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PREFACE 

The high value and high utilization of the coastal zone require the 
establishment of flood levels that may occur as the result of various 
natural causes, and the consideration of preventive measures that can be 

used to minimize losses. This report, prepared as one of a series of 
reports to be published to form a Coastal Engineering Manual, is con- 
cerned with the effects of tsunamis on the coastal zone. Another report 
in the series, to be published separately, will be concerned with the 
effect of storm surges. The work was carried out under the coastal engi- 
neering research program of the U.S. Army Coastal Engineering Research 

Center (CERC). 

The report was prepared by Dr. Frederick E. Camfield, Hydraulic 
Engineer, under the general supervision of R.A. Jachowski, Chief, Coastal 
Design Criteria Branch. The report was reviewed by Dr. F. Raichlen, 
California Institute of Technology; Drs. H.G. Loomis and L.Q. Spielvogel, 
Joint Institute of Marine and Atmospheric Research, National Oceanic and 
Atmospheric Administration; Drs. R.W. Whalin and J.R. Houston, U.S. Army 
Engineer Waterways Experiment Station; Dr. M. Fliegel, W. Bivins, and 
L.G. Hulman, Nuclear Regulatory Commission; Dr. R.J. Geller, Stanford 
University; and Dr. R.E. Meyer, University of Wisconsin. The author ex- 
presses his appreciation to the reviewers for their many helpful comments 
and suggestions. 

Some of the background work on tsunami engineering was partially 
funded by the Nuclear Regulatory Commission. 

Comments on this publication are invited. 

Approved for publication in accordance with Public Law 166, 79th 
Congress, approved 31 July 1945, as supplemented by Public Law 172, 88th 
Congress, approved 7 November 1963. 

Colonel, Corps of Engineers 
Commander and Director 
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) 
UNITS OF MEASUREMENT 

U.S. customary units of measurement used in this report can be converted 
to metric (SI) units as follows: 

Multiply — by To obtain 

inches 25.4 millimeters 
2.54 centimeters 

square inches 6.452 square centimeters 
cubic inches 16.39 cubic centimeters 

feet 30.48 centimeters 
0.3048 meters 

square feet 0.0929 square meters 
cubic feet 0.0283 cubic meters 

yards 0.9144 meters 
square yards 0.836 square meters 
cubic yards 0.7646 cubic meters 

miles 1.6093 kilometers 
square miles 259.0 hectares 

knots 1.852 kilometers per hour 

acres 0.4047 hectares 

foot-pounds 1.3558 newton meters 

millibars 1.0197 x 1073 kilograms per square centimeter 

ounces 28.35 grams 

pounds 453.6 grams 
0.4536 kilograms 

ton, long 1.0160 metric tons 

ton, short 0.9072 metric tons 

degrees (angle) 0.01745 radians 

Fahrenheit degrees 5/9 Celsius degrees or Kelvins! 

ITo obtain Beir ce (C) temperature readings Son aalnoninee (F) Sone ensS, 

use formula: = (5/9) (F -32). 

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15. 
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SYMBOLS AND DEFINITIONS 

a coefficient 
@area of uplifting 
®projected area of body normal to flow direction 

wave amplitude 
e@a coefficient 
esemimajor axis of ellipse 
e@interfocal distance of coordinate ellipses 
@a distance from the shoreline = (v2 = 1) d./s 

e@length of building in direction of flow 

variable used in determining movement of the sea surface 

amplitude of incident tsunami; amplitude in deeper water 

amplitude of tsunami at head of bay or inlet; resonant amplitude 

mean width of a harbor or inlet 

@a coefficient 

a variable used in determining wave amplitude 

width of outer bay or inlet 

width of inner bay or inlet 

a coefficient 
@width of building transverse to direction of flow 
@semiminor axis of ellipse 
@width of breakwater opening; entrance width of bay, harbor, or inlet 

wave celerity 

@a coefficient 

drag coefficient 

a Mathieu function 

force coefficient 

group velocity 

Chezy roughness coefficient 

added mass coefficient 

maximum uplifted elevation 
@®a constant 
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SYMBOLS AND DEFINITIONS--Continued 

Cg drift speed of the node or antinode of an edge wave 

CR a coefficient used in determining wave reflection at the shoreline 

D a coefficient 

Dy focal depth of earthquake 

D; a variable used in determining wave amplitude 

d water depth 
e@projected dimension transverse to direction of flow 

da average depth 

dy, average harbor depth 

d, a length representative of water depth 

qd, depth of water at the point where a wave ray turns parallel to 
bottom contours 

d, depth of water at toe of nearshore slope 

d, depth of deeper water 

d, depth of shallower water 

E energy 

E; incident wave energy 

En reflected wave energy 

transmitted wave energy Et 

En,ne even Mathieu Transform 

F force 

Fp buoyant force 

F drag force 

Fy, ne odd Mathieu Transform 

ae friction factor 

coriolis parameter = 22 cos 6 

1 
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SYMBOLS AND DEFINITIONS--Continued 

probability of an astronomical tide of elevation Z 

acceleration due to gravity 

wave height 

incident wave height 

zero-order Hankel function 

reflected wave height 

transmitted wave height 

wave height when the leading edge is at the shoreline 

surge height 
@®uplifting height 

average height of uplifting 

surge height at the shoreline 

wall height 
ewetted height on a structure 

relative intensity of secondary undulations 

an integer used for increments 

R/h, 

a constant 

coefficient of reflection = H,/H; 

coefficient of transmission = H;/H; 

an integer used for increments 
@wave number = 21r/L 

wave number at lowest mode of resonance (Helmholtz mode) 

distance normal to faultline over which vertical Earth movement 

occurs 

e@ wavelength 

length of bay, harbor, or inlet 

length of harbor entrance channel 
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SYMBOLS AND DEFINITIONS--Continued 

Lg effective length of harbor or inlet 

Ly fault length 

wavelength at lowest mode of resonance (Helmholtz mode) 

Ly longshore wavelength 

L, wavelength in deeper water 

L, wavelength in shallower water 

Q length of slope connecting sea bottom to a shelf 

Ls distance across a shelf 

M Richter magnitude of earthquakes 
® moment 

M, momentum 

m tsunami magnitude 

N normalized horizontal water particle displacement 

n Manning roughness coefficient 

n(m) probability of tsunami with magnitude m being generated in any 
given year 

P(Z) probability of runup to elevation Z 

P pressure 

ea coefficient in wave refraction 

Q flow rate under a wave 

q a coefficient in wave refraction 
evelocity of a water particle under a wave 

R a coefficient 
evertical height of runup above the stillwater level at the 
shoreline 

R average runup height at a shoreline area 

R, radius of the Earth 

Rg radius from the center of curvature to the shoreline 
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SYMBOLS AND DEFINITIONS--Continued 

radial distance 

radius from the center of curvature to where the wave ray turns 
parallel to the bottom contours 

slope of sea bottom in direction of wave motion 

slope of steep transition 

slope of shelf 

nearshore slope 

even Mathieu Function 

odd Mathieu Function 

distance along a wave ray 

wave period 

bottom shear stress 

natural period of harbor inside breakwater 

nt mode of oscillation 

component period of Earth vibration 

period of bay or inlet 

natural period of inlet with effective length, L, 

time 

time required for a wave to travel across a shelf 

normalized wave amplitude 

e (H/d) (L/d)* 

current or particle velocity in direction of wave motion 
evelocity in the 6-direction (spherical coordinates) 

current velocity of tsunami surge at the shoreline 

a convection term 

volume of water 
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SYMBOLS AND DEFINITIONS--Continued 

horizontal velocity in direction transverse to wave motion 

evelocity in the ¢-direction (spherical coordinates) 

velocity in the vertical direction 

a convective term 

horizontal coordinate in direction of wave motion 

distance between the shoreline and the point where a wave ray 
turns parallel to bottom contours 

horizontal coordinate in direction transverse to x-direction 

maximum scarp height 

depth of wave generation 

a parameter used in wave reflection and transmission 

vertical coordinate 

dimensional constant 
ecorrection term for harbor entrance channel length 

angle in wave refraction between the incident wave ray and an 
orthogonal to the contour of the sea bottom 

angle of the beach slope 
@®wave ray separation distance 
eangle of nearshore slope given in radians 
edimensional constant 

specific weight of water 
@an edge wave parameter 

dimensionless amplitude 

an incremental distance 

a small value 

dimensional constant 

an arbitrary increment 
@H/d 

vertical movement of sea bottom 

water surface elevation above still water at an arbitrary point 
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SYMBOLS AND DEFINITIONS--Continued 

n(x,t) vertical movement of sea surface 

fs) angle in polar coordinates 

eangle of inclination of water surface at front of surge 
@degrees latitude measured from the pole 

9) angle of incident wave ray 
@a constant 

85 angle of transmitted wave ray 
@a constant 

E horizontal displacement of a water particle 

Ie) density 
e@dimensionless distance from the shoreline = x/a 

oO d/L 

Sy 2m/Typ 

«) longitude of a point 

o(t) variable used in determining movement of the sea surface 

x dimensionless distance measured seaward from the shoreline 

7) latitude of a point 

vy wave radiation function 

Po wave radiation function 

Q an arbitrary function 
®rotational speed of the Earth in radians per second 
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TSUNAMI ENGINEERING 

by 
Frederick E. Canfteld 

I. INTRODUCTION 

The term tsunami is derived from two Japanese words: '"'tsu,'' meaning 
harbor, and "nami,'' meaning wave. Tsunamis, or seismic sea waves, have 

very long periods and are not easily dissipated. The waves may create 
large surges or oscillations in bays or harbors which are not responsive 
to the action of normal sea waves. In the original definition, the term 

tsunami was applied to all large waves, including storm surges. However, 
recent definitions have limited its application to waves generated by 
tectonic or volcanic activity. Western literature previously referred 
to these waves as tidal waves or seismic sea waves, but those terms have > 

generally been replaced by the term tsunami. 

Tsunamis are primarily created by disturbances in the crust of the 
Earth underlying bodies of water, and the resulting uplifting of the 

water surface over a large area which forms a train of very long-period 

waves. The waves may have periods exceeding 1 hour, in contrast to nor- 
mally occurring wind-generated sea waves which have periods less than 1 
minute. When tsunamis are generated by volcanic activity or landslides, 
the wave energy tends to spread along the wave crests and the tsunamis 
affect mainly the areas near their source. Tsunami waves generated by 
tectonic uplifting may travel across an ocean basin, causing great 
destruction at locations far from their source. 

Because of the potential destructive effects of tsunamis, it is 
necessary to understand the mechanisms of their generation and propaga- 
tion, and to be able to predict the extent of flooding and the effect of 
wave forces in coastal areas subject to tsunami attack. Proper control * 
must be exercised over the use of such areas, and in designing structures 
to be placed in these areas. Also, sufficient warning of a tsunami 
attack must be given to people located in these areas, and procedures 
must be established for an orderly evacuation when necessary. 

This report discusses the prediction of tsunami effects in coastal 
areas and attempts to provide guidance in determining the flooding 
and wave forces at any particular location. The present knowledge of 
tsunamis and the deficiencies in this knowledge are summarized. 

1. Nature and Origin of Tsunamis. 

Areas of seismic activity which could potentially generate tsunamis 
are shown in Figure 1. The major part of this activity occurs along the 
boundaries of the Pacific Ocean, with other regions of strong activity 
primarily concentrated in the Caribbean and Mediterranean areas. Van Dorn 
(1965) indicates that the Japan Trench radiates detectable tsunamis at the 

rate of about one per year. Lesser amounts of activity occur elsewhere. 
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Figure 1. Oceanic zones of recent earthquake activity, showing 
association with trench systems and island arcs. 
Pacific preponderance is apparent (from Van Dorn, 1965). 

Tsunamis can be generated in any coastal area, including inland seas 
and large lakes. Spaeth (1964) provides an extensive bibliography on 
tsunamis. The Appendix summarizes the occurrence of tsunamis from 1891 
to 1961, using Spaeth's data and some additional information from 
Heck (1947), Ambraseys (1965), Pararas-Carayannis (1969}, and Cox, 
Pararas-Carayannis, and Calebaugh (1976). Part of Ambraseys' informa- 

tion has been omitted because of the lack of verification. Tsunamis 
occurring between 1962 and the present are not listed because a complete 
summary is not readily available. 

Good records are available for more recently occurring tsunamis, 
particularly in the present century; however, records of tsunamis in 
past centuries are mostly based on accounts of personal observations. 
The dates that tsunamis occurred have often been confused with the dates 
on letters or other accounts rather than the date of the actual event. 

There have also been many errors in interpreting these older accounts, 
particularly when translating from one language to another. Soloviev 

and Ferchev (1961) refer to the reports of an event in 1827 at the 

Komandorskiye Islands, located between Kamchatka and the Aleutian Islands, 

Alaska. A Russian expedition, under the command of F.P. Lutke, reported 
the occurrence of an earthquake and noted that earthquakes were sometimes 
accompanied by a rise in water level. The original Russian report was 
translated in French, then into.German, then into French, and back into 

Russian again. The final translation indicated that a tsunami had 

occurred along with the 1827 earthquake. 
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A similar instance of errors in interpretation and translation 
occurred in the reports of an 1840 event at Santa Cruz, California. 
Heavy rain and high waves caused by a storm resulted in considerable 

damage. The collapse of buildings caused by flooding from the rain was 
misinterpreted as an earthquake, and the waves as a tsunami. Holden 
(1898) reported this as an earthquake and tsunami, when in fact neither 

occurred. 

Consideration must also be given to the fact that records based on 

visual observations may not include all tsunamis which occurred. The 

observers probably gave special notice only to those waves which caused 
substantial flooding or large, rapid variations of the water level in 

bays and harbors. At a location where the normal tidal range was of the 
same order as the tsunami height, a tsunami occurring at a low tide stage 
may have been given only passing notice, if noticed at all, while the 

same tsunami occurring at a high tide stage would have been recorded as 
a major tsunami. Likewise, the occurrence of a tsunami in conjunction 
with high storm waves would have caused more flooding, and therefore, 
may have been given more significance in the records than a tsunami 

occurring during a relative calm. 

Records of tsunamis in the Mediterranean and Middle East include 
theories on the eruption of Thira (also known as Santorini) and the 

tsunami on the coast of Crete that destroyed the Minoan Empire circa 
1400 B.C. Factual accounts of tsunamis extend back at least 2,000 

years. Accounts of tsunamis in Japan extend back at least 1,300 years. 
In contrast, records of tsunamis originating in the Chile-Peru coastal 

areas only cover about 400 years (from 1562 to present), those originat- 
ing in Alaska about 200 years (from 1788), and those occurring in Hawaii 
slightly more than 150 years (from 1813). Few records are available of 
tsunamis occurring on the California-Oregon-Washington coastline. Holden 
(1898) indicates tsunamis occurred at points on the California coastline 

in 1812, with various occurrences at later dates, mainly recorded or 

observed at San Francisco. Townley and Allen (1939) provide similar 

information. 

Knowledge of the action of more recent tsunamis can be helpful in 

evaluating historical information. Although no record exists of major 
tsunamis on Puget Sound in Washington State, the Puget Sound Weekly (1866) 
reported that a tide, the highest ever recorded, occurred at Port Townsend, 

Washington, on 20 December 1866. The report stated, "The main street was 

filled with drift logs, and the dwellers on lower floors were compelled 

to elevate to the next story."" Camfield's (1975) article on historical 

accounts gives the date as 27 December 1866. Kelly (Seattle, Washington, 

personal communication, 1979) also gives the year as 1866. Neither 

Holden (1898) nor Townley and Allen (1939) report a tsunami occurrence 

in 1866; both list a 26 December 1856 date, with no additional details, 

which was probably an incorrect report of the 1866 event. The historical 

accounts describing a gradual rise in water level indicate this was prob- 

ably a tsunami, but the origin is unknown. 
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Although tsunamis occur frequently in the Caribbean, they are much 

less frequent in the North Atlantic Ocean. The only major recorded 
tsunami along the east coast of the United States and Canada was the 
tsunami which devastated the Burin Peninsula along Placentia Bay, 
Newfoundland, in November 1929. At least 26 lives were lost (Jaggar, 
1929). The tsunami was enhanced by an exceptionally high tide and high 
storm waves; otherwise, it may not have been of major proportions 

(Hodgson and Doxsee, 1930). This tsunami was reported to have had a 

height of 0.31 meter (1 foot) at Atlantic City, New Jersey (Murty and 
Wigen, 1976). 

Stein, et al. (in preparation, 1980) report on earthquakes in eastern 
Canada from Baffin Island to Newfoundland. For the 1929 Grand Banks 
earthquake, which generated the tsunami, they give a magnitude of 7.2 
as reported by Gutenberg and Richter (1965). Stein, et al. suggest that 
the earthquakes in this area are associated with basement faults which 
have been reactivated by the removal of Pleistocene glacial loads. 

Earthquakes frequently occur in the eastern United States. These 
include a large earthquake that occurred in New England on 18 November 
1755, shortly after the November 1755 earthquake near Lisbon, Portugal 
(Reid, 1914), and the earthquake near Charleston, South Carolina, on 

31 August 1886 (Taber, 1914). All of the earthquakes in the eastern 

United States have occurred inland from the coastline. The probability 
of an earthquake having an epicenter in a location that would cause a 
tsunami, either on the coastline or in an estuary, cannot be determined 

from available data. Brandsma, Divoky, and Hwang (1979) give probable 
maximum waves for tsunamis at points near both the Atlantic and Pacific 
coasts of the United States. Their results are based on mathematical 

simulation of extreme events. 

The only tsunamis of record that traveled across the North Atlantic 
were those generated near Lisbon, Portugal, in 1755 and 1761. Both of 

these were recorded on the south coast of England, as well as in the 
West Indies (Davison, 1936). For comparison, the 1755 tsunami had a 

maximum rise of 2.4 meters (8 feet) at Penzance (England) and flowed over 
the wharves and streets at Barbados (West Indies). In 1761, the sea rose 

about 1.8 meters (6 feet) at Penzance and 1.2 meters (4 feet) at Barbados. 
Other runup heights in 1755 were estimated at 4.9 meters (16 feet) on the 
coast of Portugal, 18 meters (60 feet) at Cadiz (Spain), 1.8 meters (5.9 

feet) at Gibralter, 15 meters (50 feet) at Tangier (Morocco), 5.6 meters 
(18 feet) at Madeira, 14.6 meters (48 feet) at Faial (the Azores), 2.5 

meters (8.2 feet) at St. Ives (England), 3.7 meters (12 feet) at Antigua 
(West Indies) 6.4 meters (21 feet) at Saba (West Indies), and the waves 

overflowed the lowlands on the coasts of Martinique and other French 
islands. 

In general, good data are available for only a limited number of 
tsunamis. A major gap in the data is tsunami heights in deep water. 
Because of this gap, only limited verification is available for numer- 

ical models for propagating tsunamis across large oceanic distances. 

20 



Because of the frequency of tsunamis occurring in the Pacific Ocean, 

a tsunami warning system has been developed for the inhabitants of 
Pacific coastal areas. A similar warning system has not been developed 

for other areas. 

2. Probability of Occurrence. 

Where sufficient historical data are available on tsunami flood 
levels, the probability of tsunami flooding at any elevation can be 
determined by the same methods used for determining the probability of 
floods on rivers. For a known period of record, the recorded flood 
levels can be ranked from the largest to the smallest; i.e., the highest 
flood level is ranked 1, the next highest is ranked 2, and so on. Linsley, 
Kohler, and Paulhus (1958) show that the probability of each flood level 

is then given by 

P(Z)) = eT (1) 

where 

P(Z) = the probability of flooding to the elevation Z in any year 

Z = the elevation above a defined datum 

m = the rank of the flood level 

n = the period of record in years 

Houston, Carver, and Markle (1977) have determined the probability of 

tsunami flood levels for the Hawaiian Islands. For recurrence intervals 

greater than 10 years, i.e., P(Z) < 0.1, they give 

ogg = ~B -A log.) PCy oo) (2) 

where hj 9. is the elevation of the maximum tsunami wave crest above 
mean sea level (MSL) 200 feet (61 meters) shoreward of the coastline, 

P(h, 99) the probability of a flood level occurring at elevation h, 

in any given year, and A and B the empirical coefficients which are 
determined for each point on the coastline. Where sufficient historical 
data were not available, they generated additional data using a mathe- 
matical model. The model data were multiplied by correction factors 
and compared to historical data. This produced additional data at points 
along the coastline where historical data were not available, and allowed 

a determination of the empirical coefficients A and B at all coastal 
points. 

It should be noted that there is a probability of some error in the 
predicted flood elevations based on available historical data. For 
example, there is a 37-percent probability that a 100-year flood level 
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(i.e., a flood level with a recurrence interval of 100 years) will not 
occur in any period of 100 years. Therefore, a 100-year flood level 
predicted from a 100-year period of record may be too low. Also, there 
is a 9.5-percent probability that a 1,000-year flood level will occur 
at least once in any period of 100 years. Therefore, the predicted 100- 
year flood level, based on a 100-year period of record, may be too high. 

Confidence limits for the predicted flood levels can be obtained 
using methods similar to those used for river flood levels. However, 
rivers have a seasonal variation in flow, so a l-year time increment is 

significant in that case. In the case of tsunamis, the l-year time 
increment is a convenient means of measuring time, but there is no par- 
ticular relationship between this time increment and the generation of 
tsunamis. Methods used for obtaining confidence limits for tsunami 
flood levels should give the same results, regardless of the chosen 
time increment. 

Beard (1962) notes that there is a 5-percent probability that the 

magnitude of the difference between the real flood level and the pre- 
dicted flood level will be greater than or equal to twice the standard 
error. Assuming there is an equal chance of the real flood level being 
either greater than or less than the predicted value gives +2.5- and 

-2.5-percent confidence limits. 

Where no historical data are available, data may be constructed 
entirely from a computer model by assigning magnitudes to various tsu- 
namis in the mathematical model, and by determining the probability of 
generation for each tsunami magnitude. However, the results will not 

have the same degree of accuracy. 

An exact relationship between tsunamt magnitude and earthquake 
magnitude has not been determined. lida (1961) proposed that tsunamis 
could be assigned a magnitude based on their energy (the energy of the 
generated waves), with an increase in magnitude of 0.5 being equal to a 
doubling of the energy. He also related the tsunami magnitude to the 

maximum runup height in meters at the shoreline area experiencing the 
strongest tsunami action (lida, 1970). The relationship between the 

runup height R,~, and the tsunami magnitude m is shown in Figure 2. 
The dashlines show the range of the expected maximum runup, based on 
Tida's data, due to differences in the characteristics of the individual 

tsunamis and coastal areas. 

Soloviev (1970) revised the definition of tsunami magnitude by relat- 
ing it to the average runup height R (in meters) at the shoreline area 
experiencing the strongest tsunami action. This tends to average out 
any high runup heights related to a particular coastal feature, and should 
be more representative of the actual tsunami energy. Soloviev does not 
indicate the length of coastline to be used in the average, but does pro- 

vide an equation for the magnitude as 

m = log, (/2' RB) (3) 
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Figure 2. Wave height versus tsunami magnitude. 

As shown in Figure 2, Soloviev's scale gives a more rapid increase in 
maximum wave height than Iida's scale for a given change in tsunami mag- 
nitude. This indicates that an increase in magnitude on Soloviev's scale 
would represent a greater increase in tsunami energy than an equivalent 
increase in magnitude on lida's scale. 

Abe (1979) suggests that the tsunami magnitude can be represented 
as a function of the average runup height and a constant which is 

dependent upon the source region and the station where the tsunami is 
measured. He shows that the magnitude, obtained by this means, can be 
related to the seismic moment. 

The probability n(m) of a tsunami with magnitude m being gener- 
ated in any given year in a specified generating area is given by the 

empirical equation 

n(m) = aero (4) 
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where the coefficients a and b are determined by a least squares 
analysis of the available data for the generating area. To calculate 
probabilities tsunamis may be placed in groups; e.g., a group of tsunamis 
shown with magnitude 3.75 actually includes all tsunamis with magnitudes 
from 3.5 to 4.0, etc. To analyze the probability of an individual tsunami 
having a magnitude greater than or equal to 3.5, the probabilities would 

be summed 

n(3.75 + 0.53) = n(3.75) + n(4.25) + n(4.75) (5) 
=O QM N 

which would include all tsunamis with magnitudes from 3.5 to 5.0. It 
should be noted that the stress in rock cannot exceed some maximum value; 

the rock will fracture when the stress reaches that value. 

Abe (1975) and Geller (1976) show from empirical results that the 

fault length of earthquakes is approximately equal to twice the fault 
width. Using these results and the model of Haskell (1969), Geller gives 
a maximum earthquake magnitude, M, of 8.22. Because of variations in 
the assumed fault length-to-width ratio, actual earthquake magnitudes 
may exceed this value slightly; Geller lists a magnitude of 8.5 for the 
1964 Alaska earthquake. However, as noted by Geller, the maximum magni- 

tude occurs because the conventional magnitude scale is saturated and 
ceases to give a meaningful measure of the earthquake size. 

It is assumed that tsunamis do not occur with magnitudes greater 
than 5.0 where the tsunami magnitude has some relationship to earthquake 
magnitude as mentioned previously. If tsunami magnitude is related to 
seismic moment, defined by Kanamori (1972) as a function of rigidity, 

fault area and average fault slip, Kanamori and Cipar (1974) indicate 
that the 1960 Chilean earthquake had the largest seismic moment ever 
reliably determined (2 x 1039 dyne-centimeters). 

The method for grouping tsunamis (eq. 5) has been utilized by Houston 
and Garcia (1974), using statistics for the entire trench along the Chilean 
coast. Applying revised information for that particular generating area, 
a major source of tsunamis in the western United States (Houston and 
Garcia, 1978); a = 0.074 and b ="0065).) Taking the value mij= 35) formsthe 

magnitude of a design tsunami (to be used for determining potential runup 
in coastal areas), the probability for a tsunami with a magnitude of 3.5 
or greater being generated in any given year is 

n(3.5) = 0.074 [er S088 Gera) + e70-63(4.00) , e-0-63(4.75) | (6) 

which gives a value of 0.0166 or a recurrence interval of 60 years. For 
a 412-year period for the Chilean coast, the prediction would be seven 
tsunamis of magnitude 3.5 or greater. This agrees with historical records 

of tsunamis in this area. 
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Another major source of tsunamis in the western United States is the 
Aleutian Trench. Only relatively recent records exist for the area. 
Analysis of these records by Houston and Garcia (1974), as revised in 
Houston, et al. (1975b) and Houston and Garcia (1978), gives 

n(m) = 0.113-79:71 ™ (7) 

which is similar to the previous equation for the Peru-Chile Trench. The 
probability of tsunami occurrence is assumed to be uniform along the 
trench. The distribution of recent earthquakes along the Aleutian Trench 
is shown in Figure 3, and the mean annual number of earthquakes of any 
given magnitude in Figure 4. The straight lines in Figure 4 are not 
accurate above an earthquake magnitude, M, of about 8.5 because of the 
physical limits on allowable stresses in the rock forming the Earth's 
crust. Also, the straight lines in Figure 4 representing the occurrence 
of earthquakes in Alaska and the world would intersect at an earthquake 
Magnitude of about 2.5, so the plotted lines should not be extrapolated 
to values of earthquake magnitude less than those shown. 
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Figure 3. Principal fault systems and distribution of epicenters of major 
Alaskan earthquakes, 1298-1961 (from Wilson, 1969; adapted from 
Davis and Echols, 1962). 
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Figure 4. Mean annual occurrence of shallow-focus 

earthquake shocks for the Aleutian and south- 
eastern Alaska region (from Wilson, 1969; 

adapted from Berg, 1964). Trends of World 
and Japanese data are inserted for comparison. 

Using equation (7), the probability of a tsunami with a magnitude of 
3.5 or greater is 

No 5) = il(Ss 7S) ada) ES in((4be WS) (8) 

which gives a value of 0.0174 for the Aleutian Trench. This value is 
based on a relatively short period of data for large tsunamis only. 
Dividing the trench into 12 segments gives the probability of 0.00145 
for a tsunami of the given magnitude of 3.5 or greater to be generated 
at any particular segment of the trench in any given year, assuming an 

equal probability for each segment. The general equation for a particu- 
lar segment of the trench becomes 

n(i) = 0.0094 e-9-71 7 (9) 
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To determine the probability of runup of a given height at a given 

location along the coastline, it is necessary to propagate tsunamis 

across the ocean by numerical means from each segment of the trench for 
Auli ~eSwmmennal, WeeMsltewGlas,) (Gks@oi4 th Bos Ass SeOh/ GoS4 4.05) 465) eine 

5.0). The wave train of each tsunami must be superimposed on segments 
of the tidal cycle of an interval equal to the duration of the wave train. 
This superposition must be made for each tidal segment of that interval 
for a l-year period, and the probability of the resulting runup determined. 
Tidal variations are discussed by Harris (in preparation, 1980). A cumu- 
lative probability can then be established for runup at a particular site. 

Determining the probability of tsunami runup at a particular coastal 
location for tsunamis generated in the Aleutian Trench area, would require 
the numerical generation of 84 tsunamis (12 segments of trench and 7 
intensities of each segment). As shown by Houston and Garcia (1974), each 
runup value has an associated probability, and the totality of runup val- 
ues at a given shoreline point defines a probability distribution from 
which the cumulative probability distribution, P.(Z), can be obtained 

for runup greater than or equal to a particular value. 

By approximating the probability fg(Z) of the astronomical tide by 
a Gaussian distribution (Petrauskas and Borgman, 1971; Houston and Garcia, 
1974), the probability of runup to a given elevation is given by 

Eta) = f £,(2) Pg(Z - 2) da (10) gf 

Probabilities for tsunami runup can then be determined at each coastal 
point, combining the tsunami with the astronomical tide. 

An analysis similar to that used for the Aleutian Trench could be 
applied to tsunamis generated in other source areas. For the west coast 
of the United States (excluding Hawaii), only the Aleutian Trench and the 
Peru-Chile Trench appear to produce significant tsunami runup, although 
Holden (1898) indicates some occurrence of tsunamis from sources along 

the California coastline. Using numerical results obtained for tsunamis 
generated along the Aleutian and Peru-Chile Trenches, Houston and Garcia 
(1978) have determined probable 100- and 500-year tsunami flood elevations 

for the west coast of the continental United States. 

II. THE GENERATION OF TSUNAMIS 

Tsunami-type waves can be generated from a number of sources, includ- 
ing shallow-focus submarine earthquakes, volcanic eruptions, landslides 

and submarine slumps, and explosions. Each of these sources has its own 
generating mechanism, and the characteristics of the generated waves are 
dependent of the generating mechanism. The tsunami waves which travel 
long, transoceanic distances are normally generated by the tectonic 
activity associated with shallow-focus earthquakes. However, large waves 

can be generated locally by the other generating mechanisms. 
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1. Submarine Earthquakes. 

As shown by Iida (1970), tsunamis are generated by shallow-focus 
earthquakes of a dip-slip fault type; i.e., vertical motion upward on 
one side of the fault and downward on the other side (Fig. 5). Shepard, 
MacDonald, and Cox (1950) indicate that tsunamis which travel long dis- 

tances across the ocean are probably caused by unipolar disturbances. 
(An example of a unipolar disturbance would be the uplift of a large 

area of the sea floor where there is a net change in volume.) Waves 
generated from a unipolar source decay much less rapidly with distance 
than waves generated by a bipolar disturbance; i.e., a combination up- 
lifting and subsidence, or other apparent transfer of material on the 
sea floor, without a net change in volume. Hammack and Segur (1974) 

studied the propagation of waves both experimentally and numerically. 
They indicate that where there is a positive net change in volume (e.g., 
a unipolar uplifting of the sea floor), waves of stable form (solitons) 
evolve, followed by a dispersive train of oscillatory waves. The number 
and amplitude of the solitons depends on the initial generating mechanism. 
The wave record for the 1964 tsunami at Wake Island (see Fig. 6) illus- 
trates this type of wave generation. Van Dorn (1965) discusses the 
generating mechanism of the 1964 tsunami which originated in Alaska. 
The ground motion was dipolar, having a positive pole (uplifting) under 
the sea and a negative pole predominantly under the land. As the positive 
pole was the main tsunami-generating mechanism, this was equivalent to a 
unipolar source. 

Dip- Slip Fault 

Strike-Slip Fault 

Figure 5. Movement along faultlines. 

Heck (1936) indicates that horizontal motion of the sea floor does 

not appear to generate large tsunamis. However, large "local" tsunamis 
may be generated by horizontal motion. Iida (1970) shows that major 
tsunamis (those that cause high water levels at many different coastal 
locations) do not appear to occur as the result of deep-focus earthquakes 
or the strike-slip fault type, i.e., horizontal motion along the fault- 
line (Fig. 5). A general expression for the lower limit of the earth- 
quake magnitude, M, of tsunamigenic earthquakes is given by lida (1970) 

as 

M= 6.3 + 0.005 D. (11) 
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Figure 6. Wave record from Wake Island, showing arrival 
of tsunami (initial motion is positive and 
remains above normal tide curve for more than 
an hour) (from Van Dorn, 1964). 

based on tsunamigenic earthquakes in Japan, where Dr is the focal depth 
in kilometers and M the magnitude on the Richter scale. Tsunamis usu- 
ally do not occur for earthquake magnitudes less than that given by 
equation (11), although a small number of tsunamis of lesser magnitude 
have been associated with lesser magnitude earthquakes. It should be 
noted that equation (11) does not consider the location of the earthquake 
with respect to the coastline, the configuration of the coastline, and 
possible local resonance effects. The Richter scale is given by 

_ (log E - 11.8) 
1 

M 

where E is the earthquake energy in ergs. 

Geller and Kanamori (1977) note that care must be taken when defining 
earthquake magnitude. Richter (1958) gives higher values for earthquake 
magnitudes than those listed by Gutenberg and Richter (1954). The differ- 
ence results from the relationships used to determine earthquake magni- 
tudes from surface wave magnitudes and body wave magnitudes. 

Attempts have been made to define lower limits for earthquake magni- 
tudes associated with disastrous tsunamis. However, the definition of 

"disastrous tsunamis" may be more a function of the location of the origin 
and the population in the adjacent coastal zone, rather than an analysis 
of the actual waves generated. Also, the equations developed to define 
these limits are based on limited data and do not fully consider coastal 
configurations and resonant effects. 

A tsunami generated from a dip-slip fault source will have the 
characteristics of being generated from a line source; i.e., the length 
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of the generating area is much greater than the width. When displace- 
ment occurs along a substantial length of faultline, the divergence of 
the wave rays of the generated wave (i.e., the spreading of wave energy 
along the wave crest) will be much less than for a wave generated from 
a small source. For a "locally" generated wave, i.e., a wave generated 

near the coastline under consideration, the main component of the wave 
energy will travel perpendicular to the faultline and the energy per 
unit length of wave crest would remain approximately constant for an 
unrefracted wave. 

2; Volcanic Activity. 

Although most major tsunamis have been caused by shallow-focus earth- 
quakes, a small percentage have been caused by volcanic activity which 
includes localized earthquakes, shoreline and submarine slumps, and 
volcanic explosions. Examples of these are the volcanic activity of 
April 1868 and November 1975 in Hawaii, with associated earthquakes off 
the southeast coast of the island of Hawaii, and the August 1883 erup- 
tion and explosion of the island of Krakatoa near the Sunda Strait in 
Indonesia. The explosion of Krakatoa destroyed an estimated 8 cubic 
kilometers (1.92 cubic miles) of the island. Large shoreline subsidences 
were aSsociated with the eruptions and earthquakes on Hawaii. 

Tsunamis with volcanic origins have the characteristics of waves 
generated from a small source area. These waves spread geometrically 
and do not cause large wave runup at locations distant from the source, 
but may cause very large waves near the source. Also, there may be 
refraction effects which trap waves along the coastline, or standing 
edge waves may be generated along the coastline. 

Both the 1868 and the 1975 tsunamis in Hawaii caused high waves at 

points on all sides of the island of Hawaii as well as waves on the other 
islands (Pararas-Carayannis, 1969; Pararas-Carayannis, International 

Tsunami Information Center, personal communication, 1975). The 1975 

waves persisted for more than 4 hours at all points. Meyer (Department 
of Mathematics, University of Wisconsin, personal communication, 1975) 
indicated that trapped waves may exist with many nodes around the island. 
These trapped waves would gradually decay, leaking energy to the sur- 
rounding ocean. 

3. Landslides and Submarine Slumps. 

Landslides and submarine slumps can occur from various causes, but 

are often associated with earthquakes. The waves generated by such events 
will spread geometrically as they propagate from their source in an open 
ocean, but can be very high near their origin. Waves can be particularly 
high if they occur in a confined inlet, or if resonant or refraction 
effects exist. 

Examples of landslide-generated waves have been reported by Miller 

(1960) for Lituya Bay, Alaska, in 1853, 1874, 1936, and 1958. The 1958 
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wave reached an estimated maximum surge elevation of 530 meters (1,740 
feet) on the opposite side of the bay, and generated a 6l-meter-high 
wave seaward in the bay. Waves were also generated by icefalls in 
Yakutat Bay, Alaska, in 1845 and 1905. Jorstad (1956), as referenced 
by Wiegel (1964), reported on landslide-generated waves in Tafjord, 
Norway, in 1718, 1755, 1805, 1868, and 1934. 

An example of a wave generated by a shoreline slump is given in 
Berg, et al. (1970). A survey of the Valdez, Alaska, area after the 
March 1964 earthquake showed that the water depth at the end of the 
Valdez Dock had increased from 9 to 37 meters (30 to 120 feet), destroy- 
ing the dock. Also, at a small-craft harbor breakwater, the water depth 
increased from 2.7 to 27 meters (9 to 90 feet), destroying the breakwater. 
The owner of a fishing boat, heading toward the Valdez Narrows from the 
open sea, reported a wave 10.7 to 15 meters (35 to 50 feet) high, in the 
narrows, which dispersed after passing the narrows. 

The first wave to hit Valdez was generated by the slump of the 
waterfront, and the second wave by the slump of a shoreline area some 
distance away. After about 5 to 6 hours, a third wave arrived, followed 
more than 2 hours later by a fourth wave. These later waves apparently 
resulted from some reflection or resonant effects within Prince William 
Sound. 

Ambraseys (1960) indicated that the tsunami of 9 July 1956 in the 
Greek Archipelago was probably produced by a series of landslides on the 
steep banks of a submarine trench. The wave had an amplitude of 30 meters 
(100 feet) near its source. Striem and Miloh (1975) report that tsunamis 

have probably been generated by slumping of the continental slope off the 
coast of Israel. Van Dorn (1965) indicates that tsunamis generated from 
this type of source appear to be fairly localized and will not be large 
at long distances from the source. The generating mechanism is extremely 
inefficient, and only about 2 percent of the potential energy of a falling 
or sliding weight is converted into wave energy. 

4. Explosions. 

An explosion acts as an impulsive-generating mechanism which generates 
dispersive waves from a point source. Data from nuclear explosion Baker 
at Bikini Atoll in 1946 show that the wave height is approximately in- 
versely proportional to the radial distance from the point of origin; 

i.e., Hr = constant where H is the height of the wave, and r is the 

radial distance from the point source. At a radial distance equal to 
35d, where d is the water depth, the relationship changes slightly, 

with the wave height decreasing less rapidly. Wilson (1963) discusses 
data on wave dispersion. 

The height of a wave generated by an explosion has been shown to be 
dependent on the depth of the explosion charge. Van Dorn, Le Mehaute, 
and Hwang (1968) show that two critical depths exist which will produce 
the highest waves for any given explosive charge. The critical depths 
are dependent on the charge yield, given in equivalent pounds of TNT. 

Extensive material is available on waves generated by explosions, 
and will not be considered further here (see Smith, 1967). 
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III. MECHANICS OF GENERATION 

The generation of large, transoceanic tsunamis results from the 
displacement of water above the area of uplifted sea bottom associated 
with a dip-slip fault movement. Crustal displacement progresses along 
a faultline from some initial source. Ben-Menahem (1961) developed a 
method for determining the direction, speed, and length of rupture 
propagating from the epicenter of a given earthquake by using recorded 
seismic surface waves. Various analyses using this method, as reported 
in Berg, et al. (1970) for the 1964 Alaskan tsunami give speeds from 
3.0 to 3.5 kilometers (1.9 to 2.2 miles) per second for rupture propaga- 
tion and a rupture length of from 600 to 800 kilometers (370 to 500 miles). 
Because of the high speed of rupturing, it is generally assumed in analyz- 
ing wave generation that the total uplifting occurs instantaneously. 

1. Area and Height of Uplifting. 

Very little data are available on the size of the generating areas 
and the height of uplifts for various tsunamis which have been recorded 
at coastal points. After the 1964 tsunami generated in Alaska, extensive 
surveys were undertaken in the area of origin (Plafker, 1965; Berg, et al., 

1970). These surveys included comparisons of tide levels at surviving 
tide gages, establishment of previous tide levels by visual observation 
and interviews with area residents, new hydrographic surveys in areas 
previously surveyed, establishment of new elevations at bench marks, and 
measurement of the displacement of sessile marine organisms. The uplifted 
water area on the Continental Shelf was estimated as 1.1 x 10!! square 
meters (1.184 x 10!2 square feet). The potential energy of an incremental 
area of uplifting is proportional to h*, where h is the height of up- 
lifting. The average value of h? was estimated as 4.1 square meters 
(44.1 square feet). The uplifted area in Prince William Sound was con- 
sidered to have a limited effect on the tsunami generation because of the 
restricted connections between the sound and the shelf area. 

An uplifting of the sea bottom will produce a vertical uplifting of 
the overlying water. As a first approximation, it may be assumed that 
the uplifting of the water surface equals the uplifting of the sea bottom. 
The potential energy of the uplifted water is then given as 

h. 
@ 

Esme A.h. — 13 Be at (13) 

where 

E = the energy in ergs (foot-pounds) 

p = the density of the seawater and is assumed to equal 1.0252 

grams per cubic centimeter (1.989 slugs per cubic foot) 

g = gravitational acceleration and is equal to 980.7 centimeters 

(32.174 feet) per second squared 

A; = an incremental area of uplifting 

h; = the height of uplifting over the incremental area A, 
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If the incremental areas are equal, i.e., A; = An =~. -.- = Ay? then 

equation (13) can be rewritten as 

ye 
Beeog ls @ eS (14) 

t t=1 2 

or, alternatively, 

h2 n 
Eg=iosen ieee (15) 

Lt Z=l1 2n 

Noting that the total area, A, is given by 

Mea mi. (16) 
t 

and that 

RO He I 3G Gg a ne Gas) 
NE SCENES ee LEN pC) (17) 

t=] 2n 2n 2 

equation (15) becomes 

(h2) 
ss A ee (18) 

where Cy is the average value of the square of the uplifted heights. 

For the 1964 Alaskan earthquake the height of uplifting varied con- 
siderably over the area of uplifting, and had a maximum in excess of 15 
meters (49 feet) at a point near Montague Island (Malloy, 1964). The 
tsunami had a calculated potential energy of 2.26 x 1022 ergs (1.67 x 10!° 
foot-pounds). 

When using equation (18) it must be remembered that the average of 
the height squared, (h7) aug, is not equal to the average height squared, 

(havg)?. This is easily illustrated by the following example problem. 

kk kK ke kK k ke * * * * * EXAMPLE PROBLEM 1 * * * * * * * * ® *& * * * * * 

GIVEN: An area of uplifting is divided into five equal-sized areas of 
2.3 x 10!2 square centimeters (2.48 x 109 square feet), with upliftings 
of 30, 60, 90, 120, and 150 centimeters, respectively. 

FIND: 

2 (a) The value of hang) 5 

(b) the value of (h7 Jang » and 

(c) the potential energy of the uplifted seawater. 
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SOLUTION: 

(a) h = 30_+ 60 + 90 + 120 + 150 = 90 centimeters 
avg 5 

has = 8,100 square centimeters (8.72 square feet) 

2 2 2 2 2 (b)  (h2) i) SO mat Om Rhy oOm tim ZO ae tO 
avg S 

= 9,900 square centimeters (10.66 square feet) 
(h2) _ 49,500 

avg 5 

(c) From equation (16), 

(h2) 

2 

7 u (1.0252) (980.7) (5) (2.3 x 1012) ae 

7 u 5.72 x 1019 gram-square centimeters per second squared 

5.72 x 1019 ergs (4.22 x 10!2 foot-pounds) 

CP Oe Ce CPE CN CP Cpe FI ot Oe to? sot od to us eo oo ko GP eo fo OS Ee RP eS ED Peo oF SF 

The horizontal motion along a rupture line may contribute very little 
to tsunami generation. The maximum energy input from the horizontal 
motion would occur when the rupture line is normal to the continental 
slope. The motion along the rupture line, in that instance, would be 
equivalent to a wedge moving a short distance through the water (see Fig. 
7). Berg, et al. (1970) show that for a motion equivalent in magnitude 
to that of the 1964 Alaskan earthquake, and acting normal to the continen- 
tal slope, the potential energy input to the resulting tsunami would have 
been 3.12 x 1029 ergs (2.3 x 101° foot-pounds). This is less than 1.5 
percent of the energy input from the vertical uplifting, and seems to 
confirm Iida's (1970) analysis which showed that major tsunamis are asso- 

ciated with the dip-slip fault type. In fact, the rupture line of the 
1964 Alaskan earthquake was almost parallel to the continental slope, and 
the energy input from the horizontal motion would have been negligible in 
this case. In other cases, the contribution of horizontal motion may be 

greater. 

2. Initial Wave Formation. 

Because of their long periods and corresponding long wavelengths, 
the train of waves forming a tsunami is taken to be shallow-water waves 
at their origin, and propagates across the ocean as shallow-water waves. 
The actual form of the wave train is determined by the initial generating 
mechanism, i.e., the area of the uplifted sea bottom, the height of and 
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Equivalent displacement of water surface 

Equivalent vertical motion 

Horizontal motion 

Figure 7. Horizontal motion normal to continental slope (scale exaggerated). 

variation of the uplift within the area of uplift, and the depth of 
water and coastal characteristics in the generating area. While ordi- 
nary sea waves are assumed to have a cnoidal shape as they approach a 
shore (i.e., high crests and shallow troughs), the waves in a tsunami 
may have various combinations of forms. 

Visual observations of tsunamis have led to reports that the initial 
wave was often a negative wave causing an initial drawdown of the water 
level at the shoreline. Shepard, MacDonald, and Cox (1950) show that 
some tide gage records indicate a small positive wave followed by a very 

deep trough, the amplitude of the trough being about three times the 
amplitude of the initial wave crest. This may have been misinterpreted 
by observers who reported initial negative waves. However, Striem and 
Miloh (1975) indicate that an initial drawdown may occur when the tsunami 
is generated by slumping of the continental slope. Tsunamis may sometimes 
produce waves with narrow, deep troughs and low, wide crests at the shore- 

_ line, the opposite of the cnoidal waveform. 

Wave records from Wake Island for the March 1964 tsunami (Van Dorn, 
1964) show a positive surge with a period of 80 minutes (see Fig. 6). 
There was a series of positive wave crests with the elevations of the 
intervening troughs above the normal expected tide level. This was 
followed by a series of crests and troughs with the elevations of the 
troughs below the normal tide level. Using a shallow-water wave celerity 
at the source and an average depth of approximately 100 meters (325 feet) 
for the generating area, the period of the initial positive surge is 
approximately equivalent to the time required for the trailing edge of 
the initial uplifted water surface to travel completely across the area 
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of generation. This indicates that the uplifted water surface at the 
source formed a series of solitary-type waves. The multiple crest can 
be accounted for by initial instabilities in the waveform caused by the 
generating mechanism, and the effect of the varying bathymetry of the 
ocean basin through which the wave passes. The lower waves following 
the initial series of wave crests correspond to the expected oscillations 
from a disturbance in the water surface as the disturbance is damped out. 

Wilson, Webb, and Hendrickson (1962) showed that the height of a 

tsunami at a coastal point near the source of generatton could be given 
as a first approximation by the empirical equation 

log, H = 0.75 M - 5.07 (19) 

where H is the height in meters and M the Richter magnitude. Using 
the value of M = 8.3 given by Berg, et al. (1970) for the March 1964 
tsunami, H = 14.29 meters (46.9 feet). However, this is an empirical 

relationship which does not completely account for the characteristics 
of the generating mechanism or the coastline. Although equation (19) 
might provide a first rule-of-thumb estimate of wave heights, the actual 
heights could be above or below that estimate. Determination of actual 

heights would require computation by numerical or empirical means. 

Wilson (1969) gives the relationship of Housner (1969) for the fault 
length Le in kilometers as 

log,, lL. = 0.87 M- 4.44 (20) 7 

giving a fault length for the March 1964 tsunami of Le = 604 kilometers 
(1.98 x 10® feet). This is within the range of estimates given in Berg, 

et al. (1970) and approximates the length of the generating area, i.e., 

the length along the initial wave crest. 

Wilson and Tgrum (1968) give a relationship for the period T (in 
minutes) of the primary tsunami (carrying maximum energy) as 

log,, T = 0.625 M - 3.31 (21) 

For the March 1964 tsunami, this equation gives a period of T = 75.4 
minutes (using the Richter magnitude M = 8.3). This is very close to 
the period of the positive surge noted by Van Dorn (1964) at Wake Island, 
and is equal to that period if the crest of the initial oscillatory wave 
at the trailing edge of the surge is neglected. 

The initial deformation of the water surface, for any tsunami, will 
collapse into some system of waves which must be defined. The resulting 
wave system depends on the shape of the seabed deformation and the water 
depth above the deformation. The simplest means of analysis is to assume 
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that the water surface has an initial displacement equal to the seabed 
displacement, that the initial displacement is not time-dependent, and 
then propagate the initial displacement outward from the generating area 
using long-wave equations (Brandsma, Divoky, and Hwang, 1975). Other 
means of establishing the initial waves, of varying degrees of complexity, 
are described by Wilson, Webb, and Hendrickson (1962) and in other sources. 

Many of the mathematical representations of waves generated from 
bottom uplifting are based on circular source regions; however, Levy and 
Keller (1961) present one solution in terms of elliptic coordinates for 
a source region which is more elongated than circular. This solution has 
the form 

2nC Cais 6 
a, Oy @) eee AU) TEA otk (r-et)+e(T/ 4) Gen on 

where 

kts 2S coshiik@Zouce dil i 
LO) = (23) 

(27) 372 cosh(kd) 

and 

+ So (2 >» cos a) FE ()| (24) 
n\2 N ,no\ 7 

The terms Se, and So, are even and odd Mathieu functions, and 
En,ne (ka/2) and Fu,no (ka/2) are even and odd Mathieu transforms. The 
variables are defined as n the wave height, r and 6 the coordinates 
of a point in polar coordinates, t the time, C the wave celerity, k 
the wave number, Cg the group velocity, Z, the depth of generation 
‘(negative downward and equal to -d for bottom uplifting), d the water 
depth, and a the interfocal distance of the coordinate ellipses. 

Levy and Keller indicate that the velocity of the bottom uplifting is 
unimportant if the time of uplifting is small in comparison with the period 
of the generated waves. This is generally true for tsunamis. They also 

indicate that only the first few terms of I(k,0) may be important in the 
solution, although a computer solution can sum a relatively large number 
of terms. The limitations on the solution are that the solution was 

derived for water of uniform depth, the initial wavelength (or wave period) 

must be known, and the solution assumes that r is much greater than the 
dimension (diameter or length) of the source. 
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Hwang and Divoky (1970, 1972) use a simplified monotonic displace- 
ment history to describe ground motion. They propose that, to a first 
approximation, horizontal displacement of a sloping bottom can be repre- 
sented as purely vertical displacement. 

Houston, et al. (1975b) use an elliptical-shaped generating area, 
with an instantaneously displaced water surface, as input data for a 
standard design tsunami in a numerical solution. They define the sur- 
face displacement as a modified elliptic paraboloid, having a parabolic 
cross section parallel to the major axis of the ellipse, and a triangular 
cross section parallel to the minor axis of the ellipse. The numerical 
propagation of the wave uses the same procedure as used in Brandsma, 
Divoky, and Hwang (1975). The potential energy of the uplifted water 

surface for this type of surface displacement is given by 

i) e 8 E = 4() Sef (aes = x2) dx (25) 
6 aa'o 

where 

xX = measured along the major axis of the ellipse 

a = the length of the semimajor axis 

y = measured along the minor axis of the ellipse 

b = the length of the semiminor axis 

z = the vertical direction upward from the undisturbed water surface 

c = the maximum uplifted elevation at coordinates (x = 0, y= 0, 

Z) = GC) 

op = the density of the seawater (taken as 1.026 grams per cubic 

centimeter) 

IV. TSUNAMI PROPAGATION 

After determining the initial disturbance of the water surface, as 
discussed in Section III, the propagation of the tsunami to nearby or 
distant shorelines must be analyzed. Because tsunamis are long-period 
waves with long wavelengths in relation to both the water depth and the 
wave height, long-wave equations can be used. 

ds, Small-Amplitude Waves. 

The simplest means of analyzing the wave motion, where the ratio of 
the wave height to water depth, H/d, is small, is to use the following 
small-amplitude solutions to the wave equations: 
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L 
Cote steanh (2) (26) 

noe EO 
a L 

u = 27 — 

sinh [=] 
iL 

h 2n(z + d) 

eral 
L 

cos [2* ie i =) (27) 

where 

C = the wave celerity 

L = the wavelength 

d = the depth of the undisturbed water 

u = the horizontal velocity of a water particle in the direction 
of the wave motion 

a = the amplitude of the wave above the undisturbed water level 

T = the wave period 

z = the vertical distance of the particle from the undisturbed 
water surface 

x = distance measured in the direction of wave motion 

t = time 

€ = the horizontal displacement of the water particle from its 
undisturbed position 

Tsunamis are shallow-water waves; i.e., the ratio of wavelength to 

water depth, L/d, is very large. Therefore, equations (26), (27), and 
(28) can be reduced to more basic small-amplitude, shallow-water equations. 
Letting d/L-> 0, 

tanh a us (29) 
L L 
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substituting equation (29) into equation (26) gives 

gL /2nd C2 = = () 
27 L om) 

which gives small-amplitude, shallow-water wave celerity as 

Cc = vgd (31) 

Because z < d, it will always be true that z/L > 0 whenever d/L > 0. 

Therefore, 

sinh 2RL 202 (32) 
TZ 

L 

eéitn SUS 5. Bae (33) 
L L 

cosh SUB. os, 1 (34) 

une 
L 

cosh => dl (35) 

Considering that 

il ay aN i Cura ye CU en ued, oe teh (36) 
L L L L L 

cosh 

and substituting equations (32) to (35) into equation (36), 

The disturbed water surface elevation, n, at any point in relation to 

its undisturbed location is given by 

4 2 @ eas [2* ( a =)| (38) 

Substituting equations (33), (37), and (38) into equation (27), 

eee (= is 

n L L 

a lean 

L 

L x (40) 

= Bu (39) 

Noting that z/L> 0, 



but, from the basic wave equation for all waves, 

eak (41) 
T 

so that 

172 
4 aD Yeas Ue (42) 

d qiz2 

The water surface elevation can also be defined as 

Nn = a sin [ 2" iG - ll (43) 

so that by substituting equations (33), (37), and (43) into equation 

(28), 
2s) (22) 

TAGE Wie B= -7 —— 4 (44) 

Ge L 

and noting again that z/L > 0, 

p= - 3 (45) 

The wave energy, E, for a small-amplitude wave is given by 

0&8 H2L 

8 
E = (46) 

where po is the density of the seawater. If energy is conserved between 
two points for an unrefracted wave, 

og a ‘ e a Po) 6 (2224 47 aaa) (47) 
142 H, 2 a 

Parana Way ) 
Hy Lo 

but as L = CT, and T is assumed to be constant, and as C = /gd for a 
shallow-water wave, then 

Hy d; 
—_ — (49) 

Hy d, 



which is the well-known Green's Law. Noting that nag, = a; the amplitude, 

equations (42) and (45) can be written as 

agl/2 

“naz | - ALP2 oD) 

aL yy ee 51 
[ertae | 2nd CD 

For the unrefracted wave, noting that 

a H 
Ee (52) 
25 1 

g ihy// 2D 

d a7 1/ Poel (22 ) (a) os sf 

Wa d 3/4 

Lee (54) 
u d 
| mase| 2 

Also, 

E | K (za) AN Hig IB eee a [Emaze| a1) \hy (aa) d, d, d, 
1 

[Frac , d, oie 
ee ole (56) 

[rea] 2 

Equations (49), (54), and (56) provide a simple, first-order solution 

for the shoaling of an unrefracted, small-amplitude, shallow-water wave. 

* Kk kk kk & * & *® * * * EXAMPLE PROBLEM 2 * * * * * *¥ * * * ® ® * * *% 

GIVEN: A long wave with a period of 20 minutes and a height, H, of 

0.4 meter (1.31 feet) passes from a 1,000-meter (3,280 feet) water 

depth into a 500-meter (1,640 feet) water depth. The wave is assumed 

to be nondispersive. 
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FIND: 

(a) The unrefracted wave height in the 500-meter depth, 

(b) 

(c) 

the water particle velocity [fuel in each water depth, and 

the horizontal water particle motion eee in each water depth 

SOLUTION: 

(a) Hy = 0.4 meter, d, = 1,000 meters, d, = 500 meters 

iT] 

aN eles ~_——. 

S IS 

! 

H 74 

ae (ca) = 1.189 0.4 \ 500 

= 0.4(1.189) =e | 0.48 meter (1.56 feet) 

(b) From equation (50), 

| Yaz a qi72 

Assuming a = H,/2 = 
3 

0.2 meter, at d, = 1,000 meters, 

172 
u 2 Mads oSUI) ss ig 0.02 meter (0.065 foot) per second 
MOEN is OOO (1,000) 172 

From equation (54) where d, = 500 meters, 

u 

| maze | 59 _ (1,000 aan 

ki | 500 
Max 

1,000 

374 
1,000 

u = 0.02 = 0.034 meter (0.11 foot) per second 
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(c) First solving for L where d, = 1,000 meters and T = 20 minutes, 

Ga GPS el a HORM EOO (20 < GO) 

L = 118,800 meters (73.8 miles) 

From equation (51), 

le | aL 

| Bee oom Buc! 

_ 0.2(118, 800) 
g = 3.78 meters (12.4 feet) 
MEET OOO 27(1,000) 

From equation (56) where d, = 500 meters, 

ay 4 ‘A 

(Gna), M82 2 

| maze | 11F000)\EaN 
| maz | 500 

1,000 

344 

le 53093 (ee) = 6. 56 meters (20.9 Bact) 
ESO 

Kee RS He RR RY ee RS OR RR eS Cae KR e OR) ALK) anes. Ra Gee eee eR eee ay ee es a 

Soloviev, et al. (1976) compared solutions for tsunami amplitude 
using equation (49) and a numerical integration method. Equation (49) 
does not account for wave reflection from bottom slopes and results in 
calculated wave amplitudes that are too high. Also, equations (49), 
(54), and (56) do not account for wave refraction, diffraction, or 

dispersion; they cannot be used with any degree of accuracy when the 
ratio of H/d becomes large. When waves travel long distances, it is 
necessary to consider the curvature of the Earth, discussed later in 
this section. 

2. Long-Wave Equations. 

To increase the accuracy of computations, the long-wave equations 
can be expressed in various forms of partial differential equations 
which can be solved numerically. As given by Peregrine (1970) for two- 
dimensional waves propagating in water of constant depth, the equations 
may be written as follows in rectangular coordinates: 
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Linear equations: 

= + — = 0 57 
at ? OX (a) 

en ade 0 (58) 
ot ox 

Finite-amplitude equations: 

Oe in 2S ee a (59) 
ot OX OX 

on in al(d + n) u] 5 0 (60) 

ot dx 

Boussinesq equations: 

du ou an 1D 97 u 
Sa AB WY ep fee oe ye al) a te 61 
ot OX 2 é2s | 9x2 oy) 

on y a[(d os n) u] 31 (0) (62) 

ot ax , 

In addition, for waves traveling in only one direction, the Boussinesq 

equations may be reduced to the Korteweg-deVries equations which are 

then written as 

du 142 ou du Ib og) 142 a3 u a 
2 — + 2(gd —+ ZSU— + = d d —— = 0 63 

ot (ed) ae oes tgs) ax3 o) 

1742 d° z = 2 2. 
n= (2) ut 1 o —— (64) 

. 6 (ed) 

When considering the means of describing the propagation of long- 
period waves, the parameter, U, should be evaluated where U is 

defined as 

L 2 

() Co) 

and sometimes referred to as the Stokes or Ursell parameter. The 
importance of this parameter was first noted by Stokes (1847) when he 
stated that the parameter must be small if his equations were to remain 

valid for long waves. 
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Murty (1977) indicates that the value of (L/d)2 is a measure of 

frequency dispersion; the value of H/d is a measure of amplitude 
dispersion. Murty points out that the linear long-wave equations are 
valid when U << 1. In this case H/d is small and amplitude dispersion 

can be ignored. 

When U is of the order one [U = 0(1)], both amplitude and frequency 
dispersion are important. In this case Boussinesq or Korteweg-deVries 
equations should be used. Where U >> 1 amplitude dispersion dominates 
the solution, and the finite-amplitude, nonlinear long-wave equations 
should be used. It should be emphasized that when U = 0(1) it is not 
necessary that U= 1. Zabusky and Galvin (1971) show that the Korteweg- 
deVries equation accurately describes wave propagation for U < 800 in 
some cases. 

For tsunamis with very long periods (and therefore long wavelengths) , 
the condition that U << 1 is usually never satisfied. However, the error 

which results from the use of the linear equations is quite small as long 
as the value of H/d is small. The acceptable limit of the value for 

H/d (i.e., the point where the error in the calculations becomes signif- 
icant) depends in part on the rate of shoaling of the wave, i.e., the 
shoreward slope of the bottom topography. 

eK RK RK kK RK RK RK kK kK * * * * EXAMPLE PROBLEM 3 * * * * * * * *¥ * ¥ * * E * 

GIVEN: A tsunami has a period of 20 minutes and a wave height of 0.05 
meter (0.16 foot) in a 1,000-meter (3,280 feet) water depth. 

FIND: The parameter U. 

SOLUTION: From equation (31), 

C= Ved = V9.807 x 1,000 = 99 meters (325 feet) per second 

L = CT = 99 x 20 x 60 = 118,800 meters 

From equation (65), 

ae H (EY 2) 0505 (eso) 
1,000 \ 1,000 

U = 0.706 

CM ks ce Ke? EF on eo EP CE eC OF I ER Oe ee 2) ee ee hor eo GP ED 

In more recent investigations, the parameter U given by equation 
(65) has been redefined as U* where 

46 



Qo we 
and 

UA) sb os lees (67) 

This is discussed by Peregrine (1970). He points out that nonlinear 
terms which were neglected in the linear equations (57) and (58) cause 
a cumulative error that may become appreciable in a numerical solution 
after a time given by 

q372 

as H gl72 Wey 

Where rapid shoaling occurs, i.e., where a wave passes over a large 
change in water depth in a relatively short period of time, the accumu- 
lated error will be much smaller than for slow shoaling, where the wave 
passes over the same change in water depth in a relatively long period 

of time. 

The finite-amplitude equations (59) and (60) are valid as long as 

We > 1 

but generally become invalid after a finite time as the front face of 
the wave steepens. The Boussinesq equations are also applicable where 
U* > 1; i.e., where Coa < (H/d). Peregrine (1970) points out that 
the Boussinesq approximation works well for values of H/d up to about 
0.5. The Boussinesq or the Korteweg-deVries equations are used for 
waves approaching a shoreline where values of H/d become large. 

Hammack (1973) gives the value of U* as 

nN 3 1 
sae hs MAX U* = (Trae ) —_—— (69) 

(ie 
XL max 

to describe a particular region of a complex waveform. However, the 
value of U* would be expected to vary from region to region of the 
waveform in this case. This variation would indicate that using a single 
set of equations to describe a complex waveform may lead to incorrect 
results. 

3. Distantly Generated Tsunamis. 

When a tsunami travels a long distance across the ocean, the sphe- 

Tricity of the Earth must be considered to determine the effects of the 
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tsunami on a distant shoreline. Waves which diverge near their source 
will converge again at a point on the opposite side of the ocean. An 
example of this was the 1960 tsunami whose source was on the Chilean 
coastline, 39.5° S., 74.5° W. (Pararas-Carayannis, 1969). The coast of 
Japan lies between 30° and 45° N. and about 135° to 140° E., a difference 
of 145° to 150° longitude from the source area. As a result of the con- 
vergence of wumrefracted wave rays, the coast of Japan suffered substantial 
damage and many deaths occurred (U.S. Army Engineer District, Honolulu, 
1960; Hirono, 1961). Figure 8 illustrates the convergence of the wave 
rays due to the Earth's ay aeebael 
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Figure 8. Convergence of wave rays. 

Chao (1970) gives the equation for wave refraction in spherical 

coordinates as 

dx 1 (<<) _ cos a tan p (70) 

oD = ores O (71) 
S) 

and the coefficients p and q are defined as 

it Ip Bit Soe (Se \ ae 2 p ( ) sin a tan wp (72) 
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= sin a i a 92 c) ‘< sin 20 ) at 92 7) 

. R, cos C 962 RZ cos W/ \C dpad 

. (sos_2 > (i Oe GN (2 oes ci teem ih (2) 
R, C ay R C dw 

e 

2 
, (cos_o tan “) iH tan wy sec 2) led (73) 

R R2 Xe) 
é e 

idc_ 1 (2) a + (sin a) (= =) (74) 
C ds R, cos w C 36 C aw 

HS se (aay j i al + (cos a) i =) (75) 
C dw R, cos wW/\C 30 C ow 

where 

R, = the radius of the Earth 

o = longitude of the point on the surface the wave ray is passing 
through 

py = latitude of the point 

C = celerity of the wave 

Ss = ameasure of distance in the direction the wave is traveling 

a = the angle between the wave ray and a line of equal latitude 

B = a ray separation term 

Using the spherical coordinate system shown in Figure 9, Hwang and 
Divoky (1975) give the linear long-wave equations as 

i ie (76) 
and 

av g an OMe is) fo yeti Se eC pate 
at R, sine 3 % (77) 
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where 

R, = the radius of the Earth 

@ = degrees latitude (measured from the pole) 

o = degrees longitude (measured eastward) 

u = the velocity in the 6-direction 

v= the velocity in the 9o-direction 

t = time 

E = the coriolis parameter = 2 2 cos 0 

Q = the rotational speed of the Earth in radians per second 

Figure 9. Spherical coordinate system. 

For linear long-wave equations, the acceleration component in the radial 
direction is considered to be negligible. The continuity equation is 

omy 1 p ‘ 3 at 
S86 6 ae Se YES d ) Soleo d J 

at R, sin 6 ‘96 [GES 1) eta Gl BY bee a) v]| % Jt (78) 

where ¢ is a time-dependent vertical bottom displacement in the generat- 
ing area and equal to zero elsewhere. 

For instantaneous bottom displacement, the initial wave is assumed to 
be a water surface displacement equivalent to the bottom displacement, 
and d¢/3t = 0. If a wave is generated near a coastline, i.e., in rela- 
tively shallow water, the parameter U may initially be quite large. 
For a wave propagating away from the coastline, it is assumed that the 
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linear long-wave equations can be applied to the initial propagation, 
and that the resulting errors are of a size that can be accepted in the 
calculations. 

4. Nearshore Propagation. 

The linear long-wave equations may be used for the propagation of 
waves from a shoreline, across an ocean basin, and up to an area near 
another shoreline. It is also necessary to consider the propagation of 
a tsunami toward a shoreline from a nearby generating area, or into the 
nearshore area at a distant shoreline where the linearized long-wave 
equations will not provide solutions with sufficient accuracy. Peregrine 
(1967) derived equations for three-dimensional long waves in water of 
varying depth (i.e., shoaling waves) which correspond to the Boussinesq 
equations for solitary waves in water of constant depth. An expansion 
is used similar to that used by Keller (1948). 

The dimensional variables are defined with an *, and the dimension- 

less variables by the following equations: 
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where d, is a length representative of water depth; p the pressure; 
the velocity u in the x-direction, v in the y-direction, w in the 

z-direction; and the other variables are defined as before. Defining 

n 
q = (u* + v2) aatand Q if qdz (79) 

-d 

where q is velocity and Q the flow rate, the continuity equation is 

Ou 8& on = 0 
9x ay at (30) 

where Q, is the component of Q in the x-direction, and & the 
component of Q in the y-direction. 

Euler's equations of motion are 
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At the boundary z = -d, 

nee. y a SO (83) 
dX oy 

The variables n, p, q, and Q are expanded in the form 

HPS Uh, ive! My 2 el ny ie (84) 

QS CQ GIO ys (85) 

where e is the ratio of wave amplitude to depth H/d. The variable 
w is expanded as 

i SOQ, a9 Gti se e2 Wy =? 6 ono) (86) 

where o is the ratio of water depth to wavelength d/L. The zero- 
order solution gives 

Ea 
O 

The first-order solution gives 
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The second-order solution gives 
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where {,(x,;, t,) is an arbitrary function arising from integration. The 
momentum equation is 

IN, 9qy oq) ano an» . an 
—— + u, —— + Vor dt HC 
ot 1 OX, 1 dy, OX, oY; 

and the continuity equation is 

any (Q) x AQ) 
+ ———— + 

dt, OX} dy] 
(92) 

Peregrine (1967) points out that second-order terms will have first- 
order effects where t, is not of small value. He accounts for these 

effects by incorporating second-order terms into the first-order variables. 

Mei and Le Mehaute (1966) derived a solution for waves propagating 
in one direction which gives the equations as 
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and 

It can be seen that equation (94) has mixed derivatives, with respect to 
x and t, where equation (63) has a third-order derivative with respect 
to x only. Benjamin, Bona, and Mahony (1972) show that the Korteweg- 

deVries equations with mixed derivatives, such as equation (94), are 
the preferred form for describing the behavior of long waves. 

Street, Chan, and Fromm (1970) expanded on the work of Peregrine, and 
for waves propagating in one direction give 
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The numerical solution of these equations gives results comparable to 
experiments for varying bottom topography where H/d < 0.4. 

Using the work of Mei and Le Mehaute (1966), Madsen and Mei (1969) 

developed characteristic equations which could be solved numerically. 
Defining 

dn dw 
it = w and a =a 

along the coinciding characteristics x = constant, along the two distinct 

characteristics 
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The Korteweg-deVries equations provide a solution for wave propagation 
in one direction only, i.e., for an unrefracted wave. The solutions gen- 
erated could be used to provide shoaling coefficients to obtain refracted 
wave heights. 

Alternative methods of obtaining solutions for refracted waves in two 
dimensions are to use the linear long-wave equations with additional terms 

added to account for nonlinear effects, or to use solutions based on the 

Boussinesq equations. Butler and Durham (1976) suggest a solution using 
equations similar to those in a tidal hydraulic model. The momentum 
equations for the tidal model are 
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and the continuity equation is 

Shy Ou one = aS OR (du + nu) + ay (dv + nv) 0 (105) 

where the bottom stress is given by 

Te = Ve + v2 (106) 
Ba 

and G 
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Chen, Divoky, and Hwang (1975) give numerical equations for the two- 
dimensional case based on the Boussinesq equations (see Sec. IV, 5). 

5. Computer Models. 

Solutions of the equations for long water waves are obtained by 
numerical means. lLeendertse (1967) gives the following method for solv- 
ing the linearized long-wave equations by using a space staggered scheme 
as shown in Figure 10. Taking the subscript m to indicate the value 
at time t, the subscript 7 + 1/2 to indicate the value at time t + At/2, 

and the subscript + 1 to indicate the value at time t + At, the compu- 
tations use alternate sets of equations at alternate time steps At as 
shown below. First u and n are calculated implicitly and v_ explic- 
itly at time t + At/2, then v and n implicitly and u explicitly at 
time t + At, then u and n implicitly and v explicitly at time 
oo GNG/2, See, Chiletleeiny wm ee jomme Gi eal/Z, i), W ee Gols), 
and v at (j,k + 1/2), as defined in Figure 10, the calculations are, 
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© Depth (d) 

em U Velocity (u) 

BV Velocity (v) 

Figure 10. Coordinate system, 

rectangular coordinates. 
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These equations omit convective inertia terms, bottom effects, and any 
forcing functions. The various terms used are defined as follows: 
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The additional terms 

fe (Cvs Go Te he Tm 
and 
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require special computational procedures for n. These are described by 
Leendertse (1967). 

Hwang and Divoky (1975) show the same equations in spherical coordi- 
nates with u_ the velocity in the 6-direction, and v the velocity in 
the ¢-direction as defined in Figure 9. They use a different approach 
for the computation of the terms noted above which allows more direct 
computation. Similar equations are shown by Houston, et al. (1975b). 
For the coordinate system in Figure 11, the equations given by Hwang and 
Divoky (with coriolis terms added) are, at times t + At/2, t + 3At/2, 

t + SAt/2, 
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with terms such as 9n/9, 9n/d¢, u, and V computed as before. 
At times t + At, t + 2At, t + 3At, 
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© Water Depth (a) 

X Water Level (7) 

«== wu Velocity in the 9- direction 

|v Velocity in the p-direction 

Figure 11. Coordinate system, 

spherical coordinates. 
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Again, the bottom-friction, forcing functions, and convective inertia 
terms are ignored. Terms like (d + n)® are computed by averaging in 
the @-direction, and (d + n)? by averaging in the $-direction. 

In addition to specifying equations of motion, boundary conditions 
for the computational area must be established. Hwang and Divoky (1975) 
use solid boundaries at coastlines and fictitious open boundaries at 
edges of the computational area where it is necessary to truncate the 
region of computation. At solid boundaries, complete reflection is 
assumed. At open boundaries, the wave is assumed to travel without 
change in form across the final space step, so that 

US a) Ne ae (125) 
Ny - Ny As 

with the terms defined in Figure 12. 
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Figure 12. Graphical representation of the total 
transmission open boundary condition 
(from Hwang and Divoky, 1975). 

Houston and Garcia (1974) and Hwang and Divoky (1975) used numerical 

techniques to obtain predicted wave heights for the 1964 tsunami originat- 
ing in Prince William Sound, Alaska. The uplifting and subsidence deter- 
mined from field surveys (Plafker, 1965; Berg, et al., 1970) was used as 

the initial deformation of the water surface. Predicted wave heights 
13,000 seconds (3.61 hours) after the time of generation are shown in 
Figure 13. 

The assumptions that complete reflection occurs at a solid boundary 
(i.e., at a shoreline) and that equation (125) will describe an open 

boundary introduce errors into the computations which limit the length 
of real-time records which can be simulated numerically. At a shoreline, 
some amount of wave energy may be trapped so that complete reflection does 
not occur. Wave trapping is discussed later in this report. 
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Figure 13. Surface elevation contours 13,000 seconds after the 1964 
Alaska earthquake (from Hwang and Divoky, 1975). 

The use of equation (125) at the open boundaries results in an error 

in the computed wave heights at those boundaries. As computations are 
carried out for the entire computational grid at each time step, the 
error propagates through the grid at successive time steps. This error 
will have the appearance of a wave reflected from the open boundary. 
Shaw (1974, 1975; Shaw, Department of Engineering Science, State Univer- 

sity of New York, Buffalo, personal communication, 1977) suggests that 
an outer boundary integral equation method can be used to eliminate the 
error at the open boundaries. The outer boundary integral equation would 
be used to determine the wave height, n, and its normal derivatives at 

the boundary; those values would be used in the finite-difference solu- 

tions for the interior region. 

6. Nearshore Computer Models. 

For waves in the nearshore region, Peregrine (1967) developed finite- 
difference equations for the two-dimensional case of a wave shoaling on 
a beach. Defining 
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he calculated the values of u and n with a time-stepping procedure, 
first using an approximation to the continuity equation which gives 

* 1 + : M341? a provisional value of Neel? by the equation 
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Then, Ben is calculated from an approximation to the momentum equation 
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Finally, the continuity equation is used again to give an improved value 

for Un, s+1 
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Street, Chan, and Fromm (1970) and Chan, Street, and Fromm (1970) 

extended Peregrine's work, using a Marker-and-Cell numerical technique 
to obtain solutions for waves propagating in one direction. Where values 
are known at time t, they compute the values of u and w at time 
t + At using the equations 
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where the coordinate system is shown in Figure 14, p is pressure, ae 
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Figure 14. Position of variables. 

and g, the components of gravitational acceleration, and u* and w* 
convective terms. The terms on the right side of equations (129) and 
(130) are taken at time t. Then, the pressures are recomputed from 
the equation 
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The convective terms are defined as shown by Fromm (1968). The 
2 x : 

equation for Ee a ih is 
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where 
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Similar expressions can be developed for other convective terms. 

For points near the free surface (Fig. 15), Chan and Street (1970a) 
give the equation for Paik as 
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The free-surface position, as given by Chan, Street, and Fromm (1970) 
at time t + At is 

n+ WaMae 7) Was n-(t) 
dh S tr, oS WM, —— + BIER (139) 
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where nj(t) is the elevation at time t, and uj and w; the horizontal 

and vertical velocities, respectively, at the free surface at time t + At. 

For refracting waves propagating in two dimensions in the plane of 
the water surface, Chen, Divoky, and Hwang (1975) give the equations below 
using dimensionless expansions similar to those proposed by Peregrine 
(1967). A time-staggered scheme is used, with the velocities and wave 

amplitudes calculated explicitly at alternate time steps of At/2. The 
amplitudes at t, + At/2 will be calculated using amplitude at ty - At/2 
and velocities at t3 then, the velocities at t, + At will be calculated 

using velocities at C5 and amplitudes at ea At/2. At time Cys At/2, 

the amplitude is 

Mg tee Iam alae (ee ul | 
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Figure 15. Computation of pressure near 
the free surface. 

where the j,k subscripts refer to positions in the plane of the still- 

water surface as shown in Figure 10, and U and WV _ the velocities 
satisfying the linear long-wave equations. Where the initial velocity 
field is known, u and V_ can be computed at time t, + At using values 
of u and V at time t, and amplitudes at time t, + At/2. This gives 
the equations 

a et MAL i 
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At time t, + At, the velocities u and Vv are given by 
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where the values on the right side of the equations are at previous 
time steps as indicated. 

64 



Chen, Divoky, and Hwang (1975), using a stability criterion obtained 
by Benjamin, Bona, and Mahony (1972), use a higher order solution for 
the amplitude when 

d< = aah Sarl 

(20 at)}/3 

where the variables are expressed in dimensionless form. The solution 

then becomes 
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The higher order derivatives are approximated by central difference 
equations as follows 
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etc. Computed surface elevations were smoothed when one of the following 

conditions was satisfied: 

(a) A crest or trough has wave amplitude less than 25 percent 
of the maximum wave amplitude at that instant; 

(b) the local velocity component (u) or (v) has a different 
sign from the average value of the surrounding four points; 

(c) at a matching point where equations change from linear to 
higher order equations. 

Smoothing is accomplished by the average 

io = 0.5 T jek ea Ns ed (149) 
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where the values on the right side are before smoothing, and 

ne 
= Alpls 
nN: 8 150 
JK 12k + 4 ee) 

where 

~ 

i shes ELGG ere Me pe ea eae 

SC Mea MG tee” Sapa (151) 

and k represents a weighting spline coefficient that varies from 
0 to . The influence from the surrounding points is controlled by 
the values of (k). For the case k = 0, the equation reduces to Laplacian 

interpolation. 

To avoid numerical instability, Chen, Diveky, and Hwang (1975) imposed 

the condition at matching points that 

“natching ~ 0-5 (N 7 near i “higher order 

Also, the partial derivative with respect to time was approximated by 

Rosam (152) 

where n is taken at time t, + Me/2-anden ne sathta oe At/2, sand 
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For the open boundary condition previously mentioned (Fig. 12), the 
finite-difference equation becomes 
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Listings of typical computer programs for solutions of long-wave 
equations can be found in Brandsma, Divoky, and Hwang (1975) for linear 
long-wave equations, and in Chen, Divoky, and Hwang (1975) for Boussinesq- 

type equations. 
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V. TSUNAMIS APPROACHING THE SHORELINE 

As a tsunami approaches a coastline, the waves are modified by the 
various offshore and coastal features. Submerged ridges and reefs, 
continental shelves, headlands, various shaped bays, and the steepness 
of the beach slope may modify the wave period and wave height, cause 
wave resonance, reflect wave energy, and cause the waves to form bores 

which surge onto the shoreline. 

Ocean ridges provide very little protection to a coastline. While 
some amount of the energy in a tsunami might reflect from the ridge, 
the major part of the energy will be transmitted across the ridge and 
into the coastline. The 1960 tsunami which originated along the coast 
of Chile is an example of this. That tsunami had high wave heights along 
the coast of Japan, including Shikoku and Kyushu which lie behind the 

South Honshu Ridge (Hirono, 1961). 

1. Abrupt Depth Transitions. 

An ocean shelf along a coastline may cause greater modification to 
a tsunami than an ocean ridge. Waves may become higher and shorter, and 
dispersion may occur. Lamb (1932) gave the equations for a single wave 
passing over an abrupt change in water depth as shown in Figure 16. He 
considered only the case of a wave at a zero angle of incidence, i.e., 
Oe Oa) fe 0. The equations he derived are 
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or 

Hy Ri Re i He 
where 

Blo the incident wave height 

H, = the reflected wave height 

ln the transmitted wave height 

d, = the initial water depth 

d, = the water depth under the transmitted wave 
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Figure 16. Wave passing onto shelf. 

The equations predict that substantial reflection will occur when a wave 
passes from deep water to shallow water, and also when a wave passes from 
shallow water to deep water. It is assumed that no energy loss occurs, 
and that a single incident wave splits into a single reflected wave and 
a single transmitted wave. Taking E; as the wave energy of the incident 
wave, Ey, as the wave energy of the reflected wave, and E, as the wave 
energy of the transmitted wave, 
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and from equations (159) and (160) 
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Cochrane and Arthur (1948) extended Lamb's work to consider waves 
approaching a shelf at varying angles of incidence. They give the ratio 

of reflected wave height to incident wave height as 

H va, cos 8, - vd, cos 8, 
Y 

H. vd. cos 6, + vd, cos 0 t 1 1 2 2 

(163) 

for an abrupt change in water depth. The water depths d, and do, 
and the angles 6, and 065, are defined in Figure 16. This equation 

also applies to a single wave with a reflected component and a trans- 

mitted component. 

For a given incident wave angle 6,, the value of 6) can be 
determined using Snell's Law so that 

d, 142 

sin 0, = (sin 85) a (164) 

Equation (163), as written, applies to shallow-water waves; wave disper- 
sion on the shelf is not considered. The solutions to equations (163) 

and (164) are presented graphically in Figures 17 and 18, respectively. 

The ratio of transmitted wave height H, to the incident wave height 

is given by 

H 2 ¥d, cos 6, 
Baa z (165) 
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or, alternatively, 
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as before. 
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Wave reflection from a shelf (after Cochrane and 

Arthur, 1948). 

Figure 17. 

d)/d2 

8, versus incident wave angle 6,. Transmitted wave angle Figure 18. 
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GIVEN: An incident wave with a height of 1 meter (3.28 feet) and a period 

of 30 minutes approaches a coastline through water 2,500 meters (8,200 
feet) deep, and passes onto a shelf where the water depth is 100 meters, 

at an angle of incidence 6, = 30° 

FIND: 

(a) The angle at which the transmitted wave propagates onto the shelf, 

(b) the height of the reflected wave, and 

(c) the height of the transmitted wave. 

SOLUTION: 

(a) From equation (164) 

n he 3 D 
ibe) 

iT 

=a ~~ 
| a 

ibe) 

—z 

\N ie) 

n hs =} @D 
— 

100 172 

8, = sin7 1 7500 sin 30°] = sin7!(0.1) 
b) 

8 Boga 
2 

(b) From equation (163) 

Va, cos @, - va, cos 8, 
Ro (H,) 

a vd, cos 8, + vd, cos 8, 

_ V2,500 cos 30° - Y100 cos 5.74° 

” 72,500 cos 30° + Y100 cos 5.74° 
H (1) = 0.626 meter (2.05 feet) 

(c) From equation (158) 

H, = H. + He 

H 1 + 0.626 = 1.626 meters (5.33 feet) 
t 

Ooo OO 0 OO OO 8 OD WU te OU OO O OO to 2 Wt to C2 oo) ch oc? C2 CF CF 0 CPO C2 2 

When the initial angle of incidence 6, > 0, the distance between 
adjacent wave rays is different for the incident and transmitted waves. 
As the energy equations are written for a unit length of wave crest, 
from conservation of energy, 

el 



t 
= —+eE a ana (166) 

L 

or, alternatively, 

cos 0, 

E.=E,——+#E (167) 
L t cos 8, r 

where by is the distance between adjacent wave rays for the transmitted 
wave, and b; the distance between adjacent wave rays for the incident 
wave. Rewriting equation (167), 

cos 6 E 

+ =e (168) 

tL 

which gives 

H2 L, cos 8, H2 L 
AN SE a) ea (169) 

He t. cos 6 H2 L. 
te 1 1b 4b 

Noting that L+/Lz = Cz/Cz = vd,/d, and that Ly/Lz = Cy/Cz = vd,/d, = 1, 
and substituting equations (163) and (165) into equation (169), 

2vd, cos oy 2 d, 142 cos 95 

vd) cos 94 + vd. cos 95 d, cos 6, 
2 

vd, cos 6, - Va, cos 0, 2 
Po ae evel (170) 

Vd, cos 95 + Vd, cos 5 

which reduces to 

Vd. cos Oe ar Vd, cos 6. \2 
RAAT UST oa af Rp TIMER, | ISTE (171) 
Vd, cos oe + vd, cos 0, 

proving that the equations of Cochrane and Arthur conserve the energy of 
the incident wave. 

Cochrane and Arthur (1948) compared a calculated value for a wave 

from the 1946 tsunami, which reflected from the continental slope off 
southern Oregon, with an actual recorded wave height at Hanasaki, Japan. 
Using a rough approximation for the wave height at the top of the conti- 
nental slope, it was determined that the reflected wave arriving at 
Hanasaki would have a height of 17 centimeters (0.56 foot). The observed 
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wave height, for an arrival time equal to the calculated time for the 
reflected wave, was in good agreement with the calculated wave height. 

Figure 17 shows that for waves arriving with a higher angle of 
incidence there will be some value of d,/d, for which equation (163) 
predicts no reflected wave. For these same values of d,/d,, the pre- 

dicted transmitted wave height would equal the incident wave height. 
Cochrane and Arthur note that reflected waves are normally of secondary, 

but not negligible, magnitude according to theory. At given stations, 
convergence may cause reflected waves to be of primary magnitude, but 
this occurs only in relatively few cases. Shepard, MacDonald, and Cox 

(1950) note that the highest and most damaging waves at Napoopoo and 

Hokeena, on the island of Hawaii, from the 1 April 1946 tsunami origi- 
nating in the Aleutian Islands, Alaska, were reflected waves from the 
continental slopes of Japan and the Bonin Islands. 

2. Linear Depth Transitions. 

Cochrane and Arthur (1948) indicate that the length of a continental 
slope, as well as the difference in water depth, should be considered in 
the calculations. Dean (1964) considered the case of a wave normally 

incident on a linear change in water depth shown in Figure 19. Defining 
a parameter, 2Z,, as 

And 

Zo : (172) 
eve thy 8 

the transmission coefficient 

H 
t 

L 

and the reflection coefficient 

Be 
‘So? aD (174) 

t 

Dean found the results shown in Figure 20. As before, for the zero angle 
of incidence assumed by Dean, when dj/d, < 1.0 the value of the reflec- 
tion coefficient Ky is negative. When d,j/d, > 1.0 the value of K, is 
positive. 

RR KE EK KK) Xk ak kk) ee VE MAMPI Ee PROBUEM: Suet) hl. eho eae ey RK KR Kk 

GIVEN: An incident wave, which is 0.5 meter (1.64 feet) high and has a 

period of 40 minutes, recedes from the coastline through water 100 

meters deep and passes from the shallow water over a shelf into water 
3,025 meters (9,925 feet) deep. The transition between the two water 
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Figure 19. Linear slope and shelf. 
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Figure 20. Reflection and transmission coefficients 

(from Dean, 1964). 
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depths is a linear slope S = 0.1 and the wave is at a zero angle of 
incidence with the slope transition, i.e., 6, = 0. 

FIND: 

(a) The height of the reflected wave, 

(b) the height of the transmitted wave, and 

(c) show that energy is conserved, i.e., that the total energy in 

the reflected and transmitted waves equals the incident wave energy. 

SOLUTION: 

(aden eT =e yedeer 

L, = v9.8 x 100 (40 x 60) = 75,100 meters 

From equation (172), 

log) 

Ga aA BOO ws 0.167 
1 75,100 x 0.1 

From Figure 20, where 

d 
aE LU 8 0,088 aad @. 8 OGe 
dey 3025 l 

it is found that 

K = -0.62 (the negative sign indicates that the reflected wave 

is m radians out of phase with incident wave) 

H_ = 0.62 H; = 0.62(0.5) = 0.31 meter (1.02 feet) 

(b) From Figure 20, 

Aw R 0.32 

am u bh 0.32 H, = 0.32(0.5) = 0.16 meter (0.52 foot) 

(c) y = pg = (1,026 kilograms per cubic meter) (9.8 meters per 
second squared) 

y = 10.055 kilograms per square meter - second squared 

1.5) 



The energy per meter length of wave crest is 

2 

VBE be _ 10,055(0.5)2 75, 100 (Bo) ol i Th 
t 8 8 

= 2.36 x 10’ kilogram-meters per second squared 

= 2.36 x 10’ joules 
2 

¥ He Ey 10,0550. 31) 2 75e100 
enclose ea es cicsel ee a oe hp oe TOE joules 
r 8 8 

Ly = C, T= ved, T = 79.8 x 3,025 (40 x 60) = 413,000 meters 

2 
yY HE L. 10,055(0.16)2 413,000 

E, = orden = A = 1.33 x 107 joules 

As Ky, is negative, i.e., the reflected wave is out of phase, then 
for energy to be conserved 

E. - ED = EY. 

E, - E,, = 2.36 x 107) Se O7 > 10CN= 45h x HOM jouiles 

compared to the computed value of Ey = 1.33 x 10’ joules. The differ- 
ence results from the minor errors which occur using Figure 20. 

* X FF HF HK KF HH KF HK HK HF KH KF HK KF KK KF HK HF KR KK KH KH HF RK KF HK HK 

3. Nonlinear Depth Transitions. 

Kajiura (1963) investigated waves passing from deep water to shallow 
water over the nonlinear slope profile shown in Figure 21. The profile 
is defined by the equation 

1 1/1 1 1/1 1 nx Saas 22) 5 S225 22min EE 175 dey | 2 @ i a 2 i) te G ) oe 

where the effective slope length 2 is given by 

g=. 20 
n (176) 

L; is the wavelength at depth d,, Ly is the wavelength at depth do, 

and n is an arbitrary small number in equation (175) which fits the 
equation to the actual slope and determines the length of the slope in 
equation (176). 

The reflection coefficient obtained by Kajiura is given by the 
equation 

HESS EN De | La, 

sinh] sa eles “a 2 {fo + Peete) 



I 

' L 1 

Figure 21. Slope and shelf. 

The solution of equation (177) is plotted in Figure 22. As shown in the 
figure, the reflection coefficient approaches zero as the slope length 

2 approaches the length of the incident wave Lj. 

Figure 22. Reflection coefficients (from Kajiura, 1963). 

kok k & kK kk k * * * * * * EXAMPLE PROBLEM 6 * * * * * * * * ® ® * * * 

GIVEN: An incident wave which is 0.6 meter (1.97 feet) high and has a 
period of 20 minutes, approaches the coastline through water 2,500 
meters deep and passes onto a shelf where the water depth is 100 meters, 
at a zero angle of incidence (6, = 0). The effective length of the 
slope between the two water depths is & = 24,000 meters (14.9 miles). 
It is assumed that the slope is defined by equation (175) and that 
energy is conserved; i.e., the total of the reflected and transmitted 

wave energy equals the incident wave energy. 

1, 



(a) The height of the reflected wave, 

(b) the height of the transmitted wave, and 

(c) the height of the reflected wave for a linear slope of the 
same length. 

SOLUTION: 

(a) elias C,T = ved, T = V9.8(2,500) (20 x 60) 

L, = 187,800 meters (116.7 miles) 

Cie 245000 
| 187,800 once 

20 seo 
d, 100 

From Figure 22 

H, 

ney 0.46 

L 

H,, = 0.46 H, = 0.46(0.6) = 0.28 meter (0.91 foot) 

(b) From conservation of energy, 

2 ¥ HS. 1: 2 
E. = US HOWE S Wa) a Meio 8.50 x 107 joules 
t 8 8 

y H2L, 10,055(0.28)2 187,800 
Begs a Le SE 1.85 x 10’ joules 

6.65 x 107 joules tm iT) 7 1 ley) iT] 

Ly nS C,T = ved, T = v9.8(100) (20 x 60) 

[5 | = 37,600 meters (23.3 miles) 
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= ——— = 6.65 x 107 joules 

= 1 

7 1/42 
( 8 x 6.65 x 10 ) 
10,055 x 37,600 

<= tl 1.19 meters (3.89 feet) 

(c) The slope is defined by 

(div do) @asoo) =) 100) a RE | 2 SEO ae 
h 24,000 

From equation (172), 

va Ls 187, 800(0.1) 

From Figure 20, where d,/d, = 25 

H 

—~ = 0.55 
H. 
t 

Hn = 0.55 H; = 0.55(0.6) = 0.33 meter (1.08 feet) 

which indicates that a linear slope gives a higher reflected wave 
and lower transmitted wave than a slope defined by equation (176). 

CS OF C2 CF CF UEP EP Cy CH Che GY Chee CF EP ED CP Cr Co) CP Ca CRC? Co ee CO CP ey SPCR Ce C9 oc? 

4. Experimental Measurements. 

Bourodimos and Ippen (1968) obtained experimental results for waves 
passing from deep water to shallow water over a slope where S = 0.125. 
Their experimental curves for K,; and Kp, as functions of d)/dz are 
given in Figure 23. Gagnon and Bocco (1962) obtained measurements for 
waves passing from shallow water to deep water at an abrupt transition 
in depth. However, their results indicated a fairly constant value of 
[K,,| = 0.2, including the case where d, = d, (i.e., where no transition 
occurs). 
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Figure 23. Reflection and transmission coefficients 
(modified from Bourodimos and Ippen, 1968). 

5. Solitons and Shoaling-Induced Dispersion. 

For certain conditions, a wave will decompose into a train of waves. 
Examples of this are shown in Figures 24 to 28. This train of waves will 
consist of an initial wave having the highest amplitude, followed by a 
finite number of waves of decreasing amplitude. Wave decomposition has _ 
been investigated by Mason and Keulegan (1944), Horikawa and Wiegel (1959), 
Benjamin and Feir (1967), Street, Burgess, and Whitford (1968), Madsen and 

Mei (1969), Byrne (1969), Street, Chan, and Fromm (1970), Galvin (1970), 
Zabusky and Galvin (1971), and Hammack and Segur (1974). 

Benjamin and Feir (1967) discuss the stability of waves, and indicate 
that the waves will only be unstable if kd > 1.363, where k is the wave 
number 2n/L. Whitham (1967) showed that equations governing extremely 

gradual variations in wave properties are elliptic if kd * 1.363, and 
hyperbolic if kd < 1.363. For tsunamis, where d/L << 1, the equations 
will be hyperbolic and the waves will be stable, at least in a constant 
water depth. 
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Figure 24. Separation of solitons 
(from Galvin, 1970). 

(2 ia i 

Figure 25. Induced wave generation over a 
submerged bar (from Byrne, 1969). 
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(a) dj—t++ Slope S=0.05 —+do=0.5d 

Figure 26. Solitary wave propagating over a slope onto a 
shelf (from Madsen and Mei, 1969). 
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Figure 27. Solitary wave propagating onto a shelf (from Street, Chan, 
and Fromm, 1970). 
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Figure 28. Wave train propagating onto a shelf (from Street, Chan, 
and Fromm, 1970). 
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GIVEN: A tsunami with a wave period of 15 minutes travels through water 
3,000 meters (9,840 feet) deep. 

FIND: If the wave is stable. 

SOLUTION: The wave celerity is given by 

C = vgd = V9.807 x 3,000 = 171.5 meters (563 feet) per second 

The wavelength is 

L = CT = 171.5 x 15 x 60 = 154,350 meters (95.9 miles) 
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From this 

Cig» SOOO 
L = 154, 350 = 0.0194 

and 

kd = 0.0194(27) = 0.122 

Therefore, kd < 1.363 and the wave is stable. 

Ed ecwora co ko Ge ot Gp ko ecco Gy oH Gol Gl GD ee oto Ge counG to toed to ee to ko oo 2 oo ED ee Ee oF 

Galvin (1970) investigated waves propagating through water of uniform 
depth in a laboratory wave tank. He found that the initial generated 
waves broke down into several waves which are called solitons. Figure 24 
illustrates an example where, for a water depth of 0.15 meter (0.5 foot) 
and a generator period of 5.2 seconds, each of the initial waves broke 
down into five solitons. Taking these waves as shallow-water waves, the 
wavelength is approximately 6.4 meters, and kd ~ 0.15 which would indicate 

that the waves are stable. However, it may be assumed that the generated 
waves were not actually single waves, but rather a combination of several 
solitons. Galvin noted that if a group of such waves traveled over a 
sufficiently long distance, the solitons would recombine into single 
waves, separate again into solitons, etc. There are commonly two or 
three solitons, but as many as seven could exist in some instances. If 

a generated tsunami had the characteristics of a group of solitons, it 
could appear differently at various coastal points, depending on the 
distance from the generating area. 

Zabusky and Galvin (1971) compared numerical and experimental 

results for solitons, using the Korteweg-deVries equations, for cases 
where 22 < U < 777, where U is defined as (H/d) (L/d)*. They found 

‘good comparisons for slightly dissipative waves. Hammack and Segur 
(1974) also studied numerical and experimental results. They found that 

soliton generation is dependent on the net volume change in the body of 
water. When the net volume of the initial wave system was positive 
(e.g., from uplifting of the sea bottom), solitons evolved followed by 

a dispersive train of oscillatory waves. If the initial generating 
mechanism was negative everywhere (sea bottom subsidence), no solitons 

evolved. 

Byrne (1969) made field observations of waves passing over a near- 
shore bar. He noted that a wave passing over a bar would sometimes 
produce a second, trailing wave as shown schematically in Figure 25. 
As these additional waves developed near the shoreline, he was unable 
to determine if such waves would recombine with the waves in the initial 
wave train. 
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Mason and Keulegan (1944) investigated waves passing into a shallower 
water depth, with an abrupt change in depth. The condition for instabil- 
ity obtained from their experiments was 

1/2 (a,L,) Se (178) 

where a, is the wave amplitude in the deeper water, L, the wavelength 
in the deeper water, and dy the depth in the shallower water. Their 

results were confirmed by Horikawa and Wiegel (1959), although in the 
latter report there is an apparent discrepancy in the presentation of the 
results; the right side of equation (178) has been multiplied by v2. 

ke ee RK KK KK K K K * * EXAMPLE PROBLEM 8 * * * * * * * *% & & & ¥ * & 

GIVEN: A tsunami with a period of 15 minutes passes from water 3,000 
meters deep onto a shelf where the water depth is 200 meters (656 feet). 

FIND: The maximum wave amplitude for a stable wave which will not 
decompose into a train of waves. 

SOLUTION: The wave celerity in deep water is 

C, = ved, = 79.807 x 3,000 = 171.5 meters per second 

and the wavelength is 

154,350 meters (95.9 miles) L, = C,T = 171.5 x 15 x 60 
1 

The condition for wave instability is given by equation (178) as 

1/2 (a,L,) > 2d, 

(a, x 154,350) !/2 > 2 x 200 

a, > 1.04 meters (3.40 feet) 
1 

Thus, waves with a deepwater amplitude less than 1.04 meters would not 
decompose. 

ee ek Rk eK kK kK K KK * * * EXAMPLE PROBLEM 9 * * * * * * * & * * & * KF 

GIVEN: A tsunami travels from a 3,000-meter water depth into a 200-meter 
water depth. The wave period is 60 minutes. 

FIND: The maximum wave amplitude for a stable wave which will not decom- 
pose into a train of waves. 

SOLUTION: The deepwater wave celerity is given as 

C, = (gd,)1/* = (9.807 x 3,000)!/2 = 171.5 meters per second 
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and the wavelength is 

JL ey (Ged i 171.5 x 60 x 60 = 617,400 meters (384 miles) 
1 

From equation (178), wave instability is given by 

1/72 (a,L,) > 2d, 

(a, x 617,400) 1“%2 > 2 x 200 

a, > 0.26 meter (0.85 foot) 

Waves with a deepwater amplitude less than 0.26 meter will not 
decompose. 

CUR KOCH a cl koe Ghee Cota col kay eo Eo to ko et eee coe oo to wo Roto GP OL? ts te 83 

Using the results of Mason and Keulegan (1944), the above examples 
illustrate that the longer period tsunamis are much more likely to 

decompose where the waves have the same height in the deep ocean. 

Street, Burgess, and Whitford (1968) investigated solitary waves 
passing from an initial water depth, over a steep slope, and into a 
shallower water depth. They obtained results similar to those of other 
investigators, showing that each wave changed from a single wave into a 
train of several waves. In some instances, there was also a significant 
increase in wave height. Defining the initial water depth as dj, the 
shallower depth as dg, the initial wave height as H;, and the wave 
height in the shallower water depth as Hz, as the ratio dj/d 2 increased, 
relative wave height H;/H; reached a maximum value for any initial wave 
height H; and then decreased. As H;/d, decreased, the maximum value 
of Hz/H; became greater and occurred at a higher value of d,/dj. The 
locus of the maximum values of wave enhancement , Hz/H; , are shown in 

Figure 29 with the results for the solitary wave experiments. 

Madsen and Mei's (1969) numerical results for the propagation of 
long waves give the results shown in Figure 26 for a solitary wave 
passing over a slope and onto a shelf. The numerical results of Street, 

Chan, and Fromm (1970) give the results shown in Figure 27 for a solitary 

wave, and the results shown in Figure 28 for a train of waves. Goring 
(1978) has also recently carried out experiments on solitary waves 
propagating onto a shelf. His results are similar to those of Street, 
Chan, and Fromm (1970) and Madsen and Mei (1969). 

In all cases where a single wave produced a series of wave crests, 
the first wave crest of the series was the highest. It may be presumed 
that a number of initial wave crests will produce the same number of 
groups of wave crests, each having a high initial wave followed by smaller 

waves. The numerical work of Street, Chan, and Fromm (1970) for wave 
trains is inconclusive in this regard as Figure 28 shows the additional 
wave crests, but does not separate the waves into groups associated with 
the initial crests. 
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Figure 29. Wave enhancement (from Street, Burgess, and 

Whitford, 1968). 
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VI. TSUNAMI-SHORELINE INTERACTION 

In addition to the shoaling of waves on the nearshore slope, a tsunami 
may interact with a shoreline in a number of different ways, including 
standing wave resonance at the shoreline, the generation of edge waves by 
the impulse of the incident waves, the trapping of reflected incident 
waves by refraction, and, as the reflected wave from the shoreline propa- 

gates seaward, the reflection of wave energy from an abrupt change in 
water depth at the seaward edge of a shelf. Also, a wave arriving at an 
oblique angle to the shoreline may produce a Mach-stem along the shoreline. 
All of the above interactions depend on wave reflection at the shoreline. 
Tsunamis entering inlets and harbors may also produce resonant conditions 
within the inlets and harbors. LeBlond and Mysak (1977) provide a general 

discussion of edge waves and wave trapping. 

1. Wave Reflection. 

The reflection of an incident wave ray from a shoreline is illustrated 

in Figure 30. The angle, o,, between the wave ray and a line normal to 
a tangent to the shoreline will have the same value for the incident and 
the reflected wave rays. For a steep nearshore slope, the reflected 
wave will be in phase with the incident wave. 

Shoreline 

Reflected Wave Ray 

Line Tangent to 
:Shoreline 

Line Normal to Tangent 

Incident Wave Ray 

Wave Crest 

Figure 30. Wave reflection from a shoreline. 
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Miche (1944) defined the wave reflection at a shoreline in terms of 

a critical wave steepness, (H/L), > which is given by 

eee am T 

where 8 is the angle of the beach slope in radians. Complete reflection 

will occur if the wave steepness, H/L, in deeper water is given by 

4 (8) cn 
koe ek kK kK kK Ok & * & * & * * EXAMPLE PROBLEM 10 * * * * * * * * ¥ * ® * * * 

GIVEN: A tsunami has a height of 0.5 meter and a period of 20 minutes 
in a 1,000-meter water depth. The nearshore slope S3 = 0.1 (8 = 0.0997 

radians). 

FIND: If the wave is completely reflected at the shoreline. 

SOLUTION: In the deeper water, the wave celerity, C, is 

Cc = vgd = V9.807 x 1,000 = 99 meters per second 

L = CT = 99 x 20 x 60 = 118,800 meters 

Hee Oss ane ae 
> Toso - 4.21 x 10 

From equation (179) 

7 T 

(4) é (24) Sunacue (2 x Ea ie sin2(0.0997) 
Lys Tr i T 

7.94 3 10me 
ae 
repo 

A iT} 

> |x Ses 

thus, the wave is completely reflected at the shoreline. 
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Wiegel (1964) indicates that where 

a ) (181) 

89 



that the reflection will be defined by 

(182) 

where Cp is a coefficient of roughness and permeability which has a 
value of cp = 0.8 for a smooth impervious beach. Various values of Cp 
were defined for rough slopes for short-period waves. However, the 
effect of the slope roughness on longer period waves has not been 
adequately determined. 

* * Fk kK kK kK K KX * KF * * EXAMPLE PROBLEM 11 * * * * * * * * ®% & KF ¥ KK 

GIVEN: A tsunami has a height of 0.5 meter and a period of 4 minutes 
in a 1,000-meter water depth. The nearshore slope S3 = 0.01 (8 = 0.01 
radians), and the slope is smooth and impervious. 

FIND: The coefficient of reflection H,,/H; at the shoreline. 

SOLUTION: In the deeper water, the wave celerity, C, is 

C = vgd = Y9.807 x 1,000 = 99 meters per second ' 

L = CT = 99 x 4 x 60 = 23,800 meters (14.8 miles) 

HORS “f a5 
hes 23, 800 = 2.10 x 10 

From equation (179), where 8 is given in radians, 

(4) 2 (~ sin?p _ (2 x bron sin2(0.01) 
T T TT T 

Dh Ne 

Vv iT] 
a™~ myx 
ou 

(7) H L 1 
2 5 f 2s 0,9 ee cg 0,087 
H; Ae) 2.10 x 107° 

L 

which indicates a low-reflected wave height where the shoreline has 

a very gradual slope. 
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2. Shelf Resonance. 

Hidaka (1935a, 1935b) carried out a theoretical investigation of a 

vertical wall at the shoreline, where the water depth at the wall was 
d., and the sea bottom sloped seaward. The depth d at any arbitrary 

distance x from the shoreline is given by 

1/2 xe 
d= d, (1 A =) (183) 

where the horizontal distance, x, 1s positive measured seaward from 

the shoreline, x = 0 at the shoreline, and a is the distance from the 

shoreline to the depth d = V2 Chine The depth variation defined by equation 
(183) can be compared to a linear (constant) bottom slope, S»5, between 
the toe of the nearshore slope (taken to be a vertical wall) and a point 
at the distance x = a from the. shoreline. For the linear bottom slope, 

So> 

Ss, =——— (184) 

or at a distance, a, from the shoreline 

daca nde 
Sop Sa D Fi (185) 

from which i 

(v2 - 1) d 
an s (186) 

S, 

The variables are shown in Figure 31. 

Defining the wave by the equation 

Benne 2 [a=] 187 
We ake OS oe ( 2 

Hidaka defined the surface elevation n above the undisturbed water as 

nl =)Uifeos (=) (188) 

and U a dimensionless amplitude obtained by dividing the amplitude at 
any point by the amplitude at the shoreline (U = 1 at the shoreline), 

T the wave period, and t time. Hidaka obtained a theoretical solution 
for wave resonance on the sloping shelf defined by equation (183) using 
Mathieu functions (see Blanch, 1964). The primary mode of oscillation 
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Figure 31. Shelf resonance. 

for the shelf is defined by the Mathieu function Ce,(&, 8,) where 

6, = 7.51361. The period is given by 

Zayas, a 
ee — 3.2417 7 (189) 

1 8% g 
2 

The second mode of oscillation is proportional to the Mathieu function 

Ce,(&, 8,) where @, = 21.29863, and the period T, is 

a 

ved, 

TaN el o254 (190) 

The first and second modes are shown in Figure 31. The values obtained 
by Hidaka for resonant periods are for a shelf extending a long distance 

offshore; i.e., the shelf width 2, >> L, where L is the wavelength of 
the incident wave. These results have not been verified by other inves- 
tigators, but Hidaka's results of the variation of wave amplitude agree 
very well with those obtained by Wilson (1972) for a constant (linear) 
shelf slope, as shown in example problem 14. 
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To determine the variation of wave amplitude with respect to distance 
from the shoreline, the equation for U is put in the form 

8 1 3 
d2u 2. 4 4 

+ | ——_—_—_——_——— _ + ———_———— + ———_ ] 

do? (is pve Ge oo Gk a eae 
u Oo (191) 

where p = x/a. This equation was solved by Hidaka using Stormer's method 
(see Milne, 1953). The wave profile is defined in Table 1. 

Table 1. Distribution of amplitude U 

(from Hidaka, 1935b). 
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* oe * * ko k &k * * * * * * EXAMPLE PROBLEM 12 * * * * * * * * * * * * * * 

GIVEN: Water depth, d,, at the toe of a nearshore slope is 30 meters; 
the distance a = 12,430 meters (7.72 miles). Complete reflection occurs 
at the nearshore slope, and it can be assumed to behave as a vertical 

slope. 
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FIND: 

(a) The primary and secondary periods of oscillation, and 

(b) the relative wave height of the wave at a distance one wavelength 

from the shoreline in relation to the wave height at the shoreline, for 
the second mode. 

SOLUTION: 

(a) d. = 30 meters and a = 12,430 meters 

From equation (189) 

T, = 3.2417 — 
ved 

Ss 

dS 3 naa ease = 2,350 seconds (39.2 minutes) 

¥9. 807(30) 

From equation (190) 

T, = 1.9254 Z 
ved. 

T, = 1.9254 —122480 = 1,395 seconds (23.3 minutes) 
V9. 807(30) 

(b) Both the first and second modes of oscillation are in the range 

of tsunami periods which are likely to occur. Taking hg as the wave 
height at the shoreline, Table 1 gives, for the second mode, a height 
equal to 0.7818 hg where x/a = 2.4 or where x = 2.4 (12,430) = 29,800 

meters (18.5 miles). The values in Table 1 and Figure 32 show that 
this is approximately the distance between second-mode wave crests (one 

wavelength). 

KKK BK RK RK RK RK RK RK KR KK KK RK KK RK KR RK KK KK KK KK KEK KK KK KEK K 

kk kk k ® kK * * * * *¥ * BXAMPLE PROBLEM 13 * * * * * * * * * *¥ * * * 

GIVEN: The water depth, d,, at the toe of a nearshore slope is 15 
meters; the distance a = 621 meters (2,039 feet). Complete reflection 

occurs at the nearshore slope. 

FIND: The primary and secondary periods of oscillation. 
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Figure 32. Resonant amplification on a shelf. 

SOLUTION: d, = 15 meters and a = 621 meters. 

From equation (189) 

T, = 3.2417 — 
ved, 

62ND | 8 : 
T, = 3.2417 —————— = 166 seconds (2.77 minutes) 

V9.807(15) 

From equation (190) 

T, = 1.9254 2 
Vgd, 

62ltae 
T, = 1.9254 ———~——- = 98.6 seconds (1.64 minutes) 

v9. 807(15) 

wk RK KR RK KK KK KK KK KK KK KK KK KK RK RK KK KK KK KK KK KK KK 

A different means of calculating the amplitude U, which will also 
account for refraction effects (i.e., the effect of a nonuniform offshore 
bathymetry), is suggested by Wilson (1972). These equations are 

(B.D. - C) N.- - U; 
N ra cl nbc MMR NN et (192) 
J*l C+B.D. 

J gti 
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f=} i} Ur 2G (Ni ve Np- (193 F ve ; ) Jjtl 1 

Bee 2 wh (194) 

LGR ey, 

Aw 
C = (45) (195) 

D. = Dee (196) 

qf SS Se 

where b; and b;,, represent the distance between refracted wave 
rays at stations j and j_+ 1, respectively, N the horizontal dis- 

placement of a water particle, and A the horizontal distance between 
stations j andj +1. For an unrefracted wave, 

d-: 

BzD; = ra (197) 

Up = 1 at the shoreline (as in the case of Hidaka) and No = 0 at the 

shoreline. 

Looking at unrefracted waves on a constant shelf slope S, for the 
same wave periods previously defined by equations (189) and (190), 

Thi c-iesniK ye estes (198) 

where K; = 3.2417 and Ky = 1.9254 as previously defined in equations 
(189) and (190). From this 

27 ved. 

= (199) 
n Ky a 

and for the constant slope, from equation (186), 

d ds S 
22, 2 LGM 2 OEE SNECT LEME (200) 

(v2 - 1) a, V2) toanl 
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Defining A = ca where e is an arbitrary increment, 

Jd Tass 
B-D- = — = — = ——— 201 

rel au eal ea oe 

1 F 
BD; = §|————— + J (202) 

e(v2 - 1) 

at the jh increment. 

The equations of Wilson (1972) can then be expressed as 

Gf ol UE i en 
e(v2 - 1) KOE ae es” 

Nje1 S me i : oe 
Se OF a 1 

K 2 (v2 “)) ) e@2 ai) 

= Ve 204 
nap U5 s ‘lene is 5) ae i N) ( ) 

koe * * * kk * * * * * * EXAMPLE PROBLEM 14 * * * * * ®* ¥ ® *¥ * ® * ¥ & 

GIVEN: The water depth, d,, at the toe of a nearshore slope is 30 

meters; the slope of the shelf is S, = 0.001. Complete reflection 
occurs at the nearshore slope. 

FIND: The wave profiles using the methods of Hidaka (1935b) and Wilson 
1972). 

SOLUTION: From example problem 12, 

2h 1) d, (HD i 19). 540) 
a = ————— = —___—__ = 12 t 5 0.001 »430 meters 

T, = 3.2417 2 2,350 seconds 

gd 
s 

T, = 1.9254 avis 1,395 seconds 

vgd 

Exploring the second mode of oscillation as before, and using values of 

A = 0.1 a = 1,243 meters (4,078 feet) 

OF) 



the values of U obtained by Hidaka (1935b) are given in Table 1. 

The values obtained by Wilson (1972) are given in Table 2. The wave 
profiles are plotted in Figure 32. 

Table 2. Values of horizontal water particle displacement, 
N, and wave amplitude, U. 

Dn nun PWN FY OO O DON DUN S& oS © Oo Oo C2-o Oo. So © 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

For the given conditions, Figure 32 shows that Wilson's method 
produces almost the same results as those obtained by Hidaka; however, 
Wilson's results would predict slightly less amplification over the 
same distance. 

Ko ot ee oe to od to tok to to ot te to ee oe eo te Ot tt 

In comparing the work of Hidaka (1935a, 1935b) with that of Wilson 

(1972), the numerical method proposed by Wilson for determining the wave 
profile'is much more readily used for a particular shelf slope. Table 1 
(Hidaka, 1935b) has the advantage of being a general solution. The value 

of shelf slope, S» = 0.001, used in example problem 14 is typical of 
slopes found on many continental shelves. Figure 32 shows that the two 
methods produce comparable results. Wilson's method has the added feature 
of considering wave refraction. 

3. Reflection from Seaward Edge of Shelf. 

Section V discussed the reflection of waves from an abrupt transition 
in water depth. It was shown that when a wave propagates seaward from 
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the shoreline some of the wave energy is reflected shoreward from the 

transition in water depth at the seaward limit of the shelf. This is 
further illustrated in Figure 33 where dg is the water depth at the 
toe of the nearshore slope, dz the water depth at the seaward limit of 
the shelf, d, the water depth at the seaward limit of the steep tran- 
sition in water depth, S, the slope of the steep transition, Sp») the 
slope of the shelf, and S, the nearshore slope. 

Wave Reflected Seaward Wave Reflected Shoreward 
from Shoreline from Depth Transition 

-_er-= 
= 

~ 

Shoreline 

Steep Transition 

Figure 33. Reflected waves on a shelf. 

The wave reflected shoreward from the steep transition may be Tt 
radians out of phase with the wave transmitted seaward across the tran- 
sition. However, the actual phase difference will depend on the geometry 
of the shelf and transition, and the water depth. This was illustrated 
in example problem 5. For perfect reflection, the wave reflected from 
the shoreline will be in phase with the initial wave incident on the 
shoreline. The time, t., for the wave to travel the distance, Les 

from the steep transition to the nearshore slope will be the same as the 
time required for the reflected wave from the nearshore slope to travel 
back to the steep transition in depth. Therefore, where the wave re- 
flected from the transition is 1 radians out of phase with the incident 
wave, resonance will occur if 

2t. = = (205) 

where T is the incident wave period, andn = 1, 2, 3, 

Noting that C = vgd where d; <d<d,, for a wave with a normal 

angle of incidence, 

os 
5 dx tee if = (206) 



where x is measured seaward from the toe of the nearshore slope. 
By definition 

dd == as ARIES (207) 

or defining dx, 

dd 
OX eS aa (208) 

Sy 

This gives 

a 2 ad (209) 
Gy sowed 

and, for a constant shelf slope, 

d 1/2 1/2 
t -[ ; dd seu | Sentag (210) 
s lex 1/2 d, S, gd S, g 

Substituting equation (210) into equation (205) gives 

(ai72 sl al/2) 

eee 2 (211) 
n S, gi/2 

where T is a resonant wave period where the reflected wave and incident 
wave are m1 radians out of phase, andn=1, 2, 3, .. . Equation (211) 
provides a first approximation for the resonant wave periods. 

kOe Kk k kk k & kk * * * * BXYAMPLE PROBLEM 15 * * * * * * * *¥ *¥ ® *¥ *¥ * * 

GIVEN: The water depth, d,, at the toe of a nearshore slope is 30 
meters. The width of the shelf, 2,, is 30,000 meters (18.6 miles) 

and the water depth, d,, at the the seaward edge of the shelf is 

60 meters (196.9 feet). 

FIND: The resonant wave periods for the shelf. 

SOLUTION: The slope of the shelf, S,, for a constant slope is given by 



From equation (211), 

: Carne 3 doe) 

n S, gl/2 

Bi (GOE ara S054) ain 251800 

nN 0.001 (9.807) 172 n 

T. = 5,800 seconds (96.7 minutes), n = 1 

T, = 2,900 seconds (48.3 minutes), n = 2 

T, = 1,933 seconds (32.2 minutes), n = 3 

T = 1,450 seconds (24.2 minutes), n = 4 

etc. 

ke Ke & & kK KK RK RK RK RK KK KR RK RK RK RK RK KK RK KK KK KE KE KK KKK KK KKK 

Nagaoka (1901) considered the possibility of currents parallel to the 
coast acting as boundaries which would reflect waves. He speculated that 
the currents would act as quasi-elastic boundaries. In this case waves 
generated near a shoreline could be trapped between the shoreline and an 
offshore current, creating a resonant condition between two boundaries. 

4. Edge Waves. 

The impulse of incident waves reflecting from the shoreline may 
generate edge waves in the longshore direction. These edge waves, the 
trapped mode of longshore wave motion, have wave periods which will be 
longer than the incident wave periods; standing edge waves will have 
peaks and nodes at points along the shoreline, although edge waves may 
be either standing or progressive waves. Guza and Bowen (1975) indicate 
that experimental results confirm the work of Galvin (1965) and Bowen 
and Inman (1971) which show that incident waves that are not strongly 
reflected will not excite edge waves visible at the shoreline. 

Guza and Inman (1975) have defined the water surface profile of edge 
waves in the seaward direction using the dimensionless wave amplitude, 
U, and a dimensionless distance, yx, in the seaward direction given as 

w2 xX 

where w is the radian frequency (27/T) of the edge wave, x the dis- 

tance measured from the shoreline in the seaward direction, and 8 the 

angle of the nearshore slope (tan 8 = S). The water surface profile is 
given in Figure 34 which shows that higher modes of standing edge waves 
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will have peaks and nodes in the seaward direction in addition to the 
peaks and nodes in the longshore direction. 

1.0 

0.8 —— Edge waves 
--- Reflected normally 

0.6 incident wave 

Figure 34. Offshore profiles of edge waves 
(from Guza and Inman, 1975). 

Guza and Davis (1974) carried out a theoretical investigation of the 

mechanism of edge wave generation by normally incident, shallow-water 
waves on a constant beach slope. They define the longshore wavelength 
of the edge wave by the longshore wave number, ky» given by 

27 27 1 
k ==> = Ga SECU EERO (213) 

L MP 2n + 1) tan B y 7 y g( ) 

where 

(20) enor (214) 

is the wavelength of the edge wave, T, the period of the edge wave, 
and g the angle of the nearshore slope in radians. Guza and Davis 
attribute the generating mechanism to a nonlinear interaction between 
the incident wave and a pair of progressive edge waves with frequencies 
defined by w, and w, where w = 2n/T and 

(215) 

i.e., the incident wave frequency is equal to the sum of the two edge 
wave frequencies. The two edge waves have the same wavelength, but 
propagate in opposite directions along the shoreline. Therefore, the 
edge wave pair forms a standing wave. This standing wave will always 
have a frequency equal to one-half the incident wave frequency (a period 
twice the incident wave period) even though the frequencies of the edge 
wave pairs may vary, as shown in Table 3. Where the frequencies of the 
two progressive edge waves forming the pair are different, the nodes and 
antinodes of the standing wave will move in the direction of the edge 
wave with the higher frequency (shorter period). Defining the edge 

wave with the lower frequency by 
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Table 3. Resonant edge wave parameters. 
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w, = (0.5 - p) w (216) 

where p is a variable given as 0 < p < 0.5, and the edge wave with the 

higher frequency by 

i = (0.5 + p) w (217) 

the drift speed, Ca» of the nodes and antinodes of the standing wave 

is given by 

ca" Py (218) 

where w is the radian frequency of the incident wave and ky the wave 
number, 2n/Ly > of the edge wave. 

Munk, Snodgrass, and Gilbert (1964) note that because of coriolis 
splitting, in general, the frequency of edge waves moving left (looking 
seaward) exceeds the frequency of waves moving to the right in the 
Northern Hemisphere. In the Southern Hemisphere the opposite would be 
true. Therefore, for a uniform straight coastline, the higher frequency 
edge waves would display a preference for moving in a particular direction. 
Guza and Davis (1974) obtained values for resonant edge wave parameters. 
Corrected values were presented by Guza and Bowen (1975), and values of 
the parameters are given in Table 3 for various modes of resonance. The 
parameters shown in Table 3 are in dimensionless form. The parameter K 

defines a critical value of incident wave amplitude by 

2 2 1/2 ai w ky (ww) 
Kg eS Ay aN : 2 (219) 

v c 
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where c is a coupling coefficient reevaluated by Guza and Bowen and 
given in Table 3 in dimensionless form, a, the dimensional critical 

incident wave amplitude, vw the dimensional kinematic viscosity, and 
the values N, and No define n for w, and w., respectively. 
The dimensionless value of ky used in Table 3 and equation (219) is 
given by 

kK a 2 (220) 

where kf is the dimensional wave number of the edge wave defined by 
equation (213) and w* the dimensional radian frequency, 21/T, of the 

incident wave. The dimensionless values of w, and w, used in Table 

3 and equation (219) are given by 

* * 
Roel sees 

Hae aay At Ooi w* 

where w} and w> are the dimensional values. Table 3 shows that the 
number of edge wave pairs would increase as the incident wave amplitude 
increases, i.e., the primary pair (N, = Ny = 0) would be excited while 

the wave is still some distance from the shoreline and the other pairs 
would be excited closer to the shoreline as the wave amplitude increases. 
Therefore, the primary pair of edge waves would experience the greatest 

growth. 

wk kk kk ke K K * * * * RXAMPLE PROBLEM 16 * * * * * * * * ¥ & & KF KF * 

GIVEN: A tsunami with a period of 20 minutes approaches the shoreline 
on a constant shelf slope S, = 0.001 (8 = 0.001). It is assumed that 

the nearshore slope is steep enough for the wave to reflect strongly 
from the shoreline. 

FIND: 

(a) The wave periods and wavelengths of the first three edge wave 

pairs (N, = 0), No = 0), (N; =,0,.No =1), and (N, = 0, No = 2), and 

(b) the wave amplitudes necessary to excite the first three edge 

wave pairs. 

SOLUTION: 

(a) From Table 3 

(N, = 0, Ny = 0) w, = 0.50 

20 FOS yawns rr T 20 x 60 
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(20 x 60) 
Ty Tee prennts 2,400 seconds (40 minutes) 

W, = 0.5 w 

T, = T) = 2,400 seconds 

(N. = 0, N, = 1) w, = 0.366 w = 0.366 a. 

We ty 1 ADS, (0 

1 0.366 0.366 

T. = 3,280 seconds (54.6 minutes) 

T. = 1,893 seconds (31.5 minutes) 

> Zz 
iT] j=) cA iT} N wa ‘= i 0.309 w 

6 AO 
dO TOROS 

T, = 3,880 seconds (64.7 minutes) 

op 20 x 60 
YRS = 

2 0.691 0.691 

T, = 1,737 seconds (28.9 minutes) 

The wavelength of the first edge wave pair is given by equation (213) 

where n = O(N, = 0, N, = 0), 

Qn (= 2 1 
k =— =f SSS SESS 

y a g(2n + 1) tan 8 

2 

ky = Zig mS AL go boa og! 
2,400) 9.807(1) 0.001 

and Ly = 8,990 meters (5.6 miles) for both edge waves. 

For the second edge wave pair, N, = 0 for w, and Noy = 1 for 
Ww 
2 

Qo \ 1 kee (45) ee eg 
3,280/ 9.807(1) 0.001 
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and Ly = 16,780 meters (10.4 miles) for the first edge wave 

2 

k= —) Eee Se 74a Lon” 
Y 1,893/ 9.807(3) 0.001 

and = 16,780 meters for the second edge wave. Note that the two 

edge waves of a pair have the same length as indicated by the single 
value for the dimensionless wave number, ky» in Table 3. 

For the third edge wave pair, N, = 0 for w, and N, = 2 for W, 

2 

k, = ( ai ) soho SOE NGG On: 
Y 3,880/ 9.807(1) 0.001 

and Ly = 23,500 meters (14.6 miles) for the first edge wave 

so ena ol se ae -4 
Lo ih ae money oor oo 8 

and Ly = 23,500 meters for the second edge wave. 

(b) The incident wave amplitude needed to generate the first edge 

wave pair is given by equation (219) as 

Ky\l42 
aac a) 

where K is given in Table 3 and v = 1.5 x 1072 stokes (square Sones 

meters per second) (1.6 x 107 ) square feet per second) = 1.5 x 10-& 

square meters per second, and w = 21/1,200 

=16 1/2 

ass Se = 0.061 meter (0.20 foot) 
T 

1,200 

For the second edge wave pair 

SB 1/2 

ays a2 = 0.12 meter (0.39 foot) 
TT 

1,200 

For the third edge wave pair 

NO) Se alps se TORO 
cm 27 

1,200 

kK KR KK KK KK RK KK KK KK KK KK KK RK KK RK KR RK KK KK K KK KK EK 

= 0.17 meter (0.56 foot) 
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Guza and Bowen (1975) investigated edge waves generated by incident 
waves at some arbitrary angle of incidence, Oy» with the shoreline 

(see Fig. 30). Defining a parameter 

y = sin a, tan 86 (221) 

the longshore wave numbers , k, and k,, of the primary edge wave pair 
(N, = 0, N, = 0) are given as 

2 

eg a 2 222 ern ee cll (222) 
and 

k we (Clisea) 2d) 
2° 4g tan 8 \ (223) 

when the angle of incidence, o,, is small, and where w is the radian 

frequency of the incident wave. Where a, = 0, equations (222) and (223) 

reduce to equation (214). The standing edge wave where a, > 0 will pro- 

gress along the shoreline, and the drift speed, cg, of a node or anti- 
node of the primary edge wave pair is now given as 

Cia (224) 

Gallagher (1971) shows that an increase in the angle of incidence, 

a,, Will produce greater edge wave energy at higher frequencies (shorter 
periods). 

Guza and Bowen (1976) discuss the height of the edge waves occurring 
along a coastline. They show that the maximum edge wave amplitude at the 
shoreline is theoretically three times the amplitude of the incident wave 
for a straight coastline. Gallagher (1971) indicates that energy would 
be lost because of bottom friction and the disperison caused by irregu- 
larities in the coastline. Guza and Bowen (1976) indicate that edge wave 

growth is limited by radiation of energy to deep water and by finite- 

amplitude demodulation; i.e., as the edge waves increase in height their 
natural frequency increases and no longer matches the forcing frequency. 
From equation (213) and the work of Munk, Snodgrass, and Gilbert (1964) 

relating trapped modes to leaky modes, it can be seen that leaky modes 
(i.e., edge waves radiating energy to deep water) will only occur on 
steep nearshore slopes. These nearshore slopes are very short in com- 
parison to the tsunami wavelength, and are not of concern here. The 

edge waves associated with the tsunami are assumed to occur over the 

wider and flatter shelf slope shown in Figure 33. 

A progressive edge wave moving along a coastline may be reflected 

from an obstacle such as a large headland. Guza and Bowen (1975) demon- 

strate that this could produce a standing edge wave with higher amplitudes 
near the obstacle. Reflection could also occur from a depth discontinuity 

such as a submarine canyon in the manner described in Section VI, 3. 
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S. Refracted Waves and Caustics. 

When very long waves such as tsunamis arrive at a shoreline, a 

substantial amount of wave energy will be reflected seaward from the 

shoreline. These refiected waves will interact with the bottom topogra- 
phy, and will refract as they travel seaward. Refraction diagrams of 
these waves show a tendency for the waves to turn parallel to the shore- 
line as they move into deeper water. When a shelf slopes away from the 
shoreline, and extends a sufficient distance seaward, the waves may be 

turned back shoreward (see Fig. 35). The line tangent to the wave rays 
where they turn shoreward is a caustic. The wave rays will not cross 
the caustic, and the wave energy tends to be trapped, although some wave 
energy will leak across the caustic (Chao, 1970; Chao and Pierson, 1970; 
Pierson, 1972). 

Shoreline 

me 
pe are a 

Figure 35. Schematic of caustic (uniform bottom slope). 

Caustic 

Chao (1970) and Chao and Pierson (1970) investigated higher frequency 

waves trapped by a caustic. They demonstrate that lower frequency (longer 
period) waves will form caustics closer to the coastline, and that waves 

with frequencies above some maximum value will propagate seaward into 
deep water. For tsunamis, only the lower frequency waves are significant. 

As the wave rays are not normal to the shoreline, different parts of 
the wave crest would arrive at the shoreline at different times. Where a 
coastline is irregular, parts of a wave crest reflected from one section 
of coastline may be refracted and trapped so that they coincide with an 
incident wave on another section of coastline. Palmer, Mulvihill, and 

Funasaki (1965) illustrated the effects of wave trapping at Hilo, Hawaii, 

where the reflected wave rays were turned by refraction so that they 
arrived simultaneously at a point inside Hilo Harbor (see Fig. 36). 

The case of wave energy being trapped by refraction can be most 
easily illustrated for a long, shallow-water wave on a straight section 

of shoreline, with some water depth, d,, at the toe of the shoreline 
slope, and with a constant shelf slope extending seaward. It is assumed 
that the wave reflects from the shoreline slope and refracts on the shelf. 
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Figure 36. 1960 tsunami refraction, Hilo, 
Hawaii (after Palmer, Mulvihill, 

and Funasaki, 1965). 

Applying Snell's Law where the wave moves through some incremental 
distance, with an incremental change in water depth d, and assuming 
that there is a shallow-water wave so that the celerity C is given by 

C = (gd) 172 (225) 

then the incremental refraction of a wave ray is defined by 

sin(a + do) _ a + ay 
d : (226) 

sin a 

or, squaring both sides of equation (226), 

sin?(o + da) _ (d + dd) (227) 
sin? a d 
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Now, if the numerator of the left side of equation (227) is expanded, 

the term can be written 

sin*(a + da) = = [i - cos 2(a + da)] 

= — [1 - cos(2a) cos(2da) + sin(2a) sin(2da) ] 

= a - (cos%a - sin2a)(cos2da - sin%da) 

+ 2 sin a cos a(2 sin da cos da) j (228) 

But, where da > 0, 

cos da > 1 

sin da > do 

sin? da + (da)? = 0 

Then equation (228) can be written as 

sin2(a + da) {1 - (cos2a - sin2a)(1) + 4 sin a cos a da] W 

N|R 

2 = — [2 sin‘a + 4 sin a cos a da] (229) 

and equation (227) becomes 

. 2) . 

2 sin* oa + 4 sin a cos a da _ (d+ dd) (230) 

2esin vc d 

which reduces to 

1+2cotada=1+% (231) 

2 cot a da = = (232) 

Now, integrating along the wave ray from the shoreline to the point where 
it turns parallel to the shoreline, taking as the water depth where 
the ray is parallel to the shoreline and as the distance from the 

shoreline at that point, a, as the initial direction of the wave ray at 
the shoreline (Fig. 35), and noting that a = 1/2 radians for a straight, 

uniform coastline at the point where the wave ray turns parallel to the 
bottom contour, 
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d 1/2 
Eddie os 2 cot a da (233) 

d. d a 
1 

which when integrated gives 

d, w/2 

Ln | = 2 £n(sin om (234) 

d. O, 

which reduces to 

indie =eeny dem= 2) penwesimioe (235) 
Pp s e 

Taking the antilogs 

d 
———— 236) 
P sin? Oy ( 

But d, = d, + SxXp where S is the bottom slope, so 

d 
s 5 s Xp Ss 4S ar (237) 

a 

S sin2 0 

To compute the coordinate parallel to the shoreline of a point on the 
wave ray, note that 

dy 
tana =— (238) 

dx 

The x coordinate is given by 

Qu n =o 3 
iy) 

ro} a 

ge a (239) 
Ol S 

or, differentiating equation (240) with respect to a, 

2 d, sin a cos a da 

dx = —— (240) 
S sin? a, 

substituting equation (240) into equation (238), equation (238) becomes 

2) id 
dy = ae sin a cos a tan a da (241) 



Collecting terms and integrating 

y/2 Dl 1/2 

iN ips sin? a da (242) 
fe) S sin? a, a 

1 

This gives 

ya 2 d. E ae F sin | 

2 1 S°Sineaela so 4 (245) 

Fhese equations are limited to the particular case of a long, straight 
coastline, but may provide a first approximation for solutions on some 
sections of continental shelves. Refraction diagrams would be required 
to obtain exact solutions for irregular coastlines. If the waves travel 
for long distances over a shelf, it may be desirable to use wave refrac- 
tion equations in spherical coordinates such as the equations given by 
Chao (1970) (see Sec. IV, 3). 

x ek RK kK kK kK kK kK kK kK *K * K * EXAMPLE PROBLEM 17 * * * * * * * * * *& * F * * 

GIVEN: A wave ray reflects from a straight shoreline at an initial angle 
a, = 7/4 radians. The water depth at the toe of the shoreline slope 
de = 30 meters and the shelf at the toe of the shoreline slope has a 
uniform seaward slope S, = 0.003. 

FIND: The distance the wave ray will travel away from the shoreline, and 

the distance along the shoreline to the point where the reflected wave 
ray will impinge upon the shoreline. 

SOLUTION: 

From equation (237) 
d d 

LSE Ve ees 
"? Sisingvanlegs 

Xp = 30 - 80 

0.003 sin? 4 0,008 

Xp = 10,000 meters (6.214 miles) 

From equation (243) 

vee 2d, E aah : sin = 

2) )Siesin2eomy[e Ase? 4 

y 2(30) mp) eek 
eS ee 

2) 0,003 (0. 707 a4) at 8 4 

25,700 meters (15.97 miles) 
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For this example, the shelf needs to extend 10,000 meters from the 
toe of the shoreline slope to have the wave ray turn parallel to the 
bottom contours. The wave ray which was reflected from the shoreline 
will impinge upon the shoreline again at a point 51,400 meters (31.94 
miles) along the coast, provided the wave is trapped. 
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For the particular case of a shallow-water wave on a straight section 
of coastline and uniform shelf slope, given by equations (237) and (243) 

and illustrated in Figure 35, as the angle oa, decreases the distance of 
the caustic from the shoreline increases and the distance y between the 

point of reflection and the point where the wave ray impinges again on 
the coastline also increases. 

When the tsunami energy becomes trapped between a caustic and a 
coastline, the energy will tend to propagate along the coastline. This 

will excite longshore edge waves along the coastline, and may substan- 
tially increase observed wave heights. When the coastline is irregular, 
the trapped waves may concentrate their energy at particular coastal 
points. An investigation of the wave rays using the usual wave refraction 
techniques will define the caustic locations, and the locations of any 
coastal points where energy concentrates. 

Tsunamis generated in coastal areas may have part of their energy 
trapped along the coastline, as waves radiating away from a source area 

may become trapped within a- caustic in the same manner as reflected waves. 
For a wave ray originating within the coastal area, dg, is the water 
depth at the point of origin, Xp the distance seaward from the point of 
origin, and a, the angle between the wave ray and the orthogonal to the 
bottom contours as before. This is illustrated in the following example 
problem and in Figure 37. 

ra 
e va bade 

Shoreline 

Edge of Shelf 

Figure 37. Trapping of generated tsunami. 
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GIVEN: A tsunami is generated by uplifting along a faultline located on 
a coastal shelf (Fig. 37). The faultline is oriented so that the angle 
between the coastline and the faultline is B = 40°. The faultline 
extends to the outer edge of the shelf which is 100 kilometers (62.14 
miles) from the toe of the shoreline slope. The shelf has a uniform 
slope seaward of S = 0.003 and a 30-meter water depth at the toe of the 
shoreline slope. The uplifting is uniform along the faultline so that 
it acts as a line source. 

FIND: The percentage of the wave energy trapped on the shelf. 

SOLUTION: The depth of water at the outer edge of the shelf is 

d=d_ + Sx = 30 + 0.003(100, 000) 

= 330 meters (1,083 feet) 

Looking first at wave rays traveling seaward from the faultline, at the 
inner end of the faultline, using equation (237), 

30 30 

0.003 sin? 40° 0.003 

Xp = 14,200 meters (8.83 miles) 

At the outer end of the faultline, taking d, as the depth of water 
at the faultline, i.e., where the wave ray originates 

ze 330 _ _330 

“PY 9,003 sin? 40° 0.003 

Xp = 156.23 kilometers (97.08 miles) 

which is beyond the limits of the shelf. Noting that x, varies 
linearly with d,, from proportionality the length & of the part 
of the faultline (of length Ly) contributing trapped energy is 

L¢(100 - 14.2) 
___EOEOEOE 

(100 + 156.23 - 14.2) 

2 = 0.355 Lr 

or 35.5 percent of the energy generated seaward in the example is 
trapped. 
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Consider now the wave rays generated shoreward. If the wave ray 
generated from the point at distance 2% along the faultline is con- 
sidered for the straight, uniform section of shoreline (Fig. 37), the 

wave ray will reflect from the shoreline and be directed at the angle 
a, at the position shown in the figure. This wave ray will turn 
parallel to the shoreline (i.e., parallel to the bottom contours) at 

the edge of the shelf. Therefore, 35.5 percent of the energy gener- 
ated shoreward in the example will also be trapped. Note that the 
energy generated shoreward would have a tendency to form a Mach-stem 
along the shoreline if 8 is greater than 45°. 

A caustic, by definition, is a line tangent to a family of wave 

rays. For the waves generated seaward, a caustic will be formed by 
those wave rays refracted back to the shoreline (i.e., the trapped 
wave rays), after they have reflected from the shoreline. For the 
wave rays generated landward from the faultline, a caustic is formed 
after reflection as shown by the dashline in Figure 37. 
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As illustrated in Figure 37, wave rays trapped on a shelf may diverge 
apart. These wave rays may reconverge at various points along the coast- 
line, producing high waves at the points of convergence. 

Chao (1970), Chao and Pierson (1970), and Pierson (1972) discuss the 
case of short-period waves reflected from a shoreline, where several wave 
crests exist between the point of reflection and the caustic. The wave 
rays follow similar paths to those discussed above, but the wave crests 
propagating shoreward from the caustic will interact with the wave crests 
propagating seaward from the coastline, producing many peaks and nodes 
between the coastline and the caustic. 

For the straight coastline shown in Figure 35, the traveltime, t, 
along the wave ray between the shoreline and the caustic can be easily 
determined. Where the distance s is measured along the wave ray, 

eee (244) 
dt 

but 

gia Noses ch (245) 
s cos a 

so that 

t be 
Ee dx 

dt = —_— (246) 
e) 0 ¢ cos a 

Also, from shallow-water assumptions, 

c= ved = Vg(d, + Sx) (247) 
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and from equation (240), 

Bee 2 d. sin a da 

a SS (248) 
cos a S sin? Oy 

Using equation (239) to define x and substituting equations (247) and 
(248) into equation (246), it becomes 

ne 2 d. sin o dx 

a S sin” a) Vg d sin? a 4d 
d +5 ae 

Vs S sin? CS 

Collecting terms, 

2 vd n/2 
t= | da (250) 

S sin a, vg ay 

which gives 

2 vd, h 
t= ares a : a4 | (251) 

S sin a, Vg 2 

_ Shen and Meyer (1967) and Shen (1972) give a solution for curved 

coastlines. For a circular arc, wave trapping can be defined using the 
equations 

tan a = ade +(n2r2 - c2)-172 (252) 
dr 

and 

uy) 
n carn |n(“) dj = 1 (253) 

c 

where 

r = the radius of curvature of a contour line (taking circular 
bottom contours to define the shelf around the coastline) 

6 = the coordinate angle in polar coordinates of a point along 

the wave ray at radius r 

c = a constant 

n = a variable along the wave ray 

d = the water depth at radius r 

Dein 1, 2, 3. . . defines an integer number of wave crests around 

a circular island 
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Taking the radius at the shoreline as Rg, and the radius where the 

wave ray turns parallel to the bottom contours as Tp, at the shoreline 

Panwctaiee (n= Whoa Wic a) 4 (254) 

1 + c2 tan? 0, if2 
ae 

(255) 
Re Eanainc, 
s 

Wa?) 
ee a stana tn i I lef tanya, As ny 

ea || — — | 3 it (250) 
Ro tan2 o, R2 tan? a Cat 
s s 1 

Where the wave ray turns parallel to the bottom contours 

(n2 r2 - c4) = 0 (257) 
P 

aS ny='= (258) 

P 

Substituting into equation (253), 

c op 
— tanh |— dj] = 1 (259) 
r 1 
P P 

where d is the water depth at radius r,. Equation (256) can be solved 

to determine c for any integer value ny satisfying the equation, and 
equation (259) can then be solved to obtain a value for r, corresponding 
to each value of c which will provide a solution. Shen and Meyer (1967) 

indicate that a number of caustics may exist. For a circular island, reso- 
nance will occur between the shoreline and the caustics for wave periods 
defined by integer values of ny for which solutions exist. 

Equations (252) and (253) were derived for dimensionless variables 

where the dimensional values of length had been divided by some horizontal 
length scale. Camfield (1979) gives the following development to express 
the solution in terms of several dimensionless parameters. Shen and Meyer 
(1967) infer that the radius r, of the caustic (i.e., where the wave ray 

turns parallel to the bottom contours) is an appropriate length scale. 

Using an asterisk (*) to define dimensional values, the radius of curva- 

ture r, is normalized so that its dimensionless value is 
Pp 

| 2 Jl 
(260) 

The derivation of the equations also assumes that 

vertical length scale ite (261) 
horizontal length scale 

Ie 7 



so the vertical dimensions in equations (252) to (259) are assumed to 

represent dimensional values divided by rp €, where the term rye is 
the vertical length scale. Shen (1972) takes eM=1. It is assumed 

ev> 6, where '0)< 6) << I) so that) M > must) bel lange. | Shenlidefines Mayas 

Me (w*) 2 (horizontal length scale) 

g 

mee, ow 
For long-period waves (e.g., tsunamis) where the period T is large, 
the caustic radius r, must be large in order for M to be large. In 
general, the solution is for cases where the shoreline radius Re (and 

therefore the caustic radius rs) is much greater than the wavelength. 
Using Shen's work, equation (256) now reduces to 

which gives 

YD 
1 + c? tan? oF ta 1 + c? tan? a, : n, d® 

WEEN I ae Ne tanh ior eesgeion fe (as) 
(RG tan? a, (Re)? tani ion Coite & 

Tots 2 (r*) 2 ( > 3 

Shen has defined M = n,/c so that « = 1/M = c/n,. Equation (263) further 

reduces to 

172 WH: 
1 + c* tan2 Oy 1 + c% tan? Oy ne ds RE 

tanh |{ ————————__ ==> (264) 
tan? a tan? o c2 R* r 

1 1 3 P 

in its dimensional form, where d* is the dimensional depth at the toe 
of the shoreline slope, R% the dimensional radius of curvature of the 
shoreline, and rj the dimensional radius to the point where the wave 
ray turns parallel to the bottom contours. Also the dimensional form of 

equation (259) becomes 

ne d* 

c tanh = 1 (265) 
TIS 
P 

where d* is the water depth at radius TS: 

Consider first a concave coastline, such as a large bay, where the 

radii tp and R* are measured from the center of curvature offshore, 

and) rei<= Rene sInthe limiting case, a concave coastline would form a 

closed circular basin with radius Rak Therefore, all wave rays could 

obviously be trapped by this type of coastline. 
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Where a, + 90° the wave rays become trapped very close to the shore- 

line so that tp =A Ree As a, becomes smaller, rj becomes smaller so 

that the caustics are farther from the shoreline. As a, > 0, sas, te (0), 

meaning that a wave ray reflected along an orthogonal to the shoreline 
will pass through the center of curvature. 

Equations (264) and 265) are used to investigate wave rays at any 
angle o,. From equation (265), c > 1 as tanh [n5 d*/(r% c)] < 1. To 
determine the limiting values of ng which will provide solutions, it 
may be noted that, in equation (264), 

=a wl (266) 

From equation (265), as c > 1, n, >. From the definition that 1/M « T2 

(eq. 262), and that 1/M = c/n,, it can be seen that waves would be trapped 

where T > 0, which is a restatement of the fact that all waves would be 

trapped where the coastline is concave; e.g., a large, circular bay. 

Finding the caustic location, i.e., the radius, rp), when n+» and T > 0 

is of interest. From equation (264), when n + ~, and a, > 0, 

Zt 172 
1 + c2 tan2 a, né a 

tanh i Aare oe WE TPR IE > 1 267 
tan2 ay c? R* a s 

which then gives 1/2 
1 + cA tan2 a, R* 
See > = (268) 

tan“ a, vp 

and as c > 1, 
1/2 

1 + tan? , R* 
Saas ~ = (269) 

tan* a, yD 

which reduces to 

*) . = R*¥ si 270 
(2) min NS Tay oa! oe 

Where the angle a, is known, defining the angle between the reflected 
wave ray at the shoreline and the normal to the shoreline (see Fig. 35), 

the wave energy will always be trapped between the radius, r, defining 

the caustic and the radius, Rep defining the shoreline if the concave 
shoreline extends a sufficient distance. Where the wave period becomes 
longer, it will be trapped closer to the shoreline. 

It is of interest to note that equation (270) provides a solution 

independent of water depth or shelf slope. Equation (270) defines the 
distance from the center of curvature to a chord across a circular arc, 
where a, is the angle between the chord and a radius drawn to the end 
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of the chord. This defines the path of an unrefracted wave ray (the 
expected result when T > 0), and therefore verifies equations (264) and 
(265) for a concave coastline such as a large bay. 

For a convex coastline (e.g., a circular island), the wave rays 

which would probably be trapped are those where a, is large, i.e., 
the wave rays most nearly parallel to the shoreline. Letting a, > 1/2, 
tan a, > * so that the term 

1 + c* tan? Oy tae 

RRA e “eS P27 Al 
tan? Oy ( ) 

From equation (264) 

2 n< d* R* 

@Beantn| 2 soalreiee (72) 
* * ever r 
s P 

Substituting equation (265) in equation (272) above, 

2 2 navds R* n 
2 Apmty || = 2.) 4 22 warn || Se (273) 

c Re ae Cae 

as ™ > Re for a convex coastline, then Re/t5 <1. Therefore, 

de. SE 
a > Re (274) 

Pp Ss 

as a condition of wave trapping on a convex coastline. This means that 
the slope of the shelf must be greater than some minimum value defined 
by dg/RZ in order to have a caustic, i.e., to have waves trapped on the 
shelf. This is necessary in order to have the rate of curvature of the 

wave ray exceed the rate of curvature of the bottom contours, a necessary 
condition of wave trapping. Where a circular island has a small radius, 
Re 5 in relation to the water depth at the shoreline, dz), there is a 

greater probability of the wave rays spiraling off into deep water than 
there would be for an island with a large radius. 

The minimum and maximum values of n, which will produce solutions 

can be found as follows: 

From equation (264), where |c| + = 

n2 d* R* 
CAMTETN\ Min) ent 

c tanh =—, tana, >0+ 6 (275) 
ie 1 

c Re TS 



where 6 is some small value. But as c >», 

2 2 n< d* n< d* s 
ee th (LS 

c R* 
s 

and from equation (275) 

2 

* * 

Kee ip 

Re) a ee 
2 d* r* 

s 

From equation (265), noting, that for c >», 

2 ax 2 ax ns d nS d 

tanh <7 
Tot © aC 
Pp Pp 

it is found that 

2 ax nS d i 

ie - 

(276) 

(277) 

(278) 

(279) 

(280) 

Substituting the value of r* from equation (278), and noting that for 

a uniform slope e 

k= * kL * d d* + (r R*) S, 

equation (280) is then 

4 21 2 2 gs ny [de RS Sy (d*) I} 85 (RS) Say (RS) = 0 

(281) 

(282) 

Equation (282) is a quadratic equation for né which provides minimum 

and maximum values given by 

2 pe eee A Es 

nin RS, - a 

(Gay)? = 

IL al 

(283) 

(284) 



At the minimum value of Ny» 

d* 

s 

4 d* Re S, 

ns Re = ews ia (285) 

s s 
1 - ome 

RS 2 

and at the maximum value of No 

d* 

DaNgSry 2 nS ee 1 (286) 

s 

For a solution to exist for given values of d% and R%, the maximum 

value of n3 d%/R% defined by equation (285) nee be less than or equal 

to 1, so the minimum value of S, for wave trapping to occur is given by 

d* 

s 

R* S 
OyiaatS ka if (287) 

d* 

1 > 
Re S, 

which reduces to 

d* 

s 
< 0.5 (288) 

Sym 

The parameter d3/(S, Rg) is a shelf parameter which determines wave 
trapping. A continuous band of solutions exists for equations (264) and 
(265), for values of n, between the minimum and maximum values defined 

by equations (283) and (284). Solutions are not limited to integer values 

of n,, which define resonant periods for a circular island. 

Solutions for equations (264) and (265) are plotted in Figure 38. 

Equation (264) is plotted on lines of constant ne d#/R¥; equation (265) is 

plotted on lines of constant d%/(R% S >): Solutions for trapped waves are 
obtained where the two families of curves intersect. From equation (288) 
it is seen that solutions will only exist where ds/ (RE S) » SS W555 Ieee 

equation (262) note that 

ee (289) 
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Figure 38. Solution to equations (264) and (265) .--Continued 
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Figure 38. Solution to equations (264) and (265) .--Continued 
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and as M = n,/Cc, as previously defined, this can be rewritten as 

Qn Denn ee Nee Wh ae 
gt? E hy abet Re ie | oe 

P ‘s s 2 

* 2 

Sinaia) a fs \ oon re aH 
eT2 2c \r*/\ R* CD) 

2 s 

Lines of constant 21 dé ny/(gT7) are also plotted in Figure 38. The 
minimum ipetealie of the trapped waves is defined where a line of constant 
2m dz ny/(gT* ) is tangent to the line where d3/(S» Rg) is constant for 
the pen values) Of id3)5) > S5, | and) Rs. Solutions for equations (264) 
and (265) at greater valaes of R3/Xp (ee longer wave periods) define 
trapped waves. Solutions for equations (264) and (265) for smaller 
values of R3/rx (at longer wave periods) define the damping zone dis- 
cussed by Lozano and Meyer (1976). 

which reduces to 

Solutions of equations (264) and (265) for values of nn», defined 

by equation (286), define caustics at the inner limit of the trapped 

wave zone near the shoreline (i.e., where rs > RZ). These solutions 

will give the maximum trapped wave periods, Te but the solutions 
tend to break down at this point as the parameter, U, defined by 
equation (66) as U = (H/d) (L/d)2, becomes very large (U >> 1). However, 
the minimum trapped wave period and the outer limit of the trapped wave 
zone can be approximated using equations (264) and (265). 

Figure 38 shows that, for varying values of a,, the minimum trapped 
wave period will increase as oa, decreases. This is expected since 
shorter period waves, at lower values of a,, tend to pass into deep 

water and are not trapped. 

The theoretical solutions given by equations (264) and (265) are for 
the case of a coastline approximated by a circular arc. In the limiting 

case, this will approach a straight coastline. Solutions for irregular 
coastlines must be obtained by numerical methods. The theoretical solu- 

tions presented here can be used to verify numerical methods used for 
more complex solutions for irregular coastlines. An example of a numeri- 
cal solution is given by Houston, Carver, and Markle (1977) using a 

finite-element numerical model developed by Chen and Mei (1974). 

kok we k kk ok & ek & */* * EXAMPLE PROBLEM 19 * * * * * * * * * & * ¥ * 

GIVEN: A curved section of coastline is convex, with a radius of curva- 

ture Re = 100,000 meters (62.14 miles), and the depth at the toe of 

the shoreline slope dé = 30 meters. A tsunami reflects from the shore- 
line slope and refracts over a shelf where the bottom slope of the shelf 
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is S, = 0.003. The angle between the reflected wave ray and the 
orthogonal to the shoreline a, = 45°. 

FIND: 

(a) The minimum shelf slope required for trapped waves to exist, 

(b) the radius, r,, defining the outer limit of the trapped wave 

zone where a, = 45°, and 

(c) the minimum period of waves trapped by refraction, where a, = 45°. 

SOLUTION: 

(a) From equation (288), for wave trapping to exist 

d* 

SEN (ONS 
Sune 

s 

dein 2030 Seer? NePEaSOME OY) Oo06 
R* 100,000 

Ss 

(b) The shelf parameter is 

dé 30 30 Sit (ah 2 Peeks eee at Re HE ET 
SiiRs ~ 0.003(100,000) 300 

From Figure 38, for a, = 45°, the minimum wave period is at 

21 d* n, 

HOGS VEN2 101 068 
eT? 

where 
2 ax nid 

SEES ORT 
R*® 

Ss 

Re 100,000 Diy = Si) 9 SA ENE My = Othe = Dad = 2,367 
s 

Ny = 48.65 

and 

R* 

= 0.93 

P 
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which gives 

RE 100, 000 
rt = ——— = ———— = 107,530 meters (66.8 miles) 
P 0.93 0.93 

The width of the trapped wave zone from the shoreline to the outer limit 
is given by 

rs - R* = 107,530 - 100,000 = 7,530 meters (4.68 miles) 

27 d* n 27 dz Ny 

(c) ee 068 Or Te Soe 
pT2 0.068 g 

0) (48.65 
72 = 2m(30) (48.65) = 13,747 

9, 81(0.068) 

117.2 seconds (1.95 minutes) J " 

for the minimum trapped wave period. 

RR RNR RRS I) ICR Se eR Re OR RED keyed ea ke) ie eK) se coe ee em 

6. Mach-Stem Formation. 

Figure 38 illustrates solutions for trapped waves for angles Oy S as™. 
Perroud (1957) showed that a, = 45° defines a critical angle for wave 

reflection. When a, < 45° regular reflection occurs, i.e., the wave 
reflects in a manner described in Section VI, 1 and 5. When a, = 45° the 

end of the wave crest at the shoreline turns perpendicular to the shore- 
line (see Fig. 39). Regular reflection no longer occurs when a; > 45°. 

Perroud showed that, for a, > 45°, the incident wave produces two 

components. The first is a reflected wave, lower than the incident wave, 

and with the angle, a,, between the reflected wave ray and the normal 

to the shoreline defined by a) < a,. The second component is a Mach stem 
which moves along the shoreline in the direction of the longshore compo- 
nent of the incident wave, growing in size as it progresses along the 
shoreline. Figure 39 shows the initial growth of a Mach stem along a 
vertical wall for the critical angle a, = NSS 

Experimental measurements by Perroud (1957) show that the Mach stem 

has a profile at the shoreline similar to the profile of the incident 
wave, giving the Mach stem the appearance of a large wave moving along 
the shoreline. The Mach stem remains attached to the shoreline end of 
the incident wave crest, so its speed of propagation, Cy, along the 
shoreline is given as 

oy oe (292) 
sin Oy 

where C is the celerity of the incident wave near the shoreline. 
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Figure 39. Mach-stem formation, solitary wave. Lines of equal 
surface elevation above still water normalized to unit 
incident wave amplitude (after Perroud, 1957). 

Chen (1961) studied Mach-stem development using a range of values 
for the nearshore slope. He showed that where the angle of the nearshore 
slope 6B < 60°, and %) > 55°, the Mach stem formed a breaking wave along 

the shoreline. The relationship between the wavelength and the slope 
length was not considered in this case, and was not varied during the 
experiments. 

It was generally found by Perroud (1957) and Chen (1961) that the 
incident waves neither reflected from the shoreline nor formed Mach stems 

when a, > 70°. This would be the case for an incident wave traveling 
nearly parallel to the section of shoreline; e.g., a wave entering an 
inlet with a gradually varying cross section. 

7. Bay and Harbor Resonance. 

When a bay or harbor is very long in relation to the tsunami wave- 
length, the tsunami may cause resonance if a natural mode of oscillation 
of a bay or harbor corresponds to the period of the tsunami. Murty, 
Wigen, and Chawla (1975) have tabulated the approximate periods of inlets 

on the Pacific coast of North and South America based on the formula 

AL 
T= —2 293 ea (293) 



where T, is the primary period, Lp the length of the inlet, and 
da the average depth of the inlet. Values of length, depth, width, 
period, and relative intensity of secondary oscillations of the water 
level, as given by Murty, Wigen, and Chawla, for inlets on the coast of 

Alaska and British Columbia, and for Puget Sound, are given in Table 4. 
These values are only approximate because variations in inlet cross 
section, restricted entrances, and the effects of branched inlets are 
not considered. 

Referring to the work of Nakano (1932) which showed secondary undu- 
lations to be proportional to the length of an inlet, Lp, and inversely 
proportional to the width, B, and to ds72. Murty, Wigen, and Chawla 

(1975) proposed that the relative intensity, I, of the secondary undu- 

lations could be given as 

by I =—— (294) 
3/2 Bd3 

Values of I for inlets of Alaska, British Columbia, and for Puget Sound 
are shown in Table 4. Inlets with higher relative intensities, I, would 

be expected to excite larger amplitudes of oscillation. As indicated by 
Murty, Wigen, and Chawla, some bays which have small ratios of Lp/B have 
large secondary oscillations. They point out that equations (293) and 
(294) are based on a one-dimensional theory which is not valid for low 
ratios of Lp/B, and that transverse motion is important in these cases. 

Fukuuchi and Ito (1966) consider a tsunami passing from a larger bay 
or inlet into a smaller inlet. Where the larger inlet has a width B,, 
and the width narrows to a width B, in the smaller inlet (see Fig. 40), 
they give the amplitude a, at the head of the smaller inlet as 

By 
2v2 a, a7 

Bo 
ay = (2) (2) | ( a) 1/2 

=e eel a mele COSN Tit 
By By T 

where a is the incident tsunami amplitude in the larger inlet, T the 

period of the tsunami, and T, the period of the smaller inlet as given 
by equation (293). The maximum amplitude a, will occur when T,/T = 
1, 3, 5... while the minimum amplitude would be at 1T,/T = 2, 4, 6. i 

etc. Equation (295) would predict very high values of a,/a, where B,/B, 
is large. This is not consistent with the work of other investigators. 

(295) 

Ippen, Raichlen, and Sullivan (1962) carried out a hydraulic model 
investigation of an inlet connected to an "infinite ocean.'' The ocean 
was simulated in a wave basin, using wave absorbers to minimize reflected 
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Table 4. Dimensions, periods of fundamental mode, and intensity of secondary 
undulations of inlets of Alaska and British Columbia, and of Puget 
Sound (from Murty, Wigen, and Chawla, 1975). 

Ly» da» Period, B, L,/8 

Inlet length mean depth T, mean width L,/B que 

(km) (km) (min) (km) a 

Alaska 

Tarr Inlet- 111 0.220 159 5.6 19.8 192 

Glacier Bay 

Muir Inlet 35 0.215 51 3.5 10.0 100 

Lynn Canal 146 0.360 164 6.6 22k 102 

Gastineau Canal 18 0.040 61 1.3 13.8 1,725 

Taku Inlet- 133 0.295 165 13.0 10.2 64 

Stephens Passage 

Tracy Arm 43 0.270 56 1.8 23.9 170 

Endicott Arm 44 0.260 58 3.3 13.3 100 

“Frederick Sound 80 0.165 133 22.2 3.6 54 

Thomas Bay 20. 0.150 35 2.8 7.1 122 

Tenakee Inlet 64 0.140 115 3.2 20.0 382 

Peril Strait 71 0.210 104 4.0 17.8 185 

Bradfield Canal- 80 0.310 97 5.7 14.0 81 
Ernest Sound 

Behm Canal West- 72 0.425 74 Se) 13.8 50 
Bell Arm 

Burroughs Bay- 113 0.420 174 3.5 32.3 119 
Behm Canal East 

Rudyerd Bay 22 0.170 36 0.9 24.4 348 

Boca de Quadra 56 0.245 76 1.3 43.1 355 

Carroll Inlet 44 0.130 82 1.6 27.5 587 

George Inlet 22 0.225 31 1.4 15.7 147 

British Columbia 

Portland Canal 115 0.255 153 2.2 52.3 406 

Observatory Inlet- 76 0.385 82 2.2 34.5 144 

Hastings Arm 

Alice Arm 19 0.240 26 1.3 14.6 124 

Khutzeymateen Inlet 25 0.120 49 1.0 25.0 601 

Work Channel 54 0.240 74 2.0 27.0 230 

Prince Rupert Inlet 19 0.045 60 1.2 15.6 1,634 

Douglas Channel 83 0.330 97 3.5 23.7 125 

Kildala Arm 19 0.175 31 1.5 12.7 173 

Gardner Canal 91 0.275 117 1.9 47.9 332 

Surf Inlet 22 0.220 32 0.9 24.4 236 

Laredo Inlet 39 0.295 48 1.5 26.0 162 

Sheep Passage- 33 0.275 42 1.5 22.0 153 
Mussel Inlet 

Spiller Channel 46 0.255 61 1.9 24.2 188 

Roscoe Inlet 43 0.135 79 1.1 39.1 788 

Cousins Inlet 12 0.070 31 0.8 15.0 810 

Cascade Inlet 26 0.250 35 1.1 23.6 189 

Dean Channel lll 0.420 115 2.4 46.3 170 

Kwatna Inlet 24 0.345 28 2.0 12.0 59 

South Bentinck Arm 37 0.240 51 7623 16.8 143 

Rivers Inlet 46 0.295 57 3.0 15.3 95 

Moses Inlet 26 0.200 39 0.9 28.9 323 



Table 4. Dimensions, periods of fundamental mode, and intensity of secondary 
undulations of inlets of Alaska and British Columbia, and of Puget 
Sound (from Murty, Wigen, and Chawla, 1975) .--Continued 

L> da» Period, B, L,/B 

Inlet length mean depth T, mean width L,/B 3372 

(km) (km) (min) (km) Z 

Smith Inlet ce ie ae 
Mereworth Sound 19 0.090 43 0.4 47.5 1,759 

Belize Inlet 52 0.255 69 1.1 47.3 367 

Nugent Sound 24 0.075 59 0.7 34.3 1,669 

Seymour Inlet 67 0.420 70 5 7/ 39.4 145 

Drury Inlet 22 0.040 74 eS) WS EE) Anil 

Knight Inlet 130 0.295 161 3.0 43.3 270 

Call Inlet 28 0.135 51 1.5 18.7 377 

Loughborough Inlet 35 0.190 54 oz 20.6 249 

Bute Inlet 76 0.510 72 S36 7/ 20.5 56 

Toba Inlet 37 0.390 40 2.6 14.2 58 

Jervis Inlet 89 0.495 85 3.2 27.8 80 

Howe Sound 43 0.225 61 7.0 6.1 57 

Vancouver Island 

British Columbia 

Holberg-Rupert Inlet 44 0.165 73 1.4 31.4 469 

Quatsino Sound- 59 0.150 103 2.2 26.8 461 
Neroutsos Inlet 

Forward Inlet il 0.030 43 ast 10.0 1,925 

Klaskino Inlet 11 0.035 40 0.7 15.7.5 2,398 

Quoukinsh Inlet 14 0.085 32 1.2 WS 7/ 472 

Port Eliza 11 0.050 33 0.7 15.7 1,404 

Espinosa Inlet 14 0.215 20 1.3 10.8 108 

Nuchalitz Inlet 15 0.025 64 1.3 11.5 2,909 

Tahsis Inlet 29 0.120 56 0.9 32.2 775 

Cook Channel- 31 0.150 54 1.9 16.3 281 
Tlupana Inlet 

Zuciarte Channel- 48 0.220 69 1.5 32.0 310 

Mechalat Inlet 

Sydney Inlet 20 0.080 48 1.3 15.4 681 

Shelter Inlet 19 0.115 38 1.3 14.6 374 

Herbert Inlet 23 0.100 49 2.0 11.5 364 

Pipestem Inlet 9 0.045 29 0.7 L2S9 lol 

Effingham Inlet 17 0.095 37 1.2 14.2 485 

Alberni Inlet 69 0.145 122 1.3 53.1 962 

Saanich Inlet 23 0.180 37 2.5 9.2 120 

Puget Sound 

Puget Sound 111 0.165 184 6.0 18.5 276 

Hood Canal 102 0.110 207 2.5 40.8 1,118 

Possession Sound- 70 0.090 157 3G 7/ 18.9 700 



Figure 40. Plan view of inlet. 

waves. It is assumed in this case that B; + ~. The experimental results 
of Ippen, Raichlen, and Sullivan are shown in Figure 41, where k is the 
wave number 2n/L. The results are for a fixed inlet width and varying 
wavelength, the variation in the curves illustrating the dependence of 
the results on the ratio of wavelength to inlet width, particularly for 

short, wide inlets. 

Each curve in Figure 41 was obtained by varying the inlet length for 
a fixed wavelength. The results were dependent upon the efficiency of 
the wave filters and wave absorbers used in the experiments. Using 

equation (293) to define Tj, 

(296) 

Therefore, Figure 41 shows that the maximum amplification occurs where 
T,/T < 1. Ippen, Raichlen, and Sullivan did not explore the amplifica- 
tion for shorter period waves; i.e., T,;/T = 3, 5, 7. . . etc. The maxi- 
mum amplification occurring where T,/T < 1 is equivalent to resonance 
for a longer inlet. It can be assumed, therefore, that the inlet has an 
effective length Lg, extending into the open sea; i.e., since a node 
does not exist at the entrance, L, > Lp and the effective primary period, 

: e 
T is 
le? 

(297) 

The length L,, is defined by equation (297) if it is assumed that 

Waal B = 1 where maximum amplification occurs. 

Nishimura, Horikawa, and Shuto (1971) carried out similar experiments 
for an inlet with the entrance partially closed by a breakwater. They 
also found that the inlet had an effective length greater than the actual 
length. Ippen, Raichlen, and Sullivan (1962) and Nishimura, Horikawa, and 
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Figure 41. Amplification factor versus relative 
harbor length (from Ippen, Raichlen, 
and Sullivan, 1962). 

Shuto all indicate that the effective length may be determined by the 
ratio of inlet width to inlet length. 

Nishimura, Horikawa, and Shuto reported that variations in opening 
width at the mouth of an inlet did not affect the effective length. How- 
ever, they investigated a half-harbor width and assumed symmetry would 
produce the same resonant motion in the half harbor as it would in a full 
harbor. Ippen and Goda (1963) indicated this would not be true because 
the half harbor has a asymmetric entrance one-half the width of the 
centered entrance of the full harbor. Ippen and Goda showed that the 
harbor entrance width determined the value of wave radiation functions 
which are used to determine water surface elevations. 

For a fully open inlet or harbor (see Fig. 40), Ippen and Goda defined 
resonant amplification (the ratio of an amplitude in the harbor to the 

amplitude at the closed harbor entrance) as 

a, 1 

isha) ‘ 2 OMe 1/2. (2) ay [ (cos kL, - }, sin kL.) + Wp sin kLy] 

where w, and wp, are wave radiation functions given in Figure 42. The 
resonant amplification would occur where T;,/T = 1 as before. The func- 
tions shown in Figure 42 apply to all harbor openings, where b is the 

width of the opening. 
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Figure 42. Wave radiation functions 
(from Ippen and Goda, 1963). 

* k k kk * kk * *& * * * * EXAMPLE PROBLEM 20 * * * * * * * * * * & * & % 

GIVEN: A fully open inlet has a width, B, given by B = 0.194 Lp, where 
Lp is the length of the inlet. The incident wavelength L = 25B. 

FIND: The resonant amplification in the inlet. 

SOLUTION: 

KB. 200.041) = 0.1257 
2 

From Figure 42, where b = B for a fully open inlet 

, = 0.12 

and 

Vo = 0.24 

From equation (298), 

1 2 

a) [Ccos kL, - sin KL)? + 0, sin? kL] 77? 

IL Shy) 



2 1 
a 2 Wad 1 [ 0.04 : 0.04 5 eal, O04 

——_} - 0.24 sin{2 + (0.12 in| |Z 
(cos ai | " 0.194 Cee SINC. oeaee 

8.16 

CP SPs oe teal Pal Te lS ire CP i ee TP ee Tr ott te ey EP Fe PI eo > fo 6S 

Ippen and Goda (1963) compared theoretical and experimental results 
of a fully open harbor (Fig. 43). They also obtained theoretical results 
for partially closed harbors with both symmetric and asymmetric entrances 
(Fig. 44). Their experimental results for partially closed harbors gen- 
erally showed that amplification factors were less than those predicted 
theoretically. However, comparisons between experiments and theory were 
only obtained for higher modes of oscillation. 

Wave Period (s) 

Harbor 

ie 
“TG 

N 
B/Lp= 0.194 

(0) 0.5 1.0 1.5 2.0 25 3:0) 3:5) 410). 4°5)05'5:0)5 15:5 
KLp 

Figure 43. Frequency response of a fully open harbor 
(from Ippen and Goda, 1963). 
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amplification 
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ee 
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b. Wide Horbor 

Figure 44. Theoretical frequency response curves of harbors 
(from Ippen and Goda, 1963). 
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x Point of predicted 
amplification 

€=0.5 (symmetrical ) 

—-— € 20.75 

——— €=: 0.95 (most asymmetric) 

Q2/0, 

B/Lp= 2.0 x Point of predicted 
b/B =: 0.1 amplification 

—— €:0.5 (symmetrical) 

—-— €: 0.75 

---- € =: 0.95 (most asymmetric) 

—_ 

| 
i 
! 
! 
| 
! 
| 

d. Wide Harbor with Asymmetric Entrance 

Theoretical frequency response curves of harbors Figure 44. 
(from Ippen and Goda, 1963) .--Continued 
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Miles (1972) indicates that for waves passing from a Continental 

Shelf into a harbor, where the dimensions of the harbor and the entry 
channel are small compared to the local wavelength of the tsunami, the 
response of the harbor is essentially restricted to the Helmholtz mode; 
i.e., the lowest mode of resonance. The harbor undergoes a pumping 
motion where the water level in the harbor is assumed to rise and fall 
uniformly across the total area of the harbor (Carrier, Shaw, and Miyata, 
1971). The water passing through the entry channel is assumed to have a 

high velocity, represented as kinetic energy; the water in the harbor has 
a much lower velocity, and the rise and fall of the water level in the 
harbor is represented as potential energy. 

Carrier, Shaw, and Miyata (1971) show that the wave number, k,» for 
Helmholtz resonance is represented 

172 142 
ko = DeSales Reel mies We psa (299) 

ieee: tn(k By) Loe 
Cc T 02 

where Lg is the length of the entrance channel (Fig. 45). The term 
(b/t) &n (kp, b/2) in the denominator represents the effect of energy 

radiation from the seaward end of the entrance channel (Rayleigh, 1945; 
Miles, 1948). Equation (299) is restricted to very limited cases, and 
Figure 46 shows a comparison of equation (299) and the results of Miles 
(1971) for a harbor with a zero-length entrance channel (Lg = 0). Figure 
46 shows that equation (299) will generally predict resonant wavelengths 
that are too short (and therefore predicted resonant periods with values 
lower than the actual resonant periods). 

ork Ose eT 

Figure 45. Harbor with an entrance channel. 
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Carrier, Shaw, and Miyata (1971) suggest an approximate method for 
determining resonant wavelengths, for harbors with entrance channels, 
which will be more generally applicable than equation (299). Their 
method assumes that the resonant wavelength, Lo(Le = 0), for an equiva- 

lent harbor of the same dimensions but having no entrance channel (Lg = 
0), can be obtained. Correcting an error which appears in Carrier, Shaw, 

and Miyata, the resonant wavelength for the harbor with an entrance chan- 
nel is then given by the equation 

+ 5 (21)2 (300) 

2 i‘ 1/2 
L [2 L, B Le(L, 4 

The resonant wavelength where L,, = 0 can be obtained using Miles' (1971) 
results (see Fig. 46). 

For a harbor with an entrance channel (Fig. 45), Miles (1971) indi- 

cates that narrowing the entrance width or increasing the length of the 
entrance channel will significantly increase the response of the harbor 
to the Helmholtz mode, which may dominate tsunami response. This narrow- 

ing or lengthening also has the effect of decreasing the resonant fre- 

quency (Carrier, Shaw, and Miyata, 1971). Carrier, Shaw, and Miyata point 
out that lengthening the entrance channel to a harbor also increases the 
frictional resistance so amplification factors for a very long entrance 
channel may be significantly reduced (although the resonant frequencies 
would still be less than for a harbor without an entrance channel; i.e., 

where yn = 0). 

Seelig, Harris, and Herchenroder (1977) present a numerical means for 

analyzing harbors responding to the Helmholtz mode of resonance. The 
method uses a Runge-Kutta-Gill technique where 

nos 
dt Ay (301) 

h;, is the surface elevation of the water in the harbor above some arbi- 
trary fixed datum, Q the flow rate through the entrance channel, and 

Ap the area of the harbor (Ap = Lp B). The governing differential 
equation is 

(ALO lot Cl fu ean q 0 2 : ( ie gE ,{hy - hy) = 1, F (302) 

where 

= (303) 
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Ag is the cross-sectional area of flow through the entrance channel at 
any point X between the seaward end at X, and the harbor end Xp 
(Ag; therefore, being a function of X), Ape the cross-sectional area 

at the bay end, Age the cross-sectional area at the sea end, hg the 
height of the sea level above the arbitrary fixed datum, and F defined 
as the total bottom friction in the entrance channel. A sample compu- 
tation for a tsunami entering a bay is given in Seelig, Harris, and 
Herchenroder (1977) (Fig. 47). It can be seen that the peak water levels 

in the bay occur slightly after the peak water levels just seaward from 
the entrance channel. Also, the peak water levels were slightly lower 
in this case. 

0.75 
Inlet length=122 m 
Inlet depth= 7.3 m 
Inlet width=24 m 

pac Bay area=4.6 x 10°m2 

0.25 F 

e. 0 

= 
2 

-0.25 

-0.50} 
| Tsunami at bay entrance 

---- Water level in bay 

-0.75 

0 0.5 1.0 1.5 2.0 2.5 

Time (hr) 

Figure 47. Tsunami water levels ina bay (tide excluded) 
(after Seelig, Harris, and Herchenroder, 1977). 

Miles (1971) found that he could transform his equations for wave- 
induced oscillations in a harbor to an integral equation equivalent to 
the equation formulated by Lee (1969, 1971). Lee expresses the governing 

equations for wave oscillations in an arbitrary-shaped harbor as 

ae = x22 (304) 
dz 

and 

Be GSB) 1 ey ATE Bee .0 (305) 
ox? 
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where 

At hae cosh [k(z + d)] 

aig cosh(kd) (ee) 

and f(x,y) is a wave function to be determined. Equation (305) is the 

Helmholtz equation. The following boundary conditions are assumed: 

(a) f(x,y)/on = 0 along all fixed boundaries where n is 
in the normal direction to the boundary. 

(b) The harbor does not affect the wave system where 
(x2 + y#) 172 + »; i.e., at large distances from the harbor 
entrance. 

Lee determines the value of the unknown wave function f(x,y) by 

determining the function f, (x,y) in the open sea and the function f, (x,y) 
in the harbor, then matching the functions at the harbor entrance; i.e., 

the wave amplitude and the slope of the water surface must be the same 
for f, (x,y) and fj(%,y) at the entrance. 

The function f(x,y) at some position (x,y) within the harbor is 
defined by a line integral f, taken around the harbor boundary in a 
counterclockwise direction giving 

£, (xy) = - - J {, (XG 5) oe = [HC (kr) ] 

3 HEIST (ee) se — d, (307) 

where Hf) is a zero-order Hankel function of the first kind, f9(x);Yo9) 
the function at a boundary point (x5,yj), and r the distance between 
the boundary point (XY) and the interior point (x,y). 

The wave function in the open sea is represented by the sum of three 
functions 

Hea e ea) & Bley) e Bea) (308) 

where f£;(x,y) is the known incident wave function, fp(x,y) the reflected 
wave function, and fyg(x,y) the wave function for the wave radiating 
seaward from the harbor entrance. The reflected wave function is deter- 
mined from the incident wave function for total reflection. The radiated 

wave function is determined as 

£,00.y) = - 54, HO ox) & [£,(0,y)] 4, (309) 
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where the line integral J, is taken across the harbor entrance, y is 
measured along the coastline (across the harbor entrance), and x is 

measured normal to the coastline. 

Lee (1969) expressed equations (307) and (309) in matrix form and 

solved them numerically. Figure 48 is an example of his experimental 
results for a small laboratory model of an arbitrary-shaped harbor. 

7 

Arbitrary -shaped 
4 harbor theory 

a, f } e Experiment 

Figure 48. Response curve at point C of the Long Beach harbor 
model (from Lee, 1969). 

Chen and Mei (1974) have developed a finite-element numerical model 

which can be used to study water level oscillations in a harbor. Houston 

(1976, 1977) applied Chen and Mei's model to studies of Los Angeles and 
Long Beach harbors. 

VII. TSUNAMI RUNUP AND INTERACTION WITH STRUCTURES 

The arrival of a tsunami at a shoreline may cause an increase in water 

level as much as 30 meters or greater in an extreme case. Increases of 

10 meters (32.8 feet) are not uncommon. The large increase in water) 
level, combined with the surge of the tsunami, can impose powerful forces 
on shore protection structures and on structures located near the shore- 
line. Structures may be seriously damaged or destroyed by the tsunami. 
Damage may be caused by strong currents produced by waves overtopping the 
structures, by the direct force of the surge produced by a wave, by the 
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hydrostatic pressure created by flooding behind a structure combined with 
the loss of equalizing forces at the front of a structure due to extreme 
drawdown of the water level when the waves recede, and by erosion at the 

base of the structure. Major damage may also be caused by debris carried 
forward by the tsunami in the nearshore area. 

To determine the potential damage to structures located along a shore- 
line, the probable increase in water level caused by the tsunami, i.e., 
the runup height, must be estimated. Estimates of tsunami runup are also 
needed for flood zone planning along the shoreline, and for operation of 
the tsunami warning system to evacuate people from endangered areas. 

1. Tsunami Runup on a Shoreline. 

The height of a tsunami will vary from point to point along a 
coastline. The numerical models for prediction of tsunami height at 
the shoreline, i.e., the elevation of water at the shoreline due to the 

tsunami, must be applied to a sufficient number of points along the 
shoreline to determine this variation. When the variation is large 
between adjacent points, calculations for tsunami heights should be 

carried out at additional shoreline points between those points. After 
the height of the tsunami at a point along the shoreline has been deter- 
mined, the vertical runup height at that point can be estimated. 

When the tsunami height along a section of coastline is relatively 
constant, and the variations in onshore topography are relatively minor, 

the runup height may be assumed to be constant along that section of 

coastline as a first approximation. Variations in tsunami height and 
shoreline topography will actually cause some variation in runup charac- 
teristics along any section of coastline. An example of how extreme 
this variation can be is given by Shepard, MacDonald, and Cox (1950) for 
Haena, on the Island of Kauai, Hawaii, where there was a gentle rise of 

water level on the western side of the bay, but less than 1 mile to the 
east, waves rushed onshore, flattening groves of trees and destroying 
houses. An example of the variation in runup height is given by Wilson 
and Tgrum (1968) for Kodiak City, Alaska (Fig. 49). The mean runup 
height at Kodiak City was a little more than 6 meters (20 feet) above 
mean lower low water (MLLW), with variations from about 5 to 8 meters 

(17 to 27 feet). Because these variations are difficult to predict, the 

predicted runup heights may contain substantial errors. Where tsunamis 
of a known height have produced variations in runup at a particular sec- 
tion of coastline, the higher heights should normally be used for conserv- 

ative design. 

It should be noted that the characteristics of the waves may vary from 

one wave to another at the same coastal point. Shepard, MacDonald, and 
Cox (1950) cite a case in Hawaii where the first waves came in so gently 

that a man was able to wade through chest-high water ahead of the rising 
water. Later waves were so violent that they destroyed houses and left 

a line of debris against trees 150 meters (500 feet) inland. 
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Figure 49. 1964 tsunami runup, Kodiak City, Alaska (contours in feet); 
heavy line is maximum flood level (from Wilson and Terum, 1968). 

An added complication, which is an important consideration in comput- 
ing runup heights, is the possibility of storm waves occurring simultane- 
ously with the tsunami. The prediction of maximum runup heights would 
require the consideration of joint probabilities of tsunamis and storm 
waves, as well as the probability of a high tidal stage. The probability 
of a high tide, tsunami, and storm waves occurring simultaneously may 
appear to be small; however, such an event did occur in Newfoundland in 

1929 (Hodgson and Doxsee, 1930). 

Because a tsunami has a very long period relative to storm waves, it 
causes an apparent variation in water depth over a long distance. Storm 
waves riding on top the tsunami will have a wave celerity corresponding 
to the depth (including tsunami height) at any particular point. If two 
storm waves are otherwise equivalent (e.g., the same period and wave 
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height), and one is at the crest of the tsunami while the other is at 
the leading edge, the storm wave at the tsunami crest will have a higher 
celerity (U.S. Army Engineer District, Honolulu, 1960). Therefore, the 

tsunami can cause one storm wave to overtake and superimpose itself on 
another storm wave, producing higher waves at the shoreline. 

Storm waves alone may be more severe than a tsunami at some exposed 
coastal points. Shepard, MacDonald, and Cox (1950) refer to the 

Kalaupapa Peninsula, on the Island of Molokai, Hawaii, where the 1946 

tsunami left driftwood at elevations slightly more than 2 meters (7 or 8 
feet) above normal sea level, but winter storms had left driftwood 6 

meters above the same datum plane. A combination of a winter storm and 

a large tsunami could be very destructive. 

Houston and Garcia (1974) assume that tsunami runup on a shoreline 

will have a runup height (vertical rise) equal to the wave height at the 
shoreline. This assumption is based on the idea that a tsunami will act 
like a rapidly rising tide. The assumption was compared with a few cases 
where both height and runup data were available. For those cases, which 
included the 1960 tsunami at Hilo, Hawaii, that produced a bore-fronted 

wave, the predicted value of runup equal to wave height at the shoreline 
compared well with the maximum runup measured in the area. Nasu's (1934) 

data for a tsunami occurring in Japan also indicate that the total runup 
was about equal to the wave height at the shoreline at many locations. 
Wiegel (1965) reports that maximum runup elevations above MLLW at Crescent 
City, California, were equal to or greater than the maximum wave height 
(crest-to-trough) at the Crescent City tide gage for the 1952, 1960, and 
1964 tsunamis. Magoon (1965) indicates that the 1964 tsunami at Crescent 

City had an elevation of about 6 meters above MLLW along a substantial 
length of shoreline, and that the line of maximum tsunami inundation 
generally followed a contour at that elevation. While the assumption 
that maximum runup heights will equal the tsunami height at the shoreline 
provides an initial estimate, this assumption cannot always be used with 

accuracy. The effects of ground slope, wave period, and the possible 

convergence or divergence of the runup must be considered. 

The results of Nasu (1934) indicate that the tsunami height at the 

shoreline and the runup height are dependent on the configuration of the 
coastline. At Kamaisi, Japan (Fig. 50), on the north side of a bay, the 

runup height was actually somewhat less than the wave height at the shore- 
line, equal to slightly more than 3 meters. At Hongo (Fig. 51), at the 

head of a bay, the tsunami flowed directly up a canyon along a streambed, 

and the maximum runup height was about 11 meters (36 feet). At Ryoisi 
(Fig. 52), the tsunami intruded into a small inlet opening onto the main 
bay, flowed up a canyon along a streambed and highway, and reached a 

maximum runup height equal to about 10.5 meters (34 feet). The wave at 
Kamaisi was probably traveling parallel to the shoreline as it flooded 
into the bay. The wave at Hongo and Ryoisi was probably traveling in a 

direction oriented directly along the axis of the canyons as the surge 
came onshore. 
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Figure 50. Tsunami runup at Kamaisi, Japan (after Nasu, 1934). 

Iwasaki and Horikawa (1960) show that the period of the waves will 
be a major factor in determining maximum inundation levels. The waves 
from the tsunami which struck the coast of Japan on 24 May 1960 had 
periods of about 60 minutes, while the 1933 tsunami reported on by Nasu 

(1934) had wave periods of about 12 minutes. The 1960 tsunami did not 

form a bore or a spilling front, and the water level gradually gained 
height over the entire surface of the bays where it was observed. For 
the longer period waves of the 1960 tsunami, the orientation of the bays 

appeared to have no influence on the runup heights; the height of the 
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Figure 51. Tsunami runup at Hongo in Toni, Japan (after Nasu, 1934). 

runup was equal to (or sometimes less than) the height of the wave at 

the shoreline. 

Tsunamis at a shoreline could be categorized into three types of 
waves: nonbreaking waves (i.e., a tsunami which acts as a rapidly rising 

tide); waves which break far from the shoreline and become fully developed 
bores before reaching the shoreline; and waves which break near the shore- 
line and act as partially developed bores which are not uniform in height. 

In addition, there are some cases where reflected waves become bores after 

reflecting from a shoreline. 

For the nonbreaking wave, the assumption that the runup height equals 
the wave height at the shoreline may be reasonable and possibly even con- 
servative. Field observations (e.g., Nasu, 1934) indicate that the runup 
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Figure 52. Tsunami runup at Ryoisi, Japan (after Nasu, 1934). 

height is sometimes less than that value. To analyze the runup of 
breaking waves and fully developed bores, where maximum runup heights 
have been observed to be much higher than the wave or bore height at 
the shoreline, it is necessary to consider the actual form of the runup. 

Using solitary waves, Camfield and Street's (1967) experimental 
results for an 8° nearshore slope fronted by a slope S, = 0.01 indicated 

that the runup takes the initial form of a horizontal water surface at 
an elevation equal to the wave height at the shoreline (Fig. 53), and 
that the higher runup on the slope washes up the slope at a shallow depth. 
Results for plunging breakers on 4° and 8° slopes fronted by a slope 
S, = 0.01, and on 4°, 8°, and 12° slopes fronted by a slope S, = 0.03, 
indicated similar runup characteristics. The higher, shallow runup may 
cause some flooding, but would not be expected to otherwise cause damage 
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Figure 53. Solitary wave runup (from Camfield and Street, 1967). 

because of the shallow depth. Also, this higher, shallow runup may not 
be representative of prototype runup. O'Brien (1977) points out that a 
fraction of the uprush percolates into a natural, permeable beach. This 
percolation tends to partially dissipate the shallow part of the runup 

observed on the impermeable model beach. 

Kononkova and Reihrudel (1976) studied the runup of solitary waves 

on uniform slopes which were apparently fronted by a horizontal tank 
bottom. For nearshore slopes less than 8°, their results were comparable 
to those of Camfield and Street (1967). For nearshore slopes greater 
than 8°, they found runup values higher than the wave height at the shore- 

lhamiey. 

Miller (1968) gives results for borelike waves which act as surge 

runup on a shoreline. He shows that the runup in this case also takes 
the initial form of a horizontal water surface at an elevation equal to 
the wave height at the shoreline, and that the higher runup flows up the 
slope as a thin sheet. Miller comments that, 'In the later stages of 
runup, the form of the wave was of a thin, fast-moving greatly elongated 

wedge." 

The experimental work of Camfield and Street (1967), Miller (1968), 

and Kononkova and Reihrudel (1976) was for flat, uniform slopes with no 

convergence of the wave crest. In general, the experiments show that 
for flatter slopes (less than 8°) the runup height appears equal to or 
less than the wave height at the shoreline. For steeper slopes, the 

runup height increases as the slope increases, and the ratio of runup 
height to wave height at the shoreline appears to reach a maximum value 
for vertical walls. However, the higher runup on the steeper slopes 
appears to have a relatively shallow depth. 

Some attempts have been made to develop theoretical solutions. 
Freeman and Le Mehaute (1964) give a formula for surge runup as 

uz(1 + A)(1 + 2A) 

88 (310) 
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where 

R = the vertical height of runup above the stillwater level 

ue the current velocity of the surge at the shoreline 

£ | =the friction factor, 

S = the ground slope 

g = gravitational acceleration 

A = a coefficient 

Adapting the work of Keulegan (1950), they obtain a maximum value of 

A= 0.5. Using a value for u, given by 

(n= (311) 

where h, is the surge height at the shoreline, taking the friction 
Lalctonye) ee as 

Z 

G 
£ (312) 

where (Cj, is the Chezy coefficient, and using the maximum value for A, 

equation (310) reduces to 

ag! (313) 

As Cy varies with depth, this equation would predict that the relative 
runup R/h, varies between a prototype and model unless proper roughness 
scaling is used. Because Cy, decreases with increasing roughness, the 
relative runup would decrease as the roughness increases. Also, as slope 
increases, the relative runup increases. As the slope approaches infinity 
(a vertical wall), the relative runup R/h, = 6. This value is somewhat 
higher than experimentally obtained values. Camfield and Street (1967, 

1968) obtained values of relative runup between 4.5 and 5.0 from solitary 
wave experiments for breaking waves running up on a vertical wall. Equa- 
tion (313) does not consider the effects of wave period. 

Freeman and Le Mehaute (1964) noted that coefficient A in equation 

(310) should be somewhat less than 0.5. Kishi and Saeki (1966) indicate 

that the value of A decreases as the slope decreases, which is consist- 
ent with Freeman and Le Mehaute that the value of A depends on the form 
of the wave at the shoreline. 
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It is also necessary to account for the dependence of CG, on the 
varying height, h, of the surge traveling up the onshore slope. Noting 
that, for uniform flow, Cy, can be related to the Manning roughness 
coefficient in by, 

2 h!i43 
Cc = 

h me 
(314) 

in metric units (the right side of eq. 314 is multiplied by 2.22 for 
the foot-pound-second system of units), and that a plot of h/!/ versus 

h for 0<h < hg will give an average value of h = 0.75 Wee he ales joreo)= 
posed equation (314) can then be written 

s 0.91 hace 
Go aaa (315) 

in metric units. This allows equation (310) to be rewritten as 
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in metric units (the coefficient 0.91 on the right side is equal to 2.02 

in the foot-pound-second system of units). Kishi and Saeki give a log- 

log plot for A versus S, with A = 0.25 when S = 0.03, and A = 0.04 

when S = 0.07. Values of A were only obtained for that range of slopes. 
Also, the effect of wave period on the results was apparently not inves- 
tigated. 

Camfield and Street's (1967) laboratory results for borelike solitary 
waves running up a 4° slope (S = 0.0699), fronted by a slope S = 0.01, 

give a total relative runup R/H, of 3.3 for a value of hg = 0.061 meter 

(0.2 foot) on a smooth aluminum slope. Using a value of n = 0.01 in 
equation (316), and using a value of A = 0.4 suggested by Kishi and 
Saeki (1966), R/h, would have a calculated value of 2.67, which is 

close to the measured value. Kishi and Saeki obtain similar results for 
rough slopes. As previously mentioned, the runup values of Camfield and 
Street (1967) include a shallow flooding which may not be an accurate 
prediction of prototype conditions. If only the greater water depths 
were considered, such as shown in Figure 53, then the measured value of 
R/h, = 1.0. 

It should be noted that the above equations assume a uniform slope. 
For runup on a shoreline where the slope varies, it would be necessary 
to use a numerical solution to determine the limits of the runup. Freeman 
and Le Mehaute have carried out numerical calculations for slopes S > 0.1, 
but present no results for very flat slopes. Very little data exist to 
verify such equations or to determine their full range of application. 
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The solution of equation (316) is very dependent on a correct choice 

of the roughness coefficient. Only very limited data are presently 
available for estimating values of the roughness coefficient n. For 
prototype conditions, the "roughness" may consist of groves of trees or 
subdivisions of houses. Also, the roughness elements, e.g., trees and 

houses, may be moved by the waves. 

Bretschneider and Wybro (1976) investigated the effect of bottom 

friction on tsunami inundation by using the Manning n_ to describe the 
roughness of the onshore slope. Although this is not entirely correct 
(the Manning relationship was developed for uniform flow), it provides 
a simple means of investigating the effects of roughness on the limits 
of inundation. It was shown that decreasing the Manning roughness coef- 
ficient, n, fromn = 0.025 (long grass with brush) to n = 0.015 (short, 
cut grass and pavement) could increase the distance required for dissipa- 
tion of the surge by 160 percent (from 670 to 1,770 meters or 2,200 to 
5,800 feet in the example used, where h, = 10 meters or 33 feet). 
Bretschneider and Wybro also demonstrated that a bore would be dissipated 
faster than a tsunami acting as a rapidly rising tide. 

Chan, Street, and Strelkoff (1969) and Chan and Street (1970a, 1970b) 
use a modified Marker and Cell (SUMMAC) numerical finite-difference tech- 

nique for calculating the wave runup of solitary waves on a 45° slope and 
on a vertical wall. Their results compared well with the experimental 
results of Street and Camfield (1966), but their numerical method was 

not applied to wave runup on the shoreline for flatter slopes. Heitner 

(1969) developed a numerical method based on finite elements. However, 

he provides only limited results for simulating waves in laboratory 
channels, and the results depend on the choice of a bottom-friction fac- 
tor and an artificial viscosity. 

Spielvogel (1975) developed a theoretical solution for tsunami runup 
based on the wave or surge height at the shoreline, h,, and the wave 
height, fi, at the point where the leading edge of the wave is at the 
shoreline. This relates the runup to the rate of shoaling just before 
the wave reaches the shoreline, and effectively includes the influence 
of the bottom slope and the wave period. Replotting Spielvogel's results 

into a more usable form gives the equation 
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Equation (317) indicates that, the higher values of relative runup, R/hg, 

occur when the values of h,/H are the lowest. Spielvogel indicates that 

equation (317) is correct for 3.74 > h,/H > 2.12, has limited application 

where 2.12 > h /ii > 1.76, and is invalid where h 4/A < 1.76. This latter, 

invalid case would be a nearshore bore or breaking wave. 

In addition to considering wave runup, it is necessary to consider 

the drawdown of the water when the wave trough arrives at the shoreline. 
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Not as much attention has been given to wave rundown; however, the 
drawdown of the water level may result in the seaward collapse of sea- 
walls, result in damage to ships in a harbor, or expose seawater-intake 
pipelines. It should also be noted that a gradual increase in water 
level, with very low velocity currents, may be followed by a sudden 
withdrawal of water producing very strong currents. 

During the 1946 tsunami in Hawaii, waves at Hanamaulu Bay rose 2.7 

meters at a breakwater and wharf, but the water receded to a level 5.6 

meters below normal sea level between waves (Shepard, MacDonald, and Cox, 

1950). Most of the damage was caused by the violent withdrawal of the 

water. 

The rundown elevations will depend on the wave train generated at 
the tsunami source. For the 1946 tsunami, the tide gage record at 
Honolulu, Hawaii, indicated some very narrow, deep wave troughs with 
the initial troughs having greater amplitudes than the initial crests. 

Consideration must also be given to the current velocities of the 
runup. Ishimoto and Hagiwara (1934) investigated the large 1933 tsunami 
at Kamaisi, Japan, and estimated current velocities with a maximum value 
of 1 meter per second. Houston and Garcia (1974) estimated that small 
tsunamis in southern California acting as rapidly rising tides would 

have maximum current velocities of about 0.5 meter per second. The 
current velocity for the 1933 tsunami, which was about double the veloc- 

ity estimated by Houston and Garcia for small tsunamis, destroyed some 
buildings when the water depth reached a height of 2 meters (6.15 feet). 

Water overflowing a coastal barrier will have a current velocity 
determined by the difference in height between the top of the barrier 
and the ground level behind the barrier, as well as the quantity of 
water overtopping the barrier, rather than acting like a rapidly rising 

tide. The barrier will also limit the height of the runup; however, 

large drain openings must be provided to prevent water levels from 
building up behind the barrier if it is overtopped by successive waves. 
Magoon (1965) cites one example south of Crescent City, California, 

during the 1964 tsunami where water flowed over narrow coastal dunes. 
The quantity of water overflowing the dunes was insufficient in some 
instances to fill the low areas to landward, reducing the resulting 

runup height. 

Where the slope is very long compared to the wavelength, and friction 
effects must be considered, it can be seen that for low velocities the 

retarding effect of the slope roughness (deceleration) may prevent the 
water from rising to a runup height equal to the wave height at the shore- 
line (i.e., drawdown will start at the shoreline, reversing the direction 

of flow). As previously noted, the currents associated with the rundown 
might have much higher velocities than the currents associated with the 
runup. No estimates are available for the rundown currents. 
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‘Surge runup on a dry bed will have a much higher velocity than the 
values given by Houston and Garcia (1974) for a tsunami which acts like 
a rapidly rising tide. Keulegan (1950) gives 

u = 2(gh) 172 (318) 

where h is the surge height at any point and u the water velocity at 
the same point. Fukui, et al. (1963) give a lower value of velocity as 

u = 1.83(gh) 172 (319) 

The higher value would be conservative. 

2. Interaction with Shore Protection Structures. 

Breakwaters and seawalls may provide coastal areas protection from 
tsunamis. When a tsunami occurs, breakwaters may decrease the volume of 

water flowing into a harbor and onto the coastline. Proper placement of 
breakwaters may also decrease wave heights by changing the natural period 
of an inlet discussed in Section VI, 7. However, breakwaters may also 

affect the resonant period of a harbor so that wave heights are increased, 
and seawalls may reflect waves within a harbor. A high seawall along a 
coastline may prevent flooding of the backshore areas. 

A tsunami may damage shore protection structures; therefore, care 
must be exercised in the design of the structures. Numerous instances 
of tsunamis damaging or destroying protective structures have been 
recorded. The 1946 tsunami in Hawaii overtopped and breached the break- 
water at Hilo, removing 7.25-metric ton (8 tons} stones to a depth 0.9 

meter (3 feet) below the water surface along nine sections of the break- 

water crest with a total length of over 1,800 meters (6,000 feet) (U.S. 

Army Engineer District, Honolulu, 1960). Matuo (1934) refers to the case 
of an earthern embankment at Yosihama on the northeast coast of Honshu, 

Japan, which had been constructed to protect a section of coastline. The 
1933 Sanriku tsunami overtopped the embankment, and it was swept away, 
flush with the original ground level. 

Iwasaki and Horikawa (1960) investigated areas along the northeast 
coast of Honshu after the 1960 tsunami. They indicated that a sea dike 
at Kesennuma Bay failed during the 1960 tsunami because the water from 
the incident waves, which had overtopped the dike, caused extensive 
erosion receding at a gap in the dike. The receding water gradually 
widened the gap. They also noted that a quay wall at Ofunato failed 
because of scouring of the backfilling, and that a quay wall constructed 
of reinforced concrete sheet piles at Hachinohe collapsed due to a lack 
of interlocking strength after backfilling was washed away. 

Iwasaki and Horikawa also indicated that receding water may seriously 
scour the seaward base of a revetment or seawall. The combination of this 
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scouring and the increased hydrostatic pressure from initial overtopping 
may cause failure. The concrete seawall along a highway between Hadenya 
and Mitobe on Shizukawa Bay (Fig. 54) collapsed seaward. Similar fail- 

ures occurred along a highway on Onagawa Bay and along a quay wall at 

Kamaishi, Japan. Magoon (1962) noted that approximately 2 meters of 
sand was scoured at the seaward toe of a steel sheet-pile retaining wall 
at Crescent City, California, in 1960 which contributed to its partial 
failure. Also, a woodpile-mooring dolphin was destroyed as a result of 
the loss of sand at its base. Matuo (1934) mentions a concrete retaining 

wall which was overturned seaward by the 1933 Sanriku tsunami. 

The damage from the 1960 tsunami in Hawaii is evidence of the erosive 
force of a tsunami. Concrete seawalls 0.9 meter high were washed out and 
a gully about 3 meters deep and 27 meters wide was washed into a highway 
along the shoreline at Hilo, extending inland about 18 meters. Large 
stones from a seawall, weighing up to 20 metric tons (22 tons), were 

carried inland (Eaton, Richter, and Ault, 1961). Shepard, MacDonald, 

and Cox (1950) mention a case where water overtopping sand dunes cut a 
channel about 30 méters wide and about 5 meters (15 feet) deep. 

Tsunamis will not always produce the maximum forces on a structure. 
A concrete seawall protected the buildings at the Puu Maile Hospital at 
Hilo during the 1946 tsunami. The seawall was undamaged by the tsunami, 
but a few months later storm waves destroyed parts of the wall and damaged 
the lower floor of the hospital (Shepard, MacDonald, and Cox, 1950). 

Matuo (1934) reports on a dynamometer located on a breakwater at 
Hatinohe harbor, Japan, during the 1933 Sanriku tsunami. The dynamometer 
was located 0.76 meter (2.5 feet) below the level of the water surface at 
the time of arrival of the tsunami. The recorded maximum pressure was 
38,300 newtons per square meter (800 pounds per square foot) for a wave 
with a height of 3.2 meters (10.5 feet) and a period of 6 minutes. 

Nasu (1948) developed some empirical criteria for the stability of 
breakwaters based on the geometric shape of the breakwater. For a break- 
water with a seaward slope of 1:2.5 and a landward slope of 1:2, he gives 

h. + 0.89b 
v aes pecbi pease (320) 
0.0358 

for the condition of geometric stability, where u is the current veloc- 
ity in meters per second, h, the height in meters of the vertical seg- 
ment of the face of the breakwater against which the current acts, and 

b the top width of the breakwater in meters. 

Kaplan (1955) gives an empirical equation for the volume of overtop- 
ping of a seawall at the shoreline. This equation can be rewritten as 
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where V is the quantity of water overtopping the wall in cubic meters 

per meter or cubic feet per foot length of wall, hg the wave height at 
the shoreline in meters or feet, h, the wall height in meters or feet, 
and 

R re (322) 

where R would be the vertical height of wave runup on a similar wall 
high enough to prevent overtopping. 

Wiegel (1970) gives the following empirical equation for overtopping 
volume in cubic meters per meter length of wall 

t 3/2 i 2/1 AE 
V= 0.287 |, ( h, cos 7 h,,) dt (323) 

where hg is the total wave height in meters (crest-to-trough) of the 

wave at the shoreline, T the wave period, t, the point in time where 
overtopping begins, and t, the time when overtopping ends. As the 
wall height, h,, is measured in meters from the sea level at the time 
the tsunami occurs, it varies but its lowest value (i.e., the greatest 

overtopping) would occur when the sea level is at the highest tidal stage. 

Values for overtopping are shown in Figure 55. 
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Figure 55. Overtopping volumes 
(after Wiegel, 1970). 
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Based on stability tests carried out in a hydraulic model, Kamel 
(1967) developed suggested breakwater sections for Hilo, Hawaii (Figs. 
S56 and 57). Allowable overtopping heights are given in Table 5. 

Table 5. Allowable overtopping heights 
(after Kamel, 1967). 

Allowable height 
of overtopping (m) 

Slope of 9.1-metric ton | 18.2-metric ton 
harborside of barrier Armor stones Armor stones 

eD 0.3 

L255 0.8 

eS NsS 

ese 1.6 

1:4 2.0 

1:4.5 Bod 

1:5 Dera 

1:6 5 

i99/ 2.9 

Iwasaki and Horikawa (1960) show typical cross sections of seawalls 
at locations on the northeast coast of Honshu (see Fig. 58). In some 
instances, such as in fishing ports or harbor areas, it is undesirable 

to have high seawalls directly on the waterfront. The seawall at Yamada 
(Fig. 59) is in two stages. A low seawall along the waterfront allows 
access to the water; a higher seawall, set back from the shoreline, 

protects the town from higher waves. Figures 58 and 59 show that the 
seaward toe of a wall is protected by rubble to deter scouring. Also, 
the area behind the top of the shoreline wall, such as at Yamada, is 

paved to prevent saturation and erosion of the backfill material. 

The protection provided by a breakwater depends on its location and 
the width of the navigation channel through the breakwater. Iwasaki, 
Miura, and Terada (1961) ran model tests for breakwaters in Kesennuma 

Bay. They discovered that a breakwater at the mouth of the bay would 
substantially reduce wave heights in the bay for all wave periods tested. 
As expected, the greatest reduction in wave height occurred when the area 
of the breakwater opening was the least. When the ratio of the breakwater 
opening area to the cross-sectional area of the bay was equal to about 

0.1, the wave height was reduced to about 0.25 times the height which 

would occur without the breakwater. Surprisingly, when the breakwater 
was moved to the mouth of Kesennuma harbor in the model, at the inner 

end of the bay, the breakwater had almost no effect in reducing wave 
heights. The location of the breakwater would be expected to affect the 
resonant periods of the bay and the harbor. Therefore, care should be 

exercised in placing a breakwater in any bay or harbor. 
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t 
SEASIDE OF EXISTING AND REHABILITATED HARBORSIDE 

BARRIER 

HARBORSIDE SLOPE 

EL. #19 FOR 10-TON STONES yp 10 TON 20 TON 
EL #20 FOR 20-TON STONES ke" —_+| eu ED 201 FOR 20. TON STONES 35 

~ 

N x 

ELEVATION (ff MLLW ) 

70 60 50 40 30 20 10 ° 10 20 30 ao +) 60 70 E+) 

DISTANCE FROM CENTERLINE ( ft) (Dimensions shown in feet) 

NOTE: CROSSHATCHED AREA REPRESENTS 
THE EXISTING BARRIER. 

Figure 56. Suggested design for rehabilitated breakwater, Hilo, Hawaii 
(from Kamel, 1967). 

Seaside Horborside | 
¢ 
I 

23tt > 22tt One Leyer 4-to l0-ton Stones 
Moximum Tsunami Runup eae y 

Armor Stones Adequate to Withstand the rote 
“Attack of Short-Period Waves 

1.8 
One Loyer 10-ton Stones 

(Dimension shown in feet) 

Figure 57. Suggested design, typical nonovertopping barrier 
section, Hilo, Hawaii (from Kamel, 1967). 
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d DADA 

Seaside 

ike a 

a. Seawall at Taro 

Seaside 

Figure 58. 

b. Seawall at Yoshihama 

Dimensions in meters. 
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Seawall cross sections (from Iwasaki and Horikawa, 1960). 



Section A 

Section B 

+5.50 (1896) 

El. +480 

+4.20 (1933) 

Figure 59. Cross sections of seawall, Yamada, Japan (from Iwasaki and 

Horikawa, 1960). Dimensions in meters. 

Caution is also necessary when placing seawalls in a harbor area. 
A seawall may cause waves to reflect into the harbor. It was determined 
at Hilo, Hawaii, that a seawall might aggravate surge conditions within 

the harbor (U.S. Army Engineer District, Honolulu, 1960). 

In some instances, trees may offer some protection against a tsunami 
surge. Groves of trees alone or as supplements to shore protection struc- 
tures may dissipate tsunami energy and reduce surge heights. Groves of 
coconut palms (Fig. 60) may withstand a tsunami surge but may be sheared 
off by debris carried forward by the tsunami. Other types of trees may 

be easily uprooted and flattened. Figure 61 shows a grove of pandanus 
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Figure 61. Grove of pandanus trees knocked down by 
1946 tsunami on the Island of Kauai, Hawaii 

(from Shepard, MacDonald, and Cox, 1950). 

trees which were knocked over in parallel rows by the 1946 tsunami in 
Hawaii (Shephard, MacDonald, and Cox, 1950). Reid and Taber (1919) noted 

that palm trees were uprooted by the 1918 Puerto Rico tsunami. Shepard, 
MacDonald, and Cox (1950) indicated that dense thickets of hau trees pro- 

vided effective shields in many places during the 1946 tsunami in Hawaii. 

“Matuo (1934) calculated that trees could be broken by water velocities 

of 2 meters per second or greater, but did not analyze specific types of 
trees. He indicated that trees broken off by higher velocities may add 
debris to the surge and increase the damages resulting from the surge. 
Magoon (1965) indicates that a buildup of debris in front of a structure 

may increase its effective area. This would result in an increased drag 

force, and may cause the entire structure to be swept away by the tsunami. 

3. Other Shoreline Structures. 

Damage from a tsunami may occur to structures located at the shore- 
line or along river channels near the shoreline. In 1964, a dock at 
Crescent City, California (Fig. 62), was damaged when the water elevation 
increased to 2 meters above the deck elevation, uplifting a large lumber: 

barge moored to the dock (Wilson and Tgrum, 1968). The tsunami surge at 
Seaside, Oregon, destroyed a bridge over the Necanicum River and a rail- 
road trestle over Neawanna Creek. Shepard, MacDonald, and Cox (1950) 
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illustrate the damage to the railroad bridge on the Wailuku River (Fig. 

63) and the railroad trestle on Kilekole Stream (Fig. 64) caused by the 

1946 tsunami in Hawaii. Iwasaki and Horikawa (1960) show a case of 

Mangoku, Japan, where a bridge support (Fig. 65) slumped almost 1 meter 
due to the heavy scouring of the channel bottom. 

4. Tsunami Surge on the Shoreline. 

The determination of the runup height of a tsunami is discussed in 
Section VII, 1. After the runup height of a tsunami has been established, 
the effects of this runup on structures and other objects located near 
the shoreline must be determined. When the tsunami acts as a rapidly 

rising tide, the resulting incident current velocities are relatively 
low, and most initial damage will result from buoyant and hydrostatic 

forces and the effects of flooding. Shepard, MacDonald, and Cox (1950) 

noted that in many instances the withdrawal of the water occurred much 

more rapidly than the runup and flooding. In some instances, damage may 
result from the higher current velocities associated with the withdrawal. 
These velocities would be on the order of those normally associated with 
an incident surge. More concern is therefore given to a tsunami which 
approaches the shoreline as a bore. 

When the tsunami forms a borelike wave, the runup on the shoreline 
has the form of a surge on dry ground. This surge should not be confused 
with the bore approaching the shoreline, as different equattons govern 
the motton and profile of the surge. Miller (1968) noted from laboratory 
observations that a bore approaching a shoreline exhibits a relative 
steepening of the bore face just before reaching the shoreline, and that 
this is followed by a flattening of the face of the surge on the dry 
slope. The current velocities associated with the surge are proportional 

to the square root of the surge height, and approximations of the current 
velocities can be obtained from equations (318) and (319), with equation 

(318) providing the more conservative result. For a surge height approach- 
ing 5 meters, the estimated current velocity would be about 14 meters (46 

feet) per second. When the tsunami runup acts as a high velocity surge 
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Figure 63. Tsunami damage to railroad bridge on Wailuku 
River, Hilo, Hawaii (photo by Shigeru Ushijima; 
from Shepard, MacDonald, and Cox, 1950). 

Figure 64, Tsunami damage to railroad trestle on Kolekole 
Stream, Island of Hawaii (from Shepard, MacDonald, 
and Cox, 1950). 
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of water across the ground, five types of forces may result from the 
surging water: 

(a) Buoyant forces caused by partial or total submergence 
in the surging water. When water or water pressure intrudes 
under a structure, the buoyant force tends to lift the structure 

from its foundations. Vehicles and other large items may also 
be lifted up into the surging water. 

(b) Surge forces caused by the leading edge of the surge 
impinging on a structure. This leading edge has the appearance 

of an elongated wedge, and the force of the surge on a structure 
gradually increases as a function of the increase in surge height. 

The buoyant force also increases as a function of surge height, 
so that a structure may be carried forward by the leading edge 

of the surge, or may be destroyed in place if the surge force is 
high enough and the buoyant force is not sufficient to lift the 
structure from its foundations. 

(c) Drag forces caused by the high velocity of the surging 
water, where the water level is relatively constant. These 
forces will displace buildings or other items in the direction 
of the current, and the high velocity flow may cause severe 
erosion of the ground and damage waterfront structures by scour- 
ing material at the base of the structure. 

(d) Impact forces caused by buildings, boats, or other 

material carried forward by the surging water. These forces 
may either destroy other structures on impact or create momentum 

which, when added to other forces, will move a structure in the 

direction of the current. 

(e) Hydrostatic forces caused by partial or total submer- 
gence of structures by the tsunami. This can result in cracking 
or collapse of a structure or wall. 

a. Buoyant Forces. Buoyant forces are defined by the weight of the 
displaced water when objects are partially or totally submerged. For 
saltwater, taking the density p = 1.026 grams per cubic centimeter (1.99 
pound-seconds squared per foot*), the buoyant force is 

where V is the displaced volume of water: This assumes water intrudes 
under the structure. 

kk kk kK kk kK kK k * * * * EXAMPLE PROBLEM 21 * * * * * * * * * *¥ *¥ * * * 

GIVEN: A house occupies a floor area of 225 square meters (2,422 square 

feet). Calculations to predict tsunami runup have indicated a probable 
surge depth of 2 meters at that location. It is assumed that the flow 
of water will be at a constant depth around the house. 

LY 



FIND: The buoyant force on the house. 

SOLUTION: The buoyant force is given by 

FR =og V 

FR = 1,026 kilograms per cubic meter 
(9.81 meters per second squared) (225 square 

meters) (2 meters) 

Be = 94203) 10© kilogram-meters per second squared 

FR = 4.53 x 10© newtons (1.02 x 10© pounds) 

a> OF Ch o> Cece EP oe OP CP Co ee ET ES CP OPC 2) NF 

* ke ® K kK kK RK RK K * KF * * EXAMPLE PROBLEM 22 * * * * * * * *¥ * ®¥ * ¥ * 

GIVEN: An empty oil storage tank is 3 meters high and 6.1 meters in 
diameter. Assume that the tank has a mass of 3,180 kilograms (7,000 
pound-mass), and that it is filled to a depth of 2.5 meters (8.2 feet) 

with oil having a specific gravity of 0.88 (density p = 880 kilograms 
per cubic meter). The tsunami water depth is 1.8 meters. 

FIND: 

(a) The buoyant force on the tank, and 

(b) the force holding the tank in place. 

SOLUTION: 

(a) The buoyant force is given by 

FR =og V 

2 a 2 Ba & 1,026(9.81) (7)(6-1) (1.8) 

= 5.29 x 10° kilogram-meters per second squared 

F, = 5.29 x 10° newtons (1.19 x 10° pounds) 

(b) The force holding the tank in place is the mass, M, of the 
empty tank multiplied by g plus the volume of oil multiplied by its 
density and g, so that 

F 3,180(9.81) + 880(9.81)(7)(6.1)* (2.5) 

F = 6.62 x 10° newtons (1.49 x 10° pounds) 
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It can be seen that very little reserve force remains to resist drag 
forces from the surge. With a lower level of oil in the tank, the 
buoyant force could overcome the mass of the tank and the oil plus 
the strength of any structural anchorages. 

op Cpe? C2 co C2 Co So Ch cP CF Ch Ch cP OD 23 ee ed fo) eo SD SP Ee Pe ee PPP ED 

In Shepard, MacDonald, and Cox's (1950) discussion of the 1946 

tsunami in Hawaii, a house at Kawela Bay on Oahu was floated off its 

foundation and deposited in a canefield 61 meters inland, leaving break- 
fast cooking on the stove and dishes intact on shelves. Many other 
houses were also gently floated from their foundations, and some houses 
could be moved back to their original foundations with very little repair 
work required. Damage caused by buoyant forces was the result of build- 
ings being deposited on uneven ground, the fact that some buildings had 
weak structures and broke apart when lifted from their foundations, and 
minor damage from the breaking of water pipes and electric lines. 

In many instances, where tsunamis act like rapidly rising tides, the 

current velocity associated with the waves is very low, so that the major 

damages are similar to those discussed above. Shepard, MacDonald, and 
Cox (1950) mentioned instances of people wading through chest-high water 
to escape from the tsunami. 

b. Surge Forces. Cross (1967) showed that the force per unit length 
of vertical wall, from the leading edge of a surge impinging normally to 

the wall could be given as 

pgh? 2 
F = 5 + Ce puch (325) 

where F is the force in newtons per meter of width, h the surge height 
in meters, u the surge velocity in meters per second, and Cp a force 

coefficient defined by 

Ge (tan 6) 1*2 4+ 1 (326) 

where 9 is the inclination of the water surface of the surge shown in 

Figure 66; tan © is given by the equation 

an Bs tp (327) tan 6 = 
dz Ch 

where Cy, is the Chezy roughness coefficient, Z the distance from the 
leading edge, and b given by 

- § (328) 



g cos BS=gS 
( for smal! B ) 

———_ 

Surge Direction \ 

g 

Figure 66. Definition sketch of surge on a dry bed 
(slope exaggerated). 

where S is the bottom slope (negative upward), and du/dt the accelera- 

tion term for flow under the tip of the surge. 

Substituting equations (326), (327), and (328) into equation (325) 

2 heed 

oo eye cies Se ss Ta aren (329) 
2 coh g dt 

If it is assumed that 

du —= oS 33 ae 7S (330) 

i.e., the acceleration is equal to the influence of gravity acting along 

the slope (see Fig. 66), then b = 0 and 

2 
“ - (331) 

Crh 

or, defining u from equation (318) and assuming that the value is 

relatively constant under the surge 

2 
ao é = A a (332) 

Zz Crh Cr | 

where Cy varies with depth and is given by 

1.49 , 1/76 
Cc, resi ie h (333) 



in the foot-pound-second system of units, or 

176 
eveesel (334) 

n 

in the meter-kilogram-second system of units, and n is Manning's rough- 
ness coefficient. 

Substituting equations (330), (332), and (334) into equation (329) 

for metric units and collecting terms 

2 ig 2 

F = Hee (Gea) : | pees (335) 
h 

It must be remembered that many approximations have been used in this 
solution. 

The coefficient Cf accounts for both inertial forces and drag 
forces. It may be noted that when @ = 0, and the velocity remains con- 
stant, the force F is simply the hydrostatic force plus a drag force 
(per meter width) where Cp = 2. 

ek RK ek kK kK kK kK kK * * kK * * * EXAMPLE PROBLEM 23 * * * * * * * ® *¥ ®¥ &® * * 

GIVEN: A surge with a maximum height of 2.5 meters impacts normally 
against the vertical side of a building. The Manning roughness 
coefficient n = 0.1, and it is assumed that the surge velocity, 

u = 2/gh, remains relatively constant and that the surge profile 

remains constant. 

FIND: The surge force per meter of building width as a function of 

surge height. 

SOLUTION: The surge velocity is determined from the maximum surge 
height, so that 

u = 2/gh = 2V9.81(2.5) = 9.9 meters per second 

The surge force is given by equation (335) as 

1.2 
SD ye «|| Gee 2 F = 5 ogh< + le + 1] push 

1.2 

F = = (1,026) (9.81)h? + (ees) + | 1,026(9.9)? h 
hl73 

1/2 

5,033 h2 + (2382) s | 100,560 h Eo) i] 
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For various values of h, the force, F, is tabulated below: 

h, meters 0.5 1.0 1.5 2.0 2.5 

F, newtons per meter 73,100 138,300 203,900 270,800 339,500 

NOTE:--Calculations will show that Cp > 1 at the maximum surge height 
(where the rate of change of surge height > 0). This indicates that 
the calculated value is conservative for design purposes. It can be 
seen that the hydrostatic pressure component of the force is a rela- 
tively small part of the total force. 

kK ek kK eK Kk kK KF RK K KF RK KK KK KK RK KEK KK KEK KK KK KK K RK KK KK KK KK OK 

As indicated by example problem 23 and shown in Figure 66, there is 
a gradual rise in water level at the front of the surge, although this 

change in water level appears to occur rapidly with respect to time 
because of the forward velocity of the surge. A surge on a dry bed has 
a much flatter front than a bore approaching a shoreline. This is seen 
in laboratory tests. The buoyant force of the leading edge of the surge 
tends to lift objects into the surging water, and the force of the surge 
will then carry these objects forward. 

Wilson and Térum (1968) report on the case at Seward, Alaska, of a 

tsunami surge overtaking a pickup truck being driven from the shoreline. 
The truck was swept up by the surge and carried forward like a surfboard 
into nearby woods. 

The water velocity near the leading edge of a surge is relatively 
high, and the height of the leading edge is relatively low (i.e., the 
buoyant force is low). Therefore, it is possible that the surge force 

may destroy a structure before the buoyant force lifts it into the flow. 

c. Drag Forces. The velocity of the water in the surge produced 
by the tsunami runup creates a drag force which tends to move a structure 
in the direction of the surge. If the velocity is assumed to remain 
relatively constant under the surge, i.e., acceleration is negligible 
and its effects can be ignored, then it can be assumed that the inertia 
or mass coefficient, C approaches zero so that the drag force in 

‘ M? 
newtons is e 

ue 336 F r= 9-CHA ai (336) 

where 

op = the density of seawater = 1.026 grams per cubic centimeter 
= 1,026 kilograms per cubic meter 

C. = a coefficient of drag, depending on the body (Table 6) 

A = the projected area of the body normal to the direction of 
flow in square meters 

u = the velocity of the water in meters per second 

LOT 



Table 6. Drag coefficients. 

Circular cylinder 

moOON 
Square cylinder 

og Belk ik 
— d 10* to 10° 

(aii ah 

Rectangular flat plate 
(totally submerged ) 

—|! 
A 

NOTE.--L = The height of a submerged cylinder, or the length of the 

flat plate. 

d = The projected dimension shown, or the width of the flat 

plate. 
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To determine the drag force in pounds, p is in units of pound-seconds 

per foot*, the area in square feet, and the velocity in feet per second. 
The coefficient of drag, (G), is dimensionless and retains the same 

value as in the kilogram-meter-second system. 

Tabulated values of drag coefficients are generally not available for 
free-surface flow at high Reynolds numbers. Therefore, existing tables 

of drag coefficients must be used to establish maximum coefficients to 

ensure safe design. Table 6 gives examples of drag coefficients. 

Hallermeier (1976) discusses the importance of the parameter, u*/ (gd), 

where d is the projected horizontal dimension of the structure trans- 
verse to the direction of flow. Where this parameter approaches unity 

there are strong unidirectional free-surface flow effects. In that case, 
the coefficients of drag, Cp, given in Table 6 may be too low. Individ- 

ual model tests would be required to determine a more exact interaction 
between the tsunami and the structure. 

For cases where flow does not overtop a structure, and where there 
is no underflow, the flow may be treated as flow around an "infinitely 

long'' structure where the ground and the free surface define the bounda- 
ries of a layer of fluid. For example, flow around a vertical cylindrical 
storage tank would be treated as flow around an infinitely long cylinder 
in order to obtain a drag coefficient. 

In cases where there are overtopping and underflow, the ratio of 
length-to-width for the structure should be determined. This ratio should 
then be used for determining the coefficient of drag. 

For a situation in which there is either overflow or underflow, the 
coefficient of drag can be determined by using an approximation. Assume 
that the depth of flow around the structure is twice the actual depth, 
and that the height of the structure is equal to twice the wetted height. 
Then obtain a coefficient of drag as if there were both underflow and 
overflow (see Fig. 67). An example of this type of calculation follows: 

kOe RK RK RK kK kK kK kK kK kK K * K EXAMPLE PROBLEM 24 * * * * * * ®& ® & KK & K * * 

GIVEN: A flat-sided structure is 14 meters wide and normal to the 
direction of flow. The structure is 3.5 meters (11.5 feet) high and 

Supported on columns so there is a 1.5-meter-high (4.9 feet) open space 

under the base of the structure. The tsunami surge has a depth of 
2.5 meters, giving a wetted height on the structure equal to 1.0 meter 
(3.3 feet). 

FIND: 

(a) The coefficient of drag of the structure, and 

(b) the coefficient of drag of a similar structure located at ground 
level with no underflow. 

Ly? 
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Flow Direction 

Tsunami surge flowing post elevated structure 

h = surge height 

hw = wetted height on structure 

L = length measured perpendicular to the 
sections shown above and below 

L/d = L/(Zhy) 

- 
a any Lon 

Flow Direction + - “a 

Equivalent body used for determining coefficient of Drag Cp 
Flow is assumed symmetrical about the dashline 

Figure 67. Determination of C, when flow 
passes under a structure. 

SOLUTION: 

(a) It can be assumed, for purposes of determining the coefficient 
of drag, that the structure is equivalent to a structure 14 meters 

wide and 2.0 meters high with both underflow and overflow (Fig. 67). 

From Table 6, for a flat plate normal to the flow direction where 
L/d = 7, the coefficient of drag Cp ~ 1.25. 

(b) The structure is higher than the depth of flow so there would 
be neither underflow or overflow. This corresponds to an infinitely 
high structure where L/d = ~. From Table 6, Cy 3 2500 

KOK K KK KK KR RK RK RK RK RK KK KR RK RK KR KK RK KK RK KR KK RK KK KK KK KK 
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(This example is taken from an actual situation which occurred at Seward, 
Alaska, in 1964; see Wilson and Térum, 1968.) 

GIVEN: A 104.5-metric ton (230,000 pounds) railroad locomotive was over- 

turned by a tsunami surge. The surge was assumed to have a depth of 
1.83 meters. The clear space under the locomotive was approximately 
0.91 meter (3 feet) and the length of the locomotive body was 12.5 
meters (41 feet). The width between the rails was 1.52 meters (5 feet) 
and the width of the locomotive body was 3.05 meters (10 feet). The 
surge was assumed to act normal to the side of the locomotive. 

FIND: The overturning force on the locomotive. 

SOLUTION: The buoyant force is given by equation (324) as 

FR eg V = 1,026(9.81) (1.83 - 0.91) (3.05) (12.5) 

F 3.53 x 10° newtons (78,700 pounds) 
B 

As indicated previously, the coefficient of drag can be determined by 
doubling the wetted height and assuming both underflow and overflow 
for a flat surface 1.83 meters high and 12.5 meters long. Interpolating 
in Table 6 for a flat plate for L/d = 6.8 gives 

Cy = 1.24 

The velocity can be obtained from equation (318), so for h = 1.83 meters 

u = 2/gh = 2/9.81(1.83) = 8.47 meters per second 

From equation (336), the drag force is 

2 a u 

2 

F, = 1,026(1.24) (1-83 - 0.91) (12.5) ei 

Fo = 5.24 x 10° newtons (1.17 x 10° pounds) 

which will act against the side of the locomotive at a distance, Z, 
above the ground, given as 

(1.83 - 0.91) 

2 
Z= 0.91 + 

Z = 1.37 meters (4.5 feet) 

181 



The downward force from the mass of the locomotive is the mass, m, 

times gravitational acceleration, g, or 

F = mg = 104,500 kilograms (9.81 meters per second squared) 

F = 1.025 x 10© newtons (2.3 x 10° pounds) 

Taking overturning moments about a rail, the center of mass of the 

locomotive is equidistant from the two rails, or 0.76 meter (2.5 feet) 

from the rail. The buoyancy and drag forces produce overturning moments 
(+) and the mass of the locomotive a restraining force (-). Summing 

moments 

HS BoM) 2 =) BO. Ie) 
D 

M = 3.53 x 10°(0.76) + 5.24 x 10°(1.37) - 1.025 x 10°(0.76) 

M = 2.07 x 10° newton-meters (1.48 x 10° foot-pounds) 

indicating that the overturning moments are greater than the restraining 

moment. Therefore, the locomotive will be overturned. 

kK KK KK RK RK KK KK KK KK KK KK KK RK KK KE KK KK KE KK KK KK KK 

* kK ke ke kK kK ® k * * * * * EXAMPLE PROBLEM 26 * * * * * * * * * ® KF * * 

GIVEN: A platform, 3 meters above ground level, is supported by square 
columns with 14- by 14-centimeter (5.5 by 5.5 inches) cross sections. 
A tsunami creates a surge with a depth of 2.44 meters (8 feet) under the 
platform. The surge acts normal to the sides of the columns, which are 
rigidly fixed at ground level. 

FIND: The moment of the surge force about the base of a column. 

SOLUTION: To determine the coefficient of drag, the columns may be con- 
sidered as infinitely long columns, and from Table 6, Ch = 2.0. From 

equation (318) 

u = 2/gh = 279.81(2.44) = 9.79 meters (32.1 feet) per second 

The drag force on a column is given by equation (336) as 

2 2 

Ba CoN = 5 1,026(2) (2.44) (0.14) aaa 
D 

3.36 x 10+ newtons a i 
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The velocity is assumed to be equal over the 2.44-meter depth so that 
the resultant drag force acts 1.22 meters (4 feet) above ground level, 

The moment is then 

M iT] 39356, SolOmi@ls 22) 

4.1 x 10% newton-meters (2.93 x 10* foot-pounds) 

on each of the columns. 

Oo oS ee EP OP ERR eR a SR a CD ED SS EPR EF CS GS EP oD EP 2 Se 

As indicated in example problem 25 drag forces and surge forces can 
act in conjunction with buoyant forces. The buoyant forces can lift 
buildings from their foundations, and the surge or drag forces can slam 
them into such things as trees or other structures. Buildings that are 

firmly attached to their foundations to resist the buoyant forces must 
also have sufficient structural strength to withstand the drag forces 

acting against them. The drag forces can be lessened by constructing a 
building on an elevated platform some distance above the ground. In some 
instances, the first floor of a building may be designed to be carried 
away by the tsunami, thereby reducing the forces on the building and 
protecting the higher floors. However, this may be an expensive solution 
and has the undesirable feature of adding debris to the water. 

The high velocity of a tsunami surge can also damage structures by 

scouring material near the structures' foundations. Shepard, MacDonald, 
and Cox (1950) noted numerous instances of severe erosion caused by the 

1946 tsunami in Hawaii. At Haena Bay, a sand beach eroded and sand was 
deposited 1.2 meters deep across a highway. A section of shoreline at 
Moloaa, was cut back about 21 meters (70 feet). At Kalaupapa, the back- 

wash from the tsunami undermined a road. Other instances of erosion 
were also noted. Erosion and deposition of surface material are quite 

common when severe tsunamis occur. Imamura (1942) gives an example from 

1707, when a tsunami washed away layered sediments which had covered an 
old ricefieid. Conversely, the Earthquake Research Institute (1934) 
reported instances of ricefields being covered with sand by the 1933 
Sanriku tsunami. Instances of deposition of sand are also indicated by 
Shepard, MacDonald, and Cox (1950) in Hawaii, and by Reid and Taber (1919) 

in Puerto Rico. Shepard, MacDonald, and Cox noted that dense stands of 

grass prevented or greatly diminished ground erosion during the 1946 
tsunami in Hawaii. 

d. Impact Forces. The high velocity of a tsunami surge will sweep 
large quantities of material forward with the surge. This material may 
include automobiles, trees, petroleum tanks, buildings, debris from build- 

ings, or other materials in the path of the surge. A large boulder moved 
by the 1960 tsunami at Hawaii is shown in Figure 68. In higher latitudes, 

when tsunamis occur during the winter, the material may include large 

quantities of broken ice. 
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Impact forces from material carried forward by the current are not 
as easily analyzed as other forces. The drag force will initially 
accelerate material which is swept up into the current. The velocity 

of forward motion of such material depends on the distance the material 

has moved, the ratio of the drag force to the actual mass of the object 
in motion, and the resistance created by the object dragging against 

the ground or impacting and grinding against other objects. 

Analyzing the effects of a structure impacting with another structure 

also requires knowledge of the rigidity of the structures and the angle 

of impact. If the flat side of one structure impacts with the flat side 
of a second structure, the impact force is spread over a wide area. How- 

ever, if a corner of the first structure impacts with the flat side of 
the second structure, the force is concentrated and there will be a 

greater tendency to crush the impacting structures. It should be remem- 

bered that if a structure is partially flooded, the water within the 

structure becomes a part of the mass of the structure. 

Considering an object being swept forward from a stationary position 

by a moving fluid such as a tsunami surge, the velocity of the fluid, 
u, with respect to the ground is assumed to be constant, and the velocity 

of the object, uz, with respect to the ground varies as the object is 
accelerated. The velocity, up, of the object approaches the velocity, 
u, of the fluid after the object has moved some distance (i.e., the 

velocity of the object approaches some terminal velocity). The force 
accelerating the body is a combination of drag forces and inertia forces, 
and is given by the equation 

(u - u,)* d(u - u,) sae 
& (evselt is BR 2 Vv 337 F Cy pA 5 + Cy ) a 

where 

Cy = the coefficient of drag 

fo) = the density of water 

A = the cross-sectional area of the object transverse to 

the direction of motion 

(u - uy) = the velocity of the water with respect to the object 
at any instant in time 

Cy = the inertia or mass coefficient 

Vv = the volume of water displaced by the object 

t = time 

IES) 



For a structure or any other large object floating in the water, the 
mass, m, of the object is equal to the displaced mass, pV, of the 

water. This mass may vary as water gradually floods the interior of a 
structure, but for the analysis presented here the mass will be assumed 
constant. From Newton's second law 

ora ier dlit O) aa (338) 

At any instant in time the magnitude of the deceleration of the fluid 
with respect to the object is equal to the magnitude of the acceleration 
of the ground with respect to the object (which is equal to the accelera- 
tion of the object with respect to the ground), i.e., where u is assumed 

constant, 

Fon k ae a 339 
dt dt ( ) 

so equation (337) becomes 

du (u - u,) du 
io) b D 

F = pV — = C. pA ————_ - C_, pV — (340) 
ent pe 2 Mit 

or, rearranging terms, 

du C 
ia) DS 2 

Se ee Se uy) (341) 
dt 2V(1 + Ci) 

For an object moving a short distance, the coefficients Cp and Cy 

will be assumed constant. This is not entirely correct (e.g., the value 

of Cp will vary as a function of velocity), but will be assumed as 

approximately correct for a short distance. A constant, a, can then 

be defined by 

Cp 
RIG Gi) Ne 

Substituting equation (342) into equation (341) and rearranging terms give 

d 
“b (343) ae = —— a dt ne uw)? 

Integrating equation (343), 

u d 
ot -f?— 2-4.) (344) 

10} 



which reduces to 

Mo ae (345) 
b aut + 1 

is iT} 

defining the velocity of the object at any time t. 

The distance, x, traveled by the object as a function of time can 

be determined by noting 

(346) 

Substituting equation (345) into equation (346) and integrating give 

c u t c u dt 
x= (a - Aa) ae ef vat -f eet (347) 

aut + 1 aut + 1 
O fo) (0) 

which gives 

x 2 whe & + fn (aut + 1) (348) 

Typical drag coefficients are given in Table 6. The coefficient of 
added mass, Cy, can be estimated for a rectangular structure by using 
the results of Riabouchinski (1920) as given by Brater, McNown, and Stair 

(1958) (Fig. 69). The values in Figure 69 are for irrotational flow 

without separation, and the formation of a wake behind the structure 
would be expected to modify these values. Individual model tests would 
be required to obtain exact values. Example solutions of equation (348) 

are shown in Figure 70. 

aT 

a 

a 

| 
0.! 0.2 0.4 0.6 0.81.0 2 4 6 810 

a/b 

Figure 69. Cy for two-dimensional flow past rectangular 
bodies (irrotational flow with no separation) 
(from Riabouchinski, 1920). 
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Time, t (s) 

Figure 70. Example plots of x versus t for objects moved by tsunami surge. 

kok ko & k *& * & * * * * * BYAMPLE PROBLEM 27 * * * * * * * * * * * * * % 

GIVEN: A tsunami surge is 5 meters high at the shoreline. A building 

located at the shoreline is swept forward a distance of 6.1 meters 

and impacts with another building. The building is rectangular, 12 

meters (39.4 feet) wide and 6 meters (19.7 feet) deep in the direction 

of flow, and is submerged to a 3-meter depth as it is carried forward 

(see Fig. 71). The velocity of the surge is approximated as u = 14 

meters per second. 

FIND: 

(a) The time required for the building to impact with the other 

building, 

(b) the force accelerating the building at the moment of impact, and 

(c) the momentum of the building at the moment of impact. 

SOLUTION: 

(a) The submerged cross-sectional area of the building, transverse 

to the direction of the surge, is given as 

A = width x submerged depth = 12.0 x 3.0 = 36 square meters 

and the submerged volume (the displaced water) is 

V = width x length x depth = 12.0 x 6.0 x 3.0 = 216 cubic meters 
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t = 1.0 second t = 2.02 seconds 

x = 1.7 meters x = 6.1 meters 

F = 5.45x10° newtons F = 3.59x10° newtons 

M5= 7.05x10° newton-seconds M,= 1,16x10° newton- 

‘seconds 

u = 14 meters/second 
Cp= 1.13 

Cy= 3.5 

A = 36 meters? 

V = 216 meters® 

Building moved by tsunami surge. 

The coefficient of drag can be approximated by assuming the side of 
the building is a flat plate. To determine an equivalent flat plate 
using Table 6, assume that the submerged depth for underflow and 
overflow (a totally submerged plate) is twice the depth of the 
building, or 

he AoW Mig 

ad 2 8 8.0 

and from Table 6 

Cy = 1.13 

From Figure 69, where 

a 6.0 
— = —= 0.5 
b 12.0 

then 

Cy = 3.5 

and equation (342) gives 

ci A 1.13 x 36 

2V(1 + Cy 2 x 216(1 + 3.5) 
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The relationship between distance and time is shown in Figure 70, 

which gives, for x = 6.1 meters, 

te 2.02 seconds 

(b) From equation (345), 

U 14 
u, = u - —— = 14 = 

aut + 1 (CORO2I <4 <9 2502) eel 

“b 

Substituting equations (342) and (341) into equation (338), 

5.22 meters (17.1 feet) per second 

F = pVa (u - u,)? 

Fe 1,026 % 216 20,0214 = 5,22) 

= 3.59 x 10° kilogram-meters per second squared 

F = 3.59 x 10° newtons (8.1 x 10+ pounds) 

(c) Momentum, Mo. at impact is 

M, = u, x mass 

taking the mass of the building equal to the mass of the displaced 

water for a partially submerged building which is floating (the mass 

includes water within the building), 

mass = pV = 1,026 kilograms per cubic meter x 216 cubic meters 

and the momentum is 

M, = x mass = 5.22 x 1,026 x 216 u 
b 
1.16 x 10© kilogram-meters per second 

(2.56 x 10° pound-seconds) 

Ct to BF Oo bo TH fo fo fF) te "os Go. to GC tf to to to CO GF GF 2 SEP coe EP > CP cP C2 CF CP OF 2? 2 OP o2 2 

Magoon (1965) indicates that substantial damage occurred at Crescent 

City during the 1964 tsunami as a result of debris impacting on structures. 
This debris included logs, automobiles, and baled lumber. The impact 
forces either destroyed the load-carrying capacity of walls, or caused 
bending or breaking of light columns. 

Wilson and Térum (1968) discussed some instances of impact damage 
resulting from the 1964 Alaskan tsunami. Figure 72 illustrates the damage 
at the Union Oil Company tank farm at Whittier. Buildings and larger 
tanks were able to withstand the force of the tsunami; however, smaller 
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tanks were carried forward by the surge and impacted with other tanks. 
Some of the larger tanks were apparently set into motion by the impact, 
and most of the tanks were ruptured. A resulting fire destroyed the 
tank farm. 

Wilson and Térum also mentioned the problem of a small-craft harbor 
located immediately in front of a developed shoreline at Kodiak City. 

The boat harbor contained a large number of fishing boats and yachts 
which were carried into the adjacent waterfront business area by the 
tsunami, adding substantially to the damage. Van Dorn (1965) notes that 
harbor regulations could be instituted requiring ships large enough to 
damage harbor structures to stand clear of a harbor in the event of a 

tsunami warning. In the case at Kodiak City there was only about 30 
minutes between the tsunami warning and the arrival of the first large 
wave crest of the tsunami (Spaeth and Berkman, 1972). However, when 

tsunamis are generated from distant sources there may be enough time to 
clear the harbors. 

An interesting example of impact forces is reported by Wilson and 
Térum (1968). During the 1964 tsunami a house was washed out to sea 

near Point Whiteshed. The house was swept more than 12 miles along the 
shoreline, carried into the harbor at Cordova, and rammed the dock, 

destroying the end of the dock. 

e. Hydrostatic Forces. Hydrostatic forces are normally relatively 
small compared to surge and drag forces. The hydrostatic force on a 
wall, per foot width of wall, for a water depth h is 

F = > pgh? (349) 

As seen in example problem 4, the hydrostatic force would probably not 
exceed 10 to 20 percent of the drag force at higher water levels, and 
would appear to be relatively insignificant at lower water levels. 

Once the initial surge has passed a structure, assuming that water 
levels are equal on all sides of the structure, the hydrostatic force 

will not contribute to the motion or potential motion of the structure. 
However, this force can cause cracking of exterior walls and interior 

flooding of the structure. 

Magoon (1962) indicated that the flooding caused by a tsunami can 

saturate the fill behind a retaining wall. Combined with the large 
drawdown of the water level which may occur at the seaward toe of a wall 
during the withdrawal of a tsunami wave, large hydrostatic forces on the 
wall may result. It is believed that this contributed to the partial 

failure of a retaining wall at Crescent City, California. 

There was an unusual occurrence at the abandoned Kahuku Airfield on 

Oahu during the 1946 tsunami (Shepard, MacDonald, and Cox, 1950). Blocks 
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of pavement were tilted in circular areas 1 to 1.5 meters (3 to 5 feet) 

across, apparently as a result of hydraulic pressure from water penetrat- 
ing into the sand under the pavement when the tsunami flooded the area. 
The higher pressure under the pavement has not been explained, but could 
have resulted from water trapped in the sand during a rapid withdrawal 
of the tsunami. 

f. Other Hazards. When considering the total effects of a tsunami 
surge, additional hazards should be considered in addition to the actual 

forces of the surge. Some of these are listed below: 

(a) Contamination from debris carried in the surging water; 

(b) effects of flooding, including spoilage of goods and 
materials, shorting of electrical lines and transformers, and 

contamination of water supplies with saltwater; 

(c) fire and explosion from the impact and rupturing of 
petroleum tanks or containers of chemicals (see Fig. 72); and 

(d) release of poisonous gas or toxic materials from ruptured 

containers. 

VIII. TSUNAMI WARNING SYSTEM AND INSTRUMENTATION 

Cox (1964) discusses the development of the tsunami warning system 
in Japan. Local, informal warning systems operated sporadically for 
centuries, and a formal tsunami warning system was recommended as early 
as the late 19th century. The Japan Meteorological Agency organized the 

present Japanese system in 1941. 

Spaeth and Berkman (1972) discuss the early history of the seismic 
sea wave (tsunami) warning system in the United States. The need for a 

warning system in the United States was recognized following the 1 April 
1946 tsunami generated in the Aleutian Islands. That tsunami caused 
heavy damage and resulted in the loss of many lives in Hawaii, particu- 

larly at Hilo. 

The present tsunami warning system was organized by the former U.S. 

Coast and Geodetic Survey (now the National Ocean Survey, National Oceanic 
and Atmospheric Administration - NOAA). Tsunami detectors were designed 
and installed at tide stations to alert personnel of forthcoming tsunamis. 
The first detector was installed at Honolulu in 1947. Meetings to discuss 
implementation of the warning system throughout the Pacific coastal areas 
were held in 1948. The tentative communication plan for the warning 
system was approved in 1948. Initially, the warning system supplied 
information to civil authorities in Hawaii and to military bases through- 
out the Pacific. In 1953, Civil Defense Agencies of California, Oregon, 

and Washington were added to the agencies receiving tsunami warning 
information, and the system has expanded since that time. 
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Weigel (1974) notes that management of the tsunami warning system 

was transferred to the Environmental Research Laboratories, NOAA, in 

1971, then to the National Weather Service in 1973. 

1. The Tsunami Warning System. 

The Intergovernmental Oceanographic Commission (10C) maintains an 
International Coordination Group for the Tsunami Warning System in the 
Pacific. Member countries are Canada, Chile, China, Ecuador, France, 

Guatemala, Japan, Korea, New Zealand, Peru, Philippines, Thailand, 

U.S.S.R., and the United States. The warning system is based on 51 
tide stations and 32 seismograph stations (1976 IOC data). The tsunami 
warning system in the United States is based at the Honolulu Observatory 
and receives data from 18 seismograph stations and 16 tide states in the 
United States (including Alaska and Hawaii, but excluding Pacific Ocean 
territories), as well as the remaining 14 seismograph and 35 tide sta- 
tions of the Tsunami Warning System in the Pacific (including Pacific 

Ocean territories). Tsunami warnings for the United States are based 
primarily on the stations in the United States and on those stations 
located in both North and South America. Stations in the Pacific Ocean 
territories of the United States and those in the remainder of the 
Pacific provide additional information on the tsunamis; but generally, 
tsunamis that would create a hazard on the coastlines of the United 
States do not arrive from those directions. 

The tsunami warning system functions best for distantly generated 

tsunamis, i.e., tsunamis where the arrival time is several hours after 

the initial wave generation. However, the warning system can also alert 
the population to the possibility of tsunami generation from nearby 
seismic activity. As the period of the tsunami varies from several min- 
utes to approximately 30 to 40 minutes, continuously recording tide gages 
are required. Modern, digital tide gages which provide a tide height 
every several minutes will not provide sufficient data for recording 

tsunamis. 

An alarm attached to the seismograph at Honolulu Observatory is 
triggered by the arrival of seismic waves, initiating activity in the 
Tsunami Warning System. The 1964 Alaska earthquake began at 0336 G.m.t. 
(Spaeth and Berkman, 1972), and the alarm sounded at Honolulu Observatory 
at 0344 G.m.t. (G.m.t. times are used to provide a uniform time at all 

points in the system.) After the alarm, inquiries are sent to various 
seismic observatories in the system to obtain seismic readings. After 
receiving and evaluating initial data, a decision is made as to whether 
or not an advisory bulletin should be issued. If there is a possibility 

of tsunami generation, an advisory bulletin is sent to dissemination 

agencies in the warning system. 

Charts showing tsunami traveltimes between various coastal points 
and tsunami-generating areas have been prepared. These charts are 
used to predict the arrival time of a potential tsunami at the various 
coastal points after the epicenter of the earthquake has been determined. 
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Inquiries are sent to tide stations near the earthquake epicenter to 
determine if tsunami waves have been generated. If there is reasonable 
cause to assume that a tsunami may have been generated (based on seismic 

records or observations at tide stations), an advisory bulletin is issued 
giving estimated times of arrival (ETA's) of the tsunami at various 
coastal points. 

The Honolulu Observatory continues to receive reports and issue 
bulletins to Civil Defense agencies as information becomes available. 

Various agencies are kept advised of the status of the tsunami until an 
all-clear bulletin is issued. If a tsunami was generated, various report- 
ing stations continue to report water levels to the Honolulu Observatory 
until all information has been obtained from the tide stations of the 
Tsunami Warning System in the Pacific. 

Cox (1964) indicates that tsunami warnings, as distinct from advisory 

bulletins, are issued only under the following circumstances: 

(a) Unusual sea level disturbances having tsunami character- 
istics are recorded at one or more of the warning system tide 
stations scattered about the Pacific. 

(b) No reply is received from a tide station in a critical 
recording position in response to a query from the Honolulu 
Observatory after the occurrence of an earthquake large enough 
to trigger the seismograph alarm. 

(c) An earthquake occurs whose epicenter is in or on the 
borders of the Pacific Ocean in such a location that a tsunami 
generated there would not arrive at any tide stations sufficiently 

in advance of its arrival at a particular shoreline to allow warn- 
ing that shoreline. 

It is the responsibility of agencies receiving tsunami warnings to 
disseminate information to the civilian population. This may be done 

through broadcasting news media (radio and television), by police and 
civil defense personnel, or by sounding signals on sirens. Schank (1978) 
discusses the public warning system in the State of Hawaii. Broadcasters 
in the State are linked together in a system called "Civ-Alert." If it 
is considered probable that. a tsunami will cause property damage and loss 

of life, a tsunami alert is given. The first alert is given 2 hours 
before the estimated ETA by sounding an alert on all of the sirens in 
the State. Civ-Alert broadcasts information and instructions. The alert 
is repeated at 1 hour and then a half hour before the estimated ETA. The 

alert is extended by police, fire, forestry, and Civil Air Patrol person- 
nel. Maps of potential tsunami hazard areas are included in the county 
telephone directories in Hawaii to define areas which should be evacuated. 

Cox (1978) considered the cost of false alarms, i.e., tsunami alerts 

when no significant tsunami occurs, giving the cost of false alarms at 
$264,000 per year (1977) in Hawaii alone. The cost of false alarms must 
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be balanced against the high cost of casualties to the local population 
if a tsunami occurs without sufficient warning. 

Cox and Stewart (1972) discuss the particular problems of providing 
tsunami warnings to areas near a tsunami source. Tsunami warnings must 

be timely to be effective. To reduce the hazards on particular coast- 
lines, a policy of regional evaluation was adopted in 1966. Adams (1978) 
discusses the local tsunami warning system used in Hawaii. Seismic 

detection instruments have been placed in police and fire stations and 
similar locations. Seismic activity with a magnitude which may generate 
a tsunami triggers an alarm. A decision is then made at the local level 
as to whether or not the local population should be alerted and evacuated. 

Various investigators have called attention to phenomena occurring 
just before a tsunami. These include the unusual feeding habits of 
fish before a tsunami due to the presence of large quantities of bottom- 
adherent diatoms in the upper layer of the sea (Suyehiro, 1934) and 
increases in the Earth's magnetic field preceding an earthquake (Moore, 
1972). The study of such phenomena has not been developed enough to be 
included in a formal tsunami warning system. 

2. Human Response. 

Spaeth and Berkman (1972) note that the response of a local population 
to a tsunami warning may be slow unless the population is well trained to 
respond. Approximately 30 minutes after the Alaska earthquake of 1964, 
the U.S. Fleet Weather Central at Kodiak Naval Station received word of 
a large tsunami at Cape Chiniak, Alaska, and had the Armed Forces Radio 
Station broadcast a tsunami warning. Military and government personnel 
promptly evacuated the endangered areas. Although reasonably prompt, 

the evacuation of the city of Kodiak was not as well carried out (there 

were eight deaths at Kodiak). The first large tsunami wave crest arrived 
at Kodiak about 30 minutes after the warning, so a prompt response to the 

warning was essential. 

Haas (1978) separates tsunamis into the following four types (summa- 

rized in Table 7): 

(a) Type I. Shoreline slumping, earthslides, and large rock 

and ice falls coincident with the earthquake. Large waves gener- 

ated onto the shoreline almost immediately. 

(b) Type II. Very heavy Earth temblors can be felt by the 

local population for a period up to several minutes. The tsunami 

arrives within 10 minutes. 

(c) Type III. Noticeable Earth shocks felt by the local popu- 

lation for a period up to several minutes. Severe Earth temblors 

not present. Tsunami arrives within 30 minutes. 

(d) Type IV. No local Earth shocks. The tsunami is generated 

at a distant source. 
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Table 7. Typology of tsunami events (after Haas, 1978). 

bane Physical | Approximate time 

| Carre for evacuation 

Visible Less than 1 

slumping minute 

or sliding 

Maximum credible 

preventive action 

Almost none 

Severe 5 to 10 minutes 

Earth 

temb lors 

Ambulatory persons 
can be evacuated 

Noticeable | 15 to 30 minutes | Some persons can be 

Earth evacuated 
shocks 

45 minutes to 

12 hours 

Most persons can be 
evacuated and up to 
75 percent of all 

movable property 

Haas notes that while no effective warning can be given for a type 
I tsunami, the possibility of warnings for types II, III, and IV will 

depend on the education of the public and the effectiveness of warning 
systems. Evacuation for a type II tsunami requires prompt response by 
the population based on their individual sensing of strong earthquake 
shocks, and little time is available for an organized warning system to 
operate. Therefore, there is almost total reliance on prior education. 

For a type III tsunami, public education alone is insufficient because 
the physical evidence of a possible tsunami is not as strong. A reliable 
local warning system is needed to alert the public, and the population 
must be educated to respond to the alert. For a type IV tsunami, a large 
warning system, such as the Tsunami Warning System in the Pacific, is 

required. 

Weller (1972) cites a number of instances of human response during 

the 1964 earthquake and tsunami in Alaska. At Seward, the initial slump- 
ing of the waterfront gave warning to the residents of the town, and most 

people evacuated the low areas; but 11 people were killed by a wave 9 to 
12 meters (30 to 40 feet) in height. At the village of Kaguyak on Kodiak 
Island, residents moved to high ground when they observed the initial 
signs of a tsunami; but three people were killed when they returned to 
low areas before the arrival of the largest wave. At Ouzinkie, on Spruce 
Island, the residents evacuated the town when they observed the initial 
development of wave action offshore, and there was no loss of life. 

Many lives are lost either because some residents do not respond to 

visible signs of a possible tsunami, such as at Seward, or residents 
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return too soon to low areas, such as at Kaguyak. Spaeth and Berkman 

(1972) note that several people were killed at Crescent City, California, 
because they returned to a low area before the arrival of the largest 
wave. A large amount of damage at Crescent City resulted from the failure 
to remove vehicles, including a gasoline tank truck, from the endangered 

area. 

3). Ionospheric Waves. 

To evaluate the possibility of a tsunami being generated by an earth- 
quake, it is desirable to have information about the source mechanism of 
the earthquake, i.e., whether the earthquake is a dip-slip type or a 
strike-slip type. If the earthquake is a strike-slip type, it may be 
assumed that a large transoceanic tsunami will not be generated, and 

tsunami alerts can be canceled at all locations except those near the 
epicenter. If the earthquake is a dip-slip type, there is a high proba- 
bility that a tsunami may have been generated, and additional information 
must be obtained from tide stations. 

Van Dorn (1965) indicated that a dipolar barometric wave in the 

atmosphere was associated with the dipolar ground motion of the 1964 
Alaska earthquake, and that this raised a possibility for early tsunami 
prediction. Row (1972) discusses the atmospheric waves associated with 
the Alaska earthquake in greater detail. Row indicates that there is 
both an early-arriving pressure disturbance, associated with seismic 
waves in the Earth, and the late-arriving disturbance (propagating at 
about 300 meters per second) previously mentioned by Van Dorn. The late- 

arriving disturbance is associated with the tectonic deformation and, at 
distances far from the source, would arrive well in advance of gravity 
waves traveling through the ocean. For example, at a distance of 5,000 
kilometers (3,100 miles) from the source, a tsunami traveling across the 

ocean at a speed of 200 meters per second (447 miles per hour) will 
arrive approximately 2 hours 20 minutes after the atmospheric wave. 

Pressure disturbances also propagate through the ionosphere. Row 
(1972) discussed the possible association between ground motion and 
ionospheric waves. Furumoto (1970) reports on the use of a 10-megahertz 
Doppler recording of Rayleigh waves to estimate the initial phase of the 
source of the 11 August 1969 Kuril Islands earthquake. He notes that 
this provides a rapid approach to source mechanism estimation. The 
Doppler shift associated with the ionospheric waves can be monitored at 
relatively low cost (Furumoto, 1970). Murty (1977) provides further 

discussion on ionospheric effects. 

The use of atmospheric waves to estimate the ground motion of a 
tsunami source requires further investigation. However, this method may 

be useful for the Tsunami Warning System. 

4. Deep-Ocean Tsunami Gages. 3 

In addition to supplying information for the Tsunami Warning System, 
the tide stations provide records of tsunami heights and periods. Unfor- 
tunately, the local topography distorts the tsunami recorded on tide gages 
near the coastline, and these records do not provide information on the 
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deep-ocean form of the tsunami. Therefore, a means of recording tsunamis 
in the open ocean is needed. 

Vitousek (1961) proposed placing permanent instrument packages in 
the ocean, connected to abandoned transpacific telegraph cables. A 
system of this type would provide deep-ocean data, and would also provide 
additional useful information for the Tsunami Warning System because of 
the direct connection with the gage. However, Vitousek and Miller (1970) 

indicate that cable-connected systems would be expensive, and that the 
cost of laying special cables would be unrealistic. 

Vitousek and Miller discuss four possible methods of measuring a 
tsunami in the open ocean: (a) Free-drop recoverable instrument package, 
(b) an undership instrument, (c) an underbuoy instrument, and (d) the 
cable-connected instrument previously discussed by Vitousek. Shinmoto 
and Vitousek (1978) give details of an air-deployable free-drop tsunami 

gage which can be emplaced quickly after a tsunami occurs. 

While some deployment of open-ocean gages has been carried out, 
experience in operating such gages is limited. Future use of such gages 
is required to determine their practicality and reliability as part of 
the Tsunami Warning System, and to obtain open-ocean tsunami data. 

IX. SUMMARY AND CONCLUSIONS 

The potentially high value of property in the coastal zone and the 
intensive development of such land for both private and public use 
require that careful consideration be given to the possibility of cata- 
strophic flooding of areas of the coastal zone, in or near seismologi- 
cally active regions, by tsunamis. Small variations in predicted flood 
levels may affect property worth millions of dollars, and may have 
substantial effects on flood insurance premiums and permits for utiliza- 
tion of property, so it is necessary to have as high a degree of accuracy 
as possible in defining flood zones, e.g., the 100-year flood level. 
Also, large powerplants are typically located at low elevations because 
of pumping requirements for cooling water, and port facilities are neces- 
sarily located near the shoreline, so that well-designed protection is 

required for high-cost facilities. 

Available data on tsunami inundation come from visual observations 
(including posttsunami surveys) and from tide gage records. Data are 
generally only available for a few occurrences, and only at specific 
coastal areas. Some data can be obtained from historical accounts, but 
such data are dependent on incomplete personal observations, usually by 
untrained observers. Open-ocean data on tsunamis, needed for verification 
of numerical investigations, are almost nonexistent. 

Numerical data are used to supplement the available field data on 
tsunami flood levels. Numerical procedures have been developed that 
allow the simulation of a tsunami source, the generation and propagation 

of the tsunami waves across the ocean, and the interaction of the tsunami 
and coastal topography. Procedures have also been developed to simulate 
tsunami flooding shoreward of the coastline. The numerical results, which 
are compared to the more limited field measurements for verification, 
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provide the additional data needed to construct tsunami flood level 
maps for various probabilities of recurrence. 

Numerical procedures can also be verified by comparing with theoreti- 
cal results for idealized cases. Theoretical solutions exist for wave 
refraction at coastlines with uniform topography, waves passing over 
mathematically defined transitions from deep water to shallow water, etc. 
Deviations between the numerical results and the theoretical solutions 
indicate the degree of accuracy where the numerical procedures are applied 
to more complex topography. 

A continuing program of gathering field data on tsunamis in the open 
ocean and coastal inundation by tsunamis is needed. Because of the long 
periods of time between the occurrence of tsunamis, the accumulation of 

data for particular coastal points is very slow. It is necessary to 

maintain tide gages with the capability of recording tsunamis, and also 
to have standby plans with designated personnel to obtain field observa- 
tions immediately after tsunamis occur. It is also desirable to maintain 
a standby capability for dropping instrument packages into the open ocean 
immediately after a tsunami occurs. This latter capability requires the 
Maintenance of gages and associated instrument packages in operating 
condition over long periods of time, and the maintenance of a system for 
placing the instrument packages quickly and on short notice, including 
the periodic testing of the system by placing and recovering the instru- 
ments. An air-dropped system is probably the most practical for this 
purpose. 

Also, continuing improvements are needed in the numerical procedures 
for simulating tsunamis. A particular area of possible improvement is 
the treatment of boundaries of the computational grid. Errors in the 
wave reflection from solid boundaries, and errors at open-ocean boundaries 
where the waves must pass completely through the boundary, propagate 

through the computational grid at each succeeding time step. These errors 
grow with increasing time so that the solution is not accurate for long 
periods of real time. It becomes necessary to use large time steps to 
reduce computational errors, and consequently to use a course grid, i.e., 
to use long real distances between grid points. This smooths out the 
topographical variations so that wave scattering caused by small topograph- 
ical features is not properly accounted for. Because of the limited field 
data available, the numerical solutions cannot always be verified and 

adjusted to match field data. 

Improvements in the numerical simulation of tsunami generation are 
also desirable. However, this requires both accurate data on real tsunami- 
generating mechanisms, and open-ocean tsunami data so that errors in 

simulating tsunami generation can be separated from errors in the simula- 
tion of nearshore propagation. 

Continued research should be carried out in areas such as shelf 
resonance. In particular, theoretical solutions are needed for simple 
topography to provide verification for numerical procedures where field 
data do not exist. At the present time, the various effects on tsunami 
propagation cannot be adequately separated in the computational procedure 

as the available data are mainly from tide gages and visual observations 

of maximum inundation levels. 
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TSUNAMIS OCCURRING BETWEEN 

APPENDIX 

1891 AND 1961 

Remarks Date Source 

30 July 1891 Lerdo, México 

29 Nov. 1891 Seattle, Washington 

16 May 1892 Marianas Islands 

1893 Greece 

1894 ------ 

22 Mar. 1894 Nemuro, Japan 

Apr. 1894 Lokris, Greece 

10 June 1894 | Turkey 

9 Jan. 1896 Kashima Sea 

1S June 1896 Sanriku, Japan 

S Aug. 1897 Tohoku District, Japan 

21 Sept. 1897 Sulu Sea 

29 Nov. 1897 West Indies 

1898 Greece 

22 Jan. 1899 Southwest Peloponessus, 
Greece 

Sept. 1899 Yakutat Bay, Alaska 

30 Sept. 1899 Banda Sea 

7 Oct. 1899 Kyushu 

9 Aug. 1901 Rikuchu, Japan 

26 Feb. 1902 £1 Salvador 

S July 1902 Thessaloniki, Greece 

25 June 1904 Kamchatka 

1905 ------ 

8 Sept. 1905 Calabria, Italy 

31 Jan. 1906 Ecuador - Columbia 

= [SSS 

Tidal wave of considerable height at head of the Gulf 
of California. 

Water in Lake Washington surged on to the beach 2 feet 
above the mark of the highest water and 8 feet above 
the lake stage on that date. 

Minor tsunami at Guam. 

Wave 4 feet high at Bizerte, Tunisia; some damage. 

Tsunamis associated with these earthquakes were 
generally small. 

Large tsunamis induced by earthquakes at Constantinople 
(Istanbul). 

Slight tsunami in Japan. 

Much damage and loss of life, devastated ports along 
the northeast coast of Japan. Runup 80 feet high at 
Shirahama. Variation in terrestrial magnetism 
observed at Sendai preceding the tsunami. Maximum 
height of 30 feet at Napoopoo, Hawaii. 

Tsunami. 

Severe damage at Tacloban, Philippines (western shores 
of Basilan Island). 

Large tsunami at Montserrat. 

Tsunami reported at Marathos. 

Waves generated did little damage. 

Large tsunami on south coast of Ceram, Indonesia. 

Tsunami in Tagonoura, Japan. 

Tsunami at Hilo, Kailua, and Keauhou, Hawaii; minor 

damage. 

Tsunami in El Salvador and Guatemala. 

Saloniki Harbor flooded by waves. 

Wave at Avachinskaya Bay. 

Tsunami at Bizerte, Tunisia; believed minor. 

Possible tsunami. 

Waves observed in Hawaii; maximum height 3.6 meters 
observed at Hilo; no damage. 
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TSUNAMIS OCCURRING BETWEEN 1891 AND 1961--Continued 

Remarks 

Recorded in Hawaii and Japan; negligible along Chilean 

Tsunami generated, main damage at Kingston. 

Heavy damage along shoreline; breakwater destroyed at 

Seismic waves in Lake Bombon washed away several 
villages; some loss of life; waves 2.5 to 3 meters 

Wave with 10-foot amplitude caused serious damage to 

Water level in Rabaul Harbor fell 15 feet and rose 

Forty-foot wave in Samoa; wave recorded at Honolulu. 

Wave swept coast from Lebak to Glan; height estimated 

Tsunami at Uruppu Island, 24 men killed on 
Simusirijimi; minor damage at Hilo, Hawaii. 

Tsunami caused fatalities and damage at Point 
Borinquen and Aguadilla; also damage at Mayaguez. 

Tsunami observed at Futami Harbor, Bonin Islands. 

Tsunami height 5 meters at Port of Caldera where it 

Date Source 

19 Aug. 1906 Valparaiso, Chile 
coast; some damage in Hawaii. 

15 Sept. 1906 Dampier Strait Tsunami in New Guinea. 

14 Jan. 1907 Jamaica 

14 Apr. 1907 Mexico Thirty-foot wave at Acapulco, Mexico. 

23 Oct. 1907 Calabria, Italy Tsunami recorded at Messina and Catania. 

20 Sept. 1908 Puna, Hawaii Weak tsunami. 

28 Dec. 1908 Messina, Italy 
Messina. 

30 Jan. 1911 Philippine Islands 

high on shoreline. 

26 Feb. 1913 South Island, New Small tsunami. 

Zealand 

14 Mar. 1913  Sangi, East Indies Tsunami generated. 

11 Oct. 1913 Near east end of New Weak tsunami. 
Guinea 

12 Jan. 1914 Sakurajima, Japan 
small boats in Kagoshima Harbor. 

26 May 1914 North coast of New Probable tsunami. 
Guinea 

7 Aug. 1915 Ionian Sea Wave height about 5 feet on Greek coast. 

1 Jan. 1916 New Britain 
again rapidly; causeway washed out. 

1 May. 1917  Kermadec Islands Weak tsunami in Hawaii. 

26 June 1917 Tonga Islands 

15 Aug. 1918 Southern Mindanao, 
Philippine Islands at 24 feet at some points. 

7 Sept. 1918 Kuril Islands 

11 Oct. 1918 Puerto Rico 

8 Nov. 1918 ------ 

4 Dec. 1918  Copiapo, Chile 
caused damage. 

30 Apr. 1919 North of Vava'u, Tonga Observed in Hawaii. 

5 May 1919 New Britain Wave similar to 1 January 1916. 

20 Sept. 1920 New Hebrides Islands Slight tsunami at Samoa. 
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Date Source Remarks 

18 Dec. 1920 Strait of Otranto Wave height 10 feet on Albanian coast. 

11 Nov. 1922 Atacuma, Chile Tsunami destructive in many places along the coast of 
Chile; minor damage in Hawaii. 

3 Feb. 1923 East Kamchatka Tsunami in Hawaii; maximum amplitude 15 feet at Hilo; one 

person killed, much damage; tsunami on coast of Kamchatka. 

13 Apr. 1923 Kamchatka Tsunami observed in Hawaii. 

1 Sept. 1923 Kwanto, Japan Tsunami hit towns on shore of Sagami Bay; maximum height 
of 26 feet at Atami. 

9 Jan. 1924 ------ Tsunami on French coast (Atlantic coast); possibly a 
storm surge. 

14 Apr. 1924 South China Sea Small tsunami at Agno, Pangasman, caused minor damage. 

16 Mar. .1926 Tonga Island Wave swept Palmerston Island, 300 miles northwest of 
Raratonga; one person killed; all buildings swept away 
except the church. 

16 Sept. 1926 Solomon Islands Tsunami at Guadalcanal. 

18 Nov. 1926 Saint Pierre and Possible minor tsunami. 
Miquelon 

7 Mar. 1927 Tango, Japan Height of tsunami about 5 feet on Sea of Japan coastline. 

26 June 1927 Black Sea Small tsunami recorded in Crimea. 

11 and 12 Black Sea Small tsunami recorded in Crimea. 
Sept. 1927 

4 Nov. 1927 California Six-foot wave at Surf; 0.24 inch high at LaJolla. 

28 Dec. 1927 Kamchatka, U.S.S.R. Minor tsunami recorded at Hilo. 

25 Apr. 1928 Near Piraeus, Greece Waves 7 feet high on north coast of Crete. 

17 June 1928 Mexico Waterfront damaged at Puerto Angel, Mexico. 

17 Jan. 1929 Cumana, Venezuela Many boats wrecked. 

6 Mar. 1929 Aleutian Islands Tsunami measured in Hawaii (maximum amplitude 1 foot at 
Hilo). 

26 May 1929 Queen Charlotte Four-foot wave at Queen Charlotte City. 
Islands, Canada 

18 Nov. 1929 Grand Banks Tsunami hit Newfoundland; damage and loss of life on 
Burin Peninsula. 

3 Oct. 1931 Solomon Islands Eighteen native villages destroyed on San Christobal 
Island; approximately 50 persons killed. 

3 June 1932 Jalisco, Mexico Railroad track swept away between Cayutlan and 
Manzanillo, Mexico. 

18 June 1932 Jalisco, Mexico Small tsunami. 

TSUNAMIS OCCURRING BETWEEN 1891 AND 1961--Continued 
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TSUNAMIS OCCURRING BETWEEN 1819 AND 1961--Continued 

Remarks 

Small tsunami noted in Gulf of Orphano. 

Immense damage; 3,022 people killed; 8,831 houses 

destroyed; 8,180 vessels wrecked. 

Tsunami at San Esteban, Philippine Islands. 

Highest waves 14 to 16 feet from 

Tsunami observed in northern Japan. 

Tsunami observed along coast of Sea of Japan; some damage. 

Slight tsunami at Punta Arenas, Costa Rica; height of 

Slight tsunami recorded in Peru. 

Small tsunami at Valparaiso; amplitudes more than 3 feet. 

Amplitude less than 2 feet in Aleutians; waves along 
Pacific coast of Japan 2.5 to 5 meters high near the 

Heavy damage on coast of Pakistan and India; tsunami at 
Karachi and Bombay where there was damage and loss of life; 
two new islands appeared in the Arabian Sea. 

Damage and loss of life in Alaska; heavy damage and many 

Bottom of Deep Bay sank from 9 to 84 feet; waves 
generated in Georgia Strait flooded fields and highways. 

Town of Matanzas badly damaged and abandoned; more than 
100 persons killed; minor damage on coast of Haiti. 

Tsunami generated. 

Date Source 

June 1932 Jalisco, ee Small tsunami, some damage. 

Sept. 1932  Hierissos, Greece 

Mar. 1933 Sanriku coast, Japan 

Feb. 1934 China Sea 

Oct. 1936 Lituya Bay, Alaska Maximum runup of 400 feet. 

Nov. 1936 Off Kinkazan, Japan Minor tsunami on Japan coast. 

and 29 Blanche Bay, Volcanic eruption. 
May 1937 New Britain crest to trough. 

Mar. 1938 Solomon Islands Minor tsunami. 

Mar. 1938 Queen Charlotte Minor tsunami. 
Islands, Canada 

May 1938 Macassar Strait Minor tsunami. 

May 1938 Ibaraki, Japan Small tsunami. 

Nov. 1938 Off Iwaki, Japan 

Nov. 1938 Off south coast of Minor tsunami. 
Alaska 

May 1939 Near Ogasima, Japan 

Aug. 1940 Northern part of Tsunami on coast of Hokkaido. 
Sea of Japan 

Dec. 1941 Panama - Costa Rica 
0.75 foot. 

Aug. 1942 Near Lima, Peru 

Apr. 1943 Chile 

Dec. 1944 Japan (Kumanonoda) 

Kii Peninsula. 

Nov. 1945 Arabian Sea 

Apr. 1946 Aleutian Islands, 
Alaska, lives lost in Hawaii. 

June 1946 British Columbia, 

Canada 

Aug. 1946 Dominican Republic 

and 13 Matua Island, Volcanic explosion. 
Nov. 1946 Kurile Islands 
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TSUNAMIS OCCURRING BETWEEN 1891 AND 1961--Continued 

Date Source Remarks 

21 Dec. 1946 Honshu, Japan Damage on south coast of Japan (Wakayama Prefecture) ; 
(Nankai Earthquake) 1,500 people killed on Shikoku Island. 

6 Oct. 1947 Kononi, Messenia, Large wave on coast of Methoni, believed caused by a 
Greece submarine landslide. 

9 Feb. 1948 Sea of Crete Eight-foot wave. 

8 Sept. 1948 Tonga Island Minor tsunami in Hawaii. 

22 Aug. 1949 Queen Charlotte Two-foot wave at Ketchikan, Alaska. 
Islands, Canada 

20 Oct. 1949 Solomon Sea Minor (very slight) tsunami in Hawaii. 

29 Dec. 1949 Philippine Islands Tsunami killed one person near Mercedes. 

5 Oct. 1950 Costa Rica Very slight tsunami in Hawaii. 

23 Oct. 1950 Guatemala Very slight tsunami in Hawaii. 

14 Dec. 1950 Guerrero, Mexico Very slight tsunami in Hawaii. 

21 Aug. 1951 Kona, Hawaii Cliff collapsed near Napoopoo creating a 12-foot wave 
which destroyed a boat dock. 

4 Mar. 1952 Tokachi-Oki Tsunami on Pacific coast of Hokkaido from Nemuro to 
Earthquake, Japan Hidaka (main damage in Kirittapu and Tokotan); mass 

of ice accompanied the tsunami. 

17 Mar. 1952 South of Hawaii Slight tsunami at Kalapana. 

19 Mar. 1952 East of Mindanao, Small tsunami. 
Philippines 

13 July 1952 Near New Hebrides Small tsunami. 

Sept. 1952 Myojin Reef Submarine volcano eruption at Myojin Reef (400 kilo- 
meters south of Tokyo, Japan). Tsunami generated; 
largest wave 24 September, presumed to have destroyed 
hydrographic research vessel. 

4 Nov. 1952 Paramushir Island, East Kamchatka Earthquake. Large tsunami; maximum 

Kurile Islands height of 12 feet at Hilo, Hawaii. 

31 May 1953 Near Dominican Very slight tsunami; amplitude of 0.2 foot at Puerto 
Republic Plata. 

1] Aug. 1953 Ionian Islands Tsunami. 

10 Sept. 1953 Cyprus Series of Waves at Paphus, Cyprus (no major damage). 

14 Sept. 1953 Suva Earthquake Tsunami in Fiji Islands; amplitude of 0.7 foot. 

26 Nov. 1953 Boso-Oki, Japan Tsunami had maximum height of 3 meters at Choshi. 

12 Dec. 1953 Peruvian Earthquake Wave amplitude of 3.2 feet at Talara, Peru. 

18 Jan. 1955 ------ Tsunami caused damage at LaVela, Venezuela. 

19 Apr. 1955 Central Chile Slight Tsunami in Hawaii. 

S) Mar) L956) Northyicoast of) 1) b= --=—-=-—--— 
Hokkaido, Japan 
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TSUNAMIS OCCURRING BETWEEN 1891 AND 1961--Continued 

Date Source Remarks 

30 Mar. 1956 Near Kamchatka = -------------- 

9 July 1956 Greek Archipelago Wave believed to be caused by submarine 
landslides; wave 100 feet high near source. 

2 Nov. 1956 Volos, Greece Four-foot wave. 

9 Mar. 1957 Aleutian Islands Tsunami waves in Hawaii; heavy damage. 

28 July 1957 Mexico Tsunami recorded at Acapulco and Salina Cruz. 

19 Jan. 1958 Ecuador Tsunami damaged Esmeraldas and Quayaquil; some 
deaths. 

9 July 1958 Lituya Bay, Alaska Giant wave from rockfall; wave runup estimated 
at 1,740 feet at one point. 

6 Nov. 1958 Iturup Earthquake, Waves 3 to 5 meters high in South Kurile Islands 
Pacific coast, (referred to as Etorofu-Oki Earthquake by 
U.S.S.R. Japanese). 

22 Jan. 1959 East coast of Honshu Very faint tsunami at Miyako. 

7 Feb. 1959 Northern Peru Tsunami recorded at Talara. 

4 May 1959 Near Kamchatka Slight tsunami in Hawaii and the Aleutian Islands. 

18 Aug. 1959 Hebgen Lake, Montana Waves in lake from earthquake. 

13 Jan. 1960 Southern Peru Small tsunami struck Ancon. 

29 Feb. 1960 Morocco Tsunami at Agadir, Morocco. 

20 Mar. 1960 Coast of Japan Five-foot wave locally. 

22 May 1960 Chile Ofunato, Shizukawa, and Kiritappu heavily damaged 
in Japan; damage at Hilo, Hawaii. 

20 Nov. 1960 Coast of Peru Damage and deaths along Peruvian coast. 

16 Jan. 1961 Ibaraki-Oki Small tsunami. 
Earthquake 

27 Feb. 1961 Hiuga-Nada, Japan Tsunami on coast of Miyazaki prefecture occurred 

U.S. GOVERNMENT PRINTING OFFICE: 

at low tide; height small. 
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