical sides AB (=y l )
and CD (=7,) of given

depths, and a curved bed BD (= L) of given length.

FIG. 86.

The amount and velocity of flow in the channel will be a

maximum when the form of the bed BD is a circular arc. This

can be easily proved as follows :

Since the slope is constant, v oc
/~Aa \f
-p.

But P (= L -\- y^ +>0 is a constant quantity, and therefore

v and also Q will be a maximum when ^4 is a maximum.

Hence, too, the area between the chord BD and the curve

must be a maximum, and therefore the curve must be a circu-

lar arc. The proof of this by the Calculus of Variations is as

follows :

Take O in CA produced as the origin, OC as the axis of x,

and the vertical through O as the axis of y. Then

ydx is to be a maximum.
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Also,

dy
is a given quantity, OA being = JT, ,

OC = x^ ,
and Hr

Let V = y -f- a Vi -\- p\ a being some constant.

Then

/*;
/ F. dx is to be a maximum,

*X ^i

and therefore

that is,

and thus

^ + ~^=r^ = ^

Therefore

^ /
'

Va* - (c,
-

<y)*

'

Integrating,

the equation to a circle of radius a.

Hence the profile BD is a circular arc.

The maximum depth of the channel is c
l

a.

The constants c
1 , c^ ,

a can be found from the three con-

ditions that the arc is of given length and has to pass through
the two fixed points B and D.

4. Flow in Aqueducts. The velocity v depends upon m
A

(m = - and therefore upon the depth of the water in the
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aqueduct. For some definite depth the velocity will be a

maximum. If the water fills the aqueduct, the aqueduct be-

comes a pipe, and the formula for channel-flow ought to change

suddenly so as to agree with that for pipe-flow. The theory is

thus imperfect.

5. River-bends. The following explanation is due to Pro-

fessor James Thomson (Inst. Mechl. Engs., 1879 5
Pi'oc. Royal

Soc. 1877). In rivers flowing in alluvial plains, the curvature

of the windings which already exist tends to increase owing to

the scouring away of material from the outer bank and to the

deposition of detritus along the inner bank. The sinuosities

often increase until a loop is formed, with only a narrow isth-

mus of land between two encroaching banks of a river. Finally

a cut-off occurs, a short passage for the water is opened

through the isthmus, and the loop is separated from the river-

course, taking the form of a horseshoe-shaped lagoon or swamp.
The ordinary supposition that the water always tends to move
forward in a straight line, rushing against the outer bank and

wearing it away, and at the same time causing deposits at the

inner bank, is correct, but it is very far from being a complete

explanation of what takes place.

When water flows round a circular curve under the action

of gravity only, it takes a motion like that in a free vortex.

Its velocity parallel to the axis of the stream is greater at the

inner than at the outer side of the curve.

Thus, too, the water in a river-*bank flows more quickly

along courses adjacent to the inner bank of the bend than

FIG. 87.

along courses adjacent to the outer. The water, in virtue of

centrifugal force, presses outwards so that the water-surface of

a transverse section (Fig. 87) has a slope rising upwards from
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the inner to the outer bank. Hence the free level for any

particle of the water near the outer bank is higher than the

free level for any particle in the same transverse section near

the inner bank, but the tendency to flow from the higher to

the lower level is counteracted by centrifugal action. Now
the water immediately in contact with the bottom and sides

of the course is retarded, and its centrifugal force is not suf-

ficient to balance the pressure due to the greater depth at the

outside of the bend. This water therefore tends to flow from

FIG. 88.

the outer bank towards the inner (Fig. 88), carrying with it

detritus which is deposited at the inner bank. Simultaneously
with the flow of water inwards, the mass of the water must

necessarily flow outwards to take its place.

6. Value of/. The value of /depends upon

(a) the roughness of the sides and bed
;

(b] the velocity of flow
;

(c) the dimensions of the transverse section ;

(d] the slope of the channel-bed.

An average mean value of /is .00757.
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Weisbach has proposed to take

the values of a and /?, obtained as the results of 255 experi-

ments, being a = .007409, ft = .192, so that

, .0014225
/=.007409+ .

Darcy and Bazin assume f to be given by an expression of

the form

ft

giving the following values of a and ft as the results of their

experiments :

In very smooth channels, with sides of planed timber or

rendered in cement,

.000316a = .00316, /3
= .1

; .'. /= .00316 + -
.

In smooth channels with sides of planks, brick-work, or

ashlar

, .0009223a = .00401, ft
= .23 ;

/. /= .00401 + - --.

In rough channels with sides of rubble masonry or pitched
with stone

<*=:.00507, = .82; .-./= .00507 + :

^
574

.

In very rough channels in earth

or = .00592, = 4.i; .-./=.00592+
' 2

1
272

.
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In torrential streams encumbered with detritus

a = .00846, /?
= 8.2

; .-./= .00846 +'.
Ganguillet and Kutter, taking the formula

v = c m =

kave endeavored to obtain a more correct value of c by a care-

ful investigation of :

(a) The experimental results of Darcy and Bazin. These

results show that the value of c depends upon the roughness of

the channel and also upon its dimensions. The values given

for a and ft are different for different classes of channel even

when the dimensions are infinite. But while in small channels

the influence of differences of roughness upon the flow must

be very great, it is certainly more than probable that this in-

fluence diminishes as the section of the channel increases, and

that it will be nil in the case of an indefinitely large channel.

(b) The measurements of Humphreys and Abbott on the

Mississippi, a stream of very large section and of very low

slope.

(c) Their own gaugings in the regulated channels of certain

Swiss torrents with exceptionally steep slopes and running

through extremely rough channels.

(d) The effect of the slope.

From the Mississippi data it was found that

c 256 for a slope of .0034 per looo

and

c = 154
" " " "

.02
" "

Thus c, and therefore also the discharge, will be subject

to considerable variations in the case of large streams with low

slopes. The value of c does not vary much with the slope in
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small rivers. Proceeding in a purely empirical manner, Gan-

guillet and Kutter arrived at the formula

C =

where n is a coefficient depending only on the roughness of

the channel sides and bed, while A and / are new coefficients

whose values remain to be determined.

Now c depends upon the slope i and decreases as i in-

creases. This may be allowed for by taking

so that

c =

the form finally adopted by Ganguillet and Kutter.

The values given for the constants, the unit being a foot,

are

= 41.6; /=i.8n; p = .00281
;

n = .008 to .05.

The following table gives the values of n which will be

found of most use in practice :

In a channel with sides of well-planed timber n = .009
" " " " rendered with cement n = .01

In a channel with sides rendered with a mixture of

3 of cement to I of sand n = .01 1

In a channel with sides of unplaned planks n = .012
" " ashlar or brickwork n = .013

" " " " " " canvas on frames w = .oi5
" " rubble masonry n = .017
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In rivers and canals in very firm gravel n = .02

In rivers and canals in perfect order and free from

detritus (stones and weeds) n = .025

In rivers and canals in moderately good order, not

quite free from stones and weeds n .03

In rivers and canals in bad order, with weeds and

detritus n = .035

In torrential streams encumbered with detritus n = .05

To the above Jackson adds the following classification for

artificial canals :

In canals in very firm gravel in perfect order n = .02

u u " earth above the average order n = .0225
" " " " in fair order n = .025
" " " " below the average order # = .0275

In canals in earth in rather bad order, partially over-

grown with weeds and obstructed with detritus, n = .03

The difficulty of properly selecting the value of n is due to

the fact that there is no absolute measure of the roughness of

channel-beds.

In Cunningham's experiments on the Ganges c varied

from 48 to 130.

In Humphreys and Abbott's experiments on the Missis-

sippi c varied from 53 to 167, the units in each case being a

foot and a second.

7. Variation of Velocity in different parts of the trans-

verse section of a stream.

Assumptions. (a) That the stream is of uniform depth h

and of indefinite width.

(b) That the fluid filaments flow across the section in sen-

sibly parallel lines.

(c) That a permanent regime has been established, and that

the flow is uniform. The pressure in the section is therefore

distributed in accordance with the hydrostatic law.

(d) That the resistance to the relative sliding of consecutive

filaments is of the nature of viscous resistance.
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Let Fig. 89 represent a portion of a vertical longitudinal
section of the stream intersected by two transverse sections

AB, CD, I being the distance between them.

FIG 89.

Consider a thin layer abed of thickness dy and width b,

bounded by the sections AB, CD, and by the planes ad, be, at

depths y and/ -j- dy, respectively, below the free surface.

The forces acting upon the layer in the direction of motion
are :

(1) The pressures on the ends ab, cd, which evidently neu-

tralize each other.

(2) The component of the weight wbl. dy . sin i = wbli . dy ;

i being the slope of the bed.

(3) The viscous resistances on the lateral faces of the layer
under consideration. These are nil, since in a stream of indefi-

nite width there will be no relative sliding between abed and
the vertical faces on each side.

(4) The viscous resistances along the planes ad and be.

The frictional resistance to distortion, i.e., to shearing,

along such planes is found to be proportional to the shear per
unit of time, and is measured by the shear per unit of area at

the actual rate of shearing. The coefficient of viscosity, or

shear per unit of area
simply the viscosity, is the quotient -.

shear per unit of time

and defines that quality of the fluid in virtue of which it resists

a change of shape.

Adopting Navier's hypothesis,

di}
the viscous resistance along ad = kbl--.
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k being the coefficient of viscosity. The sign is negative as,

dv .

since v increases withjj/, -y- is positive, and, at the same time,

the- action of the layers above ad is of the character of a re-

tardation.

dv
The viscous resistance along be = kbl-j-

dy

Then, as the motion is uniform,

dv
kbl . d-j-

y

;dy

wbli . dy - kbl^- + kbl~ + kbl^dy =
dy dy dy

"

Hence
w

Integrating twice,

(I)

a and vs being constants of integration.

It is evident that vs is the surface-velocity, i.e., the value

of v when y o.

The equation may be written in the form

ka* wi f ka\*

FIG. 90.

dv =
) and

Thus the velocity - curve is a parabola
ka

having a horizontal axis at a depth Y'= r

wi

below the free surface. This is also the

depth of the filament of maximum velocity

(3)
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Hence, by equations I and 3,

wi
v = v^--k (y- Y}\ . .. , . . (4)

Let vm be the " mean "
velocity for the whole depth h.

Let v\ be the mid-depth velocity. Then

f

and

with V
(6)

Hence

witf

a result upon which Humphreys and Abbott have based a rapid

method of gauging rivers.

Let vb be the bottom velocity, i.e., the value of v when

y = h. Then by equation 4,

wi

and therefore

^^
f 1 T/"\2 /O\

^max Vb
= 7-(/2 Yy (8)

2k ^

When the filament of maximum velocity was below the free

surface Bazin found the value of the difference z>max vb to be

constant. Take

IllUX O
sy

7
y \ /
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Then the general equation (4) of the velocity-curve becomes

. .... (9)

Now if Y' o, i.e., if the filament of maximum velocity is

in the free surface,

H P=tw-A^.

But in such case Bazin's experiments led to the relation

Hence

^=36.3

and the general equation of the velocity-curve becomes

^iv- FV..... (10)

This is Bazin's formula, and it agrees well with his experi-

ments on artificial channels and also with the results of

experiments on the Saone, Seine, Garonne, and Rhine. It

was found that

*7)

-
1.17 in the Rhine at Basle and ranged from i.i to 1.13^

in the others;

36.3^ i/ .

(h _ KY" y between r 3 and 2o;

Y = .33 in some artificial channels and ranged from O to 0.2

in the other cases
;

*W vb ranged from Jz/max to i^max .

These results are not in agreement with the Mississippi

measurements.
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Note. When the filament of maximum velocity is in the

free surface, Y = o, and therefore, by equation 5,

wih*
TI 191um ^max ~~"

z- 7 >

and by equation 8,

wit?

Hence, combining these two equations,

Boileau assumes that the velocity-curve is given by the

equation

.. ..... (12)

below the filament of maximum velocity, being MMl
in Fig. 91,

and by the equation

v = a-Bf + Cy (13)

above the filament of maximum velocity, beingMM9
in Fig. 92.

Let vs be the surface-velocity, i.e., the

value of v when y o. Then, by equa-
tion 13,

vs
= a.

Also, the two equations (12) and (13)

must each give the same value for the

maximum velocity (zw), and therefore

A - BY* = vmax = a BY* + CY,
FlG ' 9I>

from which

A a A vs

Again, taking A = z/max + ^ Boileau deduced experimen-
tally that d is sensibly constant for different streams.
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But A = ?w+ d = A - B Y*+ d, and therefore B

Hence Boileau's equation becomes

for points below the filament of maximum velocity, and

V = V,
-*' + (ZW + d- .

for points above the filament of maximum velocity.

8. Relations between Surface, Mean, and Bottom Ve-
locities. Bazin deduced from his experiments on canals the

relation

, vm
vm = vs 25.4 Vmt = vs 25.4,

where c V -~. Therefore

cvs

vm =-
c+ 25.4

Darcy and Bazin give the relation

10.87 ^wt = vb + 10.87.

Therefore

v =~
C I0.8/

A mean value of c is 45.7, which makes

vm = 1.312. zv ib

Dubuat gives the following table of maximum bottom

velocities consistent with stability :
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Nature of Canal Bed. Vj,.

Soft earth 0.25
Loam 0.50
Sand i.oo

Gravel 2.00

Pebbles 3.40
Broken stone, flint 4.00

Chalk, soft shale 5.00
Rock in beds 6.00

Hard rock , 10.00

TABLE OF MAXIMUM VELOCITIES FROM INGENIEURS
TASCHENBUCH.

Nature of Canal-bed. vs vm vb

Slimy earth or brown clay 49 .36 .26

Clay 98 .75 .52

Firm sand 1.97 1.51 1.02

Pebbly bed 4.00 3.15 2.30
Boulder bed 5.00 4.03 3.08

Conglomerate of slaty fragments 7.28 6.10 4.90
Stratified rocks 8.00 7.45 6.00

Hard rocks 14.00 12.15 10.36

TABLE OF VISCOSITY OF WATER AND MERCURY.

(From Everett's System of Units.)

WATER. MERCURY.

Temp.
(Cent.)

o

5

10

15
20

25

30

Viscosity.

.Ol8l

.0154
0133
.0116

.OIO2

.OOQI

.0081

Temp.
(Cent.)

35

40
45
50
60
80

90

Viscosity.

.0073

.0067

.0061

.0056

.0047

.0036

.0032

Temp.
(Cent.)

O
u

IO

18

99
154
197
249

Viscosity.

.0169

.0162

.0156

.0123

.0109

.OIO2

. 00964

Temp.
(Cent.)

315

340

Viscosity.

.00918

.00897
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The viscosity is given by

_.oi83

and by

.0369^
, according to Meyer ;

j| .00131, according to Slotte;

/ being the temperature centigrade.

9. Flow of Water in Open Channels of Varying Cross-

section and Slope,

Assumptions. (a) That the motion is steady.

Thus the mean velocity is constant for any given cross-

section, but varies gradually from section to section.

(b) That the change of cross-section is also gradual.

(c) That, as in cases of uniform motion, the work absorbed

by the frictional resistance of the channel-bed and sides is the

only internal work which need be taken into consideration.

Xy

FIG. Q2.

Let Fig. 92 represent a longitudinal section of the stream.

The fluid molecules which are found in any plane section db

at the commencement of an interval will be found in a curved

surface dc at the end of the interval, on account of the differ-

ent velocities of the fluid filaments.

Suppose that the mass of water bounded by the two trans-

verse sections ab, ef, comes into the position cdhg in a unit of

time. Then the change of kinetic energy in this mass is equal
to the algebraic sum of the work done by gravity, of the work

done by pressure, and of the work done against the frictional

resistance.

Change ofKinetic Energy. This is evidently the difference
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between the kinetic energies of the masses efgh and abed,

since, as the motion is steady, the kinetic energy of the mass

between cd and ef remains constant.

Let A
1
be the area of the cross-section ab.

"
j

" " mean velocity across this section.
*' v " "

velocity at this section of any given fluid,

filament of sectional area a.

Let v = u
l

V.

Then

Aji, = 2(av) and 2(aV) = O.

The kinetic energy of the mass abed

Since S(aV) o and 3 x
V 2, + v.

Now 2j + v is evidently positive. Hence the kinetic en-

ergy of the mass abed

a' being a coefficient of correction whose value depends upon
the law of the distribution of the velocity throughout the sec-

tion ab. It is positive and greater than unity. Assume that

a has the same value for the sections ab and ef. Then if A^
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#
a ,

are the area and mean velocity at the transverse section ef,

the kinetic energy of the mass efgh

= <x~A^'

Hence the change of kinetic energy in the mass under con-

sideration

g 2

since A^ut
= Q = A.u^

Work done by Gravity. Consider any fluid filament mn,
the depth of m below the surface being y^ and of n, y^.

Let z be the fall in the surface-level from a to e.

Then the fall from m to n

and the work done by gravity on the elementary volume dQ
in a unit of time

Work done by Pressure.

The pressure per unit of area at m wy l -\-p ;

being the atmospheric pressure.
Hence the work due to these pressures per unit of time

= dQ(wy, +A) - dQ(wy, +/.),
= w .

Thus the total work done by gravity and by pressure

= 2(w .dQ.z) = wQz,

for the mass under consideration.
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Work absorbed by Friction. Consider a thin lamina of water
of thickness ds, bounded by the transverse planes xx, yy, the

distance of xx from ab being s.

Since the change of velocity is gradual, the mean velocity
from xx to yy may be assumed to be constant.

Let u be this mean velocity.
" Pbe the wetted perimeter at the section xx.
" A be the area of the waterway at the section xx.

Then the work absorbed by friction per second from xx
to yy

= P.ds.u.F(u\

and the total work absorbed between ab and ef

= <2
*.

/ being the distance between ab and ef. Hence

a

and therefore z = a""*

~
"' + /

-
2g J Aw

~ . F(u) -u* , ATake ^ = / and = m. Then
w 2g P

2g

If the two planes ab and ef are indefinitely near one an-

other (Fig. 93), the last equation evidently gives,

j a j f u*

j / \dz = u . du -4- --- as. ..... (2)
g m2g
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which is the fundamental differential equation of steady varied

motion, dz being the fall of surface level in

the distance ds.

In the figure aa' is drawn parallel to the

bed and aa" is horizontal. The distance

a"e may, without sensible error, be assumed

equal to dz.

Also a"a' = i . aa' i . ds, very nearly.

ids a'a" = a'e + a"e = dh + dz. . . . (3)

Substituting the value of dz from this equation in equa-
tion 2,

i . ds dh = -u . du + . ds. . (4)
g

Also, since Au = Q, a constant,

^4 . du + . dk4 = o,

and dA = x . dk, very nearly, if x is the width of the stream.

Therefore

Adu + ux . dh = o,

and hence, by equation 4,

. , ,, & a x .. . f if .

i .ds dh a---- . dh + ----ds.
g A m 2g

Therefore

i-L i-t*-.
dh m 2g m 2gi

~3s
=

~ur^ =l
~

u'x
..... (^

I a- I a
gA gA

Let the position of any point a in the surface be defined by
its perpendicular distance h from the bed and by the distance s

of the transverse section at a from an origin in the bed. Then

r is the tangent of the angle which the tangent to the surface
ds
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at a makes with the bed. It is positive or negative according
as the depth increases or diminishes in the direction of flow,

thus defining two states of steady varied motion.

Between these there is an intermediate state defined by

dh f u*
_- = o = * - ^-

,

as m2g

f u*
and i = is the equation for steady flow with uniform

m2g
motion.

Let
/", M, H be the corresponding values of #, m, h in the

case of uniform motion. Then

and equation 5 becomes

__
dh m U*

I a

EXAMPLE. Consider a stream of rectangular section and

of a width x which is very great as compared with the depth.

Then

A = xh
;
P = x very nearly ;

m = -- =- h
;
M= - - = H.

Hence

*-TW '-(T)'/* 7* \ h Idh

I af I a--
gh gh

since xhu = xHU and therefore -.
= -r-.

/ h

Note. In each of the following cases the line PQ drawn
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parallel to the bed, represents the surface of uniform motion,
H being the distance between PQ and the bed.

CASE I. au* < gh and H < h.

is positive, and therefore h increases in the direction of
as

flow. Thus the actual surface MN of the stream is wholly
above the line PQ.

FIG. 94.

Proceeding up stream, h becomes more and more nearly

equal to H, so that the numerator of equation 8, and therefore

also -, approximates more and more closely to zero,
as

Again, proceeding down-stream, h increases and u dimin-

ishes, so that the numerator and denominator in equation 8

approximate each more and more closely to the value unity,

and therefore becomes more and more nearly equal to i,

as

the slope corresponding to uniform motion.

Hence up-stream, MN is asymptotic to PQ, and down-

stream MN is asymptotic to a horizontal line. This form of

water-surface is produced when a weir is built across a channel

in which the water had previously flowed with a uniform

motion.

CASE II. au* < gh and H > h.

is now negative, and the depth diminishes in the direc-
ds

tion of flow.

Up-stream, h increases and approaches H in value, so that

MN is asymptotic to PQ.
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Down-stream, h diminishes, u increases, and therefore the

value of is more and more nearly equal to unity,
gh

Thus, in the limit, the denominator in equation 8 becomes

zero, and therefore = 00. Hence theory indicates that at a
as

certain point down-stream the surface line MN takes a direc-

tion which is at right angles to the general direction of flow.

This is contrary to the fundamental hypothesis that the fluid

filaments flow in sensibly parallel lines. In fact, before the

FIG. 95.

limit could be reached this hypothesis would cease to be even

approximately true, and the general equation would cease to

be applicable. This form of water-surface is produced when
there is an abrupt depression in the bed of the stream.

Fig. 96 shows one of the abrupt falls in the Ganges canal

as at first constructed. The surface of the water flowing freely

FIG. 96.

over the crest of the fall took a form similar to MN below the

line PQ.oi uniform motion. The diminution of depth in the

approach to the fall caused an increase in the velocity of flow,

with the result that for several miles above the fall a serious
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erosion of the bed and sides took place. In order to remedy
this, temporary weirs were constructed so as to raise the level

of the water until the surface-line assumed a form MN' cor-

responding approximately to PQ. In some cases the water

was raised above its normal height and a backwater produced*
CASE III. au* > gh and H < h.

- is negative and the surface-line of the stream is wholly

above PQ.

FIG. 97.

dk
If h gradually increases, u diminishes and j- approximates

to i in value.

If h gradually diminishes it approximates to H in value,

dk
and in the limit -T~= o.

ds

Between these two extremes there is a value of h for which

the denominator of equation 8 becomes nil, viz.,

and the corresponding value of -y- is infinity.

Thus one part of the surface line is asymptotic to PQ, the

line of uniform motion, another part is asymptotic to a hori-

zontal line, while at a certain point at which the depth is

the surface of the stream is normal to the bed.
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This is contrary to the fundamental hypothesis that the

fluid filaments flow in sensibly parallel lines, and the general

equation no longer represents the true condition of flow.

In cases such as this, there has been an abrupt rise of the

surface of the stream, and what is called a "
standing wave "

has been produced.
In a stream of depth H flowing with a uniform velocity

tgr

depth to h^ which is >

U which is > \ / ,
construct a weir so as to increase the

all*

Then in one portion of the stream near the weir the depth
aU* aU*

is > ,
while further up the stream the depth is < .

o o
U*

Thus at some intermediate point the depth = a
, the cor-

o

dh
responding value of -r- being oo

,
so that at this point a stand-

ds

ing wave is produced.

Now
flT = Mi=-Hi\

and since
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and therefore

which condition must be fulfilled for a standing wave.

Bazin gives the following table of values of/:

Nature of Bed.
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With the preceding data and taking a = i.i,

is therefore > I at a section ab, Fig. 99.
At the section cd,

= q

H_
h

.064

^87
X 1.69 = 0^.377,

and = .055 and is therefore < i.

au

FIG. 99*

Thus the expression I -- is negative for a section ao

and positive for a section cd
t so

that z must change sign between

these sections, and will then
as

become infinite.

Consider a portion of a

stream bounded by two- trans-

verse sections ab, cd, in which a standing wave occurs, Fig. 99.
Assume that the fluid filaments flow across the sections in

sensibly parallel lines.

Let the velocities and area at section ab be distinguished
by the suffix i, and those at cd\sy the suffix 2. Then

Change of momentum in di-
)

rection of flow
[

== imPulse in same direction.

Hence

w

and therefore

=A
1y l

- A,vv ... (9)

the depths below the surface of the centres of

gravity of the sections ab, cd, respectively.
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Now, v
l
= u

l + Vr Therefore

Also, as already shown,

a,A,U: = 2av? = AM'

and, neglecting F, as compared with 3, ,

**# =-Arf +
Thus

and hence

ufA-i,=
~^-

L
(
a + 2) = aA

*
u

a 4- 2
where a' = !

,
and is 1.033 * !!

Similarly it may be shown that

Thus equation 9 becomes

~(A^ - Ap?) = ^^ - Aj,. . . . (10)

Let the section of the canal be a rectangle of depth Hl
at

ab and Ht
at ^. Then

ff H
ufr = u,H, ;

- = >, ; -y-= ^.
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Therefore, by equation 10,

which reduces to

//, = H^ satisfies the equation and corresponds to a condition

of uniform motion.

Also

a'u? ^ff.ff. + ff,

g H
l

2

In Bidone's canal, u
1
= 1^.69, Hl

= 0^.064. Substituting
these values in equation II, the value of H^ is found to be

ow . 16, which agrees somewhat closely with the actual measure-

ments.

N.B. The coefficients a and a' have not been very accu-

rately determined, but their exact values are not of great

importance. They are often taken equal to unity.
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EXAMPLES.

1. What fall must be given to a canal 2600 ft. long, 7 ft. wide at the

top, 3 ft. wide at the bottom, \\ ft. deep, and conveying 40 cubic ft. of

water per second ? /=^ . Ans. i in 135.

2. Determine the fall of a canal 1500 ft. long, of 2 ft. lower, 8 ft.

upper breadth, and 4 ft. deep, which is to convey 70 cubic feet of water

per second. Ans. i in 1365.4.

3. For a distance of 300 ft. a brook with a mean water perimeter of

40 ft. has a fall of 9.6 in.; the area of the upper transverse profile is 70

sq. ft., that of the lower 60 sq. ft. Find the discharge.
Ans. 662.87 cub. ft. per sec.

4. In a horizontal trench 5 ft. broad and 800 ft. long it is desired to

carry off 20 cub. ft. discharge and to let it flow in at a depth of 2 ft. ;

what must be the depth at the end of the canal ? (/ = .008.)

Ans. 1.64 ft.

5. Water flows along an open channel 12 ft. wide and 4 ft. deep, at

the rate of 2 ft. per second. What is the fall? A dam 12 ft. by 3 ft.

high is formed across the channel; how high will the water rise over the

crest of the dam ? Ans. i in 48o,/ being .08 ; .899 ft.

6. A stream is rectangular in section, 12 ft. wide, 4 ft. deep, and falls

i in 100. Determine the discharge (i) with an air-perimeter; (2) without

air-perimeter. Ans. (i) 645.398 cub. ft. per sec.

(2) 665.088 cub. ft. per sec.

7. A canal 20 ft. wide at the bottom and having side slopes of i to

i has 8 ft. of water in it; find the hydraulic mean depth. Ans. 5.24 ft.

8. The water in a semicircular channel of 10 ft. 'radius, when full

flows with a velocity of 2 ft. per second ; the fall is i in 400. Find the co-

efficient of friction. Ans. .2.

9. Calculate the flow per minute across a given section of a rectarw-

gular canal 20 ft. deep, 45 ft. wide, the slope of the bed being 22 in. per
mile and the coefficient of friction per square foot = .008.

Ans. 279,229 cub. ft.

10. Why does the water of the St. Lawrence rise on the formation

of the ice ?

11. Find the depth and width of a rectangular stream of 900 sq. ft.

sectional area, so that the flow might be a maximum ; also find the flow,

f being .008 and the slope 22 in. per mile.

Ans. 21.21 ft.; 42.42 ft.; 4885 cub. ft. per second.
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12. Water flows along a symmetrical channel, 20 ft. wide at top and

8 ft. wide at bottom ; the friction at the sides varies as the square of the

velocity, and is i Ib. per square foot for a velocity of 16 ft. per second.

Find the proper slope, so that the water may flow at the rate of 2 ft. per
second when its depth is 6 ft. Arts, i in 3445.

13. Calculate the flow across the vertical section of a stream 4 ft.

deep, 1 8 ft. wide at top, 6 ft. wide at bottom, the slope of the surface

being 18 in. per mile. (/= .008.) Ans. 110.9376 cub. ft. per second.

14. The sewers in Vancouver are square in section and are laid with

one diagonal vertical. To what height should the water rise so that

(a) the velocity of flow may be a maximum ; (b) the discharge may be a

maximum ? (A side of the square = 12 in.)'

Ans. (a) .292 ft. above horizontal diameter.

(b) .5797 ft.
"

15. The sides of an open channel of given inclination slope at 45*

and the bottom width is 20 ft. Find the depth of water which will make
the velocity of flow across a vertical section a maximum.

Ans. 6.73 ft.

17. The banks of a channel slope at 45 ;
the flow across a transverse

section is to be at the rate of 100 cubic feet at a maximum velocity of 5

ft. per second. Determine the dimensions of the transverse profile.

Ans. 11.05 ft. wide at bottom ; 2.28 ft. deep.
1 8. What dimensions must be given to the transverse profile of a

canal whose banks slope at 40, and which has to conduct away 75 cubic

feet with a mean velocity of 3 ft. per second ?

Ans. Depth = 3.6 ft. ; width at bottom = 2.62 ft.

19. The section of a canal is a regular trapezoid ;
its slope is i in

500 ; its width at the bottom is 8 ft.; the sides are inclined at 30 to the

vertical. On one occasion when the water was 4 ft. deep a wind was

blowing up the canal, causing an air-resistance for each unit of free sur-

face equal to one fifth of that for like units at the bottom and sides,

where the coefficient of friction may be taken to be .08.

Determine the discharge. How will the discharge be affected when
the canal is frozen over? Ans. 75.34 cub. ft. per sec.

20. The section of a channel is a rhombus with diagonal vertical.

How high must the water rise in the channel (a) to give a maximum of

flow, and (b) to give a maximum discharge?
Ans. If D is the length of the horizontal diameter, and if &

is the inclination of a side to the vertical, the water

must rise above the horizontal diameter to the height
Z)cot0 x .207 in (a) and to the height Z>cotfl x .4099

in (b).

21. In the transverse section ABCD of an open channel with a verti-

cal slope of i in 300, the bottom width is 20 ft., the angle ABC 90*
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and the angle BCD = 45. Find the height to which the water will

rise so that the velocity of flow may be a maximum ;
also find the dis-

charge across the section,/ being .008.

Ans. 11.715 ft.; 1584 cub. ft. per second.

22. A canal is 20 ft. wide at the bottom, its side slopes are i| to i, its

longitudinal slope is i in 360; calculate H.M.D. and the flow per minute

across any given vertical section when there is a depth of 8 ft. of water

in the canal. (Coeff. of friction = .008.)

Ans. 5.24 ft.; 2762.7776 cub. ft. per second.

23. If a weir 2 ft. high were built across the canal in the preceding

question, what would be the increase in the depth of the water?

Ans. 2.79 ft.

24. For a small tachometer the velocities are .163, .205, .298, .366,

,61 metre; the number of revolutions per second are .6, .835, 1.467,

1.805, 3.142. Find the constants corresponding to the wheel.

Ans. ,162; .202; .309; .367; .595.

25. If the head of water in a channel increase by one tenth, show

that the velocity and discharge, respectively, increase by -$ and ^.
approximately.

If the depth diminish by 8$, show that the velocity and discharge,

respectively, diminish by 4% and 12%, approximately.
26. Assuming (i) that a river flows over a bed of uniform resistance

to source ; (2) that to maintain stability the velocity is constant from

source to mouth ; (3) that the river sections at all points are similar ;

(4) that the discharge increases uniformly in consequence of the supply

from affluents determine the longitudinal section of such a river.

Ans. A parabola.
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METHODS OF GAUGING.

I. Gauging of Streams and Watercourses. The
amount of flow Q in cubic feet per second across a transverse

section of A sq. ft. in area is given by the expression

Q - Au,

u being the mean velocity of flow in the section in

feet per second. Various methods are employed for

the determination of u.

METHOD I. The most convenient method for

gauging small streams, canals, etc., is by means of

a temporarily constructed weir, which usually takes

the form of a rectangular notch. The greatest

care should be exercised to ensure that the crest

of the weir is truly level and properly formed and

that the sides are truly vertical. The difference of

level between the crest of the weir and the surface

of the water at a point where it has not begun to

slope down towards the weir is best es-

timated by means of Boyden's hook gauge,

Fig. 100.

This gauge consists of a carefully grad-
uated rod, or of a rod with a scale attached,

having at the lower end a hook with a thin

flat body and a fine point. The rod slides

in vertical supports, and a slow vertical

movement is given by means of a screw of

fine pitch. In an experiment, the hook
FIG. TOO.

point is set truly level with the crest of the weir, and a read-

ing is taken. The gauge is then moved away from the weir,
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about 2 to 4 ft. for small weirs and about 6 to 8 ft. for large

weirs. The hook is then slowly raised, until a capillary eleva-

tion of the surface is produced over the point. The hook is

now lowered until this elevation is barely perceptible, and a

second reading is taken. The difference between the two

readings is the difference of level required.

In ordinary light, differences of level as small as the one-

thousandth of a foot, can be easily detected by the hook

gauge, while with a favourable light it is said that an experi-

enced observer can detect a difference of two ten-thousandths

of a foot.

METHOD II. A portion of the stream which is tolerably

straight and of approximately uniform section is defined by
two transverse lines O^B, OfD, at any distance 5 ft. apart.

FIG. 101.

The base-line O,O^ is parallel to the thread EF of the

stream, and observers with chronometers and theodolites (or

sextants) are stationed at (9, ,
<92 . The time T and path EF

taken by a float between AB and CD can now be determined.

At the moment the float leaves AB the observer at O
l signals

the observer at (92 ,
who measures the angle O^O^E, and each

marks the time. On reaching CD the observer at O.
t signals

the observer at O
l ,
who measures the angle O^Of, and each

again marks the time.

Experience alone can guide the observer in fixing the dis-
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tance 5 between the points of observation. It should be

remembered that although the errors of time observations are

diminished by increasing S, the errors due to a deviation from

lines parallel to the thread of the stream are increased.

A number of floats may be sent along the same path, and

their velocities UsJ are often found to vary as much as 20 per

cent and even more.

Having thus found the velocities along any required num-

ber of paths in the width of the stream, the mean velocity for

the whole width can be at once determined.

Surface-floats are small pieces of wood, cork, or balls of

wax, hollow metal and wood, colored so as to be clearly seen,

and ballasted so as to float nearly flush with the water-surface

and to be little affected by the wind.

Subsurface-floats. A subsurface-float consists of a heavy
float with a comparatively large intercepting area, maintained

at any required depth by means of a very fine and nearly

vertical cord attached to a suitable surface-float of minimum

immersion and resistance. Fig. 102 shows such a combina-

tion, the lower float consisting of two pieces of galvanized iron

soldered together at right angles, the upper float being merely

a wooden ball.

FIG. 102. FIG. 103.

Another combination of a hollow metal ball with a piece

of cork is shown by Fig. 103.

The motion of the combination is sensibly the same as that
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of the submerged float, and gives the velocity at the depth to

which the heavy float is submerged.

Twin-floats. Two equal and similar floats (Fig. 104), one
denser and the other less dense than water,

1 are connected by a fine cord. The velocity

(vt) of the combination is approximately the

mean of the surface-velocity (vs)
and of the

velocity (v^) at the depth to which the heavier

float is submerged. Thus

FIG. 104.
and therefore

d>
~~"~ ^ t */s 9

so that vd can be determined as soon as the value of vt has

been observed and the value of vs found by surface-floats.

Velocity-rod. This is a hollow cylindrical rod of ad-

justable leiigth and ballasted so as to float nearly vertical. It

sinks almost to the bed of the stream,

and its velocity (vm)
is approximately the

mean velocity for the whole depth.
Francis gives the following empirical

formula connecting the mean velocity

(vm ) with the observed velocity (vr) of

the rod :

...*/),=zv(i.oi2

d being depth of stream, and d' the depth
FlG - I0 5-

of water below bottom of rod
;
but d' should not exceed about

one fourth of d.

METHOD III. Pitot Tube and Darcy Gauge. A Pitot

tube (Figs. 106 to 108) in its simplest form is a glass tube with

a right-angled bend. When the tube is plunged vertically into

the stream to any required depth z below the free surface, with

its mouth pointing up-stream and normal to the direction of
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flow, the water rises in the tube to a height h above the out-

side surface, and the weight of the column of water z -f- h

FIG. i 06. FIG. 107. FIG. 108.

high, is balanced by the impact of the stream on the mouth.

Hence, (Chap. VI.),

wA(z -f- k) = wAz -f- kwA ,

and therefore

A being the sectional area of the tube, u the velocity of flow

at the given depth, and k a coefficient to be determined by
experiment.

A mean value of k is 1.19. With a funnel-mouth or a bell-

mouth, Pitot found k to be 1.5. This form of mouth, however,
interferes with the stream-lines, and the velocity in front of

the mouth is probably a little different from that in the unob-
structed stream.

The advantages of tubes of small section are that the dis-

turbance of the stream-lines is diminished and the oscillations

of the column of water are checked. Darcy found by careful

measurement that the difference of level between the surfaces

of the water-column in a tube of small section placed as in

Fig. 106, and of the water-column placed as in Fig. 107 with
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FIG. 109.

its mouth parallel to the

direction of flow, is almost

exactly equal to -.

When the tube is placed
as in Fig. 108 with its

mouth pointing down-

stream and normal to the

direction of flow, the level

of the surface of the water

in the tube is at a depth ti

below the outside surface,

and

where k f
is a coefficient to

be determined by experi-

ment and a little less than

unity.

In this case the tube

again obstructs the stream-

lines. Pitot's tube does

not give measurable indi-

cations of very low veloc-

ities. A serious objection

to the simple Pitot tube is

the difficulty of obtaining

accurate readings near the

surface of the stream. This

objection is removed in

the case of Darcy's gauge,

shown in the accompany-

ing sketch, Fig. 109.

A and B are the water-

inlets; C and D are two

double tubes ;
E is a brass
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tube containing two glass pipes which communicate at the

bottom with the water-inlets and at the top with each other,

and with a pump F by which the air can be drawn out of

the glass, pipes thus allowing the water to rise in them to any
convenient height.

Thus Darcy's gauge really consists of two Pitot tubes con-

nected by a bent tube at the top and having their mouths at

right angles or pointing in opposite directions. If h is the

difference of level between the water-surfaces in the tubes

when the mouths are at right angles, then

and Darcy's experiments showed that k does not sensibly

differ from unity.

When the mouths point in opposite directions, let h^ h^ be

the differences of level between the stream-surface and the

surfaces of the water in the tube pointing up-stream and the

tube pointing downstream, respectively. Then

u*

** = k{
2g'>

U*

and therefore

u*
h j. h -

(k, + k )

*>2g

where k = k
v -\- k^

k having been determined experimentally once for all, the

difference of level (= h^ -\- h^) between the columns for any

given case can be measured on the gauge and then u can be

at once found.
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A cock may be inserted in the bend connecting the two

tubes, and through this cock air may be exhausted and a

partial vacuum created in the upper portion of the gauge.

The water-columns will thus rise to higher levels, but the dif-

ference between them will remain constant. Thus the surface

of the column in the down-stream tube may be brought above

the level of the outside surface, and the reading is then easily

made.

Sometimes the gauge is furnished with cocks at the lower

parts of the tubes, and if these cocks are closed when the

measurement is to be made, the gauge may be removed from

the stream for the readings to be taken.

METHOD IV. Current-meters. The velocity of flow in

large streams and rivers is most conveniently and most ac-

curately ascertained by means of the current-meter. The

earliest form of meter, the Woltmann mill, is merely a water-

mill with flat vanes, similar in theory and action to the .wind-

mill. When the Woltmann is plunged into a current, a counter

registers the number of revolutions made in a given interval

of time, and the corresponding velocity can then be deter-

mined. This form of meter has gone out of use and has been

replaced by a variety of meters of greater accuracy, of finer

construction, and much better suited to the work. In its sim-

plest form the present meter consists of a screw-propeller

wheel (Fig. 1 10), or a wheel with three or more vanes mounted
on a spindle and connected by a screw-gearing with a counter

which registers the number of revolutions. The meter is put
'

in or out of gear by means of a string or wire. When a cur-

rent velocity at any given point is to be found, the reading of

the counter is noted, the meter is sunk to the required position,

and is then set and kept in gear for any specified interval of

time. At the end of the interval the meter is put out of gear
and is raised to the surface when the reading of the counter is

again noted. The difference between the readings gives the

number of revolutions made during the interval, and the veloc-

ity is given by an empirical formula connecting the velocity
and the number of revolutions in a unit of time.



METHODS OF GAUGING.

The vane Fis introduced to compel the meter to take its

proper direction.

In order to prevent the mechanism of the meter from being

FIG. 1 10.

FIG. in.

injuriously affected by floating particles of detritus, Revy en-

closed vthe counter in a brass box, Fig. ill, with a glass face,

FIG. 112.

FIG. ri3.

and filled the box with pure water so as to ensure a constant

coefficient of friction for the parts which rub against each

other. In the best meters, however, the record of the number
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of revolutions is kept by means of an electric circuit, Fig. 112,

which is made and broken once, or more frequently, each

revolution, and which actuates the recording apparatus. The
time at which an experiment begins and ends is noted, and the

revolutions made in the interval are read on the counter, which

may be kept in a boat or on the shore, as the circumstances of

the case may require. The meter is usually attached to a suit-

ably graduated pole, so that the depth of the meter below the

water-surface can be directly read. The mean velocity for the

whole depth at any point of a stream may be found by moving
the meter vertically down and then up, at a uniform rate.

The mean of the readings at the two surface positions and at

the bottom position will be the number of revolutions corre-

sponding to the mean velocity required. The mean velocity

for the whole cross-section may also be determined by moving
the meter uniformly over all parts of the section.

Before the meter can be used it must be rated. This is

done by driving the meter at different uniform speeds through
still water. Experiment shows that the velocity v and the

number of revolutions n are approximately connected by the

formula

v = an + b,

where a and b are coefficients to be determined by the method

of least squares or otherwise.

Exner gives the formula

V
Q being the velocity at which the meter just ceases to re-

volve.

OTHER METHODS. Many other pieces of apparatus for

the measurement of current velocities have been designed.

PerrodiTs hydrodynamometer, for example, gives the ve-

locity directly in terms of the angle through which a vertical

torsion-rod is twisted, and in this respect is superior to the

current-meter.
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FIG. 114.

The hydrometric pendulum (Fig. 114), again, connects the

velocity with the angular devia-

tion from the vertical of a heavy
ball suspended by a string in the

current.

Hydrometric and torsion bal-

ances have also been devised,

but they must be regarded
rather as curiosities than as

being of any real practical use.

2. Gauging of Pipe Flow. A variety of meters have

been designed to register the quantity of water delivered by a

pipe. The principal requisites of such a meter are :

1. That it should register with accuracy the quantity of

water delivered under different pressures.

2. That it should not appreciably diminish the effective

pressure of the water.

3. That it should be compact and adaptable to every
situation.

4. That it should be simple and durable.

The Venturi Meter (Fig. 115) is so called from Venturi, who
first pointed out the relation between the pressures and veloci-

ties of flow in converging and diverging tubes.

FIG. 115.

As shown by the longitudinal section, Fig. 116, this meter

consists of two truncated cones joined at the smallest sections

by a short throat-piece. At A and B there are air-chambers

with holes for the insertion of piezometers, by which the fluid
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pressure may be measured. By Art. 5, Chap. I, the theoretical

quantity Q of flow through the throat at A is

a
t ,
#

a being the sectional areas at A and B, respectively, and

ff
t
H

l
the difference of head in the piezometers, or the

"head on Venturi," as it is called.

FIG. 116.

Introducing a coefficient of discharge C, the actual delivery

through 'A is

An elaborate series of experiments by Herschel gave C
values varying between .94 and 1-04, but the great majority of

the values lay between .96 and .99.

The piezometers may be connected with a recorder, and

thus a continuous register of the quantity of water passing

through the meter may be obtained at any convenient position

within a radius of 1000 ft. This distance may be extended to

several miles by means of an electric device.

Other meters may be generally classified as Piston or Re-

ciprocating Meters and Inferential or Rotary Meters. They
are all provided with recorders which register the delivery with

a greater or less degree of accuracy.

The piston meter (Fig. 1 1 8) is the more accurate and gives

a positive measurement of the actual delivery of water as
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recorded by the strokes of the piston in a cylinder which is

filled from each end alternately. Thus an additional advan-

l_ ..:

PIG. 118. SCHONHEYDER'S POSITIVE
METER.

FIG. 119. THE UNIVERSAL
METER.

FIG. 120. THE BUFFALO METER. FIG. 121. THE UNION ROTARY PIS-

TON METER.

tage possessed by a water-engine is that the working cylinder

will also serve as a meter.

In inferential meters, a drum or turbine is actuated by the

force of the current passing through the pipe, but it often

happens that when the flow is small the force is insufficient to

cause the turbine to revolve, and there is consequently no

register of the corresponding quantity of water passing through
the meter.
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IMPACT.

Note. The following symbols are used :

z/,
= the velocity of the jet before impact ;

z>2
= " " " " " after leaving the vane ;

u " " " " vane
;

V " " " water relatively to the vane ;

A = sectional area of the impinging jet ;

m = mass of the water reaching the vane per second.

i. Impact of a Jet upon a Flat Vane oblique to the
Direction of the Jet. Let 6 be the angle between the nor-

mal to the vane and the direction of the impinging jet, <p the

angle between the nor-

mal to vane and the

direction of the vane's

motion, and a the an-

gle between the vane

and the vertical.

The jet moving with

its stream-lines paral-

lel, swells out near the

vane, over which it

spreads-and with which

it travels along in the

direction of the vane's

motion, and finally again flows along with its stream-lines sen-

sibly parallel to the vane.

The problem is still further complicated by the production
of eddies and vortices for which allowance can only be made in

a purely empirical manner.

Let N be the normal pressure on the vane due to the impact.
Let N' be the total normal pressure on the vane.

Let W be the weight of water on the vane.

186
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Then
N = N' W sin a = change of momentum in direction of the

normal

= mv^ cos 6 mu cos 0.

or

N = m(v l
cos 6 u cos 0). i ., . . (i)

(N. B. The sign in front of u cos will be plus if the jet

and vane move in opposite directions.)

The term W sin a may be designated the static pressure

and the term m(v l
cos 6 u cos 0) the dynamic pressure

which causes the deviation of the stream-lines.

Note. The pressure when a jet first strikes the plane is

greater than when the flow has become steady, or permanent

regime is established.

This is made evident by the following consideration :

At any moment let MN, PQ, RS be the bounding planes

across which the water is flowing with its stream-lines sensibly

parallel.

In a unit of time let the bounding planes of the mass be

M'N', P'Q, R'S'.

Then, initially, the reaction of the plane must destroy the

motion of the mass of the fluid bounded by M'N', P fQ f

,

and R fSf
.

Take OC to represent v
l
in direction and magnitude.

In one second the vane AB moves parallel to itself into

the position A'B'. Let A'B' intersect OC in D.

Then

m = -A . DC = -A(v, - OD)
g g

W A ( COS 0\ f N= A(v l
u --

4-J
........ (2)

g \ cos Ql

Thus equation i becomes

7JJ AN= ---s(^i cos 6 u cos 0)
a

. (3)
g COS C7
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Let P be the pressure in the direction of the vane's

motion, then

,
. (4)

and the useful work done on the vane per second

= Pu = A-^u(v cos 6 u cos 0)
2
. (c)

g cos 6

<2jn <7j

The total available work = A%-........ (6)g 2 ^

W . COS ,

~^A ^rtu
(v*

cose - u cos 0)
a

Hence, the efficiency =

cose - ucos ^ (7)

This is a maximum when

z/
t
cos 6 = $u cos 0, (8)

and therefore

o

the maximum efficiency = cos
9

0. . . . (9)

If the vane is of small sectional area a portion of the water

will escape over the boundary and the pressure must neces-

sarily be less than that given by equation 3.

Instead of one vane moving before the jet, let a series of

vanes be introduced at short intervals at the same point in the

path of the jet.

The quantity of water now reaching the vane per second is

evidently

m = -Avl9 ....... (10)
o
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and, by equation I, the normal pressure

fl
= ^NAvfa costi u cos 0). . ./ . (11)

o

Also, the pressure in the direction of the motion of

the vane

= P = N cos = - A cos v
1(v l

cos u cos 0). (12)
o

The useful work done per second

Pu= ^A cos ^X^i cos 6 u cos 0), . . (13)
o

and the efficiency

IV A cos v^u(v l
cos 6 u cos 0)

2 COS (Z/ COS 6 U COS 0)~~

This is a maximum when v
l
cos 8 = 2u cos 0, . . (15)

and therefore

the maximum efficiency = ---..... (16)

SPECIAL CASE I. Let a single vane be at right angles to,

and move in the line of, the jet's motion, Fig. 123.

Then 6 = o = 0.

Hence

the pressure = P= N == A(V I u)
9

;
. (17)"' ~~ -r-

FIG. 123. the useful work = Pu = Au(v^ #)
3

; . (18)
o
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the efficiency = 2(v l u) ; . . (19)

o

the maximum efficiency^ (20)

Again, if u = o, i.e., if the vane be fixed, and if H be the

head corresponding to the velocity v
lt then, by equation 17,

P = Av? = 2wAH

= twice the weight of a column of water

of height H and sectional area A.

SPECIAL CASE 2. Let each of a series of vanes be at right

angles to and move in the line of the jet's motion at the

instant of impact.

Then 6 = o = 0.

w $
The pressure = N = P = Av\(v^ u). . (21)

<5

IV
The useful work = Pu = A^

l u(i' 1 u^ . (22)
o

The efficiency = 2*fo "
*>. . . (23 )

The maximum efficiency=
-

(24)

2. Reaction Jet Propeller. The term reaction is em-

ployed to denote the pressure upon a surface due to the di-

rection and velocity with which the water leaves the surface.

Water, for example, issues under the head h and with the
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velocity v (at contracted section) from an orifice of sectional

area A in the vertical side of a vessel,

Fig. 124.

Let R be the reaction on the opposite
vertical side of the vessel, and let Q be

the quantity of water which flows through
the orifice per second. Then

R = horizontal change of momentum

wQ w= v CcAv* 2wcccv Ah 2wAh, . . . (i)
o e

disregarding the contraction and putting cv I.

Thus the reaction is double the corresponding pressure

when the orifice is closed (Special Case I, Art. i).

Again, let the vessel be propelled in the opposite direction

with a velocity u relatively to the earth.

Then v
l

u is the velocity of the jet at the contracted

section relatively to the earth and

R = horizontal change of momentum

= ^Q(Vl -u) . . (2)
o

The useful work done by the jet

IV= Ru = Qu(v l -u) (3)
o

The energy carried away by the issuing water

Hence
w w (v. uY

the total energy = Qu(v, -u) + Q

(5)
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,

and

w
g 2U

the efficiency = 5 r = . . . . . (6)w v, u v, -4- u

Thus the more nearly v
l
is equal to u, and therefore the

larger the area A of the orifice, the greater is the efficiency.

If the vessel is driven in the same direction as the jet, then

77, -f- u is the relative velocity of the jet with respect to the

earth, and the reaction is

R horizontal change of momentum

-G& + u
)
= c^Av^v, + u)

(7)

disregarding the contraction and putting c, = I.

3. A Jet of Water impinging upon a Surface of Rev-

olution moving in the Direction of its Axis and also in

the Line of the Jet's Motion. Disregarding friction, the

water flows over the surface without any change in the magni-
tude of the relative velocity v

t u, but the stream-lines are

deviated from their original direction through an angle /?.

(N.B. The sign before u is plus if the surface and jet are

moving in opposite directions.)

Let the water leave the surface at D, and in the direction

of the tangent at D take DE to represent v
l

u in direction

and magnitude. Also draw DF parallel to the axis of the sur-

face and take DF to represent //,

Complete the parallelogram EF.

The diagonal DG evidently represents in direction and

magnitude the absolute velocity v^ with which the water leaves
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the surface. Hence, from the triangle DFG, since the angle
DFG = n

ft,

v* = (vl uj + u* - 2(z/1 *) cos (?r /?),

from which
/?

z/j

3 v* = 2^(^j w)(i cos /?)
= 4(z/ u) sin

2
. (i)

Also, -A(v l u) = the quantity of water reaching the
<b

surface per second.

Hence, if P is the pressure in the direction of motion, the

useful work done per second

FIG. 125

-1 = 2Au(vl u)* sin
a

; . (2)

and the pressure

0" 2 \J/

The efficiency

A f \a -
>.

Au(v l u) sm
sm^. . (4)W -V v* 2A
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This is a maximum when

,

= 3, > -

" ... (5)

and therefore

the maximum efficiency = sin
2
-. . . . (6)

If, instead of one surface, a series of surfaces are succes-

sively introduced at short intervals at the same point in the

path of the jet, the quantity of water reaching each surface

per second becomes

wm= " (7)

and hence the useful work, pressure, and efficiency also respec-

tively become
w ft

2~A^u(^-u)sm
9

~', (8)

Avfa w)sin
a

; (9)

u(v l u} . 2 ,/?

4
"

V* 2

The efficiency is a maximum when

v.

(ii)

Q
its value then being sin

a
.

2

It will be observed that the results given by equations 2

to II are identical with those given by equations 17 to 20 and

21 to 24, Art. I, except that in each case there is an additional

ft
factor 2 sin

8
or I cos ft. This factor is greater than unity,

and therefore the pressure, useful work, and efficiency are each
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increased, if ft > 90, i.e., in the case of a concave vane
; while

in the case of a convex vane, ft being < 90, the factor is also

less than unity and they are each diminished.

SPECIAL CASE. Let fi = 180, i.e., let the vane be of the

cup type and in the form of a hemisphere.
1 80

The maximum efficiency is sin" = unity, and is per-

fect. The water should therefore leave the surface without

velocity; and this is the case
; for, by equation I,

Hence

v* v* = ^ii(v^ u), and u = .

2

v* v* = v*, and therefore ^
a
= o.

4. Impact of a Jet of Water upon a Vane with Borders.

Let the vane in Art. i be provided with borders, Figs.

126, 127, so as to produce a further deviation of the stream-

lines, and let the water finally flow off with a velocity v* in a

direction making an angle 0' with the normal to the vane.

FIG. 126. FIG. 127.

Then

the normal pressure = N
= mv

t
cos T mv^ cos tf 3= mu cos

= m(v l
cos ^F z>

a
cos 0' =F u cos 0),

the sign of the second term being plus or minus according to

the direction in which the stream-lines are finally deviated.
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The effect of the borders is therefore to increase or diminish

the normal pressure, and hence also the useful work and the

efficiency.

SPECIAL CASE. Let the vane be at rest, i.e., let u = o, and

let the final and initial directions of the jet be parallel.

Also, let v
1

= Vf Then

N = m(v^ cos 6 -\- v l
cos 6)

w= 2Av? cos 6
o

= 4wAH cos 6.

Hence, if fl o, the normal pressure N= qwAH = four
times the weight of a column of water of height H and sec-

tional area A.

5. Pressure of a Steady Stream in a Uniform Pipe

against a Thin Plate AB Normal to the Direction of

Motion. The stream-lines in front of the plate are deviated

and a contraction is formed at Cf^ They then converge,

leaving a mass of eddies behind the plate.

Consider the mass bounded by the transverse planes Cl
Cl>

3 ,
where the stream-lines are again parallel.

At Ci letA ,
A

l ,
v

l ,
z

l
be the mean intensity of the press-

ure, the sectional area of the

waterway, the velocity of flow, and

the elevation of the C. of G. of

the section above datum.

Let /2 , AS, z>
3 , z^ be corre-

sponding symbols at Cfv
Let /3> A 19 vlt * be corre-

sponding symbols at C9C3
.

Let a be the area of the plate.

Let cc be the coefficient of contraction.

Neglect the skin and fluid friction between C
l
C

l
and

Then by Bernoulli's theorem,

+ +' ' ' 'W 2g W 2g W 2g 2g
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(v v\
the term - representing the loss of head due to the

bending of the stream-lines between Cf^ and C3C3 .

Hence

A -A (v*
-

v>Y

Again, let R be the total pressure on the plane. Then

x . x A ( fluid pressure in the directionA -M, = (A
-AK =

| of the axis _

2
*

= component of the weight in the direction

of the axis.

Thus

^ __
j>s)A l + wA

l(z l ^,) R = change of motion in direction

of axis

= 0,

since the motion is steady.

Hence

R A -A (",-".)'

wA
l

w 2g

But A^, = AM = cc(A l a)Vr Therefore

=-*${&&>- >}

v? (
m

}

a

= wa m
\ , r I

[ ,

2g \ cc(m - i) j

A
where m = ,

or
a

R =

r m
)where K in \ , r I >

\ cc(m - i) f
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6. Pressure of a Steady Stream in a Uniform Pipe on
a Cylindrical Body about Three Diameters in Length.
The stream-lines in front of the body are deviated and a

contraction is formed at C9Ct
. They then converge, flow in

parallel lines, and converge a second time at C
3C3 , leaving a

mass of eddies behind the body.
Consider the mass bounded by the planes C^ CtC4

.

As in the previous article, let

/>,, A lt vl ,
z

l
be the intensity of pressure, sectional area of

the waterway, velocity of flow, and elevation

of C. of G. above datum at

r A, ^ 2 ,
z>2 ,

<sra
be similar symbols

V3 <?4 <

for

/3 ,
^4

8 ,
^

3 , #3 be similar symbols
for Cfy

& &* 3- p^A l ,vl ,Zi be similar symbols
FIG - I29 '

for C&.
Neglect the skin and fluid friction between C

l
C

l
and C4Ct .

Then, by Bernouilli's theorem,

, .W 2g W 2g w '

2g

, A , *>? . {^s
- *$

,

! *4++ "t
"

^""
being the loss of head between <7a ,

and C,C3
and

being the loss of head between C3C9
and CtCt.

o

Hence

* i

A A _ (^. ^)
a

I
(^ - Oa

J

"
4-f ~^^ "IF IF"

But A& = ^ 3
e;

a
= ^

3^,,

and A
3
= A, a.
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Therefore

, y
t A_ _A^n

a I \7JJ^-a) A,- a] J

where m = *.

Also, as in the preceding article,

(A-
Hence

f

2g (m i)
2

(m - i)
a

V,

where m = -, and
a

This value of K is always less than the value of K for the

plate in the preceding article for the same values of m, a,

and cf

Hence the pressure on the cylinder is also less than the

corresponding pressure on the plate.

In every case K should be determined by experiment.

7. Jet impinging upon a Curved Vane and deviated

wholly in one Direction Best Form of Vane. Let the

jet, of sectional area A, moving in the direction AB with a

velocity v^ ,
drive the vane AD in the direction AC with a

velocity u.
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Take AB to represent v^ in direction and magnitude.
" AC " " u " "

".

Join CB.

Then CB evidently represents F, the velocity of the water

relatively to the vane, in direction and magnitude. If CB is

parallel to the tangent to the vane at A, there will be no sud-

FIG. 130.

den change in the direction of the water as it strikes the vane,

and, disregarding friction, the water will flow along the vane

from A to D without any change in the magnitude of the rela-

tive velocity V (= CB). The vane is then said to "receive the

water without shock."*

Again, from the triangle ABC, denoting the angles BA C,

ABC, ACB, byA,, C, respectively.

sin Bu _ AC _ sin B __

^
="

~AB
~

sin C
~

sin (A + B)'
' ' . . (I)

and therefore

cot B = cosec A cot A, .... (2)
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a formula giving the angle between the lip and the direction

of the impinging jet, which will ensure the water being received
" without shock."

In the direction of the tangent to the vane at D, take

DE = CB (= V).
Draw DF parallel and equal to AC(= u).

Complete the parallelogram EF.

Then the diagonal DG evidently represents in direction and

magnitude the absolute velocity v^ with which the water leaves

the vane.

Draw AK equal and parallel to DG (= z/a).

Join BK. Then BK represents the total change of velocity

between A and D in direction and magnitude.

Thus, if R is the resultant pressure on the vane, then

R = m. BK.
Let ML be the projection of BK upon AC.
Then ML represents the total change of velocity in the

direction of the vane's motion.

Let P be the pressure upon the vane in this direction.

Then
P=m. LM. (3)

The useful work = Pu = mu . LM = mV
*

~ V
*

. . . (4)

w A v?
The total available work = - A --

(5)

,, ~ . mu. LM v? v*
The efficiency-- = img --r-...... (6)w Av?

*
wAv?

Again, join CK.-

Then, since A C is equal and parallel to DF, and AK to DG,
the line CK is equal and parallel to DE, and is therefore equal
to CB.

Thus in the isosceles triangle CBK, CB is equal and parallel
to the relative velocity Fat A, CK is equal and parallel to the
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relative velocity Fat D, and the base BK represents the total

change of motion.

Let 8 be the angle through which the direction of the water

is deviated, i.e., the angle between AB and AK. Then

= V* -\- U* 2VJi COS (A + #), ...... (7)

and also

F 3 = CK* = CB* = AB* + AC* - 2AB . AC cos A

= v* -\-u* 2vji cos A.......... (8)

Hence

L = u
\
v

t
cos (A + 6) v

l
cos A

}
. . . (9)

If BH is drawn parallel to the tangent at D, BK evidently

bisects the angle between BC and BH, and this angle is equal

to the angle between the tangents to the vane at A and D.

Let a be the sttpplcmcnt-^f the angle between the normals

at A and D. Then the angle KCB a, and

the angle CBK = -(180
-

)
= 90 -

2 2

Therefore

BK = 2CB (cos 00 -
]
= 2Fsin -.

\ 21 2

Hence

;in- (10)
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Let X, Fbe the components of R in the direction of the
normal at A and at right angles to this direction. Then

Y=R cos- = mVsm or; .... (n)

X= R sin = 2m V sin
3 - = m V( i cos a). ( 1 2}

2 2

The efficiency is a maximum when

dP

The efficiency is nil when

Pu = o, i.e., when u = o or P = o. . . . (14)

In the latter case, since P m. LM, the projection LM
must be nil, and therefore BK must be at right angles to A C,
as in Fig. 131.

FIG. 131.

FIG. 132.
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The angle ACB is now = 180 --
,
and therefore

u_
sin ABC

v
l

~~
sin A CB

sn

in (180
-^

(IS)
sm

2

If BK is parallel to AC (Fig. 132), then

the angle ACB = -(180 -) + = 90 + -
2 2

.and therefore

sin (90 + - + A\ cost- ~4- A]
u_ _ sin ABC V r 2 ) _ \2 1

sm I Qcr + -
1 cos -

SPECIAL CASE. Let the direction of the impinging jet be

tangential to the vane at A, and let the jet and vane move in

the same direction. Then

V v. u y m = A(v. 11) ;

g

P = Y= A(vt u)\i cos a) = 2 A(v^ u) sin
2
-;

5 o

W &
useful work = Pu = 2 Ati(v, uY sin

2

;

g 2

U(V. U}" OL

efficiency = 4 sin .
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This is a maximum and equal to sin
2 when v

l
= $u.

27 2

These results are identical with those for a concave cup
when a = 180.

Instead of one vane let a series of vanes be successively

introduced at short intervals at the same point in the path of

the jet. Then
w

m = Av^

and hence the pressure P, useful work, and efficiency respec-

tively become

A
o

w
A

Av, .

S

and

8. Friction. The effect of friction has been disregarded,
and nothing definite is known as to its action or law of distri-

bution. It has been suggested to assume that the loss of head

due to friction is a fraction of the head due to the velocity of

the jet relatively to the surface over which it spreads. Thus
in Art. 7

V*
the loss of head due to friction =/

V*
and the corresponding loss of energy = wQ*f

9. Resistance to the Motion of Solids in a Fluid Mass.
The preceding results indicate that the pressure due to
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the impact of a jet upon a surface may be expressed in the

form

A being the sectional area of the jet, V the velocity of the jet

relatively to the surface, and K a coefficient depending on the

position and form of the surface.

Again, the normal pressure (N) on each side of a thin

plate, completely submerged in an indefinitely large mass of

still water, is the same. If the plate is made to move hori-

zontally with a velocity F, a forward momentum is developed
in the water immediately in front of the plate, while the plate

tends to leave behind the water at the back. A portion of the

water carried on by the plate escapes laterally at the edges
and is absorbed in the neighboring mass, while the region it

originally occupied is filled up with other particles of water.

Thus the normal pressure N, in front of the plate, is increased

by an amount n, while at the back eddies and vortices are pro-

duced, and the normal pressure N at the back is diminished

by an amount n' . The total resultant normal pressure, or the

normal resistance to motion, is n-\- n', and this increases with

the speed. In fact, as the speed increases, n' approximates
more and more closely to N, and in the limit the pressure

at the back would be nil, so that a vacuum might be main-

tained.

Confining the attention to a plate moving in a direction

normal to its surface, the resistance is of the same character as

if the plate is imagined to be at rest and the fluid moving
in the opposite direction with a velocity V. So, if both the

water and the plate are in motion, imagine that a velocity

equal and opposite to that of the water is impressed upon
every particle of the plate and of the water. The resistance is

then of the same character as that of a plate rrioving in still

water, the velocity of the plate being the velocity relatively

to the water. Thus, in general, the resistance to the motion

of such a plane moving in the direction of the normal to its
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surface, with a velocity V relatively to the water, may be ex-

pressed in the form

R - KwA-
,

A being the area of the plate, and K a coefficient depending

upon the form of the plate and also upon the relative sectional

areas of the plate and of the water in which it is submerged.

According to the experiments of Dubuat, Morin, Piobert,

Didion, Mariotte, and Thibault, the value of K may be taken

at 1.3 for a plate moving in still water, and at 1.8 for a current

moving on a fixed plate. Unwin points out the unlikelihood

of such a difference between the two values, and suggests that

it might possibly be due to errors of measurement.

Again, reasoning from analogy, the resistance to the motion

of a solid body in a mass of water, whether the body is wholly
or only partially immersed, has been expressed by the

formula

R = KwA,

V being the relative velocity of the body and water, A the

greatest sectional area of the immersed portion of the body at

right angles to the direction -of motion, and K a coefficient de-

pending upon the form of the body, its position, the relative

sectional areas of the body and of the mass of water in which

it is immersed, and also upon the surface wave-motion.

The following values have been given for K\

K = i.i for a prism with plane ends and a length from 3 to 6

times the least transverse dimension ;

K = i.o for a prism, plane .in front, but tapering towards the

stern, the curvature of the surface changing gradu^

ally so that the stream-lines can flow past without

any production of eddy motion, etc.;
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K .5 for a prism with tapering stern and a cut-water or

semi-circular prow ;

K = .33 for a prism with a tapering stern and a prow with a

plane front inclined at 30 to the horizon
;

K = .16 for a well-formed ship.

Froude's experiments, however, show that the resistance to

the motion of a ship, or of a body tapering in front and in

the rear, so that there is no abrupt change of curvature lead-

ing to the production of an eddy motion, is almost entirely

due to skin-friction (see Art. i, Chap. II).
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EXAMPLES,

1. A stream with a transverse section of 24 square inches delivers y
10 cubic feet of water per second against a flat vane in a normal direc- ^
tion. Find the pressure on the vane. Am. 1171! Ibs.

2. If the vane in question i moves in the same direction as the im- ./
pinging jet with a velocity of 24 ft. per second, find (a) the pressure on

the vane ; (b) the useful work done
; (c) the efficiency.

Am. (a) 4211 Ibs.; (ff) 10,125 ft.-lbs.; (c) .288.

3. What must be the speed of the vane in question 2, so that the J

efficiency of the arrangement may be a maximum ? Find the maximum ^
efficiency. Ans. 20 ft. per sec.; ^V %

4. Find (a) the pressure, (b) the useful work done, (c) the efficiency,

when, instead of the single vane in question 2, a series of vanes are intro-

duced at the same point in the path of the jet at short intervals.

Ans. (a) 703^ Ibs.; (b} 16,875 ft.-lbs.; (c) .48.

What must be the speed of the vane to give a maximum efficiency ?

What will be the maximum efficiency? Ans. 30 ft. per sec.; .5.

5. A stream of water delivers 7,500 gallons per minute at a velocity of

15 ft. per second and strikes an indefinite plane. Find the normal pres-

sure on the vane when the stream strikes the vane (a) normally; (d) at

an angle of 60 to the normal. Ans. (a) 585.9 Ibs.; 292.9 Ibs.

6. A railway truck, full of water, moving at the rate of 10 miles an

hour, is retarded by a jet flowing freely from an orifice 2 in. square in

the front, 2 ft. below the surface. Find the retarding force.

Ans. 7.97 Ibs.

7. A jet of water of 48 sq. in. sectional area delivers 100 gallons per Q%
second against an indefinite plane inclined at 30 to the direction of the-

(

jet ;
find the total pressure on the plane, neglecting friction. How will

the result be affected by friction ? Ans. 750 Ibs.
'

8. If the plane in question 7 move at the rate of 24 ft. per second in

a direction inclined at 60 to the normal to the plane, find the useful

work done and the efficiency. Ans. 2250 ft.-lbs.; TV
At what angle should the jet strike the plane so that the efficiency

might be a maximum? Find the maximum efficiency.

Ans. sin
1

; -..

9. A stream of 32 square inches sectional area delivers 32 cub. feet

of water per second. At short intervals a series of flat vanes are intro-
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duced at the same point in the path of the stream. At the instant of

impact the direction of the jet is at right angles to the vane, and the

vane itself moves in a direction inclined at 45 to the normal to the

vane. Find the speed of the vane which will make the efficiency a

maximum. Also find the maximum efficiency and the useful work

done. Ans. 15.08 ft. per sec.; /T ; 2io6f|-f ft.-lbs.

10. In a railway truck, full of water, an opening 2 in. in diameter

is made in one of the ends of the truck, 9 ft. below the surface of the

water. Find the reaction (a) when the truck is standing; (b) when the

truck is moving at the rate of 10 ft. per second in the same direction as

the jet ; (c) when the truck is moving at the rate of 10 ft. per second in

a direction opposite to that of the jet. If this movement of the truck

is produced by the reaction of the jet, find the efficiency.

Ans. (a) 24.55 Ibs. per sq. in.; (b) 34.78 Ibs. per sq. in.; (c) 14.3

Ibs. per sq. in.; .588.

11. From a ship moving forward at 6 miles an hour a jet of water is

sent astern with a velocity relative to the ship of 30 feet per second from

a nozzle having an area of 16 square inches; find the propelling force

and the efficiency of the jet as a propeller without reference to the man-

ner in which the supply of water may be obtained.

Ans. i

12. A stream of 64 sq. in. section strikes with a 40- ft. velocity against

a fixed cone having an angle of convergence = 100
;
find the hydraulic

pressure. Ans. 492.1 Ibs.

13. A jet of 9 sq. in. sectional area, moving at the rate of 48 ft. per

second, impinges upon the convex surface of a paraboloid in the direc-

tion of the axis and drives it in the same direction at the rate of 16 ft.

per second. Find the force in the direction of motion, the useful work

done, and the efficiency. The base of the paraboloid is 2 ft. in diameter

and its length is 8 inches. Ans. 25 Ibs.; 400 ft.-lbs.; r y.

14. A stream of water of 16 sq. in. sectional area delivers 12 cubic feet

of water per second against a vane in the form of a surface of revolu-

tion, and drives in the same direction, which is that of the axis of the

vane. The water is turned through an angle of 120 from its original

direction before it leaves the vane. Neglecting friction, find the

speed of vane which will give a maximum effect. Also find impulse

on vane, the work on vane, and the velocity with which the water

leaves the vane.

Ans. 36 ft. per sec.; 562^ Ibs.; 20,250 ft.-lbs.; 95.24 ft. per sec.

15. At 8 knots an hour the resistance of the Water-witch was 5500

Ibs.; the two orifices of her jet propeller were each 18 in. by 24 in.

Find (a) the velocity of efflux; (b) the delivery of the centrifugal pump;
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(V) the useful work done ; (d) the efficiency; (<?) the propelling H.P., as-

suming the efficiency of the pump and engine to be .4.

Ans. (a) 29.4 ft. per sec.; (b) 1 104.6 gallons per sec.; (c) 74,393 ft.-

Ibs.; (</).63 ; (e) 532.

1 6. If feathering-paddles are substituted for the jet propeller in

question 15, what would be the area of stream driven back for a slip of

25$ ? Find the efficiency and the water acted on in gallons per minute.

Ans. 34 sq.ft.; .75; 236,000.

17. A vane moves in the direction ABC with a velocity of 10 ft. per

second, and a jet of water impinges upon it at B in the direction BD
with a velocity of 20 ft. per second ; the angle between BC and BD is

30. Determine the direction of the receiving-lip of the vane, so that

there may be no shock.

Ans. The angle between lip and BC = 2347'.
18. A jet moves in a direction AltCwith a velocity Fand impinges

upon a vane which it drives in the direction BD with a velocity \ V.

The angle ABD is 165. Determine the direction of the lip of the vane
at B, so that there may be no shock at entrance.

Ans. The angle between lip and direction of stream = i43'.

19. A jet issues through a thin-lipped orifice i sq. in. in sectional

area in the vertical side of a vessel under a pressure equivalent to a

head of 900 ft. and impinges on a curved vane, driving it in the direc-

tion of the axis of the jet. The water enters without shock and turns

through an angle of 60 before it leaves the vane. Find (a) the speed
of the vane which will give a maximum effect ; (If) the pressure on the

vane ; (c) the work done ; (d) the absolute velocity with which the water

leaves the vane
; (e) the reaction on the vessel, disregarding contraction.

Ans. (a) 80 ft. per sec. ; (d) 320.9 IDS.; (c) 46.68 H. P.; (d} 184 ft.

per sec.; (e) 781.25 Ibs.

20. A stream moving with a velocity v impinges without shock

upon a curved vane and drives it in a direction inclined at an angle to

the direction of the stream. The angle between the lip of the vane and

the direction of the stream is x, and V is the relative velocity of the

water with respect to the vane. If the speed of the vane is changed by
a small amount, say n per cent, show that the corresponding change in

the direction of the lip, in order that the water might still strike the

v
vane without shock, is n sin x.

21. A jet of water under a head of 20 feet, issuing from a vertical

thin-lipped orifice i in. in diameter, impinges upon the centre of a vane

3 ft. from the orifice. Determine the position of the vane and the force

of the impact (a) when the vane is a plane surface ; (b) when the vane is

6 in. in diameter and in the form of a portion of a sphere of 6 in. radius.
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22. A stream of water of 36 sq. in. section moves in a direction ABC
and delivers 4 cub. ft. of water per second upon a vane moving in a

direction BD with a velocity of 8 ft. per second, the angle between BC
and BD being 30. Find (a) the best form to give to the vane ; (b) the

velocity of the water as it leaves the vane ; (c) the mechanical effect of

the impinging jet ; and (d) the efficiency, the angle turned through by
the jet being 90.

Ans. (a) The angle between lip and BC 2348'; (b) 2.946 ft,

per sec. ; (c) 966.098 ft. per sec.; (d) .966.

23. A stream of thickness / and moving with the velocity v im-

pinges without shock upon the concave surface of a cylindrical vane of

a length subtending an angle 20. at the centre. Determine the total

pressure upon the vane (a) if it is fixed
; (b) if it is moving in the same

direction as the stream with the velocity u. In case (b) also find (c) the

work done on the vane.

iu w yu
Ans. (a) 2 bin* sin a; (b) 2-bt(v U)* sin a

; (c) 2btu(y u}* sin
5
a.

O >

24. Two cubic feet of water are discharged per second under a press-

ure of loo Ibs. per sq. in. through a thin-lipped orifice in the vertical

side of a vessel, and strike against a vertical plate. Find the pressure
on the plate and the reaction on the vessel. Ans. 475.82 Ibs.

25. A stream moving with a velocity of 16 ft. per second in the direc-

tion ABC, strikes obliquely against a flat vane and drives it with a

velocity of 8 ft. per second in the direction BD, the angle CBD being 30.
Find {a) the angle between ABC and the normal to the plane for which

the efficiency is a maximum ; (b) the maximum efficiency ; (c) the velocity
with which the water leaves the vane; (d} the useful work per cubic

foot of water.

Ans. (a) 21 44'; (b) .25664; (c) 12.6 ft. per sec.; (d) 256.64 ft.-lbs.



CHAPTER VII.

HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS.

I. Hydraulic Motors are machines designed to utilize the

energy possessed by a moving mass of water in virtue of its

position, pressure, and velocity.

The motors may be classified as follows :

(1) Bucket Engines. In this now antiquated form of motor

weights are raised and resistances overcome by allowing water

to flow into suspended buckets, thus causing them to descend

vertically.

(2) Rams and Jet-pumps, in which the impulsive effect of

one mass of water is utilized to drive a second mass of water.

(3) Water-pressure Engines are especially adapted for high

pressures and low speeds, and necessarily have very heavy
moving parts. With low pressures the engine becomes un-

wieldy and costly.

Pressure-engines are either reciprocal or rotative. The
latter are very convenient with moderately high pressures and

-especially when they are to drive machinery which is to be used

intermittently. They also give an exact measurement of the

water used.

Direct-acting pressure-engines are of great advantage where
a slow and steady motion is required, as, for example, in work-

ing cranes, lifts, etc.

(4) Vertical Water-ivheels, in which the water acts almost

wholly by weight, or partly by weight and partly by impulse,
or wholly by impulse.

(5) Turbines, in which the water acts wholly by pressure
or wholly by impulse.
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2. Hydraulic Rams. By means of the hydraulic ram a

quantity of water falling through a vertical distance h
l
is made

to force a smaller weight of water to a higher level.

The water is brought from a reservoir through a supply-

pipe 5. At the end B of this pipe there is a check- or clack-

valve opening into an air-chamber A, which is connected with

a discharge-pipe D. At C there is a weighted check- or clack-

valve opening inwards, and the length of its stem (or the stroke)

is regulated by means of a nut or cottar at E. When the waste-

valve at C is open the water begins to escape with a velocity due

to the head h
l
and suddenly closes the valve. The momentum.

FIG. 133.

of the water in the pipe opens the valve at B, and a portion of

the water is discharged into the air-vessel. From this vessel it

passes into the discharge-pipe in consequence of the reaction

of the compressed air. At the end of a very short interval of

time the momentum of the water has been destroyed, the valve

at B closes, the waste-valve again opens, and the action com-

mences as before. It is found that the efficiency of the ram is

increased by introducing a small air-vessel at F, supplied with

a check- or clack-valve opening inwards at G. The wave-motion

started up in the supply-pipe by the opening and closing of the

valve at B has been utilized in driving a piston so as to pump
up water from some independent source.
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Let v be the velocity of flow in the supply-pipe at the mo-
ment when the valve at C is closed.

" W
l
be the weight of the mass of water in motion.

W v 2

Then - - is the energy of the mass, and this energy is

expended in opening the valve at B, forcing the water into the

air-chamber, compressing the air, and finally causing the eleva-

tion of a weight W^ of the water through a vertical distance k'.

Let hf be the head consumed in frictional and other hy-
draulic resistances.

Then

W,(h' + hf }
= the actual work done = ' -.

This equation shows that, however great h' may be, W^ has

a definite and positive value, and therefore water may be raised

to any required height by the hydraulic ram.

WJt'
The efficiency of the machine = 2

,
and may be as much

11
as 66 per cent if the machine is well made.

3. Pressure-engines. The energy required to drive a press-

ure-engine is usually supplied by means of steam-pumps, but

an accumulator is often interposed between the pumps and the

motor in order to store up the pressure energy of the water.

Indeed, it is perhaps to the introduction of the accumulator

that the success of hydraulic transmission is especially due.

Its cost, however, only allows of its use in cases where the

demand for energy is for short intervals of time.

In its simplest form the accumulator is merely a vertical

cylinder into which the water is pumped and from which it is

then discharged by the descent of a heavily loaded piston.
The water-pressure thus developed in ordinary hydraulic ma-

chinery is from 700 to 800 Ibs. per square inch, but in riveting
and other similar machinery pressures of 1500 Ibs. per square
inch and upwards are often employed.

Fig. 134 represents an accumulator designed by Tweddell
for these higher pressures.
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The loaded cylinder A slides upon a fixed spindle B.

The water enters near the base, passes up the hollow spindle,

and fills the annular space surrounding the spindle. Thus

FIG. 134-

the whole of the weight is lifted by the pressure of the water

upon a shoulder C. The water section being small, any large

demand for water will cause the loaded cylinder to fall rapidly,

so that when it is brought to rest there will be a considerable
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increase of pressure which is of advantage in punching, rivet-

ing, etc.

Let Wbe the weight of the loaded cylinder.

Let /'"be the friction of each of the two cup-leathers.

Let
T-J

be the radius of the cylinder, r
t
the radius of the

spindle.

Let h be the height of the column of water above the pipe D.

Let w be the specific weight of the water.

Then/j, the intensity of the pressure in D when the cylinder

is rising,

W+2F= Wk -f-
(

a __ 5rt

and /, ,
the intensity of the pressure in D when the cylinder is

falling,

W-2F

Hence an approximate measure of the variation of the

pressure is p l p^ , ^ r.
,
which ordinarily varies from

about ifo of the pressure for a i6-in. ram to 4$ for a 4-in. ram.

In a direct-acting pressure-engine let A be the sectional

area of the working cylinder (Fig, 135).

Let a be the sectional area of the supply-

pipe.

Let A = na.

Let IV be the weight of the water, piston,
FJG - '35-

and other reciprocating parts in the working cylii.der.

Let / be the length of the supply pipe.

Let f be the acceleration of the piston. Then nf is the

acceleration of the water in the supply-pipe.

The force required to accelerate the piston
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and the corresponding pressure in feet of water

W f
~~wAg'

The force required to accelerate the water in the supply

pipe

wal

:

=^nf'

and the corresponding pressure in feet of water

A.

Similarly, if /' is the length of the discharge-pipe and

its sectional area, the pressure-head due to the inertia of the

discharge-water

Hence the total pressure in feet of water required to over-

come inertia in the supply-pipe and cylinder

W
The quantity

-
;-)-#/ has been designated the length of

working cylinder equivalent to the inertia of the moving parts.

Let the engine drive a crank of radius r, and assume that the

velocity V of the crank-pin is approximately constant. Then
the acceleration of the piston when it is at a distance x from

its central position

F2
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and the pressure due to inertia

wA^

Let v be the velocity of the piston in the working cylinder.

Let u be the velocity of the water in the supply-pipe.
Let h be the vertical distance between the accumulator-

ram and the motor.

Let/ be the unit pressure at the accumulator-ram.

Let/ be the unit pressure in the working cylinder.

Then

/ & a

_ / V* ( losses due to friction, sudden changes
w 2g

~~
w 2g \ of section, etc.

Thus

A t v
- -11+ losses.W 2g

V U
The term 1- losses may be approximately expressed

o
v1

in the form K
,
AT being the coefficient of hydraulic resistance.

Hence

w 2g

the term h being disregarded as it is usually very small as

compared with .w
Thus the total pressure-head in feet required to overcome

inertia and the hydraulic resistances

and is represented by the ordinate between the parabola ced
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and the line ab in Fig. 136, in which afgb is a rectangle, ab

representing the stroke 2r,

ac = oa

the pressure due to inertia at the end of the stroke, and

F2

the pressure required to overcome the hydraulic resistances at

the centre of the stroke.

9

FIG. 136.

The ordinate between the parabola fmg and the line fg
represents the back pressure, which is necessarily proportional

Fa

to the square of the piston-velocity, i.e., to (r* x*}. Hence

the effective pressure-head on the piston, transmitted to the

crank-pin, is represented by the ordinate between the curves

amg and ced. The diagram shows that the pressure at the

end of the stroke is very large and may become excessive. It

is therefore usual to introduce relief-valves or air-vessels to

prevent violent shocks. In certain cases, however, as, e.g., in

a riveting-machine, a heavy pressure at the end of the stroke,

just where it is most needed to close the rivet, is of great
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advantage, and therefore the inertia effect is increased by the

use of a supply-pipe of small diameter and an accumulator

with a small water section (Fig. 134).

The effective pressure should be as great as possible, and

therefore the pressures due to inertia and frictional resistance,

and the back pressure, which are each proportional to v*, should

be as small as possible, and hence it is of importance to fix a

low value for the speed of the piston, which in practice rarely

exceeds 80 ft. per minute. The exhaust port should also be

made of large area, as the back pressure diminishes as the area

of the port increases.

By equation I,

(3)

This speed v can be regulated at will by the turning of a

cock, as in this manner the hydraulic resistances may be in-

definitely increased.

Let the engine be working steadily under a pressure Pt
and

let v be the speed of steady motion. Then

and

_ j
useful resistance overcome by the piston

( + friction between piston and accumulator-cylinder.

If P is diminished, the speed V
Q will be slightly increased,

but in no case can it exceed,

4. Losses of Energy. The losses may be enumerated as

follows :

(a) The Loss L^ due to Piston-friction. It may be assumed
that piston-friction consumes from 10 to 20 per cent of the

total available work.
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(b) The Loss Z, due to Pipe-friction. The loss of head in

the supply-pipe of diameter </,

The loss of head in the discharge-pipe of diameter d^

Hence the total loss of head in pipe-friction is

Ml (nJL'- 4f --

The loss in the relatively short working cylinder is very
small and may be disregarded.

(c) The Loss L
a
due to Inertia. The work expended in

moving the water in the supply-pipe

wA v*

gn ~2~'

and in moving the water in the discharge-pipe

_ wA ,, i?_~
1

~

The total work thus expended

/,/ / l'\v*= wA(--\- } ,

\n
' ril 2g>

and it may be assumed that nearly the whole of this is wasted.

Hence the corresponding loss of head is

~" _/
/'W _W_ll_ ^_\^__ X

n '

ri)~2
~~

^2r\n
"

~n'} ^~~ ~2

%

A2r \n '

ri2g
~~ 2rn n' g~~ 2g



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS. 22$

(d) The Loss L
4
due to Curves and Elbows. The losses due

curves and elbows may be expressed in the form

A =/4 (Chap. Ill, Art. 6).

(e) The loss L6 due to sudden Changes of Section. The loss

of head in the passage of the water through the ports may

be expressed in the form/' .

The loss occasioned by valves may also be expressed by

/f/ .

Thus the total loss is

The coefficient/" may be given any desired value between

O and oo by turning a valve, so that any excess of pressure

may be destroyed and the speed regulated at will.

(/) The Loss L
t
due to the Velocity with which the Water

leaves the Discharge-pipe.

A =

Hence

the effective head ==-- (L^ + A - A +A + L
6+ ),

and the efficiency = I -
(L, + A + A+ L< + L>).

The volume of water used per stroke is a constant quan-

tity, and the efficiency, which may be as great as eighty per
cent when the engine is working under a full load, may fall

below forty per cent when the load is light.

5. Brakes. Hydraulic resistances absorb energy which is

proportional to the square of the speed. This property has
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been taken advantage of in the design of hydraulic brakes

for arresting the motion of a rapidly moving mass, as a gun
or a train, of weight W. In Fig. 137 the fluid is allowed

to pass from one side of the piston to the other through
orifices in the piston.

Let m be the ratio of the area of the piston to the effective

area of the orifices.

Let v be the velocity of the -piston when moving under a

force P.

Let A be the sectional area of the cylinder.

FIG. 137.

Then

the work done per second = Pv

= the kinetic energy produced

and therefore

P= wA(m i)
2

,

and is the force required to overcome the hydraulic resistance

at the speed v.

Let V be the initial value of v, and P, the maximum value

of P. Then

P
l
= wA(m i)

2

*g

Let F be the friction of the slide. Then

o
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and P
l -}- F is the maximum retarding force. It would cer-

tainly be an advantage if the retarding force could be constant.

In order that this might be the case (m i)v must be con-

stant, and therefore as v diminishes m should increase and con-

sequently the orifice area diminish. Various devices have been

adopted to produce this result.

Assuming the retarding force to be constant, let x be the

piston's distance from the end of the stroke when its velocity

is v. Then

and therefore ^2
is proportional to x.

But (m i)v is constant.

Therefore (m i) is inversely proportional to

6. Water-wheels. Water-wheels are large vertical wheels

which are made to turn on a horizontal axis by water falling

from a higher to a lower level. These wheels may be divided

into three classes :

(a) Undershot Wheels, in which the water is received near

the bottom and acts by impulse.

(b) Breast Wheels, in which the water is received a little

below the axis of rotation and acts partly by impulse andpartly
by its weight.

(c) Overshot Wheels, in which the water is delivered nearly
at the top and acts chiefly by its weight.

7. Undershot Wheels. Wheels of this class, with plane
floats or buckets, are simple in construction, are easily kept in

repair, and were in much greater use formerly than they are

now. They are still found in remote districts where there is

an abundance of water-power, and are also employed to work

floating mills, for which purpose they are suspended in an open
current by means of piles or suitably moored barges. They
are made from 10 to 25 feet in diameter, and the floats, which

are from 24 to 28 in. deep, are fixed either normally to the

periphery of the wheel, or with a slight slope towards the

supply-sluice, the angle between the float and radius being
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from 1 5 to 30. Generally from one half to one third of the

total depth of float is acted upon by the water.

Let Fig. 138 represent a wheel with plane floats working in

an open current.

FIG. 138.

Let v
l
be the velocity of the current.

Let u be the velocity of the wheel's periphery.
Let Q be the delivery of water in cubic feet per second.

The water impinges upon a float, is reduced to relative rest,

and is carried along with the velocity u. Thus

the impulse = (#, u),
o

and

wQ
the useful work per second = -u(vl u).

o
Hence

wQ .

u(y. u) , x^ /*= 2u(v. U)
the efficiency = ^-^- = v *

a
-

'-,

which is a maximum and equal to when u = v..^ l
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Theoretically, therefore, the wheel works to the best advan-

tage when the velocity of its periphery is one half of the cur-

rent velocity. Even then its maximum theoretic effect is only

50$, and in practice this is greatly reduced by frictional and

other losses, so that the useful effect rarely exceeds 30$.

Undershot wheels with plane floats are cumbrous, have little

efficiency, and should not be used for falls of more than 5 feet.

Again, let A be the water-area of a float, and w be the

specific weight of the water.

wQ is somewhat less than wAv^ ,
as there will be an escape

of water on both sides of the float.

Let wQ = kwAvlt k being some coefficient (< i) to be

oletermined'by experiment. Then

^

the useful work per second = kAw l

(y l u),
o

kA
and its maximum value =-v.w.

According to Bossut's and Poncelet's experiments a mean
A *y

value of k is
,
and the best effect is obtained when u = -v

l ,

the corresponding useful work being
--- and the effi-

48
ciency ,

125

8. Wheels in Straight Race. Generally the water is let

on to the wheel through a channel made for the purpose, and

closely fitting the wheel, so as to prevent the water escaping
without doing work. For this reason also, the space between

the ends of the floats in their lowest positions and the channel

is made as small as is practicable and should not exceed 2 in.

Hence /&, and therefore also the efficiency, will be increased.

Assume the channel to be of a uniform rectangular section and

to have a bed of so slight a slope that it may be regarded as

horizontal without sensible error.
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The wheel is usually from 24 to 48 ft. in diameter, with 24
to 48 floats, either radial or inclined. The floats are 12 to 20

inches deep, or about 2\ to 3 times the depth of the approach-

ing stream. The fall should not exceed 4 ft. Let the floats

be radial, Fig. 139.

FIG. 139.

Let h
l
be the depth of the water on the up-stream side of

the wheel.

Let //, be the depth of the water on the down-stream side

of the wheel.

Let
,
be the width of the race.

The impulse = impulse due to change of velocity

-|- impulse due to change of pressure

g 2

and the useful work per second

= impulse X u = ^u(v, - u) +^ - *),g 2
Vtf, -Ul

The second term is negative, since h^ > /i, ,
and tne maxi-

mum theoretic efficiency may be easily shown to be <.5.

Three losses have been disregarded, viz. :



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS. 229

(i) The loss of Q l
cubic feet of the deeper fluid elements

which do not impinge upon some of the foremost floats.

According to Gerstner,

o --=
c
-2(cQ

(
*' V

*,'U - u)
'

.72, being the number of the floats immersed, and c being -J or

v according as the bottom of the race is straight or falls

.abruptly at the lowest point of the wheel.

(2) The loss of <22 cubic feet of water which escape between

the wheel and the race-bottom.

Approximately, the play at the bottom may be said to vary
from a minimum, s

l
= BC, when a float AB is in its lowest

position, Fig. 140, to a maximum, B l
C

l
= CD=^Ct , when

FIG. 140.

two floats A
l
B

l , A^Bs are equidistant from the lowest position,

Fig. 140. Thus the mean clearance

= J(25, + BD) = 5,+-, nearly,

r
l being the wheel's radius.
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But -- = distance between two consecutive floats
ft

= 2 . B^D, very nearly,

n being the total number of floats. Hence

a

and therefore the mean clearance = S
l -\
--- *.

Again, the difference of head on the up-stream and down

stream sides

and the velocity of discharge, vd , through the clearance is

given by the equation

Hence

Introducing .7 as a coefficient of hydraulic resistance,

^ . / I TrVA
a=.7,+--^

If the depth of the stream is the same on both sides of the

wheel, i.e., if h, = &t ,
then

(3) The loss of 03 cubic feet of water which escape between

the wheel and the race-sides.
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Let J
a
be the clearance on each side. Then

.7 being a coefficient of hydraulic resistance.

Finally, if f^lbs. is the weight on the wheel-journals, the

loss due to journal friction

/* being the journal coefficient of friction, and p the journal
radius.

Thus the actual delivery of the wheel in foot-pounds

These wheels are most defective in principle, as they utilize

only about one third of the total available energy. They may
be made to work to somewhat better advantage by introducing
the following modifications:

(a) The supply may be so regulated by means of a sluice-

board, that the mean thickness of the impinging stream is about

6 or 8 inches. If the thickness is too small, the relative loss of

water along the channel will be very great. If the thickness is

too great, the floats, as they emerge, will have to raise a heavy

weight of water. The sluice-board is inclined at an angle of

30 to 40 to the vertical, so that the sluice-opening may be as

near the wheel as possible, thus diminishing the loss of head

due to channel friction, and is rounded at the bottom to pre-
vent a contraction of the issuing fluid. Neglecting frictional

losses, etc.,

f i re /->/rr .

v? u*\ ( loss of energy
the useful effect = wQ[H-\--^ -- J

,
_ f

7

\ 2
" 2gl (

due to shock

g
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H being the difference of level between the point at which the

water enters the wheel and the surface of the water in the tail-

race, i.e., the fall. H is usually very small and may be negative.

If the vanes are inclined, the resistance to emergence is not

so great, and the frictional bed resistance between the sluice

and float is practically reduced to nil. With a straight bed and

small slope (i in 10) the minimum convenient diameter of

wheel is about 14 ft.

(b) The bed of the channel for a distance at least equal to

the interval between two consecutive vanes may be curved to the

form of a circular arc concentric with the wheel, with the view

of preventing the escape of the water until it has exerted its

full effect upon the wheel. When the bed is curved, the mini-

mum convenient diameter of wheel is about 10 ft.

An undershot wheel with a curb is in reality a low breast-

wheel, and its theory is the same as that described in Arts. 13

and 14.

(c) The down-stream channel may be deepened so that the

velocity of the water as it flows away becomes > vr The im-

pulse due to pressure is then positive, which increases the useful

work and therefore also the efficiency.

(d) The down-stream channel may be widened and a slight

counter-inclination given to the bed. What is known as a

standing-wave is then produced, in virtue of which there is a

sudden rise of surface-level on the down-stream side above that

on the up-stream side. This allows of the wheel being lowered

by an amount equal to the difference of level between the sur-

faces of the standing-wave and of the water-layer as it leaves

the wheel, thus giving a corresponding gain of head.

(e) The introduction of a sudden fall has been advocated

in order to free the wheel from back-water, but it must be

borne in mind that all such falls diminish the available head.

Thus undershot wheels with plane floats have little effect

because of loss of energy by shock at entrance and the loss of

energy carried away by the water on leaving the floats. These

losses have been considerably modified in Poncelet's wheel,

which is often the best motor to adopt when the fall does
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not exceed 6 ft., and which, in its design, is governed by two

principles which should govern every perfect water-motor, viz. :

(1) That the loss of energy by shock at entrance should be

a minimum.

(2) That the velocity of the water as it leaves the wheel

should be a minimum.

The vanes are curved and are comprised between two

crowns, at a slightly greater distance apart than the vane-

width
;
the inner ends of the vanes are radial, and the water

acts in nearly the same manner as in an impulse turbine.

First. Assume that the outer end of a vane is tangential
to the wheel's periphery, that the impinging layer is infinitely

thin, and that it strikes a float tangentially.

Let #/(Fig. 141) be a float, and aq the tangent at a.

The velocity of the water relatively

to the float = v
l

u.

The water, in virtue of this velocity?

ascends on the bucket to a height

(" - V"

pq , then falls back and FlG I4I
<

leaves the float with the relative velocity V
1

u and with an

absolute velocity v
l

2u. This absolute velocity is nil when
the speed of the wheel is such that u = %i\, and the theoreti-

i v 3

cal height of a float is/0 = -. The total available head is

42-
thus changed into useful work, and the efficiency is unity, or

perfect.

Taking R as the mean radius of the crown and u
l
as the

corresponding linear velocity, the mean centrifugal force on

each unit of fluid mass is -~ and acts very nearly at the direc-

tion of gravity, so that the height pq of a float may be

approximately expressed in the form

'R
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V being the velocity with which the water commences to rise

on the float.

Practically, however, the float is not tangential to the pe-

riphery at a, as the water could not then enter the wheel. Also

the impinging water is of sensible thickness, strikes the periph-

ery at some appreciable angle, and in rising and falling on the

floats loses energy in shocks, eddies, etc.

Let the water impinge in the direction ac, Fig. 142, and

take ac = v^
Take ad in the direction of and equal to

,
the velocity of

the wheel's periphery.

Complete the parallelogram bd.

Then cd = ab = V is the velocity of the water relatively to

the float.

That there may be no shock at entrance, ab must be a tan-

gent to the vane at a.

FIG. 142.

Again, the water leaves the vane in the direction of ba pro-

duced, and with a relative velocity ae ab = V.
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Complete the parallelogram de. Then ag(=. v^ is the

absolute velocity of the water leaving the wheel.

Evidently cdg is a straight line.

Let the angle cad = y, and the angle bad = n a.

From the triangle adc,

V* = v* -f u* 2vji cos Y I (i)

v? = V* -j~ u* 2 Vu cos a
; .... (2)

V sin Y
v, sin OL **/

From the triangle adg,

By equations I, 2, and 4,

^,
8 ^ rr rra /= 2 Vu cos # = v

l
V u = 2u(v

l
cos Y u\

2

Therefore the useful work per second

= ^2U fa cos y - u
) (s>

wQ v? cos
8

Y
This is a maximum and equal to when

V. COS Y rr
u -, and the maximum emciency is cos y, Hence^

too, by equations I and 3,

tan (n a) = 2 tan y (6)

Also,

VR sin
, by equation 6.

u sin (a -\- y} cos (n a]

The efficiency is perfect if y is nil, and therefore a = 1 80.

Practically this is an impossible value, but the preceding cal-

culations indicate that ; should not be too large (usually

< 30), and that the speed of the wheel should be a little less

than one half of the velocity of the inflowing stream.
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Take y = 15 as a mean value. Then

u = v
t X .484, and the efficiency = .993.

Actually the efficiency does not exceed 68 per cent. In-

deed it must be borne in mind that the theory applies to one

elementary layer only, say the mean layer, and that all the

other layers enter the wheel at angles differing from 15, thus

giving rise to " losses of energy in shock." The losses of

energy in frictional resistance, eddy motion, etc., in the vane

passages, have also been disregarded. The layers of water,

flowing to the wheel under an adjustable sluice and with a

velocity very nearly equal to that due to the total head, may
be all made to enter at angles approximately equal to 15, and

the corresponding losses in shock reduced to a minimum by

forming the course as follows :

The first part of the course FG, Fig. 143, is curved in such

a manner that the normal pqr at any point/ makes an angle

of 15 with the radius^. The water moves sensibly parallel

to the bottom FG, and therefore in a direction at right angles

FIG. 143.

to/r. Hence at q the direction of motion makes an angle of

15 with the tangent to the wheel's periphery. If or is drawn

perpendicular to/r, then or = oq sin 15 = a constant.

Thus the normal pqr touches at r a circle concentric with

the wheel and of a certain constant diameter.
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The initial point F of the curve FG is the point in which

the tangent to this circle, passing through the upper edge of

the sluice-opening, cuts the bed of the supply-channel.

If t is the thickness (or depth of sluice-opening) and b the

breadth of the layer of water as it leaves the sluice, then

Q = btv, ,

and according to Grashof

H being the available fall.

The thickness should not exceed 12 to 15 inches, and is

generally from 8 to 10 inches.

Neglecting float thickness, the capacity of the portion of

the wheel passing in front of the entering stream per second

= bdu^ , very nearly.

Only a portion of this space can be occupied by the water,

so that

Q mbdu
l ,

m being a fraction whose value may be taken to be J or f
Hence

mbdu
l btv^ ,

and therefore

u. md u.
t = md = cos yV

l
2 r U

md R= cos v .

2 r
r,

According to Morin,

r,
= 2d to $d.

The mean velocity at entrance = cv
< 2g(H /), an aver-

age value of cv being .9.

Thus \it =
,
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The diameter of the wheel is often taken to be

The area of the sluice-opening is usually from \\bt to i.^bt.

The inside width of the wheel is about (b + J) ft.

The water should not rise over the top of the buckets, and

in order to prevent this the depth of the shrouding is from J//

to \H.
If A is the angle subtended at the centre O of the wheel by

the water-arc between the point of entrance A and the lowest

point , Fig. 144, of the wheel, and if Aq' is drawn horizontally,

then Aq' is approximately the height of the float, and the

theoretic depth d of the crown is given by

' + OC - Oq'= AC = Aq
f

+Cq' =

In practice it is usual to increase this depth by /, the thick-

ness of the impinging water-layer.

Again,

2 V"
1

d
s -f r,(i cos A) -f- a few inches, approximately.

The buckets are usually placed about I ft. apart, measured

along the circumference, but the number of the buckets is not

a matter of great importance. There are generally 36 buckets
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in wheels of 10 to 14 ft. diameter, and 48 buckets in wheels of

20 to 23 ft. diameter.

It may be assumed that the water-arc is equally divided by
the lowest point C of the wheel, so that

the length of the water-arc = 2\r = 2uT,

T being the time of the ascent or descent of the water in the

bucket.

In the middle position, the upper end of the bucket should

be vertical, and if the float is in the form of a circular arc, its

radius r' = d sec (it a\ a being the angle between the

bucket's lip and the wheel's periphery.

The time of ascent or descent is also given by

where sin fy
= I/cos (it a).

9. Efficiency corresponding to a Minimum Velocity of

Discharge (V2).
From Fig. 142,

ao (= \ag) _ sin y __ Qa)

ad sin aod u

Hence for any given values of u and y, vz is a minimum
when sin aod is greatest, that is, when aod = 90, or ag is at

right angles to de. Then also ad= ae = ab, or u = V, and ac

bisects the angle bad. Thus,

i7
1
= 2u cos y and v^ 2u sin y.

The useful work

W v? v? W WV/cos 2y= .
-'-'- = 2u* cos 2y = --5--

,

g 2 g g 2 COS' Y

The total available work
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Therefore the efficiency

cos 2v
-

Ex. If y = 15, the efficiency = .928 and u = .

In practice the best value of u is found to lie between.

and .60^.

The horse-power of the wheel

rf being the efficiency with an average value of 60$.

Although, under normal conditions of working, the effi-

ciency of a Poncelet wheel is a little less than that of the best

turbines, the advantage is with the former when working with

a reduced supply.
10. Form of Bucket The form of the bucket is arbitrary,

and may be assumed to be a circular arc. In practice there

are various methods of tracing its form.

METHOD I (Fig. 145), The tangent am to the bucket at a

FIG. 145.

makes a given angle a with the tangent at a to the wheel's

outer periphery. The radius of\s also a tangent to the bucket
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at/! If the angle aof\s known the position off on the inner

periphery is at once fixed, and the form of the bucket can be

easily traced.

Let the angle aofx. Join af and let the tangents to the

bucket at a and /meet in m. Then
the angle oam = a 90.

" oma 1 80 oam aom = 270 a x.
" mfa = the angle maf (180 fmd)

= "+-*- 45-
'

Let rlt r^ be the radii of the outer and inner peripheries of

the wheel. Then

sin
(f!L

_
45)r

l
oa sin ofa sin mfa \ 2 /

of sin oaf sin oaf sin (^-45*)

since the angle oaf
'= oam maf'= - 45.

Hence

r.

X
tan -

2

tan -

an equation giving ;tr.

The point o' in which the perpendicular o'f to 0/" meets

the perpendicular o'a to am is the centre of the circular arc

required and o'f(^o'd) is the radius.

METHOD II (Fig. 146). Take mad = 150, and in ma pro-

duced take ak = of. With k as centre and a radius equal to
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ao describe the arc of a circle intersecting the inner periphery
in the point f. Join kf, of, and af. The two triangles aof
and akf are evidently equal in every respect, and therefore

the angle kaf is equal to the angle ofa. Drawing ao' at right

angles to ak and fo' tangential to the periphery at f, the angle

0'af(= kaf 90) is equal to the angle o'fa (= ofa 90), and

therefore o'a = o'f. Thus o' is the centre of the circular arc

required and o'a (= o'f) is the radius.

FIG. 146.
9-

METHOD III (Fig. 147). Let the bed with a slope of, say,

i in 10 extend to the point C, and then be made concentric

with the wheel for a distance CC subtending an angle of 30
at the centre of the wheel. Let the mean layer, half way
between the sloping bed and the surface of the advancing

water, strike the outer periphery at the point /. Draw fk

making an angle of 23 with of, and take fk equal to one half
or seven tenths of the available fall, k is the centre of the

circular arc required and /is its radius.

II. Breast-wheels. These wheels are usually adopted for

falls of from 5 to 15 feet, and for a delivery of from 5 to 80

cubic feet per second.
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The diameter should be at least 1 1 ft. 6 in., and rarely ex-

ceeds 24 ft. The velocity (u) of the wheel's periphery is gen-

erally from 3^ ft. to 5 ft. per second, the most useful average

velocity being about 4^ ft. per second.

The width of the wheel should not exceed from 8 to 10 ft.

It is of great importance to retain the water in the wheel

as long as possible, and this is effected by surrounding the

water-arc with an apron, or a curb, or a breast, which may be

constructed of timber, iron, or stone. Hence, too, the buckets

may be plane floats, but they should be set at an angle to the

periphery of the wheel, so as to rise out of the water with the

least resistance (Art. 8).

The depth of a float should not be less than 2.3 ft., and the

space between two consecutive floats should be filled to at

least one half, and even to two thirds, of its capacity. The
head (measured from still water) over the sill or lip should be

about 9 in.

The play between the outer edge of the floats and the

curb varies from in. in the best constructed wheels to

2 inches.

The distances between the floats is from i^ to if times the

head over the sill.
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Breast-wheels are among the best of hydraulic motors,

giving a practical efficiency which may be as large as 80

per cent.

12. Sluices. The water is rarely admitted to the wheel

without some sluice arrangement, which may take the form of

an overfall sluice (Fig. 148),

an underflow sluice (Fig. 149),

or a bucket or pipe sluice

(Fig. 150).

The pipe sluice is espe-

cially adapted for a varying

supply, being provided, for a

certain vertical distance, with

a series of short tubes, so in-

clined as to ensure that the

water enters the wheel in the

right direction. Taking .85

as the mean coefficient of

hydraulic resistance for these

tubes, the head k
l required

to produce the velocity of

entrance z> is

and if H is the total available

fall,

= remainder of fall available for pressure-work.

The profile AB in an overfall and an underflow sluice,

should coincide with the parabolic path of the lowest stream-

lines of the jet. The crest of the overfall should be properly

curved, and the inner edges of the underflow opening should

be carefully rounded so as to eliminate losses due to con-

traction
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The underflow sluice-opening should also be normal to

the axis of the jet.

Let h^ be the head above the crest of an overfall sluice.

Then

2
T.

'
*

Q = -cb,

b^ being the width of the crest and c the coefficient of dis-

charge. The width b
l

is usually 3 or 4 inches less than the

width b of the wheel.

From this equation

and the depth of water over the crest or lip is usually about

9 inches.

Again, the head h^= CD) required to produce the velocity

v
l
at the point of entrance B is

10

10 per cent being allowed for loss due to friction.

Thus the height of the crest A above B, the point of

entrance,

= AD = CD - CA = h,
-

ii *;/ 36 V
10 2g \2cb^2g)'

But BA is a parabola with its vertex at A, and therefore,

if B is the angle between the horizontal BD and the tangent
the parabola at B,

n f\ A

V, sm u 1 1 v*

2g
~
10 2g y

)
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Also

v. sin 26

The head available for pressure work

= DE = FG = H -
h,.

Let a be the angle between BT and the tangent to the

wheel's periphery at B. Then

a _f = the angle EOF,

BO being the radius to the centre of the wheel and OFG'
vertical.

% If the lowest point G' of the wheel just clears the tail-

race, the head available for pressure work

= H -
h, = FG' OG' - OF

= rfr
_ cos BOF) = 2r, si

r, being the radius to the outer periphery of the wheel.

If, again, the water enters the wheel tangentially,

a = o, and the angle BOF = B,

so that

H -
h, = 2r, sin

2

-.

If the sluice-opening is not at the vertex of the parabola,

the axis of the opening should be tangential to the parabola.

13. Speed of Wheel. The water leaves the buckets and

flows away in the race with a velocity not sensibly different

from the velocity u of the wheel's periphery.
Let b be the breadth of the wheel (Fig. 151).

Let x be the depth of the water in the lowest bucket.



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS. 247

FIG. 151.

Allowing for the thickness of the buckets, the play between

the wheel and curb, etc.,

Q = cbxu,

c being an empirical coefficient whose average value is about

.0. Hence

10 Q
u = jr.

9 ox

In practice b is often taken to be to . It is impor-

tant that b should be as small as possible and hence x should

be as large as possible, its value being usually ij ft. to 2 ft.

It must be borne in mind, however, that any increase i-n

the value of x will cause an increase in the weight of water

lifted by the buckets as they emerge from the race, and will

therefore tend to diminish the efficiency.

14. Mechanical Effect. Theoretically, the total mechan-

ical effect
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H being the fall from the surface of still water in the supply-
channel to the surface of the water in the tail-race.

This, however, is reduced by the following losses:

(a) Owing to frictional resistance, etc., there is a loss of

v 3

head in the supply-channel which may be measured by ^-7-

v being approximately JL to TL.

The head required to produce the velocity at entrance, v
l9

(b) Let af, Fig. 152, represent in direction and magnitude
v, the velocity of the water entering the bucket.

FIG. 152.

Let ad, in the direction of the tangent to the wheel's

periphery, represent the velocity u of the periphery in direction

and magnitude.

Complete the parallelogram bd. Then ab evidently repre-

sents the velocity V of the water relatively to the wheel.

This velocity V is rapidly destroyed, the corresponding loss of

head being
F2

U*-\-V? 2UV^ COS y

being the angle daf.
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Assuming that the water enters the race with the velocity
u of the wheel, the theoretical useful work per pound per
second due to impact

u.= -(v l
cos y u).

g

V^
If the loss is to be a minimum for a given speed of

o

wheel,

v,dv^ u cos y . dv
l
= o, or ^ u cos y. . . (2)

Hence, by equation I, V = u sin 7, and therefore

V df
tan y = - = 2

v, af

so that for a velocity of entrance v
t
= u cos y the angle afd

should be 90. But this value is inadmissible, as the water

would arrive tangentially and consequently would not enter the

buckets. In Order that the loss in shock at entrance may be as

small as possible, ab, the direction of the relative velocity F,

should be parallel to the arm xy of the bucket, and should

therefore be approximately normal to the wheel's periphery.
This is equivalent to the assumption that the water arrives in

a given direction (y) with a given velocity (^), and that the

speed (?/) of the wheel is to be such as will make V a mini-

mum. Thus, by equation I,

o udu v^ cos y . du, or u = v
l
cos y,

and therefore

V = v
l
sin y.

Hence tan y = -, and therefore the angle adf= 90.
u ad
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In practice y is generally 30, and the corresponding loss of

F a

v? . v> i if i
head = = sin

2

y = -. - = .
-

At point of entrance x falls below y, the water flows up the

inclined plane xy, and F, instead of being wholly destroyed in

eddy motion, is partially destroyed by gravity. This velocity,

destroyed by gravity, is again restored to the water on its

return, and thus adds to the efficiency

of the wheel.

It will be found advantageous to

use curved or polygonal buckets and

not plane floats. A bucket, for ex-

ample, may consist of three straight

portions, ab, be, cd, Fig. 153. Of these

the inner portion cd shoud be radial
;

the outer portion ab is nearly normal to the periphery of the

wheel, and the central portion be may make angles of about

135 with ab and cd.

Disregarding all other losses, the theoretical delivery of the

wheel in foot-pounds

where h^ = total fall fall (h^ required to produce the veloc-

ity v,.

If
77 be the efficiency, then, according to the results of

Morin's experiments,

rf
= .40 to .45 if h^ = -//";

4

rf
= .42 to .49 if h

l
= H\

rj
= .47 if h, = -H;

3

if h, = ff.

4
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(c) There is a loss of head due to frictional resistance along
the channel in which the wheel works.

Let / = length of the channel (or curb).

Let t thickness of water-layer leaving the wheel.

Let b = breadth of wheel.

The mean velocity of flow in this curb channel is approxi-

mately -u, and the loss of head due to channelfriction

bt 2g

where/ = coefficiency of friction, b -f- 2t = wetted perimeter,

bt = water area, and y being 30.

(d] There is a loss of head due to the escape of water over

the ends and sides of the buckets.

Let s
1
be the play between the ends of the buckets and the

channel.

Let s^ be the play at the sides. (^,
= J

a , approximately.)

Let z
l ,

#
2 ,

. . . zn be the depths of water in a bucket corre-

sponding to n successive positions in its descent

from the receiving to the lowest points.

Let /
a ,

/
a , ... ln be the corresponding water-arcs measured

along the wheel's periphery.

The orifice of discharge at end of a bucket = bs^

The mean amount of water escaping from a bucket over

its end

c being the coefficient of discharge.

The water escapes at the sides as over a series of weirs,

and the mean amount of water escaping from a bucket over

the sides
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Hence the total loss of effect from escape of water

per sec., ^ being the vertical distance between the point of

entrance and the surface of the water in the tail-race

__.

(e) There is a loss of head due to journal friction.

Let W= weight of wheel.

Let w
l
= weight of water on the wheel.

Let r
l
= radius of wheel's outer periphery.

Let r1 radius of axle.

Loss per second of mechanical effect due to journal friction

r being the coefficient of journal friction.

There is a loss of mechanical effect due to the resistance of

the air to the motion of the floats (buckets), but this is prac-

tically very small, and may be disregarded without sensible

error. A deepening of the tail-race produces a further loss of

effect, and should only be adopted when back-water is feared.

Hence the total actual mechanical effect,

putting

Z=bSl ( V^

cos
,s =
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=wQ ff- (i + v) + fa cos r - )

--*(", cos y-u)

Hence, for a given value of z/,, the mechanical effect (omit-

ting the last term) is a maximum when

= ^ C S Y
(= -433 X ^ ,

if r = 30).

In practice the speed of the wheel is made about one half
of the velocity with which the water enters the wheel.

For a given speed of wheel, and disregarding the loss of

effect due to curb friction, which is always small, the mechani-

cal effect is a maximum for a value of z/, given by

I ^ t/ w'Z\ l + v
i
WQ

\wQ c V2g 1
! v

l H -u cos Y = o,

or

U COS Y

The loss by escape of water, viz., c V2g, varies, on an

average, from 10 to 15 per cent of the whole supply, so that

c V2g- varies from to 2s,d
n 10 20
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15. Sagebien Wheels have plane floats inclined to the

radius at from 40 to 45 in the direction of the wheel's rota-

tion. The floats are near together and sink slowly into the

fluid mass. The level of the water in the float-passages grad-

FIG. 154.

ually varies and the volume discharged in a given time may
be very greatly changed. The efficiency of these wheels is

over 80 per cent, and has reached even 90 per cent. The
action is almost the same as if the water were transferred from

upper to lower race, without agitation, frictional resistance,

etc., flowing away without obstruction, into the tail-race.

16. Overshot Wheels. These wheels are among the best

of hydraulic motors for falls of 8 to 70 ft. and for a delivery of

3 to 25 cub. ft. per second. They are especially useful for falls

of 12 to 20 ft. The efficiency of overshot wheels of the best

construction is from .70 to .85.

If the level of the head-water is liable to a greater variation

than 2 ft., it is most advantageous to employ a pitch-back or

high breast-wheel, which receives the water on the same side

as the channel of approach.

17. Wheel-velocity. This evidently depends upon the

work to be done, and upon the velocity with which the water
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arrives on the wheel. Overshot wheels should have a low

circumferential speed, varying from 10 ft. per sec. for large

wheels to 3 ft. per sec. for small wheels, and should not be less

than 2-J ft. per sec.

In order that the water may enter the buckets easily, its

velocity should be greater than the peripheral velocity of the

wheel.

18. Effect Of Centrifugal Force. Consider a molecule

of weight W in the " unknown" surface of the water in a

FIG. 155.

bucket (Fig. 155). At each moment there is a dynamical

equilibrium between the " forces" acting on m, viz.: (i) its
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IV

weight w\ (2) the centrifugal force coV; (3) the resultant T
o

of the neighboring reactions.

2V
Take MF = w, MG = coV, and complete parallelogram

o
FG. Then MH = T. The direction of T is, of course, normal

to the surface of the water in the bucket.

Let HM produced meet the vertical through the axis O of

the wheel in E. Then

w_ a

MG z**
r FH OM r

MF~ w ~MF~OE"OE'
and therefore

OB =*, =
GO

taking g = 32 ft. and n being the number of revolutions per
minute.

Thus the position of E is independent of r and of the

position of the bucket, so that all the normals to the water-

surface in a bucket meet in E, and the surface is the arc of a

circle having its centre at E, or, rather, a cylindrical surface

with axis through E parallel to the axis of rotation.

19. Weight of Water on Wheel and Arc of Discharge.
Let Q = volume supplied per sec., and N= number of buckets.

Noo
Then - - = number of buckets fed per sec.,

27T

and = volume of water received by each bucket per sec.

Hence the area occupied by the water until spilling com-

mences = , .,
,
b being the bucket's width (= width of wheel

between the shroudings).

The water flows on to the wheel through a channel (Fig.

156), usually of the same width b as the wheel, and the
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supply is regulated by means of an adjustable sluice, which

may be either vertical, inclined, or horizontal.

When the water springs clear from the sluice, as in Fig. 156,

the axis of the sluice should be tangential to the axis of the

FIG. 156.

jet, and the inner edges of the sluice-opening should be rounded
so as to eliminate contraction.

Let y, z be the horizontal and vertical distances between
the sluice and the point of entrance.

Let T be the time of flow between the sluice and entrance.

Let v
, 2\ be the velocities of flow on leaving the sluice and

on entering the bucket.

Then
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and

V? = V* + 2gZ,

d being angular deviation of point of entrance from summit,
and y the angle between the direction of motion of the water

and the wheel at the point of entrance.

Assume the bed of the channel to be horizontal, and the

sluice vertical and of the same, width b as the wheel. The
sluice is also supposed to open upwards from the bed. Then

x being the depth of sluice-opening and h^ the effective head

over the sluice. This effective head is about TVths of the actual

head.

Thus, taking g=. 32, = %xh$ gives the delivery per foot

width of wheel.

Taking .6 ft. and 3.6 ft. as the extreme limits between

which h
l
should lie, and .2 ft. and .33 ft. as the extreme limits

between which x should lie, then ~ must lie between the
o

limits 1.24 and 5, and an average value of ^ is 3. Thus the

width of the wheel should be on the average ^ .

Again, neglecting the thickness of the buckets, the capacity

of the portion of the wheel passing in front of the water-sup-

ply per second

= b<*> \ --
! = Mfafr,--

J
= bdrja, approximately,

, , Lj= bdu. bd
30

r, being the radius and u
l
the velocity of the outer circumfer-

ence of the wheel, d the depth of the shrouding, and n the

number of revolutions per minute.
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Only a portion, however, of the space can be occupied by
the water, so that the capacity of a bucket is mubd, m being
a fraction less than unity and usually -J

or J. For very high
wheels m may be \. Hence

, , 27tQmbdu. = ~=.
NGO

Again, since the thickness of the buckets is disregarded,

Nu

Therefore mdu. = ^.
b

The delivery \^j per foot of width must not exceed a

certain limit, otherwise either d or u will be too great. In the

former case the water would acquire too great a velocity on

entering the buckets, which would lead to an excessive loss in

eddy motion and a corresponding loss of efficiency ;
while if

the speed u of the wheel is too great the efficiency is again
diminished and might fall even below 40$.

The depth of a bucket or of the shrouding varies from 10

to 16 in., being usually from 10 to 12 in., and the buckets are

spread along the outer circumference at intervals of 12 to

14 inches. The number of the buckets is approximately $r or

6r, r being the radius of the wheel in feet.

The efficiency of the wheel necessarily increases with the

number of the buckets, but the number is limited by certain

considerations, viz. : (a) the bucket thickness must not take up
too much of the wheel's periphery ; (b) the number of the

buckets must not be so great as to obstruct the free entrance

of the water; (c) the form of the bucket essentially affects the

number.

Let the bucket, Fig. 157, consist of two portions, an inner

portion be, which is radial, and an outer portion cd\ c being a

point on what is called the division circle. The length be is

usually one half or two thirds of the depth d of the shrouding.
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Take be = \d.

It may also be assumed without much error that the water-

surface ad is approximately perpendicular to the line ed
t
so

that the angle edc is approximately a right angle.

The spilling evidently commences when the cylindrical sur-

face, having its axis at e and cutting off from the bucket a

water-area equal to -~, passes through the outer edge d of
Noo

the bucket.

FIG. 157.

Let /3 be the bucket angle cOd.

Let be the inclination of Od to the horizon.

Let be the inclination of ad to the horizon.
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Let r
l
be the radius of the outer periphery.

Let R be the radius of the division circle.

Let r
a be the radius of the inner periphery.

Then

od^ __
r

l _ sin _ sin

oe ""^"sin j 90 0+0}
~

cos (0+0)'

and therefore

Again,

Therefore

sin

af= fd tan (0 -|- 0), approximately.

the area dfa=< tan (0+ 0) = tan (8 + 0),2 2

where d = r
l

r
2
. Hence

the area abed = area cod area bof area ^/iz

Equations (i) and (2) give and 0, and therefore the posi-

tion of the bucket when spilling commences.

The bucket will be completely emptied when it has reached

a position in which cd is perpendicular to a line from e to

middle point of cd, or, approximately, when edc is a right

angle.
Let 0,, 0, be the corresponding values of and 0, and let
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y t
be the angle between cd and the tangent at d to the wheel's

periphery. Then

and

= 90 -

sn r, ._. g
sin r

two equations giving 0, and 0^

Also, if ^ is drawn perpendicular to od,

de r R cos
tan y = cot <:# <? = =

ce R sin fi

The vertical distance between the points where spilling be-

gins and ends, viz., r
l (sin l

sin 0) can now be determined.

The pitch-angle(= rp) is the angle between two consecutive

buckets so that ^ = . In order to obtain a small angle

(=: y^ between the lip of the bucket and the wheel's periphery,

it is usual to make the bucket angle ft greater than
if}.

For example,

5 5 360 450

The interval between the buckets should be at least suf-

ficient to prevent any bucket dipping into the one below at the

moment the latter begins to spill.

Let coo'. Fig. 158, be the division angle and t the thickness

of the bucket.

Then

approximately, and therefore

(3)
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Also, by equation 2,

, 2nQ
r> . 9 Jt

^Sb*.^^Z,

.. (4)W
These two last equations give N and 0.

The number of buckets may also be approximately found

from the formula

In practice the bucket may be delineated as follows :

Let dd r = distance between two buckets.

56 d
Take dd" = ~dd' to -

dd'\ also take fo = -, and join dc.

This gives the form of a suitable wooden bucket.

FIG. 158.

If the bucket is of iron, a circular arc is substituted for the

portions be, cd.

Again, let/w, Fig. 159, be the thickness of the stream just

before entering the bucket.

Let dn be the thickness of the stream just after entering
the bucket.

Let \ be the angle between the bucket's lip and the wheel's

periphery.
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Then

mbdu
l capacity of bucket = bv^ . pm = bV. dn

= bv^dp sin y = b V. dp . sin A,

and therefore

~
v.smr" FsinA'

Now overshot wheels cannot be ventilated, and it is conse-

FIG. 159.

quently necessary to leave ample space above the entering
stream for the free exit of air. Thus, neglecting float thick-

ness,

' = distance between consecutive floats

= <W'(Fig. 158) > <// >

and N, the number of buckets,

2 Try, F sin \

mdu,
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For efficient action the number of the buckets is much less

than the limit given by this relation, often not exceeding one
half of such limit.

If y is very small, V=v l u^ approximately, and therefore

The capacity of a bucket depends upon its form
;
and the

bucket must be so designed that the water can enter freely
and without shock, is retained to the lowest possible point, and
is finally discharged without let or hindrance. Hence flat

buckets, Fig. 160, are not so efficient as the curved iron bucket

in Fig. 163 and as the compound bucket made of three or two

FIG. 1 60. FIG. 161. FIG. 162.

FIG. 163. FIG. 164.

pieces in Figs. 161, 162, 164. The resistance to entrance is

least in the curved bucket, as there are no abrupt changes of

direction due to angles. The capacity of a compound bucket

may be increased, without diminishing the ease of entrance, by

making the inner portion strike the inner periphery at an
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acute angle, Fig. 164. The objection to this construction,

especially if the relative velocity V is large, is that the water

tends to return in the opposite direction and escape from the

bucket.

Let bed, efg, Fig. 165, represent two consecutive buckets of

an overshot wheel turning in the direction shown by the arrow.

FIG. 165.

Water will cease to enter the bucket-space between

efg, and impact will therefore cease, when the upper parabolic

boundary of the supply-stream intersects the edge b. The last

fluid elements will then strike the water already in the bucket

at a point M, whose vertical distance below b may be desig-

nated by z. The velocity v' with which the entering particles

reach M is given by the equation

(0
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Again, while the fluid particles move from b to M let the

buckets move into the positions b'c'd'
, e'f'g'.

Let arc bb' = s
1
= ee

r
.

Let arc bM= s
t

.

Let T be the time of movement from b to b' (or b to M\
Then

s. = uT

and

assuming that the mean velocity from b to M is an arithmetic

mean between the initial and final velocity of entrance. Thus

l -f- ^i

Also, since the angle between bM and the wheel's periphery

is small, it may be assumed that

the arc bM' = be -\- ef-\- ee'
y approximately,

27tr,

N N u

,

+**'

/, T r^7 ,
V

i
U 27Cr

i
V

i
U \

(Note.ef eb = eb-- = -^T.
--

, nearly.)
\

J u u N u J
i

Thus

and by equations 2 and 3,

(
v

i + v
*'

2U\ _ 27tr
i !!L

S\ 2u I
~ N u>
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an equation giving approximately the distance s
l passed

through by a float during impact. The buckets can now be

plotted in the positions they occupy at the end of the impact.
The amount of water in each bucket being also known, the

water-surface can be delineated, and hence the vertical distance

x can be at once found.

20. Useful Effect (a) Effect of Weight. The wheel

should hang freely, or just clear the tail-water surface, and

the total fall is measured from the surface of the water in the

tail-race to the water-surface just in front of the sluices through
which the water is brought on to the wheel.

FIG. 1 66.

Let hlt Fig. 166, be the vertical distance between the cen-

tres of gravity of the water-areas of the first and last buckets

before spilling commences. Then

//,
= R cos d -\- r l

sin 0, very nearly.

Let h^ be the vertical distance between the centres of

gravity of the water-area of the bucket which first begins to

spill, and the point at which the spilling is completed. Then

h^ r,(sin 0, sin 0), very nearly.
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The useful work per sec. = '^Q(h l + kh^ k being a frac-

tion < I and approximately = .5.

Let A be the water-area in the bucket which first begins
to spill.

Between this bucket and the one which is first emptied,

i.e., in the vertical distance /z
2 ,

insert an even number s of

buckets, and let their water-areas A
l ,
A

9 ,
A

3 ,
. . . A s be care-

fully calculated.

Let Qm be the mean amount of water per bucket in the

discharging arc.

Let A m be the mean water-area per bucket in the discharg-

ing arc.

Then

The value of k can now be easily found, since

Qm_Am~-~"

Let q be the varying amount of water in a bucket frorrr

which spilling is taking place, and at any moment let y be the

vertical distance between the outer edge of the bucket and the

surface of the water in the tail-race.

q is a function of y and depends upon the contour of the

water in the bucket.

Let Y be the mean value of y between the points where

spilling begins and ends, i.e., for values^, and j/a
of y. Then

y\

since

Jy .dq=yq Jq . dy.
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Again, the elementary quantity of water, dq, having an

initial velocity equal to that of the wheel, viz., &, falls a dis-

tance y and acquires a velocity = <Ju' -\- 2gy.

Thus it flows away in the tail-race causing a loss of

w .dq (
if

energy = -"(* + 2^7) = w

Hence the total loss of energy between the points where

spilling begins and ends

Overshot and pitch-back wheels do not work well in back-

water, as they lift a greater or less weight of water in rising

above the surface.

If the water-level in the race is liable to variation it is better

to diminish the diameter of the wheel and design it so that it

may never be immersed to a greater depth than 12 inches.

(b) Effect of Impact. The head h' required to produce the

velocity v with which the water reaches the wheel is theoret-

v*
ically ;

but as there is a loss of at least 5 per cent in the
o

most perfect delivery, it is usual to take h' = v-^, an average
o

value of v being I.I.

Let the water enter the bucket in the direction ac, Fig.

167. Take ac = vr The water now moves round with a

velocity u (assumed the same as that of the division circle),

and leaves the wheel with the same velocity. Take ab in the

direction of the tangent to the division circle at the point of

entrance = u. The component be represents the relative

velocity V of the water with respect to the bucket, and this

velocity is wholly destroyed, ab must necessarily be parallel to

the outer arm of the bucket, so that there may be no loss of

shock at entrance. Then the impulsive effect

g
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But

V* = v? -\- if 2v\u cos y,

y being the angle through which the water is deviated from

its original direction at the point of entrance.

FIG. 167.

Hence the impulsive effect

wQ= u(v^ cos y u),
o

and the TOTAL USEFUL EFFECT

i+^2)+ ^M7
'i
cos K &)'loss due to journal friction,

o

The loss due to journal friction

p being the radius of the axle and Wthe weight of the wheel.
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21. A pitch-back or high breast wheel is to be preferred

to an overshot wheel when the surface-levels of the head- and

tail-water are liable to very considerable variation.

In the pitch-back wheel the water is admitted by an adjust-

able sluice into the buckets on the same side as the supply-

channel, Fig. 168. Thus the wheel revolves in the direction

FIG. 168.

in which the water leaves, and the drowning of the wheel is

prevented. Further, the buckets may be now ventilated, Fig.

169, and may therefore be placed closer together than in the

unventilated overshot wheel.

The efficiency of the pitch-back is at least equal to that of

the overshot.

22. The Jet Reaction Wheel (Scotch Turbine). In this

form of motor the water enters the centre of the wheel, spreads
out radially in tubular passages, and issues from openings at

the ends tangentially to the direction of rotation.

Fig. 170 represent the simplest wheel of this class. In Eng-
land it is known as Barker's mill, and in Germany it is called

Segner's water-wheel.

A reaction wheel may have several tubular passages, as in

Fig. 172, and the vertical chamber XY may be cylindrical,

rectangular, or conical.

Let r be the horizontal distance between the axis of aa

orifice and the axis of the vertical chamber.

Let h be the head of water over the orifices when closed.

Let v be the velocity of erflux relatively to the tube when
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the orifices are open, and let Fbe the corresponding linear

velocity of rotation at the centre of an orifice. Then

cv being the coefficient of velocity.

FIG. 1 70.

FIG. 171.
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The absolute velocity of efflux '= v V.

v-V
The angular momentum of each pound of water = r.

o

The useful work of each pound of water

v-V V V.= r = (v V\
g r g

The total work of each pound of water = h.

FIG. 172.

The efficiency

useful work _
Total work

- V} = ^ suppose>

useful work _ v V
The reaction =

linear veiocity of rotation
=

g

For a maximum efficiency

= o =
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Hence

f 2Z/F+ *.?" = o,

and therefore

v = V(i + Vi - c,')....... (4)

Experience indicates that the greatest efficiency corresponds
to a speed of rotation equal to the velocity due to a head h,

i.e., to a value of V given by

.
-

, ..... (5)

By equations (i) and (5)

f = 4V** ....... (6)

and therefore, by equations (4), (5), and (6),

o

c* = ~ or c, = .94....... (7)

Hence, by equations (3), (5), (6), and (7),

the maximum efficiency = .

o

Thus one third of the head is lost, and of this amount the

(v F)
2
/ h\

portion
---

^= -j
is carried away by the effluent water.

The portion
--- (= -kj

is lost in frictional resistance, etc.

Again,

=
jt | cjj* + -yT

terms cont'g higher powers of -~\ i
|

.
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The efficiency therefore increases with F, but the value of

V is limited by the practical consideration that, even at

moderately high speeds, so much of

the head is absorbed by friction as

to sensibly diminish the efficiency.

The serious practical defects of

this wheel are that its speed is most

unstable and that it admits of no

efficient system of regulation for a

varying supply of water.

The Scotch or Whitelaw's tur-

J 73. bine, Fig. 173, excepting in the

curved arms, does not differ essentially from the reaction

wheel just considered.

23. Reaction and Impulse Turbines. All turbines be-

long to one of two classes, viz., Reaction Turbines and Impulse

Turbines, and are designed to utilize more or less of the avail-

able energy of a moving mass of water.

In a reaction turbine a portion of the available energy is

converted into kinetic energy at the inlet surface of the wheel.

The water enters the wheel-passages formed by suitably

curved vanes, and acts upon these vanes by pressure, causing
the wheel to rotate. The proportions of the turbine are such

that there is a particular pressure (hence the term pressure-

turbine) at the inlet surface corresponding to the best normal

condition of working. Any variation from this pressure,

caused, e.g., by the partial closure of the passages through
which the water passes to the wheel, changes the working con-

ditions and diminishes the efficiency. In order to avoid such

a variation of pressure, it is essential that there should be a

continuity of flow in every part of the turbine ; the wheel-

passages should be kept completely filled with water, and

therefore must receive the water simultaneously; Such

turbines are said to have complete admission. The admission

is partial when the water is received over a portion of the inlet

surface only.

In an impulse (Girard) turbine, Figs. 174, 175, the energy
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of the water is wholly converted into kinetic energy at the

inlet surface. Thus the water enters the wheel with a velocity
due to the total available head and therefore without pressure,
is received upon the curved vanes, and imparts to the wheel

the whole of its energy by means of the impulse due to the

FIG. 174. FIG. 175.

Girard Turbine for Low Falls. Girard Turbine for High Falls.

gradual change of momentum. Care must be taken to ensure

that the water may be freely deviated on the curved vanes,

and hence such turbines are sometimes called turbines with free

deviation. For this reason the water-passages should never be

completely filled, and the water should flow through under a

pressure which remains constant. In order to ensure an un-

broken flow through the wheel-passages and that no eddies

are formed at the backs of the vanes, ventilating holes are

arranged in the wheel sides, Fig. 177. Figs. 176 and 177 also

show the relative path AB and the absolute path CD traversed

by the water in an inward-flow and a downward-flow turbine.

If there is a sufficient head, the wheel may be placed clear
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above the tail-water, when the stream will be at all times under

atmospheric pressure. With low falls the wheel may be placed
in a casing supplied with air from

an air-pump by which the surface

of the water may be kept at an

invariable level below the outlet

orifices, which is essential for per-

fectly free deviation. While the

wheel-passages of a reaction tur-

bine should be kept completely
'filled with water, no such restric-

tion is necessary with an impulse
turbine. The supply may be par-

tially checked and the water may be received by one or

more vanes without affecting the efficiency.
' Thus the dimen-

sions of an impulse turbine may vary between very wide

TAIL WATER

FIG. 177.

limits, so that for high falls with a small supply, a compara-

tively large wheel with low speed may be employed. The

speed of a reaction turbine under similar conditions would be

disadvantageously great, and any considerable increase of the

diameter would largely increase the fluid friction and would

also render the proper proportioning of the vane-angles

almost impracticable. Impulse turbines may have complete
or partial admission, while in reaction turbines the admission

should be always complete, as in Fig. 178, which shows the



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS.

relative path AB and absolute path CD traversed by the water.

When there is an ample supply of water the reaction turbine

is usually to be preferred, but on very high falls its speed

FIG. 178.

becomes inconveniently great and it is then better to adopt a

turbine of the impulse type. The diameter of the wheel can

then be increased and the speed proportionately diminished.

The Hurdy-gurdy is the name popularly given to an

impulse wheel which was introduced into the mining districts

of California about the year 1865. Around the periphery of

the wheel is arranged a series of flat iron buckets, about

4 to 6 in. in width, which are struck normally by a jet of

water often not more than three eighths of an inch in

diameter. Theoretically, the efficiency of such an arrange-

ment cannot exceed 50 per cent (Art. 7), while in prac-

tice it rarely reaches 40 per cent. The best speed of the

wheel, in accordance with both theory and practice, is one

half of that of the jet. Although the efficiency is so

low, the wheel found great favor for many reasons. Any
required speed could be obtained by a suitable choice of

diameter ;
the plane of the wheel could be placed in any

convenient position ;
the wheel could be cheaply constructed

and was largely free from liability to accident. Hence it was

of the utmost importance to increase, if possible, the efficiency

of a wheel possessing such advantages. Obviously a first step

was to substitute cups for the flat buckets, the immediate

result necessarily being a very large increase in the efficiency.

This was increased still further by the adoption of double
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buckets, Fig. 179, that is, curved buckets divided in the middle

so that the water is equally deflected on both sides.

Thus developed, the wheel is widely and most favorably
known as the Pelton wheel, Fig. 179. Its efficiency is at least

80 per cent, and it is claimed that it often rises above 90 per
cent. The power of the wheel does not depend upon its

diameter, but upon the available quantity and head of water.

The water passes to the wheel through one or more nozzles,

FIG. 179.

having tips bored to suit any required delivery. These tips

are screwed into the nozzles and can be easily and rapidly

replaced by others of larger or smaller size, so that the Pelton

is especially well adapted for a varying supply of water. It is

claimed that in this manner the power may be varied from a

maximum down to 25 per cent of the same without appreci-

able loss of efficiency.

The character of the construction of turbines has led to

their being classified as (i) Radial-flow turbines; (2) Axial-

flow turbines
; (3) Mixed-flow turbines.

In Radial-flow turbines the water flows through the wheel

in a direction at right angles to the axis of rotation and

approximately radial. The two special types of this class are

the Outward-flow turbine, invented by Fourneyron, and the

Inward-flow or Vortex turbine, invented by James Thomson.

In the former, Figs. 180 and 181, the water enters a cylindrical

chamber and is led by means of fixed guide-blades outwards
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from the axis. It is distributed over the inlet-surface, passes

through the curved passages of an annular wheel closely sur-

FIG. 1 80.

FIG. 181.

rounding the chamber, and is finally discharged at the outer

surface. The wheel works best when it is placed clear above
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the tail-water. A serious practical defect is the difficulty of

constructing a suitable sluice for regulating the supply over

the inlet-surface. Fourneyron was led to the design of this

turbine by observing the excessive loss of energy in the ordi-

nary Scotch turbine, or reaction wheel, and introduced guide-

blades in order to give the water an initial forward velocity

and thus cause a diminution of the velocity of the water leav-

ing the outlet-surface.

In the Inward-flow or Vortex turbine, Figs. 182 and 183,

the wheel is enclosed in an annular space, into which the

water flows through one or more pipes, and is usually dis-

tributed over the inlet-surface of the wheel by means of four

guide-blades. The water enters the wheel, flows towards the

space around the axis, and is there discharged. This turbine

possesses the great advantage that there is ample space outside

the wheel for a perfect system of regulating-sluices.

Axial-flow turbines, Figs. 184, are also known as Parallel

and Downward-flow turbines and are sometimes called by the

names of the inventors, Jonval and Fontaine. In these the

water passes downward through an annular casing in a direction

parallel to the axis of rotation, and is distributed by means of

guide-blades over the inlet-surface of an adjacent wheel. It

enters the wheel-passages and is finally discharged vertically, or

nearly so, at the outlet-surface. The sluice regulations are

worse even than in the case of an outward-flow turbine, but

there is this advantage, that the turbine may be placed either

below the tail-water, or, if supplied with a suction-pipe, at any

point not exceeding 30 ft. above the tail-water.

If a turbine is designed so that the pressure at the clear-

ance between the casing and the wheel is nil, and with curved

passages in the form of a freely deviated stream, it becomes

what is called a Limit turbine. In its normal condition of

working it is an Impulse turbine, but when drowned, it is a

Reaction turbine, with a small pressure at the clearance. For
moderate falls with a varying supply its average efficiency is

higher than that of a pressure turbine.

The Mixed- or Combined-flow (Schiele) turbine is a combi-
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nation of the radial and axial types. The water enters in a

nearly radial direction and leaves in a direction approximately

FIG. 182.

X

///////////////^^^^^

1 --T

FIG. 183.

parallel to the axis of rotation. This type of turbine admits

of a good mode of regulation and is cheap to construct.

24. Theory of Turbines (Figs. 185 to 188). Denote in-
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ward-flow, outward-flow, and axial-flow turbines by I. F., O. F.,
and A. F., respectively.

FIG. 184.

Let r,, ra be the radii of the wheel inlet and outlet surfaces

or an I. F. or O. F.

Let rlt
r
t be the outer and inner radii of the wheel inlet-

surface of an A. F.

Let R be the mean radius
\==

r
*

"^

r

*J
of an A. F., assumed

constant throughout.

FIG 185. Section of an inward-flow turbine.

Let A lf A, be the areas of the wheel inlet and outlet

orifices.
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FIG. 186. Enlarged portion of the section through XY, Fig. 185.

FIG. 187. Enlarged portion of a section through XY, Fig. 180, of an outward-

flow turbine.

FIG. 188. Enlarged portion of a cylindrical section XY, Fig. 184, of a down-

ward-flow turbine developed in the plane of the paper.
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Let d
lt
d

t
be the depths of the same in an I. F. or O. F.

Let dlt d^ be the widths of the same in an A. F.

Let h be the thickness of the wheel in an A. F.

Let H
l
be the effective head over the inlet-surface of the

wheel. This is the total head over the inlet-

surface diminished by the head consumed in

frictional resistance in the supply-channel, and

by the head lost in bends, sudden changes of

section, etc.

Let HI be the fall from the outlet-surface to the surface of

the water in the tail-race. If the turbine is

submerged, then H
9
is negative.

Let vlt vt
be the absolute velocities of the water at the

inlet- and outlet-surfaces.

Let u
lt #, be the absolute velocities of the inlet- and outlet-

surfaces.

Let V^ Vi be the velocities of the water relatively to the

wheel, at the inlet- and outlet-surfaces.

Let GO be the angular velocity of the wheel.

Let the water enter the wheel in the direction ac
t making

an angle y with the tangent ad. Take ac to represent v
l
and

ad to represent u
lt Complete the parallelogram bd. The side

ab represents Vlt and in order that there may be no shock at

entrance, ab must be tangential to the vane at a. Again, at/
drawy^-, a tangent to the vane, and//, a tangent to the wheel's

periphery.
Take fg and fk to represent V^ and u^ respectively. Com-

plete the parallelogram gk. The diagonal /$ must represent
in direction and magnitude the absolute velocity v^ with which

the water leaves the wheel. Let the angle hfk = d.

The tangential component of the velocity of the water as

it enters or leaves the wheel is termed the velocity of whirl,

and the radial component the velocity of flow. Denote these

components respectively by

vj, vr
'

at the inlet-surface
;

v'
i
vr
"

at the outlet-surface.
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Let the angle bad = 1 80 a,

Let the angle gfk = 180 ft.

Draw cm perpendicular to ad, and hn to fk.

Then at the inlet-surface,

vj=. v^ cos y ac cos y = #;# = ad^dm = #, P, cos a
; (i)

?>/= z/,
sin ^ ;# = V

l
sin or

; (2)

and at the outlet-surface

vj' = z>
a cos 6 =fn =.fk kn = u

9 V^ cos /? ; . (3)

vr

" = ^
2
sin 6 = /* F

2
sin /? (4)

Let g be the volume of water passed per second. Then

in an I. F. or O. F.

Vr'Ai = VrZTtridi = Q
(5)

in an A. F.

i
= Q

(5)

In equations (5) the thickness of the vanes has been disre-

garded. If is the angle between the vane, of thickness BC,

A / and the wheel's periphery AB, then the space

^f^j occupied by the vane along the wheel's periph-
/ / ery is AB = BC cosec 0.

/ Let n be the number of the guide-vanes and /

FlG- I89- their thickness.

Let #, be the number of the wheel-vanes and /, ,
/2 their

thickness at the inlet- and outlet-surfaces, respect-

ively.

Then, in a radial-flow turbine,

A
l -fadl \2nrl

nt cosec y n
v
t

l
cosec a\ . . (6)

and

^. = TWi 2^.- *i** cosec ft\> ...... (7)

T
9

being a fraction depending on practical considerations.
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In an axial-flow turbine R is to be substituted for r
l
ind ry

in the values of A
l
and A

9
.

n
l may be made equal to n -f- I or n -f- 2.

Again, as the water flows through the wheel its angular
momentum relatively to the axis of rotation is changed from

rjsj at the inlet- to rj)J' at the outlet-surface.
o o

Hence, if T is the effective work done by the water on the

turbine, and GO the angular velocity of the turbine,

in an I. F. or O. F.
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Again, if
,

-- are the pressure-heads at the inlet- and outet-w w
surfaces of the wheel of a REACTION TURBINE,

A -A
=ff. - w (14)

In an IMPULSE TURBINE the water is under atmospheric

pressure only, and therefore

05)

To make allowance for hydraulic resistances k^ may be
o

v*
substituted for in equations 14 and 15, a mean value of k

l

o

^ ' I0
being .

'

9

Applying Bernoulli's theorem to the filament from a to/,

% * _ u
and taking account of the head - - due to centrifugal

force

In a reaction I. F. or O. F.

Wt 2g W

and therefore

VJ- V? _/i

In words, the change of en-

ergy from atof = work due

to pressure -|- work due to

centrifugal force.

In an impulse I. F. or O. F.

V^~ r'* = ***~" 1

*. (18)

In a reaction A. F.

2g

and therefore

In words, the change of en-

ergy from a to f = work due

to pressure -f- work due to

gravity. The work due to A

centrifugal force is evidently
nil.

In an impulse A. F.

^ ~ V^ = h - - (I8>
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To make allowance for hydraulic resistances
, F,

2

may be

substituted for V9
in equations 17 and 18, a mean value of

a

being i.i.

For a maximum effect the water should leave the wheel

without velocity, i.e., v
t
should be nil. But this value of v^ is

impracticable, as no water could then pass through the wheel.

It is usual either to make the velocity of whirl (vm") at the

outlet-surface equal to nil, or to make the relative (F2)
and

circumferential (u9 )
velocities at the outlet-surface, equal and

opposite. In each case v
9

is small. First let

-" = <>, d9)

so that the water leaves the wheel with a much-reduced ve-

locity in a direction normal to the out-

let-surface. Thus (Fig. 194), &\*)** fy

= 90; *.=?*/',
and

Aj(j ^ = Z>
2 COt /3

= V9 COS ft. (2O)

\v2
-v'r V2

' /

Also, by equations 2, 4, 5, and 20 FIG. 189.

In an I. F. or O. F.

~= vi sinyridi = V* sin/J>v/2
211

(21)

In an A. F.

= v\ sin ydi = V* sin fid*

= 2 tan fidi. (21)

The following results are now easily obtained :

In an I. F. or O. F. :

Relation between the Vane-

angles.

By equations 9 and 21, and

from the triangle acd,

r\di sin y 3 r* u\

tan

sin a.

In an A. F. :

Relation between the Vane-

angles.

By equations 9 and 21, and

from the triangle acd,

d\ sin y 2

</2 tan @
~

v

sin (a -\- y}
sin a (22)
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and therefore

^-^ cot ft = cot a 4- cot y. (23)
TVfla

and therefore

cot ft = cot a -f- cot y. (23)
0a

In an I. F. or O. F.:

Speed of Turbine.

By equations I, 10, and 19,

IN REACTION TURBINES.

In an A. F.:

Speed of Turbine.

By equations I, 10, and 19,

WQ(HI ^}- effective work
\ ?

wO wQ
~

g S

and therefore

cosy, (24)

Z/2 tt\i>l , xHl
= cos y. . (25)

Hence, by equations 20, 22,

and 25,

COt /J

tan ft 4- 2 cot^

Note. If the water is to

have no velocity of whirl (vj)

relatively to the wheel at the

inlet-surface, then

i
- vw

' = o, . . . (27)

and therefore

a = 90

and
Vi Vr

tan y =
,.

Also, the efficiency

and thus

WQ\H1 + h
=-J=

effective work

wQ , wQ . .

=v-wUi = UM cos y, (24)
S

and therefore

^i + h - r
1 = ^~ cos r-

Hence, by equations 20, 22,

and 25,

4- A) cot
-.. (26)

tan ft -\- i-j-
cot

. If the water is to

have no velocity of whirl (vw
f

)

relatively to the wheel at the

inlet-surface, then

Ul - vw
' = o, . . (27)

and therefore

a = 90

and

Also, the efficiency

an thus

(28) uS = g(Hi 4- . (28)
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if the efficiency is perfect.

Usually the efficiency of

good turbines is about .85.

Velocity of Efflux.

Z'a
2 = z/a

5 tan2
ft

2,07/1 tan ft
(20)
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When the turbine is work-

ing freely in space above the

surface of the tail-water, there

will be no inflow of air if p^ >
A f -e -> if

I > o ,

tan ft

'*

sin2
;r(tan/?-]-2-

2

-cot;K)
d\

If the turbine is drowned
with a head h' of water over

the outlet-surface, there will

be no back-flow of water if

that is, if

7i ^ o

tan ft

When tne turbine is work-

ing freely in space above the

surface of the tail-water, there

will be no inflow of air if p l
>

At Le -' if

ffi <tf__tan ft_
ffi-4-A aV2 . , ,,

. d*
sin 2

^(tan p-\- 2 cot y)
d\

If the turbine is drowned

with a head h' of water over

the outlet-surface there will

be no back-flow of water if

$ l
-^ ^2

i j,'> --h h
,w w

that is, if

tan ft

IN IMPULSE TURBINES.

In an I. F. or O. F.:

Speed of Turbine.

Since

V? = 2gff1 ,
. . (35)

by equation 22,

riVi 8 sin 2 y _ uj _ rj u^

and therefore

Velocity of Efflux.

= 2 tan p

~nW

tan ft -f- 2-^ cot y
d\

In an A. F. :

Speed of Turbine.

Since

, - (35)

by equation 22,

dS sin 2 y _ uf_ _ uf_
d<? tan 2

ft

~
z/i

2
~"

z/x
a '

and therefore

2
2 = Wj

2 = 2gffi \ ^"a^- (36)

Velocity of Efflux.

,
2 = 7/ 2

2 tan 2
ft

'

(37)
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Useful Work

H v
'\

~^j

Efficiency

- r

^- s{D' r= '>- (39)

Work

-/r,g-.in'r).
(38;

Efficiency

\ -ij- sin
a y = n. (39)

Second, let

so that the water again leaves the wheel with a much-reduced

velocity. Evidently also

J -

a
z= 2&

2 cos = 22/
a sn 2

sn .

2
. (42)

Also, by eqs. 2, 4, 5, and 42

In an I. F. or O. F.

Q_
zit

= a sin/? ra</2. (43)

27T

In an A. F.

= i si = F3 sin

. (43)'

The following results are now easily obtained :
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In an I. F. or O. F. :

Relation between the Vane-

angles.

By eqs. 9 and 43 and from

the triangle acd

sin y _ w2 _ ^a i_

sin /^ z/2 r\ Vi

r-i sin (a -f* y)

ri sin a

and therefore

cosec ^ = cot

(44)

(45)

Relation between the Vane-

angles.

By eqs. 9 and 43 and from

the triangle acd

d\ sin y _u<i _u\
di sin ft v\ v\

sin (a 4
sm (44)

and therefore

-i cosec ft
= cot or -f cot ^. (45)

IN REACTION TURBINES.

In an I. F. or O. F.:

Speed of Turbine.

By eqs. 14, 17, and 40

UiVi COS y = -/A = UiVw'. (46)

Also,

Wl sin (a + y}

Hence,

sin a

+

cot a tan X)

- tan ^ cosec ^. (47)

. If the velocity of

whirl (^w
r

) relatively to the

wheel at the inlet-surface is to

be nil,

Ul Vm = O, . . (48)

and then

In an A. F.:

Speed of Turbine.

By eqs. 14, 17, and 40

v\ cos x ~=-S(H\ ~T"^) == WiZ'w'- (46)

Also,

i _ sin (a -}-X)

sin a

Hence

sin a cos

cot cr tan y)

+ h~ tan ^ cosec /?. (47)

TVi?^. If the velocity of

whirl (vj) relatively to
.
the

wheel at the inlet-surface is to

be nil,

Ul - vw
' = o, . . (48)

and then

f A). (49)
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Velocity of Efflux.

By equations 42 and 47

. ft
8
2 sin2 -

i tan L tan

Useful Work

(50)

f i
- - tan 6. tanA (51)

^ d* 2 J

Efficiency

Amount Q of Water passing

through Turbine

=. 2itridivr
" = 27Tra </a Fa sin ft

= 2itr<id<iU<i sin ft

= 27Tra tan y sin /?. (53)

Pressure-head at Inlet-surface

by equations 44 and 47.

When the turbine is work-

ing freely in space there will

be no inflow of air if /, > /2 ,

i.e., if

When the turbine is

drowned, with a head h' of

water over the outlet-surface,

Velocity of Efflux.

By equations 42 and 47

ft
sin2 -

(50)

Useful Work

= Q(ffi + h){ i - ~ tan ^
tan y\ (51)

Efficiency

=I*
2i<&)

=I
-| tan^an7'- (52)

Amount Q of Water passing

through Turbine

= inRdiVr" = 2itRd<i Vi sin ft

= 2itRd<iUi sin ft

2TtR n/?. (53)

Pressure-head at Inlet-surface

2g

sin
(54)

by equations 44 and 47.

When the turbine is work-

ing freely in space there will

be no inflow of air if p l >/,
i.e., if

Hi d sin ft

H\ -\-k d\ sin 2y'

When the turbine is

drowned, with a head h' of

water over the outlet-surface,
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there will be no back-flow of

water if

* ^ ^ _u h'> r "
IV IV

'

that is, if

Ti
W_

r-^d-j sin ft

r^di Sin 2*y'HI

there will be no back-flow of

water if

A . A , ,,> --h h ,'

that is, if

H, - h1

d* sin ft

Hi -j- A' di sin 2y

IN IMPULSE TURBINES.

In an I. F. or O. F. :

Speed of Turbine.

Since

t . . (55)

Velocity of Efflux.

jn

U-? = 4 2
2 sin 2 --

2.

*-$# ft

- .

cos2

2

Efficiency

. (59)

In an A. F. :

Speed of Turbine.

Since

(55)

^ ^. . . (56)

Velocity of Efflux.

. (57)

Useful Work

-^ cog2
r Ms8)

(
3S

2 )

Efficiency

H\ d^ sin 2 v= I ~
LJ- i /. T^ *' (59)
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The great advantages possessed by turbines over vertical

wheels on horizontal axes are shown by a consideration of the

expressions for the useful work and efficiency. The former

involves the available head only, while the latter is independent
even of that. Thus a turbine will work equally well under

water or above water, while its efficiency remains the same,
whatever the available head may be.

The efficiency, also, increases as the ratio diminishes.
a,

The value of d
l , however, must not be too small, as there might

be a loss of energy due to a contracted section at entrance,

while if d
z

is made too large, the vane-passages will no longer
run full bore.

Finally, the efficiency -increases as the angles /? and y
diminish.

In practice y usually ranges from 10 to 30 in an I. F.,

and from 20 to 50 in an O. F. and A. F., an average value being
20 for an I. F., and 25 for an O. F. and A. F.

In an I. F. ft generally ranges from 135 to 150 if ?/
2

F
2 ,

or from 30 to 45 if vj' o, and in an O. F. and P. F. from 20

to 30, an average value being 145 or 35 for an I. F., accord-

ing as #
2
= F

2 ,
or vj

r = o, and 25 for an O. F. and A. F.

25. Remarks on the Centrifugal Head

From equations 14 and 17

In an I. F. w
a < u, ,

and the term L is negative.

Hence the velocity v
l

diminishes as the speed of the tur-

bine increases and vice versa. The centrifugal head -J -

therefore tends to secure a steady motion in the case of an I. F.,

and also to diminish the frictional loss of head. For this rea-

son it should be made as large as possible consistent with

practical requirements, and is usually made equal to 2.



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS. 299

In an O. F., on the other hand, u^ > u
l
and the centrifugal

head is positive. The velocity v
l will, therefore increase and

diminish with the speed of the turbine (). Thus the cen-

trifugal head is adverse to a steady motion, and tends both to

augment a variation from the normal speed and to increase

u
* _ u a

the frictional loss of head. It follows that - should be
tg

as small as possible consistent with practical requirements, and

a common value of is 1.25.
^i

Again, eq. 5 shows that the velocity of flow vr (and there-

fore also
,)

increases as the size of the wheel diminishes, and

is accompanied by a corresponding increase in the frictional loss

of head. Hence it would seem advisable to employ large

wheels
;
but if the size of a wheel is increased, it must be

borne in mind that the skin-friction (if the turbine works under

water), the weight, and consequently the journal friction, will

all increase. Belanger has suggested that the efficiency of an

A. F. may be increased by so forming the vane-passages that

the path of a fluid particle gradually approaches the axis of

rotation.

26. Practical Values of the Velocities, etc. Let v be

the theoretical velocity due to the head H\ i.e., let v* = 2gH.

Experience indicates that the following values will give

good results in reaction turbines :

Inl.R, Vr
' = Vr

" =
;

In O. F., vr
' = -

;
vr
" = .2iv to .172; ; u, = -u^ = .$6v.

4 ri

In A. F., vr
r = vr

" = .i$v to .2v ; u, = u9
= -v to -v.

Again, in reaction and impulse turbines the thickness of.

the vanes varies from -J inch to f inch if of wrought iron, and
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from \ inch to f inch if of cast iron. In the latter case the

vanes are usually tapered at the ends.

In axial-flow turbines the mean radius R is often made to

vary

o ._ ._
from - yA J

sin y to 2yA t
sin y if A^ sin y < 2 square feet ;

from --'\fA 1
sin y to -\A4,sin y\iA 1 s\ny > 2sq. ft.< l6sq. ft.;

4 2

from \/
'

A
l
sin

;/
to ^\/A 1

sin ^ if ^4, sin y > 16 square feet.

4

In axial-impulse turbines the mean radius R is often made

to vary from --v/^sin ;/
to 2<\fA 1 s'my.

4

Also, the depth h of the wheel varies from -
r to - - but
o II

must be determined by experience.

Again,

For a delivery of 30 to 60 cubic feet and a fall of 25 ft. to

40 ft. y should be 15 to 18, and (3 should be 13 to 16.

For a delivery of 40 to 200 cubic feet, and a fall of 5 ft. to

30 ft. y should be 1 8 to 24, and fi should be 16 to 24.
For a delivery of more than 200 cubic feet, and lower falls,

y should be 24 to 30, and 24 to 28.

In axial-impulse turbines it may also be assumed as a first

approximation that

. ?A vju.work per pound = - = _^L_J

2T g

and therefore

V
l
= 2#, cos y = 2 Vi cos y.
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27. Theory of the Suction (or Draught) Tube. Vortex
and axial-flow turbines sometimes have their outlet orifices

opening into a suction (or draft) tube which extends down-
wards and discharges below the surface of the tail-water. By
such an arrangement the turbine can be placed at any conven-

ient height above the tail-water and thus becomes easily acces-

sible, while at the same time a shorter length of shafting will

suffice. The suction tube is usually cylindrical and of constant

diameter, so that there is an abrupt change of section at the

outlet surface of the turbine, producing a corresponding loss of

energy by eddies, etc. This loss may be prevented by so form-

ing the tube at the upper end that there is no abrupt change
of section, and by gradually increasing the diameter downwards.

The cost of construction is greater, but the action of the tube

is much improved.
Let h' be the head above the inlet orifices of the wheel.

Let h" be the head between the inlet orifices and the sur-

face of the tail-water.

Let L
l
be the loss of head up to the inlet surface.

Let L^ be the loss of head between the wheel and the tube

outlet.

Let v^ be the velocity of discharge from the outlet at

bottom of tube.

Let P be the atmospheric pressure.

Then, assuming that there is no sudden change of section

at the outlet surface,

h ' ~~ = L
'

and therefore

w 2g

v*-
2gi

K + J**
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where H= h' + h" = total head above tail-water surface
;
and

-^
a

a

,_^4

2

, Z-j-, Za
are expressed in the forms

2 l ' 4 1 '

*2g' *2g*

*
3 > /*4> A*6 A<6 being empirical coefficients.

Again, the effective head

and is entirely independent of the position of the turbine in

the tube.

Also, if A
i

is the area of the outlet from the suction-tube,

A^VI = Q = A
l
v

l
sin y,

so that v. can be expressed in terms of z/4 ,
and hence ** 1

~ ^
is

w
also independent of the position of the turbine in the tube.

Suppose the velocity of flow to be so small that ^
4 ,
v L

9

may be each taken equal to nil. Then

W

and since the minimum value of /, is also nil, the maximum
theoretical height of the wheel above the tail-water surface is

equal to the head due to one atmosphere. Again,

V 3

= v
l
cos yu l u^u, F, cos ft) + L

-

But

A
l
v

l
sin y = Q = A^ sin d = A^ sin ft

= Apt ;



HYDRAULIC MOTORS AND CENTRIFUGAL PUMPS. 303

and hence, taking

gH= z/,(i cos Y+ **** u
* cos ft)

" + ^-^

and therefore

- w a
_j_ ? 7, i

cos r +^ - , cos /?

= v? + 2v^ . cos y+ i/^, . cos

(
cos ^ + V/*8

( \ ^
where B cos V*8

cos

Hence it follows that z/, increases with
a , i.e., with the

speed of the turbine, if

A suction-tube is not used with an outward-flow turbine,

but a similar result is obtained by adding a surrounding sta-

tionary casing with bell-mouth outlet. A similar diffusor might
be added with effect to a Jonval working without a suction-tube

below the tail-water. The theory of the diffusor is similar to

that of the suction-tube.

28. Losses and Mechanical Effect. The losses may be

enumerated as follows:

I. The loss (Z,) of head in the channel by which the water

is taken to the turbine.

L -/-^*' " 7l m 2g>

fi being the coefficient of friction with an average value of
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.0067, / the length of the channel of approach tn its mean

hydraulic depth, and v the mean velocity in the channel.

L
l

is generally inappreciable in the case of turbines of the

inward- and axial-flow types, as they are usually supplied with

water from a large reservoir in which V
Q

is sensibly nil.

If A Q
is the sectional area of the supply-channel, then

A v = Q = A
1
v

1
sin y y

and

,
= /,

-
A,

II. The loss (Za) of head in the guide-passages.

This loss is made up of :

(a) The loss due to resistance at the entrance into the

passages ;

(b) The loss due to the friction between the fluid and the

fixed blades;

(c) The loss due to the curvature of the blades
;

(d) The loss of head on leaving the guide-passages.

These four losses may be included in the expression

/a being a coefficient which has been found to vary from .025

to .2 and upwards. An average value off9
is .125, but this is

somewhat high for good turbines.

Note. In Impulse turbines /a
has been found to vary from

.11 to .17.

III. The loss (Z,3) due to shock at entrance into the wheel.

In order that there may be no shock at entrance, the relative

velocity ( F,) must be tangential to the lip of the vane. For

any other velocity (z//
=

ac'} and direc-

tion (dad = y
f

) of the water at en-

trance, evidently

L
3
= the loss of head

FIG. 191.
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(v' sin y' ^ sin y)
3

(v' cos y' v
l
cos y)

9

_ (v
f
sin ;/ V

l
sin <*)

a

(z/ cos y' z\ V
l
cos a)

8

Generally a? is small, and L
3
is always nil when the turbine

is working at full pressure and at the normal speed.
This loss of head in shock caused by abrupt changes of sec-

tion, and also at an angle, may be avoided by causing the sec-

tion to vary gradually, and by substituting a continuous curve

for the angle.

IV. The loss (Z, 4)
of head due to friction, etc., in passing

through the wheel-passages, including the loss due to leakage
in the space between the guides and the inlet-surface. This

loss is expressed in the form

V:
sn ftl

where f^ varies from .10 to .20.

Note. The loss of head due to skin-friction often governs
the dimensions of a turbine, and renders it advisable, in the case

of high falls, to employ small high-speed turbines.

V. The loss of head (Lb) due to the abrupt change of sec-

tion between the outlet-surface and the suction-tube.

As in III, v
9 (=ffy is suddenly changed into v

t

'

(= fh'\
and loss of head is

2g 2g 2g

since h
'x is very small and may be disre-

garded. Thus,
(

FiG. 192.

4 =

#/ being the component of vj (fh
f

)
in the direction of the

axis of the suction-tube.
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If there is no abrupt change of section between the outlet-

surface and the tube, Z&
is nil.

VI. The loss of head (L6)
due to friction the in suction-tube.

Assume that the velocity v^ of flow in the tube is equal to v^
the velocity with which the water leaves the turbine. Also let

A be the sectional area of the tube. Then

/ f - f
6
~~ /6 m' 2g

~ /6 m' \ A, I 2g
'

/6( =/t) being the coefficient of friction with an average value

of .0067, I' the length of the tube, and m' its mean hydraulic

depth.
VII. The loss (Z7)

of head due to entrance to sluice at base

of tube. This loss may be expressed in the form

A

the average value of/7 being about .03.

VIII. The loss (Z8) of head due to the energy carried away

by the water on leaving the suction-tube.

and z>
4 usually varies from | V2gH to f V2gH.

In good turbines the loss should not exceed 6#. It might
be reduced to 3$, or even to i$, but this would largely increase

the skin-friction.

IX. The loss of head (L9 ) produced by the friction of the

bearings.

being the coefficient of journal friction, Wthe weight of the
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turbine and of the water it contains, and p the radius of the

journal.

Hence the total loss of head

and the total mechanical effect

Note. If there is no suction-tube, 6
= O = L

6
= L, =

and the total loss becomes

fall from outlet-surface

tail-water surface.

to

29. Centrifugal Pumps. If an hydraulic motor is driven

in the reverse direction, and supplied with water at the point
from which the water originally proceeded, the motor becomes

a pump. All turbines are reversible, and may, therefore, be

converted into pumps, but no pump has yet been constructed

of an inward-flow type. The ordinary centrifugal pump, Fig.

193, is an outward-flow machine.

It is more economical and less

costly for low falls than a recip-

rocating pump, and has been

known to give good and eco-

nomic results for falls as great

as 40 feet.

With compound centrifugal

pumps very much greater lifts

are economically possible.

There are three main differ-

ences between centrifugal pumps
and turbines:

ist. The gross lift with a pump is greater, on account

FIG. 193.
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of frictional resistances, than the fall in the case of a tur-

bine.

2d. The water enters the pump-fan without any velocity

of whirl (vj o) and leaves the fan with a velocity of whirl

(vw") which should be reduced to a minimum in the act of

lifting, but which is by no means small. In a turbine, on the

other hand, the water has a considerable velocity of whirl (vw '}

at entrance, while at exit the velocity of whirl (vw") is reduced

to a minimum, and is generally nil.

3d. In a turbine the direction of the water as it flows

into the wheel is controlled by guide-blades ;
whereas in the

case of a pump, the direction of the water, as it flows towards

the discharge-pipe, is controlled by a single guide-blade, which

forms the outer surface of the volute, or chamber, into which

the water flows on leaving the fan.

FIG. 194. Experimental Centrifugal Pump in the Hydraulic Laboratory,

McGill University.

Before the pump can be put into action it must be filled,

and this can be effected through an opening (closed by a plug)

in the casing when the pump is under water, or, if the pump
is above water, by creating a vacuum in the pump-case by
means of an air pump or a steam-jet pump, when the water

must necessarily rise in the suction-tube.

At first the water rotates as a solid mass, and delivery com-

mences when the speed is such that the head due to centrifugal

force r u*\ exceeds the lift. This speed may be after-
\ 2g I

wards reduced, providing a portion of the energy is utilized

at exit.
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As soon as the pump, which is keyed on to a shaft driven

by a belt or by gearing, commences to work, the water rises

in the suction-tube and divides so as to enter the eye of the

pump-disc on both sides. As in turbines, the revolving pump-
disc is provided with vanes curved so as to receive the water

at the inlet-surface, for a given normal condition of working,
without shock. Experiment has also tended to show that the

angle between the tangents to a vane and the disc circumfer-

ence at the outlet-surface, may be advantageously made as

small even as 15, but manufacturers hold different opinions on

this point. The water leaves the disc with a more or less con-

siderable velocity, and impinges upon the fluid mass flowing
round the volute, or spiral casing surrounding the disc, towards

the discharge-pipe. This volute should have a section gradu-

ally increasing to the point of discharge, in order that the

delivery across any transverse section of the volute may be

uniform. This volute is also so designed as to compel rotation

in one direction only, with a velocity corresponding to the

velocity of whirl (vw
ff

)
on leaving the fan. There are exam-

ples of pumps in which the delivery is effected in all direc-

tions, and the water is guided to the outlet by a number of

spiral blades.

In these pumps an important advantage is gained by the

addition of a vortex or whirlpool chamber surrounding the

pump-disc. The water discharged from the disc then contin-

ues to rotate in this chamber, and a portion of the kinetic

energy is thus converted into pressure energy, which would

otherwise be largely wasted in eddies in the volute or discharge-

pipe. The water leaves the vortex chamber with a diminished

whirling velocity which cannot be very different in direction

and magnitude from the velocity of the mass of water in the

volute. The vortex chamber is provided with guide-blades

following the direction of free vortex stream-lines (equiangular

spirals) so as to prevent irregular motion. A conical suction-

pipe is advantageous, as it allows of a gradual increase of

velocity, and a still greater advantage is to be found in the

use of a conical discharge-pipe. The velocity in the dis-

charge-pipe should not be too great, as it leads to a waste of
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energy. A velocity of 3 to 6 feet is found to give the best

results.

Pumps work under different conditions from turbines, and

hence there are corresponding differences necessary in their

design. They work best for the particular lift for which they
are designed, and any variation from this lift causes a rapid
reduction in the efficiency.

30. Theory of Centrifugal Pump.
Denote the velocities at the inlet- and out-

let-surfaces of the pump-fan by the same

symbols as in turbines.

Let Q be the delivery of the pump.
Let Hs be the gross lift, including the

actual lift (ffa), the head due to the velocity
FIG. 195. O f delivery, the heads due to the frictional

resistances in the ascending main, in the suction-pipe and in

the wheel-passages, and the head corresponding to the losses
" in shock

"
at entrance and exit.

Let Ha be the actual lift.

The total work done on the wheel

The useful work done by the pump
Hence

the efficiency (rf)
= g g

At the inlet-surface the flow is usually radial, so that y = 90,
and the velocity of whirl vj is nil.

Thus,

the efficiency = fr

* =
77,

and the equation
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is the fundamental equation governing the design of centrifu-

gal pumps.

Again,

H:
the efficiency n = jh- = i"

For a given speeed ( 3) this is a maximum when

j (VJJ+(U,-V "yy v y

-77 = a minimum --
vw w w

Hence, differentiating, -

u* tan
2

ft-
-<^- + sec- /> = Q,

and therefore

vj
f = u^ sin ft,

and is the velocity of whirl at exit which, for a given speed (wa),

will give a maximum efficiency.

Note.li u^ = vw", then

and the water leaves the fan with a velocity equal to that due
to at least one half of the gross lift. The efficiency must
therefore be necessarily less than .5.

Again, since vr
"
cot ft = u^ vw", ft must be 90 if u^ = vj'-,

but ft is generally much less than 90, and therefore vw
"

is

generally less than uy Let vw
" = ku^> k being an empirical

coefficient less than unity.

Then kit? gHe and the efficiency = -~>
KU^

Consider two cases.

CASE I. Pump without a vortex-chamber.

When the water is discharged into the volute, the velocity
of flow (vr") is wasted and the velocity of whirl (vw

' f

) is sud-

denly changed to the velocity vs of the mass of water in the
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volute assumed to be moving in a direction tangential to the

pump-disc. Thus,

(yjy - far (vj
f - vy

the gam of pressure-head = -

i fe/')
9

^ "

which is a maximum and equal to when vs
= -^

.

4 g
This gain of head is always very small and may be dis-

regarded as being almost inappreciable. Neglecting also the

losses due to frictional resistances, etc., then, precisely as in

the case of turbines,

v_ , TT __ f variation of pressure-head between

2g ( outlet and inlet surfaces.

*.*-. FV-F?

But V? = u? + T^
2

, since y = 90, and therefore

_ u
*

~

~_JL. _ u
*
~

(ui
~ v '}* sec2 ft

and

u 2
(u v //

)
2

sec
2

ft
the efficiency

- w
..

2^w
"

which is a maximum for a given speed &
a and equal to

; j-
: -5 when vw

ff = u^ sin /?.

Thus the efficiency increases as ft diminishes.

When ft = 90, or ^w
r/ &

2 ,
the maximum efficiency is

,

and therefore one half of the work done in driving the pump
is wasted.
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Note. Loss of head

= loss due to hydraulic friction

-f- loss due to abrupt change from vw
"

to v,

-\- loss due to dissipation of vr
"

-f- loss due to vs carried away

= loss due to friction (hydraulic)

+ *,(*" - ^ (*l_ _
(VT

2g 2g 2g

= loss due to friction (hydraulic)

, (*.")
,~~

when vs
= \vj'.

CASE II. Pump ivith a vortex-chamber (Fig. 199).

The diameter ( 2r
3 )

of the outer surface of this chamber
should be at least twice that of the outlet-surface of the pump-
disc.

Assuming that the motion in the

chamber is a free vortex, then

the gain of ) _ v^_
I r?\

pressure-head ) 2g \ r
3

2
/

and hence

the efficiency =

T,, . . FIG. 106.
This, again, is a maximum for

a given speed, when vj = u^ sin fi y
its value being

I
+'(l

-
Sj)

sin ft

I + sin ft
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This expression increases as ft diminishes, but the value of

ft is not of so much importance as in Case I, and it is very
common to make ft equal to 30 or 40.

When ft = 90 the maximum efficiency = -
( 2 - -M =

if r
a
=

2r,.

31. Practical Values. The following values are often

adopted :

3
= d^ when faces of pump-disc are parallel ;

^
= \d^ when pump-disk is coned.
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EXAMPLES.

1. An accumulator ram is 9 inches diameter and 21 feet stroke. Find

the store of energy in foot-pounds when the ram is at the top of its

stroke, and is loaded till the pressure is 750 Ibs. per square inch.

Ans. 958,000 ft.-lbs.

2. In a differential accumulator the diameters of the spindle are 7

inches and 5 inches ;
the stroke is 10 feet. Find the store of energy when

full and loaded to 2000 Ibs. per square inch. Ans. 377,000 ft.-lbs.

3. A direct-acting lift has a ram 9 inches diameter, and works under

a constant head of 73 feet, of which 13 per cent, is required by ram-fric-

tion and friction of mechanism. The supply-pipe is 100 feet long and 4
inches diameter. Find the speed of steady motion when raising a load

of 1350 Ibs., and also the load it would raise at double that speed.
If a valve in the supply-pipe is partially closed so as to increase the

coefficient of resistance by 5!, what would the speed be ?

Ans. Speed = 2 ft. per second ; load = 150 Ibs.

4. Eight cwt. of ore is to be raised from a mine at the rate of 900 feet

per minute by a water-pressure engine, which has four single-acting

cylinders, 6 inches diameter, 18 inches stroke, making 60 revolutions per
minute. Find the diameter of a supply-pipe 230 feet long for a head
of 230 feet, not including friction of mechanism.

Ans. Diameter = 4 inches.

5. If A. be the length equivalent to the inertia of a water-pressure

engine, F the coefficient of hydraulic resistance, both reduced to the

ram, -z/o the speed of steady motion, find the velocity of ram after

moving from rest through a space x against a constant useful resistance.

Also find the time occupied.

Ans. v* =
V

6. An hydraulic motor is driven from an accumulator, the pressure
in which is 750 Ibs. per square inch, by means of a supply-pipe 900 feet

long, 4 inches diameter; what would be the maximum power theoreti-

cally attainable, and what would be the velocity in the pipe correspond-

ing to that power? Find approximately the efficiency of transmission at

half power. Ans. H.P. = 240 ;
v = 22 ft. ; efficiency = .96 nearly.

7. A gun recoils with a maximum velocity of 10 feet per second.

The area of the orifices in the compressor, after allowing for contraction,

may be taken as one twentieth the area of the piston. Find the initial

pressure in the compressor in feet of liquid.
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Assuming the weight of the gun to be 12 tons, friction of sUde 3

tons, diameter of compressor 6 inches, fluid in compressor, water, find

the recoil.

Find the mean resistance to recoil. Compare the maximum and
mean resistances, each exclusive of friction of slide.

Ans. 621; 4ft. 2^ in. ; total mean resistance = 4.4 tons;

ratio = 2.5.

8. A reaction wheel is inverted and worked as a pump. Find the

speed of maximum efficiency and the maximum efficiency, the coeffi-

cient of hydraulic resistance referred to the orifices being .125.

Ans. Speed = twice that due to lift ; .758.

9. A reaction wheel with orifices 2 in. in diameter makes 80 revolu-

tions per minute under a head of 5 ft. The distance between the centre

of an orifice and the axis of rotation is 12 inches. Find the H.P. and
the efficiency. Ans. .146; .596.

10. In a reaction wheel the speed of maximum efficiency is that due

to the head. In what ratio must the resistance be diminished to work
at | this speed, and what will then be the efficiency? Obtain similar

results when the speed is diminished to three fourths its original

amount. Ans. .949; .8896; 1.071; .753.

11. In a reaction wheel, determine the per cent of available effect

lost, (i) if i? = 2gH\ (2) if tt* = ^gH; (3) if u 1 = ZgH.
What conclusion may be drawn from the results?

Efficiencies are respectively .828, .9, .945.

12. An undershot water-wheel with straight floats works in a straight

rectangular channel of the same width as the wheel, viz., 4 ft.; the

stream delivers 28 cub. ft. of water per second, and the efficiency is .

Find the relation between the up-stream and down-stream velocities.

If the velocity of the inflowing water is 2 ft. per second, find the velocity

on the down-stream side and determine the mechanical effect of the

wheel, its diameter being 20 ft., the diameter of the gudgeons being 4

in., and the coefficient of friction .008.

13. A vane rotates about an axis with an angular velocity A, and

and water moves freely along the vane. Show that the work per unit of

weight of water, due to centrifugal force, in moving from a point distant

A1(<y 2 * 2\

r\ ft. from the axis to a point distant r-i ft. from the axis is
'

.

14. Determine the effect of a low breast or undershot wheel 15 ft. in

diameter and making 8 revols. per minute; the fall is 4 ft. and the

delivery 20 cub. ft. per second; the velocity of the stream before com-

ing on the wheel is double that of the wheel. Ans. 1490 ft.-lbs.

15. The efficiency of an undershot water-wheel working in a straight

rectangular channel with horizontal bed is \. Find the relation between

the up- and down-stream velocities of flow.
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16. Determine the mechanical effect of an undershot wheel of 12 ft.

diam. making 10 revols. per minute, the fall being 3 ft. and the quantity
of water passed per second 15 cub. ft.

17. Ascertain the general proportions of a Poncelet wheel, being
given: height of fall = 4^ ft.; delivery of water = 40 cub. ft. per
second; radius of exterior circumference = 9 ft. ; thickness of the

stream = 9 in.

18. Design a Poncelet wheel for a fall of 4.5 ft. and 24 cub. ft. of

water per second, using the formulae on pages 237-239, taking y = 20,
and also A = 20 as a first approximation.

Ans. a = 143 57' ; depth of crown = 1.73 ft. ; depth of stream
= .386 ft. ;

b = 4.14 ft.; radius of bucket = 2.35 ft.
; ^ =

128 6'
;
A = 18.69; number of buckets = 44; mechanical

effect = 8.5 H.P.
; efficiency = .69.

19. 15 cub. ft. of water per second with a fall of 8 g
ft. are brought on

a breast-wheel revolving with a linear velocity of 5 ft.; depth of shroud-

ing = 12 in.; the buckets are half filled, and vi = 2tt
; also r\ 12 ft.

Find the theoretical mechanical effect. Ans. 7240 ft.-lbs.

20. A wheel is to be constructed for a 3O-ft. fall having an 8-ft.

velocity at circumference and taking on the water at 12 from the sum-

mit with a velocity of 16 ft. Determine the radius of the wheel and the

number of revols. Ans. 12.8ft.; 5.94.

21. If for the wheel in example 20 the number of revols. is 5, and

Vi = 2u, the water being again taken on at 12, find the radius and u.

Ans. 13.98 ft. ; 7.3 ft. per sec.

22. A breast wheel passes 12 cub. ft. of water per second* and for the

speed = 3-z/i
= 4 ft. per second the loss of mechanical effect due to the

relative velocity V being destroyed is a minimum. Find this effect.

23. In a breast-wheel Q = 10 cub. ft. per second
;
H = 10 ft. ; v\ =

-# ;
u = 4i ft. per second ; y = 30 ; diam. of gudgeon = 6 in. ; diam. of

wheel = 30 ft. ; /* =; .08 ; weight of wheel and water = 20,000 Ibs. Find

the mechanical effect of the wheel. (Neglect loss of effect due to escape

of water from buckets and to frictional resistance along the curb.)

24. The quantity of water laid on a breast-wheel by an overfall sluice

= 6 cub. ft. per second, the total fall being 4 ft. 6 in., and the velocity

of the periphery 5 ft. per second ;
also 52/1

= Su, and if d be the depth of

the shrouding 2bdu $Q (in the present case d = 12 in.). Find the effec-

tive fall, the height of the lip of the guide, the angle of inclination at

the end of the guide-curve, the breadth of the lip of the guide-curve, and

the radius of the wheel that the water may enter tangentially. If the

radius is limited to 12 ft. 6 in., find the deviation of the direction of

motion of the water from that of the wheel at the point of entrance.

Ans. 6.9 ft. ; .325 ft.
; 34 46' ; 2f ft.

; 38.6 ft. ; 28 36'.

25. In an overshot wheel r\ = 15 ft., d 10 in., ft = f^. If the
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division circle is at one half of the depth of the crown, find the angle

(yi) between the bucket-lip and the wheel's periphery.

Ans. yi = 18 i'.

26. An overshot wheel in which r\ 18 ft. makes 4 revolutions per

minute, and the velocity of the water on entering the buckets is twice

that of the wheel's periphery. If yi = 20, find a, and also find the rela-

tive velocity ( V) of the entering water.

Ans. a. = 10 9' ; V = 7.78 ft. per second.

27. If one fourth of the theoretic capacity of a bucket is filled by the

water, find the greatest number of buckets theoretically possible, the

depth of the crown being i ft., the radius (ri) to the outer periphery 12

ft., the angle yi 20, and the velocity of the entering water twice that of

the wheel's periphery.
Ans. 103.1. Making allowance for exit of air, the number of

buckets might be about two thirds of this amount, or, say, 69.

28. A wheel of 3o-ft. diam. with 72 buckets makes 7 revolutions per

minute, Q being 5 cub. ft. per second. The division circle is halfway
between the outer and inner peripheries. If d = i ft. and vi = 2u, find

the effect due to impact.

29. A 3O-ft. wheel weighs 24,000 Ibs. and makes 6 revolutions per

minute; its gudgeons are 6 in. in diameter and the coefficient of friction

is .08. The water enters the wheel with a velocity of 1 5 ft. per second,

and in a direction making an angle of 10 with the direction of motion

of the wheel at the point of entrance. The deviation from the summit
of the point of entrance is 12, of the point where spilling begins is 150,
of the point where all is spilt is 160, and 5 cub. ft. of water enter the

wheel per second, of which the partially filled buckets contain one half.

Determine the total mechanical effect. Ans. 9305.6 ft.-lbs.

30. The velocity of the pitch circle is 9! ft.; the angle between the

directions of motion of stream and wheel is 15. Find impulsive action

of wheel. Ans. 91 ft.-lbs. per cub. ft. of water.

31. An overshot wheel 40 ft. in diameter makes 4 revolutions per
minute and passes 300 cub. ft. of water per minute. Show how to deter-

mine the mechanical effect of the wheel. (Neglect friction of gudgeons.)
If the gudgeons are 6 in. in diameter and the wheel weighs 30,000 Ibs.,

by how much will the mechanical effect be diminished (/= .008) ?

Ans. 25 ft.-lbs. per sec.

32. The diameter of an overshot wheel = 30 ft.
; Vi = 15 ft. ; u = 9$

ft., deviation of impinging water from direction of motion of wheel

(y) = 8^ ;
deviation of point of entrance from summit = 12

; deviation

of point where spilling begins from the centre = 58^ ; deviation of point
where spilling ends = 70^ ; Q = 5 cub. ft. Find total effect of impact
and weight. Ans. 17 H. P.

33. An overshot wheel with a radius of 15 ft. and a i2-in. crown

takes 10 cub. ft. of water per second and makes 5 revolutions per
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minute. If m = i, find the width of the wheel and the number of the

buckets. Ans. 5TV ft. ; 75 or 90.

34. An overshot wheel of 32 ft. diameter makes 5 revolutions per

minute. Find the angle between the water-surface in a bucket and the

horizontal when the lip is 140 from the summit. Ans. 4 33'.

35. An overshot wheel of 10 ft. diameter makes 20 revolutions per
minute. Find the angle between the water-surface and the horizontal

when the lip is (i) 90 from the summit, (2) 45 26' from the summit.

Ans. (i) 34 16'; (2)45 26'.

36. The water enters an overshot wheel at 12 from the summit with

a velocity of 16 ft. per second and the linear velocity of the wheel's pe-

riphery is 8 ft. per second. The fall is 30 ft. Find the diameter of the

wheel and the number of revolutions per minute.
Ans. 25.68 ft. ; 5.94.

37. An overshot wheel of 36 ft. diameter and with 96 buckets has a

peripheral velocity of 7^ ft. per second. The water enters with a velocity

of 15 ft. per second and acquires in the wheel a velocity of 16.49 ft- Per

second Find the distance through which the float moves during impact.
Ans. 2.15 ft.

38. The sluice for a lo-ft. overshot wheel is vertically above the centre

and inclined at 45 to the vertical. The water enters the buckets at a

point 2 ft. vertically below the sluice and 10 from the summit of the

wheel. Find the angle between the directions of motion of the entering

water and of the wheel's circumference. Also find the velocity of the

water as it enters the wheel.

39. In an overshot wheel z>i = 17 ft. ; u = n ft. per second; elbow-

angle = 70; division-angle = 5; water enters the first bucket at 12

from summit of wheel. Find (a) the relative velocity Fso that water

may enter unimpeded; () the direction of the entering water; (c)

the diameter of the wheel, which makes 5 revolutions per minute ; (d)

the position and direction of the sluice, which is 2 ft., measured hori-

zontally from the point of entrance.

40. In an overshot wheel the deviation of the impinging water from

the direction of motion of the wheel is 10
; the velocity (vi) of the im-

pinging stream = 15 ft. per second; of the circumference of the wheel

() = 15 cos 10. What proportion of the head is sacrificed?

41. A 3o-ft. water-wheel with 72 buckets and a 12-in. shrouding makes

5 revolutions and receives 240 cub. ft. of water per minute. Find the

width and sectional area of a bucket. The fall is 30 ft. ; at what point

does the water enter the wheel, the inflowing velocity being i| times

that of the wheel's periphery? Also find the deviation of the water-

surface from the horizontal at the point at which discharging com-

mences, i.e., 140 from the summit.

42. What number of buckets should be given to an overshot wheel of
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40 ft. diameter and 12 in. width in wheel, pitch-angle = 4, thickness of

bucket lip = i in., water area = 24^ sq. in. ?

43. A wheel makes 5 revolutions per minute, the radius is 16 ft., and
the discharging angle 50. Find deviation of water-surface from the

horizon. Ans. 4 .29.

44. A wheel makes 20 revolutions per minute; radius = 5 ft., angle
of discharge = o. Find deviation of water-surface from horizon. Also
find deviation at 44 35' above centre. Ans. 4 33' ; 44 34'.

45. The water in a head-race stands 4.66 ft. above the sole and leaves

the race under a gate which is raised 6 in. above the sole, the coefficient

of velocity (v*) being .95. The water enters a breast wheel in a direction

making an angle of 30 with the tangent to the wheel's periphery at the

point of entrance. The speed (u) of the periphery is 10 ft. per second,
the breadth of the wheel is 5 ft., the depth of the water beneath the

axle is 8 in., and the length of the flume is 8.2 ft. Find the loss of

head (a) due to the destruction of the relative velocity (V) at entrance;

(b) due to the velocity of flow in the tail-race
; (c) in the circular

flume. Ans. (a) i.u ft.; () 1.57 ft.
; (c] .44 ft.

46. In the preceding example, find how the losses of head would be
modified if the flume were lowered 1.03 ft., and if the point of entrance

were raised so as to make u = v\ cos 30.

47. A water-wheel has an internal diameter of 4 ft. and an external

diameter of 8 ft.; the direction of the entering water makes an angle of

15 with the tangent to the circumference. Find the angle subtended

at the centre of the wheel by the bucket, which is in the form of a cir-

cular arc, and also find the radius of the bucket.

48. An overshot wheel 5 ft. wide, 30 ft. in diameter, having a 12-in.

crown and 72 buckets, receives 10 cub. ft. of water per second and

makes 5 revolutions per minute. Determine the deviation from the

horizontal at which the water begins to spill, and also the corresponding

depression of the water-surface.

49. An overshot wheel makes revolutions per minute ; its mean
iTt

diameter is 32 ft. ; the water enters the buckets with a velocity of 8 ft.

per second at a point 12 30' from the summit of the wheel. At the

point of entrance the path of the inflowing water makes an angle of 30

with the horizontal. Show that the path is horizontal vertically above

the centre. The sluice-board is placed at a point whose horizontal

distance from the centre is one half that of the point of entrance.

Find its position relatively to the centre and its inclination to the hori-

zon. (Sin 12 30' = .2165).

50. The water enters the buckets of the wheel in the preceding

example without shock. Find the elbow-angle. Also, if the buckets
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begin to spill at 150 from the summit, find where the bucket is empty
and the number of buckets. (Depth of crown = 12 in.; thickness of

bucket = \\ in.)

51. Given 7/1 = 15 ft. per second, and S 2oJ. Find the position of

the centre of the sluice, which is 4 in. above the point of entrance.

Ans. .097 ft. vertically below and 1.114 ft- horizontally from the

summit. The axis of the sluice is inclined at 9 58' to the

horizontal.

52. In an overshot water-wheel 2/1 = 15 ft.; u = 10 ft. ; elbow-angle
= 70^ ; division-angle = 4^ ; deviation from summit of point of en-

trance = 12. Find the deviation of the layer from that of the arm, so

that the water might enter unimpeded; also find the inclination of the

layer to the horizon, and the value of V . If the centre of the sluice-

aperture is to be 4 in. above point of entrance, find its vertical and

horizontal distance Trom the vertex of the stream's parabolic path which

is vertically above the centre of the wheel, and also find inclination oi

sluice-board to horizon.

Ans. 15! ; 2oJ ; 5.3 ft. per sec. ; .42 ft.
; 1.04 ft. ; 9 34',

53. In an overshot wheel Q= 18 cub. ft.; r\ =6 ft. ; d i ft. ; b =
4 ft.

;
N 24. At the moment spilling commences the area afd = 1.025

sq. ft.; between this point and the point where the spilling is com-

pleted three buckets are interposed, the sectional areas of the water

being .591, .409, and .195 sq. ft., respectively. Find (a) the sectional area

of bucket, (b) the point where the spilling commences, (c] the point where
the spilling is completed, (d) the height of the arc of discharge, (<?) the

mechanical effect due to the fall of the water through the arc, of discharge.
'

Ans. (a) .662 sq. ft ; (b) = 7 26', = 28 33' ;

(c) e = 73 15'. =
5 59' ; (d) 449 ft. I (') 4-93 H.P.

54. In the preceding example, if the water enters with a velocity of

20 ft. per second at 20 below the summit, and if the direction of the

inflowing stream makes an angle of 25 with the wheel's periphery at

the point of entrance, find the mechanical effect (a) due to impulse,.

(b) due to the fall to the point where spilling commences.

Ans. (d) 5.34 H.P.; (b) 12.15 H.P.

55. 300 cub. ft. of water per minute enter the buckets of a 4o-ft.

overshot wheel with a 12-in. crown and making four revolutions per
minute. The wheel has 136 buckets. At the moment when spilling

commences the area afd (Fig. 156) = 102 sq. in., and the area abed
' =

24.5 sq. in. The spilling is completed when the angle between the hori-

zontal and the radius to the lip of the bucket = 62 30'. Between these

two positions three buckets are interposed, the sectional areas of the

water in the buckets being 24.5, 14.48, and 6.6 sq. in., respectively. The
vertical distance between the water-surface in the first bucket and the

centre is 18 ft. Find (a) the width of the wheel, (b) the cross-section of
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a bucket, (c) the angle between the horizontal and the radius to the lip

of the bucket when spilling commences, (d) the height of the discharg-

ing arc, (<?) the mechanical effect due to weight.
Ans. (a) 2.4 ft.; (b) 33.09 sq. ft.; (c) 6 = 52 2*'; (d) 1.9 ft.;

(<?) 19.48 H.P.

56. As the bucket arm cd moves downwards from the horizontal

position, show that while the wheel moves through an angle the last

particle of water at c will move,through a distance approximately equal
?*(/r^* ~{~ u^ }

to -
^ (6 sin 6), r being the distance (assumed constant) of the

particle of water from the axis, and u being the linear velocity of the

wheel at the radius.

57. If the last particle of water leaves the buckets just as the lip d
reaches the lowest point of the wheel, and if the arm is i ft. in length,
find the angle between the lip" and the wheel's periphery (i) for a wheel

of 20 ft. diameter, the peripheral velocity being 5 ft. per second
; (2) for

a wheel of 40 ft. diameter, the peripheral velocity being 10 ft. per second
;

(3) for a wheel of 10 ft. diameter, the peripheral velocity being 8 ft. per
second. Ans. (i) 20^ ; (2) 20

; (3) 40.

58. In an overshot wheel of 30 ft. diameter, 5 cub. ft. of water per
second enter the buckets with a velocity of 16 ft. per second and the

wheel's velocity at the division circle is 7 ft. per second. The point of

entrance is 18 from the summit, and the angle between the directions

of the inflowing water and the wheel's periphery at the point of entrance

is 12. The water begins to spill at 148^ from the summit and the

spilling is complete at i6o from the summit. Find the total mechani-

cal effect due to impulse and weight. What is the tangential force at

the outer periphery? Ans. 16.28 H.P. ; 1194 Ibs.

59. 20 cub. ft. of water per second enter an undershot wheel of 30 ft.

diameter, making 8 revolutions per minute through an underflow sluice.

The velocity of the entering water is twice that of the wheel's periphery.
Find (a) the head of water behind the sluice, (b) the fall, (c} the theo-

retical mechanical effect, (d) the actual mechanical effect, disregarding
axle friction.

Ans. (a) 2.779 ft.; (b) 1.221 ft.; (c} 5.57 H.P.; (d) 2.62 H.P.

60. 20 cub. ft. of water per second enter a breast wheel of 32 ft. diam

eter and having a peripheral velocity of 8 ft. per second, at an angle of

25^ with the circumference. The depth of the crown is ij ft.; the buc-

kets are half filled, and the fall is 9 ft. The velocity of the entering
water is 12 ft. per second. The centre of the sluice-opening is -54ft.

above the point of entrance, and the width of the sluice is 3! ft. The
wheel has 48 buckets. The distance between the wheel and breast is %
inch. The bucket passes through .9 ft. while receiving water, and the

depth of the water-surface in the bucket below the point of entrance is
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1.25 ft. Find (a) the angular distance of the point of entrance from the

horizontal, (b) the fall in the breast, (<r) the head of water over the

sluice, (d) the velocity of the water in the bucket the moment entrance

ceases, (e) the total mechanical effect, disregarding axle friction.

Ans. (a) 53 53'; (b) 6.525 ft.; (c) 1.935 ft.; (d) 14.9 ft.; (e) 15.59 H.P.
61. In the preceding question, if the energy absorbed by axle fric-

tion, etc., is 743 ft.-lbs., find the efficiency of the wheel. Ans. f.

62. 20 cub. ft. of water per second enter an undershot wheel of 20 ft.

diameter in a straight race, the fall being 3 ft. The depth of the enter-

ing stream is ft. The width of the wheel is 4f ft., and the clearance is

f inch. The number of the floats, of which four are immersed, is 48,

and each is i ft. long. The weight of the wheel is 7200 Ibs., the radius

of the axle is if in., and the coefficient of friction is .1. Find (a) the

best speed for the wheel, (b} the corresponding mechanical effect, (c) the

efficiency.

Ans. (a) 6 ft. per second ; (ff) 2.32 H.P., assuming the speed of

wheel reduced to 5.74 ft. per second by axle friction
; (c} .34.

63. A downward-flow turbine of 24 in. internal diameter passes 10

cub. ft. of water per second under a head of 31 ft
; the depth of the

wheel is i ft. and its width 6 in. Find the efficiency, assuming the

whirling velocity at outlet to be nil. Ans. .997.

64. A downward-flow turbine of 5 ft. external diameter passes 20

cub. ft. of water per second under a head of 4 ft., the depth of the

wheel being 5 ft. The water enters the wheel at an angle of 60 with

the vertical, the receiving-lip of the wheel-vanes is vertical, and the ve-

locity of whirl at outlet is nil. Find the internal diameter and the

speed in revolutions per minute. Ans. 4.68 ft.; 46.53.

65. A downward-flow turbine has an internal diameter of 24 in.; the

breadth of the wheel is 6 in.; the turbine passes 33 cub. ft. per second

under an effective head of 16 ft. Assuming the whirling velocity at out-

let to be nil, find the efficiency and power of the turbine. If the vane-

lip at inlet is radial, finci the direction of the vane at outlet, and the

speed of the turbine in revolutions per minute.

Ans. .931 ; 55.865 H.P.; ft
= y = 21 2'

; 166.7.

66. Discuss the preceding question on the assumption that the

peripheral speed at outlet ( 9 ) is equal to the speed of the water at that

point relatively to the wheel ( F).
Ans. .928 ; 55.715 H.P.; /3 = 21 47' and y = 20 21'.

67. An axial-flow impulse turbine of 5 ft. mean diameter passes 170

cub. ft. of water per second under an effective head of 8.6 ft.; the depth
of the wheel is .9 ft. At what angle should the water enter the wheel to

give an efficiency of 81 per cent, the width of the wheel being constant

and disregarding hydraulic resistances ? Ans. =27 16'.

68. In example 67, find (a) the velocity with which the water enters



324 HYDRA ULICS.

the wheel (b) the speed of the turbine in revolutions per minute, (c) the

directions of the vane edges at inlet and outlet, (d) the velocity of the

water as it leaves the wheel, (e) the power of the turbine.

Ans. (a) 2346ft. per sec.; (b) 45.08 ; (c) a = 130 05', ft = 42 19';

(d} 10.748 ft. per sec.; (e) 148.65 H.P.

69. In example 67, if instead of assuming that the whirling velocity

at exit is nil, it is assumed that the peripheral speed (u*) of the wheel at

the mean radius is equal to the relative velocity ( F2 ) of the water at exit,

show how the several results are affected.

Ans. y = 25 6'; (a) 23.46 ft. per second
; (b) 54.638 ;

(c) a= 124 54',
= 44 7' ; (d) 10.748 ft. per second ;

(e) 148.65 H.P.

70. In examples 68 and 69, assuming that the hydraulic resistances

necessitate an increase of i2 per cent in the head equivalent to the ve-

locity with which the water enters the wheel, and an increase of 10 per
cent in the head equivalent to the relative velocity ( VJ) at outlet, show
how the several results are affected.

Ans. Question 68. (a) 22.12 ft. per sec.; (b) 47.82;

(c) a 121 30', ft
= 40 9'; (d) 10.748 ft. per sec.;

(e) 148.65 H.P.

Question 69. (a) 22.119 ft. per sec.; (b} 50.97;

(c) a= 124 91', ft =47 28'; (d} 10.748 ft. per sec.;

(<?) 148.65 H.P.

71. The efficiency of an axial-flow turbine is 90 per cent, and it passes

12 cub. ft. per second under an effective head of 40 ft. At the mean
radius the water enters at an angle of 30 with the wheel's face, and the

whirling velocity at outlet is nil. Find (a) the velocity with which the

water enters and leaves the wheel, (b) the directions of the vane at inlet

and outlet, (c) the sectional areas of the inlet- and outlet-orifices, (d} the

speed of the wheel in revolutions per minute, (<?) the power of the tur-

bine. Ans. (a) 42% ft. per second
;
16 ft. per second ;

(b) a = 49 6', = 2i 3';

(c) .75 sq.ft.;

W).I9&39; (<f)49& H.P.

72. An axial-flow turbine of 5 ft. mean radius passes 212 cub. ft. of

water per second under a total effective head of 12.1 ft. At the mean

radius, the direction of the inflowing water makes an angle of 70 with

the vertical, and the vane-lip at the outlet makes an angle of 17 with

the wheel's periphery. If the whirling velocity at the outlet-surface is

nil, find (a) the velocity with which the water must enter the wheel to

give an efficiency of .953 per cent. Also find (b) the direction of the

vane-lip at outlet, (c) the speed of the wheel in revolutions per minute,

(d} the widths and areas of the inlet- and outlet-orifices, (e) the power
of the turbine.
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Ans. (a) 19.9 ft. per sec.;

(6) =8i22'; (*) 37.67;

(d) .991 ft.; 31.148 sq.ft.; 1.181 ft; 35.14 sq.ft.;

(e) 277- 799 H. P.

73. An axial-flow impulse turbine passes 170 cub. ft. of water per
second under an effective head of 9.5 ft., the depth of the wheel being .9

ft. and its mean radius 4.2 ft. The vane-lip at the outlet makes an angle
of 72 with the vertical. Assuming that the whole of the effective head

is transformed into useful work, and that the whirling velocity at the

outlet-surface is nil, find (a) the inclination to the vertical of the outlet-

lip of the guide-vane, (b) the direction of the inlet-lip of the wheel-vane,

(c) the efficiency ; first neglecting hydraulic resistances, and second taking
these resistances into account.

Ans. First. (a) 59 52' ; (b) 60 16'
; (c) .905;

Second, (a) 52 52'; (b) 74 16'
; (c) .804.

74. In the preceding example find the inlet- and outlet-orifice areas

in the two cases. Ans. First. 8.12 sq. ft. ; 22.4 sq. ft. ;

Second. 9.64 sq. ft.; 28.56 sq. ft.

75. An axial-flow turbine passes 200 cub. ft. of water per second

under a head of 14 ft., the depth of the wheel being i ft. The mean
radius of the wheel is 3 ft. ;

the areas of the inlet- and outlet-surfaces are

in the ratio of 7 to 8
; the water enters the wheel at an angle of 21 to

the wheel face, and the outlet edge of the vane makes an angle of 16

with the face. Find the speed, efficiency, and power of the turbine, and

also the direction of the inlet-lip of the vanes.

Ans. 73.69 revolutions per minute; .954; 325.24311.?.;
a =65 57'.

76. In question 11, if there are 62 wheel, and 66 guide-vanes, the

thickness of the latter being .2 in. and of the former .4 in., find the

width of the inlet-orifices.

77. Water is delivered to an O. F. turbine at a radius of 24 in. with a

whirling velocity of 20 ft. per second, and leaves in a reverse direction

at a radius of 4 ft. with a whirling velocity of 10 ft. per second. If the

linear velocity of the inlet-surface is 20 ft. per second, find the head

equivalent to the work done in driving the wheel. Ans. 24.8 ft.

78. An outward-flow turbine of 9.5 in. external diameter works under

an effective head of 270 ft. Find the speed in revolutions per minute,

assuming that the whirling velocity at the inlet-surface relatively to the

wheel is nil and that the efficiency is unity. Ans. 2242.

79. An outward-flow turbine, whose external and internal diameters

are 8 ft. and 5^ ft. respectively, makes 26 revolutions per minute under

an effective head of 4 ft. The water enters the wheel in a direction

making an angle of 36 (y) with the direction of motion at the point of

entrance. Determine the angles of the moving vane at ingress and egress,
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the efficiency being .85. Also find the energy per pound of water carried

away by the water as it leaves the turbine.

Ans. a= 129 59', fi= 29 38'; .6 ft.-lbs.

80. Construct an outward-flow turbine from the following data : the

fall = 5 ft. ; internal diameter = 1.8 ft.; external diameter = 2.45 ft.;

quantity of water passed per second = 30 cub. it.,y = 30 ; efficiency = .9.

Ans. a = 108 15'; fi = 21 3'; Ai =3.897 sq. ft. ; A* = 5.303;
d\ = d* = .688 ft., neglecting thickness of vanes.

Si Assuming that the intensities of the pressure at the receiving
and discharging edges of the moving vanes of a Fourneyron turbine are

equal, and also that the rim velocity and the velocity of the water

relatively to the wheel at the discharging-surface are equal, show that

the direction of the impinging stream must bisect the angle between

the direction of motion and the tangent to the vane at the receiving
r? sin /?

edge. Also show that = -. .

r-i sin ?.y

82. If the areas of the inlet- and outlet-orifices of an inward- or

outward-flow impulse turbine are equal, show that the efficiency of the

turbine is cos2 y , y being the angle which the direction of the entering
water makes with the wheel's periphery.

83. A radial impulse turbine of 4.5 ft. and 4 ft. external and internal

radii passes 8^ cub. ft. of water per second under an effective head

of 560 ft. The direction of the entering water is inclined at 17 to the

wheel's periphery, and the wheel has the same depth at the inlet- and

outlet-surfaces. If the peripheral speed at the outlet-surfe (w2) is equal
to the relative velocity of the water (F2) with respect to the wheel, find

(a) the efficiency, (b] the speed of the turbine in revolutions per minute,

(c) the sectional areas of the stream at inlet and outlet, (d) the direction

of the vane-outlet edge, (e) the velocity of the water as it leaves the

wheel, (/") the power of the turbine.

Ans. (a) .873; () 209.94; (c) .15357 sq. ft.; .13651 sq. ft.;

(d) ft = 45 2'
; (e) 67.39 ft. per sec.; (f) 472.33 H.P.

84. In the preceding question examine how the results will be

affected when hydraulic resistances are taken into account, allowing .94

as a coefficient of velocity for the water on entering the wheel, and

assuming that the head equivalent to the relative velocity ( Fa) on

leaving the wheel is increased by 10 per cent.

Ans. (a) .886; () 193.76 revols. per minute;

(c) .163 sq. ft.; .145 sq. ft.;

(d) ft = 46 1 8'; (*) 63.842 ft. per sec.;

(/) 479-39 H.P.

85. A radial outward-flow turbine of the impulse type passes 8^ cub.

ft. of water per minute under an effective head of 560 ft.; the width of
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the wheel is 7^ in.; the radius to the outlet-surface is 1.15 times the

radius to the inlet-surface ;
the linear velocity of the inlet-surface is 87

ft. per second ;
the direction of the water at entrance makes an angle of

17 with the wheel's periphery. Find (a) the efficiency, (b} the lip-

angles, (c) the areas of the inlet- and outlet-orifices, neglecting first

hydraulic resistances, and second taking these resistances into account.

Ans. First, (a) .878; (b) a = 149 31' and ft
= 33 20';

(c) .1535 sq. ft. and .1283 sq. ft.;

Second, (a) .826; (b) a i 48and ft
= 17 19' ;

(c) .183 sq. ft. and .306 sq. ft.

86. Construct a Fourneyron turbine for a fall of 5 ft. with 30 cub. ft.

of water per second, a. = 80, y = 30, =
1.35. Assume u% = Fa ,

and neglect hydraulic resistances.

Ans. ft = 16 42' ; Ai = 4.29 sq. ft.; A* = 5.8189 ft. ; rj = .915 ;

if ri 1.8 ft., then di = d* = .38 ft.

87. In an inward-flow turbine passing 400 gallons of water per

minute, the slope of the guide-vane lips is i in 5, the radii to the inlet-

and outlet-surfaces are i ft. and 6 ins., respectively; the breadth of the

inlet-orifices is 1.25 ft. Find the efficiency. Ans. .98.

88. An I. F. turbine, of 4 ft. external diameter, works under an

effective head of 250 ft. Find the speed of the wheel in revolutions per
minute. Ans. 427.

89. An I. F. turbine of 4 ft. external and 3 ft. internal diameter,
makes 360 revolutions per minute. The sectional area of flow is 3 sq.

ft. and is the same in every part of the turbine. The direction of the

inflowing water makes an angle of 30 with the wheel's periphery.

Assuming that the whirling velocity at the outlet-surface is nil, find

(a) the efficiency, (b) the H.P., and (c) the delivery in cubic feet per
minute. The total head is 200 ft. Ans. (a) .86 ; (<) 2476.8 ; (c) 7593.

90. An inward-flow turbine being required for an available head of

20 ft. and a discharge of 800 cub. ft. per minute, determine (a) the size

and (b) the speed of the wheel, (c) the inclinations of the guide and

wheel-vanes, and (d} the efficiency of the turbine, assuming r2 = \r\ =
depth of wheel ;

vr
' = ^ \/2g-ff; v^," = o and a. = 90.

Ans. (a) r2 = .487 ft., ri = .974 ft.;

(b) 240 revolutions per minute;

(c) y = 10 21', ft
= 36 8'

; (d) 93! per cent.

91. A vortex turbine passes Q cub. ft. of water per second under an
effective head of H ft. The inlet-lip of the vanes is radial and the

direction of the entering water makes an angle of 30 with the wheel's

periphery. The areas of the inlet- and outlet-orifices are and -
o C
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respectively, and the width of the wheel is , D being the diameter of

the inlet-surface. If the whirling velocity at the outlet-surface is nil,

find (a) the efficiency, (b) the direction of the outlet edge of the vane,

(c) the velocity with which the water enters and leaves the wheel
;

(d) the speed of the wheel in revolutions per minute, (<?) the diameters

of the inlet- and outlet-surfaces.

Ans. (a) .938; (b) /3=24 17'; (V) 6.3291^ ; 1.977HI \

(d)
"6.7^;

(*) -896j|; .yijrfj.

92. A vortex turbine passes 1 1 cub. ft. of water per second under

a head of 35 -ft.; the diameter of the outlet-surface is 2 ft. and its

breadth 6 in. Find the power of the turbine, disregarding friction and

assuming that the whirling velocity at the outlet-surface is nil.

Ans. 43.5 H.P.

93. An inward-flow turbine has an internal radius of 12 in. and an

external radius of 24 in.; the water enters at 15 with the tangent to the

circumference, and is discharged radially; the velocity of outer periph-

ery of wheel is 16 ft. per second. Find the angles of the vanes at the

inner and outer circumferences, and the useful work done per pound of

fluid. Ans. ft
= 32, a = 118 I'; 9.33 ft.-lbs.

94. A radial impulse turbine passes S^ cub. ft. of water under an

effective head of 560 ft. The direction of the entering water is inclined

at 17 to the wheel's periphery. The linear speed of the inlet-surface is

87 ft. per second. Assuming that the velocity of whirl at the outlet is

nil, and disregarding hydraulic resistances, find (a) the efficiency, (b) the

velocity with which the water enters the wheel, (c) the velocity of the

water as it leaves the wheel, (d) the sectional areas of the inflowing and

outflowing stream, (<?) the direction of the vane-lip at inlet, (/) the

power of the turbine.

The radii of the inlet- and outlet-surfaces are 4^| ft. and 4$ ft. respect-

ively. Find (g) the direction of the vane edge at outlet.

Ans. (a) .879; (b) 189.31 ft. per sec. ; (c) 65.86 ft. per sec.;

(d} .15356 sq. ft. ; .129 sq. ft.; (e) a = 149 34';

(7)47543 H.P. ; (g) ft
= 33 21'.

95. In the preceding example show how the results are affected by

taking .94 as the coefficient of velocity in calculating the velocity with

which the water enters the wheel.

Ans. (a) .828; (b) 178.49 ft. per sec.; (c) 78.36 ft. per sec. ;

(d) .163 sq. ft. ; .1085 sq. ft.; (e} a = 148 3' ;

(/).441.25 H.P.; ()/* = 38" 4'*

96. In an I. F. turbine the radius to the inlet-surface is twice that to

the outlet-surface ; the linear velocity of the inlet-surface is one half

that due to the head ; the water enters the wheel with a velocity of flow
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{vr') equal to one eighth that due to the head, and the sectional area of

the water-way is constant from inlet to outlet. Find the angle between

the discharging-lip of the vane and the wheel's periphery, the whirling

velocity at the outlet-surface being nil. Ans. Cot"
1

4/8.

97. In a vortex turbine the depth of the inlet-orifices is one eighth of

the diameter of the wheel (= ~] and of the depth of the outlet-
\ 8 / 32

orifices. The width of the wheel is one tenth of the diameter (
= -).

\ io/

The inlet-lip of the vanes is radial, and the water enters at an angle of

30 with the inlet periphery. Find the size, speed, and efficiency of the

turbine in terms of the supply of water Q and the effective head H.
Also find the direction of the outlet edge of the vanes.

Q^
Ans. I. Assume vw" = o. Then r\ = .448 -,

;

H*
No. of revolutions per minute = 1 16.7 r

;

r;
= .938; /3

= 24 17'.

Q k

II. Assume w2 = F2 . Then r\ .45
-

;H 4

H*
No. of revolutions per minute == 116. -3 r

Qk

77
= .935; $ = 26 49'.

98. A vortex turbine with a wheel of 2 ft. diameter and 6 in. breadth

passes io cubic ft. of water per second under a head of 32 feet. Find

the inclination of the guides and the power of the turbine. Assume
as = V?. and a = 90. Ans. 5 41', 36T

4
T H.P.

99. An inward-flow turbine has an internal radius of 12 in. and an

external radius of 24 in. ;
the water enters at 15 with the tangent to the

circumference, and is discharged radially; the velocity of radial flow is

5 ft. at botn circumferences; the velocity of outer periphery of wheel is

16 ft. per second. Find the angles of the vanes at the inner and outer

circumferences, and the useful work done per pound of fluid.

Ans. ft
= 32 ; d = 1 18 i'

; 9.33 ft.-lbs.

100. A radial I. F. reaction turbine, with or without draught-pipe,

passes 113 cub. ft. of water under an effective head of 13 ft. The radius

to the inlet-surface is 1.169 times the radius to the outlet- surface, and the

ratio of the outlet to the inlet area is .92. The vane-lip at outlet makes
an angle of 15 with the wheel's periphery, and the water enters at an

angle of 1 2 with the wheel's periphery. The sectional area of the draught-
tube (if there is one) at the point of discharge is 1.035 times the sectional

area of the outlet-orifice. Show that the effective work per pound of
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water is 13 ft.-lbs., and that the work consumed in hydraulic resistance

(Art. 28, page 303) is nearly 1.96 ft.-lbs. ; also find Ai, A^ z/a , and the

efficiency.

Ans. (a) 28.26 sq. ft. ; 26.12 sq. ft.
; (b) 4.4 ft. per sec. ; .977.

101. In the preceding example, if the radius to the inlet-surface is 4
ft., find (a) the speed of the wheel in revolutions per minute. Also find

(b) the depth of the wheel at inlet and outlet, the guide-vanes being 40
and the wheel-vanes 41 in number, and the thickness of the former being

T\ inch and of the latter J inch. Ans. (a) 38.95 ; (b) 1.23 ft. ; 1.32 ft.

102. In example 38 find the efficiency if the diameter of the draught-
tube is made the same as the diameter of the outlet-surface, the lower

edge of the tube being rounded. What will be the "loss in shock" in

the tube per pound of water? Ans. .861 ; .071 ft.-lbs.

103. An axial-flow turbine is to be used for raising water. Explain
how the vanes should be arranged, write down the resulting equations,
and determine the efficiency.

104. Write down the equations for a Jonval modification of Euler's

turbine.

105. An inward-flow turbine has an external diameter of 3 ft. and an

internal diameter of 2 ft. It passes 12 cub. ft. of water per second

under an effective head of 40 ft. The water enters the wheel at an

angle of 30 with the wheel's periphery, and the depth of the outlet-

orifices is twice the depth of the inlet-orifices. The efficiency of the

turbine is .9. Disregarding friction, find (a) the vane-angles at inlet and

outlet, (b) the velocity with which the water leaves the wheel, (c) the

speed of the turbine in revolutions per minute, (d) the velocity with

which the water enters the wheel, (e) the areas of the outlet- and inlet-

orifices, (/) the power of the turbine.

Ans. (d) a = 105.09', ft
= 35 35' (b) 16 ft. per sec. ; (c) 198.39;

(d) 42! ft. per sec. ; (e) .5625 sq. ft.
; .75 sq. ft.

; (/) 49^ H.P.

106. A centrifugal pump with a 12-in. fan delivers 1000 gallons per

minute, the actual lift being 20 ft. and the gross lift (allowing for fric-

tion, etc.) 30 ft. The velocity of whirl at the outlet-surface is reduced

one half. Find the revolutions of the pump per minute. Ans. 623.1.

107. In a centrifugal pump the external diameter of the fan is 2 ft., the

internal i ft., and the width 6 in. Determine the speed and efficiency

of the pump when delivering 2000 cub. ft. per minute against a pressure
head of 64 ft., the inclination of the wheel-vanes at outlet-surface

being 90. Ans. 643.36 revols. per min. ; .656.

108. A centrifugal pump delivers 1500 gallons per minute. Fan, 16 in.

diameter; lift, 25 ft.
; inclination of vanes at outer periphery to the tan-

gent, 30. Find the breadth at the outer periphery that the velocity of

whirl may be reduced one half, and also the rev6lutions per minute, as-

suming iht gross lift to be i times the actual lift.
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Also find the proper sectional area of the chamber surrounding the fan

for the proposed delivery and lift. Examine the working of the pump at

a lift of 15 ft. Ans. Breadth, f in.; revolutions, 700; 24 sq. in.

109. For a given discharge (0 and head (77), and considering only the

losses of head due to flow and to the resistance in the wheel, show that

the maximum efficiency of a centrifugal pump of chamber D is

A being a constant depending on the size of the wheel.

no. A centrifugal pump lifts 35 cub. ft. of water per second a height
of 20 ft. At the outer periphery the vane-angle (ft) is 15 and the radial

velocity is 5 ft. per second. If the wheel makes 140 revolutions per

minute, find (a} its diameter. If the diameter of the outer periphery of

the wheel is three times that of the inner periphery and if the radial

velocity at the latter is 8 ft. per second, find (b) the vane-angle at the in-

ner periphery and (c) the depths of the wheel at the inner and outer

peripheries. . Ans. (a) 5^ ft. ; (b) 30 58'; (c) n.i in.; 5.76 in.

in. The pump in the preceding example is supplied with a vortex

chamber of 6 ft. diameter. Show that the "gain of head" is a maxi-

mum when the velocity of flow in the volute is 8.46 ft. per second. Also

show that the frictional loss of head is 4.1785 ft.

112. In a centrifugal pump the diameter of the fan = 16 in.
, the depth

= 2 in., the lift = 25 ft., and the delivery = 300 cub. ft. per minute.

Determine (a) the speed, (b) the efficiency, and (c) the power expended
when the vane-angle (ft) at the outer periphery is (i) 90, (2) 45, and (3)

30. Ans. (i) (a) 785 revols. per min. ; (b) .47 ; (c) 30 H.P. ;

(2) (a) 805.8
" "

(b) .58 ; (f) 24.4 H.P. ;

(3) (a) 846.1
" "

(b) .68 ; (c) 22.9 H.P.

113. An Appold pump delivers 10,000 gallons per minute. The gross
lift is 50 ft. The radial velocity at the outlet-surface is one eighth of

that due to the. gross lift, and the velocity of whirl and the peripheral

velocity are reduced one half. Find (a) the radius of the wheel, (b) the

vane- angles, (c} the speed of the wheel, (d) the efficiency.

Take the breadth of the wheel at outlet equal to one sixth of the ra-

dius, and^- = 32.

Ans. (a) 1.9 ft. ; (b) 56 16'
; 23 16; (c) 331 revols per min. ; (d) .74.

114. The internal and external diameters of the fan of a centrifugal

pump are 9 in. and 18 in., respectively ; the depth is 6 in., and it passes

400 cub. ft. per minute against a pressure head of 16 ft. The inclination

(ft) of the discharging-lips of the fan being 30, determine (a) the speed,

(b) the efficiency, (c) the power expended, and (d) the inclination of the

receiving-lips of the fan.

Ans. (0)413.58 revols. per min.
; (b) .571 ; (c) 21.23 H.P.

; (d) 19 48'.
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Find the efficiency when a vortex chamber 36 in. in diameter Sur-

rounds the fan. Ans. .581.

115. A centrifugal pump with a gross lift of 17 ft. delivers 25 cub. ft.

of water per second. At the outer periphery the vane-angle is 80 and
the radial velocity is 5 ft. per second. The diameters of the outer and
inner peripheries of the disc are 54 in. and 18 in., respectively, and the

hydraulic efficiency is .75. Find (a) the speed of the fan, (b) the vane

angle at the outlet periphery, (c) the velocity of flow in the volute,

(d) the diameter of the volute, (<?) the diameter of the suction-pipe.
If there are six -in. vanes, find (/) the width of the disc at the outer

and inner peripheries.

Assuming the discharge-pipe to be 4 ft. per second, show that there is

a loss of 5.026 ft. of head due to hydraulic friction.

Ans. (a) 116 revols. per min. ; (b) 41 14' ; (c) 26.0 ft. per second ;

(d) 14.7 in. ; (e) 33.8 in. ; (/) 9.64 in. ; 4.8 in.

116. The vane of a centrifugal pump or turbine is the involute of a

circle concentric with the pump circumference. Show that V\ = V* in an

I. F. or O. F., and
' = - in a D. F.
Vt rz

117. A race is straight and close fitting so that the loss of effect due

to escape of water may be disregarded. A single undershot wheel with

plane floats is replaced by four similar tandem wheels. If the delivery

of each of the four wheels is the same, and if it is assumed that the

water reaches each wheel with the same velocity with which it leaves the

preceding wheel, find the total maximum velocity due to impact.
Ans. i times the delivery of the single wheel.

118. Discuss the preceding example, assuming that the delivery of

each wheel is not the same, but that the total delivery is a.maximum.
Ans. 1.6 times the delivery of the single wheel.

119. If n wheels of the same type are substituted for the single wheel

in example 117, and if the assumptions are the same as those in example
1 1 8, show that the total delivery of the n wheels is to the delivery of the

single, wheel in the ratio of 2 to in + i, and that, theoretically, if the

number is made very large, they will approximately give the entire work
of the fall.



INDEX.

Abbott, 148, 151

Abrupt changes of section, loss of

head due to, 89
Accumulator, 215
Air in a pipe, no
Aqueducts, flow in, 142
Arc of discharge in overshot wheel,

256
Axial-flow turbine, 282

Barker's mill, 272
Barlow curve, 47, 50
Barometer, water, 5

Bazin, 145, 152, 154, 166

Bazin's velocity curve and formula, 154
Beard more, 134

Beaufoy, 7

Bends, loss of head due to, 92
Bernouilli's theorem, 6

"
applications of, 9

Bidone, 23, 36, 166

Boileau, 153
Boileau's velocity curve and formula,

154
Borda, 36
Borda's mouthpiece, 34
Bossut, 227
Bovey's tables of coefficients of dis-

charge, 24, 25
Boyden's hook gauge, 173
Branched pipe connecting three reser-

voirs, in
Branch main of uniform diameter, 101

Breast-wheel, 225, 242
efficiency of, 250
losses of effect in, 248
mechanical effect of, 247

252

speed of, 246
Broad-crested weir, 58
Bucket, forms of, 240, 250, 265
Buckets, number of, 264
Buff, 26

Canal-lock, time of emptying and fill-

ing a, 29
Capillary tubes, flow in, 97
Castel's table of coefficients of dis-

charge, 45

Centrifugal force, effect of> 255
head in turbine, 298
pumps, 307"

theory of, 309" vortex-chamber in,

309, 313
Chamber, whirlpool, 50
Channel, bottom velocity of flow in a,

154
flow in an open, 131
form of, 135, 136" maximum velocity of flow in

a, 150, 153
mean velocity of flow in a,

151, 154

mid-depth velocity of flow in

a, 1ST
"

steady flow in a, 132" surface velocity of flow in a,

150, 15-1

value of yin a, 144
variation of velocity in a sec-

tion of a, 148
Channels, differential equation of flow

in, 159
examples of, 162

" of constant section, steady
flow in, 132" of varying section, flow in,

156
surface slope in, 160, 161

Chezy's formula, 88

Cock in cylindrical pipe, 93
Cocks, loss of head due to, 93
Coefficient of contraction, 22, 89

"
discharge, 24"
friction, 73, 144

" "
resistance, 21
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Coefficient of velocity, 20
Combined-flow turbines, 284
Compressibility, 2

Continuity, 2, 5

Contraction, imperfect, 22

incomplete, 23
loss of head due to ab-

rupt, 89
Coulomb, 72
Critical velocity, 97
Cunningham, 148
Current-meters, 180

Darcy, 72, 74, 75, 97, 148, 154
gauge, 176, 178

D'Aubuisson, 74
Density, 2

Downward-flow turbine, 282

Draught-tube, theory of, 301
Dubuat, 154

Elasticity of volume, 3, 4
Elbows, loss of head due to, 91
Ellis, 106

Energy lost in shock, 32"
of fall of water, 4"

jet of water, 27" transmission of, 84
Enlargement of section, loss of head
due to, 32, 91

Equations, general, 30
Equivalent uniform main, TOO
Erosion caused by watercourses, 136
Examples, 60, 122, 170, 209, 315
Exner, 183

Eytelwein, 74, 134

Floats, sub-surface, 175"
surface, 175"
twin, 175

Flow from vessel in motion, 16
in a frictionless pipe, 18

"
in aqueducts, 142"
influence of pipe's inclination
and position upon the, 83"

in pipes, 78"
in pipe of uniform section, 86

" " " of varying diameter, 98.
Fluid friction, 70"

motion, I

Fourneyron's turbine, 281

Francis, 176
Friction, coefficients of, 70, 73, 74, 75

in pipes, surface, 73, 97
laws of fluid, 72

Froude, u, 13, 70, 76, 97
Froude's table of frictional resistances,

70

Ganguillet, 147

Gauge, Darcy, 176, 178

Gauges, experiments on, 148
Gauging, method of, 173

Gaugings on the Ganges, 148" "
Mississippi, 146

General equations, 30
Gerstner's formula, 229
Graphical representation of losses of

head, 94
Grassi, 3

Head, 2, 3

Herschel, 184
Hook gauge, Boyden's, 173
Humphreys, 148, 151

Hurdy-gurdy, 279
Hydraulic gradient, 10

mean depth, 133"
radius, 80

"
resistances, 20

Hydraulics, definition of, i

Hydrodynamometer, Perrodil's, 183
Hydrometric pendulum, 183

Impact, 1 86
on a curved vane, 199
on a surface of revolution, 192
on a vane with borders, 195

Inclination, influence of pipe's, 83

Injector, 12

Inward-flow turbine, 282

Jackson, 148

Jet, energy of, 27
inversion ot, 27
momentum of, 27

propeller, 191
reaction wheel, 272

efficiency of, 274"
useful effect of,

274

Kutter, 147

Laminar motion, 2

Lesbros, 27
Limit turbine, 283
Loss of energy in shock, 32
Loss of head due to abrupt change of

section, 89" " " "
bends, 92" *' " "
cocks, 93" " " " contraction of sec-

tion, 89" "
elbows, 91" " "
enlargement of

section, 91
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Loss of head due to orifice in dia-

phragm, 90" " " " "
sluices, 93

" " *"
valves, 93

Losses of head, graphical representa-
tion of, 93

Magnus, 27
Main of uniform diameter, branch, 101

" with several branches, 118

Meters, 180
"

inferential, 184"
piston, 184"
rotary, 184

Meyer, 156
Miner's inch, 26

Mississippi, experiments on, 148
Mixed-flow turbines, 284
Motion, fluid, I

"
in plane layers, 2

"
in stream-lines, 2

"
laminar, 2

"
permanent, I

"
steady, I

Motor driven by water flowing along a

pipe, 107

Mouthpiece, Borda's, 34
convergent, 44
cylindrical, 39
divergent, 42
ring-nozzle, 37

Navier, 149
Notch, 54

"
circular, 55"
rectangular, 54

triangular, 56
Nozzles, 104

"
Ellis's experiments on, 106

Open channels, 131
Orifice fed by two reservoirs, 115" flow through an, 16

:-;*' in a diaphragm, loss of head
due to, 98

in a thin plate, 13
"

in vertical plane surfaces, 50
with a sharp edge, 14

Orifices, circular, 53

large, 50
"

rectangular, 50
Outward-flow turbine, 281
Overshot wheel, 225, 254"

arc of discharge in,

256
bucket angle of, 262

" "
division angle in, 262

Overshot wheel, effect of centrifugal
force in, 255"

effect of impact on,
270" "

weight on,
268

" number of buckets in,

262, 264"
pitch-angle in, 262

" "
speed of. 254" useful effect of, 268,

271

weight of water on,

256

Parabolic path of jet, 16

Pelton wheel, 280
Permanent regime, i

Piezometer, 9

Pipe connecting three reservoirs,

branched, in
two reservoirs, 86

"
of rectangular section, sluice in,

93
" uniform section, flow in, 78

" "
varying section, 18, 98

Pitch-back wheel, 272
Pilot tube, 176
Plane layers, motion in, 2

Poiseuille, 96, 97
Poncelet, 27, 227
Poncelet's wheel, 232
Position, influence of pipe's, 83
Pressure-head, 4
Prony, 74, 134
Pumps, centrifugal, 307

" "
theory of, 309

'* vortex - chamber
in, 309, 313

Radiating current, 46

Rayleigh, Lord, 27
Reaction, 190
Reaction wheel, efficiency of, 274

" "
jet, 272

Regime, permanent, I

Reservoirs, Branched pipe connecting
three, in

orifice fed by two, 115
"

pipe connecting two, 86
Resistance of ships, 76

" to flow, law of, 96
Revy's meter, 181

Reynolds, 97

Ring-nozzle, 37
River-bends, 143

Sagebien wheels, 254
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Schiele turbine, 284

Ships, resistance of, 76

Siphon, 108
"

inverted, 109
Slotte, 156
Sluice in cylindrical pipe, 93

"
in rectangular pipe, 93
loss of head due to a, 93

Sluices, 244
Standing wave, 165, 232

Steady flow in channels of constant

section, 132

Steady motion, i, 132
"

in pipe of uniform

section, 78

Stream-line, 2

Suction-tube, theory of, 301
Surface-floats, 175
Surface-friction in pipes, 73

'

slope in channels, 160, 161

Table of bottom velocities, 155
"

Castel's results, 45
" "

coefficients of discharge, 24,

25, 45
"

friction, 73, 75" "
velocity, 23

" "
density of water, 3

" "
discharge through nozzles,

1 06
" "

elasticity of volume of water,
4" "

Ellis's experiments on nozzles,
106

" "
frictional resistances, 70, 73,

.74, 75
" maximum velocities, 155" " values of f, 147" " " " "

Bazin's, 166
" ''

viscosity of water and mer-

cury, 155
Table of Weisbach's values of Cv , 33

Theory of suction or draught tube, 301" "
turbines, 284

Thomson, James, 50, 143
Thomson's turbine, 282
Throttle valve, loss of head due to, 83
Time of emptying and filling a canal

lock, 29
Torricelli's theorem, 14
Torricelli's theorem applied to the

flow through a frictionless pipe of

gradually changing section, 18

Transmission of energy by hydraulic
pressure, 84

Turbine, axial-flow, 282
"

centrifugal head in, 297"
combined, 284

Turbine, efficiency of, 288, 291, 292,
296, 297

Fontaine's, 282

impulse or Girard, 276
inward-flow, 282

Jouval, 282

limit, 283
losses of effect in, 303
mixed-flow, 284
outward-flow, 281

parallel-flow, 282

practical values of velocities

in, 299
radial flow, 281

Schiele, 284
Scotch, 276
theory of, 284
Thomson, 282
useful work of, 292, 296, 297
ventilated, 278
vortex, 50

Undershot wheel, 225"
actual delivery in ft. -

Ibs. of, 231

depth of crown of,

238

efficiency of, 227,

235, 239
form of course of,

236,
in a straight race, 227"
losses of effect with,

228
"

modifications to in-

crease efficiency
of, 231" number of buckets

in, 238
"

Poncelet's, ^32"
Poncelet's efficiency

of, 235, 239
useful work of, 228,

235
with flat vanes, 227

Uniform main, equivalent, 100

Unwin, 97

Valve, loss of head due to a, 93
Vane, best form of, 199"

cup, 195

Velocity, bottom, 151, 154, 155"
critical, 97
curve in a channel, 152, 154,"
formulae, 150, 152, 154

Bazin's, 152

Boileau's, 153"
maximum, 151, 155
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Velocity, mean, 151, 154
"

mid-depth, 151
" of flow, 286

of whirl, 286

rod, 176
"

surface, 150, 154
" variations of, 119, 131, 148

Velocities in turbines, practical values

of, 299
Vena contracta, 14
Ventilated buckets, 272
Venturi water-meter, 13, 183
Virtual fall, 82

"
slope, 10, 82, 84

Viscosity, 96, 97, 119, 149
Meyer's formula for, 156
Slotte's

" "156
Vortex-chamber in centrifugal pump,

309, 313
Vortex, circular, 47

"
compound, 50
free, 47

"
free-spiral, 48

"
forced, 49

Vortex, motion, 47
"

turbine, 50, 282

Water-barometer, 5

Water-meter, 13

Weight of fresh water, 2
" "

ice, 2
" "

salt water, 2

Weir, 54
"

broad-crested, 58
"

rectangular, 54

Weisbach, 23, 26, 36, 76, 90, 91, 92, 93,

145

Wheel, breast, 242

hurdy-gurdy, 279
jet reaction, 272
overshot, 254
Pelton, 280

pitch-back, 272
Poncelet's, 232
Sagebien, 254
undershot, 225

Whirlpool-chamber, 50

Whirl, velocity of, 286
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