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Preface 

The following pages represent part two of a book entitled 

"A Unified Mathematical Theory for the Analysis, Propagation, 

and Refraction of Storm Generated Ocean Surface Waves." They con- 

tain three chapters which logically follow part one as presented in 

March 1952. Chapters 11 and 12 complete the mathematical derivations 

to be presented by giving additional properties of waves in deep 

water and by deriving the procedures for the analysis of pressure 

and wave records in waters of finite depth and for the refraction of 

a Short crested Gaussian sea surface. 

Chapter 13 is the beginning of that part of the book which 

deals with the practical application of the theories presented in 

the previous twelve chapters. It treats specific examples of wave 

and pressure record analysis both by numerical and electronic methods. 

Part three is still in preparation, and upon its publication, 

this book will be complete. There will be two more chapters. One 

chapter will deal with observations which confirm the forecasting 

theory; and in it a hypothetically complete forecast will be carried 

out. The last chapter will comment on current wave generation theory 

and on the scope of the task which still needs to be done in order 

to put these theoretical results on a firm practical basis. Part 

three may be somewhat delayed because of a summer vacation for the 

author. 

July 1, 1952 Willard J. Pierson, Jr. 
Department of Meteorology 
New York University 
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CHAPTER 11 

ADDITIONAL PROPERTIES OF A SHORT CRESTED GAUSSIAN 

SEA SURFACE IN INFINITELY DEEP WATER 

introduction 

In this chapter, the pressure, velocity fields and curvature of 

the short crested sea surface will be studied. In addition, some of 

the very important lines of future research which are possible by the 

use of these new concepts will be suggested. Once [a5(u Saye has 

been determined, all of the other desired properties of the sea sur- 

face and the fluid motions can be determined to within the accuracy 

of the linearization assumptions at the start of Chapter 2. Since 

the sea surface is Gaussian, it follows that all of the other proper- 

ties of the wave motion such as the fluid velocities, the pressure, 

and the slope and curvature of the sea surface will be Gaussian. The 

functions which describe the range of variability of these properties 

are different from those which describe the sea surface. They are 

various integrals and functional modifications involving the power 

spectrum of the free surface which lead to some very important re- 

sults about the nature of the power spectrun. 

Pressure 

In Chapter 4, equations (4.8) and (4.10) presented formulas 

for the pressure at a point below the surface produced by a finite 

wave group passing overhead. They are considered here only to show 

how complex the problem can become when an attempt to solve it by 

Fourier Integral Theory is made. Equation (4.10) shows that at x 

equal to zero the period of the waves recorded by a sub-surface 
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pressure recorder becomes larger and larger with increasing depth. 

In fact a little investigation shows that there will be crests ob- 

served in the pressure at the depth, z = -h, when an actual trough 

of the sea surface is passing overhead. Additional investigation 

of these formulas will be left to the reader. 

The pressure recorded at a depth, z, below the sea surface (z 

is negative) can be found from the following arguments. The free 

surface is given by equation (11.1), and it can also be represented 

by the limit of a partial sum as in the second expression in equa- 

tion (11.1). For each term in the partial sum, the pressure contri- 

bution to the total pressure for that partial sum is found by simply 

inserting pg exp(( Money) 2/8) for each cosine term in equation 

(11.2). A term for the static pressure is also needed. 

The limiting form is then given by the Gaussian Lebesgue Power 

Integral in the second expression in equation (11.2). The pressure 

at each point below the sea surface thus involves the contribution 

of each of the elemental waves passing overhead modified by the 

appropriate damping effect with depth. 

Pressure is usually only recorded at one fixed point. From the 

results of the first part of Chapter 10, the pressure at the point, 

X,Y, at any fixed depth, z, is given by equation (11.3). Thus 

the pressure as a function of time alone is Gaussian. A given 

pressure record can be analyzed for its power spectrum in the same 

way that a wave record of the sea surface can be analyzed for its 

power spectrum. The pressure power spectrum, [ACH ie, is related 

to the power spectrum for the free surface, [A(y age by equation 

(11.4). Given either one, the other can be found from the 



formula. EDfe ) is given by equation (11.5) and nt x iS given by a 

equation (11.6). Ey u Ds for z not zero, is always less than E(p ) 

point for point. Emax is always less than Enax* 

There is always some depth below which the variation of the 

pressure caused by the passage of a short period wave overhead is 

undetectable due to the design of the pressure recorder. For ex- 

ample a five foot high wave with a five second period produces a 

pressure variation of only one one hundredth of a foot at a depth 

of 125 feet. This variation is essentially undetectable. Any 

variation in the power spectrum at the surface under the conditions 

described above is undetectable for all » greater than 2nr/5. 

These arguments also follow in a slightly modified way for 

pressure recorders located in shallow water (see Chapter 12). 

Ewing and Press [1949] have commented on the problem of the inter- 

pretation of pressure records, and their explanation is correct in 

that the correction must be applied to the whole power spectrum as 

indicated in equation (11.4). 

Everything that has been said about records of the sea surface 

is true also about pressure records. The probability distribution 

of points of a pressure record is Gaussian. An equation similar to 

equation (7.33) can be written for the pressure distribution simply 

by substituting P(t,) for 7 (t,) and E for E,ax° In addition, 
pmax 

the pressure record contains less of the non-linear effects which 

cause an asymmetry of the distribution for the free surface. 

The potential function and the velocity field 

Given the pressure field and equation (2.7) and (2.9), then 

by the methods of equation (11.1) and (11.2), the potential function 
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for the motion can be deduced immediately by integration of the 

variable part of the pressure with respect to time. The potential 

function is then given by equation (11.7). The u, v, and w velo- 

city components can then be found immediately from the potential 

function and they are given by equations (11.8), (11.9), and (11.10). 

Note that pena Vy PMs > Pt Pyy ce QO, and the equation of 

continuity and, consequently, the potential equation are automatically 

satisfied for any functional form for [aj (u ,0)1°. 

The kinetic energy integrated over depth and averaged over y 

and t at any x is then given by equation (11.11). This is, of course, 

to be expected from Lamb [1932]. The proof will be left to the reader, 

The techniques of Chapter 9 can be employed. It can also be proved 

that the kinetic energy integrated over depth and averaged over t at 

any fixed point is also given by pg EB nax/* The proof follows by 

the application of the methods of Chapter 10. 

The u component of the velocity for a fixed x and y and for 

any depth, z, can be written as a stationary Gaussian Integral as 

a function of time as given by equation (11.12). The functions, 

[D(p» 7° and F(u ), are given by equations (11.13) and (11.14). 

The u velocities decrease in range with depth and change back and 

forth more slowly with time at greater depths. A graph of u as 

a function of time for some fixed depth, z, would look like a pres- 

sure record as the velocity shifts back and forth. However the power 

spectrum of the u velocity record would not have the same shape 

as the power spectrum of the pressure record for the same short 

crested wave system passing overhead. The interrelations are given 

by equations (11.14) and (11.4). 



The cumulative power density of the u component of the velo- 

city must be bounded as stated by equation (11.15). Eauation (11.14) 

shows that for z not equal to zero, the term, exp[2(y *)*2/g], can 

cause F(y ) to be bounded for all » even if [a,(p ,e)]° is of a 

form in which E,, is unbounded. Thus any admissible [a(n ,e)]° 

which has a bounded Boat must also result in reasonable velocities 

below the surface. 

For z equal to zero in the equations for u, the equations give 

values for the surface water velocities due to the waves. It is true 

that the crest particle velocities occur at values of z greater than 

zero and the trough particle velocities occur at values of z less 

than zero, but such refinements are not justified in a linearized 

theory. 

In equation (11.14), consider the integration for the case where 

z is zero. Suppose that the integration overyp and 96 for yu less 

than pw K is bounded. Also suppose that [an(u ,0)1° can be expressed 

in a series form for » greater than # K such that 

[a(n O)]2 =f, +2,00)K 2+ 2,(e)/u 2+2,(0)/p * + are? ae aed oe ene: head 0 a os 

Then the integration over 6 of this series times (cose)* must yield 

constant or zero values such that 

er 2 4 [D(H] = Cy + Co © + Cop 3+ of *+.... 

2 2 2 
It then follows that »“[D(yp )]° = CjH + Cy + C3/u + C,/ : eee 

Now, integration of yu 2rp¢z 7° from , to infinity in the above 

form would yield infinitely large values of Ee unless Ci» Coy and 

C3 were zero. Therefore, they must be zero or else the power integral 

will break down and predict infinitely strong u velocity components 
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all of the time. The constants, Cis Coy and CS were determined from 

f, (8), f,(e), and f,(0). These functions of © must be positive 

everywhere or else [ay (pn ,0)1° can have negative values. Therefore 

f,(e), f,(@), and f,(8) must be zero. Therefore for values of # 

greater than p K? the power spectrum must be of the form f,(0)/u 4 

(at least) such that when multiplied by» 3, it goes to zero asp 

approaches infinity. A better way to state this requirement is 

given by equation (11.16) because fractional powers in the series 

expansion are then also possible. 

The results that have just been obtained can be interpreted in 

a very easy way by considering sea surfaces composed of purely per- 

iodic ten second waves, purely periodic five second waves, purely 

periodic two and one half second waves, and so on. If the various 

separate wave trains are all of the same height then the particle 

velocities at the surface are twice as great in the five second waves 

as in the ten second waves and four times as great in the two and 

one half second waves as in the ten second waves. If a condition 

such as the one just derived is not imposed, very strong velocities 

must result. 

The slope and curvature of the sea surface 

These power integrals can also be differentiated and integrated 

with respect to the time and space wariables. The slope of the sea 

surface in the x direction as a function of time and space variables 

is given by equation (11.17). By the methods of Chapter 10, this 

equation can be reduced to a function of time at any point. It then 

follows that the slope in the x direction is given by an integral 

of the form of equation (7.1) except that the power spectrum is 



given by w*CD( p )1°/e" instead of FAC 2 17. The slopes are there- 

fore distributed according to a normal distribution with a mean of 

zero and a variance related to the integral of the function just 

given above from zero to infinity. 

The curvature of the sea surface in the x direction is given 

by equation (11.18). The curvature as a function of time at a fixed 

point is, from the same reasoning as used above, distributed ac- 

cording to a normal distribution with a zero mean and a standard 

deviation related to the integral from zero to infinity of 

2 (p(n )1°/e?. | 
Infinite values for the curvature of the sea surface mean that 

at that point on the sea surface a sharp breaking angle occurs in 

the wave profile. Equation (11.18) shows that these sharp curvature 

changes are associated with the short waves (or the higher wave fre- 

quencies). If the integral is to behave properly, the condition 

given by equation (11.19) must be imposed. 

Wave power and energy transfer 

Consider the yz plane which results from picking a fixed value 

of x. The work being done on this plane when averaged over y and t 

and integrated over depth is the wave power or the flux of energy 

in ergs/sec per centimeter of length along the y axis. The equa- 

tion given in Lamb for section 237(equation 10) can be modified to 

yield the first expression in equation (11.20). Substitution of 

equations (11.2) and (11.8), followed by the indicated integrations 

and limiting processes, then yields the average rate of transmission 

of Wave energy across the yz plane per unit length of the y axis. 

Without the cos@® term, equation (11.20) would represent the total 

10 



outflow of wave energy from the storm area. From arguments similar 

to those which have been used above, the wave power will not be 

bounded unless equation (11.21) holds. 

Equation (11.20) has a particularly important application in 

wave forecasting theory. At the forward edge of a storm at Sea, 

it measures the energy which is being transmitted into the area of 

calm by the waves as they leave the edge of the storm area. The 

storm winds in the atmosphere by some mechanism transfer energy to 

the waves in the generating area. The energy in the wave motion 

in the generating area flows out of the generating area at a rate 

given by equation (11.20) (plus a component in the y direction). 

The important point is that in order to maintain the same amplitude 

of the power spectrum near » equal to 27/10 that is maintained 

near # equal to 27/5, the atmosphere must transmit twice as much 

energy per unit time to the generating area near frequencies given 

by p | to 27/10 than is required near # equal to 27/5. 

Consider, for example, two power spectra. One is given by 

[a,(# 40) ]° equals a constant over the area bounded by # equal to 

2m/1l and 27/9 and by © equal to + 7/36. The other is given by 

[anu 58)1* equals the same constant over the area bounded by “ 

equal to 27/5.24 and 27/4.74, and by © equal to + 1/36. The two 

power spectra have the same band width and the same value of Emax? 

but were such power spectra actually to exist over a generating 

area, twice as much energy would have to be transmitted to the 

sea surface by the atmosphere in order to maintain the waves for 

the first power spectrum than would have to be transmitted to the 

surface in order to maintain the second power spectrun. Energy 
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transmission for low values of # is much greater than for high 

values of » and it is therefore more difficult for the storm winds 

to maintain that part of a power spectrum which applies to low 

values ofp. 

a 

considerations 

It is dangerous to attempt to apply non-linear criteria to 

linearized systems. The linearized theory presented so far has 

gone a long way toward explaining the properties of actual storm 

generated ocean waves, and it appears to give consistent results. 

A linearized theory usually has one fault in that the theory in 

itself seldom yields information on when it will fail. 

For example, the requirement that ee ay be bounded was imposed 

in Chapter 7 for the first time and equations such as equation 

(11.15), (11.16), (11.19), and (11.21) have been deduced from this 

property and other considerations. However [a,(u ,0)1° is still 

undetermined to within a constant factor. That is, if a given 

functional form for [a,(u ,6)]° satisfies all of the requirements 

which have been deduced, it is still undetermined to within a con- 

stant factor because it can be multiplied by a factor of 10 or 100 

or 1000 and it would still satisfy all of these requirements. 

This is, of course, against good sense and against the initial 

assumption that the disturbance was small. There is no way to tell 

when the theory will get seriously out of hand for large magnitudes 

for the function from any of the previously given formulas. 

It is possible to make an educated guess about when the theory 

will certainly fail, and sometimes an educated guess is a very good 
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thing to have in lieu of actual knowledge. It is known from non- 

linear wave theory (Lamb [1932], sec. 250, see footnote on the 

work of Michell, and also Davies [1951]) that, for a purely periodic 

wave of finite height, the ratio of the wave height to the wave 

length cannot exceed one seventh. Michell obtained a value of 1/7.05, 

and Davies' [1951] most recent results are given by a value of 

1/6.914. Equation (11.22)uses the value 1/7 because the result 

is to be only an approximation. Suppose that all of the power in 

the power spectrum for w greater than p» K were concentrated in 

one purely periodic wave with a wave length determined by pw K° 

Then certainly the integral given on the left in equation (11.23) 

is less than the integral given in the middle and there is reason 

to believe that they both must be less than the value, 1/49. The 

longest possible wave length has been taken on the left in this 

equation, and the waves would certainly be very steep if [An(e co yds 

had major contributions for values of # very much larger than p K° 

Of course nothing can be said about how these short waves combine 

with the lonzer waves for # less than # K in the non-linear case, 

but if [A,( ey Ir were identically zero for # less than} x, 

equation (11.23) would still have to hold. It would seem that any 

added disturbance for # less than (ye would only serve to increase 

the instability of the waves for # greater than Hye 

If these arguments are valid, then equation (11.24) follows 

from equation (11.23). It states that the power in [A(py TE from 

wy to infinity must be less than some constant times p rae In 

terms of T,, this power must be less than a200 

For small values of pw a this result gives a larger possible 

13 



(6211) 

(8
27
1)
 

(
2
2
 0) 

(92°11) 
(S
2'
11
) 

(p21) 

(
C
2
1
)
 (22 
11) 

ul! 

X
T
 

91Did 

X Wx 

xp
(d
+x
* 

A)
U(
x*
A)
L 

[T
P 

wi
t 

= 
(d)

Xx 

xX+ xX 

eS aie 

t 
z 
L
o
s
 

HP
(d

+4
Z)

q 
(4

)4
 

[
w
r
y
 

= 
(d
)x
 

L
t
y
s
 

S
U
O
I
J
O
U
N
S
 

UO
I}
D]
9I
4I
40
H 

SS
O0
JI
Q 

|
B
I
d
W
O
S
 

a
w
o
s
 

o
n
 

= 
[(

a'
t)

?u
 

|
 

7 
wi
 

G
b
 

- 
4,
 

8
 

5%
, 

2
6
2
4
2
!
 

.
,
 

d
e
a
 
e
e
 

W
d
 6
b
 
e
n
e
 

> a
n
 
e
e
 
e
e
r
 

a
u
 

262up 
~
 
¥
 

® 
(
9
 

P
o
g
 

(ee) 
; 

tee) 

Z ‘fe 

Hof 

» 

up 

2x96e", 

97 Ot. 

ty 
ye 

= 

gwotLeze 

=e 

ep 

>[le'") 

= 
ap 
[lot) 

y] 
/ 40 

oO 

3 

nai 

6b 

224th 

2[6 

+2] 

— 

> 

gp7p——_>——_ 

> 

ppt 

p———_—+___ 

ae 

sysaBbns 

yoium 

z 

i 

a 

a 

i 

| 
(
g
'
7
)
*
y
 7 

foe] 
6
b
 

oa 
<
=
 

8
A
0
M
 

JIpOolsad 
A
j
a
i
n
d
 

Db 
4103 

S
o
o
h
a
l
e
e
i
t
u
e
s
 

JD9uUI| 
UOU 

W
O
I
4
 

J
O
}
0
M
 

d
a
a
q
 

Aj
ay

iu
rj

u|
 

JO
UO

IL
IP

PY
 

BI
DJ

IN
S 

DG
S 

U
D
I
S
S
N
D
 

pa
ys
as
9d
 

44
10
Yy
S 

D 
JO
 

Sa
ij
sa
do
ud
 



value for the power present. For Tx equal to 10 seconds, the power 

6 em (equivalent to a purely could be of the order of 3.28 10 

sinusoidal wave approximately eighteen meters high) between 277/10 

and infinity. For Tx equal to 1 second, the power between 27 and 

infinity could be of the order of 328 em (equivalent to a purely 

sinusoidal wave 18 cm high). 

Of course, for much smaller values of T,, these formulas begin 

to lose significance because the elemental waves are no longer 

gravity waves but capillary waves. The modification of these equa- 

tions by the appropriate forms for capillary waves might yield ad- 

ditional theoretical information about the high end of the spectrum. 

The bound given on [Ace 1c by these considerations is most 

likely an overestimate as to when the linear theory fails. That 

is, if the inequality is not satisfied, then the linear theory 

certainly fails, but if the inequality is satisfied, then the linear 

theory may still fail in one or more theoretical aspects. In 

addition, it would be fairly safe to predict that functional forms 

for [aC uw 1° will never be found in nature which fail to satisfy 

the requirements given in equation (11.24) because were the winds 

to attempt to build such a wave system, the system would be destroyed 

as fast as it is formed by breaking and turbulence at the crests. 

The "outsize" waves predicted by The Gaussian distribution would 

presumably be very unstable. 

The shape and properties of the possible power spectra 

Equations (11.16), (11.19), (11.21) and (11.24) taken together 

yield a considerable amount of information on what power spectra 

are possible, on the shape of the power spectra, and on the appear- 
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ance of the sea surface. The shapes of the power spectra will be 

discussed first at the high frequency end and then at the low fre- 

quency end in terms of what power spectra are possible. This will 

also permit a discussion of the appearance of the sea surface as 

a by-product. 

Equation (11.16) and (11.24) combined with the discussion 

given in the paragraphs on the potential function and the velocity 

field show from equation (11.25) (if [a,( 4 ,0)1° has a series ex- 

pansion) that the constant, C,, must be less than the value given 

in (11.26). For wy, equal to 27, C, must be less than 117,6007r, 

and the largest possible value for the term (when pw equals 27) 

is equal to 117, 6001r/(2r)* or 236 cm* sec. With the above value 

for Cay the power between 27 and 37 as computed irom (11.25) with 

different limits of integration is very nearly 328 cm’, and there 

is little power above the value 37. 

At the high end of the frequency spectrum, then, the spectrum 

must die down in amplitude at least as fast as C,/u 4. For moderate 

values of » , the spectrum can get to be quite high but it must 

always satisfy equation (11.24). 

Equation (11.21) applies to the low end of the frequency spect- 

rum. Especially in the source region, it states that the flow of 

energy across the forward edge of the storm must be bounded. Some 

results from the formulas given in Chapter 9 also apply here. For 

a wave system over a fetch 250 km long, seventeen hours after the 

winds cease, the power spectrum at the edge of the fetch will no 

longer contain values of » less than 21/5. Waves therefore die 

down in the storm area very rapidly as soon as the winds cease 
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(see figure 25). Conversely, tremendous amounts of energy have 

to be supplied to the sea surface from the winds in the storm 

overhead. For a steady state, the energy supplied per second 

from the atmosphere to the waves must balance the energy dissi- 

pated per second by the waves in breaking at the crests and the 

energy per second which flows out of the forward edge of the storm 

area as the waves propagate into the area of calm. The balance 

must hold for each possible elemental area in a net of the p ,@ 

plane. 

At the low end of the power spectrum, very large amounts of 

energy are leaving the generating area every second. Consequently 

the lower the value of » , the more difficult it is for the storm 

to maintain a wave of any appreciable amplitude. Therefore, as # 

is decreased the power spectrum must pass through some peak value 

and then begin to decrease as # gets close to zero. 

If the oceans were infinitely deep these considerations would 

hold exactly and equation (11.21) would have to hold exactly. The 

oceans are only about 3000 meters deep. A wave 6000 meters long 

is still essentially in deep water. This corresponds to a period 

of 61.7 seconds or a » of 27/61.7 seconds. Thus for » less than 

21/61.7 seconds, these arguments do not hold exactly. However, the 

rate of energy flow out of a generating area is still tremendous 

for # less than 27/62 and the arguments are still qualitatively 

valid since the ocean is not really shallow water (C = “gh ) until 

the period of the waves becomes about 1330 seconds. The point, 

B= 21/1330, is very close to the origin in all of the forecast- 

ing curves which have been shown. 
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Sea surface "glitter" 

So far no claim that equation (11.19) must hold has been put 

forward. The sea surface could be covered by many small facets 

and at many points the curvatures can be sharp. However, intui- 

tively at least,equation (11.18) should have a meaning everywhere 

and this is not the case unless equation (11.19) holds. If equation 

(11.19) holds, then C, must be zero. In addition, in the same 

series discussed above, Coy Ces Cos Coy and Co must all be zero 

and for some # greater than p K the series must be of the form 

» Ca, (#48) ]*(cose)® = £49(0)/ n° plus higher order terms. 

The results show that there is a tendency for the high fre- 

quency components to produce many sharp facets on the sea surface. 

These facets can be observed in fresh waves from a generating area 

and they are particularly noticeable in the photograph which has 

been chosen for the frontispiece. Any light breeze can super- 

impose a high frequency spectrum on a swell and it is believed 

that these considerations account very nicely for the sea surface 

VoJi1t ber. i 

Final form for the power spectrum 

If it is required that all derivatives of the sea surface, 

the velocity field, and the pressure field have a defined power 

spectrum and a defined power integral, then the requirement posed 

by equation (11.27) must be fulfilled for any integer value of M, 

no matter how large. No polynomial in (1/p )" can satisfy this 

requirement. Therefore [a(m ,0)1° cannot be represented by a 

fraction consisting of polynomials in » in the numerator and 

denominator. The power spectrum must therefore be either some 
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entire transcendental function capable of satisfying equation 

(11.27) and equation (11.24) for greater than pw, if it is to 

have a value for all p or it must be identically zero for » 

greater than some value. The functions given in the examples in 

Chapter 9 satisfy equation (11.27) [and therefore (11.19) and 

(11.16)]. When they were manufactured, condition (11.24) was not 

known. It might be an interesting problem for the reader to see 

if they satisfy equation (11.24) for all values of yp Ke 

The use of autocorrelation functions 

The non-normalized autocorrelation function given in eauation 

(10.26) was used to find the power spectrum. In its own right 

it is an extremely important function in wave theory because it 

permits short range predictions of what the next few waves will 

be like. The non-normalized autocorrelation function of a wave 

record dies down to zero for large values of p and it is very small, 

for example, for p equal to about 180 seconds for a power spectrum 

from a "sea" record. This means that what occurs at the point of 

observation three minutes after, say, a crest passes that point has 

very little to do with the fact that a crest passed three minutes 

ago. Stated another way, it is impossible to predict whether a 

erest or a trough will be passing the point of observation three 

Minutes after a given time of observation. Note that the power 

spectrum of the wave system tells us a great deal about the whole 

wave record, about the characteristics of the record, and about 

the "sea" and "swell" properties. However nothing can tell us the 

exact shape of the wave record three, ten, twenty or thirty minutes 

into the future. 
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In contrast, if a wave record could be represented by any 

number of discrete spectral components with, say, four place ac- 

curacy for the spectral periods, then it is theoretically possible 

to predict the wave records into the future for a long time. For 

example, suppose that a wave record were actually composed of three 

Sine waves of amplitudes A,, A>, and Aas with periods of 8.75, 

10.35, and 14.10 seconds, respectively, and that the numbers actually 

mean that the periods are between 8.745 and 8.755, 10.345 and 10.355, 

and 14.095 and 14.105. Then after one thousand seconds (17 minutes), 

the greatest possible predicted phase error would be 24 degrees. 

At a point in the future one thousand seconds ahead at which, say, 

theoretical positive cosinusoidal reinforcement is to occur the 

predicted amplitude would have to be between Ay + Ay + A, and 

A, cos 2325° + A,cos 16.8° + A,cos 9°, The autocorrelation function 

implies that such accuracy is fallacious, that a wave record cannot 

be predicted that far into the future for "sea" conditions, and that 

the sea surface cannot possibly be composed of discrete spectral 

components. 

Wiener [1949] has given the mathematical procedure for predict- 

ing the future behavior of a stationary time series given its past. 

From the past, the first step is to find an estimate of the auto- 

correlation function. The autocorrelation function can then be 

used to determine the kernal of an integral equation such that when 

the past of the record is multiplied by the kernal and integrated 

over past time, a number results which is the best possible forecast 

for the value which will occur, say, thirty seconds into the future. 

The best possible forecast is in the least square sense; that is, 
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the difference between the forecasted value and the actual value 

squared is a minimum over all forecasts. If the autocorrelation 

function is essentially zero from lags of three minutes onward, then 

the forecast would be a zero amplitude disturbance at all times be- 

yond three minutes in the future. This forecast would be correct 

in the least squares sense because the second moment about the mean 

(zero) is the smallest second moment possible and in the sense that 

the autocorrelation function implies that what will happen in three 

minutes has nothing to do with what is happening. 

If it ever becomes essential to know thirty seconds in advance 

that a big wave is coming then it is possible to imagine an elect- 

ronic circuit constructed along the lines of the one described by 

Lee [1949] which will graph the wave record as it will occur 30 

seconds in the future given the present wave record. Note also 

figure 22 in Lee's paper. The random voltages shown look exactly 

like wave records!! The machine described by Lee [1949], if one 

imagines it applied to wave forecasts would only predict the records 

about three seconds in advance. 

A ship at sea is acted upon by a Gaussian wave system. There- 

fore it pitches, rolls, and rises and falls according to a Gaussian 

law. The continuous record of, say, the inclinometer is therefore a 

temporarily homogeneous Gaussian record, and from the autocorrelation 

function of the inclinometer record it is therefore possible to pre- 

dict from the past when the next big roll of the ship will occur. 

A very fruitful line of future research will be to apply the 

methods given by John [1949] to a Gaussian sea surface and determine 

the movement of floating objects on the sea surface in response to 
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the waves. John [1949] has solved the problem for a purely periodic 

wave. His solution is given in the form of a Fredholm integral 

equation (which may or may not be solvable itself). Stoker,in a re- 

cent conference, suggested more direct methods which could yield 

immediate practical results. By the principals of Chapters 9 and 

10 these results can be extended to the Gaussian case. 

Cross correlation functions 

Another important tool for the study of ocean waves is the 

cross correlation function. There are many possible cross corre- 

lation functions which can be constructed. For example, X(p), 

given by equation (11.28), gives the cross correlation between the 

height of the free surface at a fixed point and the pressure re- 

corded by a pressure recorder at some depth, z, below the surface 

at that same point. As another example, equation (11.29) gives 

the relationship between the free surface at two different values 

of y at a fixed time. 

With these cross correlation functions, many properties of the 

sea surface, the velocity component fields, and the pressure fields 

can be interrelated and studied. A detailed study of equation (11.28) 

would probably show that the deeper the pressure recorder the less 

it reflects the passage of high short "apparent" period waves over= 

head and that it is easily possible for a pressure recorder to record 

a crest when actually a trough is passing overhead (or conversely). 

The cross correlation functions must be studied by carefully keeping 

the same net and the same ¥(»,0) for each term in the net for the 

two functions being studied. Although values are Gaussian, for 

example, an accidental high crest is related to an accidental high 
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u velocity component at that same point and time of observation. 

Lines for future research 

All of the things suggested above on the autocorrelation 

functions and the cross correlation functions cannot be treated here 

in detail because they recuire very extensive mathematical abilities 

and they are sidelights on the main problem of wave analysis, wave 

propagation, and wave refraction. Their importance is obvious, 

and they suggest many avenues for future research and investigation. 
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Chapter 12. WAVE REFRACTION IN THE TRANSITION ZONE 

Introduction 

The assumption that the oceans are infinitely deep have proved 

very useful so far in the study of ocean waves. For all practical 

purposes, the errors involved are not important. Sooner or later, 

somewhere, the disturbance is dissipated by the breaking of the waves 

on a coastline. Waves leave the deep parts of the oceans and travel 

finally to the shallow waters bordering a coast of an island or a 

continent. In the shallower waters, if the depth is constant over a 

relatively large area, the wave crest speed of a purely sinusoidal wave 

is given by equation (12.1). But wave refraction complicates the 

problem, and it is necessary to treat the wave crest speed as if it 

were a slowly varying function of position. There are varying degrees 

of accuracy with which the problem of wave motion over an area where 

the depth is less than, say, one half the wave length of the lowest 

important spectral component, can be treated. These methods will 

be discussed in this chapter. 

As the waves advance into an area where the effect of depth is 

important, a large area can be found such that the results of the 

previous chapters can be extended to explain the observed patterns 

and aerial photographs. Later, as the waves near the breaker zone, 

a transformation often appears to occur which substantiates some 

of the results of Munk [1949] on Solitary Wave Theory. Finally, the 

waves peak up and break. 

The breaking wave is a phenomenon of the non-linearity of the 

original equations of motion. All methods of wave analysis and wave 
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refraction which are based upon the linear theory fail in one or 

more important aspects in the breaker zone. Therefore the methods 

developed in this paper cannot be applied to the breaker zone. 

Between deep water and the coast there will first be found a 

zone which will be referred to in this paper as the transition zone. 

Between the transition zone and the coast there is a possibility 

of a solitary wave zone, a shallow water wave zone, and a breaker 

zone. If boundaries between the transition zone and the above three 

zones can be defined, then in this paper the theory will apply to 

the transition zone as marked by deep water on one side and the 

boundary of that zone (of the above three zones) which is farthest 

from the coast. Non-linear effects of great importance must be pre= 

sent in these near-shore zones, and they will not be treated in this 

paper. 

It might also be noted that conditions can occur in which the 

solitary wave zone, the shallow water zone, and the breaker zone 

would not occur. Also any two of the above zones or any one of 

the above zones might be missing. For example, waves approaching 

a vertical cliff rising sheerly out of a depth of forty feet at the 

edge of a bottom of variable depth could be reflected back out to 

deep water without ever undergoing any of the above suggested modi- 

fications. 

The invariance of discrete spectral periods 

Consider the following experiment in a very long deep wave tank. 

Waves with a period of exactly two seconds are generated in a forty 

foot depth at one end of the tank. The water for all practical 

purposes is infinitely deep, and the waves can be expressed as a 
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function of x and t alone at that end of the tank. Twenty miles 

away let the depth shoal gradually and linearly over a distance of 

ten miles to a final depth of five feet. For another twenty miles 

let the depth remain at five feet and then let the tank be ended by 

a perfect wave absorber without any reflection. Suppose also that 

the generator has been running for about two months so that all 

transient effects can be ignored. Finally let the amplitude of the 

waves at the generator be two inches so that the small height assump- 

tion can be used as an approximation. 

Now, at a distance of five miles from the generator, the waves 

will have a speed given by c? = gor /4r@ = gL/2r. Exactly one sinu- 

soidal crest will pass the point of observation every two seconds. 

The wave record will be essentially a pure sine wave if observed at 

a fixed point. The period of the wave will be exactly two seconds. 

At a distance of forty five miles from the generator, the waves 

will have passed over the sloping bottom, and at a distance of fifteen 

miles from the slope, since the deep water wave length is only one 

two hundredth and sixty fourth of a mile, the waves in the region 

ought to be again nearly sinusoidal in form and the crests ought to 

be traveling again with a constant speed. The crest speed ought to 

be given by equation (12.1) from classical theory. 

A long time ago in Chapter 2, under the assumption that the 

motion was purely periodic with one discrete spectral period, a 

periodicity factor in time for depth still variable was split off 

from the potential equation. The above experiment has been designed 

to show why this assumption is valid. Suppose that at this second 

point of observation the period of the wave is recorded. The period 
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must _be exactly two seconds. 

Suppose that the period is not exactly two seconds at the sec- 

ond point of observation. Suppose, for example, that the period is 

really 2.01 seconds. Near the generator the period is two seconds. 

Each periodic motion at the first point of observation means that 

one wave crest has progressed toward the second point of observa- 

tion. In the next one hundred hours, then, 180,000 waves will pass 

the first point of observation. At the second point of observation, 

where the period is assumed (erroneously) to be 2.01 seconds only 

179,104 waves will pass during the time of observation. Thus 896 

But at the start, it was assumed that the motion had settled down 

to a steady state; and now it is found that the number of wave crests 

between the two points is continuously increasing. The assumption 

that the period is not the same is therefore wrong. Therefore the 

period at the second point of observation must be exactly the same 

as at the first point of observation. 

It might be remarked that a formal exact mathematical solution 

to the experiment just described has never been obtained. The works 

of Stoker [1947] and Eckart [1951] come close to solving the problem, 

but Stoker's solution for a linear sloping beach although exact, as 

far as the linear theory goes, is not quite a solution to this 

problem and Eckart's methods would yield only an approximation to 

the true solution. 

Finally, though, the important point is that whatever solution 

is found the period of the motion at the second point must be the 

same as at the first point. Also the wave speed at the second point 
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will be essentially given by equation (12.1). 

Waves in water of constant depth: 

Consider a point in the transition zone where the depth is con- 

stant over a rather large area. The problem is to represent the sea 

surface and the other desired quantities in the vicinity of that 

point. None of the previous representations are correct in the tran- 

sition zone except that the wave record as a function of time is 

still given by the same general function of time discussed in Chapter 

7. In particular the methods given in Chapter 10 for the determi- 

nation of power spectra as a function of w and 0, will not apply to 

waves measured in the transition zone. 

Eouation (12.1) gives the speed of the wave crests as a function 

of the wave length for a pure sine wave in water of depth, H. Equa- 

tion (12.2) relates the speed of the wave crests to the wave length 

and the wave period. The period is independent of depth. From equa- 

tion (12.1) and (12.2), an equation for the wave length of a wave in 

water of depth H can be found in terms of the wave period. A con- 

version of spectral periods to spectral frequencies then will permit 

integrals over power spectra similar to those considered before. 

If the expression for C in terms of L and # in equation (12.2) 

is substituted into equation (12.1), equation (12.3) is the result. 

Rearrangement then yields equation (12.4) in which the wave length 

in water of depth, H, is given as a function of the spectral fre- 

quency and the depth. 

Usually (12.4) has been solved graphically (with a slightly 

different notation). Sverdrup and Munk [1944] give graphs of L/L, 

(i.e. Le/2npee) as a function of arH/L,- The Beach Erosion Board 
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gives complete tables of the same ratio. However, given T, and 

H and a table of ordinary hyperbolic functions, it is possible to 

find the above length without recourse to these graphs and tables. 

Equation (12.5) is equation (12.4) written down again. Substi- 

tute the expression for 27/L on the right in (12.5) for the 27r/L 

under the hyperbolic cotangent on the right of equation (12.4). The 

result is equation (12.6). Again substitute the value of 27/L in 

(12.5) into the far right of (12.6). The result is equation (12.7). 

Do it again. The result is equation (12.8). After an infinite 

number of substitutions the result is that 27/L is given as a function 

of # and H* alone on the right hand side of the equation. Thus, in 

a sense, equation (12.4) has been solved for 2r/L in terms of H and 

pe The new function suggested by equation (12.9) is defined by 

equation (12.10) to be the Itcoth of Hu-/g, [or (Hp @/g)]. The 

symbol, Itcoth(Hp “/z), is to be read as the iterated hyperbolic 

cotangent of Hy /e. It can also be pronounced easily just as it 

reads. The Itcoth appears to be a brand new function, never written 

down before. 

The point of the new function is that substitution of Hp °/g 

for H2r/L at the far right in the iteration makes no error in the 

value of the function. In fact only seven or eight iterations yield 

three place accuracy for the Itcoth starting out with Hi /e instead 

of H2r/L if Hp °/g is fairly large. Near zero values, many more 

iterations are needed. 

Table 17 illustrates this point. Let the depth be one eighth 

*The usual notation for this symbol is h, but H is used here in 
order to avoid confusion with the h of Chapter 10. 
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Table 17. Computation of the Itcoth by Iteration 

2 arL 

Let H = 9 ; ot = ae = aan = 5 = .785 

Number 
of 

Iterations 

a) eoth( .785) = 1.524 

2 coth(.785) (1.524) = coth(1.12) = 1.238 

3 coth(.785) (1.238) = coth(.972) = 1.333 

4 coth(.785) (1.333) = coth(1.05) = 1.282 

5 coth(.785) (1.282) = coth(1.006) = 1.309 

6 coth(.785) (1.309) = coth(1.028) = 1.294 

Y, coth(.785) (1.294) = coth(1.0158) = 1.302 

8 coth(.785) (1.302) = coth(1.022) = 1.297 

Therefore 1.297 <1(.785) <1.302; 
ab L, were equal to 1000 feet and 

if H were 125 feet, then L would be 

1000/1.30 or L = 769.2 feet. 

of the depth water wave length. Then » “H/g equals 2H/L, which in 

turn yields 2rL,/8L, or the number 7/4. 

The value of 7/4 to three figures is given by 0.785. The 

hyperbolic cotangent has the value 1.524 as shown in the first row. 

The second row gives the hyperbolic cotangent of 0.785 times 1.524. 

The true value of the Itcoth lies between the two numbers given by 

2.5924 and 1.238. 

Eight iterations then yield the values given by row 7 and row 

8. Within an error of one half of one percent the true value of 

the Itcoth for p 2u/e equal to 7/4 is 1.30. Given that the wave 

length in deep water is 1000 feet, the depth would then be 125 feet 
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and the wave length at the depth of 125 feet would be 769.2 feet. 

Note that no special tables or graphs were used. 

The Itcoth has an additional property which is given as equation 

(12.11). If the hyperbolic cotangent of the product of Hp/p and 

the Itcoth of Hu “/g is formed, it will again equal the Itcoth of Hp-/e. 

This is shown by Table 17. If the Itcoth is treated as the dependent 

variable, I, equation (12.12) follows. The inverse of the equation 

then yields Hp °/¢ as a function of I, and in equation (12.13), Hp ?/e 

is given as a function of I. The function given by eouation (12.13) 

is graphed in figure 31. Other relationships of a useful nature are 

also given in the figure. 

Since the wave length of a wave with a known spectral frequency 

(or period) has now been given as a function of that spectral fre- 

quency and the depth, H, of the water, it is now possible to write 

down the expression for the free surface for one pure sine wave, in 

water of constant depth, H. The free surface is given by equation 

(12.14) in which the constant spectral frequency is given by I and 

the depth is He It is easy to show that this expression reduces to 

the forms given before if H becomes infinite. 

Equation (12,15) then yields the potential function. It is 

again easy to show that the potential function satisfies all required 

properties and that it reduces to the appropriate form in water of 

infinite depth. 

The appropriate Gaussian systems then follow immediately from 

previous considerations. The free surface is given by equation (12.16). 

Boy (CH 98) is the cumulative power distribution function for waves in 

water of depth, H. The function, ¥(,@) and the function, E5,(p ,6) 
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have the same properties as required in Chapter 9 for the analogous 

functions in that chapter. The subscript H's have been added to 

emphasize the fact that, given [E,(p ,©)] offshore in deep water, 

then Ey ( # 99) is an unknown function unless the refraction proper- 

ties of the transition zone are given. 

The potential function is given by equation (12.17). [ioe CE oul 

is the power spectrum of the waves in water of depth, H. It cannot 

be found from the theories given in Chapter 10, although appropriate 

modifications of the formulas given therein would yield correct re- 

sults. 

As a function of time at a fixed point, these equations can 

be treated just as in Chapter 10. The record as a function of time 

is Gaussian and the results of Chapter 7 again apply. Boyle ) is 

by analogy equal to Boy(H 91/2). As before, [ALC WE is the inte- 

gral over 0 of Berg arch ahr 

Ti.e pressure at a depth, z, produced by a short crested Gaussian 

sea surface on the surface of a layer of water of depth, H, is given 

by equation (12.18). It reduces to the results given in Chapter 

1l as the depth approaches infinity. 

The pressure at a fixed point in the x,y plane as a function 

of z and t is given by equation (12.19). The equation can be de- 

rived by the use of the methods of Chapter 10. For a fixed value 

of zy, a pressure record as a function of time is therefore Gaussian 

and can be analyzed for its pressure power spectrum in the same way 

that a wave record can be analyzed. 

The power spectrum of the pressure record for a pressure re- 

corder at any depth (not necessarily the bottom) is related to the 
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power spectrum of the wave record taken of the free surface by equa- 

tion (12.20). Given either one and given the depth of the water, 

and the depth of the instrument, the other can be computed except 

for the high spectral components lost by filtering due to depth due 

to the fact that the pressure recorder simply will not respond to 

minute variations in the pressure field. 

At the bottom, z equals minus H, and equation (12.20) becomes 

equation (12.21). The pressure record recorded by a pressure re- 

corder on the bottom is therefore some segment of one of the infin- 

itely long records which result from the limit of a partial sum such 

as those discussed in Chapter 7. 

Wave refraction in the transition zone 

The refraction of the short crested Gaussian waves which have 

been derived in the previous chapters is an extremely complicated 

problem. The basic theory which has been derived by Sverdrup and 

Munk [1944], Johnson, O'Brien, and Isaacs [1948], arthur [1946], 

Eckart [1951], and Arthur, Munk and Isaacs [1952], is correct, but 

it applies only to one pure sine wave of constant period. The theory 

needs to be placed upon a somewhat firmer theoretical basis as pointed 

out by Pierson [195la], and the results of Eckart [1951] are a first 

step in this direction. 

The theory of wave refraction is at the level of theoretical 

development which was attained by the theory of optics before the 

work of Luneberg [1944, 1947] in optics. That is, wave refraction 

theory has been derived not from the basic hydrodynamic equations, 

but by a series of approximations and assumptions about the nature 

of the motion of a pure sine wave over a bottom of variable depth. 
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For example, Snell's Law is either assumed or proved from very 

Simple considerations. Also the shrinking in the wave length as 

the wave progresses into shallower water is not shown to be a con- 

tinuous process; that is, the length in deep water is Ly and the 

length in water of depth, H, is given by equation (12.10), but no- 

where in the theory is the exact profile along an orthogonal given. 

Luneberg started with Maxwell's equations and showed how the 

theory of geometrical optics for light or any other form of electro- 

magnetic radiation could be derived rigorously from the equations. 

In addition, the systematic approach which he used has permitted 

attempts to refine the theory to the level of physical optics. Con- 

siderable success along these lines has been obtained by Keller, 

Kline, and Friedman of New York University.* 

Similarly, it ought to be possible to derive wave refraction 

theory with the original hydrodynamic equations as a start. Were 

this done, the results would possibly indicate better relations for 

the wave height in the neighborhood of a caustic made possible by 

the consideration of higher order effects. 

One fundamental assumption of wave refraction theory is that 

the dimensions of the refracting bottom contour systems must be 

large compared to the wave length of the waves on the surface. As 

has been pointed out by Pierson [195la], in many practical cases 

*The author in this section is indebted to Professor Joseph Keller 
for his series of lectures on geometrical optics given at the Math 
Institute during the past year. Wave refraction theory for 
Gaussian waves has an analogue in the problem of colored light 
scattered in two dimensions passing through a medium with a con- 
tinuously varying index of refraction such that the index of re- 
fraction is a function of the wave length of the light and of 
only two space variables. 
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this assumption is not fulfilled too well. Thus some numerical 

results of wave refraction theory must not be taken too quanti- 

tatively although they may be correct within 30 or 40 per cent. 

Were the theory derived rigorously, it might then be possible to 

estimate the amount of error introduced by the above assumption in 

a practical case. 

ae a a a  - 

From the results of the past chapters, it is possible to deter- 

mine the two dimensional power spectrum at a point located offshore 

in deep water from a point of interest in the refraction zone. For 

example, the power spectrum could be determined by direct measure- 

ment from stereo-aerial photographs and deep water wave records as 

a function of time at a point a few miles from the coast under in- 

vestigation. By the methods of Chapter 9, if the torm power spect- 

rum were known, it would then be possible to forecast the power 

spectrum offshore from the point of interest. Given these deep 

water quantities, what can be said about the records which can be 

obtained in the transition zone? 

The problem can be solved to various degrees of accuracy. 

Given a linear sloping beach, and the results obtained by Peters* 

expressed in terms of the parameters, # and 9, and a deep water 

wave of unit height, then it would be possible to find a represent- 

ation for the sea surface in the transition zone by a Lebesgue 

Power Integral in the Gaussian case over the power spectrum multi- 

plied by Peters' solution. At any point the wave record as a function 

of time would be Gaussian. As a function of x and y, the elemental 

Feces ences to Part I. The paper has appeared in the publication 
ed. 
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crests would be curves in the refraction zone. Such a solution 

would be exact (in a linear sense) everywhere, and would agree 

well with reality until non-linear effects near the breaker zone 

caused it to fail. Apart from the difficulty of evaluating the 

result, (and it is difficult enough for a pure sine wave), very 

few linear sloping beaches are found in nature. As soon as the 

depth becomes a complicated function, wave refraction theory must 

be used. 

The solution to the wave refraction problem in the transition 

zone is found in practice by graphical methods. The orthogonal 

method as presented by Johnson, O'Brien, and Isaacs [1948] and most 

recently by Arthur, Munk and Isaacs [1952]* is the best procedure 

because errors are not cumulative and the method discovers caustic 

curves. It would now appear that it is possible at a sufficient 

distance beyond the caustic to use the usual formulas for the value 

of KD based on the separation of the orthogonals at the point of 

In general, for a pure sine wave in deep water, the crests in 

the transition zone are curved. All of the systems discussed so 

far consist of elemental straight crests. The equations for the 

crests in the transition zone are very complicated and they have 

rarely been formulated mathematically except for extremely simple 

bottom configurations. Some examples in which the crests can be 

found explicitly (since the orthogonals are given) can be found in 

papers written by Arthur [1946], Pierson [195la] and Pocinki [1950]. 

*The abstract of the paper by Arthur, Munk and Isaacs[1952] can be 
found in the American Geophysical Union's vrogram for its May 5-7, 
1952 meetings in Washington. A preliminary copy provided by the 
authors shows that errors in previous methods can be eliminated 
by a more refined application of Snell's law. 
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In general, the refraction problem is treated even less 

specifically for practical purposes. Given the deep water wave 

direction, amplitude and period of a pure sine wave, data are 

usually provided which give the angle the crest makes with the 

shore and the amplitude of the sine wave as observed at one point 

of special interest. For example, the data presented by Pierson 

(195la] for Long Branch apply only to one point, namely the point 

where the wave recorder used to be. It was at a depth of 21 feet, 

mean low water, offshore from latitude 40°18.2'. It is now at a 

depth of 30.5 feet, mean low water, offshore from latitude 40°18.2'. 

The slight change in location has negligible effects for this case 

since most of the refraction occurs in deeper water. 

In figure 32, consider the point B, in deep water just outside 

of the transition zone. At the point B, Xp and Yp are zero and the 

wave system will be referred to the Cartesian coordinate system in- 

dicated on the figure. If a pure sine wave of spectral frequency, 

Hy» were to exist in deep water and if it were traveling in the 

direction, ey” (measured with respect to o,* equal to zero coincident 

with the Xp axis), then the sea surface could be given by equation 

(12.23). The equation would hold everywhere in deep water. In the 

transition zone, equation (12.23) is not valid. 

In figure 32, consider the point C in the transition zone. At 

the point C, XR and Yp are zero. The XR axis is parallel to the 

Xp axis (and not necessarily coincidental). The depth at that point 

is H(xp,yp) = H = H(0,0) referred to this coordinate system. If the 

assumptions of wave refraction theory hold, then the bottom is nearly 

level at that point, The crests although slightly curved will have 
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The Transition Zone 

In Deep Water near X=Xyp > Y=Yp 

2 * ; a 

[= Cos E & cos 6, ale Yo sin a, | a us| (12.23) 

In Transition Zone, near Xx=XR, y=yp 

n=Agy COS E ae HH) [Xr cos 8, + yr sin Or} — Hot +8] (12.24) 

where Ary =KxyD A (2°29) 

Problem; to generalize above to a short crested Gaussian 

Sea Surface 

Definitions of Terms 

[a,(4,8)]” is the power spectrum at the edge of the fetch (12.26) 

[Ane (H4,8e)) is the forecasted pOwer spectrum at the point offshore 

from point of forecast given by x,,y,. (12.27) 

6-=@-@), from equation (9.61) (12.28) 

[Ave # (1,9) is the forecasted power spectrum at the point Xp 

rotated to line it up with the refraction diagram (12.29) 

OF = 6--B where B is the angle between the continuation of 

R through 8B and the iine drawn out to sea perpendicular to 

the coast through the point (xp, ye) (l2.30) 

2 

[Azan (Hr Oa) is the forecasted power spectrum in the Refraction 

Zone at the point xg,yp and at the depth, H (2.31) 

2 
Problem; To find [Aran Hs OR) from refraction diagram data 

and the forecasted power spectrum. 

Plate LX1V 



4SD09 04 

4D|NDIpuadsad 

auiy 

ater Zone Breaker Zone and/or Shallow 

a i= ° N Cc °o = ” c °o - = 
oe 

‘Asoay, 
uo1pd04yas 

aaom 
Kq 
[
e
e
]
 

04 
[(+9'7!) 7y] 

wos} 
06 

Of; 
MOY 

JNO 
PUly 

Of 
SI 

W
a
|
q
d
s
g
 

juasaid 

“WalGOig 
UOI}DDIJaY 

AADM 
JOY 

UOIVOJON 
‘ZE 

“HI4 

e
y
]
 

[(
ga

'7
) 

#
2
]
 

O=“ O=*x'9 4 

O=% 

o=°x'g 

iv 

|
 

2) 
29 

g-“9 = 
woibo0ig vol 04jay 

yyim 

wniyoads 

JaMOg pajsooas04 uBijD Of uo1yOJOYy 

(
2
6
 ‘r) w2y] 

Deep Water 

uolyOJOY 

ajdwis 

Ag 

29 

— 

'g 

°
9
-
@
=
 

46
9 

O
=
%
‘
O
 

=9
K 

4D
 

4a
JO

mM
 

da
ap

 
ui
 

wn
sa

yo
ad

s 
Ja
MO
dg
 

pa
js

od
as

04
 

[(49'7)42y] 

ainpad0ig 
Buijsodas03 

Ag 

'g@-o—-V 

S3ADM 40 a24N0S 40 

wnij9adS 

JamM0g 

[le'7)?v] 

-—43- 



a certain direction of forward progress at the point and a wave 

length determined by pu I and H. Finally, the crests will have a 

new amplitude and phase at that point, which can be determined from 

tracing the family of orthogonals near the point of study. These 

features are all incorporated in equation (12.24). Any is the new 

height at the new point of observation which can be determined from 

A by wave refraction theory and equation (12.25). Op is the new 

direction of progress of the crests. 6 is a phase lag due to the 

Slowing down of the crests. 

Equation (12.24) does not hold everywhere in the transition 

zone. In fact it holds only at one point; namely, Xp = 0; Ya = 0. 

However, in the vicinity of the point, the equation approximates 

the local state of affairs. The degree of approximation is somewhat 

crude but actually to develop the formulas with curved crests which 

would apply to greater distances away from the point of observation 

would be far too difficult. 

The problem of the refraction of a short crested Gaussian sea 

surface can be solved by showing how it is possible to extend the 

application of the refraction data already obtained for pure sine 

waves to an infinite sum of infinitessimally high sine waves in ran- 

dom phase. It can be done easily to the degree of approximation 

just described above. In this way, the sea surface is approximated 

in the vicinity of the point under study by a Lebesgue Power Integral 

quite similar to the one discussed above and in previous chapters. 

A wave record taken as a function of time at the point of interest 

will be quite accurately given but the slight curvature of the 

individual crests in the neighborhood of XpoVp will not be represented. 



From the edge of the fetch to the transition zone 

At the edge of a storm at sea, in connection with the fore- 

casting problem, it is more convenient to line up the 9® equal to 

zero axis with the direction of the winds in the storm. The distance 

R, from the center of the forward edge of the storm to the edge of 

the transition zone is essentially the same, as far as the magni- 

tude of the parameters is concerned, as the distance to the point, 

ae Vp O in the transition zone. Thus in figure 32, the distance 

from A to B is essentially the same as the distance from A to Cc. In 

the process of forecasting considerations for the point, C, then, 

the procedures presented in Chapter 9 can be applied to reach the 

point, B, and then refraction theory can be applied without considera- 

tion of the added distance from B to C in order to find the effects 

at C. This procedure also neglects some minor effects on the power 

Spectrum since it varies slowly from point to point in deep water 

and all rays arriving at C do not come from B. Various operations 

must be applied to the power spectrum at the source in order to 

find the power spectrum at B and in order to put it into a mathe- 

matical form which permits the application of refraction theory to 

the power spectrum at B. Then the problem of prime importance in 

this chapter is to show how it is possible to go from the point B 

to the point C. 

The operations needed to proceed from point A to B and to orient 

the forecasted spectrum at B so that it can be easily refracted are 

Shown on the right of figure 32. The various terms are defined in 

Plate LXIV. 

At the forward edge of the storm, the power spectrum can be 
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defined to be [a5 (@ ,0)1° as in equation (12.26). The angle 6 is 

defined as zero along the x axis defined in relation to the storm 

in connection with the forecasting problem. At B, the forecasted 

power spectrum can be found from the results of Chapter 9. A new 

angular variable can then be found, which will be called Ope In 

terms of the forecasted power spectrum, by equation (12.28), the 

power spectrum at B is given by [Bop ( H yO) 16 The direction 6, 

equals zero is usually the dominant apparent direction of the short 

crested waves at B. The line, ©, equal to zero, is shown on the 

coordinate system labeled B, in figure 32. 

The variable, 6,;, must be transformed to the variable, 6p *; in 

order to align the forecasted power spectrum with the refraction 

diagrams for the point C. The angle, On*; can best be picked to 

be zero when the angle coincides with the Xp axis chosen perpendi- 

cular to the coast through the point C. The angle £8, which defines 

6," in terms of ep is the angle between the continuation of R through 

B and the line xp equal to zero. The function [Aon *(# ,6n*)]°, is 

thus the forecasted power spectrum at B aligned properly to the 

Xp = O and xp = O axis. The line, On* equal to zero, is shown on 

the polar diagram marked By in figure 32. 

If now, (BE (Pare) is is defined to be the power spectrum at 

the point, C, (that is, in the vicinity of the point Xp = 0, Yp = 0) 

how can it be determined from [Ane (1 0p *) 1° given the usual re- 

fraction data? It can be found by applying operations to the con- 

tinuous spectrum which are analogous to those operations applied to 

pure sine waves in the theory of wave refraction. The reader can 

check each step of what follows and assure himself that each step applied 

to a sum such as in equation (8.5) would yield correct results for 

each discrete component. 
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Needed modifications of refraction diagrams _ 

The next step is to modify the usual refraction data so that 

they can be easily applied to [A (iaeg irs One of the quanti- 

ties evaluated in a study of refraction is the quantity Kie This 

quantity is a value related to the ratio of the distance between 

orthogonals at the point of observation to the distance between the 

Same orthogonals in deep water. Peocedates for obtaining the quantity 

are given by Johnson, O'Brien, and Isaacs [1948]. The value of Key 

must be multiplied by a factor D which depends on the depth below the 

point of observation and the period of the wave. It is essentially a 

correction for the group velocity effect in order to maintain a con-= 

stant energy flux between orthogonals. The product KD is usually then 

plotted as a function of the period and deep water direction of the 

wave. Such diagrams are given by Munk and Traylor [1947] and Pierson 

[1949]. The isopleths are lines of constant K,D on a polar diagram. 

To prepare such a diagram for application to the refraction of a Gaus- 

sian short crested wave system, it is necessary to invert the diagram 

and plot it as a function of / and 6," where H is the spectral fre-=- 

quency ard Op” is the direction toward which an elemental crest is 

moving just offshore in deep water (e,* is zero when the crest in deep 

water is parallel to the coast). The values on the diagram must also 

be squared point for point. The result is a considerably more rapid- 

ly varying function which will be defined to be the function 

[K,D(# y0_*) 1° as in equation (12.32) and which will be named the 

spectrum amplification function. The function must approach unit 

values as # approaches values of the spectral frequency such that 

the depth is greater than one half of 2mg/p °. 
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The other quantity usually evaluated in refraction data is 

the angle the crests make with the shore at the point of observa- 

tion near the shore. This angle is identically eaual to op which 

is the direction toward which the elemental crest is traveling. 

8p equal to zero designates a crest traveling directly toward the 

coast. These values can be plotted as a function of # and Ope 

The function, @p = O( 4 ,e,*), can thus be shown as isopleths of 

8, as a function of w and On" As# becomes large, ©, equals 

o,* asymptotically. These relations are defined in equation 

(12.33). © (#,0,*) will be called the direction function. 

The inverse of 0, = © CH en”) is also needed. That is, values 

of 6, isoplethed on ap 4,0, polar coordinate system, are needed. 

This inverse function is defined by equation (12.34) as 6,*= O*(,e,). 

From the isoplethed values of equation (12.34) it is possible 

to evaluate lr ( # yep) as given by equation (12.35). The function, 

['(#,0,), is the change of @,* per unit of change of 6, expressed 

as a dimensionless number in radians per radian or degrees per de- 

ereee r(p ,Op) is a measure of the crowding together of the power 

spectrum due to refraction and its significance will be discussed 

later. It is the Jacobian of the inverse of the direction function. 

Steps in wave refraction 

Given the functions described above and their definitions, three 

steps are required to find Eee Cae from [Ap Mt # 50,*) 1°. The 

function, eae ils could also be the power spectrum of any 

system observed immediately offshore in deep water. At this stage, 

then, the functions defined by equations (12.29), (12.32), (12.33), 

(12.34) and (12.35) are known. 
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The Transition Zone 

2 
[KyD(#,9F) | is the spectrum amplification function. It is the square 

of the ordinary Refraction Diagram plotted in the 1,9¢. plane instead 

of in the T,@ plane. (2,32) 

Ae 
Opx=O(p,8F)is the angle that the crest makes with the y axis at Yr, 

Xp Plotted as a function of » and an, ie. the wave frequency and 

the deep water direction with respect to a line perpendicular to the 

coast at the forecast point. (12253) 

g* = @"(u,8,) is the inverse of the functian given above (12.34) 

06% JO"(udp) Psd eA aa ct als a 
Gone eee RD (12.35) 

Steps in Wave Refraction 
: 2 Dealia : : 

Step I, Multiply [A.(,6%)| by [Ky D(H, 4F ) graphically to find 

[aoa OP I” [Ku D(H 8]? (12.36) 
Step I, Substitute equation (12.34) for oF to express(12.36) as a function 

of 8 andfind [A,%u,9 (u,4a))|* [KyD(2,97%(1,8a))| (12.37) 

StepII Correct, by multiplication by equation (12.35),for distortion 

to find [Azpy(H,On)]°= [Aoet(H,0 (4,8R))]° [Ku D(#,07(1,9R))] °F (4,8R) (12.38) 
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Step one is to multiply the power spectrum in deep water by 

the spectrum amplification function. Graphically this can be done 

by computing the value of the product point for point of (12.29) and 

(12.32). For any finite net over [A5p *(H on ]*, as in equation 

(9.22), the result of this operation is to predict the height of 

each elemental wave in the partial sum for the new point of obser- 

vation. 

Step two is to substitute equation (12.34) for 0,* everywhere 

it occurs. This converts the product given in (12.36) to the pro- 

duct given in (12.37). The result is some function of # and Ope 

For any partial sum the result is to assign the correct spectral 

directions to each elemental wave at the new point of observation. 

In general equation (12.36), is a continuous function and the effect 

of this operation is to squeeze (12.36) into a more compact function 

in the # 99, plane since elemental wave components with widely 

different directions in deep water have more nearly the same direction 

at the point of observation in the transition zone. 

Graphically this step can be accomplished by plotting the value 

of (12.36) at # =, and 6," = Orr in the BO," coordinate 

system at the point OR = @ (eH 7en7) and # = By in the new H 58, 

polar coordinate system. A line on which (12.36) is a constant 

is thus mapped into a new line in the pw 29, plane on which the same 

constant value is found. 

The third step is to multiply (12.37) by T (#,6,) as given 

by equation (12.35). The result is the desired power spectrum, 

[asee( sea l=, as a function of # and ©, at the point of obser- 

vation in the transition zone. This step is needed since the power 
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spectrum is treated as a continuous function. If the spectrum 

were discrete jumps in E,(,0) as in equations (9.38b) and (9.39), 

this step would not be needed. 

['(#,0) could be called the distortion correction function. 

It is the Jacobian or equation (12.34) and it corrects for the 

squeezing together of (12.36) when it is changed to (12.37). 

Consider an example to clarify this point. Suppose that (12.36) 

is given by a constant value from # equal to 27/10 toH equal to 

2r/9 and for en equal to -1/30 to +1r/30 and by zero otherwise, and 

that (12.37) is the same except that 0, ranges from -7/60 to +1/60. 

Both (12.36) and (12.37) represent the average potential energy at the 

new point of observation, and yet the integral over # and 6p" for 

the first case is not equal to the integral over M and Op in the 

second case. But the value of 06,*/de, in this case is equal to 

two radians per radian, and thus doubling the value of the second 

spectrum corrects the value of the average potential energy. 

The power spectrum of the waves in the vicinity of the point 

under study in the transition zone is now known. It is given by 

equation (12.38). In terms of the XpoVR coordinate system at the 

point, C, in figure 32, and in terms of the p 99p» power spectrum 

defined there by the above procedures, the short crested sea surface 

near Xp and YR equal to zero is given by equation (12.39). In appear-= 

ance, the sea surface will be different in many ways from the sea sur- 

face at the point, B. The procedures described above predict many 

properties of the waves at the point C which are verifiable by 

aerial photographs and observational procedures. The properties 

will be described later. 

One property which follows from the derivation is given by 
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equation (12.40). After multiplication of the deep water power 

spectrum by the spectrum amplification function, (12.32), the sub- 

sequent change of variables does not affect the potential energy 

of the waves at the point of observation. Nevertheless the potential 

energy at the point in the transition zone may be completely dif- 

ferent from the potential energy in deep water since the spectrum 

amplification function in general does not leave the total volume 

under [Ao*(p ,On*) 1° unaltered. 

The spectrum amplification function can change markedly upon 

the choice of different points, C, in the transition zone. In the 

short distance of thirty miles along the coast of New Jersey, it 

can vary tremendously. Consequently not only will the wave height 

vary over a distance in the transition zone which is very short com- 

pared to the deep water forecast parameters but also the "signifi- 

cant" period will vary from place to place. These points will be 

verified by examples in a later chapter. 

The wave record at the point of observation 

The wave record which will be observed by, say, a step resist- 

ance guage at the point Xp = 0, Yn = O is given by equation (12.41) 

where [Apy(# )]° is the integral over 6p of [Appu(# ,0,)]*. This 

function has all of the properties of the one described in Chapter 

7 and it can be derived from equation (12.37) by the exact same 

arguments given in Chapter 10 for the deep water case. In Chapter 

7, a wave record in the transition zone was shown to have the pro- 

perty that points chosen at random from it were normally distributed. 

The definition of the integral given in equation (7.1) and in sub- 

sequent equations can just as easily be applied to equation (12.41) 
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and the results are thus to be expected. The reader, though, would 

have been perfectly justified in objecting at that point in Chapter 

7 where a transition zone wave record and transition zone pressure 

records were used to prove the Gaussian property, and then the 

Gaussian property was tacitly assumed for deep water waves. These 

results now show that given that the waves have the Gaussian property 

in deep water, it then follows that they have the Gaussian property 

in the transition zone (and conversely since the wave refraction pro- 

cess can be theoretically reversed). 

From equations (11.3), (12.41), (12.18), and (12.21), it then 

follows that the pressure record which will be recorded at the bot- 

tom by a pressure guage at the point of observation in the transition 

zone is given by equation (12.42). The pressure record is therefore 

Gaussian. The power spectrum of the pressure record is related to 

the power spectrum of the waves passing overhead by equation (12.43). 

Given [Ap py ie the power spectrum for the surface record can be 

computed from equation (12.43), and conversely. For those pressure 

recorders which respond to different periods in different ways, the 

calibration curve appropriately modified must be inserted as another 

function at this point. An instrument with a completely flat response 

curve is assumed in this derivation. 

Ewing and Press [1949] are of course correct in their statement 

of the problem of pressure record analysis. These formulas simply 

formalize the procedures to be employed. 

Equations (12.42) and (12.43) are extremely important to the 

practical engineer. Nearly all of the wave records being taken at 

the present time in the United States are made with a pressure recorder 
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on the bottom at a point in the transition zone at some depth, H. 

for example as summarized most recently by Snodgrass [1951], are 

for all practical purposes useless. For that matter any step in 

current practices which involves the assumption that the "significant" 

period can be treated as if it were a discrete spectral component 

automatically introduces huge errors for "sea" records which com- 

pletely invalidate all quantitative values which result from the 

analysis. 

In order to demonstrate this point, some statements will be 

quoted from the paper by Snodgrass [1951]. Then the point at which 

the error was made will be shown. Finally Snodgrass' analysis of 

the inaccuracies which result will be interpreted in the light of 

the results shown in this chapter. Selected quotations from the 

paper referred to above follow. 

eens. oie The following basic definitions have been accepted 
(Folsom, 1949): 

Ete Sieerere 

3. Wave period is the time interval between the appearance 
at a fixed point of successive wave crests. 

4. Characteristic wave period is the average period for 
the well-defined series of highest waves observed. 

"Analysis of wave records for wave period. Analysis of 
wave records for the characteristic period is accomplished by 
measuring the average period of the larger, well-defined waves 
appearing on the record........ The characteristic period of 
the waves does not describe the period-distribution, as the 
characteristic height describes wave-height distribution. ..... 
ora op information is needed to adequately describe wave 
periods. 
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surface wave records. The records differ, however, in that the 
short period waves are not registered to the same degree as the 
long period waves by pressure recorders due to the hydrodynamic 
pressure attenuation of the water. As a result, many of the 
shorter period waves may not appear on the pressure record. 

"If the technique of measuring the periods of only the 
larger, well-defined waves of the record is followed (as de- 
scribed in the above section), the measured period will be 
approximately the same as would be obtained if the record were 
made with a surface type gage. For locations on the exposed 
coast, the short period waves, not recorded by pressure, generally 
are generated by local wind. Irregular and of small amplitude, 
these waves are neglected in the analysis of surface records. 

"In several cases, attempts have been made to utilize the 
hydrodynamic attenuation of short period waves by installing 
gages in deep water (about 600 feet) so that only the waves of 
long periods (the characteristic forerunners of storms) will 
be recorded. These long period waves are recorded by pressure 
heads installed in shallow water, but are "lost" in the record 
of shorter period waves. Installations of this type of instru- 
ment have been made, but due to instrument difficulties no 
satisfactory records have been obtained. 

"To obtain the surface wave heights from the pressure 
record, two factors are required; (1) the calibration of the 
instrument and (2) the pressure response factor relating the 
subsurface pressure fluctuations to the surface wave. Thus, 
hie 

H = wave height at the surface (in feet); 

Cy = calibration factor of the instrument (expressed 
in feet of water pressure variation per chart 
division); 

K = pressure response factor based on the depth of 
the instrument, the depth of the water and the 
length (or period) of the wave being recorded; 

R; = reading of the instrument; 

the following equation is used to obtain the surface wave height: 

H = C4/K (Ry) e e e e e e e e e e e e (1) 

"The calibration factor for most instruments in use today 
is a constant independent of wave period and depth of the 
instrument. The instrument provides a record of the pressure 
variations at the instrument which is accurate in amplitude 
and wave form. 
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"The relation of the subsurface pressure fluctuations to 
the surface wave has been determined theoretically for two 
dimensional, irrotational motion of an incompressible fluid in 
a relatively deep channel of constant depth (Folsom, 1947). 
The response factor K has been shown to be: 

cosh 2rd/L (1 - 2/d) 
RS coshorasL ne ee pre ee 

where 
z = depth at which the pressure variation 

is being measured (in feet), 

d = depth of water at the instrument (in feet), 

L = length of the surface wave (in feet). 

"When z = d, the pressure variation is measured at the 
bottom and equation 2a reduces to: 

eee eee 
K — cosh Or d L e e e e ° ° e e e ° e e e (2b) 

Pressure records do not enable the direct measurement of wave 
length; the wave length must be calculated from the wave period 
using the following equation: 

2 

L = &-) tanh or d/L. ee ee ee (3) 

Where T = wave period (in seconds). 

"Suitable graphs and tables (Wiegel, 1948) are available for 
the solution of these equations. Graphs have been prepared which 
enable the response factor (K) to be determined if the water 
depth (d), instrument depth (z) and wave period (T) are known. 
Two errors arise when the above equations are used to determine 
the response factor (K) for ocean waves; (1) an average or 
characteristic period must be used in the equation while the 
actual wave period is continuously varying and individual waves 
are not sinusoidal in form, (2) wave heights computed from these 
equations have been shown by several observers to be from six 
to twenty-five percent too low. 

"Considering the first of these two errors, greater accuracy 
probably could be attained if the pressure response factor (K) 
were determined for each wave and the equivalent surface wave 
were individually computed. This procedure might be feasible 
from a practical standpoint if the statistical distribution 
of wave height and wave period could be established so that 
fewer waves need to be analyzed to completely describe the state 
of the waves. (See the above section on "Analysis of wave re- 
cords for wave height".) 
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"The second of these two errors emphasizes the need to re- 
consider the basic theory which does not agree with experiment. 
Every observer who has simultaneously measured the surface waves 
and the subsurface pressure fluctuations has *.: 4d the theo- 
retical response factor determined from equativ” 2a to be too 
small. Ten random measurements made at the Waterways Experiment 
Station (Folsom, 1947) indicated an average correction of 1.07 
should be applied to equation 1. Seventeen laboratory measure- 
ments at the University of California, Berkeley, indicated an 
average correction of 1.10 (1949). Field data reported by the 
Woods Hole Oceanographic Institute (Admirality Research Labo- 
ratory, 19473; Seiwell, 1947) indicated a correction factor in 
excess of 1.20 while the three sets of field data obtained at 
the University of California (Folsom, 1946) indicated values of 
1.06, 1.00, and Lelde” 

The basic fallacy occurs at the very beginning of the material 

quoted when the statement is made that "The following basic defi- 

nitons have been accepted" and that the "wave period is the time 

interval between the appearance at a fixed point of successive wave 

crests." What is measured are the time intervals between success- 

ive relative maxima of a non-periodic* function. These time intervals 

have absolutely nothing to do with the time intervals between success- 

ive crests of a pure sine wave such as in equation (2.19). From the 

measurement of this quantity, the error is compounded by averaging 

a number of such measured quantities and calling the result the 

"characteristic wave period." From then on, the "characteristic 

wave period" is applied to the wave record as if it were actually 

the true period of the wave record and as if the wave record had 

one discrete spectral component. All wave records are thus treated 

as if they were the one special case given in example one of Chapter 

9. All of the subsequent formulas quoted are also based upon this 

assumption. 

*See the correct mathematical definition of period in Chapter 2 
(equation (2.11) for a pure sine wave). 

58 



For a "swell" record with a narrow band width such as those 

shown in Chapter 9, the fallacy of the method does not produce too 

important a discrepancy between the theoretically computed values 

of the surface quantities and the observed surface quantities, but 

for a "sea" record, such as those shown in the appendix to part 

one, the procedure effectively ignores a large part of the high 

end of the power spectrum. The surface "significant" height (or 

"characteristic" height) in "sea" conditions is always observed to 

be greater than the value predicted erroneously from the pressure 

record, and the surface "significant" period, (or "characteristic" 

period), were it also measured, would be found to be lower than the 

"significant" period (or the "characteristic" period) of the pressure 

record. 

Thus the fact that "wave heights computed from these equations 

have been shown by several observers to be from six to twenty-five 

percent too low" is not at all surprising. The error is not a con- 

sistent error in that it varies from record to record depending on 

the power spectrum and in that it varies as a function of the depth 

of the pressure recorder. If the basic theory referred to in the 

last paragraph of the quotation is the theory which accepts as a 

basic definition the definition of wave period at the start of the 

quotation, then these considerations have shown wherein the error 

of the theory lies. , 

On the other hand, if the basic theory referred to in the last 

paragraph of the quotation is the theory of purely sinusoidal waves 

with one discrete period, then that basic theory is correct and the 

theory has been misapplied to a pressure record which is not a purely 
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sinusoidal variation with one discrete spectral period. 

Finally, stated another way, most of the current theoretical 

work on wave theory would be correct if ocean waves were actually 

pure sine waves. Since ocean waves are not pure sine waves, the 

theory has been misapplied to situations it cannot possibly adequately 

describe. The derivations and considerations in this paper when they 

refer to Gaussian systems apply exactly to ocean waves as they act- 

ually are, except for non-linear effects. Ina later chapter a pres- 

sure record will be correctly analyzed, and the correct values of 

the surface wave record will be deduced from the analysis by the use 

of equation (12.43). 

To the reader, it may seem that the author is being unduly 

harsh with the authors of other works using the incorrect methods 

described above. The works of Wiener, Tukey, and Hamming did not 

appear until 1949, and the methods and techniques based on the sig- 

nificant height and period were undoubtedly the best that could be 

employed at the time. The literature on practical wave theory is 

full of such results, in particular, some of the results of Pierson 

[195la] which use the concept of significant height and period to 

obtain theoretical results are completely wrong and practically 

useless. 

The velocity field, kinetic energy, and energy flux in the 

transition zone 

From previous considerations, the u, v, and w velocities at the 

point of observation are given by equations (12.44), (12.45), and 

(12.46). The vertical velocity is zero at the bottom, and the functions 

automatically satisfy the equation of continuity and consequently 
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the potential function. At z equal to zero the expressions simplify 

considerably, and possibly some interesting properties about the 

power spectra in the transition zone can be deduced by considerations 

Similar to those of the previous chapter. 

The kinetic energy integrated over depth and averaged over 

time and the y, direction is given by equation (12.47). The Itcoth 

of H 2H/e times the hyperbolic tangent of }# *n/elI( # 4H)] is equal 

to one by virtue of equation (12.11). Thus the average kinetic energy 

is equal to the volume under ec ee ils (that is, equation (12.48)) 

times pg/4. From previous considerations this is equal to the po- 

tential energy averaged over YR and t. At a fixed point, say, Xp 

and yp equal to zero, where the statement is exact these values also 

hold and the potential energy and the kinetic energy (integrated over 

depth) averaged over time are both equal to (pg E )/4. This 
RHmax 

statement can be proved by use of the results of Chapter 10. 

The flux of energy toward shore in ergs/sec per centimeter of 

length along the YR axis, is the average value of the work being 

done on the Ypoz plane determined by setting XR equal to zero. The 

wave power is then given by equation (12.49), and the results check 

with the same result in Lamb [1932] where the flux is determined 

for a pure sine wave. 

If the short crested wave system is concentrated in a narrow 

8p band width at the point of observation, and if the important 

spectral components are all traveling in nearly the same direction, 

Say On,, then it is possible to omit the cos 8, term in equation 

(12.49). Then equation (12.49), as modified, is the flux of energy 

in the Ont direction at the point of observation. It can then be 

estimated (except for the short crested effect) from [Ang (H Ie as 
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determined from either a pressure record and equation (12.43) or 

from a record of the free surface. The computation of the energy 

flux from the "significant" height and period is completely meaning- 

less, especially for "sea" conditions. 

If the beach has contours parallel to a straight shoreline, and 

if the waves have infinitely long crests (as in equation (7.36)) 

which are parallel to the shore, then the wave power intezrated over 

depth and averaged over time is given by equation (12.50) on the 

left in the transition zone and on the right in deep water. The 

energy flux in this case only, is equal at both points. Equation 

(12.50) is the extension of usual refraction theory considerations 

to Gaussian systems. Equations (12.51) and (12.52) are the analogues 

to (12.50) for the discrete case. They are given by Sverdrup and 

Munk [1944b] and Mason [1951]. 

One of the unsolved problems of wave forecasting and wave anal- 

ysis theory in terms of "significant" height and period was the 

problem of the combination of wave systems from two different storms 

either in deep water or in the transition zone. In terms of power 

spectra and the methods developed in this paper, the problem can 

easily be solved. It is easy to prove that the power spectrum of 

the sum of two different disturbances equals the sum of the power 

spectra of the two different disturbances. From this, it follows 

that all other properties combine in the same way, and the pressure, 

velocity components, and energy flux of combined wave systems can be 

found immediately. If the sum of the two power spectra yields a power 

*This section is also a proof of the statement made on page 260. The 
argument is given for two superimposed small spectra, but it would 
also follow for two adjacent spectra, (page 260 of Part I). 
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spectrum which does not satisfy the conditions imposed in Chapter 

11, then the sea surface in the region of superposition will break 

up due to non-linear effects. However for swell arriving from a 

distance this effect is usually of no importance and thus most re- 

fraction problems are easily dealt with. 

Consider equation (12.53). It states that given two power 

spectra, [Ana (H 90)1° and ieee (Paseo for two different wave 

systems present at the same point and time of observation, then the 

total effect is obtained by adding them point for point and calling 

the sum ees Ge) le If equation (12.53) is true, then a 

similar equation holds for any number of power spectra, and the state- 

ments made in the paragraphs above are proved. All of the steps are 

valid for both deep water and the transition zone so that H can also 

be infinite in any of the equations which follow. 

Now, [Apu7(# ,0)]° substituted into an equation like (9.47) 

would yield an expression for a sea surface which will be called 

77, and similarly (Aouqtr( #59) 1° would yield 7,,. Consider the 

power contributed to some one net element in the H ,® plane, upon 

passing to the limit inside the one net element, and consider that 

part of the total integral contributed by TAI and "ATI which 

involves these power contributions. Let AE, be the power contri- 

buted by Any # 9) to "AT and let AEty be the power contributed 

by Bout! # 19) to 7 Ary as defined by C12 G54) 

Then points chosen at random from mz, either as a function 

of time at any fixed point or as points chosen from the whole x,y,t 

space, will be distributed according to equation (12.55). Points 

chosen at random from 1 AIT will be distributed according to equation 
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(12.56). From the derivations of the power integrals involved, 

there is no correlation between 7 AI and 7 AID? and the two 

distributions are independent. These statements follow from the 

results of Chapter 7 and Chapter 10. 

A theorem of statistics can now be used to prove equation 

(12.57). If two independent random variables are distributed ac- 

cording to the distributions given by equations (12.55) and (12.56), 

then the sum of the two independent random variables is distributed 

according to equation (12.57). For a proof of this theorem, see 

Cramer [1946] (page 212). 

These equations hold for any net element anywhere in the 

and E #H,® plane. They also hold for E Thus the total 
Imax IImax° 

power is the sum of the power of the two systems. Also the power 

in any net element remains in that net element. It follows immed- 

iately then that equation (12.58) holds and that the integrals 

which represent 7, and 7,77 combine according to equation (12.59) 

where the integration over © may have to be from -7 to 7. Then 

from the definition given in equation (12.53), the desired pro- 

perties are proved. 

If equation (12.59) is approximated by a finite net, it will 

be seen that the equation is not a true identity for the finite net. 

The equation is valid only in the limit, and to prove the equation 

for a finite net, it would be necessary to consider a sub net ap- 

proaching infinitesimal areas inside of each net element. 

No theoretical analysis or finite net is capable of resolving 

the spectrum of 7 I+II into the spectrum of Nt and 737 if the power 

spectra overlap. However, if a swell power spectrum is added to a 
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Additivity of Power Spectra 

2 2 2 
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low local chop power spectrum, then the methods of analysis pre- 

sented in Chapter 10 will separate the two spectra. 

Some properties of the refraction of short crested Gaussian waves 
Consider the refraction of the most elementary short crested 

wave system possible as given by equation (8.1) or by equation (8.4). 

Let the angle in deep water between the two elemental crests be 

given by, say, thirty degrees. Given the discrete spectral period, 

it is then possible to find the apparent length of the crests in 

the direction of the crests in deep water. 

If the system is approaching an uncomplicated coastline without 

crossed orthogonals for that discrete spectral component and without 

caustics, then the closer to the shore the system is studied, the 

more the angle between the elemental crests is decreased because the 

crests are more nearly parallel to the shore. Thus nearer shore the 

apparent crests are longer than they are in deep water. 

For any power spectrum with discrete spectral components such 

as the one treated in equation (8.5), the same thing occurs, and, 

in the limit, for the continuous power spectrum the same results are 

accounted for by 9( 4,0.) and [(p ,O,). 

If in addition, the power spectrum varies over a wide range of 

HM, the low # valiues are amplified in general more than the high 

values of # by the effect of the factor, D, in wave refraction 

theory. Consequently, as a short crested sea surface approaches a 

coast in many cases, the crests become longer and more well defined, 

and the "significant" period of a wave record near the shore becomes 

longer than the "significant" period of a record taken at the same 

time in deep water. The refraction of a short crested sea surface by 
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the use of the "Significant" height and period is therefore just as 

much in error as the analysis of a pressure record in terms of 

these values. For sea conditions, the results are meaningless. 

"En echelon" waves can also be treated by these considerations. 

Suppose that a given filter from some storm has a narrow ® band 

width and a wide # band width. Then the waves in deep water will 

have relatively long crests. Upon refraction, the long narrow 

spectrum becomes an arc, and evaluation of the finite net would 

then show the "en echelon" effect. The apparent crests would be 

shorter along the crests after refraction than before refraction. 

pomgese nad pho esnanhs 
In this section two very fascinating aerial photographs and 

some enlargements of parts of these photographs will be discussed 

in detail. These photographs were furnished by Mr. Dean F. Bumpus 

of Woods Hole Oceanographic Institution. They are both very clear- 

cut examples of the refraction of a Gaussian short crested sea sur- 

face. They were taken along the coast of North Carolina at Oracoke 

and Swash Inlet by the Coast and Geodetic Survey on January 24, 

1945. Figure 33 is an aerial photograph over Oracoke. Figure 34 

is an aerial photograph over Swash Inlet. Figures 35, 36, and 37 

are enlargements of parts of figures 33 and 34 for easily recog- 

nized areas. 

Both photographs show some very interesting features. In the 

deeper water on the right, the longer crests are at about an angle 

of forty-five degrees to the coast line. The lengths of the apparent 

crests are quite short. Half way between the edge of the photo and 

the coast, the crests are more nearly parallel to the coast and 
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Photograph over Oracoke. Figure 33. Aerial 



Photograph over Swash _ Inlet 34. Aerial igure F 



Figure 35 Enlargement over Oracoke 



Figure 36. Enlargement over Oracoke. 



Inlet Figure 37. Enlargement over Swash 



the apparent crests are much longer. No individual crest can be 

followed very far by the eye before it becomes lost in an area of 

poor definition and low amplitudes. 

A second interesting feature is the local chop which is super- 

imposed on the longer apparent crests. At the far right, the crests 

are at about an eighty-five degree angle to the coast. Even near 

the coast, these short crested waves are only slightly affected by 

the bottom, and they have only turned a few degrees more parallel 

to the coast. The assumption of linearity, of course, assumes that 

neither system has an effect on the other which is not true for the 

higher order effects. 

A third interesting feature is found by a careful study of 

the zone between the coast and a line about one-eighth of the dis- 

tance to the outside edge of the photo and of the triangular zone 

at the base of the Oracoke photo. The crests in these zones do not 

have the same profile as the crests outside of the zones. The 

crests are higher and more peaked and the troughs are longer and 

shallower. Outside of the zones discussed above, the crests and 

troughs are equal in importance, and a graph (as a function of, 

Say, distance along a dominant orthogonal) of the wave height would 

look very much like a wave record except that the apparent crests 

would be shorter near the coast. The outside edge of this zone and 

some curve probably off the picture define the transition zone 

studied in this chapter. Note that the local chop keeps on doing what 

it had been doing before even after the longer crests have been 

modified in profile (see figure 37). 
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The breaker zone 
Between the curve defining the transition zone on the coast- 

ward side and the coast, non-linear effects are apparently dominant. 

From these photographs, Munk's Solitary Wave Theory [1949] may well 

be a first step in a study of this zone. This near shore zone is 

probably the location of the important beach erosion effects. In 

this paper, these effects as far as they can be treated by the methods 

used herein are covered in Plate LXX. In Plate LXX, only one point 

is emphasized. That point is that important non-linear effects 

cannot and must not be treated by the theories developed herein. 

Summary of the past chapters 

Methods and formulas which apply to storm generated ocean sur- 

face waves from the time they leave the edge of a storm at sea until 

they are just about to enter the zone where they break upon some coast 

have been presented in this chapter and in the past chapters. The 

procedures and techniques described apply realistically to waves as 

they aree They can discriminate between sea and swell. They can 

predict waves given data not currently available. They explain nearly 

all of the observed facts about ocean waves within the linearity ap- 

proximation. 

Two important problems have not been treated. They are the 

problem of the generation of waves and the problem of the breaking 

of waves in the breaker zone. Some general comments on wave gene- 

ration will be made in a later chapter, but breaking waves will not 

be discussed. 
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The Solitary Wave Zone ? 

The Breaker Zone ? 

The Shallow Water Zone ? 

NON-LINEAR 
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Plan for the rest of the paper 

The techniques and equations for the description of the sea 

surface have been presented in Chapter 5, and in Chapters 7 through 

12. No more equations and derivations are needed as far as this 

paper is concerned, and thus there will be no more plates presented 

in the text. 

In the next three chapters, these equations will be applied 

to practical data. An example of an accurate wave analysis will 

be given. The important numbers which can be obtained from such 

data will be computed. The character of wave records will be 

described in greater detail. A theoretical forecast will be carried 

out which will show the strange effects of refraction on the waves 

which reach the North Jersey coast. Wherever possible, published 

data and observations will be used to substantiate the results. 

It should be pointed out that the derivations presented and 

the theoretical results obtained just scratch the surface of the 

results which can be obtained by continued investigation along 

the lines pursued herein. The problems of ship motion, radar 

reflectivity, the relationship between wave and wind spectra, 

capillary waves, circular storms, moving storms and very short 

range wave prediction are all still unsolved. 
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Chapter 13. EXAMPLES OF PRESSURE AND WAVE RECORD ANALYSES 

Introduction 

In this chapter, a detailed and highly informative analysis of 

a pressure record will be carried out according to the procedures 

devised by Tukey and Hamming [1949]. The pressure power spectrum 

will then be corrected for the effect of depth thus obtaining the 

power spectrum of the free surface. The 10% to 25% error of the sig- 

nificant height and period method will then be explained. Various 

features of the free surface will be deduced. 

The analyses of wave record correlograms carried out by Tukey 

and Hamming will be discussed and interpreted in the light of some 

of the papers published by Seiwell [1949, 1950]. A refutation of 

the conclusion that wave records have one or more "discrete" periods 

(or cyclic components) will be given by showing that such components 

have not been proved to exist and that the available evidence cor- 

rectly interpreted indicates the contrary. 

The design criteria for wave analyzers as described by Tukey 

and Hamming will be applied to known wave analyzers and their perform- 

ance will be interpreted in the light of these design criteria. 

A detailed analysis of a pressure record* 

The twenty-five minute pressure record which was sampled in Chap- 

ter 7 to see if it was Gaussian and which was taken on 18 December 

1951 starting at 2258 EST can be analyzed and studied in great detail 

* See also a paper to be published by Pierson and Marks [1952] in the 
A.G.U. Mr. Wilbur Marks has done all of the numerical work for this 
section and has written up the details of the procedures employed 
in the A.G.U. paper. 
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because it is long enough to yield reliable results. Before so doing, 

however, interesting results can be deduced just on the basis of the 

fact that the record is Gaussian. 

The twenty-five minute record was recorded on ordinary chart 

paper (such as is shown in Figure 12) at a fairly rapid speed of 6 

inches equal to one minute. The range of the record covers from 

extreme to extreme about seven or eight of the small chart divisions. 

The standard deviation of the record was found from one hundred 

points picked at random. An arbitrary zero was chosen as a line 

well below the record and the square root of the second moment about 

the computed mean of the sample as measured from this arbitrary mean 

was found. By some strange accident, the mean of the sample fell 

right on one of the scale lines within a few thousandths of a unit, 

and thus the estimated mean of the record falls, within the accuracy 

of the measurements, on one of the chart lines. 

Now suppose that the mean and standard deviation of the sample 

which was taken are close to the true mean and standard deviation 

of the record. Then another sample of one hundred other points 

chosen at random would have nearly the same mean and standard de- 

viation. In fact, an infinite number of different samples of points 

could be taken from the record and if the points were far enough 

apart, each sample would have essentially the same mean and standard 

deviation. More technically the means should be normally distributed 

with a mean near the true mean, etc. The only thing that could not 

be done would be to take a sample of one hundred points from, say, 

a portion of the record one second long such that the points were 

only one one hundredth of a second apart. In this case, Since the 
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points are so strongly autocorrelated the distribution would not be 

Gaussian. 

Also, all of the different samples could be combined into one 

big sample, and that sample would again have an approximately Gaussian 

distribution. And also if points were chosen, say, one one hundredth 

of a second apart throughout the total record length, then the 

150,000 points so obtained would have an approximately Gaussian 

distribution. 

Finally the distribution of every point on the whole record 

would be approximately Gaussian, and, since the record is continuous, 

this permits a computation as to how long a time out of the total 

twenty-five minutes the record will occupy a given range of pressure 

values. From equation (7.33) modified by a substitution of P(t,) for 

n (t,) and EpHmax Lor Bax? it is possible to compute the probability 

that a point will exceed a certain value. If the probability that 

the record will exceed the value Py is p(I) and if the probability 

that the record will exceed the value Pir is p(II), and if the value 

of Py is greater than the value of Prt then the probability that 

the value will lie between Py and P,, is (p(II) - p(I)). Also 

(p(II) - p(I)) multiplied by the length of the record (25 min), then 

gives that fraction of the total time of the record that the pressure © 

value will be between Py and Prt 

For the record under study, one scale division was equal to 

0.855 standard deviations. Therefore the probability that the re- 

cord would lie between the scale line for the mean of the record and 

the scale line one unit above was equal to 0.3034, and theoretically 

for 7.58 minutes out of the total 25 minutes, the graph of the wave 
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record should have been between these two scale lines. As actually 

measured it was between the two scale lines for 8.03 minutes. This 

is a discrepancy of about 6% between the theoretical and observed 

values. 

Table 18 shows the other values as computed from the theory and 

as checked by measurement. The greatest error in minutes is 0.45 

minutes between the predicted and observed values. Thus the error 

in prediction is only about 2% of the total pressure record length. 

For the greater departures from the mean, the percentage errors are 

larger, but the whole table shows remarkable agreement between pre- 

dicted and observed values. The last row, for example, predicts that 

the record will be more than three positive scale divisions from the 

mean for about eight seconds out of twenty-five minutes and that the 

record will be more than three negative scale divisions from the mean 

for another eight seconds. Actually the record never went below 

three scale divisions and it was above three scale divisions for 

ten seconds. 

What has just been done should be reemphasized. Points were 

taken at random from a pressure record. The standard deviation of 

these points in terms of scale units on the paper was then computed. 

Then the total time that the record would occupy a certain range of 

values was computed on the basis of the fact that the record was 

Gaussian. The predicted and observed values were found to agree 

remarkably well out to 2.5 standard deviations of the distribution. 

Usually statisticians are well pleased if an observed distribution 

fits a normal curve two standard deviations away even crudely, and 

in this case the agreement is even good 2.5 standard deviations away. 
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Note that the average values give very good agreement. They seem 

to remove the remaining non-linear effects in the pressure record 

explainable by a tendency toward a trochoidal forn. 

A very simple statistic therefore describes many of the features 

of the record. Were it actually a wave record, this statistic could 

have been forecasted by forecasting the power spectrum and integrat- 

ing the power spectrum of the wave record over # and © to find Bax’ 

Consequently, without even mentioning the significant height and 

period, important information can be obtained about the forecasted 

waves. 

If the above record had been a wave record, it would be possible 

to predict, for example, that a given spark plug on a recorder like 

the one developed by the Beach Erosion Board (Caldwell [1948]) would 

be submerged for 4.90 minutes during the next twenty-five minutes, 

and the actual observed time would have been 4.63 minutes. if the 

waves were passing, Say, an oil drilling rig in the Gulf of Mexico, 

(and if the rig could be located at a point compared to the dimensions 

of the waves), then the length of time the water would cover any given 

mark on the rig could be predicted. These considerations would not 

be valid for a free floating object like a life raft because it moves 

horizontally with the waves, but it is not too difficult to visualize 

extensions which would yield information on the motion of the raft 

above and below mean sea level also. A ship with a length comparable 

to the wave lengths associated with the spectral periods involved 

in the power spectrum would have a different up and down motion, but 

again the Gaussian character of the motion would have to be true and 

statements similar to the above could be made about the ship's motion. 
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The autocorrelation function was not determined by the proced- 

ures given in Chapter 10 and equations (10.29) and (10.30). Such a 

computation is laborious, and instead the record was mechanically 

autocorrelated by the machine described by Seiwell [1950a]. Eighty 

lags of two seconds each were evaluated and the values were corrected 

so that they essentially correspond to the Q, of equation (10.30) 

apart from a constant factor. Reduction of % to unit value then 

yields the normalized autocorrelation function, and multiplication 

of each value by E which is known from direct computation of the 
PHmax 

standard deviation of the Gaussian distribution would then yield the 

non-normalized autocorrelation function. 

Since the record was taken in 30.5 feet of water, two second 

lags were used with the assurance that aliasing would be negligible. 

From considerations in Chapter 10, only about two per cent of the 

height of a 4 second elemental component would show up in the pressure 

record. 

The autocorrelation function given at the top of figure 38 shows 

several interesting features. It dies out in a few oscillations to 

low values after about 18 lags (or after 36 seconds). Then it re- 

combines to rise again to values near 0.15 after 26 lags (or after 52 

seconds). After 56 lags, the autocorrelation function dies down to 

small values and from then on it never amounts to anything substantial 

again rarely assuming values near 0.10. 

If there had been one pure sine wave component (or cyclic com- 

ponent) present in the record of an amplitude containing great enough 
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power to contribute an important part to the total power, then the 

autocorrelation function would not have died down completely and 

there would have been a cosine wave present out at the far end of 

the autocorrelation function. 

If there had been several pure sinusoidal waves present in 

the record, it is possible that by accident they would be in phase 

cancellation at the end of the number of lags shown. Under these 

conditions more lags might show that the autocorrelation function 

would rise to more substantial amplitudes. 

Thus it is proved that this record does not contain one pure sine 

wave of appreciable amplitude. No finite number of lags can prove 

the absence of several discrete sine waves (several can be 3, 5 or 

50). A finite number of lags only makes it more and more unlikely 

that there are some given number of pure sine waves present. With 

more lags, one is more sure that a small number of discrete components 

are not present. 

Although it is possible for there to be several pure sine conm- 

ponents of appreciable amplitude in this record, the autocorrelation 

function seems to contradict the possibility of just a few, say one, 

two, or three. Also the fact that the record is Gaussian, seems to 

suggest that the record is of the form of equation (12.19) although 

again a few pure sine waves of low amplitude plus a superimposed 

Gaussian disturbance would yield an autocorrelation function quite 

Similar to the one obtained, and the sampling procedures of Table 18 

above might not detect any difference. The presence or absence of 

"cyclic" or purely periodic discrete components in wave records in 

general will be discussed in detail later in this chapter. 

86 



80 90 100 No 

FROM 2258 TO 2323 E.S.T. 

OFF LONG BRANCH, NJ. 

: rn ENS re 
22 re) 0 

=a 

ee 

8 

— 1,0 
° 10 20 30 40 50 60 70 

NON- NORMALIZED AUTO-CORRELATION FUNCTION 

REDUCED TO UNIT AMPLITUDE BY DIVISION BY Ep max 

FOR PRESSURE RECORD OF /0-18-2I 

Al A (DEPTH OF 32.5 FEET MS:b 

i Ane, 

5 

210 

= 
25 26 NA fe) i) 2 3 4 -) 6 7 8 9 10 Ww 12 3 14 15 16 17 1@ 19 20 21 22 23 24 

am) 7 T T T Tv T Ww T WT =: WT 7 WT Tr Tr us us Tr T Tr Tr Tr 7 T T us 

20° 60 30 20 15 i2 10 6675 67 6 55 5 4643 4 38 35 3332 3 29 27 26252423 

ad @ i120 60 40 30 24 20 I7) 15 13.3 12 109 10 92 866 8 75 71 67 63 6 57 55 5.2 5 48 46 T seconos 

BEST ESTIMATE OF THE PRESSURE POWER SPECTRUM 
OF ABOVE AUTO-CORRELATION FUNCTION IN TERMS OF 

FRACTION OF TOTAL POWER PER UNIT BAND OF THE 

yw AXIS. SUM OF VALUES AT: w= 222, h-0,1,2,...30 IS EQUAL TO 1.018 

Lp 

220 

a5 

20 

205 

° 

h oO ' 2 3 4 5 6 7 8 9 1o Wt 2 #1 4 18 16 17 #18 t9 20 2) 22 23 24 25 26 27 28 29 30h 

"RAW" OR UNFILTERED POWER SPECTRUM OF ABOVE 

Fig 38 The Analysis of a Pressure Record 

—s87— 

120 30 140 150 

LAG IN SECONDS 

160 



The "raw" pressure power spectrum 

The next step in the analysis under discussion is to apply equa- 

tion (10.31) to the normalized autocorrelation function given on the 

top of figure 38. The value of m was chosen to be equal to 30 in 

order to retain a sufficient number of degrees of freedom for each 

band. The use of the entire function would more than treble the labor 

involved and the results would be very unreliable (see Table 16 and 

equation (10.39)). The result of the computation is shown on the 

bottom of figure 38. The "raw" estimate is irregular, and were it 

to represent a power spectrum there might be reason to suspect that 

great difficulty would be encountered in attempting to forecast ocean 

Wavese 

The "filtered" pressure power spectrum 

However, as has been shown, the "raw" estimates must be smoothed 

by equation (10.32) and upon smoothing the beautifully regular esti- 

mate is obtained which is shown in the center of figure 38. From 

Table 16 for 50 degrees of freedom, the true value in each band will 

be between 1.45 and 0.74 times the value indicated by the solid curve. 

These bounds are shown by the dashed lines on the figure. The sum of 

the values given on the solid curve is very nearly one, and this is 

both to be expected and to be considered a good check of the accuracy 

of the computations since the normalized autocorrelation function was 

employed. These results, upon the proper choice of scale, will yield 

the estimate of the true pressure power spectrum. 

Quantitative interpretation of the filtered pressure power spectrum 

So far for reasons of convenience, all of the computations have 
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employed the normalized autocorrelation function and in figure 38 

the power under the spectrum is essentially one (a 2% error due to 

rounding seems to have occurred). The total power under the power 

spectrum is known from the results of Chapter % and it is now a simple 

and straightforward procedure to modify the ordinate scale of figure 

38 in order to obtain the complete representation of the power spect- 

rum given by the top part of figure 39. The scale on the left is in 

units of em?-sec and ranges from zero to slightly above 2000 units. 

Suppose that the peak is at 1700 cm’ sec. Then the power from 2m 23/240 

to 29 25/240 (or from 10.43 to 9.60 seconds) is given by 1700 times 

27/120 or by 88.8 em*. This is equivalent in power to a sinusoidal 

component 9.41 cm high. 

Many interesting things can be deduced about the original wave 

record from the pressure power spectrum. Important amounts of power 

are contributed to the pressure record over the entire band, and all 

values of # from 27/15 to 27/6 are important. 

A finite net such as those described in Chapter 7 would thus 

require at least 12 sine components to approximate the record. All 

components would be of the same order of magnitude in amplitude. 

Even if no autocorrelative function were available, the power spectrum 

would show that a pure sine wave component with, say, 3/4 of the total 

power in the record is not present because the power spectrum would 

be markedly different from what it actually is. 

There is reason to believe that "white noise" (Tukey and Hamming, 

[1949]) has been introduced into the data by the process of analysis 

since the original values could be read accurately to only about 

three significant figures. If so, then the small amount of power 

(about 10% of the total) indicated below 27/15 is not really present. 
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The points determined by the circles represent the average 

value of [Apy(#)]° over the band which straddles the point. The 

curve joining the points is simply an aid to the eye since any 

curve can be drawn over each band under study just as long as the 

area under it equals the value which has been determined. Thus 

the true power spectrum can be an extremely irregular function with 

very rapid (even if continuous) fluctuations. Even worse than that 

the power spectrum could have been of the form discussed in Chapter 

10 and the same graph would have been obtained in figure 39. 

To discover if really rapid fluctuations in the power spectrum 

are present, it would be necessary to increase m and the length of 

the record. Thus a 50 minute record and twice as many lags would 

give 60 bands of the w axis instead of 30 with the same reliability. 

A 100 minute record with 120 lags would give four times as many 

values. Would the 120 values (instead of 30) thus determined follow 

the same general curve as shown by the solid line? The question can- 

not be answered until the work is done, (and it is not planned to do 

it), but it is very difficult to think of any physical mechanism which 

would cause the power spectrum to be irregular within any conceivable 

limits of resolution. 

The above process of narrowing the band width and increasing 

the length of the record would also detect any purely sinusoidal com- 

ponent in the record. Thus with greater resolution, a discrete com- 

ponent would produce a sharp narrow spike rising out of the general 

function. The spike could be made as high as desired and as narrow 

as desired, and in the limit it would become infinitely high and in- 

finitesimally wide such that the product of the height and the width 
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would be equal to the square of the amplitude of the discrete com- 

ponent. 

Thus, to within the resolving power of the analysis which has 

been carried out, there is no proof of the presence of any discrete 

components, nor is there any proof that they are not present. A 

little thought shows that one can never prove either the presence 

or absence of very small power discrete components by taking one fin- 

ite section of a time series since there is always the possibility 

that the function being studied is represented by a sum over a finite 

net such as in Chapter 7 with many more terms than could possibly 

be resolved by the choice of m and N in the numerical analysis. 

The analysis of the pressure record given above has yielded the 

power spectrum of the pressure record. The time has now come to put 

back the high frequency waves (low period) filtered out by the effects 

of depth. The power spectrum of the free surface will be the result. 

The filtering process is not completely reversible because the waves 

with periods below four seconds have been irretrievably lost. Since 

the water is essentially infinitely deep for these low periods, a 

modified application of the results of Chapter 11 could estimate the 

amount of power left out completely. 

It will be assumed that the pressure recorder responds to the 

actual pressure fluctuations at its indicated depth. This statement 

is equivalent to stating that purely sinusoidal pressure fluctuations 

at the depth of the instrument and of equal amplitude but different 

periods are recorded with the same amplitude. 

The procedures are then straightforward and the results of 
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Chapter 12 apply. Each spectral band must be multiplied by a dif- 

ferent correction factor as given by equation (12.21). The power 

spectrum on the bottom of figure 39 is then the power spectrum of 

the free surface. The true power in each band will lie between the 

dashed lines 90% of the time and the solid curve is the best esti- 

mate of the power spectrum. 

Figure 40 is a comparison of the pressure power spectrum with 

the free surface power spectrum. It shows that the low period end 

of the power spectrum has to be amplified very much more than the 

high period end. The minor wiggle in the pressure spectrum at a 

period of 5 seconds may even be an important secondary peak in the 

free surface record. The free surface record will be more irregular 

and choppy then the pressure record. The spectra also show that 

the "significant" (or "characteristic") period of the free surface 

wave record will be lower than the "significant" (or "characteristic" ) 

period of the pressure record. 

It is now possible to see where the 10% to 25% error described 

by Snodgrass [1951] comes from when the "significant" (or "character- 

istic") period is used along with the "significant" height to zo from 

a pressure record to the waves at the free surface. The "significant" 

height is crudely proportional to the square root of ee and the 

"significant" height of the pressure record is crudely proportional 

to the square root of Epmax’ rhe "significant" period method of 

pressure record analysis multiplies (Bomex) by a constant 

amplification factor [cosh (1 °H/e) I(+,,H)], for a fixed py 

which depends on the choice of the "significant period. This choice 

varies from analyst to analyst on the same record. 
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Consider then a range of possible "significant" periods (de- 

pending upon the analyst) and the multiplication of the "significant" 

height of the pressure record by the possible amplification factors. 

Then the quantity 

2 
ea 4 1/2 

= ] 
2 

[(E, 4 /[cosh( I(w4,H))) E Pmax 

is a ratio which represents roughly the value obtained by the correct 

method divided by the value obtained by the erroneous method. If 

the ratio were one then the error would not be apparent; if it is 

sreater than one then the part after the decimal point represents the 

percentage error referred to by Snodgrass [1951]. Table 19 gives 

some of the ratios which can result from the assumption of various 

significant periods. 

Thus for this depth, which is quite shallow compared to most 

depths at which pressure recorders have been installed, if the pres- 

sure record were given any "significant" period greater than &.6 sec- 

onds, then there would be a considerable error in the computation of 

the "significant" height of the free surface. At greater depths and 

for differently shaped pressure power spectra the errors would be 

different and there is no hope of consistency in the old methods of 

analysis. Note that the power lost above 4.8 seconds would serve 

only to increase the error if it were included. Also note that the 

filtering nature of the pressure recording method always tends (given 

a widely variable power spectrum) to give too large a sicnificant 

period to the free surface record and too small an amplification 

factor by the old methods. 
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Table 19. Ratio of correct significant height 
to value obtained by erroneous 
extrapolation of the pressure record 
upwards 

Significant Amplification Ratio 
period (sec) factor 

24.0 1.071 1.332 

20.0 1.107 1.311 

ce 1.138 1.293 

15.0 1.197 1.260 

13.4 16257 1.230 

12.0 1 349 1.192 

sO 1.433 26151 

10.0 1.548 1107 

9.2 1.662 1.069 

8.6 1.812 1.023 

8.0 2,025 0.967 

7.6 2.223 0.925 

7.0 2.512 0.869 

6.6 2.843 0.817 

6.4 3.342 0.753 

Significant height and period 

The remarks so far in this paper have been in many cases directed 

against the concept of the "significant" (or characteristic) height 

and period method of wave analysis. There is really nothing wrong 

fundamentally with these concepts. The thing that is wrong is the 

way that the concepts have been misapplied. 

The physical meaning of the average height of the one third 

highest waves, for example, can possibly be deduced from the power 

integrals and the autocorrelation function and the fact that the 

records are Gaussian. Such a number depends in a very complicated 

96 



way on the set of points in the record which determine the suc- 

cessive relative maxima and minima of the record. The probability 

distribution of this set of points may depend on the power spectrum 

in addition to the fact that the record as a whole is Gaussian. It 

is not too difficult to believe that the various ratios, 1/10 high- 

est waves to the 1/3 highest waves, etc; such as summarized by Snod- 

grass [1951] are all consequences of the fact that the records are 

Gaussian. The trouble with these methods of analysis and of attempts 

to extend them such as those described by Putz [1950, 1951] is that 

the features of the wave record are obscured by concentrating attention 

too sharply on the waves. Paraphrasing an old saying: "such methods 

of analysis cannot see the wave record on account of the waves." 

Similarly, the "characteristic" or "significant" period is a 

number determined from the time interval between successive relative 

maxima of the record if the relative maxima exceed a certain value. 

Given a high crest, the autocorrelation function says that the next 

crest is also likely to be high and that the next crest is most likely 

to occur at a time given by the first relative maximum after lag 

zero of the autocorrelation function. For a "swell" record the first 

maximum of the autocorrelation function has an amplitude which comes 

quite close to the original peak value and thus the "significant" 

period would have a useful meaning if the band width of the swell 

could be given. For a "sea" record the first relative maximum can 

be.quite low, which means that the "significant" period is not a 

very useful number at all. 

If the autocorrelation function in figure 38 is used to obtain 

the significant period of the pressure record studied at the start 
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of this chapter, then the value turns out to be about 9.2 seconds. 

Then from Table 19, the best estimate of the percentage error which 

would result from an incorrect upward extrapolation of the pressure 

record to the free surface is 6.9 per cent. 

Seiwell's results 

Publications by Seiwell [1949, 1950] and Seiwell and Wadsworth 

[1949] have claimed that a purely cyclic (or sinusoidal) component 

is present in wave records. Later the original interpretation was 

modified to include the presence of two or three cyclic components. 

The autocorrelation method is quite laborious, and the earlier con- 

clusions were based on one second lags for the first complete “oscil- 

lation" of the autocorrelation function followed by skipping some 

arbitrary number of lags and then finding another "cycle." For ex- 

ample, if the autocorrelation record shown in figure 38 were given 

for only the first 10 seconds followed by no data from 12 seconds to 

40 seconds and then by another cycle from 42 seconds to 52 seconds 

it might be very easy to conclude that one "cyclic" component was pre- 

sent. This conclusion is of course shown to be incorrect by the rest 

of the data. Once one cyclic component is found, then a little more 

detail in the autocorrelation leads to the hypothesis that several 

"cyclic" components are present. 

ED ES TE ES ES 

Tukey and Hamming [1949] have analyzed Seiwell's data, and al- 

though the autocorrelation function employed was normalized in a way 

which makes the values somewhat different from the correct procedure 

given in equation (10.30), the results are of interest here. The 

following paragraphs are quoted from Tukey and Hamming and figure 
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41 is a copy of the figure referred to in the quotation. 

"The next two examples, provided through the kindness of 

Dr. He. R. Seiwell of the Woods Hole Oceanographic Institution, 
are based on pressure recordings taken off Cuttyhunk Island, 

Massachusetts in 1946. They represent the pressure at a depth 

of 75 feet and reflect wave heights. The basic data are: 

Station 53-W 537X 
Date 15 Sept. 46 15 Sept. 46 

Time 0500 hours plus 0650 hours plus 
270 to 600 seconds 325 to 636 seconds 

Serial correlations 0O(1) 20 seconds 0(1) 16 seconds 
for lags of 

Length of run 331 seconds 301 seconds 

This type of data has been subjected to a few-constant fitting 
procedure based in part on quadratic autoregressive residuals 
as reported by Seiwell and Wadsworth --- and by Seiwell ---. 

"In this case also, the serial correlations have been 
analyzed as if they were serial products......The we values 
obtained by a simple equating method, show substantial negative 
values. Since true negative values are impossible this makes 
such equating methods entirely useless on such data. tie to." 
values, on the other hand, show a very reasonable behavior 
and, in particular are never negative by more than 0.004, which 
presumably results from accumulated errors and the use of ry 
instead of Qp° - 

"The upper frequency limit is 0.5 cycles/second for each 
record, since there is 1 sample/second. Thus for record 53-W 
we have a power density estimate every 0.025 cycles and for 
record 53-X every 0.03125 cycles. The results are plotted 
in [the] figure ..... We see that the general character of 
the results is the same, namely an unresolved peak near 0.075 
cycle/second and essentially no energy beyond 0.15 cycle/second. 
The peak frequency may have increased in record 53-X as compared 
with 53-W. 

"In order to study the nature of the peak near 0.075 
cycles/second, it would be natural to repeat the analysis so 
that the upper frequency limit would be at, say 0.125 cycles/ 
sec, which would be obtained by analyzing the record at 4 
second intervals and using lags of 0, 4, 8, ....., 80 seconds. 
Unfortunately this would lead to widely fluctuating results 
since there would then be only 82 points in the longer record, 
and there would be only 

82- + (20) 
ae eee 

20/2 
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degrees of freedom for each U,* if m = 20 were again used. 
Thus any attempt to put the peak under too powerful a micro- 
scope is doomed to failure unless a longer stretch of obser- 
vation is available. The length of the record, the spacing 
of the observations, and the lags used are ideally suited to 
show that there is essentially no power above 0.12 to 0.15 
cycles/second (at periods less than 8.3 to 6.6 seconds), but 
is‘not well suited to the detailed investigation of the structure 
of the peak. The 53-X record has been analyzed by Seiwell and 
Wadsworth in terms of a combination of 

(1) a single frequency, and 

(2) an auto regressive scheme as proposed by Kendall.... 

The latter scheme would involve a finite amount of power in the 
region 0.12 to 0.50 cycle/second now seen to contain at most 
a negligible amount. Almost any analysis containing simple 
auto-regressive components will similarly fail to fit the 
observed facts." 

The above analysis shows that the one second lags chosen and 

the number of lags made were quite inadequate to describe the power 

spectrum. At depths of the order of 78 feet, faith in hydrodynamic 

theory would tell us that all periods less than about 6 second would 

not be recorded by the pressure recorder and the spectra shown sure- 

ly confirm this fact since essentially 2/3 of the values obtained 

are zero. Note that for a lag of three seconds and for the same 

amount of work on a record three times as long, considerable val- 

uable information would have been obtained. 

Noise versus signal 

The problem of proving that a wave record contains one or 

several pure sine waves is analagous to a problem treated originally 

by Wiener [1949] in his famous book on communication theory. Con- 

sider an A.M. radio receiver a great distance from the transmitter. 

Let the detected signal, say, one of the notes in the chimes of 
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N.B.C., be so weak that it is drowned out audibly by static and 

tube noise. Also suppose that a long record of the voltage graphed 

as a function of time is available. The noise can be described by 

an integral similar to, say, equation (7.1). The chime would be 

the fundamental and harmonics of a pure sine wave. An autocorre- 

lation of the record would cancel out the noise, and eventually the 

oscillation due to the sine waves would be all that is left. The 

discrete components correspond to jumps in the cumulative power 

density such as in the first examples in Chapter 7, and the noise 

yields a continuous increase between the jumps. 

If the signal is very weak, many autocorrelations must be made 

and the weak oscillation cannot be detected until the autocorrelation 

of the noise has gone nearly to zero. If the signal is strong, not 

so many lags must be taken in order that it become visible as an 

oscillation in the autocorrelation function. 

The cumulative power distribution functions for the case with 
eee 

cyclic components 
Figure 42 shows two cumulative power distribution functions 

which illustrate the problems connected with the analysis of wave 

records. The first contains an easily recognizable cyclic component. 

The second contains many small cyclic components. 

The upper one shows a discrete jump in E(p# ) at 20/74. Let 

Y(p) at ps 2r/T, be 1/4. The jump has about half of the power of 

the total record. Given this form for E(#), then equation (7.1) 

would consist in part of a limiting form like equation (7.7) plus 

jump in the record). With such a pure sine wave present, the distri- 
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Figure 42. Some Cumulative Power Density Functions for time series 

with "cyclic" components present. 
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bution would be recognizably non-Gaussian. After a sufficient 

number of lags, the autocorrelation function would settle down to 

the form of a pure coSine wave with an amplitude equal to one half 

of the original power. The autocorrelation function could not 

possibly -become small like the one shown in figure 38. 

The lower cumulative power distribution function shows five 

small but still discrete jumps in E(w). Again there would be a 

term of the form of equation (7.7), but now in addition there would 

be five pure sine waves present at 20/T,, 2n/T., 2n/T 35 2r/T, and 

2n/T x. (Let the phases be fixed by defining ~ (yu) at these points.) 

It would be quite difficult to detect these five pure sine waves by 

autocorrelating the record. However after enough lags, they would 

be all that remains of the record. If the record were truly station- 

ary, in fact, the discrete components would still show up upon cor- 

relation of a record, say, 30 minutes long, with another record, 

say 30 minutes long, taken several hours later. 

Final conclusions of the autocorrelation function 

Thus by analogy to the above comments, the autocorrelation 

function of the record studied in figure 38 proves that there is 

not one pure sine wave present with an amplitude squared equal to 

25% to 50 % (or greater) of the total average square of the record. 

It is not proved that there is no pure sine wave present with, say, 

an amplitude squared equal to 1% or .1% of the total average square 

of the record. 

In the derivation of the theory of previous chapters, it has 

been assumed that wave records are essentially pure noise. The most 

powerful argument in favor of this assumption lies in computed power 

104 



spectra which show appreciable power in bands throughout the entire 

analysis. A second powerful argument lies in the spectra obtained 

by Barber and Ursell [1948] and Deacon [1949] which show a gradual 

essentially continuous shift as the power spectrum of a swell follows 

the theories derived herein. One is forced to conclude that discrete 

sine waves of appreciable amplitude have not been proved to be pre- 

sent in wave records, and that the best interpretation of a wave re- 

cord is that it is just colored noise. 

The free surface power spectrum given in tigure 39 is a function 

of # alone and nothing can be said about the short crestedness of 

the free surface. All power in the power spectrum for periods less 

than four seconds has been lost due to the filtering effect. Extra- 

polation of the high end of the spectrum suggests that the power 

lost above # equal to 27/4 is not too great. 

If it is assumed that most of the wave energy flux is in one 

direction and if this direction is assumed to be very nearly direct- 

ly toward the shore since the winds were almost directly on shore, 

then the flux of energy toward the shore can be computed from equation 

(12550) 5 

The top part of figure 43 is a graph of the integrand of the 

integral given in equation (12.50) for the particular power spectrum 

under study with pe /4 absorbed in the scale on the left. For the 

depth under consideration (30.5 feet), values of » near 27/4 seconds 

yield essentially the form (pg/2)+(A(,))°-(g/2u ) which means that 

the energy flows forward with the group velocity of "deep" water waves, 

(g/2). For low values of » , the energy is essentially moving 
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forward with the speed, (gn) V2, i.e. the group velocity of shallow 

water waves. 

The various terms involved in the computation of the top part 

of figure 43 are shown below the graph of the integrand of (12.50) 

for the case under study. The term in the square bracket, namely, 

_ 2H KTH H) 
g sinn[2H—L(H aH) By 

is graphed first. It ranges from the value of two to the value of 

one and is equal to two at # equal to zero and asymptotically equal 

to one as # approaches infinity. For practical purposes, it is 

equal to one at # equal to 27/4. With a one half from out in front 

of the integral the graph is simply the classical expression, Gie52)., 

graphed as a function of » , i.e., (2r/T), over the range of interest. 

The other term, namely g/u I(p,H), is the wave crest speed (a 

g is needed from out in front of the integral). At# equal to zero, 

it equals “gH and tor large # it approaches zero values (since capil- 

larity is neglected). The value at # equal to zero is 985 cm/sec 

since the depth is 991 cm.* 

The bottom graph is the group velocity of the various spectral 

components. It equals 985 cm/sec for low values of # and falls to 

half this value at 27/5.4. This graph times the energy in the wave 

record per band of the » axis given by (pe/2)[ Ay (py eA then gives 

the flux of energy toward shore. 

Finally, a numerical integration of the top of figure 43 yields 

the result that the energy flux toward the shore is equal to 

4.58 x 107 ergs/sec per centimeter of length along the wave crest. 

* The mean low water value was corrected to mean sea level, and a 
possible two foot tidal amplitude was neglected. 
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I et 

This is equivalent to 4.58 watts/cm, or along one kilometer offshore 

there are 458 kw of wave power fiowing toward the shore in the 

vicinity of the point of observation. This amount of power is rather 

puny compared to values which can result from the action of high 

waves, but at least it is an accurate theoretical value based upon 

a sound analysis of the original pressure record. 

Table 20 shows the numbers which are appropriate to the com- 

plete determination of the energy flux toward the shore as has been 

given above for the example being studied in detail. The first 

column is the number, h. The second column is the spectral frequency. 

The third column shows the values of the pressure spectrum in re- 

duced units as it is shown in the center of figure 38. The fourth 

column shows the amplification factors for the pressure power spect- 

rum. The fifth column shows numbers related to the group velocity. 

The product of the last three numbers across each row would yield a 

value for each spectral frequency and the sum of all of the values 

for each spectral frequency would be a number which, apart froma 

constant, would yield the energy flux toward shore. 

The power per unit band in the pressure power spectrum varies 

over a factor of fifty from the greatest to the least. The ampli- 

fication factor varies over a factor of ten and the group velocity 

factor varies from 2.01 to 0.85. Some of the values in the function 

to be integrated, which result from the product of these numbers, 

are thirty-eight times greater than other values. In the significant 

height and period method, one value for the significant height of the 

pressure record and one value for the significant period would result 

in an extremely inaccurate estimate of the energy flux toward shore. 
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Numbers relevant to the computation 
of the flux of energy toward the shore 

Table 20. 

be Normalized Amplification Group 

Bernd to U Teen pec 

ON ed FOOD MDINHANKHEPWHEHO 

pressure factor velocity 
power factor 
spectrum 

6) -0178 1.00 2.01 

21/120.0 -0166 1.004 2.00 

21/60.0 -0119 1.008 1.99 

27/40.0 .0141 1.026 1.98 

217/30.0 -0161 1,049 1.97 

217/24.0 Pron ly ak 1.071 1.95 

21/20.0 -0163 1,107 1.928 

21/172 0109 1.138 1.915 

217/15.0 0161 ee OF Ube key ss% 

217/13.4 0433 1.257 1.805 

21/12.0 0685 1.339 1.745 

21/11.0 1146 1.433 1.686 

217/10.0 °1501 1.548 1.630 

217/92 01357 1.662 1.580 

217/826 21199 1.812 1.524 

21/8.0 0861 2.025 1.493 

21/726 0718 2.223 1.408 

21/7.0 -0593 2.512 1.340 

27/6 .6 -0400 2,843 1272 

217/64 0282 36342 16217 

217/6.0 0214 3.787 1.149 

217/528 20119 4.435 1.078 

21/564 0048 5.480 1.012 

21/562 20029 6.807 0.950 

217/520 20075 8.225 0.918 

27/4.8 -0033 10.336 0.854 

217/4.6 ~ 0 ~ ~ 
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The number which finally resulted in the above computations is 

an important number for beach erosion problems. The result is 

valuable, but it is still a long way from the data which are actually 

needed. The wave direction is unknown, and the form of the breakers 

and the angle they make with the coast upon breaking cannot be deter- 

mined from one pressure recorder and from the theories presented 

herein. 

What percentage of the wave power moves sand at the beach, what 

percentage might have been surf beat actually flowing outward, what 

percentage is dissipated by friction when the waves finally break, 

and what percentage goes into the kinetic energy of a littoral cur- 

rent (if the waves are at a slight angle to the beach) are all 

questions for future theoretical investigation. 

Wave record analyzers 

Wave record spectrum analyzers have been reported in the liter- 

ature by Barber and Ursell [1948] and Klebba [1946]. Wave record 

autocorrelators have been described by Seiwell [1950a] and Rudnick 

[1951]. The spectrum analyzers yield some function which is supposed 

to be some sort of spectrum of the record. They have no scale for 

the amplitude of the spectrum, and they have not been adequately 

calibrated.” Until the work of Wiener [1949] and Tukey and Hamming 

[1949] there was no way to interpret such analyses and there was 

considerable confusion on how the machines were to be constructed 

and on the design of the electronic circuits needed. 

*As far as is known as of the date of this paper. 
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Compare the irregularity of these results and the lack of 

quantitative values with the numerical analysis which has just 

been presented. The spectrum was quite regular and the results were 

precise in a statistical sense. The accuracy could have been in- 

creased by taking a longer record and the results would be precisely 

defined. 

A record of a given length, with a fixed degree of resolution, 

has a certain inherent statistical inaccuracy, due to the size of 

the sample and the band width of the analysis, which cannot be re- 

duced; and Tukey and Hamming have described this inaccuracy and 

given the precise procedures for stating the results in a statis- 

tical sense. 

The wave analyzers mentioned above have the same inherent errors 

(except possibly aliasing) as the results of the numerical methods 

plus others due to design characteristics. The analyzers can be re- 

designed so as to approximate the numerical method of analysis em- 

ployed above, and, moreover, they can be calibrated against a numer- 

ical analysis in order to check their response. 

The numerical wave record spectrum analysis presented above re- 

quired many months of work and effort. It would be impossible to 

analyze an adequate supply of wave records by the same slow computing 

techniques. One nice thing about the overall problem of torecasting 

ocean waves is that huge quantities of these records can be made avail- 

able and much larger quantities will be becoming available from deep 

water observations. Thus it is important that a speedy and accurate 

means be provided for the quantitative analysis of a large number of 
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records. If the wave record spectrum analyzers mentioned above could 

be modified so that they will give reliable results, then instead 

of months per analysis it would require only five or ten minutes to 

analyze a twenty minute record. It is therefore advisable to analyze 

a number of records such as the one treated above numerically and 

then to compare the results with the electronic analysis in order 

to calibrate the analysis. 

Design features of wave record analyzers 

The design features of an electronic analyzer will be described 

in general in order to show what is needed in such an instrument. 

Plans are being made to modify the instrument devised by Klebba 

[1946], and a Kay Electric Company sonograph is being studied in 

order to convert it to a wave analyzer. The above instruments will 

be modified and interpreted in the light of these considerations. 

Wave analyzers should have the following features as suggested 

by the numerical analysis given above. 

1) The length of the record to be analyzed should be of the order 

of 20 to 35 minutes. Provision for the analysis of variable length 

records over a range of from 10 to 45 minutes would be advisable but 

not essential. 

2) The band pass filter should be square shouldered and it should 

have a Ap proportional to the same value employed in the numerical 

analysis above. Too wide a band pass would result in poor resolution 

of swell spectra and too narrow a band pass would result in an ex- 

tremely erratic analysis. The shape of the filter is very important 

and the typical tuned circuit response curve is not very good for 

this application (see Tukey and Hamming [1949] for further details). 
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Provision for different width filters would be advisable. 

3) The band pass filter should not tune through the record too 

rapidly; that is, the entire record should pass through the filter 

before it has been tuned through, say, one tenth of its band width. 

4) The rectification time constants which provide the output 

voltage to portray the spectrum should be long enough to average 

effectively over the entire record. 

5) A square law detector would be best so that the graph of 

the spectrum would be that of a power spectrun. 

6) Variable controls should be eliminated, and a choice of four 

or five calibrated set switch positions provided. 

Present results of wave record analyzers 

Figure 44 is a collection of examples of electronic analyses 

as taken from the literature. Various spectra are shown as analyzed 

by the machines described by Klebba [1946, 1949] and Barber and Ur- 

sell [1948]. An autocorrelation as performed by Rudnick's device 

[1951] is also shown. Some of the spectra have been modified by add- 

ing some dashed and dash-dot curves in order to illustrate some 

points in the forthcoming discussion. & 

Spectrum number one as shown on the upper left of figure 44 is 

taken from a paper by Seiwell [1949a]. It is an analysis on Klebba's 

machine of a pressure record taken in 120 feet of water off Bermuda 

on 25 Uctober 1946 at 1405 for 350 seconds. Fér periods less than 

about 7 seconds the amplitudes are negligible due to the filtering 

effect of depth. 

The dashed curve drawn by eye through the ‘irregular curve of the 

figure is a smoothed interpretation of what the spectrum might just 
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as well have been given the length of the record and the statistical 

reliability of the analysis. Stated another way, to prove that the 

spectrum is actually as irregular as shown a very much longer 

stationary record would be needed. 

The upper and lower dash-dot curves might represent the 90% con- 

fidence limits of the analysis, and if the record is related to the 

Square root of the power spectrum then rough computations suggest 

that the number of degrees of freedom of the analysis lies between 

4 and 20 and that it is most likely about 9. Thus the individual 

peaks and troughs are extremely unreliable. 

Nevertheless the analysis shows that there are important contri- 

butions to the entire spectrum from » equal to 27/20 to # equal to 

or/7. The record is undoubtedly that of a pressure filtered "sea" 

record, and the sea surface would best be represented by a spectrum 

covering a wide band with possibly important contributions even for 

periods below seven seconds. 

Spectrum number two is from the paper by Klebba [1949]. It was 

taken in 78 feet of water on 15 September 1946 at 0650 EST off Cutty- 

hunk. Spectral components with a six second period would begin to 

show in the spectrum if they were present and certainly important ten 

second components would be evident. They are not present; the highest 

important value of » is at 27/11 and the lowest is at 27/15. Since 

the dashed curve could represent the spectrum just as accurately as 

the one shown, (and since the dash-dot curves again suggest the degrees 

of freedom of the analysis), it would appear that this record is a 

clear cut example of a power spectrum such as those predicted in 

Chapters 7 and 10. The record must have been a "swell" record with a 
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well defined band width, and the waves must have come from a distant 

source. Local chop below periods of 6 seconds would be undetectable. 

This second spectrum as shown on the upper right of figure 44 

is the electronically analyzed spectrum of the classical wave record 

53-X. The electronic analysis was first given by Klebba [1949], 

Seiwell [1949b] gave the same electronic analysis and stated that 

the analysis “does not permit a reliable interpretation of the physi- 

cal properties" [of the record]. 

Seiwell [1949b] then proceeded to interpret the record in terms 

of a cyclic component of 12.25 seconds and a superimposed series of 

random fluctuations. His results were debated by Deacon [1951] at 

the National Bureau of Standards Symposium on Gravity Waves. 

Tukey and Hamming analyzed Seiwell's autocorrelation data and 

the results of the analysis were quoted a few pages back. The power 

spectrum analysis of the autocorrelation data from record 53-X is 

given in figure 41. The quotation from Tukey and Hamming and the 

theoretical results contained in this paper effectively refute the 

claim of a cyclic component. 

Tukey and Hamming were limited at the very start by inadequate 

data since the original record was too short, the lags were too close 

together, and there were not enough lags. Their results consequently 

yielded a spectrum which has practically no resolution over the band 

of frequencies of importance. From their analysis and from figure 

44, it is not too difficult to see how Seiwell might have reached his 

erroneous conclusions since the swell did have a rather narrow band 

width. However, the important point is that the electronic analysis 

in this particular case, when properly interpreted, yields the most 

nearly correct qualitative spectrum. 
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Spectrum number three is from a paper by Rudnick [1951].* The 

record was taken offshore from Guam and additional information on 

the record can be found in a paper by Miller [1949]. The spectral 

analysis was made on Klebba's machine. If again the dash and dash-dot 

curves can be interpreted as before, this record strongly suggests 

the simultaneous presence of a local "sea" and a "swell" from a dis- 

tance. The contribution from the "swell" rises significantly above 

the level of the "sea" record at the same frequencies. As would be 

expected the correlogram of the record is quite irregular, and it would 

be difficult to detect the simultaneous sea and swell conditions on 

the basis of it alone. 

The three small spectra on the lower right were taken from the 

paper by Barber and Ursell [1948]. They were made at Pendeen England 

on 14 March 1945 at 2100 and on 15 March 1945 at 1700 and 1900. The 

third spectrum is from swell and the first two spectra are from the 

same storm after it had moved closer to the coast of England and 

intensified. 

According to Barber and Ursell, the analyzer responds only to 

certain frequencies which have an integral number of cycles around 

the wheel on which the record is placed. Barber and Ursell [1948] 

make the following statement: 

"The record is fastened around the circumference of a wheel 
which rotates about a horizontal axis carrying the record past 
an optical system which throws the record a horizontal line 
of light. The reflected light illuminates light-sensitive 
cells whose electrical output is, therefore, a continued repe- 
tition of the curve on the record. This electrical output is 

*In this very interesting paper, Rudnick reports that wave records 
are Gaussian. This important discovery was thus first published 
by him in 1951. His paper was not known to the author when Part 
One was published. 
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amplified and made to drive a vibration galvanometer. It is 
clear that if there is a component in the record having N 
complete cycles in the peripheral length of the wheel, this 
will produce a resonance of the galvanometer at its natural 
freouency of p cyc./sec. when the wheel is rotating at a 
speed of p/N rev./sec. The wheel is made to revolve at a 
speed which gradually decreases from a high value and the 
vibration galvanometer performs a series of transient 
resonances, one for each periodicity in the record. The 
resonances of the vibration galvanometer are converted to 
an electrical signal which drives a pen recorder, and the 
curve drawn by this pen is a series of peaks which constitute 
a Fourier amplitude spectrum on the curve on the record. ...." 

The envelope of the individual spikes in the record would seem 

to be related to the power spectrum of the record. The width and 

shape of the spike would therefore be related to the band pass filter 

of the analysis and the figure suggests that the resonant galvano- 

meter is very sharply peaked and responds to an extremely narrow band 

of the power in the wave record. Note how the amplitude of the record 

falis down to very low values on each side of each peak. 

Now note how extremely irregular the envelope of the peak appears 

to be. From 1700 to 1900 in the first two spectra marked gaps appear 

inside of the range of # where one would expect only minor variations 

from the theories contained in this paper. If the irregularities 

were to reflect actual physical changes in the record, this would 

be most disconcerting, but they really do not. 

The irregularities from record to record and from point to point 

ir tse same record are simply due to too great a resolution for too 

small a record length. The wave records were 20 minutes long and 

there are about 15 spikes between 27/15 and 27/12 in the spectra 

shown. This suggests a band width of the analysis given byApw equal 

to 27/4-15-15. From equation (10.39), and since 20 minutes times 
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60 equals 1200 seconds which in turn must equal NAt, it follows 

from equation (10.39) that the analysis has approximately five de- 

grees of freedom. 

Table 16 then shows that adjacent peaks can vary by a factor of 

four above the true value and by a factor of one half below the true 

value in a power spectrum determined by these conditions. 

The spectra shown must probably be squared value for value to 

get a shape like a power spectrum, and if this is done the variation 

just described actually occurs. 

The resolution employed is very much greater than is needed, and 

replacement of the galvanometer by a square shouldered band pass cir- 

cuit about five times as wide as the one employed would be the first 

step in obtaining quantitative results from this instrument. This 

would result in twenty-five desrees of freedom and the shape of the 

spectra obtained would be much more regular. High resolution such as 

that employed in the above analyzer would require a record five times 

longer than the one given and very careful design considerations, es- 

pecially with reference to integration time constants, to yield reliable 

results. 

It would also be interesting for the reader to return to the 

Appendix to Part One and study the various spectra shown there in 

the light of these considerations. All the spectra shown, both in 

the Appendix and in the last figure, show important observational and 

theoretical properties of the sea surface, but they are not quanti- 

tative. They must be made quantitative to provide reliable and useful 

numerical results. 
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Conclusions 

Power spectra can be computed or determined electronically ina 

reliable statistical way which will yield valuable information on 

ocean waves. Two dimensional power spectra are also badly needed, 

but the one dimensional spectra, such as have been shown, have veri- 

fied many of the theoretical properties of the sea surface, which were 

derived in previous chapters. In particular, sea and swell records 

appear as predicted, and a quantitative spectrum of a pressure record 

yields correct values for the computation of the properties of the 

free surface and of the energy flux toward shore. 
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