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PREFACE 

The Seventh Symposium on Naval Hydrodynamics continues the policy, initi- 
ated in the first of the series in 1956, of providing an international forum for 
the presentation of research results and the exchange of scientific information 
in that portion of hydrodynamics especially of naval and marine interest. 

In this spirit three major themes were selected for the technical program 
of the Seventh Symposium: (a) unsteady propeller forces, a concentrated pres- 
entation of the latest theoretical and experimental research results dealing with 

time-dependent forces generated by marine propellers, (b) fundamental hydro- 
dynamics, a sampling of advanced analytical results emphasizing numerical 

techniques for solving a variety of basic hydrodynamic problems, and (c) uncon- 
ventional propulsion, a wide-ranging discussion of a number of different propul- 

sion schemes and devices other than conventional marine propellers. 

The international aspects of the symposium are reinforced by the distribu- 
tion of nationalities among the authors and chairmen of the technical sessions, 
by its location in the beautiful city of Rome, and by the joint sponsorship of the 

Office of Naval Research, the Marina Militare Italiana, and the Istituto Nazionale 
per Studi ed Esperienze di Architettura Navale with the collaboration of the 
Consiglio Nazionale delle Ricerche. To these Italian organizations the Office of 
Naval Research extends its gratitude and appreciation for their long andarduous 
efforts which resulted in such superb arrangements for the Symposium. In par- 
ticular,the encouragement and support of Gen. Isp. Giovanni Di Mento, Ten. Gen. 
Alberto Alfano, and Ten. Gen. Antonio Siena are gratefully acknowledged. To 
Col. Angelo Ferrauto and T. Col. Pier Giacomo Maioli, who bore the primary 

responsibility for the detailed management of the Symposium and for the resolu- 
tion of the innumerable day-to-day problems, go our limitless admiration, re- 
spect, and appreciation for a demanding task magnificently executed. Our grati- 
tude is similarly extended to Dr. Umberto Berni for his efficiency in managing 

the fiscal aspects of the symposium. We are also deeply indebted to Gen. Isp. 

Italo Battigelli, who, prior to his retirement from the Marina Militare Italiana, 

initiated the discussions which led to the organization of the Seventh Symposium 
on Naval Hydrodynamics. Mr. Stanley Doroff of the Office of Naval Research, 
one of the principal contributors to the organization and management of this 

series of Symposia almost from its inception, provided invaluable assistance in 

his usual efficient and effective manner. 

RALPH D. COOPER 
Fluid Dynamics Program 
Program Director 
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WELCOME (Translation) 

Gen. Isp. G. N. G. Di Mento 

Navalcostarmi 

Rome, Italy 

Yesterday you were welcomed to Italy on the banks of the Tiber; today the 
work of the Symposium begins, preceded by this opening ceremony, at which we 
see present alarge number of lovely ladies whom we thank for the note of bright- 
ness which they bring. 

In expressing his displeasure at not being able to take part in this opening 

ceremony, the President of the Republic has granted his esteemed patronage to 
this Seventh Symposium and has given me the pleasant duty of passing on to you 

his cordial salutation and his good wishes. 

The participants in the symposium number more than 260; they are accom- 
panied by about 105 ladies and represent as many as 24 nations. The participa- 
tion puts into relief the ever-growing interest which studies on naval hydro- 

dynamics are gaining in all the world—studies which even in times long past 
have fired the minds of outstanding men who, for their insight, can be defined as 
the precursors of modern science. One member of the organizing committee 
has managed to discover among the innumerable works of Leonardo Da Vinci a 
passage which might be considered one of the first specific studies in this branch 

of science and which you will find reproduced in the central pages of your pro- 
gram as a reminder of this symposium. 

The papers to be presented at the general session in the mornings are many 

in number and of high scientific value. In the afternoons panel discussions have 
been organized in order to permit the various participants interested in specific 

studies to exchange their ideas, their opinions, and the results of tests they 

have carried out. The interest in these discussions is stressed by the large 
number of participants by which each one is to be attended. And I hope that be- 
tween one general session and the next panel discussion you may also find the 

time to go around and to admire the beauties of Rome. 
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WELCOME (Translation) 

Senator Donati 
Sotto Segretano della Difesa 

Rome, Italy 

As he has found it impossible to participate at this opening ceremony, the 
Honorable Luigi Gui, Minister of the Defense, has given me the responsibility of 
offering to you his welcome and his appreciation of your work as scholars and 
research workers. 

The continual development of sea transport, entailing ever-increasing de- 
mands on performance, emphasizes the usefulness and stresses the importance 
of these meetings at which the results of continuous and intense research work 
in a branch of science which is of basic importance for the progress of naval 
constructions can be presented and discussed. 

The abundantly rich technical program of this Seventh Symposium includes, 

among other topics, a look toward tomorrow and at future prospects for propul- 
sion and confirms the vitality of this important sector of naval science. 

The Italian Government, which is particularly sensitive to all problems re- 
garding naval construction and therefore supports any activity which contributes 
to scientific and technological progress, is highly pleased not only that Rome is 
the hostess to this symposium and to such a large number of scholars from all 
parts of the world, but also that the symposium's organization has been shared 
in together by the United States Office of Naval Research, the Marina Militare 
Italiana, whichhas along and meritable tradition in the field of scientific activity, 
the Istituto Nazionale per Studi ed Esperienze di Architettura Navale, and the 
Consiglio Nazionale delle Ricerche. 

With best wishes that your work may be profitable and rich withinterest, and 
the hope that the present meeting may help to strengthen or to create personal 
ties and reciprocal acquaintanceships, I have the pleasure and the honor of de- 

claring open the Seventh Symposium on Naval Hydrodynamics. 
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OPENING REMARKS 

Emilio Castagneto 

University of Naples 
Naples, Italy 

It is for no merit or for any particular talents of my own that I have the 
privilege of being the first to take the floor upon the opening ofthis symposium, 
but it is in the name of and on behalf of Professor Vincenzo Caglioti, President 
of the Italian National Research Council, that I am here to offer greetings and a 
welcome from the council itself to the authorities, to the ladies, and to all the 
participants who have come to this meeting in suchlarge numbers from all parts 
of the world. 

I am delighted to have been entrusted with this charge and thus to have the 
opportunity of expressing all my regard and admiration to you of my friends 
whom I met for the first time over 35 years ago, to you who have joined them 
over the years, and especially to you in the ranks of young men who, in a certain 
sense, I have seen grow and mature and give a great impetus to the studies of 

naval hydrodynamics. 

The Italian National Research Council, which came into being under the 
initiative and direction of Guglielmo Marconi, is the Italian center which pro- 
motes and coordinates studies and research work in all fields of pure and ap- 

plied science, and above all in those of physics and engineering, guiding the 
trends of their technical development. To achieve its goals the Italian National 
Research Council depends on its own laboratories and staff and to a greater ex- 
tent on University and private institutes with which it draws up contracts for 

research. In addition, it maintains close collaboration with the technical state 
departments and their related laboratories, especially those under military ad- 

ministration. In particular, for its research on naval hydrodynamics the Italian 
National Research Council relies on the Rome Towing Tank, and in addition it 
collaborates with the Hydrodynamic Center of The Navy and in general with the 
technical boards of that department. 

In their method of operating with respect to this particular naval branch, there 
is a close resemblance between the Italian National Research Council and the 
Office of Naval Research, which, together with the Italian Navy and the Rome 
Towing Tank, was apromoter of this conference. Itis alsofor these very reasons 

that the Research Council is particularly pleased to act as a collaborator for the 
Symposium. The broadmindedness of ONR in basing its policies, the practicability 
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of its criteriain choosing thethemes and in allotting the funds, and the simplicity 
of the contractual procedure are well-known and appreciated here in Italy. 

In the certainty of portraying the sentiments of Professor Caglioti, I should 
like to voice the wish that the relations which are established today betweenONR 
and the National Research Council will become closer and closer, and more and 
more fruitful, as a result of the exchange of their reciprocal experience in the 
organization of research. 

Our country's principle means of communicationis the sea, while on the sea- 

coast are found its principle sources of activity and life. Therefore our interest 
in all problems which concern the sea and progress inthe art of navigation cannot 
be thought other than logical and natural. This is borne witness to by the fact 
that the first naval basin on the mainland of Europe, and at that time the largest 
in the world, was erected at La Spezia in 1888 under the initiative of Guiseppe 
Rota, and it is proved by the fact that a new large hydrodynamic center is now 
being constructed in Rome. Italy's sensitiveness in this field is also shown by 

its being perhaps the only nation where experiments with models are compulsory 
by law for every new passenger ship and for every new cargo ship with a dis- 

placement of over 2000 tons. 

Thus stems our interest in these meetings and our satisfaction that Rome has 
chosen as the site for the seventh one, the themes of which look so decidedly to 
the future. 

The ancient Romans sought an omen for the good or bad outcome of an enter- 
prise or event by consulting the flight of birds. Now, without doubt, the flight of 
the large, winged vehicles which have brought here so many eminent experts and 
have brought together in one effort of collaboration theorists and designers, 
mathematicians and physicists, and engineers and constructors, cannot be other 
than an excellent omen for the Seventh Symposium and, even more than for the 
symposium, for the future. 
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OPENING REMARKS 

Capt. C.T. Froscher 
United States Office of Naval Research Branch Office 

London, England 

It is my pleasant duty to represent Admiral Owen, the Chief of Naval Research, 
at this opening ceremony of the Seventh Symposium on Naval Hydrodynamics. 
These symposia, sponsored primarily by ONR, have been one way for ONR to 
fulfill its mission: ensuring maximum contributions of basic science to naval 

effectiveness. 

I believe it particularly appropriate to note the new and increasing scope of 
hydrodynamics. Hydrodynamics is today truly a dynamic field of science and 
technology. Not too many years ago the naval architect could feel relatively 
secure working in a realm that had changed little for decades. His world went 
from a few meters above the surface to a few decameters below and to a speed 

that seldom exceeded 40 knots. Today, through renewed basic research, you are 

finding much that is new, even in that realm. 

At the same time a revolution in marine vehicles is taking place. They run 
deeper and hover higher. They go faster and in some applications (such as data 
gathering platforms like FLIP) require better stability at rest. Their dynamics 
below, on, and above the water's surface today involve scientific disciplines not 
traditionally associated with marine applications. It is therefore most appro- 

priate that two of your sessions at this symposium will be devoted to unconven- 
tional propulsion. Yes, hydrodynamics is on the move; and in a very real sense 

previous meetings in this series have led the way. 

The first symposium, held in Washington in 1956, was devoted to general 
surveys of various fields, covering critical reviews of the state of the art, and 
interpretation of results for design applications. Even then, however, emphasis 
was on ideas for new research in order to stiumlate increased interest in hydro- 
dynamics, particularly in the United States. The future international character 

of these gatherings was forecast in this first symposium, it being notable for 
reviews on hydrodynamics by Professor Milne-Thomson of the Royal Naval Col- 
lege, England, and onthe contribution of shiptheory to the seaworthiness problem 

by Professor Weinblum of the University of Hamburg. 

Subsequent symposia, held at 2-year intervals, have eachhad atheme selected 
either to stimulate important and needed research or to disseminate the results 
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of significant progress ina field. The second symposium, in 1958, was marked 
by original contributions in fully cavitating flows, when Marshal Tulin showed 
the possibility of obtaining good lift-drag properties from specially designed 
sections, and A. J. Tachmindji and W. B. Morgan applied the idea to the design 
of fully-cavitating propellers for high-speed craft, with a reduction of blade 
erosion and possibly beneficial effects on noise emission. 

The third symposium, in 1960, introduced a new feature, that of holding alter- 
nate meetings in countries outside the United States, which has been continued up 
to the present time and culminates in our presence here in Rome today. The 
third symposium was co-sponsored by ONR and the Netherlands Ship Model 
Basin, and had as its theme High-Performance Ships. It was dedicated to Sir 
Thomas Havelock, a world-famous figure in ship hydrodynamics, the dedication 

speech being made by Theodore von Karman. This present occasion is an addi- 
tional opportunity to pay tribute to Havelock, who died a few weeks ago at the age 

of 91 after a long life dedicated very largely to the subject of these symposia. 

The papers at the third symposium covered all types of craft—hydrofoil boats, 
hovercraft, deep-diving submarines, and submarine cargo ships and tankers. 
Mister Tulin underlined the severe problems which the designer faces in hydro- 
foil craft, including power plants, power transmission, structural strength, and 
propeller design, pointing out that the wing loadings are muchhigher than in air- 
craft and that such craft operate in a very hostile environment. 

High-speed submarines introduced many critical control problems, and this 
symposium was marked by the description of new experimental techniques for 
carrying out research on models and new methods of analysis. A planar-motion 
mechanism, devised by Morton Gertler and Alex Goodman at the Taylor Model 

Basin, was described by Mister Goodman. That development enables coefficients 
to be measured which can then be applied in mathematical models to explore dif- 
ferent maneuvers and arrangements of controlsurfaces. Replicas of this instru- 
ment are now in use in a number of towing tanks in Europe as well as in the 
United States. 

In Washington in 1962 the themes were Propulsion, covering new theories of 
propeller design and fundamental differences in the method of operation of non- 
cavitating and fully cavitating propellers, and Hydroelasticity, dealing withforces 
on hydrofoils and control surfaces in fully cavitating and ventilated flow. 

The fifth symposium, co-sponsored by ONR and the Norwegian Model Basinin 
Bergen, in 1964, was dedicated to a study of Ship Motions and Drag Reduction. 
Important papers dealt with the prediction of ship motions in waves, the applica- 

tion of seakeeping research results to design, and a new "force-pulse" testing 
technique for ship models in waves which made possible a great reduction in 
model testing time. Some of the problems of hydrofoil ships and hovercraft in 
waves were also discussed. Other papers described the results of original re- 
searchin methods of reducing ship resistance by the use of additives to the water, 
by boundary layer suction, and by designing the hull form to ensure low wave- 
making resistance. 
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Interest in drag-reducing polymers was continued at the sixth symposium in 
1966, together with discussion of problems in cavitation, maneuvering, and the 
effect of ocean waves on ship resistance and the towing of ocean platforms. 

It is submitted that these symposia have been significant factors in contrib- 
uting to the progress of hydrodynamics and have become patterns of the type of 
international scientific interaction that is so greatly needed in today's world of 

exploding technology. 

It has long been recognized that—as then Foreign Minister Fanfani stated in 

his address to NATO on the Technology Gap—"'on both sides of the Atlantic there 
exist discoveries that are officially of the public domain which cannot be use- 
fully put to profit...due to a lack of complete information." These symposia 
and the outstanding proceedings which have resulted from them are significant 
contributions to the "efficient system for the exchange of information and knowl- 

edge" that the Foreign Minister called for. 

The United States Office of Naval Research is proud to have long supported 
and contributed to effective exchange of scientific knowledge wherever and when- 
ever possible. Science, of course, is mainly concerned with the secrets of nature 
which are revealed to and by the researcher. Today the relentless attack on 
nature's secrets goes on Simultaneously in thousands of laboratories andresearch 
centers throughout the world. These numerous research programs are based on 
an extensive, freely available bank of knowledge, developed and verified through 

the ages. 

It is, therefore, no surprise that a current line of research undertaken at 
one laboratory may be concurrently explored elsewhere or that the process in 

both instances can and will profit from timely exchange of findings. I believe it 
is also demonstrable that all parties benefit from such exchanges. When an in- 
vestigator works in the dark, whether it be because of imposed secrecy or be- 

cause of lack of adequate flow of information, the quality of his research is bound 
to decline. Free critical discussion and exposure to new ideas are powerful 

catalysts to creativity. 

But research in itself is not sufficient; the results must be developed by 
engineering skills to the point where they can influence the design of new ships 
and weapons. Moreover, the needs in the application field can and must in their 
turn influence future research. In a gathering such as the one assembled here 
today, containing research workers, naval architects, and engineers, there is a 
wonderful opportunity for an exchange of views whichcannot but exert a beneficial 

influence on the future. 

As Commanding Officer of the Office of Naval Research Branch Office, 
London, I have observed and appreciated the enthusiasm and encouragement 

generated by the spirited exchanges between our liaison scientists and their 

European colleagues. Ours at ONR London is but a small effort but one which 
pays big dividends in improving scientific knowledge and in building mutual 

respect and lifelong friendships between scientists of many nations. 
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In fact, the Office of Naval Research, to a large extent, exists primarily in 

recognition of the catalysis provided through just such scientific interaction. 
This was a basic goal of the Act of Congress in 1946 that established the Office 
of Naval Research and charged ONR with covering worldwide trends in science 
and technology. Certainly, no better example can be found of an area of inter- 
national and naval interest than hydrodynamics. We are, therefore, proud to have 
participated in each of these symposia and particularly happy to be able to wel- 
come today so many outstanding attendees from so many countries to this Seventh 

Symposium in Rome. 

Each of us here today has an opportunity to benefit personally from the new 
ideas that will be aired and the personal contacts that will be made. I trust that 
we will all take maximum advantage of our good fortune. The scheduled papers, 
the panel discussion periods, the coffee breaks, and the social program all 

promise stimulating activity. 

It is extremely gratifying to Admiral Owen that this symposium is being 
sponsored by the Marina Militare Italiana and the Istituto Nazionale per Studi ed 
Esperienze di Architettura Navale di Roma, with the collaboration and under the 
auspices of the Consiglio Nazionale delle Richerche (National Council of Research), 

The arduous tasks of organization, scheduling, ensuring that our fine authors 
get their papers in on time, and the myriad of other logistic details have fallen 

to our local hosts. By every indication they have been eminently successful. We 
of ONR are most appreciative of their labors and take pride in sharing their 

product. 

On behalf of The Office of Naval Research and the United States Navy, I ex- 
tend best wishes for a successful Seventh Symposium here in beautiful Rome and 

hope that this one will be followed by many more. 
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Morning Session 

UNSTEADY PROPELLER FORCES 

Chairmen: Ten. Gen. G. N. A. Siena 

Ministero Difesa, Marina 

Rome, Italy 

and 

W. P. A. Van Lammeren 

Netherlands Ship Model Basin 

Wageningen, The Netherlands 

Pressure Field Around a Propeller Operating in Spatially Nonuniform 

Flow 
V. F. Bavin, Kryloff Ship Research Institute, Leningrad, U.S.S.R. 

On the Theory of Unsteady Propeller Forces 
R. Yamazaki, Department of Naval Architecture, Kyushu 

University, Fukuoka, Japan 

A Lifting Surface Theory of Marine Propellers 
P. C. Pien and J. Strom- Tejsen, Naval Ship Research and 
Development Center, Washington, D. C. 
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PRESSURE FIELD AROUND A 

PROPELLER OPERATING IN A 

SPATIALLY NONUNIFORM FLOW 

V. F. Bavin, M. A. Vashkevich, and I. Y. Miniovich 

Kryloff Ship Research Institute 
Leningrad, U.S.S.R. 

ABSTRACT 

The theory for determining the pressures generated by a ship propeller 
is extended by deriving the relation between propeller-induced pres- 
sures and the circulation around the blade of a propeller operating in 
a wake. 

Expressions are presented which make it possible to compute the am- 

plitudes of blade-frequency pressure harmonics. 

The calculations and experimental results show that an increase of 20 
to 60 percent is possible over the maximum pressures generated bya 
propeller operating in a uniform flow. 

INTRODUCTION 

A number of theoretical and experimental studies concerned with the pres- 
sures induced by the propeller in the ambient fluid have been carried out in the 
past decade. An extensive bibliography and a review of the principal works on 

this subject published before 1964 have been given by Breslin (1,2). A compari- 
son of theoretical and experimental results for the pressure generated by a ship 
propeller in a uniform flow (2) showed good agreement if the blade thickness 

contribution to the pressure field, as well as that of the blade loading, was taken 
into account. 

In 1966 an investigation treating the pressure in the neighborhood of a pro- 
peller in uniform flow as a function of propeller geometry was completed in the 
Soviet Union. In this work a more consistent mathematical model was used than 
in earlier works by Breslin (1), Babaev (3), and Pohl (4); i.e., the propeller 
blade was replaced by a suitable distribution of vortices and sources over the 
part of a helical surface bounded by the blade contour, whereas in Ref. (1), for 
example, load-associated pressure was calculated in the usual lifting-line the- 

ory manner and the effect of blade thickness was estimated on the assumption of 

a zero-pitch propeller. 

By using a more consistent mathematical model it became possible to study 
the influence of such propeller characteristics as blade area ratio and pitch 
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ratio on the fluctuating pressure amplitude; their influence turned out to be 
rather small. Experiments carried out in the Soviet Union confirmed the afore- 
mentioned conclusion about good agreement of experimental and theoretical val- 

ues of pressures generated by a propeller in a uniform flow. 

The effect of nonuniform inflow conditions on the propeller-induced pres- 
sure was first taken into account by Babaev (3). However, later experiments 

showed his equation to overestimate the nonuniformity contribution, due to some 
shortcomings in the underlying assumptions. A more general expression for 
the pressure generated by a propeller operating in a nonuniform flow is given 

in Ref. 5. It is based on the quasi-steady assumption; i.e., at a given circula- 
tion value the pressure induced by a propeller blade in a nonuniform flow is 
considered to be the same as in the case of a uniform flow. In 1963 Tsakonas, 
Breslin, and Jen concluded from their study (6) that the effect of a nonuniform 

inflow on the vibratory pressure is negligible at the propeller location and in- 
creases with distance from the propeller. The unsteady blade loading distribu- 
tion was determined in this work approximately by applying results of unsteady 

two-dimensional airfoil theory. 

In the present report the relation between fluctuating pressure and nonsta- 
tionary circulation around the blade of a propeller operating in a nonuniform 
flow will be obtained. It will be shown that within linearized theory this relation 

remains the same as in the case of a uniform flow. Thus the abovementioned 
assumption made in Ref. 5 is proved to be valid. Equations will be given which 

make it possible to compute the amplitudes of the blade-frequency pressure 
harmonics for the propeller operating in a wake, provided the circulation on the 

blade is known. 

Calculations performed by the authors indicate that maximum pressure val- 

ues in a nonuniform inflow may increase to 1.6 times those in a uniform flow. 
The results of the blade-frequency pressure measurements are available. 

PRESSURE FIELD AROUND A PROPELLER OPERATING 

IN A WAKE 

Let us consider a z-bladed propeller advancing in the positive direction of 

the x axis and rotating at constant angular velocity around the x axis in a non- 

uniform flow (Fig. 1). The relative inflow velocity at the propeller location is 

equal to (-V,:i+Av), where V, is the mean axial velocity and Av is the per- 

turbation velocity induced by a ship hull. The perturbation velocity Av is as- 

sumed to be a function of position only (i.e., independent of time) and small 

compared to V,. 

Nonuniform flow at the propeller leads to variation of the relative velocity 

and the angle of incidence of a blade section during propeller rotation. Hence, 

both constituents of the pressures produced by a propeller in nonuniform flow 

should differ from those attending propeller operation in uniform flow. How- 

ever, it is evident from the equations for the blade-thickness constituents of the 

propeller-induced pressures (e.g., see Ref. 1) that for such thin bodies as pro- 

peller blades the effect of the nonuniform inflow conditions on the pressure 
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Fig. 1 - Coordinate systems and notations 

arising from blade thickness is negligibly small. Therefore, only the influence 

of flow nonuniformity on the pressure due to loading will be treated. 

Disregarding the physical effects which contribute to the origin of the non- 
uniform flow, we assume the fluid to be ideal. In addition we assume that the 
propeller-induced flow is potential. The vortex system of a propeller can be 
represented by: z radial bound vortices whose strength I’(r',t) depends on ra- 
dial coordinate r’ and time t; z helicoidal free vortex surfaces formed by heli- 

coidal and radial vortices arising due to radial and temporal variation of |" re- 
spectively. Propeller-induced velocities are assumed to be small compared to 

V, and the pitch of helicoidal surface is taken to be constant and equal to 27V,/w. 

We define a cylindrical coordinate system x,,r,,y,) fixed in space and a 
system x,r,y advancing along the x axis with a speed V, (Fig. 1). The angular 

coordinate y is measured in the direction of the propeller rotation. 

The velocity potential of a single propeller blade can be written in terms of 

a distribution of doublets whose axes are perpendicular to the helicoidal surface 
swept out by the advancing lifting line. The strength of the doublets is equal to 
the discontinuity of the potential [®,] between the upper and lower sides of the 

helical surface, so that one is led to 

Ry, 2 
1 1 a ee 1 Ee es Sw en 2) | ( [®, } ver + (wr')? a RR? dz dr’, 

0 0 

where 

|e igen s Pte to 4 Ort cos (Yo~ett+or)]'” 
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is the distance between the field point P(x,,r,,y,) and the point of helical surface 
Q whose coordinates are ¢ = V,(t-7), r', and 3=a(t-7); 7 is the time during 
which the lifting line has moved from point Q to its position at time t (Fig. 1); 

and n is the normal direction at point Q. 

The magnitude of the potential discontinuity [®,;] at point Q equals the cir- 
culation around the circuit £ embracing the part of the helical surface between 
this point and the bound vortex (Fig. 2). If the surface on which the circuit 7 
lies is taken to cross the helicoidal surface along a helical line passing through 
the point Q, then the circulation in the circuit ¢ will be equal to the sum of the 

bound vortex strength [r',t) at time t and the total strength of all the free 
vortices distributed between the bound vortex and the point Q, i.e., radial free 

vortices shed by the blade during the time 7. But according to Thomson's theo- 
rem the aforementioned sum is equal to the strength of the bound vortex at time 
(t-7) when the latter was at the point Q. Then [®,] =I(r',t-7) and 

Ry © 
= 1 ' = ; 
il j wes pea Diy) Re dade ; (1) 

where (1) 

V 
ENC Pi a9 Bee for’ <a aa 2). 

In terms of the linearized theory the pressure at an arbitrary point of the field 

(exclusive of any hydrostatic increments) is 

ee ioouil (2) 

where p is the density of the fluid. Then 

Ry ® 
_ P re) ' ee 1 ' 
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Fig. 2 - Propeller blade vortex system: 
1, propeller blade; 2, bound vortex; 3, heli- 
coidal free vortices; 4, radial free vortices 

where 6 = ot, 

Thus in the case of a lightly loaded propeller the pressure generated by a 
propeller blade in a nonuniform flow is related to the circulation in the same 
manner as in uniform-inflow conditions. The only difference lies in the fact that 
the constant circulation I(r‘) is replaced by its instantaneous value [\(r',t). 
The latter in general should be determined taking into account the nonstationary 

flow conditions. 

For a z-bladed propeller one obtains 

’ : af ; 
-p *zt~ Ro On ~wr'x + vee sin (y = { - i] 
pale ys itl (se dir. 

An 4 2 3/2 

le Fs x24 r247'2-2rr' cos(y-9- 2 j a 

Let us express the pressure in the dimensionless form: 

p=-—P—- 
iP pv.2 

b 
(7R 2) 2 P 

where P, is the mean propeller thrust and b, = P,/(oV,2/2) 7R? is the propeller 
loading coefficient; and let us nondimensionalize all lengths with respect to the 

propeller radius R,. 

Then we may write the expression for the propeller vibratory pressure due 

to loading: 
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PEGS E VG) = 7 » Blet, 6+ 2. i 

IN 

[erin Bs sin (> - e- m;)| 
77 Z 
ee (4) 

Qn 34.2 

Ee r74ri2 — 9rr’ \cos (y- ee i) 

where A, = 7V,/#R, (advance ratio) and TP = P/(2P, /owR 2). 

The blade frequency content of the pressure can be determined (1) by making 

use of the relation 

1 pee 1/262) cos m(y- 6), 

where ¢, = 1 and ¢, = 2; Qu-(1/2)(z) is the Legendre function of the second 
kind, of order m - (1/2); and z = (x?+r2+9r‘2)/2rr' 

The dimensionless circulation may be written in the form 

rerosoype 8 [A,(r') cos nO + Bir’) sin 6] 
n=0 

Then for the nondimensional pressure after lengthy manipulations one obtains 

% A B 
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1 B , 6! 

KB = { ee EAN elie + 
wie 

0 

and NB and K4. are defined by analogous expressions. In the above formulas n 
and m have to satisfy the relations 

where (f= 1, 2, 3, ... igs the harmonic number. 

Although Eq. (4) is derived on the basis of lifting line theory, it can be eas- 

ily extended for the case of a lifting surface propeller representation. However, 
in this case, to calculate the vibratory pressure one should know the chordwise 

distribution of the bound vorticity on the blade of a propeller operating in a 
wake. 

NUMERICAL RESULTS AND COMPARISON WITH 
EXPERIMENTAL DATA 

Calculations of the loading-induced pressure have been made by means of 
Eq. (4) to evaluate quantitatively the effect of inflow nonuniformity on the vibra- 
tory pressure generated by a propeller under different inflow conditions. Nu- 
merical computations have been performed with a digital computer. Nonstation- 
ary circulation around the blade section has been determined by the (3/4)-line 

method. 

The calculations have shown that the most pronounced effect of the flow 
nonuniformity on the pressure amplitude is felt in the points of the hull with an- 

gular coordinates corresponding to the position of the blade under maximum 
loading conditions. Furthermore, the calculations confirmed the conclusion 
drawn in Ref. 6 that the influence of nonuniform inflow conditions on the pres- 
sure amplitude increases with distance from the propeller plane. This is ex- 
plained by the fact that in nonuniform flow a propeller-induced pressure decays 
with distance from the propeller much more slowly than in the uniform flow. 

The results of calculations of the pressure amplitudes generated by a five- 
bladed propeller on the hull of a single-screw ship are shown in Fig. 3. The 

amplitudes of the first and second harmonics of the blade-frequency pressure 
were calculated at the points immediately above the propeller, i.e., at the region 

of maximum blade loading. The calculated pressures were doubled to account 
for the hull surface effect. The amplitudes of the first harmonic were also 
computed assuming the propeller to operate in a circumferentially uniform flow 
with the radial distribution of velocities corresponding to that of a real wake 
(line 3 in Fig. 3). It is evident from Fig. 3 that in this particular case the effect 
of nonuniformity causes an increase of 40 to 60 percent over the pressures cor- 
responding to the propeller operating in a circumferentially uniform flow. 
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nonstationary circulation — — — quasi-steady circulation 
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Fig. 3 - Effect of flow nonuniformity on pressures 
due to loading: 1, first harmonic; 2, second har- 

monic; 3, first harmonic for the case of a circum- 

ferentially uniform flow 

The dashed lines in Fig. 3 correspond to the case when circulation around 
the blade of a propeller operating in a wake was calculated by means of the 
quasi-steady theory. It can be seen that percentagewise this method gives over- 
estimated values of second-harmonic amplitudes, whereas the amplitudes of the 
first harmonic of the pressure remain almost the same as those corresponding 
to the nonstationary circulation. The conclusion that the amplitudes of higher 

pressure harmonics are overestimated when making use of quasi-steady circu- 
lation was confirmed by some other calculations. 

It should be noted that for lightly and moderately loaded propellers the 
effect of nonuniform inflow conditions on the total pressure (both loading and 

thickness constituents) should be less pronounced than that on the loading- 

associated pressures only. For higher propeller loadings (b, > 1) the total 

pressure practically is equal to its loading component. 

Calculations of propeller-induced pressures for different wakes have shown 
that the maximum pressure amplitudes at some points of the hull surface can be 
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1.2 to 1.6 times greater than those calculated under the uniform inflow assump- 
tion. The lower limit corresponds to the case of a moderately nonuniform flow 

behind the hull of a twin-screw ship; the upper one corresponds to the case of a 

significantly nonuniform wake of a single-screw ship. These values are in 

agreement with the corresponding evaluations mentioned in Ref. 2. 

A special experiment was carried out (by B. A. Biskup) in the cavitation 
tunnel to check the theoretically predicted effect of flow nonuniformity on the 

propeller-induced pressures. The amplitudes of pulsating pressures were 
measured with a three-bladed propeller operating both in the free stream and 
behind a screen generating a significantly nonuniform velocity field. The pro- 
peller geometry was: blade area ratio A/A, = 0.5, pitch ratio H/D = 1.2, and 
thickness ratio t,/D = 0.05. Measurements were made at a fixed radial distance 
r = 1.2R, and various axial distances from -0.4R, to 0.4R,. In the case of non- 
uniform flow, pressures were measured at two angular positions y = 0 and 
y = 7/2, corresponding to the regions of maximum and minimum wake respec- 

tively. The results are presented in Fig. 4 (pressure amplitudes having been 
made dimensionless by division with P,/7R2). The dashed lines in Fig. 4 cor- 
respond to the calculated amplitudes of the first harmonic of the blade-frequency 
pressure. Loading-associated pressures were computed according to the equa- 

tion given in the present report, whereas pressures due to the thickness effect 
were computed by means of a corresponding equation for a propeller operating 

in uniform flow. 

——o——- experimental values 
es lifting-line theory 
P —.-——ifting-surface theory 

Fig. 4 - Effect of flow nonuniformity on 
pressures generated by a propeller operat- 
ing behind a screen: 1, maximum wake; 
2, minimum wake; 3, uniform inflow 

It can be seen that the lifting-line representation of the propeller leads to 
overestimated (as compared with the experimental data) values of pressure am- 

plitudes for the case of both nonuniform and uniform flow. Actually if the 
loading-associated pressure for the case of uniform flow is calculated according 
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to the equations for a wide-bladed propeller, the calculated pressure amplitudes 
are in perfect agreement with the experimental ones (see the dash-dot curve in 
Fig. 4). Corresponding calculations for the case of a propeller operating in a 

wake cannot be made at present because of the lack of precise knowledge of the 
chordwise distribution of the loading on the blade of a propeller operating in a 

nonuniform flow. 

The curves in Fig. 5 show the relative effect of flow nonuniformity on pres- 
sure amplitudes for a propeller behind a screen. It can be seen that for this 
particular case the theory underestimates the relative effect as compared with 

the experimental data. 

p experimental values 
—-—-— lifting-line theory 

Punigorm 
+ 

Xx 
-0,6 -04 -0,2 0 0,2 0,4 0,6 /Re 

Fig. 5 - Relative effect of flow nonuniformity 
for a propeller behind a screen: 1, maximum 
wake; 2, minimum wake 

A more complete experimental investigation of the effect of nonuniformity 
on vibratory pressures should be carried out in the future with propellers hav- 

ing various geometrical elements. 

CONCLUSIONS 

1. The equations derived in this paper make it possible to compute the am- 
plitudes of the blade-frequency harmonics of the pressures generated by a ship 
propeller operating in a wake. It is shown that within linearized theory the re- 

lation between induced pressure and nonstationary circulation around the pro- 

peller blade remains the same as in the case of uniform flow conditions. 
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2. On the basis of the calculations made it is seen that the space-variable 

wake increases the pulsating pressures on a ship hull surface generated by a 
propeller. The magnitude of this increase depends upon the degree of nonuni- 
formity of the inflow at the propeller location. The maximum pressure ampli- 

tudes at some points of the hull surface can be 1.2 to 1.6 times greater than 
those calculated under the uniform inflow assumption. The lower limit corre- 

sponds to the case of moderately nonuniform flow behind the hull of a twin-screw 

ship; the upper limit corresponds to the case of a significantly nonuniform wake 
behind a single-screw ship. 

Calculations made by the authors confirm the conclusion of earlier work by 
Breslin and his colleagues that the space-variable inflow velocities are of 
greater relative importance as the distance from the propeller increases. 

3. For a given wake distribution over the screw disk the smaller the pro- 
peller loading is, the more pronounced will be the pressure amplitude increase 
due to nonuniformity. 

4. When calculating the pressures generated by a propeller in nonuniform 
flow one may use the quasi-steady values of circulation instead of nonstationary 
ones. The error involved by this substitution will be within the range of accu- 
racy of the method based on the lifting-line representation of the propeller. 

0. To calculate the pressures generated by a ship propeller in a nonuniform 
flow with greater accuracy it would be necessary to develop the method of cal- 
culation based on the nonstationary lifting-surface theory of propellers. 
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DISCUSSION 

G. G. Cox 
Naval Ship Research and Development Center 

Washington, D.C. 

The excellent agreement between experimental measurements and lifting- 
surface calculations with uniform inflow shown in Fig. 4 is very encouraging, 
and the authors are thanked for their fine work. This result will surely stimu- 
late continuing efforts to develop lifting-surface theory and numerical proce- 
dures for the varying wake situation. 

Do the authors intend to study this problem where the wake contains tan- 
gentially varying components in addition to axially varying components? This 
would, of course, imply experimental measurements behind a ship model rather 
than a wake screen. 

It has been our experience at the Naval Ship Research and Development 
Center that the theory for the freestream pressure field gave good results for- 
ward of the propeller but not aft. This is outside the slipstream and was traced 
to the loading effects. The thickness effects correlated very well. 

* cd * 

DISCUSSION 

J. P. Breslin 
Davidson Laboratory, Stevens Institute of Technology 

Hoboken, New York 

This paper by Mr. Bavin and his colleagues is a welcome addition to the 
growing literature related to the excitation developed by propellers operating in 
nonuniform inflow. We at Stevens Institute have been devoting considerable ef- 
fort on this problem. About 1960 I first became aware of the interesting cou- 
pling between the blade loading and the dipole propagation function in the propel- 
ler pressure field integral. The significance of this is that in principle all of 

the wake harmonics play a role in the makeup of the total blade frequency pres- 
sure. For example in the case of a single-screw ship with a three-bladed pro- 

peller the strong first, second, and fourth shaft harmonics of the wake will con- 

tribute in addition to the mean loading arising from the zero shaft harmonics. 
Thus these strong harmonics of the wake will contribute to the surface forces. 
In contrast the shaft forces and torques arise only from the second, third, and 
fourth harmonics of shaft frequency. 

To give some idea of the importance of the various harmonics I have re- 
cently calculated the lateral form induced on a cylindrical hull by a propeller 

in a wake. Here the loading is taken from the solution by unsteady lifting sur- 

face theory carried out by S. Tsakonas and W. Jacobs. 
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I have only one question regarding the application of a factor of 2.0 to ac- 
count for the effect of the ship model boundary, I am sure that Mr. Bavin well 

appreciates that this represents a rough approximation when the surface is not 
flat. Were all the data obtained on a stern frame line or on a flat boundary in 
the case of data with screens ? 

I agree with Mr. Bavin that the pressure field of a propeller in a wake re- 
quires the application of unsteady lifting surface theory. I wish the authors fur- 

ther successes in this work. 

REPLY TO DISCUSSION 

V. F. Bavin 

Kryloff Ship Research Institute 
Leningrad, U.S.S.R. 

The authors are grateful to the contributors to the discussion for their in- 

terest in this work. 

Replying to Mr. Cox we must note that when calculating vibratory pressures 

we took into account the tangential wake components as well as the axial ones 

(with the exception of the propeller behind the screen, because there was no tan- 

gential wake in that case). 

Mr. Breslin draws attention to the fact that in principle all of the wake har- 
monics play a role in the makeup of the total blade frequency pressure. The 

authors are fully aware of this fact. 

The authors agree with Mr. Breslin that the factor 2 is only a rough approx- 

imation in the case of an actual ship hull surface. It was used due to the lack of 
precise knowledge of the magnitude of the boundary surface effect. 

In the case of the propeller operating behind the screen the pressures were 
measured in the free stream around the propeller and not on the hull surface. 

* * * 
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THEORY OF UNSTEADY 

PROPELLER FORCES 

Ryusuke Yamazaki 
Kyushu University 
Fukuoka, Japan 

ABSTRACT 

As the simplest example of the problem of unsteady propeller forces, a 
treatment is presented for a ship or a submarine with a single pro- 
peller anda single rudder being moved straight with a constant speed 
in unrestricted still water by rotating the propeller with a constant 
angular velocity. The velocity field is represented hydrodynamically 
by a potential due to distributions of sources, doublets, and vortex sys- 
tems so as to satisfy the boundary conditions on the hull, the rudder, 

and the propeller in which mutual interactions among these three parts 
are generally taken into account. The unsteady propeller forces are 
subdivided into bearing forces, surface forces, and impulse forces, for 

which general mathematical expressions are obtained. Finally numerical 
examples are presented for the effects of propeller forms on the bearing 
forces. 

INTRODUCTION 

When a ship is being moved straight with an almost constant speed on or 

under still water by rotating the propeller steadily, the flow surrounding it fluc- 
tuates with respect to time, since the propeller with a finite number of blades is 
rotating in the nonuniform wake flow behind the hull. The unsteady forces and 
moments of water acting on the hull, rudder, and propeller caused by the rotat- 
ing propeller are called unsteady propeller forces. The forces can be divided 
into two parts: one is the mean value of the forces with respect to time and is 

connected mainly with the propulsion characteristics of the ship, and the other 

is the fluctuating part of the forces whose magnitudes and periods are related 
mainly to the vibration of the ship. These unsteady propeller forces are trans- 
mitted to the ship hull either directly through a shaft bearing of the propeller or 

indirectly through surfaces of the hull, rudder, etc., in the form of water pres- 
sure. The former are called bearing forces, and the latter are called surface 
forces. In particular the forces and moments acting on bodies such as a rudder 

placed in the fluctuating propeller race may be called impulse forces (1). In the 
existing papers about the unsteady propeller theories (2-6) some examples of 
the bearing forces were calculated for given propellers in given nonuniform 

flows without taking into account the interactions with the hull and rudder. How- 

ever, the surface forces on the hull were calculated for the case where the ve- 

locity field generated by the propeller replaced with simplified vortex lines 

satisfied the boundary condition on the hull surface (7). Accordingly, both forces 
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have not yet been obtained for the case where the velocity field around the ship 
satisfies the boundary conditions on the hull, rudder, and propeller simultane- 
ously. 

In my previous paper (8) a general hydrodynamical theory was developed for 
propulsion of a ship with a single propeller and a single rudder in which the mu- 
tual interactions among the hull, rudder, and propeller are generally taken into 

account. We will now develop this theory further for the computation of the un- 
steady propeller forces. At first we shall employ the following assumptions: 

1. The field of fluid flow around the ship can be represented by an incom- 
pressible inviscid irrotational flow superposed linearly on a flow caused by 
viscosity such as the viscous wake behind the ship hull. 

2. A discontinuous flow such as a flow containing a free vortex or cavity is 

not produced at the ship hull. 

3. No cavitation is produced at the propeller and the rudder. 

Then the ship speed can be assumed to be kept almost constant, because the 
inertia of the ship is very large and the periods of vibratory forces generated by 
the rotating propeller are very small. Similarly, the angular velocity of the pro- 
peller is assumed to be almost constant. Further, since the influence of the free 

water surface on the flow field around the ship can be generally represented by 

the velocity potentials due to appropriate distributions of singular points in the 
upper half space of unlimited still water (8), we may safely treat the problem of 
the ship moving on the surface of still water by replacing it with that of a sub- 
marine moving in unlimited water modified by superposing a flow field due to 
the added singular points. Thus, we can define clearly the unsteady propeller 
forces including both the surface and the bearing forces. Therefore, we will 
consider the submarine with a single propeller and a single rudder being moved 
straight with a constant speed by rotating the propeller with a constant angular 

velocity in unlimited still water as the simplest example and then derive a mathe- 
matical expression for the unsteady propeller forces in this case. Finally nu- 

merical examples will be presented to determine the effects of skew and chord 

length of the propeller on the bearing forces under a given nonuniform flow. 

FUNDAMENTAL THEORY 

Consider a submarine with a single propeller and a single rudder being 
moved straight with a constant velocity by rotating the propeller with a constant 
angular velocity in unlimited still water, for which the hydrodynamical theory 
presented in the previous paper (8) can be applied. We will use the term ship 

instead of submarine in the following for convenience. 

At first we define a rectangular coordinate system 0 - xyz fixed in space 
and a cylindrical coordinate system O - xré@ by the relations 

x = BOlye ori eos iO % + Uzi ons sin O95, (1) 
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where the x and y axes are chosen so as to coincide with the axis of rotation of 

the propeller and with the upward vertical line respectively (Fig. 1). The ship 
is assumed to be advancing straight along the x axis in the negative direction 
with a constant velocity v as the result of rotating the propeller around the x 

axis with a constant angular velocity { in the negative direction of ¢. Further 
we define another rectangular coordinate system 0, - x,y,z, fixed to the ship 
satisfying the relations 

i= VC GY SY yn eee SS (2) 

where t is time and the origin 0, is set at the representative point on the pro- 

peller axis. From Eq. (1) and (2), it follows that 

Mi SKS OV, Hees. @ 447.24. 56 sin Op. (3) 

Y Y, 

(xy,2) 
OR (XF,8), 

@) XX 
Xe XX, Xa 

Ship Hull (S,,) 
Rudder(S, ) 

Zz Z ropeller Blade(S,,) p 

Fig. 1 - The ship with a propeller and 
rudder and the coordinate systems 

Next let us consider the geometrical presentations of positions and shapes 

of the ship hull, propeller, and rudder. The hull, propeller, and rudder are as- 
sumed to be set roughly in order from the front. Generally the ship hull contain- 

ing the propeller hub and bossing or strut is symmetrical with respect to the 
x,y, plane, and the rudder is set in the vicinity of the x,y, plane. The propeller 
consists of a set of identical, symmetrically spaced blades attached to the hub, 
having number of blades N, radius r,, and hub radius rg. Accordingly, the sur- 

face S, of the ship hull can be expressed by 

Zee Xana (4) 

where 

Visi Sas S Val¥ piv oe ch 87 SX a ae Folk N52 On? Si Fad 2 

The mean surface Sp of the kth blade of the propeller can be expressed by using 

the parameters r and v as follows: 

Kp My Vooei (HF Pos G@ = Ou(r) + A(r) v. +: 27(k-1)/N =.0t,, (5) 
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where 

“Av Siw2Si log? mpasar < sgt, yc@(r iOate kigoks2hs -ac Ns 

and 6(r) and Oy(r) are respectively the quantities related to the half chord length 

and the skew of the blade. The mean surface Sp can be approximated by a helical 
surface with pitch 27a(r) and rake angle ec, that is, we have 

Mp(r.v) & a(r) [A,(r)+O(r)vl + re, (6) 

where the more precise designation of 27a(r) will be noted later on. Further 
the blade thickness at the point (r,v) on Sp is denoted by t(r,v). Then the mean 

surface Sp of the rudder is expressed by using the parameters y, and u as 
follows: 

X, = Xy(¥,) + XC¥_) UY. oY, = Vy > 2, = Zp). (7) 

where 

=A S01 Sy jp VARS Wa XV) On. XY ek Cy.) 2 Oh, 4 1 1 1 1 

and x (y,) and xy(y,) are respectively the half chord length of the rudder and the 
distance between the propeller and the rudder. We can get approximately 

Ze(y,u) ~ 0, re. 9 320 “or -a (8) 

Further the rudder thickness at the point (y,,u) On Sp is denoted by t,(y,,u). 

Then the lines v or u = 1 and -1 On Sp or Sp indicate the trailing and leading 
edges of the propeller blade or rudder respectively. Equation (4) may be con- 
sidered to represent either the original hull form or the hull form modified so 

as to include the effect of the boundary layer thickness, and in this paper, for 
simplicity, we carry forward the former. 

Since no lift acts on the ship hull under the assumptions of the Introduction, 
the hull form can be represented hydrodynamically by source distribution on the 
surface S,. We denote the strength of sources at time t in the elemental area 
on Sy, whose projection on the x,y, plane is dx,dy, by m,(x,,y,,t) dx,dy,, where 
the subscript « refers to Eq. (4) and the value of m,(x,,y,,t) is not always equal 
to that of m,(x,,y,,t) because of the presence of the propeller. Thus the velocity 

potential ¢, due to the hull can be obtained from the source distributions. The 
propeller can be represented hydrodynamically by appropriate vortex systems 
and chordwisely distributed doublets. The former consist of the bound and free 
vortices, and the later represent the effect of the thickness of blade sections. 
The bound vortex is arranged approximately along the line v = constant over all 

the surface Sp, and the free vortex shed from the bound vortex flows with the 
velocity of the water at its position. However, as the result of observations on 
the experiments in cavitation tunnels, the geometrical form of the free vortex is 
not greatly disturbed by the presence of the hull and rudder, so that the free vor- 
tex can be assumed to extend rearward in a helicoid without contraction retaining 
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the pitch 27hc(r). Denoting the strength of the bound vortex in the elemental area 
at point (r,v) at time t by »,(r,v,t) dvdr, we can set 

¥e(r.Vv,t) = yy ley, t= 27 (k-1)/(NQ)] , (9) 

because the hydrodynamic state of flow field has the periodicity of period 27/(NQ). 

The doublets representing the blade thickness are distributed on Sp in the chord- 
wise direction, and their strengths are approximately proportional to the product 
of the blade thickness t(r,v) and the chordwise component of the mean velocity, 
where the mean velocity is the velocity averaged over the chord of the blade 

section. The similar procedure can be applied for the rudder. That is, the 
bound vortex of the rudder is arranged approximately along the line u = constant 

on the x,y, plane instead of the surface Sp, and its strength in the elemental 

area at point (y,,u) at time t is denoted by yr(y,,u,t) dudy,. The free vortex 
shed from it extends straight rearward in the x,y, plane. Further the rudder 
thickness can be represented by doublets distributed on the x,y, plane in the x 

direction, whose strengths are approximately proportional to the product of the 
thickness tpr(y,,u) and the mean velocity component along the chord. Thus, de- 
noting the velocity potentials due to the propeller and the rudder by ¢p and ¢p 

respectively, they can be obtained from the vortex systems and doublet distribu- 
tions. By using subscripts ? and t for the vortex systems (load) and the doublet 
distributions (thickness) respectively, the total velocity potential ¢ at point 
(x,y,z) Or (x,r,@) at time t due to the ship hull, propeller, and rudder is 

P= ¢y+ dp + dp, p= dpe + Ope, Pp = Ppp + Pry - (10) 

Then denoting the velocity components induced by ¢ inthe x, y, z, r, and @ 
directions by w,, w,, w,, w,, and wy, respectively, we get Zz? r? 

o¢ fe) fe) fe) fe) 
Wes Bee Wy = Se - = (11) 

p Z 
Ww, = ioe ’ Ww, = aS Wo = foo) ’ 

and the following relations among them are obtained: 

Ww, = Wy cos 6 + w, sin Ge Wa= oWy sin 6 + Ww, cos @) . (12) 

On the other hand we cannot neglect the effect of viscous velocity on the 

flow field around the actual ship, where the viscous velocity, i.e., the velocity 
caused by viscosity, is equal to the remainder obtained by subtracting the veloc- 

ity induced by the velocity potential from the actual velocity; the viscous veloc- 
ity appears in the boundary layer and wake of the hull. We denote the components 
of viscous velocity in the x, y, z, r, and @ directions by v,,, viy, Viz» Yur» 
and v,, respectively and get the following relations among them: 

Viagem ay COS 0+ Viz Sin 6, Vig = ~Yyy Sin 0 + Viz COs ( (13) 

Further the condition of continuity must be satisfied as follows: 

OV_y ’ ov, L ave : ON is i OV at A re , OVig coe (14) 

Ox oy oz Ox or r rag 
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To calculate these viscous velocity components we must require full knowledge 
of the three-dimensional turbulent boundary layer and turbulent wake, but we 
will not further refer to the problems in this paper. Moreover, if both the ve- 
locity induced by ¢ and the viscous velocity are small compared with the ship 
speed V, these velocities should approximately be superposed on each other. 

For convenience, defining the nondimensional quantities 

SiO ene aie xe a Ci = x,/T>, N= V/t a3 1, = Vi /L o/s pe 2/ Lys 24> Zs 

S = ilar ’ CA = Xa/T 9: Cr = Xp/T 9» eCea) = You Fas NaCS's) sake © aa 

Ze Gen Ti) ak haa tan oR mtn. Cs) = any ian eS DeCK yy bigs 

XE GaV Spx (TV En. Cue ye PACr ls (ey = Oli « (e,V)-= tl haven 

By = 2m (R= TY/N Ot, oy = Yul Me = Ve/F o>. MCN) = XMC¥,)/T 9s 

Em y= ROY tg. BEC ays AG w/e BERG SRY, HR 

Uy N/T yn Me bas tips 8) = Me XqxV yt) re) s euleyyss) = opty Eye 

ERM, US) = Ya(yyurt)/(Ar?), P= O/(OrZ), SH= Sy/(OrZ), SB= Sp/(Mr?Z), 

OR = OR/ OG)» We = Wy/(AtQ), Wy = Wy/(Mg), WE = w,/(At9), wee w,/(OFy), 

ws = Wa/(Ory ys cae = Vie/ Gir ys Viy = Viy/(Mrg), Va = vi Ea) 

* 

Vis 2 Mir Clg). Vg = gACOr gs (15) 

we obtain from Eqs. (2), (3), (12), and (13) 

Cas G Mewy is, ay Sena! S cos. O,."z" = 2% = € sin. 6; 

eee A aoe ee ee * Wr =-wy cos 0+ wi: sin @,° wo'= Wy iSimiO tow, cos 0, 

ey be + rom Relies sees, + Vir Vy COS OAS ysin GO, SVPp = avj gi Sina wi cosa (16) 

The surface S,, of the ship hull is expressed from Eq. (4) as 

de Wek ‘om dee Whe enue Z5,= Ge EG as (17) 

where 

Tp6S4) S UE = nao) Cr S$ C1 S$ Ca> zigccigms) = 0, Kim i) 
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and the mean surface S, is represented from Eqs. (5) and (6) by 

C= b,- vgs, 0, = xP (Ev) OEE) + OE) vl + Se, 

= 46) + OL) vy + oy; (18) 

where 

Se ce ee Ns 

From Eqs. (7) and (8) the mean surface S, is expressed as 

C= C,- ys, 6, = Syn) + Fm) ur ne my 2% = ete cea,uyxo, (19) 

where 

sil ovcl, Ving <7,05 7,5 9OC1) 2-05, —nC) — 2Ga)— 0- 

Since the thickness at the leading and trailing edges of the propeller blades and 

the rudder are zero, we get 

i (eles On eer nel), 200. (20) 

and using Eqs. (15), Eq. (9) is rewritten as 

Be(enVes eae (Guvn soi (21) 

Further, the bound vortices must vanish on the trailing edge lines of the pro- 
peller blades and the rudder, since the extended Kutta's conditions must be sat- 
isfied there. They are assumed to vanish at the tips and roots of the propeller 

blades and at the upper and lower ends of the rudder. Thus the following rela- 

tions are obtained: 

g,(4,118)_=2,(6,45-5,) = 05! ep(nys iis) = 0. (22) 

g.(1.v,s) = @,(ép.v,8) = 0, ep(ny uss) = ep(mp.uss) = 0. (23) 

Since the surface Sy is closed, the nondimensional source distributions repre- 

senting the hull must satisfy the relation 

CA bY ta Con) ere ae ee es 
oF K=1]1 pS) 

The nondimensional velocity potential ¢* at point (¢,7,z*) or (¢,&,@) at 
nondimensional time s is obtained from Eq. (10) by using the results of the pre- 

vious paper (8) as follows: 
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PPE GE 4 GE, HDR OPE SBR UGE ILS OR lah pt DES (25) 

where 

1 CA 2 mia Lond) 
x _ ' 

= - 2] dc, 
CF x faq MHC 51) 

opp 

* 
Ppt 

PRE 

* 
PRt 

R* 

oF 

me OC eae) Ber 
N44 

i 

CGA Cay Set Ci me Pe el) m2 CG sm epee 

1 1 N © 

ep =1 Ea 

Ee in BES); 24 pe 2.) dg, 
ate €° 30 og; | R* 

JE 4=e! 

a 1 N 5 i , 

ee Gey det Namely’) Wi Ge = sOleE 7 He & ik ya = ea! fo I 6(E')dv' R 
k/=1 

Ps Epln,u'.s-0/v,(7,)] z* 

ue 1 

r Vax(4°8) 6(7,) dy f: 
Ie 

tR(ny a’ eying) + E(my ul - & - vos 
ee ee Ee ee ee 

[Sm(7,) + GED ule = .G =~ ve'sl* + (nia mete? 

du’ , 

SV CGpao tet Get 68 = Dope COs (und) , 

= v(E) ot OE’) Oye’) +3 (E')v']+Ele-vys, OF= 0+ Oy(S')+O(E')v' + Bur, 

= E'{[p+ Oy(é')+ O(E') v'ldu(E')/dé' +e}, O (EID (E)/v (E)- 11 < 270M. 

24 

1 

= J du' penne Se rT 

- Te a | V lot Gyan tio us C2 ,8]? + (n,- 7)" + a 

dg, 
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From Eq. (11) the nondimensional components of the induced velocity are ex- 

pressed by 

oon, SE Ga ees ee gee 0 Lande ey (27) ps Wie = ao Ww Wise 
eae yon 2 Oz" {ha pene E00 

Then defining the nondimensional relative velocities of water to the propeller 

blade and the rudder as 

eo * # ko ok * #1 * * NS Wats ans Vers awe V5 ee TE te Vee 

ek x eo ok * vy Wee Vy SUVS weet ieee (28) 

the quantities 9,(€), © (&), i) v,(7,)> and Vg,(7,,s) in Eqs. (26) are 

ra 3 [ Vi oe a Loan. 2 
Vee lees ’ ee iL fe [ pe ey 

ve, =i ive) dv, v* Bs loa ra d 
2 1t+v (SP) a ivu | Fee Si a 7 

1 277 1 277 

PC) = a { Vax(71:8) ds 95 = nz | Naas ase 

0 ) 

1 ke 

pes ey aD 
OC) 7 Di J iv. fa) (€) ov dv 

1 

We(é,s) = WEE, -8,) % VVio 7 Noe (29) 

and the quantity » (¢), which represents the nondimensional pitch of helical free 

vortex of the propeller, is 

27 1 a(dnt dp ) 

nk 1-- Vv H.R * v(é)%& 5} ows i ds [ ee B + TIE wT ee pak 

Qn 1 - 3 (bt+ 4% 
z (sf aes ee) dv |, 
27 4 a Y £08 (SP) (30) 

where the symbols [ ]_,,, and [ ]_., indicate that the quantities in the brackets 
at pout (C,€,9) on the surface Sp are represented by Eqs. (18) and at point 

(C,7,z*) on the surface Sp are represented by Eqs. (19) respectively (9, 10). 
Further we may set approximately 
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v (€) = (face pitch at 0.7 r,)/27 or an appropriate constant. (31) 

It is found from Eqs. (29) that the quantity »(@)(¢) represents the pitch ratio of the 
zero lift line of the blade section at €. 

Then we consider the boundary conditions satisfied on the hull surface S, 
the mean surface Sp of the kth blade of the propeller, and the mean surface Sp, 
of the rudder (8). Since the thickness of the boundary layer on the hull is con- 
sidered to be very thin compared with the breadth of the hull, the viscous veloc- 
ity may be neglected on the surface S,. Thus we obtain the boundary condition 
on Sy as 

Meo) oz (Cem) 
= K=1 ok Pe ee eee * 

2 a ( 1) bw el iw: ge [ws (SH) 

825(04+7;) 825(64571) = 0 1 1 * a 0 1 1 

on, Bele 0 le (32) 

where the symbol [ |,,,, indicates the quantity in the brackets at point (¢,7,z*) 
on the surface S, are expressed by Eqs. (17). The viscous velocity, however, 
cannot be generally neglected in the wake behind the hull, so that the boundary 
conditions on the mean surfaces S, and S, are 

CX) - d@E) 
iw, * Vix! (SP) eae Lh Wiolcae) ~ {Lawe) + 0(€) v] tee ‘| 

3 * 

[wr + vi] = SPE - a, 
ue ae (33) 

0z5(7,,uU oz ? 

(ee 
(SR) (7) 9u, (SR) on, 

dlu(m)  dl(n1) ]2zR(y 4) : 32%(7, +4) 
MSS (CF ee || ee wet vil Su, (Sa enh 

dq, on, E(u oR) C(n,) du (34) 

The nondimensional viscous velocity components vi,, viy» vi,» vj,» and 
vig are mainly produced by the hull, so that they can be assumed to be functions 
of ¢,, 7, and z* and explicitly independent of s. And their vorticities are as- 
sumed to be very small. We denote the density of water, the water pressure, and 
the ambient pressure due to only the viscous velocity by », p, and p, respec- 

tively and define the nondimensional pressures p* and p*, as 

Br = ip (p04?) 4 perp (20 ae) (35) 

We shall assume in this paper that the pressure p* at any point at any time is 

given by the approximate equation 
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* * 1 (x2 Doyo ix at me * ow 
™N 

#24 V# ay og* 
ly LZ Os 

(36) 

In this equation the pressure near the hull is equal to that due to Bernoulli's 
theorem because of the absence of viscous velocity, and the pressure in the wake 

behind the hull is considered to be independent of the viscous velocity when the 
potential flow is negligibly small, because p, is almost constant according to the 

boundary layer and wake theory. However, strictly speaking, this pressure p, is 
not always a constant independent of time and position. Using Eq. (36) we can 
calculate the pressure on the surfaces of the hull, rudder, and propeller and, 
consequently, the forces and moments acting on the hull, rudder, and propeller. 

We first consider the force and moment acting on the hull (8). Denoting for 
the x,, y,, and z, directions the components of the force due to pressure by 

Bega yo! and F,,, respectively, denoting the components of the moment due to 

pressure about the x,, y,, and z, axeS by My,,, Myy), and My, respectively, 

defining nondimensional coefficients as 

Kurxo = Fix o/ (en,2D*) , Kuryo = Fuyo/(en,?D*) ’ Kur zo = Furo/ ened") ’ 

Kumxo = Mux /(pn 2D5) ’ Kumyo = Muy o/(en 2D5) y Kumzo r My29/(en,2 DS) B (37) 

where 

n, = Q/27 (38) 

(revolutions per unit time) and D = 2r, (diameter), the nondimensional coeffi- 

cients are expressed as follows: 

na(o1) 2h : TT 

Kurxo =~ | doy y J 
F Ka. 75) 

{meer +5) [Yo + [v4] ou) 

+ bs Ame CC. 7489/28} dy, » 

CA 2 na(o1) 
m2 

Kur yo Te 4 | dq, | r [me cea 78) Ey ay, + ms 9mE(E07518)/28] dry 

F 1 b(S1) K= 

; A 2 na(o1) 

= 7 * * 
Kurzo = ~ 4 dg, Ds [recast sv] = 

oF x=1 7b(54) oi 

+ CADE AEs) Omi (L 7489/28] a (39) 

(Cont) 
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q2 

Kumxo > ~ ~g { doy 

(-1)*72 z4(L,.7, )[w*] | 
(SH) 

+ erg bw (eae 3 Za Sia Ta) ecm /Pnalban, , 

an b) eC Gn) 

2 

Kumyo aa | dc, 
CF K=1 Ny, ) 

{me CCyny8) 

[eager 8 Ce Hay + DT as CL sx, | 
(SH) 

+ a ae Ce Net) Oz Cis 147 OS + ol}an, : 

Ma Co) 

{ob L 1718) [Esl] ou, 720+ EAD) 5] (SH) 

2 2 

| doy ye 
: Seis C54) (SH) 

i [ad*/ os] [o,220(C1+m)/ 27 mes 24 am )/ Peat any , (39) 

On the other hand, we must take account of the friction drag caused by viscosity 
in addition to the water pressure. So that, denoting the nondimensional compo- 
nents of the force and moment due to friction drag by Kyp,p, Kyryp» Kyrzp>» Kymxp> 
Kymyp» 2nd Kyy,p Similarly as in Eqs. (37), the nondimensional components Ky,, , 
Kupy> Kurz» Kumx> Kumy» 20d Kyy, Of the total force and moment acting on the hull 
are given as 

K Kurx = Karxo + Karxp:> Kary = Kuryo + Kuryn> Kurz = + Kupzp> 

K 

HF zo 

Kimwx = Kumxo + Kumxp> Kumy = Kamyo + Kumyp> Kumz = Kumzo + Kuzp- (40) 

Next we consider the force and moment acting on the rudder (8). The non- 

dimensional bound vortex g,(7,,u,s) can be expanded in the series of the appro- 

priate functions of u as 

@R(7, 48) = 89(74)8) Vi ot ages) VP oer ebCnias yay i put + o295 Gd) 

where a%(7,,8), 43(7,,8), etc., are functions of 7, and s. Then we have 

lim @p(7,/u,s8) v1 ty ule (42) 

weet 

a Cie Ss), = 
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We denote the x,, y,, and z, components of the force by Fp,, Fp, and F,, re- 
i x y Rz 

spectively, we denote the components of the moment about the x7 ¥, and z, 

axes by Mp,, Mpy, and Mp, respectively, and then we define the nondimensional 
coefficients as 

Kerx 7 Fp,/(en?D*) ’ Kery is Fry/(en,? D*) y Ker, = Fr,/(en? BD?) ? 

Keux = Mpx/(en?D>), Kewy = Mpy/(en?D°), Key, = Mp,/(en,2D5). (43) 

The total drag coefficient K,,, is composed of four terms: the term due to the 
pressure difference between both sides of the mean surface K),, the term due 
to viscous drag K,,, the term caused by the rudder thickness Kp,, and the term 
of the suction force at the leading edge K,. Thus we get 

Kerx = Kp, + Kp, + Kp; - Kg, (44) 

where 

n 1 
fe 

eee: ACO nce. Cie) Ka ae i) dy, iE Er(7,>u,8) eal ie 3 | dy, 7 dy, u 

[v*] Sze (nyt) du , 

SENET), ou 

Du 
a iis 27 

Kp, 7 4 { CrpVRx(7,>8) SC) dy, ’ 
” 

V 

olv* 1 [ les Du 

Kp; = a | Vex(7,>8) 47, | th(7,>) =3, du , 
uP - 

ste ’ 
Sore error ots 

Sine En) (45) 

in which C,, is the section viscous drag coefficient of the rudder. The section 
lift coefficient Cp;(7,,s) is expressed approximately as 

ul 

~ 1 (46) 
Cc (n 13) & 4 gn AUS) au s 

BEG EG VEC), 3 

Then we can set the coefficient Cpp in the form 

Cep = Crno(7,) + ag(7, Cpr (7,8) = Bac, I (47) 
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where Cppo(71),) aR(71), and bp(7,) are constants to be determined experimen- 

tally depending on the section shape and the surface roughness of the rudder. 
The nondimensional components of the force and moment acting on the rudder 
except Kp,, can be expressed approximately by only the terms due to the pres- 
sure difference of both sides of the mean surface S,, since the terms caused by 
viscosity can be negligibly small. That is, we have, for example, 

n 1 
(a 

neo u ° . 7 dou(7, ) dic.c7,) * 

Kprz ©] [ ele [exc {8D | dy, i aed sel. ae 

nia" } dtee(n, yrvdl On) 
K Sg d i ate ve -| 4 + ; Vy Bus: RMx ~ 3 is Ta J oR r ofl a am a ‘\ a . (48) 

Finally we consider the force and moment acting on the propeller (6,8). 
Since the magnitude of the suction force at the leading edge of the propeller blade 
is considered to be much smaller or at most the same order compared with the 

section viscous drag, we may Safely neglect it or take it to be included formally 
in the viscous drag in this paper. Since the blade surface is closed and the blade 
thickness is very thin, the direct effect of blade thickness on the forces is negli- 

gibly small. Thus the force and moment acting on the propeller are generated 
mainly by the vortex systems. We denote the components of the force in the x,, 

y,, and z, directions by F,, F,, and F, respectively, we denote the components 
of the moment about the x,, y,, and z, axes by M,, M,, and M, respectively, 

and we define the nondimensional coefficients as 
y? 

Kp = H/(on D*) , Ky = F,/(en,? D*) z Kr, i B/(en,. D*) u 

nae (ent D>), Ky, = M,/(en,7D*)., Ky, = M,/(en,? D5). 
x Tr y y T 4 r (49) 

Then these coefficients are expressed as 

t= { a6 f yy dv, Key = | 
B 

1 N i 1 oN 

Kao! { gel) PN sine) Pe reos en) dy 5° Ryo az | >. Kyéav, 
cB -1k=1 ips “1 k=1 

1 1 oN 

Kyy -4{ ag [ ys IK, € sin - (K, sin 6, +K, cos 4) x, (é, v9] dv , 

eB -1 k=1 

1 1 oN 

Keys 4 dé ds [-K, € cos 6, + (K. cos 6, -K, sin, ) x*(&,v)] dv 
Mz” 9 x b r b 0 b b 6 u 

é -1 k=1 (50) 
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x iv) © @ (OH 16yE)+ 8 vl + Ge, 6, = by(E) + OC) v + 3, 

+ Kip» Kg = Kgg + Kop | r ro 

ae eae 5.24 LVe] ai [v¥] x0 = 4 g,(&,v, =. 7”) @ eee dé pp dé Vv Vi (SP) y 

2 8 xt (Ev) doy(€) dé) 
= Ue 5 es * ae oe eS teres * Say ae Gas | a ST seh | ae ? - | hop 

Ox (€,7) 
mes v petal anieehory 

Koo = SNS [OE om Og len | 

Ken = & Cpp{i +[ © )/E) WVho Vex E94) » 

: . 
Kip = g Cpp{l +[@ (20/4) "} Vio VEE 9 CE)» 

a2 = 

LN Cae Cpp{1 +[© Cy EO(S), (51) 

and Cpp is the section viscous drag coefficient. The section lift coefficient 
C,.,(€,s) Of the kth blade can be obtained approximately as 

1 

_ is 1 (52) Cep(2s8) = Cy, (& ~ 84.) a — | eg (ev.- 5, kL 1L k 8(<) w* (é, - 8,) [e2 + @\é)? iB 1 k 

Similarly as in Eq. (47) we can set the coefficient C,, as 

Cane Cong() Suan (Ss) = be) (53) 

where Cppo(&), ap(€&), and bp(é) are constants to be determined experimentally 
depending on the section shape and surface roughness. Denoting respectively the 
thrust and torque of propeller by T and Q, we get 

T= '-Fiy¢ 02 M,: (54) x 

Then defining the thrust coefficient C; and torque coefficent Cy as 

Cp = T/(e07 Dt) ux Co 0/(on2D*). (55) 

we can obtain from Eqs. (52) and (47) 

Ce Kaw Coy kaee (56) 
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In calculating the integrals in the equations presented we must take finite 

parts or principal values for the improper integrals at the singular points or 

surfaces. 

The angular velocity 9 of the propeller is to be determined for a given ve- 
locity V of the ship so as to satisfy the relation that the difference between the 
mean thrust of the propeller and the total mean resistance acting on the hull and 

rudder is equal to zero or to the external force acting on the ship through ropes, 
etc. On the other hand the nondimensional velocity components v¥,, vi,, and x? 

vi, are assumed to be given in this paper, though they are to be obtained ex- 
perimentally or theoretically by using some other procedure. In actual calcula- 
tions, first substituting Eqs. (25), (26), and (27) into Eqs. (32), (33) and (34), we 
can obtain the simultaneous equations for m,(¢,,7,,s), ¢,(¢,v,- 5), and 
gp(7,,u,s) and solve these equations by reference to Eqs. (28) and (29). Then 
by substituting these solutions into Eqs. (25), (26), and (27) the quantities 3¢*/2s, 
wy, Wy, and w? are obtained at an arbitrary point (¢,7,z*) at an arbitrary non- 
dimensional time s. Accordingly, we can get the pressure p* in the water at 
(,,.7,z") at s from Eq. (36). Further we can calculate the forces and moments 

acting on the hull, rudder, and propeller by using Eqs. (37) through (56). 

SURFACE FORCES AND BEARING FORCES 

In this section, by applying the theory developed in the previous section, the 
characteristics of a flow around a ship with a propeller and a rudder will be 
compared with those around a ship from which the propeller is taken off, and 
then the mathematical expressions will be derived for the unsteady propeller 
forces. In the following we shall omit, for the sake of simplicity, the adjective 
nondimensional for the nondimensional quantities defined in the previous section. 

Let us first consider the case of a ship without a propeller, i.e., a ship 

composed of a hull and a rudder. Then the quantities in this case are distin- 
guished from those for the ship with the rudder and the rotating propeller by 
using the superscript 0. Further, we can omit time s, since the quantities are 

independent of time. For example, mi(¢,,7,,8), $4, Kpp,, etc., are expressed 
as mi°(l,,7,), 9°, Kgp,, etc., for a ship without a propeller. Thus we have 

e2 0s (yelet a0 (57) 

Hence, from Eqs. (25) and (26), 

$*9 adh + GEO 4 GEO, (58) 

where 

1 an 2 ng(o1) 1 

ae ace mer(eqim) Sdn; 
Gf K/=1 “7, (61) H (59) 
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1 

1 t ‘ 0) U fe) 1 Ce an) wore 
a P oil 0 oz RR 

. 1 

EO Ny *0 '", + dent J t* ' ’ fe) 1 Gas 

ORE “ap i Vrx (74) (1) dn, ie Bi ) Oxe RE aie 

Re = ¥(0i- 6-8)" + (n> 7) PGR 225 (Cae tle, 

‘ ' ‘ fi 2 
xe =o + (y(7,) + O07) = CF Uys s Re = Vee + (ni - 7) ee tes ae 

and from Eqs. (26), (27), and (28) we get 

vi9(n,) = 4 1 (yest. Re “3],.) 

(59) 

(60) 

Neglecting small quantities of higher orders, the boundary conditions of Eqs. 
(32) and (34) are rewritten 

me Cham) 4 caye-t ae] _ 2z(La.m) [ae*? 
oz* oC 

(SH) (SH) 

: ey |e 7 Oz CG aI) 

3 an = 50 3 "y ae ee 

ES a ; PE [28 vig] _ OzRCI UY) | 
Ape 1z t(n,) u aL 1x 0 Zt (m,) du 

SR) SR 

Then the pressure p*° is obtained from Eq. (36) by 

0 
*O _ os 1/02, #02 #9? ales Tees 

Pp SP s(v%2 tv, on HM )- aaa 5 

2 a 2 2 O *0 a *O a *O 

Tasty vio] + i + vFO} 4 ? + veo) |. 
Cra 1x on ly Oz* 1Z 

Here, of course, we can substitute theoretically 

agro apt? 
=v 

Os 0 
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From Eqs. (39) the components of force and moment caused by water pressure 
acting on the hull surface are 

On 2 Hacer 

12 ra og* 0 
Kerxo = - a { dt, Z, tie (as) Y% | a dy.> 

CF K=1 TipiCoa (SH) 

CA 2. «mah ) * Ihe O 
7 

Kiyo page = | doa De, me AG Ny) a dies 

CF K=1 my (Sy) (SH) 

an 2 nay) 
m2 og* 0 

KiFz0 = = | dé, Nir me’ (04574) 32 a 
°F eae ep (SH) 

aN 2 ma Coq) 
12 3 gro 

KiMxo = eo { dé, D i me (4571) n|* * 
op KE PIECE p) CoH) 

op* 
aS a Ce = Cea 0 (S497) 37 1 

(SH) 

an 2 ma(Sq) 

KO eieeaya d ae HMyo” Cy me (4574) 
Cr Kel “yy, (67) 

ah* 0 * 0 | ares d og 
Cie achat ‘| i ae dn,» 

(SH) (SH) 

we an 2 na(o,) 

Kimz0 a ae ual dc, m* (C4 Da) 

op K=L “ny (51) 

og* 0 apt 

cl = ~abns| | a 

(SH) (SH) (65) 

Further, since the flow streaming into the rudder is parallel to the xy plane, we 

have in Eq. (44) 

-K°=0. (66) 

Hence, from Eqs. (44), (45), and (48) we get 
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KRrx = Kp, i Kp; ¥ 

n 1 
2a ie op* 0 

Ko -F/ dy | CH ‘| fw? du RF y ’ Zz 4 A 1 i R 1 0 ol 1x (SR) 

n 

0 m2 : 0 opt *0 Kemx = = 7,947, | | oR (Gre tO Gi oY PoNA du , 

(SR) un (67) 

where 

ithe 

| CRp Vex 7 Seis 
19 

, Ty 7 1 ato Ov “ey 

KBs = 7 [ Vex (11) 6(1) an, | PG) Nea accra B 
1 a (SR) (68) 

Q = 

To compare the performance characteristics of a ship with a propeller and 

rudder with those of a ship without a propeller, we define the quantities 

O= PF - P= yt OR t+ ORet op, y= bH- FH» PRe=SRe- SRE PRe= SRE ORE 

Con mnes) me ( Ges ome (Co a pCi UEs) ep Ciatns ie eet yal) 

ay 3) = 8574'S) 25° Gs Vantn 1,25). = Vax(7y>S)- Van (7). Cen=Crp- Chon: 

~*k _ ok _ Oo ~* ok ~  €Q ~K _ ok kg ae et Seer ae * _ ok _ KO 
Vix Vix 7 Vix? Yiy~ Yiy Miitye? Vige Vice ize Vire virew in?) Vids em 10° 

(69) 
Then, from Eq. (42) we have 

x 1 : ~ 1 ; 2 
ae%(7,) = F ime 7a) Ray ACs) od Lime (7 uss)) Via ue (70) 

uv-1 u 2-1 

Assuming for simplicity that the pitch of the helical free vortex shed from the 
propeller is constant radially, and considering that the period of variation of its 
strength with respect to time s is 27, we can set 

Os ev) Xv, oO (E') X11. (71) 

Then Eqs. (18) are rewritten as 

C= xe, ¥) S64) #8 E)vl ee, 9 = Oye) + Ov + 5, (72) 
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where 

and we get from Eqs. (25) and (26) 

ko 4k # 
Pp = Ppp + Ppe > 

@ 

Jaw peu) 
0 

ee , 9 0\1 
BG Vv (9+ WE 3x* a a ei) ae °° 

1 

a ~1 

wie vip + Ogre) + 8 (ej) vi-C-v, 8, 

O* = Ob =. 05.5.0 = oF + ule ot OER + Beare 

Further, from Eqs. (25), (26), (29), and (69), 

oA RCS 
yy ~ it ’ * ‘ ’ 

Oy = a 47 algey me, (o4374>8) R* dn,» 

oF Kea Ie Coa) H 

oO 4 \ ! 
aS “te 

SS) 

A. | 
——, 

Oo c 

2 »g 

bad ' ' ' t) 
Brp(7,uU »§ = 944,07, )D AE: eT 

i] 1 u i Z a) 1 

1 * ’ ‘ * ' ‘ ’ 

Ril ae Vax (7°S) 6 (14) any | Oe lam =| du’ , 
e=0 

1 

Vy << ~ 2 (bp + O,) 
Vin (42 8) = = I ESET it Dera) as aut, 

1 
(SR) 

2 

v,(7,) = Vro(7,) + =I VES Cis 5) ds. 

0 
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D ' ’ 1 fi ’ tC) fe) 1 ’ 

Ppt 7 alk O(E°) dé | i 3 ,Vv +) 2 wie all> — ‘ay dv=, 

p=0 
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Then from Eqs. (27), (28), and (69) Eqs. (29) and (30) are rewritten 

1 
i= op*° 30 ~ 

Vie i | ; Md Vy t p EP cea eeaeer vi dv , 

i —J] ue 3C KG % “I (SP) 

1 1 =e #0 9 ; 
Vinee J le ieee ++ vig 4 dv , i E06 E00 (SP) 

—4 6(€) dv 

2h 1 

yr 1 ® (€) + _- { ds i i= Vv. + aghe out Peet Bet) 
2 7 an? J, Jy 1+vi]| 0 ol aL 

1 277 1 

£0 * i Sy 
ar Weis ar “| dv || ds | 1 oe 

(SP) 0 1 

ae AY/ ap 4 tect , dv : 

aie 2 ee E=V(1+Eg” )/2 (76) 

By reference to Eqs. (69), (61), and (62), the boundary conditions of Eqs. (32) and 
(34) are rewritten 

: pe (Pyte + OR) 

~ * 

Me( Cases) ” (a4 K=2 o® 824(5474) 3® 929( 51571) foo Bra ACen) 

2 \ ) az™ oC, ot on, On 7 
(SH) (SH ) (SH) 

> oz* ‘ 
oki) 4 ve _ ZR(7,5U) a® i ve = 0. (78) 

A * 1Z > Cn 1x 

‘ sry 6 (7,) Ou (SR) 

And the boundary condition of Eq. (33) on the propeller blade is rewritten 

a Og 0 7 * 0 ox* a | 
Ae Og yO a eee eee Pay eee. ae = eG) |. . (78) ou aL 1x 1x 

(SP) (SP) 
- 
= 

The difference of water pressure between the case of the ship with a propel- 
ler and rudder and that of the ship without a propeller, which is denoted by Ap*, 

is expressed from Eqs. (36), (63), and (69) as 
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MM 
ue) 

\ 
ue) 

(G24 024 982) (80) 

Substituting Eqs. (69), (74), and (75) into Eq. (80) we get 

t (C4) = ’ 1 

ot L [a S (es = K 1 
4m t=] 15065 9 oe Ry 

1 ["« f tf AER i) ad d + — 14 | u ) nC  ””~C*« Ne oe SP 47 ie ya A as dz" Rp 

1 : N © 0g, [é',v',- (9+ 8,,)] 5 5 
+ Zee [ave yf Se Saas 

4n fe Os Ox* E'2 3@* R* 

=4 ae a 

1 
_ cle OV Gis d ral Se tony any [thon be rl. 

Q =] 

N a 
- a (g") ag" fos (ev!) 

* * 

pees ca BGO wo l2® , cw \, (28° , wo /2% , ze Ue + v ae AY Ti Vi Vy 
AYE) 0 OL 1x er 1x on ly on y 

2 2 2 
Op*o “o\{ o® oe WNfOD =» OD ny OD | sey 

+( 35* + Viz a2" ct Vite || 5 Bic Wate iE ar Viy Te 57% Vig 

*0\ oF EO) ee *0 7% L /SxD |, “2 ~* 9 PRG PVG ONG ae tt! Ma Viagtict AUR VG sll tr ACU ey ah Wa) (81) 
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Then, subtracting Eqs. (65) from Eqs. (39) and referring to Eq. (69) the differ- 

ences of the components of force and moment due to water pressure acting on 

the hull, which are denoted by Kyp,o; Kuryo: Kaen Keiteo? ee and Ki oo, are 

as follows: 

I = _ yo 
Kurxo > Kurxo ~ KaFxo 

CA 2 aoa) 
a® 

a -- | dg, farecenena Sr] 

~ o¢*° 0 3m (6157498) 

TUES) aa rar mel 
(SH) 

Kuryo = Kyryo ~ Karyo 

OK 2 nq (54) 

_ ae || dé, DL Jat? Coan) [22] 
t F K=1 MpiGea) a (SH) 

om (a6 TS.) ~ rf) tao Bde 
+ ae (a8) | e S ae 45 

on on Os 

(SH) 

Kurzo = Kurzo ~ KaFz0 

; aN 9 aig (54) 30 
ous dt, >, J laroce yy [22 

ar aa ne Con) oz F K=1 b 1 (SH) 

fs af*9 3 dm. CC, 1495) * = K 1 1 
+ ™ Mia) (= ee eo) wae 4 ; a a aa (hu. 779)| Sor * G8 Cee 

(SH) 

umxo = Kumxo ~ Kamxo 

CA 2 ma (o4) 

9) 3o® 

7 et oe doy i, \ nretaeny |e 
CF K=1 “7, (61) = (SH) 

7 ‘ 30 ie Op* ° exe) 
H at DE SCoEE be + m(S457,58)] 74 32% us aot (82) 

(SH) (SH) (Cont) 

39 



Yamazaki 

A I a HMxO ~ 

: ap*9 90 «f 9® 
(dS 2, Cae) [—. | | Ge 8) = 

(SH) 
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on 9 7g (S71) 

12 : a= Op 

ai za dé, » \ fetcaema en : can) |S] 
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025( 4571) 3 
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= = 0 
Kumzo - Kumzo Kuz 0 

cA 2 ng (51) 

z 
o® 30 

: ed ee 2 | farcono (| ~ n{ 23] 

(SH) F K=1 ny ($1) (SH) 

: op*? 30 og! 28 
: oo _ pits 
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(SH) fe 1 (82) 

The presence of the roating propeller can be considered to have a small influence 
on the local viscous drag on the hull surface, so that the vibrating parts of this 
viscous drag, which are contained in the components generated by the propeller, 
can be considered to be negligibly small compared with those caused by normal 
pressure. Hence, the differences of the components of total force and moment 

acting on the hull can be expressed by Kypyo, Kyryo, etc., approximately. Next, 

(SH) 

(SH) 

+ 
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using Eqs. (44), (45), and (48) and neglecting the small quantities of higher order 
the differences of the components of force and moment of water acting on the 
rudder, which are denoted by Kpr,9, ARR Kena Kecod Keuyo: and Kpy,o» are 

Kerx = Kppy - Krrx = Kp + (Kp2~Kp2) + (Kp3-Kp3) - Ks. 

= = 0 
RFz Kerz Kerz 

u op* 9 3 eS 
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OC OG 
(SR) (83) 

where 
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(Cont) 
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Further, since [V;]sp, is negligibly small compared with [VZ](sp) and [V3] sp, 
(11), referring to Eqs. (69), (27), and (28) the components of force and moment 
acting on the propeller expressed by Eqs. (50) and (51) are rewritten 

Kry = Kpyo + Kpxp> Key = Kpyo + Kpyp> Kez = Krzy + Keep 
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B k=1 

N 

Kyxp = J >, Cppli+ GE). We ES 4, 

N 

Kuyp = a >. Cppli+ (v/EY' | Vig tee sin 6(2) sin[O(E) + 94] 
Bk&=1 

' Vito{ lv On) + €e] sin 0(&) cos [O,(€) + 5,] 

wosin 6(6) sin (ys) 4 3,.\\+ v 6(€) cos @(€) sin LOu(S) + slple dc, 

Kyzp = ee, y Collet 7s) 1, a(v 7. € sin 6 (4) cos [Ay(6) + 5,) 

Epk 

+ Vig {ou + €e] sin 6(€) sin [Oy(€) + 8,1] 

+ Visin 6(é) cos [6,(€) + §,] - v@ (E) cos 6 (€) cos [0y(5)+ yp) € ag (86) 
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The unsteady propeller forces are classified into "surface forces" and "bear- 
ing forces,"' and the former contains "impulse forces" as mentioned earlier. In 
the above expressions, Eqs. (82) and (83) represent the surface forces, Eqs. (85) 
represent the bearing forces, and Eqs. (83) particularly represent the impulse 
forces respectively. 

According to the result of a previous paper (6) the chordwise mean velocity 
component Wi(é,-5,) flowing on the propeller blade can be assumed to be ap- 
proximately independent of s, and so we can express 

wi, -8,) wv v8, (2)? + vEg(S) = WEE). (87) 

Taking into account that the mean surface of the rudder passes through many 

helical trailing vortices shed from the propeller blades at the same time, the 
chordwise mean velocity component Vz,(7,,s) flowing on the rudder surface can 

be approximated to be independent of time, so that we can assume 

Vey S) © ¥en): (88) 

Thus, substituting Eqs. (87) and (88) into Eqs. (74) and (75), the velocity poten- 
tials ¢p, and ¢}, can be obtained as 

SB = k'=1 

1 L 
= S a ; t) 1 oe = al O(E yaég i ti(e ,0 y We i) y ts oe sort dv‘, 

? 

(89) 
Vu 1 . 

it vi u ‘ * ’ ‘ re) 1 ; 

Pp 47 C(74) 47; | on ) . Gis vet eet du’ &. 

9=0 

ul 

79 = 

It is convenient in actual calculations to use Eqs. (89) instead of bre and ®,, in 

Eqs. (74) and (75). 

Let us reduce further the preceding equations to convenient forms for per- 
forming the actual calculations. Since the viscous velocity components [| Vix (SP) 
and [vi¢]:sp) are expressed by periodic functions of s, they are expanded in the 
series 

‘ in[oy(€)+6(é)vt8,] 

vo t[ ia] cons? vy + [vie + Ms | 2, Vane e ™ we? 
; (90) 

inley(é)+6(é)vt8,] 
= *ave(e) oe 

where [vix],sp, and [vie](sp) are approximately independent of ¢,. The vis- 
cous velocity components [vix](sr); [iy] sey and [Vizl¢sr) are independent of 
time s. Then, it is found physically that m=(¢,,7,,S), gp(7,,u,s), and the induced 
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velocities on Sy and Sp are periodic functions of period 27/N with respect to 

time s and that ¢,(¢,v,-5,) and the induced velocity on Sp are periodic functions 

of period 27. Thus the quantities g,(¢,v, -5,), m#(%1,7,,8), and gp(7,,u,s) Can 
be expanded formally as 

onl ind - 
; 

£1(5.¥; Oe) = De €(61¥) e k , HC Cin ys Ss) = >. mesons Ty) e7imNs , 

(91) 

ERC. S= Y BpaCvy uy e INNS, 

where 

£,(6.v) = gros) ; : = + gnats Mid = Woe g3(S) ¥ Wye ue + 

BRm(7194) = Beno) aan t Brai(71) VP - u? + Erne) U Viva wie ee 

Ep (7,,uU) = ero Cda) — + gri(71) Vvl1l- u2 EE Cane u [y = ae ei (92) 

and ¢,5(&)> &pmo(71)» Spo(71), etc., are functions of ¢ or 7,. From Eqs. (70) 

we get the relations 

ERo(71) = 49°(M1) > * BRmo(71) en ts = Anns (93) 
m 

We define the following functions: 

ae Crpal -i Sy a1 F _ Ns = mN _ N ag -imN e im Ee a = AL ya e 1 a e im fe | = Hie e imNSs , 

( SH) 

3 j imN(@/v,(n4)-s) 38 1 ao 
= bene e as eee eee do = R, H (S NS ’ 

E az RR fae 
(SH) 

O ; ' ool Nig / -s] a 2 a | Pas g/v¥,(714)7S8 ae oe ay _ Reve Fe imNs 

0 e csH) (94) 
(Cont) 
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9 
(SH) (SH) 

| Be 4) ie 
0zoxX*® R* TzHx , Z RRR! 4 

(SH) 

av in(gt+s,1) 78 v a 1 ; 

| Di |e Paces ae ts Ue | cae Save 
Cre Pal ( ox* &! eT R* lo. ye LxHxnm © , 

fe) 3 x " 
-_ 

=0 

( SH) 

fs) z P) 3 1 
— a = -imNs 

on 2s ( ax® * var ae 2 PryHkm © 
p=0 

(SH) 

aS 3 Oo Ned 
— = -imNs 

= Dl * s) 22. Praag Sot 
E kl=1 ox 30 R* 9=0 m aa 

( SH) (94) 

_ ch al P) : ae lmNis)|p =. ss a SimNs pe 1 nce aed os eee 
{25 ginwle/y(npys} 21 

0 

| i) \y eitNlo /y.(n4)-s] 3 es 

0 

(95) 
(Cont) 
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3? 1 

3 =| | | 

= R —-—— —. = R =O) TxR ” * * px TzR H Ez Re sf d2*9XR RR] | 

N © 
P) j in(pt+8,,) | 1a) V fe) 1 dA = P -imNs 

-|— e SS SS = 1D = e ’ 
. ie g 3x* E! 3@*/ R* me de LxRnm 

0 - " ~ 

k'=1 0 

3 y iz in bey IO (pts,,) roto vy hO 1 4 ~imN 

ie oi i i (¢ sxe 7 panl= do Hoy Purim so 
(SR) ‘ 

k’=1 0 

(SR) 

re) = 3 re) 1 —— pean cas = P e7 imNs 
-: 25 Ox* sae 4] , iE TzRm 

p= 

(SR) (95) 

- Py 1 ind, 
ton| © =| = me Aon Phin ie ’ 

H n 

(SP ) 

. A) 1 ind, 
ae a = ae He aPmn e , 

R-( SP) ; 

i) ui imN[9/v,(74)-s] fe) il 7 ind, [af meron 2a] Fame 
Se ere eee 

Pe eamN lo, Weal Ok wl ind 

[2 f entero 2.8 a] Epa lh 
(SP) : 

E36 J, a2uiR 

2 5 2 ind r) a 2 ind, e) =| 2 oy P aoe k 
———_ — = R e ——— = = T@Pn , * * TxPn * pF 
bare RR 25 5 E000XR Re ‘> =0 n 

(SP) (SP) 

Se Sn@tiyo (ep oe). ee 1 : ee 
male Oe Fr aet] we | > Pixpn 

eran 0 (SP) (96) 
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N , N 
3 ( 3 —- 3 ( 3 2 
= y + = Si ee v + pis =: ay 
2 25 3x* 30+ | = E Da ax* 30*/R* ae " : p=0 

(SP) (SP ) (96) 

where H,.,,5,5 Ruxuxm €tc., are independent of time s and can be reduced to the 
forms convenient for the actual calculations. Then by using Eqs. (94), (95), and 
(96) the induced velocity components 

[0®/9T) (gy, [8/07] (guy, 100/82" ] gy), [00/02] gp), [0/8z*] (gp, , 

[9/2L] (gp), [00/E96] gp), [0b*°/2L] (guy, [9b*°/0n] (gy), [2d*°/22"] (sy » 

[Op*°/2C] gp), [O*°/2L] (gp), [0b*°/E0A] (gp), [87Dy/0L 7+ 07 65/2071 (gp) » 

and 

[o7p¥9/8C 7) (spy » 

which are derived from Eqs. (69), (58), (59), (73), (74), and (75), can be reduced 
to harmonic series with respect to time. Some examples of them are 

CA 2 ng 654) 

0® =oy N 1 ‘ ‘ ‘ ‘ 

a : ne aa a doy >» Me ome o yea) Ay xHx dn, 

CF x f=1 “7p (54) 

Tu 

il ‘ ’ ‘ ' 

i z-| ani | Erm(71°4 ) Ruxtm du 
79 ~1 

1 ’ ' O ' 

. 4m as) dé ae ay ) Bixtixan dv 

iL 1 

ray 5 ’ 7b * ‘ ' w* ty p ace + ae | BE dae PME WS HE) Prasen 

Wait: 1 

il Eondny | thou) Cr) ~ VERCDI Raat a 
ul zs (97) 

(Cont) 
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an ay) na(S4) 
7 tin 1 ’ v ‘ U - ae e im = dc, 2 Me Cogs Ha) Hier dx, 

m CF Kf=l1 is aaa) 

1 1 
1 roy ’ ’ : ' I aaa a | dé i NGS Vv) Pre Ran dv 

no ' SB al 

1 1 

+ 1 6(é') dé" dat v yas dv' 
aa , 1 TxRm 

CB -1 

Ta 1 

+ =| C(mi) dry | th(mpu’) [Y(74) - Vax (71) Brae du", 
ur) a 

2 ng(oy) 
* U U 

D i met m( Sar 71) Hr SPan dn, 

a Ler Gou 

Tu 1 
1 iG r) 

+ AG dn, J Erm(714) Rexpmn du 
m Ng -1 

1 1 

il ‘ ‘ ‘ ‘ 

7: | dé { a Vv ) FiexPa dv 

a -1 

Ts 1 

+ iz ben, da | ee(niou’) 01) — Veg) Roxen Su" 
Ng -1 

1 a 

ae Be") ae" | t*(é",v") WEE") Pryp dv’ , 
7 E = <1 

B 

Ca 2 na(o4) 

1 ‘ *0 ‘ U ‘ 

47 dy ; mer (S45 74) A eH dy, 

Cr K’=1 7p (oy) 

ha 1 
1 ' ' 

i fall dni | ge (7uU') Ryyuko du 
ur) ae 

Ty 1 

On beni) ani | ROMY") Vex (71) Rost du - “1 (97) 
(Cont) 
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4 na(oy) 32 *0 A 2 d 1 OH ; 

Py = «d, ac. mee (CL 5 K ixR denn 

47 1 K 1 1 aL 

oc? (SR) Cr K/=1 Ny Gey) (97) 

and the rest are cmitted. Thus, the integral equations, which are derived by 
substituting Eqs. (97), etc., into the boundary conditions of Eqs. (77), (78), and 
(79), hold irrespective of time s, so that each component of the harmonic series 

with respect to e~i™S or e in: (m,n=0,+1,+2,...) in these equations must vanish. 

Hence, the following equations are obtained for each harmonic number n or m: 

: Gi 2 nigeca 

1 * 1 * ' ‘ 

= Mm( 1971) + | dtj r Me moa 74) ae dn, 

F eo waka 1) 

ee 1 

+ 1 dn! (ni,u') R du’ aa up _ ORM M4) LHxm 
Tg a 

1 

eal: ‘ ‘ 

BAS 2¥*) Panini dv 
-1 

yee ee 
moe 

1 ul 

' + | a(') dé" t*(E'.v") WEE") Prim dv" 
és sit 

Wee t 

- =e E(niy dni, | tm u') (C7) ~ Vax (71)) Bry, du’, for m= 0, 
Tg it (98) 

1 
aN 2 na(o4) 

Tins 

Me Ga 71) Ho dn, 3 aul dn\ J Erm 744) Rep, du’ 

Te 1 CF Kk'=1 ~7p(64) 

al Bce'yde’ | e* Ev") WCE") Prey dv" 
a -1 (99) 

(Cont) 
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Ny 1 

- sel (ny) day | tRMpu') frac : vEso)| Rpg du’, form= 0, 
ur) vl (99) 

2 

See i) era. ten 
n 

dn} | ERm(71U ) RePmn du’ 

ur aol 

+ 
aN a | >™ en) 

1 1 

+ | dé' J eG) Pipn dv' 
47 ze Le 

Tit 1 

Lint) dng | thcntiu’) (04) Rapa au’ 
ur) oats | 

a 5 ing ele) 

pol ae me (01071) Hepon Oh 

oe Von(S) “(6 re ease ; for n# 0 
C 

Ox (2,4) 
= * Sete 

; ro eae “| 

1 1 

~ gil Betas | 8 WEE") Ppp dv’, forn= 0, ey “1 (100) 

where 
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en 029(64574) 32°9(54571) 
A ax =, (a1) Ho igHic ve ot, K'xHk on, K ‘yH« ”’ 

‘ 8ZzR(74)¥) 
K!/R Kez (n,) ou KxR? 

me 32°9(64574) 325(64571) 
Renee: rl or RigaeatG eta = MbaHkms? BET eee ir ee Reyne Rra Gye berm 

= Ih 

, 329( 54574) 924( 54574) 
Pic on = i( =i) Pci nm | aL LxHxnm — 4 LyHxnm ’ 

1 "ha 

82%(7,.u) 
PRAM 3 EieRan a t(n,) nit LxRnm ’ 

R = (tjS"OR _ bz Cb) _ 2% ob) 
THK duz Hic Ly TxH« Qn, TyH« 

; - azR(7,>U) ss 
= ae ee SER TR €(n,) du x 

K-1p 8254+) 025( 54971) 
Pruxm =4Gb) TzHxm at, TxHxm — ony TyHkm ’ 

5 es 8zR(7,>4) 

TRm TzRm Z(7,) a TxRm ’ 

H,, 'Pmn — H,. 'xPmn — (v/E) H,. ‘@Pmn ’ Ripmn ss RigPan (v/§) Ri oePmn ; 

Pip, = Prxpn 7 (¥/€) Prepn> Reapn= Rrxpn 7 (¥/€) Rropn> Prp=Prypa (/6) Prep - (101) 

By solving simultaneously Eqs. (98), (99) and (100) wegetthe solutions m*,, (%,,7,), 
Zrm(7,U), and g,(é,v). Substituting Eqs. (97), etc., and these solutions into the 
expressions from Eqs. (82) through (86) we can obtain the forces and moments 
acting on the hull, rudder, and propeller. Of course the steady components, i.e., 
the values for m = 0, correspond to the mean values, and the unsteady compo- 

nents, i.e., the values for m # 0, represent the vibrating parts. 

Finally, let us consider the velocity induced by ¢5,. Letting 9 = B(E" (v=) 

op, defined in Eq. (74) is rewritten as 

1 N © 

= 1 ‘ ‘ oA ’ oO Vv fs) 1 

Ppp = - al cS ae | gS we 840) OE »(¢ To eae es dv,, (102) 
B ko =4 
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where 

SOE yee Cel yells G hoe AOS Oy(E') + O(E") vy - 04 8, ! , 

Re 2: XP? 4 2/2 oS? = DEE cos 0 , 

Cuan a On?) = ik ey Ae rs, = [6(€')(v,-v') + bd} dv' ’ 

Cle we Or i= Oe for "ve 2 1 or we <= 12 (103) 

From Eqs. (22) and (23) we get 

Bes 5 ks, = Ori.) = OF; gi(épV> TO) = gi(1.vq, =o17) = 0 . (104) 

The velocity components induced by ¢}, inthe x, r, and ¢ directions, which 
are denoted by wh,,, wpy,, and wp,, respectively, are obtained by differentiating 
partially with respect to ¢, ¢, and @; then integrating them by parts, referring 

to Eqs. (104), the following expressions are obtained: 

* Ob by 1 (ae 3 i CeCe avi Ore a =o acosr@ ) 5e 
W =—=- = E ee u 
Pex Es OG" R*3 ( ) 

ov, R*3 

* 1 © * ’ 
ai 5 OPP a i ai de! a f Og C5, Vy Sah) 

Per 0é 4n E rege Ms 3! 

£'. sin '@* 0X*/0 (1) Ow, EX® cos.O*. 205s HORE! vy, Ady) 
$$ ooo CO OG DE 

R* 3 Ov 
1 

X" sins O° = sin OO oX* /0e" FA E°X" ‘cos elas 4 

R*3 a 

@ * 1 * ‘ S 

w* = OP Pe | = J | ae 3 i 98S Vir 7 Ope) 

B oat cee 

(€-€' cos O*) 3X*/G(E') dv, - E'X* sin O* en Oe (E Vy» - 840) 

R3 R ov 1 

-X* cos 0* - (€- —' cos O*) dX*/dE' + E' X* sin O* eae (105) 
Sr Ne a ee dv 

R*3 1 
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Here, in each component of the induced velocity, the first term of the right- 
hand side represents the velocity component induced by the trailing vortex 
along the helix, and the second term represents the velocity component induced 
by the bound and shed vortices arranged in the radial direction. The function 
og (€',v4,-5,4)/0v (-1Sv,S1) is sometimes called ''the bound vortex.'' More- 
over, for v, 2 1, we can get 

1 

Wane) = i @, (6+ ,,v.'5 - [6(€')(v,-v') + br} dv' 

=| 

1 

= i Be as TEED 1y 48,7 + OE av hav 
1 

= ge t6", Vr [6 (E1) (vy; 2 by 4 8, 19 

= 8) {E', 1, Oy (E') + OE") - LOy(") + BCE") v, + 34.13. (106) 

and this function is rewritten as g*(¢',0'), where 0' = Oy(é') + 4(é') vq + Syne 
That is, the function g*(é,) represents the strength of the helical trailing vortex 
at the point 

f= vley(é) + @)vjl—-v,s, €=2,-6='4, (6) 4 Océ) v,45,. en 

Next we consider the velocity potential and the induced velocity in the domain of 
a propeller wake, i.e., ¢, < € <1 and v, > 1. In this domain the velocity po- 
tentials and velocity components except ¢5,, wpy,, Wp, ,, and wp,, are continu- 
ous. The quantities ¢f, , wp,,, Wp,,, and wp,, are discontinuous at any point on 
the surfaces of trailing vortices which satisfies Eqs. (107) and are continuous at 
all remaining points in the domain of propeller wake. In general, the closed 
vortex can be replaced hydrodynamically by doublet distributions. Accordingly 
the helical surfaces of trailing vortices are equivalent to the surfaces of doublet 
distributions. We denote the increments of values of ¢5,, why,» Woo,» and why, 
at the discontinuous surfaces when a point passes through the point (2,&,@) of 
Eqs. (107) so as to increase 6 keeping ¢% constant or decrease ¢ maintaining 6 
constant by A¢s,, Awpy,, Awpe,, and Aws,, respectively. Then using the classical 
potential theory we get 

i gp 88,8) fot aye Ags ia PE a esi SB KSs2) 
Ppe 22402 00 wer 3é ga 

*% 
in a D WY > = 

U = x 

(108) 

* = 

AWpeg = 

We must take Eqs. (108) into account in the actual calculations of wf,,, wh,,5 
and ws,, in the domain of the propeller wake. 
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A METHOD TO CALCULATE BEARING FORCES 

The mathematical expressions of unsteady propeller forces for a ship with 

a propeller and a rudder were introduced in the previous section. It is further 

necessary to reduce them to forms suitable for numerical calculations. How- 
ever, it seems laborious as shown in the previous section to calculate the sur- 

face and bearing forces simultaneously by using a high-speed digital computer. 
Hence, for simplicity, the results presented in the previous section will be re- 

formulated for bearing forces in this section. Let us denote the components of 

inflow velocity to the propeller in the x, r, and 6 directions by vz, v7, and v% 
respectively, which are composed of the viscous velocities and the potential 
velocities induced by the hull and rudder and are expressed as 

ee apr Out Ret OR), 
Vx = Cr + Vix = OL Vix er lx 

K 3 (by + OR) ‘ agto o 9(Pyt py + OR, ) a 
Vy = 3é Vir = 3é Vir a ee os Vir 

8(at Op) 3g 0 3(®,+ O,,+ Op, ) 
ee SS Oe es gh ER ee 

E00 E06 E36 (109) 

We shall consider that the propeller is operating in a nonuniform flow with 

inflow velocity components v%, v*, and vs which are not influenced directly by 
the presence of the propeller. Further, since the effect of blade thickness on 
the performance characteristics of the propeller is known to be negligibly 

small (11), we may neglect this factor in the calculation of bearing forces, i.e., 
we set 

(110) 

Then the following expression for the potential is obtained from Eqs. (74) and 
(76): 

1 if N foe) 

Poy = - x | dé' [ av! eo il Bales v',- (ot 840 )] 

an = 1 Ie 20 

’ ) V 3 1 ee ee 
¢ ax oe? eae Pa (111) 

where 

KES v fp + Oy(E") + 8 (E")v"'] -C- WSs 

O* = pt OE") + O(E')v' - OF. ye , 

R* = yx*¥24 €'2 4 €2- 2E'E cos OF , (112) 
(Cont) 
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ered (= 4 ee + [v*] dv kx Ti is 1+ov 0 3¢ (SP) mS (SP ) 

1 ope 2 if AL 1 = ay | ey * 
Vig = Sy liv : i £96 (SP) ; 51.5, ss 

. a 5 1 ; List v aX, (EV) 
Wier =o = VV st Nee @(e) 7 Iv = MGOKE) BY pay 

or 

w (lace pitch) 20° * (112) 

Since the velocity components », + [vs]: sp) and £ + [v,] sp) can be assumed to 
be independent of ¢, they can be expanded similarly to Eqs. (90) as 

. in[6y(€)+0(£)v+8,] 

soy ! oe Ka 2s VenkS) © i an 6 

(113) 

in[0y(£)+6()v+8,] 

ef Eig aes OO : 

where 

27 

FE Oalon \mlcee sche en 2 
0 alga 

(114) 

VINEE aoe | Greeley, Jinn Nd 

in which [ ];--,,, indicates the value of [ | at the representative plane of the 
propeller disk. With account taken of the characteristics of a two-dimensional 

unsteady airfoil in sinusoidal gusts the bound vortex ¢,(¢,v,- 5,) in Eqs. (91) and 
(92) can be approximated by 
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HO ae che SNCS ee ee (115) 
Vv 

where G,(é) is the circulation with a harmonic number n around the blade sec- 

tion. Then referring to Eqs. (86), (69), (109), (110), (111), (113), and (96), we get 

[v*] =) (I 1 [v* ] = > Vv ind, 
x" (SP) = OC (SP) x" (SP) ~ - xn © J 

(116) 

obh ins 
[v* ] 2 e+| | [ - Vase = 

OCSP) £90 J csp) 9“ (SP) a a 

where 

[6y(4)+8()v] aT in[6y(&)+0(€)v 1 ; i 1- v' ; 
We =e Ce y + ; i Gee). de il ese nen 

5 A alae 1 

(117) 

< if 

a 1 1 

in[6y(€)+6(é)v] 1 i i y3 Sans ' ae v5,(é) e + vee | Gi y dé f ey PL oPn dvi, 

=-1 SB 

We substitute Eqs. (109), (110), (111), (113), and (115) into Eq. (79), i.e., the 
boundary condition on S,, and multiply this equation by the weight operator 

1 

= i dvi a - : (118) 

-1 

Then, since the equation obtained in this way is to be independent of 5,, the fol- 

lowing equation is obtained for each n similarly to Eqs. (100): 

1 L 1 

1 4/2 tv V2 a we 
AGS | GAS) dé i eS IP eer Vv! (Pars = a Popa) dv' 

SB - a 

(119) 

(é) 
i in| @ a 6 €)v [2 Hint - Mal] f pte [Oy CF )+0¢ A 

where 

N foo) ; 

PiePa a { A ey Ayr (EE, vsat Yo) do, 
ke = 1 0 

N o 
Pi oes | ein[p+2n(k‘'-1)/N] a, CG e37s04y..)do5 LoP oe ! Oe ao a») (120) 
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BTN MAN SC Se ety Boo 
vv 2p? + E12 4 E2— 2E"E cos [+ 27 (k'- 1)/N]° 

3v7W{é'w- — sin [p+ 27(k' - 1)/N)} 

Vv 2? + 12 4 2 - 2E"E cos [+ 27(k! - 1)/N]° 

v cos [W+ 27 (k’ - 1)/N] 

Veo ere +&?- 2E'E cos [Wt 27(k' - 1)/N] 

v2y2 4 212 4 €2- DEE cos [+ 2n(k'- 1)/NP 

Von= uC Naas) OC jv = 2 (ens (120) 

At (E€.viw) = - 

+ 

Aa (S Evi) = 

Substituting Eqs. (116) and (117) into Eqs. (112) we get 

1 1 

* mel 1 - ¥v * pl 1- v x / i! * ind, 

ve, = 2 | Vie ty, av. Vin= | Vig Yon VG a ae 
al = n 

(121) 

4 * ind, _ fy *2 
Vice a iB Von e : Wie, = oy) ay Vex - Vie i 

Hence, from Eqs. (52) and (53) we get the section lift coefficient C,,(é,s) and 
the section viscous drag coefficient Cp): 

ye G_(é) eee 

n 

BCE) WG, =a) Ve 2427 

(122) 
Gates) = » Cpp= Cppo(€) + ap(é) [(C,,(€, 8) - bp(é)]?. 

Substituting Eqs. (109), (110), (114), and (116) into Eqs. (85) and (86), and 
referring to Eqs. (121), we obtain the force and moment acting on the propeller 
as 

Key = Kpyo + Kpyp > Key = Kryo + Kpyn >» Kez = Kpzo + Keep 
(123) 

Kux = Kmxo + Kuxp > Kay = Kuyo + Kmyp > Kuz = Kuzo + Kuzp > 

where 

tan i(nt+n‘ )8 : a i(ntn k a 
Krxo 7 q » Ss G,(¢) e dé f We xy Von! dv , 

Sp k=1 n,n! =i (124) 

(Cont) 
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N 1 

7 1 i(n+n’)8, /[eahsy 

Kryo ae qa ai z Gi(¢) © dé J liv Ler 
“1 eR k=1 n,n! 

sin [O4(¢) + GiGe) v + 5] dv , 

1 N 1 

7 i(ntn’ )8, l-v 

Krso = a 2. LD. 66) ¢ ae | Vi 
B =1 sone 1 

cos [Ay4(€) + O(E)vt dy.) dv , 

1 N 1 
TT i(nt+n! )8, 1l-v 

ee ne aoe: ECA MN ren Vee 
cB k=1 n,n? =1 

Vi V 

l+v 

nz \ 

1 N 1 

Bio EF DD, ase ober ae | cB k=1 n,n 1 

eer o simile ay OS we oa) 

+ Vine {y [Oy(€) + 8 CE) v] + Ee}, cos [O,(€) + G(E) v + 8,]) dv, 

L N 1 

7 i(ntn! )3, 1l-v 

Kyz0 - 3 | a ya G,(¢) c dé ly liv 
B k=1 n,n 

(Ven 6 cos (Oy(4) +2 (2). ¥ + 3] 

= Vinedv ace) + 6 G)-y) + Se}ssim (0,6) + OE) v > 3,1) dv, 

1 N 

ie = 

Kexp = 7 | Cppll + (/€)?] VE, Vt, OE) £d€, 
op kel 

2 , a = 

Kpyp = - ( kat Cpp[1 + (v/E)?] Vag sin [Oy(¢) + 6] sin O(€) Ede, 
B 

a oe a 
Keep = oa J i Contd, +. 7S 1 ViAneos [A((4), +. 8) ein 6 (6) Ode , 

pn k=1 (124) 

(Cont) 
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a2 : s a 

Kyun =e | 2. Ceplle ee /ey tryed 6 (eye de 
é, k=1 

7? ; 
if a 

en = oe > Coplt £9@72)2) VE,(VEy sim 14,(€) +5, ] S sin Gee) 
Ey k=l 

+ Vé,{sin [4(€) + 8,] v [sin 8 (€) - 9(€) cos 6 (€)] 

- cos [64(€) + 8] [v (€) + Se] sin O()}) Fdé, 

2 1 

7 

Kyu -- a { 
(3 
>B 

N 

y Coolie /EY77 VEQ(VES cos [9y(E) + By) € sin AE) 
k=1 

+ Vig{cos [Oy(€) + 8] v [sin 8(€) - 9(€) cos O(€)] 

+ sin'(6,(€) + 5.) 1v4,(é) + Fe] sin O0(€)}) €dé. (124) 

From Eqs. (56) we get the thrust coefficient C; and torque coefficient Co: 

Cy = - Kp, + Cgo= Ky, - (125) 

Further, denoting the components of K,,, K,,, etc., for a harmonic number ¢ by 
Kft), K{*), etc., respectively, assuming that Cpp is a constant independent of k 
and s instead of the expression in Eqs. (122), and using the formula 

N mig Ne7imNs | for 2 = miNi- 
Q ye Re (126) 

k=1 0 ; for €ZmN , 

then Eqs. (122) and (123) are reduced to 

z N) ,~imNs = (mN) | -imNs _ (mN) _-imNs 
Kr = sy Ky ue » Rey = a Se » Kp, = », Ke, , 

m m m 

(127) 

_ (mN) -imNs = (mN) _-imNs = (mN) _-imNs 
Kuy = a Kux  & > Kyy = yu Kuy © » Ky, = > Ky, © , 

where 

(mN ) a (mN ) (mN) (mN ) a (mN ) (mN ) (mN ) 2 (mN ) (mN ) 

Key = Keyo + Kpyp > Key © = Kpyo + Keyp Ke, = Keo Keep ° 
(128) 

(mN) _ (mN) (mN) (mN) _ (mN) (mN) (mN) _ (mN) (mN ) 

Kux = Kuxo + Kuxp > Kuy © = Kuyo + Kmyp’ > Kuz © = Kuzo + Km , 
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1 1 

(mN) _ 7 Pa 1l-v 

KE x0 a 3 A f NG,(&) dé J y lt+v Ve Neo ? 
n ep —1 

a) [oy (€)+0¢é)v] (mN) _ Sih 1G=svi5 1s ilLOy(f)+O(F)v 
Kryo = 7 = 4 [ NG,(&) dé J eae 8 pes e 

-1 n oR 

rea) 
- V dv , 

x,mNentl 

1 i “ 
(mN) _ 7 fl-vil i [6y(€)+6()v] 

KE 70 7 - 4 i NG,(¢) dé ey 2 eee © 
n eB —-1 

i [Oy (4)+8(E)v] 
+ V e dv , 

x,mN-n+1 

1 1 
(mN) _ 1 J/i-v 

Kuo z De Z| NG,() € dé | 1 $7 VE eNen dv , 
n oR -1 

1 1 = 

N 1 V3 -v/fil i [6y (€)+9(E)v] 
rat Par » zl NG, (¢) dé J liv (4 eee & 

n B =1 

eee ey + F {v [Oy (E) + B(E) v1 + €e} - MauaNened 

i [Oy (€)+8(4)v] a 
’ 

-i [Oy (€)+6(E)v]) 
{Vy nears e€ }) a 

1 1 = 

(mN ) xia = vil i [64 (£)+0(€)v] 
Kyo Fi De l NG(E) dé [ Laery (3 leer ¢ 

n B - 

wp aes 

x, mN-n#+1 

By Ve. mm Nenet © 

6 
i [Oy (€)+8(€ )v] 

5 3 {v [0y(€) + 8(€) v] + os eee oi lou CE) 

= \'/ ’ 

a4 feu (er EI) 
x, mN=-n+1 

FxD (129) 

1 
2 = 

Ko = { NCrjit + G74) VE VE Aa Oey ede, 

z (Cont) 
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1 
(mN) _ 1? 1 Tey 

Kpyp = 7 ds ol NCpp[1 + (v/&)7) V5, FeV, gnenet . 
B 

Oe: ee 
te Ve ANEW e : a | sin 0(€) € dé-, 

20 1 104 () N i 

en » = | NCppll + (v7)7] Von 2 [VSvanenn ee 
n “CR 

= = 

+ VE fatani ie] sin B(E) Ede, 

5 1 

N a 
Ke = Qu i} NCppl1 + (7/)?] V8, VE gnen 9 (2) £208, 

B 

i164 (¢) 
1 

N 1 
ip _ i NCpp{1 + (¥/é)?] vid 

XS 

SB 

rad Esin 0(€) * 
Ve) mN-n+l 

1 iy (¢ ) x 
oo S + VG Nene iS 

1 iOy(¢) * 
x| 3, mN-n-1 © ¥ Vo, mN-n+1 

[sinO(€) - 6(€) cos B (Ey) | s a8. 

2 1 

Ds = i NCpp/1 + (ufE)*) V8 2 [!f anenet C 

n CB 

1 iOy() * 
2( Bent ty © is Vitae net 

1 i Oy (&) * 
Se asd Vg mN-n+1 

[sin 6(€) - 9(€) cos ace} Edé. 

62 
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act 

“Hy #9) [vOy(E) + &e] sin 6(€) 

ig CS) 

[vOy(E) + Ee] sinO(é) 

(129) 
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The frequency of bearing forces is represented by mN{)/27 = mn,N. Therefore, 

denoting the components of forces and moments for frequency mn.N > 0 by Kg,,, 
Krym» etc., we can get 

FO ee NS es eg ee tea le ke ee (BO) 

Eqs. (127), (128), and (129) th lex functi Kee uuee From Eqs. (127), (128), and (129) the complex functions Ky, “, Kpy , etc., 
are the conjugate complex functions of ent 5 Kry 2 etc., respectively. Conse- 
quently, for mn,N > 0, denoting the amplitudes of Kp, ,,, Kym, etc., by Arxm A 
etc., respectively, they are equal to twice the absolute values of Ki2"?, kK”), 
etc., respectively. That is, we get for m2 1 

_ (mN ) - (mN ) = (mN) 
Ags m x 2|Kp |. Agym 7 2|Kpy |. Ag om my 2|Kp, |: 

(131) 
£ (mN ) Me (mN ) = (mN ) 

AMxm ~ 2| Kit |. Amym ia 2|Kuy |. Auem am 2|Ky, | 

With the particular values of a propeller 6,(&), 6(&), x* (€,v), and «, the 

inflow velocity components v%, v*, and vs, and the advance coefficient ., given, 
let us calculate the bearing forces by using the preceding equations. That is, 

calculating » (¢), vi (é), vs,(€), and@)by using Eqs. (112) and (113), we obtain 
G.(€) by solving Eq. (119) and then calculate V,, and V,,, from Eqs. (117), V=_, 
Ven» Vix» Vig, and W,(é,-§,) from Eqs. (121), and C,,(¢é,s) from the first of 
Eqs. (122). On the other hand, when the values of Cpyo(4), ap(&), and bp(é) are 
assumed to be known for each blade section, Cpp can be obtained from the second 
of Eqs. (122). Substituting the resulting values of G,(¢), V,,, Von, Vex, Ves, and 
Cpp into Eqs. (123) and (124) we can calculate K,,, Kp,, Kp,, Kyy,» Kyy, and Ky,. 
Thus the bearing forces can be obtained. The detailed procedure to calculate 

Kp, and Ky,, i.e., Cp and Cy was presented in the appendix of Ref. 6. The com- 

ponents of force and moment acting on the propeller other than K,, and Ky, can 
be calculated according to a similar method as for K,, and Ky,. Similarly, by 
substituting G.(é), V,,, Vs,, V*,, and V3, into Eqs. (128), (129), and (130), and 
further assuming Cpp to be constant, we can calculate the amplitudes A,,,, A Fym? 
etc., of vibratory forces and moments for frequency mn,N (>0). 

NUMERICAL EXAMPLES OF BEARING FORCES 

As numerical examples, propeller M of Ref. 6 is adopted as a parent pro- 

peller, whose principal parameters N, ¢é,, (@)(é), €, etc., are shown in Table 1. 
Then the variations from propeller M are as follows: 4 (¢) and 0(é) of any 

given propeller are respectively a and 6 times as much as those of propeller Mm. 

The values of the particular magnification factors a and £ used here are sum- 
marized in Table 2. For propellers M,,, M,,, M3, M, and M,,, we take a = 1 

and 8 = -0.5, 0, 0.5, 1.0, and 2 respectively, and this group is employed to deter- 

mine the effect of skew on bearing forces. When we take a = 1 and £ = 0.75, 

1.00, and 1.25 for propellers M,,, M, and M,, respectively and also a = 0 and 
6 = 0.75, 1.00, and 1.25 for propellers M,,, M,,, and M,, respectively, these two 
groups determine the effect of the blade area ratio on the bearing forces. The 

blade area ratios of the given propellers are also shown in Table 2. 
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Table 1 
Parameters of Propeller M (Diameter D = 2r, = 215.67 mm; 
Face Pitch 27r = 205.85 mm; N = 4; €, = 0.1765; Blade Area 
Ratio = 0.5748; Pitch Ratio = 0.9546; « = 8° = 0.1396; » = 0.276) 

2 Thickness-to- 

0.33122 
0.33191 | 0.0446 - 
0.33660 
0.34069 
0.33505 
0.33078 
0.32506 
0.32130 

0.176500 
0.260818 
0.415976 
0.574626 
0.718036 
0.837232 
0.926346 
0.981390 
1.000000 DANAIDNhRWNeH © 

Table 2 a 
Magnification Factors of @(¢) and 6(é) 

Magnification Factor 
Blade Area 

Ratio 

The inflow velocity components v*_(£) and v;,(&) of Ref. 6 are also used in 
this section and are: 

Veae(G), 9 for: 

vents) = 
0, 

I © I+ _ let bo I+ oOo 

; ee for=“n =_0 

MY a(S.) = 

i 0, fot “phen worritos (132) 

and a_,(&) = a,(€). The values of a,(€) are shown in Table 3. Figure 2 shows 

the given longitudinal inflow velocity components 

8 

1 ee Yo » a(S) png 
n=-8 
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versus angle 6. The symbol i as expressed by ¢ = €,(i=1, 2,..., 7) in the figures 
and tables of this section designates the blade section, and the relation between i 

and é; is defined in Table 1. Denoting the advance coefficient by standard nota- 

tion and the circulation about a blade section by J and G,(¢é,s) respectively we 

get 

foe) 

T= mv, | 20,(&s) 26,6, +34) = Pe Gee: (133) 
n=-0@ 

Further we adopt 0.276 as a convenient approximate value of v in the numerical 
calculation. Following the procedure in the previous section the values of G\(¢) 
for various values of J, and also’ V,..j° Vers Ven> Voas: Vins Vios WCE -%,)s 
G.(é,s), Cyp(€,s), etc., can be calculated. Then, denoting the zero lift angle of 

the blade section in radians by a,, and using the relations 

Cppo(€) = 0.0080, ap(é) = 0.08315, bp(€) = 6.283 a,,- 0.1097 (134) 

in accordance with Kerwin (6), the values of Cpp) and consequently the bearing 
forces Kp,, Ky, Kp,, Kyx, Kmy, and Ky, can be calculated numerically. Then, 
denoting the mean values of Ky,, Ky,, etc., with respect to time s by Ky,, Kp,, 

etc., respectively and denoting the magnitudes of the vibrating parts of K,,, K 
etc., with time s by AKy,, AK,,, etc., respectively, the mean values can be ob- 

tained by 

Fy? 

27 /N 2n/N 

K N K.cds > Ko= K = ld 
Fx ~ 27 Execs o Fy ~ 27 Fy GS; CIWS g 

: 0 0 

AKp, = ES Key - mal Kp, » AKpy = ae Kry - ee Kpy > etc. (135) 

Further, assuming that Cpp is a constant and equal to 0.01 instead of using 
Eqs. (134), we can calculate the aplitudes Ap,,,, Ap,,,, etc., for m = 1234. 

We will apply the method of comparing the bearing forces of propellers on 
the basis of the idea of thrust identity. With the propeller diameter D, the ship 

speed V, and the mean thrust T given in common, we will compare the number 
of revolutions of the propellers per unit time and the other characteristics of the 
bearing forces. We will take two propellers M, and M, and will use the sub- 
scripts 1 and 2 referring to propellers M, and M, respectively. Then, from the 

requirement of constant thrust, we obtain 

T = ~pD?V9J77Kpy (J, ) = ~OD?V7J7?Kpo(Iz) + (136) 

where 

Te 27 GB) Se = V/Ga DY = Ja 7e Siu n/a, (137) 

and K,,,(J,) and K,,,(J,) means that K,,, and K,,, are respectively functions 
of J, and J,. Hence, from Eqs. (137) we get 
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Fig. 2 - Longitudinal component of a 
given inflow velocity 

hpi) 3 Rp a) a= Ses (138) 

From Eqs. (138) we can calculate » or J, of propeller M, for a given value of J, 
of propeller M,. Thus we get the ratios of the bearing forces of propeller M, to 

those of propeller M, as follows: 

ae Heya (Ja) ahs w? Ky, (J2) 

7) ok) "7 RAG 

= RK 2) = L? Kyo (Jo) = Kye. (Jy) 

Reo eS My = eee A BS ee 
Kixi (Ji) Kyi (J 1) Ky 21 (J 1) 

Ke (Jo) uw AKey (J, ) [ee Se GS 
ARP, = —_—_—_——_  ,, ARE = —————__ ARg, = a 

Mryi(J1) sf Mry1 (Jy) KF 71 ase. 

w AKyx2(S2) H? Krys (Jo ) H? AKy 2 (J) ee Mx2\J 2 ee My2\J2 Nios = Mz2\v 2? 

AMKyx1 (Ji) Myyi (Ji) AMKyzi(Ji) . (139) 

First let us calculate the bearing forces of the parent propeller M. The 

values of the bearing forces Kp,, Kp,, Kp,, Kyx, Kyy, and Ky, for J = 0.70, 
0.85, 1.00, and 1.15 are periodic functions of period 27/N = 7/2 and are shown 

in Fig. 3. The mean values of the bearing forces K,,, Kpy Brie; Kuy , and 
Ke and the magnitudes of the vibrating parts of the bearing forces AK,,, aKa F 

AKy,, AKy,, 4Kyy, and AKy, are presented in Table 4, in which the values of their 
components caused by viscous drag are shown in parentheses. As shown in 
Table 4, the ratios of components caused by viscous drag to the total bearing 
forces are 10% at most. The mean values of the bearing forces and the magni- 
tudes of the vibrating parts of the bearing forces versus J are shown in Fig. 4 
and Fig. 5 respectively. From Figs. 4 and 5 the absolute values of Key and Ky, 
decrease with increase of J, and the absolute values of K,,, Ky, Kyy > Kaas 
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Fig. 3 - Bearing forces of propeller M 
fluctuating with time s 
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Table 4 
Bearing Forces Acting on Propeller M 

0.70) -0.25289 -0.00139 -0.00678 0.03822 | -0.00123 -0.00631 

(0.00445)* | (0.00006) (-0.00101) (0.00356) | (0.00010) (0.00012) 

0.85 | -0.19977 -0.00192 -0.00927 0.03165 | -0.00148 -0.00787 

(0.00393) (0.00005) (-0.00088) | (0.00308) | (0.00009) (0.00010) 

1.00} -0.14444 -0.00253 -0.01214 0.02423 | -0.00171 -0.00952 

(0.0038 1) (0.00003) (-0.00066) (0.00286) | (0.00007) (0.00007) 

1.15 | -0.08687 -0.00323 -0.01540 0.01594 | -0.00194 -0.01124 

(0.00412) (0.00000) (-0.00034) (0.00290) | (0.00004) (0.00001) 

0.70 0.05026 0.00519 0.00443 0.00623 0.00447 0.00183 

(0.00130) (0.00057) (0.00074) (0.00087) | (0.00013) (0.00011) 

0.85 0.06271 0.00666 0.00533 0.00812 0.00559 0.00220 

(0.00121) (0.00055) (0.00107) (0.00081) | (0.00011) (0.00015) 

1.00 0.07579 0.00827 0.00718 0.01022 0.00676 0.00270 

(0.00097) (0.00058) (0.00133) (0.00067) | (0.00011) (0.00021) 

1.15 0.08949 0.01000 0.00877 0.01253 0.00800 0.00325 

(0.00057) (0.00080) (0.00159) (0.00047) | (0.00011) (0.00028) 

*The values in parentheses are the values of components causedby viscous drag. 

0.05 

| -t ase (Se 
070 0.85 1,00 115 

Fig. 4 - Mean values of the bearing 
forces of propeller M 
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015 

Fig. 5 - Magnitudes of the vibrating parts 
of the bearing forces of propeller M 

AKp,, AKpy, 4Kp,, AKy,, AKyy, and AKy, increase with increase of J, or with de- 
crease of the mean thrust coefficient -K,,. 

The mean values and the magnitudes of the vibrating parts of the bearing 

forces of propellers M,,, M,,, M,;,, M,5, M,,;, Mg3, M,, and M,, versus J are 
shown respectively in Figs. 6 through 13. 

Let us examine the effect of skew on the bearing forces. It is found from 
Figs. 6, 7, 8, 4, and 9 that the mean values of the bearing forces of the propel- 
lers with a blade area ratio of 0.5748 have almost the same value for each J in- 
dependent of the skews. Let us compare the magnitudes of the vibrating parts 
of the bearing forces for each J. The values of AK,,, AKpy, Kp,, AKyys AKuy> 

and AK,, versus a for J = 0.85 and 1.00 are taken from Figs. 6, 7, 8, 5, and 9 
and are shown in Fig. 14. It is found in Fig. 14 that all the magnitudes of the 
vibrating parts of the bearing forces of the propellers with a constant blade area 
ratio decrease with increase of backward skew. Similar results are obtained in 
the cases of propellers M,, and M,, and in the cases of propellers M,, and M,,. 

We will next examine the effect of the blade area ratio on the bearing forces. 
To compare propellers M,,, M, and M,, on the basis of idea of thrust identity, 

we use Figs. 10, 4, 5, and 11 and we calculate the ratios Rey, Rp,, Ryx» Ruy» 
Ry,» ARpx, ARpy, ARp,, ARyx, ARyy, and ARy, of propellers M,, and M,, to propel- 
ler M as shown in Fig. 15. Similarly we calculate the ratios of propellers M,, 
and M,, to propeller M,, as shown in Fig. 16. It is found from Figs. 15 and 16 
that the mean values and the magnitudes of the vibrating parts of the bearing 
forces vary within 10% for blade area ratios between 0.43 and 0.72, excepting 
Ry and ARp,, which vary about 15%. 

Finally let us consider the amplitudes of the bearing forces for the frequency 
mn,N. The amplitudes Ap.., Apym» Arzm> Amxm» Amym» 2nd Ay,,, Of propeller M for 
m > 0 are shown in Table 5. Since the harmonic numbers n of the inflow velocity 
are +8 at most as shown in Eqs. (132) and Table 3, the amplitudes of the bearing 
forces for m = 3 and 4 are negligibly small compared with those for m = 1 and 2. 
The characteristics of the amplitudes versus J for m = 1 and 2 are similar in 
tendency to the characteristics of the magnitudes of the vibrating parts versus J. 
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0 

Fig. 6 - Mean values of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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: 

0.70 0.85 1.00 alts) 

Fig. 7 - Mean values of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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Fig. 8 - Mean values of the bearing 
forces (top) and the magnitudes of 

the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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O15-F 

-0.5Krx 
-1 OKey 

-10KF2 

5Kux 
—10Kny|_ 

~10Km 

0.05 

a 4 st. 

0.70 0.85 1.00 115 

Fig. 9 - Mean values of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M,, 

73 



Yamazaki 

Fig. 10 - Meanvalues of the bearing 
forces (top) and the magnitudes of 

the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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Fig. 11 - Meanvalues of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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Fig. 12 - Meanvalues of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M,, 
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Fig. 13 - Meanvalues of the bearing 
forces (top) and the magnitudes of 
the vibrating parts of the bearing 
forces (bottom) of propeller M43 
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Fig. 14 - Magnitudes of the vibrating parts 
of the bearing forces versus skew 
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Fig. 15 - Ratios of the bearing forces versus the 
blade area ratio for a= l 
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4=0, -Krx=0.200 for Propeller M,, 4=0, ~Kpx=0.145 for Propeller Mz: 

—— ——aRyy 
— 7 4Rue 

075 

Fig. 16 - Ratios of the bearing forces versus the 
blade area ratio for a = 0 

CONCLUSION 

In the case of a ship with a single propeller and a single rudder being moved 

straight with a constant velocity by rotating the propeller with a constant angular 
velocity in unlimited still water, a general theory was developed for the flow 

field around the ship and then the forces and moments acting on the hull, rudder, 
and propeller on the basis of ideal fluid dynamics, in which the mutual interac- 
tions among these parts were taken into account generally. The flow field around 
the ship was determined so as to satisfy the boundary conditions on the surfaces 
of the three parts simultaneously and was assumed to be composed of the irrota- 
tional velocity field and the viscous velocity field. The viscous velocity field and 
its interaction with the irrotational velocity field were assumed in appropriate 

forms not to contradict with the boundary layer and wake theory. Then, by com- 
paring the characteristics of the flow around a ship with a propeller and a rudder 

with those around a ship from which the propeller was taken off, we derived the 
general mathematical expressions for the differences of the forces and moments 

acting on the hull, rudder, and propeller between these two ships. Thus we ob- 
tained the unsteady propeller forces, which were subdivided into the surface’ 
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Table 5 

Amplitudes of the Vibrating Parts of the Bearing Forces 

0.02648 0.00216 0.00178 0.00273 0.00223 0.00068 
0.00493 0.00095 0.00089 0.00065 0.00052 0.00051 
0.00001 0.00000 0.00003 0.00001 0.00000 0.00000 
0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 

0.03291 0.00293 0.00248 0.00373 0.00277 0.00083 
0.00602 0.00123 0.00114 0.00084 0.00063 0.00062 
0.00002 0.00001 0.00004 0.00001 0.00000 0.00000 
0.00001 0.00001 0.00001 0.00001 0.00000 0.00000 

0.03960 0.00381 0.00329 0.00487 0.00334 0.00099 
0.00712 0.00154 0.00141 0.00103 0.00075 0.00073 
0.00002 0.00001 0.00006 0.00001 0.00000 0.00000 
0.00002 0.00002 0.00002 0.00002 0.00000 0.00000 

0.04656 0.00479 0.00422 0.00617 0.00393 0.00116 
0.00823 0.00187 0.00171 0.00125 0.00087 0.00084 
0.00003 0.00001 0.00008 0.00002 0.00000 0.00000 
0.00003 0.00002 0.00002 0.00002 0.00000 0.00000 

forces and the bearing forces. Then, for the numerical calculations, we reformu- 

lated the expressions of the bearing forces of a propeller placed in a given non- 
uniform flow, which was assumed to coincide with the measured hull wake of the 
ship without a propeller. 

Finally, numerical calculations were performed for nine examples of four- 

bladed propellers with a constant pitch ratio which have various skews and blade 
area ratios to examine their effect on the characteristics of bearing forces. The 
results obtained are as follows. The absolute mean values and the magnitudes 
of the vibrating parts of the bearing forces decrease with decrease of the ad- 
vance coefficient, excepting the thrust and torque coefficients, which increase 
with decrease of the advance coefficient. We compared the bearing forces of 

various propellers on the basis of the idea of thrust identity. For a given value 
of the blade area ratios the mean values of the bearing forces are independent of 

the skew, while the magnitudes of the vibrating parts of the bearing forces in 

general decrease with increase of backward skew. For the case of a constant 

skew the bearing forces vary a little with the variations of blade area ratio. 

The numerical calculations for the effects of the number of blades and the 

pitch ratio on the bearing forces and also on the surface forces are left to later 
works. 
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DISCUSSION 

P: C. Pien 

Naval Ship Research and Development Center 
Washington, D.C. 

This paper is another important contribution of the author to the field of 

propeller hydrodynamics. It is a very comprehensive paper in which the author 

has given a complete expression of the velocity potential of a single-screw hull- 

propeller-rudder configuration. As shown by Eqs. (25) and (26) it is written in 
terms of the source and the vorticity distributions which are determined by sat- 
isfying simultaneously the unsteady boundary conditions on the hull surface, 

propeller-blade surface, and rudder surface. Once the velocity potential is ob- 
tained, it is a relatively easy matter to compute the vibratory forces on either 
the hull, the propeller, or the rudder. However, it seems extremely difficult to 

calculate these time-dependent source and vorticity distributions. Would the 

author care to suggest a practical numerical procedure to obtain these distribu- 
tions ? 

Concerning the computation of the periodic blade loading, I would like to 
make one remark related to the geometry of a trailing vortex sheet in the behind 
condition. As shown in Eqs. (112) the geometry of the free-vortex sheet is a 
function of », which is a function of the inflow velocity as well as the blade load- 
ing. It is convenient to make the usual assumption that the free-vortex sheet 
lies on a helical surface with the pitch the same as the blade-face pitch. How- 
ever, this assumption also implies that there is no circumferential inflow varia- 

tion, otherwise the free-vortex sheet cannot possibly lie on a helical surface. 

Hence, such an assumption may not be proper, especially when the inflow to the 

propeller is highly nonuniform and the blade is heavily loaded. Under such cir- 
cumstances, it may be necessary to keep the actual slip-stream geometry intact. 

However, as shown by Eqs. (112), the problem becomes extremely difficult if no 
simplification is made on the slip-stream geometry. A long tedious iterative 
procedure becomes necessary. This makes one wonder whether the vortex rep- 
resentation of a blade loading is an appropriate approach in solving an unsteady 
propeller problem under a heavily loaded condition. I would like to know the 

author's view on this point. 
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DISCUSSION 

William B. Morgan 
Naval Ship Research and Development Center 

Washington, D.C. 

This paper is very interesting and ambitious. We at the Naval Ship Research 
and Development Center have followed the work of Prof. Yamazaki with interest 
for many years. Studies at the Naval Ship Research and Development Center in- 

dicate that the influence of the propeller on the hull is mainly potential in origin 
and the influence of the hull on the propeller is mainly viscous in origin. These 

conclusions are based on theoretical work confirmed by tests in the Naval Ship 
Research and Development Center. The influence of the propeller on the sepera- 
tion point, especially on single-screw ships, is very important, and I wonder if 
Prof. Yamazaki has plans to include the viscous effects in a more rational man- 
ner. It seems to me that the vorticity in the wake of the ship must be considered 
to make the solution practical. 

DISCUSSION 

V. F. Bavin 
Kryloff Ship Research Institute 

Leningrad, U.S.S.R. 

I wish to compliment the author on the considerable amount of work he has 
done in formulating the problem of the hull-propeller-rudder interaction in its 
most general aspect. Being also involved in this field I agree with the author 

that the rigorous solution of this problem is a very difficult task. 

Therefore it seems to be quite reasonable first to investigate each aspect 
of the problem separately. The evaluation of the effect of blade width and skew 
on the amplitudes of bearing forces made by the author is very valuable. I was 

a little surprised to find the theoretically predicted influence of the blade area 
ratio to be rather small. This conclusion is not consistent with the results ob- 

tained by Krohn and Miller. 

It would be very interesting to compare in the future the magnitude of the 
surface and bearing forces for some typical hull forms and to evaluate the in- 
fluence of the afterbody configuration on the magnitude of the surface forces. 

* * * 
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REPLY TO DISCUSSION 

Ryusuke Yamazaki 

I would like to express my gratitude to Dr. Pien, Dr. Morgan, and Mr. Bavin 
for their useful discussions and valuable comments. I have intended in this paper 

to find a theoretical clue to calculate the unsteady propeller forces including the 

propulsion performance of a ship on the basis of my present knowledge, and so 
the theory in it is not a completed closed system mainly because of an imperfec- 

tion in the treatment of the viscous flow which holds vorticity. I agree with Dr. 
Morgan's opinion about the interaction of the ship hull and the propeller. I have 
formed a plan as follows. By using the method developed in this paper, we can 
calculate the stream line, the flow velocity, and the pressure near the hull sur- 
face, and then, applying the two-dimensional boundary layer theory to the flow 

along each stream line, we can obtain the frictional resistance of the hull, the 

separation point of the boundary layer, and the wake velocity behind the hull and 
can correct numerically the equations of the boundary conditions on the hull, pro- 

peller, and rudder and the balance of the forces acting on these three parts. By 
repeating the procedure the precise values of the unsteady propeller forces are 

expected to be obtained. 

On the other hand, the flow state of the three-dimensional boundary layer 

surrounding such a three-dimensional body as a ship is generally different from 

that obtained by means of the above-mentioned two-dimensional process, even 
in the case of steady condition. Therefore, as described in this paper, to solve 

the problem of fluid flow near the hull, especially viscous flow, we must apply 

the three-dimensional turbulent boundary layer and turbulent wake theory, which 
is not yet completed. For example, at present we cannot calculate numerically 

the exact values of the pressure in a laminar flow with vorticity for high Reynolds 
numbers. In the future I want to study further the viscous flow near the hull, 
which contains the boundary layer, its separation point, and the wake. 

In reply to Dr. Pien and Mr. Bavin, I plan to carry on the numerical calcula- 
tion of the bearing and surface forces for the typical ship simultaneously. How- 
ever, it seems very difficult, because the velocity components induced by the 

velocity potential contain infinite series of improper integrals of Bessel func- 

tions. In the examples of this paper the influence of the blade area ratio on the 
bearing forces is rather small compared with the results obtained by Krohn and 
Miller, as Mr. Bavin said, and I consider the reason to be the differences of the 
wake distributions and the geometrical shapes of propeller blades except for the 

blade area ratio. 

On the basis of the unsteady lifting surface theory with higher order terms, 
the general theory to calculate hydrodynamic performance characteristics of a 
heavily loaded propeller working unsteadily in a nonuniform flow was developed 

in the beginning of Ref. 6, in which exact expressions were obtained for calculat- 
ing the spatial and temporal distortion of the geometrical shape of the free vortex 

sheet with the fluctuating strength from a regular helical surface with a constant 
pitch. However, in the numerical examples of this paper and Ref. 6, I calculated 

85 



Yamazaki 

the bearing forces by adopting only the first term of the Birnbaum's series as 
the chordwise distribution of the bound vortex and the regular helical surface 
with a constant pitch as the geometrical shape of the free vortex to simplify 
programming the numerical calculation. Accordingly I agree with Dr. Pien's 
opinion about the procedure to calculate numerically the path of the free vortex 

practically. I doubt the need of an exact solution for the path of the free vortex, 
because the hydrodynamical performance characteristics obtained theoretically 
do not agree exactly with the experimental results even in a case where the pro- 

peller is working steadily in a uniform flow. 
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MARINE PROPELLERS 

Pao C. Pien and J. Strom-Tejsen 

Naval Ship Research and Development Center 
Washington, D. C. 

ABSTRACT 

Based on the concept of an acceleration potential, a general lifting sur- 
face theory for marine propellers has been developed. It is applicable 
to propellers with rake, skew, arbitrary pitch distribution, arbitrary 
blade contour outline, etc. Also the propeller loading can be steady or 
unsteady, light or heavy. 

A numerical technique for the evaluation of the kernel function is dis- 
cussed, and some preliminary results from a computer program are 
given. 

INTRODUCTION 

A screw propeller is a very simple, rugged, efficient marine propulsive 
device. However, it has shortcomings. When propeller loading is heavy, it may 

induce severe hull vibration. Erosion and noise may also become serious prob- 
lems in many instances. Theoretical studies on marine propellers have at- 

tempted to eliminate or minimize these shortcomings, and in recent years sev- 

eral papers dealing with propeller theory have been published, e.g., Refs. 1 
through 10. Unfortunately, existing propeller theories have many limitations 
because of the assumptions made to facilitate development of the theory or to 
shorten the numerical analysis. Generally speaking, these limitations involve 
three areas: propeller geometry, propeller loading, and propeller operating 

conditions. Such geometrical features as radial pitch variations, skew, and rake 
are not always properly dealt with by existing theories. Most propeller theories 

are applicable only to lightly or moderately loaded propellers. Moreover, un- 
steady propeller theory is still in its infancy. In many instances, it is advan- 
tageous to operate in fully cavitated condition, but the present methods of design- 
ing a supercavitating propeller are not entirely satisfactory. 

In view of the present situation, it appears that there is a need for a general 
lifting-surface theory for marine propellers which is applicable to a practical 
propeller under any operating condition. This paper represents an attempt to- 

ward developing such a theory. 

It may seem appropriate to select one of the existing propeller theories and 

attempt to generalize it, but this is not a realistic approach. If an existing 
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vortex-propeller theory is chosen as a point of departure, it is difficult to take 
contraction of the slipstream into account. Such an attempt has been made in 

the hope of developing a theory for heavily loaded propellers, but so far it has 
not been successful. Propeller theory based on vortex representation has been 
extended to cover unsteady operation, e.g., Refs. 11 through 18. Despite many 

simplifications having been made in such unsteady propeller theories, the nu- 
merical analysis is still so complicated that hours of computing time on a high- 

speed computer would be needed. Therefore, it is not practical to generalize 
such a theory any further. 

To overcome some of the difficulties inherent in a vortex-propeller theory, 

theories based on the concept of acceleration potential have been developed re- 

cently, e.g., Refs. 1 and 19 through 21. The starting point is the Euler equations 
of motion; the concept states that the pressure gradient at any point divided by 
the fluid density gives the acceleration of the fluid element at that point. Strictly 

speaking, the pressure field of a fluid is not a potential function. Hence, such 
propeller theories are viewed as linearized theories and are applicable only to 

lightly loaded propellers. Unless the acceleration potential itself is modified, 
there is not much room for generalization. 

It seems imperative to take a fresh look at the problem before attempting 
to develop a general lifting-surface theory for marine propellers. When a pro- 

peller blade is moving through a fluid, the fluid motion in a fixed space is un- 
steady. Various fluid particles experience certain accelerations. The accelera- 

tion of a moving fluid particle dq/dt consists of two parts: 

d i) 

te. tk qu) gq. (1) 

The first part, oq/ct, is due to the unsteadiness of the velocity field or the ac- 
celeration at a fixed space. The second part (qV)q is due to the motion of the 

fluid particle. It is more convenient if we consider these two parts separately. 
As a matter of fact the time integration of the acceleration at a fixed space plus 

the initial velocity field yields the velocity field at any time: 

t 

qo= Gy + { Lore (2) 
t=it., ot 

Then the second part of the acceleration of a moving fluid particle can be ob- 
tained from the velocity field at that time. The fluid-particle acceleration due 
to the movement of the particle can be left out in the calculation of the velocity 

field at any time. Therefore it is logical to define a new acceleration potential, 

whose gradient will yield an acceleration field in a fixed space. The general 
theory of marine propellers described herein is based on this concept. 

The amount of numerical work involved in any propeller theory is always a 
practical concern. A propeller theory is useful only if the computer time re- 
quired is within a reasonable limit. The kernel function involved in a propeller 

theory is quite complicated, and the usual practice is to evaluate it numerically. 

In some cases, modification of the kernel function is made for convenience in 
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evaluation. However, if the modification is too drastic, the solution obtained 
may no longer be related to the problem to be solved. 

The main difficulty in attempting to functionally carry out the integration 
involved in a propeller theory is the cosine factor in the integrand. In the past, 

efforts have been made to find an approximating expression for either the whole 

integrand or the distance factor in the denominator of the integrand, but no sat- 
isfactory expression has been obtained, because the range of integration extends 
to negative infinity. On the other hand, it is well known that a cosine function 
within a small range of the argument can be accurately approximated by a 
second-degree polynomial. Hence by dividing the range of integration into 

steps and replacing the cosine factor of the integrand by an appropriate second- 

degree polynomial the integration can be carried out functionally within each 

step. This approach greatly reduces the required computing time compared to 

the usual tedious numerical integration. Based on this numerical technique a 

very efficient computing program can be developed. Such a development is now 

under way, and some preliminary results are included in this paper. 

BASIC CONCEPT 

When a propeller blade advances through a fluid, a pressure field is moving 

with the blade. Asa result, an unsteady motion is created throughout the fluid. 
As was stated in the Introduction, the acceleration of a fluid particle of any un- 

steady flow consists of two parts: 

USES Beer eget ths (1) 

where q is a velocity vector. The first part, %q/ot, is due to the time rate of 

change of velocity in a fixed space. The second part, (qV)q, is due to the move- 

ment of the fluid particle. 

For an inviscid fluid, in the absence of an external force field, we have the 
equations of motion 

dq 
Paap 2 SkP (3) 

where Vp is the gradient of the pressure field p, and p, is the fluid density. 

Combining Eqs. (1) and (3) we write 

oq 1 
A om eae ed 

or 

oq 1 1, 9 z 
eae: oe VSS Sd = i at : 7 2, VP v (597 qx € (4) 

where é is a vorticity vector. 
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In front of the moving blade there is no vorticity, and the cross product in 
Eq. (4) is zero. Our first conclusion was that in the wake, vortex lines are 
parallel to the streamlines, and the cross product is again zero. Later we 
realized this conclusion is not true, but for the reasons discussed in the appen- 
dix we still feel justified in assuming the simplification that the cross product 
is zero in the wake. With this simplification the following equation is valid 
through the space except on the blade surface: 

Namaig bgsfilzgs Tae (5) 

For incompressible fluid », is a constant, and we have 

oq _ pee ayes 
Taek ae (6) 

We introduce a function ® as follows: 

P 1 
® = Pe + ma . (7) 

Then 

oq _ 

= age ine (8) 

For later convenience we also define an induced pressure p, as follows 

1 
Py 5) pp O Rip HE lppig? + (9) 

From the continuity equation 

oq fe) 
v(34) = ee AVA i) (10) 

and ® consequently satisfies the Laplace equation 

Ve, @ = 0). (11) 

The function ® is defined as an acceleration potential, the negative gradient 

of which according to Eq. (8) yields an acceleration field. Since it satisfies the 
Laplace equation, it is an "exact" acceleration potential. It should be noted that 
® is not the same as defined in Refs. 1 and 19 through 21, in which the accelera- 
tion potential is based on the linearized equations of motion. The exact accel- 
eration potential differs from the linearized one by a second-order term q?/2. 

The exact acceleration potential is the foundation for developing a general 
theory for marine propellers. Since the acceleration potential is analogous to 
the velocity potential, it is helpful to discuss very briefly how the velocity 
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potential is used in developing a vortex propeller theory. After this has been 

done, it will be easy to understand how the acceleration potential is used in de- 
veloping our theory for marine propellers. 

For a velocity potential we may (22) write 

wae [ele Sor )88-+ ae J foooe'y 3 (B) a8 5 0 ucla 
where ¢p is the value of the velocity potential ¢ at a field point P, ¢ is the 
velocity potential value on one side of the boundary surface, ¢’ is that on the 
other side, and 90/on is equal to -9/on', 

The first term is due to a surface distribution of simple sources of density 

a + #) 
Salt ‘an (Jo 

It gives the discontinuity of the normal velocities on the two sides of the bound- 
ary. The second term is due to a surface distribution of dipoles of density 

¢- ¢'. It gives the discontinuity of the tangential velocities across the boundary. 

In applying Eq. (12) to a propeller problem the discontinuity of the normal 
velocities is due to the blade thickness. Hence the simple source distribution at 
the boundary can be derived from the thickness. In a propeller problem we are 
concerned with the lift distribution produced by the discontinuity of the tangential 
velocities. Hence for the sake of convenience we specify the circulation distribu- 
tion on the boundary directly rather than specify the discontinuity of the velocity 
potential across the boundary. The boundary surface, in the case of a propeller 
blade, extends from the leading edge to infinity behind, since there is a discon- 
tinuity of the tangential velocities across the trailing free-vortex sheet as well 
as across the blade surface. 

The discussion about the velocity potential can be repeated for the accelera- 
tion potential, except for replacing the word velocity by the word acceleration. 
We may write in analogy with Eq. (12), 

ale oe ass a | foo 0) = (1) as | (13) 

In applying Eq. (13) to a propeller problem, the first term is again due to the 
blade thickness. However, the pressure source distribution at the boundary is 
derived from the blade-section curvature on both sides of the blade rather than 
from the thickness. The second term is also due to the blade-load distribution. 

For the sake of convenience in the following discussion let us temporarily 

approximate ® by p/p,. As shown by Eq. (7) they differ only by a second-order 
quantity q?/2. The pressure dipoles in the second term of Eq. (13) then corre- 

spond to the pressure jump across the boundary or the blade-load distribution. 
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Since no singularity exists except at the blade surface, the complexity of a pro- 
peller problem is greatly reduced. 

It may be noted that the concept of the acceleration potential may be used 
for supercavitating propeller problems. A cavity can be taken as the blade 
thickness as far as viewed from the fluid, but the geometry of the cavity is un- 

known before the problem is solved. Hence we cannot specify the simple source 

distribution in Eq. (12) a priori if we base our analysis on the velocity potential. 

This situation makes the problem extremely difficult. However, if the accelera- 

tion potential is used in our analysis, the pressure-source distribution in the 

first term of Eq. (13) can be determined from the blade loading and the cavita- 
tion number c. This is shown as follows, beginning with 

Dine Po Se (14) 

where p" is the pressure on the upper or suction side of the blade, p, is the 
ambient pressure in the absence of the blade, and Ap is the pressure jump 
across the boundary or the lift. The cavity pressure p, is 

Page ae ate oN (15) 

where V is the speed used in defining the cavitation number c. Subtracting 

Eq. (14) from Eq. (15) we have 

fi. + (p- pyoV?) (16) 

where F is the required additional pressure distribution to make the pressure 

on the suction side equal to the cavity pressure. 

It has been observed that the curvature of the cavity wall may be very large 
at the leading edge, depending upon the angle of attack. However, the curvatures 
are small near the trailing edge and become large again near the end of the 
cavity. Since there is no pressure discontinuity across the cavity wall, the 
singularity distribution required to represent that portion of the cavity which is 
trailing the blade is small to begin with and becomes appreciable at the end of 
the cavity. It has been found that various models of the cavity closure condition 
does not affect the loading significantly if the cavity is sufficiently long. There- 
fore, at least as a first approximation, we may ignore the singularity of the ac- 
celeration potential beyond the blade surface and consider the blade surface as 
the only boundary where the pressure dipole Ap and the pressure source p, are 
distributed. The pressure dipole is derived directly from the specified blade- 
load distribution. The pressure-source distribution is obtained by solving the 
integral equation 

pais Lf [Lppas': (17) 

92 



A General Theory for Marine Propellers 

Once the pressure dipoles and pressure-source distributions at the blade 
surface are determined, Eq. (13) is used to obtain the acceleration field from 

which the velocity field is obtained. If a higher order solution is required, an 

iterative procedure may be tried. 

It is not our intention here to show how to design a supercavitating propel- 
ler. Our discussion is merely to indicate how the acceleration potential may be 

conveniently used in such problems. 

Let us return to the general propeller problem. For a thin blade with a 

zero thickness, only the second term of Eq. (13) exists on the boundary. We 
want to find the relationship between the jump in »; ® and the jump in pressure 

p across the blade surface. From Eqs. (7) and (9) we have 

1 
Ap; = Ap + 2 Pe (ay? e Guy) ’ (18) 

where Ap, and Ap denote the jump across the blade of po, ® and p respectively, 

and q; and qy are the absolute velocities of the fluid at the lower and the upper 
blade surfaces respectively. The velocity squared is equal to the sum of the 
square of the normal velocity and the square of the tangential velocity. Since the 
normal velocity is continuous across the blade due to zero thickness, the con- 

tribution to Gye - ay must be from the difference in the tangential velocities 

across the blade. The magnitude of the tangential velocities on both sides of the 

boundary are nearly equal but with opposite signs. Hence, the difference between 
the square of the tangential velocities is negligible, and the approximation of Ap 
by Ap; is correct to the second order of the induced velocity. If the blade thick- 

ness is not zero, the thickness distribution produces continuous tangential and 
discontinuous normal velocity components across the blade. Hence there may be 
some differences of q,?- q{, depending on the relative magnitudes of the induced 

velocities due to blade loading and blade thickness respectively. In a perform- 
ance prediction, Ap; instead of Ap is determined from the boundary condition, and 

Apis then computed from Eq. (18). In a design problem the Ap, distribution can 

be taken equal to the specified Ap distribution as a first approximation. If their 

differences are found to be appreciable, Ap; can be corrected accordingly and the 
computation repeated. 

The feature of any propeller theory is to obtain the changes in fluid velocity 
in the vicinity of the blade due to the direct action of the propeller. This can be 

done quite conveniently by using the acceleration potential. Let us assume that 

the time history of singularity distributions of pressure sources and dipoles are 

specified on the blade surface and that the blade position in the past relative to 
the present position is also known. By taking the negative gradient of Eq. (13) 

the acceleration at any point relative to the present blade position is known from 
t equal to-~ to the present time. The time integration of the acceleration plus 

the initial fluid velocity at the point under consideration, in the absence of the 
propeller, gives the fluid velocity at the present time. This procedure is much 

simpler than that involved when the velocity potential is used. 

In a vortex theory based on the velocity potential a trailing vortex sheet ex- 
tends to infinity, and its geometry is not only a function of the blade loading but 

also a function of the fluid flow when the propeller is absent. For an unsteady 
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operating condition the geometry of the free vortex sheet as well as the vorticity- 
strength distribution on this sheet becomes almost immanageable unless drastic 
simplification and assumptions are made. 

When the acceleration potential is used, the blade position is determined by 
the advance velocity and the angular velocity and is independent of the blade 

loading. Hence, the induced fluid velocity at the point under consideration is 
proportional to the blade loading, and the principle of superposition can be ap- 
plied. The contribution to the induced fluid velocity from each of the blade- 

loading components can be computed separately. 

Furthermore, no limitation is needed on blade loading, blade geometry, or 
blade motion. As long as the total time history of the blade loading and blade 
position are known during any time period, the change in fluid velocity during 
that time period at any point relative to the present position of the blade can be 
computed. Therefore, the unsteady propeller problem can be dealt with ina 

straightforward manner. 

If a propeller has several blades, or if several propellers or other lifting 
surfaces operate simultaneously in the same vicinity, the computational work 
may increase, but the basic concept of using an acceleration potential is the 

same. 

In summary it can be stated that a useful tool, the exact acceleration poten- 

tial, has been developed which greatly facilities development of a general theory 
for marine propellers. However in this paper we shall limit ourselves to the 

discussion of periodic propeller loading in the noncavitating condition only. 

Even though it is possible with the approach mentioned to include all the de- 
tails of a blade element section in the formulation of our general propeller 

theory, there is no reason to unduly complicate our problem beyond the practical 
engineering necessity. For instance a great deal of computing time can be saved 
if the pressure source or dipole distribution can be placed along a chord rather 
than along a meanline. To find out whether such simplification will impair the 

practical usefulness of our theory, information on airfoils as given in Ref. 23 
have been studied with care. Figure 1 (taken from this reference) compares 
theoretical and experimental pressure distributions on both sides of the foil. 
The theoretical curves are computed on the assumption that the velocity distri- 
bution about the foil is composed of three separate and independent components: 

1. The distribution corresponding to the velocity distribution over the basic 
thickness form at zero angle of attack. 

2. The distribution corresponding to the load distribution of the meanline at 

its ideal angle of attack. 

3. The distribution corresponding to the additional load distribution asso- 
ciated with the angle of attack. 

Items 2 and 3 are computed on the basis of a thin foil theory where the aero- 

dynamic singularities are distributed along a chordrather than along the meanline. 
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eS 
NACA 66(215)-216, u=0.6 

2.0 

UPPER SURFACE 

THEORY 

O EXPERIMENT 

x/c 

Fig. 1 - Comparison of theoretical and 
experimental pressure distributions for 
the NACA 66(215)-216 airfoil; c, = 0.23 
(from Ref. 23) 

In view of the fact that the lift coefficient C, of 0.23 is relatively large compared 
with that of a propeller blade and that the agreement between the theoretical and 
the experimental pressure distribution is excellent from a practical viewpoint, it 

seems permissible to place the pressure source and pressure dipole distributions 

along a chord line. 

Another interesting point to be drawn from this comparison is that the vis- 
cosity effect does not significantly influence the normal force on the blade. This 

important fact greatly simplifies the task of computing the viscous drag of the 
blade. By examining the drag coefficient curves of various foil sections as 

plotted against the section lift coefficient C,, as given in the same reference, it 
clearly indicates that the viscous drag is greatly influenced by the pressure dis- 
tribution. With the same basic section at the same lift coefficient, the viscous 

drag coefficient differs depending on whether the lift is produced by camber or 

by angle of attack. This means that the viscous drag cannot be accurately com- 

puted unless the lift or pressure distribution over the blade has been obtained. 
Since the pressure distribution is not affected by the viscosity within the range 

of lift coefficient of interest, no iteration between the lift and drag is necessary. 

The viscous effect on propeller thrust and torque can be analyzed after the po- 

tential problem has been solved first. 
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Based on these considerations, it is logical to first develop a general theory 
for marine propellers in inviscid fluid. Since the induced velocity due to blade 
loading is independent of that due to blade thickness, a propeller with zero blade 
thickness will be considered here as a first step. 

DEVELOPMENT OF THE THEORY 

Derivation of Kernel Functions 

It is assumed that the propeller blade thickness is zero and that the fluid is 

inviscid. The steady case of a propeller operating in open water is considered 
first; the propeller operating in the behind condition is discussed. 

Figure 2 defines a cylindrical coordinate system. The position of a moving 
blade at time t equal to zero is also shown. The essential part of our problem 
is to calculate the induced velocity at any point P(x,r,¢) due to the action of the 
blade. It is convenient in our discussion to introduce three equations: 

u(x,r,$) = J freee K,(x,1,6;€,,0) dede , (19a) 
Ss 

ViC%, TP) [ fece.e K(x, 7503630,0) dedé ™, (19b) 

Ss 

w(x tid) = f (LCE,7.8) Kye, bi8.0,8) dod , (19¢) 
Ss 

where u(x,r,¢), v(x,r,¢), and w(x,r,¢) are respectively the axial, tangential, 
and radial induced velocity components at P(x,r,¢), L(€,e,9) is the blade load 
distribution, and K,(x,r,¢; €,e,?) represents the contribution to the axial compo- 
nent of the induced velocity at P(x,r,¢) of a unit blade loading at Q(é,,,4), etc. 

Our first objective is to derive expressions for the kernel functions K,, Kk 
and K,. In the case of zero blade thickness the blade loading L(¢,,@) can be 
represented by the induced pressure jump Ap, as discussed in the previous 
chapter, and the field value of the acceleration potential ® at P(x,r,¢) due toa 
unit pressure dipole at Q(é,,@) is 

m? 

1 ae fal Dix, oP) )) = amp, a im , (20) 

where n’ is the normal of the blade surface at Q(¢,,@) and R is the distance 
from point Q(¢,,0) to P(x,r,¢). 
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Q 

TRAILING EDGE 

LEADING EDGE 

— 

Fig. 2 - Coordinate system and notation 

When t is zero, we have 

€=ptany+ p@ tan Bo, (21) 

where » is the rake angle and fg is the blade element pitch angle at radius p. 

When ¢t is not zero, we have 

€=ptany+ p 6 tan Bg - pMt tan B. (22) 

The last term of this equation relates to the fact that the point Q(¢é,°,0) is mov- 

ing along a helical line with a pitch angle of 6. From this equation 

€=io tan y+ psG + pe" tan 2, (23) 

where s = tan fg - tan # and 0’ = 6 - {it is the angular coordinate of Q(¢,,0') 

at time t. 

If P(x,r,¢) is on the lifting surface when t is zero, we have 

war tan 7 +or@ tan Gp), (24) 

where /, is the blade element pitch angle at radius r. Then 
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x -/6'S\(p= Try tan y - ¢ (Pp tan’ B=" tan’ 6p) 

-p(0'-¢) tan B - psé 

or 

x= = Ffd-+-p(O4=) ‘tan 6) , (25) 

where 

d= (p-r) tan y+ ps (0-4) + ¢(p tan Bg-r tan Bp) , (26) 

and 

R= [((=-€6)? + per? = dor cos (6"— ¢yf472 (27) 

When the propeller pitch varies with radius, the normal to the blade surface 

will have a radial component corresponding to a force in the radial direction. 
However, the radial component of the pressure dipole is ignored, since it is 
usually very small and since a pressure dipole in a radial direction produces 

very small downwash compared with a pressure dipole normal to the radial vec- 

tor with the same strength. Hence cos Sg and sin Sg become the axial and tan- 
gential components of the unit pressure dipole at Q(¢é,0,0). We break the tan- 

gential component further into sin Sg cos (@'-¢) and sin £g sin (0'- ¢) 
corresponding to the tangential and radial directions at point P(x,r,¢), respec- 
tively. We denote these components by 1, m, and n as follows: 

1 = cos Bg , (28a) 

m= sin Bg cos A , (28b) 

n= sin Bg sinA , (28c) 

where A = (@'-¢). Likewise we have the three components of the distance vec- 

tor from Q(é,/,0') to P(x,r,¢) parallel to 1, m, and n respectively as follows: 

Resa XS -=\7 Cd 4 ed. tan 6), (29a) 

Ro =" p(Sin’ AN, (29b) 

Ra = r= p cos A . (29c) 

By taking the gradient of both sides of Eq. (20) we obtain the acceleration com- 
ponents A,, A,, and A, at point P(x,r,¢)in the axial, tangential, and radial 
directions respectively: 

rhea 1 3RyM - 

AL = arp, (- R? RS ) (30a) 
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1 " 3RiM 
1a = amp, 1 3 af RS ) (30b) 

3R.M 5 1 /_ oa n 
ie ae ( =a Pans ). (30c) 

where 

M = IR; + mR, +nR 
n 

= -cos Ag(d+pd tan 8) + r sin Bg sinh . (31) 

Then we have 

0 

Ms | A, dt , 

0 

K,, = An dt | 

0 

Ke i A, dt 

Since 

N= O° = f= 6-6-0 | 

dN= -—Odt | 

XN=O6-6, when t=0, 

= 8) when t = -© , 

then 

1 { 1 —) 
K, =- ~—-- - —+ dad , 32a 

il 4p [_( R3 RS ( ) 

- 3R_M 
Ce i (- 2+ Jan. (32b) 

4mp.Q 5g RS R5 

e 3R_.M eee (- nego Jar | (32c) 
4p, hd R° RS 
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For later convenience, the range of integration is divided into two and kK, is 

written 

Kic= Ky + Ky, (33) 

with 

° 3R M 
a i (- 44 Pan. (34a) 

1 47p,.0 bee R3 R5 

- 3R,M 
aeeke = ice ee (34b) 

2 47p,Q A R3 R5 

Similarly we also define K, , K,,, and K, |» K,, 

Evaulation of Kernel Functions 

The preceding integrations cannot be carried out functionally. To avoid a 

long tedious numerical procedure, we approximate sin \ and cos A as follows: 

Let 

Nea V0h ar Ay 

where y varies from 0 to « and k is an integer varying from 0 to ~. Then we 

have 

cos \ = cos ka cos y - sin ka siny , (35a) 

sin A = sin ka cos y + cos ka siny . (35b) 

If « is chosen small enough, we can approximate cos y and sin y as follows: 

cos y= 1+ ayy t+ ayy? : (36a) 

sin y = y + a3y” , (36b) 

where a,, a,, and a, are so chosen that the best approximation can be made 

within the range of y. From Eqs. (35) and (36), 

Ssan-A-= S)-+ -S,y + S5¥? , (37a) 

sin ka + cos ka, and s, = a, sin ka + a, cos ka, and where s, = sin, kad, s; = a; 

cos Aj= cyt cy + e,y4 ‘ (37b) 
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where c,’= cos ko, cy, =,4, cos ka = sim ko,,and c, = a, cos ka = a, sin ke. 

Equations (28) become 

1 = cos Bg , (38a) 

m= Cg sin rere) + Gy 2S tin fare) Vy ve, san lero veo (38b) 

N= Sg sin fg + sy sin Bg y +s, ‘sin Bg yes (38c) 

Equations (29) become 

Ry = -(d4+ eo tan 6) ="2d = pka tan 6 — er tan By 

= Xe t xkavy PWEth Vox o= Gd Oke tan ey x = =p5 tan 6.4 (39a) 

R= PSpet Psqy +) eS5y- (39b) 

Re ane cce ey ery (39c) 

From Eqs. (31), (37b), and (38) 

M=M, + My + Moy? , (40) 

where 

My = % ces Bg + f89 sin Box; (41a) 

Mj = Bs; sim fo + x, cos78q., (41b) 

Moe = ES San OG |: (41c) 

Equation (27) becomes 

R=, (ay 2by tc). = (42) 

where 

a= p* tan? B= 2ere, , (43a) 

b = p tan B (d+ pka tan 8) - 2pre, , (43b) 

Cicdi oke feani °° 42 Pte oe soon (43c) 

Now within each interval, say from ka to (k+1) a, we define K,, as 

101 



Pien and Strom-Tejsen 

(k+1l)a 
3R,M 

Kf - s+ : Jay. (44) 
47p ,Q Ae Re Re 

From Eqs. (38), (39), and (42) 

i (k+1)a are Bo 

Ki, = 0 an 
sd (ay? + 2by +c) 

ie ae M + (M M 2 + Myx,y? . My Xo + (MyXq + Myx, ) y + (Myx, +M)x9) y 2%1¥ dy 

4p 8) ka (ay24 oby ve)” 

a cos POs 3M) Xo ay 3 Mino: MoM) 1, 

4mp, 2 4 4mp,.Q > Amp, Q 2 

i 3 (Myx, + Max ) sith 3M x4 

47p,.Q ae 405, 0 (45) 

where 

(k+1)a (k+1l)a 

12 = pee Ooo ae, tO, ol (46a) a 
3/2 - b? 

= (ay? + 2by + c) a ay? + 2by + © |kq 

(k+1)a 

THO dy 
5 5/2 

ES (ay? + 2by + c) 

i 1 ay + b (k+1)a : 2a 1,9 

3(ac- b? 2 a7 3 3 (ac - b?) 
( ) (ay? + 2by + c) ae ( (46b) 

(k+1)a 
Pi y dy 

ka P 5/2 
(ay + 2by + c) 

pelt 1 Ce 7 np) 

~ 3a ; 3/2 By oY 
(ay? + 2by + c) ie (46c) 

(k+1)a 

ee y? dy 
5 5/2 

as (ay? + 2by + c) 

k+1 
a Geli ac. ee eel © acai Femi tae Ou 
a a BD 2a 5 Da 3" 

(ay? + 2by + c) ba (46d) 
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(k+1)a 

y? dy 

a (ay? + Bye) 10 

y? 

3/2 
a(ay? + 2by + c) re (46e) 

We also need I,' and I,’for calculating K_, and K,,. They are 

(k+1)a (kt+1l)a 
I,! = y_dy oes 1 . by + ¢ , (47a) 

3/2 - 
ke (ay? + 2by +c) rats Vey te abyet (enti 

(k+1l)a 2 

I,? = go Ve Wine bee peti 8 ig hs Sora, (47b) 
a a a 3 

Ge 2 3/2 
(ay + Qby + c) 

where 

(k+1)a 
dy i —_ —_— 

Ee Vay? + 2by + c 

b (k+1)a 
+ 

= : log e + Vay? + 2by + <} LOtT eran: Ol 
Va va ka (48a) 

il ay + b eat ke 
ue arc sin for a<0O ae 48b 

4 b2 - = - ( ) 

for “~b*? = ac=0. (48c) 1 
I ,° =—— log(ay + b) 

Va ka 

Theoretically speaking, in computing K,, of Eq. (34b), k takes values from zero 
to infinity. However for engineering purposes, only a few turns of the path of Q 

are necessary. Within the range where Q is near to P, and a value of one-half 
radian can give very good accuracy. This value can be increased while Q is 
moving away from the point P. By integration stepwise, K,, can quite easily be 

obtained to the desired accuracy. 

In Eq. (34a), the expression for K;,, the lower integration limit ° - ¢ cor- 
responds to the difference between the angular coordinates of the control point 

and the field point on the blade Q. The number of integration steps required to 
obtain the same degree of accuracy for Kj, as for K,;, depends on the blade area 
ratio. Unless the area ratio is very large, one step is sufficient to obtain a de- 
sired accuracy. Km,, Km,, Kn,, and K,, are computed similarly. 
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This concludes our discussion on kernel functions for the case of steady 
blade loading such as in the open water condition. The case of periodic blade 

loading such as in the behind condition is discussed in the next subsection. 

Kernel Functions for Periodic Blade Loading 

Whenever a ship changes speed or course, the velocity or wake field be- 

comes time dependent. Although it is feasible to analyze such problems within 
the framework of our basic approach, we have chosen here a much simpler 
example of the unsteady case, that of a periodic blade loading. 

When a ship is maintained on a steady course, we assume that the wake field 
behind is time independent. Since wake strength varies spatially, a rotating pro- 

peller blade experiences a periodic inflow variation. As a result the blade load- 
ing also becomes periodic. Since the induced velocity is proportional to the 
blade loading if everything else is kept the same, we can use the principle of 
superposition. A periodic loading is first broken into its harmonic contents. 
By summing up induced velocity due to each loading harmonic, we obtain the 
total induced velocity due to the total periodic loading. Therefore, our problem 
is essentially to obtain new kernel functions K,, K,, and K,, similar to those 
defined by Eqs. (32), due to a pressure dipole with a periodic varying strength 

eia®t at a point Q(€,7,9 -t) on the moving blade, where q is the order of the 

loading harmonic. Now K,, K,, and K, are complex functions with a real and an 

imaginary part, which can be expressed as 

Kis Set 3K ie 3 (49a) 

K..= Ko, + iki,8, (49b) 

K,, ~ Kia 7 iKyp . (49c) 

Since the load variation over the blade area may not be in phase, we write 

the load distribution as 

L(€,p,0) = L(é,p,0), + iL (€,7,9), - (50) 

Now we may write 

u(x,r,¢) = [ fiee.e) K, dedé , (51a) 

Ss 

Vv (x,r,¢) = L(é,0,0) K, dedé , (5 1b) i 

W (x,1,0) = J fice K, dede , (51c) 
g 
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The induced fluid velocity components given by these equations also have a real 
and an imaginary part. 

To find the expressions for the complex kernel functions for the qth order 

of the loading harmonic, for instance, we start with the following equation, cor- 

responding to Eq. (20), 

~ 2 a1 re) eigat 

er ere ar (52) 

Instead of Eqs. (28) we obtain the following expressions for the axial, tangential, 
and radial components of the pressure dipole: 

T= 1 - eta@t , (53a) 

m=m: eiqd@t_. (53b) 

mien etd et (5i3€) 

From Eq. (31) 

= (LR, +mR,+nR,) eid 

=/Mietde® 2 (54) 

By replacing 1, m,n, and M by 1, m, n, and M respectively in Eqs. (32) we 
obtain 

ss Se : 3R,M 
K, = - { ea i. eae Jan ; (55a) 

47p,.Q bg R° Re 

~ = RM 
eed | eiatt (- a = Jan (55b) 

m 4mp,.2 bad R3 RS 

= ° . 3R_M 
cae ) eiaQt (- Be Bon Jan (55c) 

4p, Q Ee R3 Re 

Since Dt = 6- ¢-), 

eia@t - cos q(O6-G¢-A) + i sin q(O-¢-A) 

= cos) q/(G—=@)icos.qh + sin qi(¢—@)) sin qv 

+ i[sin q(@=) cos qi. —,. cos g.(G@=—¢) sin qa] . (56) 

105 



Pien and Strom-Tejsen 

From Eqs. (49), (55), and (56) we have 

Kp 2 cos q(0- ¢) [ 

ic] 

cos qA {|- —t+ 
7 Amp, Q 2 ( 

3R,M 
p Sin ater @) = sinaa( - 24 : Jar. 

o-¢ 4p, 0 R3 RS (57a) 

ig " 3R,M 
Kip = sin q(9- $) | cos qr (- my + 1 Ja 

4m, o-¢ R3 RS 

3R,M 
= cose ssa Gah sin ax (- 2 =) ah 

amppQ2 gag R53 RS (57) 

Let 

= 3R,M 
Kio = I cos qa ( gue + J jar ; (58a) 

mich R3 R5 

Ki, = | sin qA [- =3.% dd. (58b) 
h-¢ R RS 

Then 

_ cos q(G-¢) sin q(@- $) 
Kia ~ 4770.0 lie 4mp,Q Ki, ? (59a) 

_ sin q(@-¢) cos q(0- ¢) 
Kip = yp ATO, Ki oe map. ~ Ki, . (59b) 

Since sin q\ and cos qd can be expressed in terms of sin \ and cos \, and 

since sin \ and cos \ are given by Eqs. (37a) and (37b) respectively, we may 
write 

sinqA = a gy: ; (60a) 
i=0 

2q 

cos qA = oy h,y} ; (60b) 

i=0 

where ¢, and h, are functions of s,, s,, sj, Cy, Cy, and c,. From Kgs. (39), 
(40), and (60) 
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3R\M cos qd = 3(x) + X,¥)(My + Myy + Myy”)(hy +hyy + hay? + +++ +h, y74) 

Sr, Fr Ppy st ray tt aeUaEUR DE gy TAS , (61) 

where 

Ip = 3X Moho 

T, = 3(X)>M)h, + xoM,hyp +x, Mh, ) , 

ee 3(X)M)h, + XoM,h, 4 Xo M,h, + x,M)h, xa t M,h, ) , etc. 

Then 

2q © ; 2q+3 o : 

Kj, =-cos fy ), | ny Soke is I r, Lady. (62) 
i=0 “O-¢ R3 i=0 “O-¢ RS 

By comparing Eq. (58a) with Eq. (32a) it is clear that the evaluation procedure 
for K,,. is just the same as that shown in Eq. (45), for K,, except that there are 
more terms in K,, thanin K,. In the steady case we have I," and I.™, where n 
ranges from 0 to 2 and m ranges from 0 to 4. In the case of K,. we have n 
ranging from 0 to 2q + 2 and m ranging from 0 to 2q + 4. 

After K,, and K,, have been found, we obtain the expression of K, by Eqs. 
(59) and (49a). Likewise we obtain K_ and K,. 

In the evaluation of K,, K,, and K, we need the following expressions to 
obtain the additional 1," and I.™: 

(k+1)a k+1l)o 

ee Er ae ees cn LC 
: ka 2 3/2 (n= 2)}a 5 

(ay? + 2by + c) V ay”, 2by., 4,56 cling 

(2n-3)b_.., (1c ., 
= GoD meee - (aes a 13 ; fortfoini> 2 ¢ (63a) 

(kt+tl)a e (k+1)a 
eee yn dy q 1 y™ 1 

: ka 2 5/2 (m-4)a 3/2 
(ay?+ 2by + c) (ay? + 2by + c) ko 

2mi—" 5 = il 
eee) DS a her o i ee for im 4. 
Cube 4) 142 (m4) a (63b) 

We have developed expressions of kernel functions for a pressure dipole 
that has a strength of e/9°t at a point Q(é,0,¢-t) which moves along a helical 

line with a constant speed and with its axis normal to the blade element but with 

no radial component. Furthermore we have shown a step-by-step procedure for 

evaluating these kernel functions. In each step the evaluation is done functionally. 
This concludes our discussion of the kernel functions and their evaluations. 

107 



Pien and Strom-Tejsen 

Blade Loading Function 

For a two-dimensional lifting surface it is advantageous to express the 

chordwise loading distribution by a Birnbaum series, because there is a one- 
to-one correspondence between the loading and downwash terms. In a three- 
dimensional-propeller problem, however, there is no such advantage. On the 
other hand, since the kernel functions are expressed in terms of 6 - ¢, itis 
possible to carry out the chordwise integration over the blade functionally if the 
chordwise loading variation can also be expressed in terms of 6 - ¢. This is 

done as follows: 

On the propeller blade é is a function of » and ©@, and the pressure jump 
Ap; representing the blade loading is a function of » and © only. Since a given 

function can be approximated by a polynomial, we write 

z 6 - 6,\" 
Ap; (p.8) = ). ag(e)(———] ; (64) 

n=0 Gy ~ Oy, 

where 6; and 4 are the angular coordinates of the trailing and leading edge 
respectively and are functions of ». The distance along the chord from the lead- 

ing edge normalized by the chord length is used as the chordwise variable. 

Since (6-6,)" = [6-¢- (4 -¢)]", Eq. (64) can be expressed as 

N 

Ap, (2:9) = D nn be OG Pou: (65) 
n=0 

To include the unsteady case we write a general loading function as 

Ap, (9.9) = Ap;(P,8), + iAp;(e,8),; (66) 

where Ap, (o,@), and Ap, (7,6), are the real and imaginary components of the 

loading amplitude distribution. 

Replacing L (¢,¢,¢) in Eq. (51a) by Ap; (,@) of Eq. (66) we obtain 

U(x, 1) = J [wrice.%. + iAp; (P,9),)[K,,+iKy,] dedé 

S 

= f (tap, (6. 9).Kra - 40, (Py Kip) dead 
S 

we J frre aki + Ap; (P:9),K1_) dedé 
Ss 
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or 

U(X, 5,0) = U(x 00), + au(x, 1B), 5 (67) 

where 

u(x,r,P), = Jf tap. (e8)0K ie = Ap; (, 9), Ky] dedé., (68a) 

Ss 

NG oar) ene [ [tre 97.Kie +. Api(Ps9),K pal dedd: . (68b) 
S) 

Likewise we have 

¥ (Xet ib). SV (Xj O)g tivixsr, dg (69) 

with 

V(x,0,b)_ = Jf tap: (Kine - Ap; (P,4), Kap] ded , (70a) 
Ss 

V(X 0, b)pe = J flop: (2.8) 0Kmp + Ap; (P,9)4Knq) dede (70b) 
s 

and 

W(X, 0, @) = w(x,r,), + iu(x,F,), (71) 

with 

w(x,r,%), = J [ tap; (Pe Kne - Ap; (P, 9), Kap) dedé , (72a) 

Ss 

W(X, Tb) = J [(0P. (6. 8).Kat + Ap; (2,8)4K,_] dodé . (72b) 
Ss 

In the steady case, the expressions for the velocity components can, of 

course, be reduced. For instance, considering the expressions for u(x,r,¢) in 
the steady case, Ap; (0,0), and K,, are zero. Hence u(x,r,¢), is zero. Also 

Since q is zero, K,, is reduced to K, and Eq. (68a) is reduced to Kq. (19a) with 
L(é,9,@) equal to Ap;(°,°),. As a result in the steady case, there is only one 
surface integration to perform instead of four as in the case of periodic loading. 
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The four surface integrations of Eqs. (68) are all similar. Hence, the in- 

duced fluid velocity for the case of periodic loading is found in just the same way 
as for the steady case, except that more computational work is involved. 

Equations (67) through (72) constitute the main body of our results. They 

relate the induced absolute fluid velocity components to the blade loading, which 
can be steady or periodic. Even though these equations are derived only for 
time t being equal to zero at a fixed space, they actually relate the induced 
absolute fluid velocity component to the blade loading at all times in the space 
relative to the blade position. This is because whatever is valid in the steady 
case as observed on the blade for t being equal to zero is valid for t being 
equal to any value. It is also true for periodic blade loading. The amplitude of a 

sinusoidal function determined from the real and the imaginary values at any 
time is the same. 

Within our scheme of evaluating kernel functions and representing the load- 
ing function components the surface integration involved in Eqs. (68), (70), and 
(72) can be conveniently carried out since the integration in the chordwise direc- 
tion can also be performed functionally. The next section gives the details of 

such surface integration. 

Integration Over the Lifting Surface 

The surface integrals as discussed in the previous section are all alike. The 

integrand of each of the surface integrals involves a product of a loading function 
and an appropriate kernel function. Since each of the kernel functions is a linear 

combination of I,", I,", and I,°, and since the loading function is expressed as a 
polynomial of ¢ - ¢ in the chordwise direction, the results of the chordwise inte- 

gration of the product of a kernel function and a loading function is a linear com- 

bination of the quantities 

Gy 

lise tid 

where n =0,1,2,..., 

CO- @)n Ae + Va(O- >)? + 2b(6-¢) + J dé, (73a) 
Va L 

Py 

see bh) SCIP Ge gee... 418 (7 3b) 

*, Ja(O-¢)? + 2b(O0-¢) + 

where m = 0, 1, 2, ...5 and 

Oy 

Jom = RSMIG MON GPO VAGAL TOT wots (73c) 

FL [a(O-$)* + 2b(G-¢) + haces 

where m=0,1,2,3,.... 
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If the difference between (, and / is neglected, a, b, and c in Eqs. (73) 

are independent of ¢ - ¢, and these integrations can be carried out functionally. 
Since recurrence formulas are available to express J," in terms of J3~* and 
J™-? for m > 2, J" can be obtained rapidly after J,’, J,', and J,? have been com- 
puted. Likewise it is necessary to obtain only a few terms of J," or J{,, by in- 
tegration. The remaining can be obtained by recurrence formulas. 

If the difference between /, and 4 is taken into account, a is independent 
of 6 - ¢, but b and c are functions of 6 - ¢. However, the expression of the 

distance factor R in Kj,, Kmn,, and K,, can still be expressed as the square root 
of a second degree polynomial of 6 - ¢. After substituting ¢ - ¢ for y we have 
from Eq. (42) 

R= [a(@-¢)? + 2b(0-¢) + Geen’: (74) 

From Eq. (26) we write 

d=d, + d,(@-¢) , (75) 

where 

dg = (e-1r) tan y + ¢ (p tan fg-r tan fp) (76a) 

d, = ps = p (tan Bg- tan 8) . (76b) 

From Eqs. (43) and (75) 

f= 1p. tans 6 = Qere.., (77a) 

b = by #:b,(8-¢)., (77b) 

c= e + e,(6-¢) + e,(6-¢)? , (77c) 

where 

Do = ep ka tan” 8 —" 2orc, + dap tan 2 | 

b, = d,e tan 6 ,- 

65 = p7 + Pr? = Qere, + (oka ‘tan By? s+ ido? 42d) oka vant BA, 

é€,= Giid, + deka tan 6; 

e,= divi 2 

Substituting the previous expressions of a, b, and c into Kq. (74) we obtain 

1/2 
R= [a'(O-¢)? + 2b'(0-¢) + c’] 
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where 

gia ta sh 2be Pees 

b= byt er 

ce = € 

Also 

acini b? = -aleg, + -e,(0- ), + e,(9- 4)*)] =: [b, +b, (A> P52 

=f, 4 f,(80=6) 4 #,(6=4y (78) 

where 

fe aes = bi? 

With these expressions it is clear that the chordwise integration over the 

blade can be carried out easily with I,” or I," as the integrand, except for I?, 

I}, and I2, where the factor ac - b? is also involved in the denominator of the 
integrand. It is possible to obtain functional solutions even for these special 
cases. However the functional solution is so complicated in each case that it is 
easier to carry out the integration numerically. 

The last integration in the radial direction with respect to » is carried out 

numerically. A computer program is in preparation for computing at any time 
the induced velocity components at point P(x,r,¢) from the action of a moving 
blade. The total induced velocity due to the action of a propeller is, of course, 
the sum of the contributions from all the blades. This program can be used 
either for propeller design or for propeller performance prediction or simply 

for computing the induced velocity in the field. 

APPLICATION OF THE THEORY 

Propeller Design Problem 

In a design problem, the blade contour is chosen from consideration of 
cavitation and blade strength. The path of the propeller is known from the pro- 
peller forward speed and the angular velocity. The lift distribution depends 
upon the specified thrust distribution over the blade and the orientation of the 

blade in space. With the blade contour orientation which defines the blade pitch 
distribution not known, the pressure dipole distribution is not known. Therefore, 
an iterative procedure is necessary. To start with, the advance angle £ at each 
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radius, or the 4; angle obtained from a lifting line computation, can be taken as 
the blade pitch angle. After the first computation the nose-tail line obtained at 
each radius gives a new blade contour orientation from which pressure dipole 
distribution is obtained and a second computation can be carried out. This itera- 

tive procedure is continued until a convergence is obtained. 

It is appropriate to consider the design of a propeller working in the behind 

condition, since it constitutes one of the problems which has motivated the de- 
velopment of the present theory. However, for the sake of clarity the open-water 

design problem is discussed first. The design conditions are as follows: 

Thrust t 
Diameter D 
Propeller velocity V 
Angular velocity Q 
Radial thrust distribution 

Chordwise load distribution 

Blade contour 

Number of blades 

Our objective is to obtain the cambered surface which will produce the 
specified load distribution over the blade in the design condition. We picture the 
propeller starting from far behind with the blades carrying a specified lift dis- 

tribution Ap;(°,¢). This lift distribution is derived from the desired thrust dis- 
tribution and the blade contour and its orientation; these are supposedly known 
when the computation in each iteration is started. Far ahead of the propeller we 

choose a number. of points along a line corresponding to the leading edge of the 

blade at time t equal to zero when the blade reaches there. These are starting 
points for a streamline tracing which defines the blade orientation and chamber. 

Equations (19) can be used to compute the absolute velocity of the tracing at any 
time for any point relative to the moving propeller reference axes. Thus the 

streamline tracing in the propeller reference axes is equivalent to solving the 

following first-order differential equations: 

dx i r dé i dr : (79) 

U¢z rT, b) VALVE Cen, 6). = rQ w(x,r,) 

The streamlines so traced define the cambered surface of the propeller blade. 

Before discussing the general case of a propeller behind a surface ship, we 

will mention briefly the case of a propeller working behind a body of revolution 

where the flow to the space yet to be occupied by the propeller has a symmetry 

with respect to the propeller axis of rotation. However, the flow has radial as 

well as axial variations. Again we picture the propeller moving to a fixed space 
from far behind. The only difference between this and the open-water case is 

that the fluid velocity field already exists even when the propeller is still in- 
finitely far behind. Hence, in addition to the induced velocity components cal- 

culated by using Equations (19), the velocity components existing in this space 
must be accounted for to obtain the absolute fluid velocity in that space at any 

time. After this is done, the streamline tracing is exactly the same as the open- 
water case (Eq. (79)). If the radial velocity component in the space induced by 

113 



Pien and Strom-Tejsen 

the body of revolution is appreciable in comparison with the blade rotating speed, 
the streamlines will become spiral lines. 

After the two cases discussed, it is relatively easy to discuss the general 
case with the propeller working behind a surface ship, where the wake field 

does not have axial symmetry. In this condition, the blade loading is periodic. 
However, from the viewpoint of ship powering, we are only interested in design- 

ing a propeller which will produce the required total circumferential average 
thrust or torque. Hence, we can replace the wake field behind a surface ship by 

an "equivalent"' wake field having an axial symmetry where the wake strength at 

any radius is equal to the circumferential average of the original wake field. 
The propeller is then designed as in the case behind a body of revolution. Hence, 
in this case, the propeller operating condition is quite different from the condi- 
tion for which it is designed. The actual performance of the propeller has to be 

calculated after the propeller has been designed, as described in the next section. 

If the performance is not satisfactory with regard to alternating propeller 
forces and pressure distribution over the blade, then such design conditions as 
number of blades, amount of rake or skew, blade area, and blade contour may 
require changes. 

Propeller Performance Prediction 

The previous section discussed the design of a propeller in the behind con- 
dition and indicated that the performance in a circumferentially varying wake 

field is not fully known. In this section we will describe how to calculate such 
performance. The purpose of the calculation is twofold: to obtain assurance 
that no operating trouble will arise from propeller cavitation or propeller- 
induced hull vibration, and to gain more insight regarding such factors as rela- 
tive rotative efficiency and effective wake. 

Information on the pressure distribution over the blade at various blade po- 
sitions is vital if we are to determine the possibility of propeller cavitation or 

propeller-induced hull vibration for the particular hull-propeller combination. 

If the load variation is too severe, the propeller under consideration may have 
to be redesigned. Perhaps the average radial load distribution needs revision 
or the radial blade area distribution and the area ratio should be changed. Also, 

the rake or skew might not be the optimum as viewed in the light of the particu- 

lar wake distribution at hand. All these questions can be answered by conducting 

a performance prediction computation. 

It is assumed that the wake field in the absence of the propeller is known. 

Usually this information is obtained by a wake survey in the propeller plane. For 
an accurate prediction, however, it is very desirable to have a wake survey car- 
ried out in three different planes — one near the blade leading edge, one near the 
blade trailing edge, and one in between these two planes. If the wake suvey is 

carried out in one plane only, we are compelled to assume that there is no varia- 
tion of wake velocity in the axial direction. 
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Let us assume that an harmonic analysis of the circumferential wake veloc- 
ity variation has been done; for the qth harmonic we may write 

Wp ee ae) = Up (X; B),* cos qh + 1uy(x,r), sin g®? , (80a) 

Vi iCXp2 sD) = V)(X,6), COS qm + ivg(x,.r), sin qd , (80b) 

Wo x tO) = Wa (xa r 2 Cos ae 4 iw)(X,T), sing®@ , (80c) 

where u,(x,r),, V)(x,r),, and w.(x,r), are the amplitudes of the real or cosine 

parts and u)(x,r),, vo(x,r),, and w,(x,r), are the imaginary or sine parts of the 

three wake velocity components respectively. 

For this qth-harmonic wake velocity a qth-harmonic load distribution is in- 
duced over the blade to assure that the fluid velocity relative to the blade will 
always be tangent to the cambered surface. Figure 3 shows an elementary cam- 
bered surface at P’(x',r,¢é'). The relative fluid velocity there must be tangent 
to the cambered surface. Let us first ignore the radial fluid velocity component. 
Then we must have 

ore 45 CX Sr), COS-dar UCx on.e iy ens 

Vij Gar), COs deo v(x) .450 4), 

and 

UgiGs tq Su Pt Gx (81b) 
tan yp na va (x 8) f eta ad 4 Vx re hp . 

Equation (81a) states that the real part of the resultant fluid velocity must be in 

the direction of P’D and Eq. (81b) states the same fact for the imaginary part. 
The propeller blade velocity does not enter these equations, since the propeller 

rotates with a constant angular velocity 2 and advances with a constant velocity 
v. There is no harmonic content in 2 and V, except for q equal to zero. For q 
equal to zero we have 

Mp Gx ih) Ck tae em V 
tan ys ee (8 1c) 

Vo Xeutoeed MOscin iG. )ag te 

The induced fluid velocity at P’(x‘,r,¢’) due to a load distribution over the 
cambered surface can be approximated by the induced velocity at P(x,r,¢) on the 

chord due to the same loud distribution along chord lines rather than mean lines. 
Since the distance PP’ is very small, the wake velocity at P’ can also be approxi- 
mated by the wake velocity at P. Then we have for q # 0 

g(x ar \a COs derF w(x, 1, ei, (82a) Rn ieee Saale -ka es Ea a 
aut Vi (set), COS GP. 4 Vv (xtrT,¢).. 

115 



Pien and Strom-Tejsen 

Fig. 3 - Propeller blade 
element with camber and 

chord line 

Up (XT), Sin qd + u(x, r,G), 
tan wy = (82b) 

Vo (Xr), Sin qd + v(x,r,%), 

where x = r tan y+ r¢ tan Sp. For q = 0 we have 

Uy C%er 4 t wx). = V 

fan) eo (82c) 
Vea Tig FAV (Xa TP), mee 

where u,(x,r), and v,(x,r), are the circumferential average, zero harmonic, 
wake velocity components. 

In Eqs. (82a) and (82b) u(x,r,¢),, u(x,r,?),, v(xr,6),, and v(x,r,¢), are 
related to the two unknown loading functions Ap,(,¢), and Ap, (p,@), by Eqs. (68) 
and (70). Hence Eqs. (82a) and (82b) are two simultaneous integral equations to 
be satisfied over the whole cambered surface. Various techniques are available 
for solving such equations. A most appropriate method will be investigated in the 
immediate future. For the case of q being equal to zero, only Eq. (82c) needs to 
be solved. 

The total qth harmonic blade loading is obtained by integrating the loading 
distribution over the whole lifting surface. We have 

te i aa = | [Pi(?.8)_ ded? (83a) | 

Leas | [oP,(0.0. dodé , (83b) 

s 

and 
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LG eet Lea wer (83c) 

where A= VLZ, + Lgp and ¢ = arctan (Lg,/Lgq)- When these computations are 
carried out for all the harmonics of the wake field, the resultant blade loading 
will be the sum of all the loading harmonics. The resultant load distribution 

over the blade area is the sum of all the load distribution harmonics. 

So far we have ignored the radial fluid velocity component. After the load 

distribution functions Ap,(o,@), and Ap, (p,@), have been obtained, Eqs. (72) can 
be used to obtain the radial induced velocity component. The resultant radial 
velocity component is the sum of the radial wake component and the propeller- 

induced radial velocity component. If the resultant radial velocity component at 
each point P’ is large, the mean-line segment shown in Fig. 3 must be taken as 
the projection of the mean-line segment as traced by a fluid particle through the 

control point P’. A new value of tan ¥ at each control point is taken accord- 
ingly, and the whole computation is repeated. For practical purposes such re- 

fined computations may not be necessary. 

SOME PRELIMINARY NUMERICAL RESULTS 

Based on the theory and the numerical technique outlined in the previous 
sections, a computer program is being developed for the problem of designing a 
propeller and predicting its performance. Some preliminary results will be 

given for (a) an open-water propeller design with constant chordwise load dis- 

tribution and (b) the inverse calculation for predicting propeller performance in 
the steady design condition. 

For the time being the computer program neglects the difference between 

8g and £ in the integration over the lifting surface (as discussed following Eqs. 

(73)), and in this case the chordwise integration over the blade is readily carried 
out functionally. 

Integration in the radial direction is carried out numerically following an 

integration procedure similar to that described in Ref. 24 for the spanwise inte- 
gration of a wing. The propeller blade is divided into three regions, as indicated 

in Fig. 4. Region II extends a short radial distance on each side of the control 
point P(x,r,¢), region I fills the gap between the root section of the blade and 
region II, and region III extends from region II to the tip of the blade. 

The integrand of Eqs. (19) contains a second-order singularity 1/(r-,)? in 
region II; hence the division into the three regions is intended to facilitate the 
evaluation of the finite part of the improper integral in this region. The inte- 
grands in regions I and III are not singular and can readily be evaluated by nu- 

merical integration methods. 

Propeller Design Example 

The design example chosen is a propeller with a symmetrical blade outline 

and constant chordwise load distribution; the specification is similar to that 

chosen by Pien in Ref. 3 and by Cheng in Ref. 6. 
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Fig. 4 - Division of the pro- 
peller blade into three regions 
for numerical integration in 
the radial direction 

As discussed previously, without the pitch distribution the dipole distribution 

is not known prior to the design calculation, and an iterative procedure is neces- 
sary. Both the 6 angle and the £, angle obtained from the lifting line results of 
Cheng (6) were used in our design example as starting values in two independent 
calculations. To obtain accurate camber and pitch distributions with the 6-angle 
required three iterative steps, whereas only two were necessary for the design 

calculation starting with the 4; angle. Camber values were calculated for ten 
positions on the chord and for nine radial sections. 

Some results of this design example are shown in Figs. 5 and 6. Figure 5 
gives the pitch distribution and Figure 6 the maximum camber as function of 
radius. In both figures the results are compared with those obtained by Cheng (6). 

Example of Inverse Calculation 

In predicting propeller performance in the steady condition, we are sup- 

posed to determine the steady blade loading. The blade loading is presently rep- 
resented by an expression similar to Eq. (64): 

Net Mo 6 - Oy é 

Ap; = ee Oe a a ae cos my (84) 
n=0 m=0 To OL 

with 
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Fig. 5 - Comparison of the pitch 
distribution from the present de- 
sign program and Cheng's data 
from Table 1 of Ref. 6 

where r;, is the nondimensional hub radius. N times o is taken to be the same 

as the number of control points on the propeller blade, so that N corresponds to 

the number J of control points on each blade section and M to the number kK of 
sections on the propeller blade. 

Establishing for each control point P(r,,¢;) the angle of the tangent to the 
cambered surface, we obtain according to Eq. (82c) 
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MAXIMUM CAMBER RATIO 

Fig. 6 - Comparison of the maximum camber ratio 
from the present design program and Cheng's data 
from Table 1 of Ref. 6 

u(r,,9;) - V 
tan w(t; ) = v(Tyib)) ~ FD A ao 

where 

N-1 M-1 

u(Ty Pj) = di bs Br PSP a 
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ae Dut Dawa gan Gaye; Ya (86b) 
n=0 m=0 

in which u(ry,¢j)nm and v(r,,9; am are induced velocities as obtained from Eqs. 
(19a) and (19b) for the various modes of the load functions, with the load coeffi- 
cient a, equal to unity. 

Combining Eqs. (85) and (86) we can establish a set of J times K linear 

equations as follow: 

a De “8pm l(b Pj nm ~ VTE Pp nm 49 YC1, 9; DI 

= r,0 tan Wry; ) - V, LO es yj n pang: Kk — eleak = (87) 

Consequently, the unknown load distribution coefficients a,,, can be obtained by 
solving the J times K equations with a,,, as the corresponding number of un- 
knowns. 

As an example of a performance prediction, the simple case of the inverse 

calculation of the propeller design example is considered. It is felt that this 

example provides a check on the numerical accuracy of the method. 

Five points on each of nine radial sections were used as control points. 
Table 1 shows the output from the computer program. Figure 7 gives the radial 
load distribution compared with the load distribution used in the design. Figure 

8 shows chordwise load distributions for four of the nine radial sections. 

The results from the computer program obtained so far have confirmed that 
an efficient computer program can be developed on the basis of the theory and 
the numerical technique. Less than 10 minutes of computer time was required 

on the IBM 7090 at the Naval Ship Research and Development Center for both the 

design example and the inverse calculation. 

CONCLUDING REMARKS 

1. The general theory for marine propellers outlined in the paper is based 
on an exact acceleration potential. There is no linearization of the equations in- 

volved; it is a higher order theory. It imposes no limit on loading of a propeller 
under normal practical operating conditions. 

2. The theory is derived from the equations of motion and the equation of 
continuity. An irrotational fluid motion has not been assumed. Therefore, the 
theory can be applied to a propeller operating behind another propeller or another 
lifting surface where free vortex distribution exists. 

3. The theory uses information about the moving propeller blades and their 
load distributions and positions, whereas it is not required that the fluid flow 

induced by the propeller be established beforehand. 
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Table 1 
Results From the Inverse Propeller Calculation Showing the 

Input Data to the Computer Program 

PROPELLER DATA FROM SEC ONO ITERATION OF DESIGN PROGRAM 20 M 

INVERSE PROPELLER CALCULATION BASED ON ACCELERATION POTENTIAL 

INPUT DATA 

AY 1968 

DIAMETER 0.667 FT 
SPEED OF ADVANCE 0.592 KNOTS 1.000 FT/SEC 
ANGULAR VELOCITY 106.855 2PM 12781 RPS 
ADVANCE COEFFICIENT 0.842 
HUB RADIUS XH/R 0.200 
NUMBER OF BLADES 5 

RK/R 0.2000 0.2500 0.3000 04000 0.5000 0.6000 

TAN(BQ) 128320 1.5138 1.2570 0.9258 0-7255 0.5798 

CHORD/R 026160 0.6503 0.7440 0.6600 0.9240 0.9280 
SKEW/R oe 0. =e -0. -06 -0. 
RAKE/R 0. 0. -0- -0- -06 =0. 

CAMBER RATIC AT CCNT2UL POINTS 

RXR 0«2£90 0.3000 0.4000 0.5000 0.6000 
X/CHORD 

0.2000 02000 02000 0.2000 0.20c0 
0.4000 0.4000 0.4000 0-4000 0-4000 
0.6000 0.6900 96000 0.6000 0.6000 
0.8C00 0.8000 0.80600 0.8000 0.8000 
1.0000 1.0000 1.0000 120000 1.0000 

CAMBCR RATIO . 
020160 0.0153 0.0124 0.0110 0.0090 
0.0231 0.0218 0.0174 0.0154 0.0123 
020230 0.0218 0.0175 0.0154 020122 
0.0158 020153 00125 020110 0.0085 
O. Oe 0. O. oO. 

OUTPUT — PREDICTICN OF PRURELLER PERFORMANCE AND LCAD DISTRIHUTION 

THRUST LOADING COFFFICIENT (NONVISCCUS) CTH 0.5639 
POWER LPADING CCTFFICIENT (NONVISCOLS) CP 0.7138 
IDEAL PROPELLER FFFICIENCY 0.7899 

ADVANCE CUSFFICIENT J 24423 
THRUST COEFFICIENT (NONVISCCUS) KT 0.1571 
TORQUE COEFFICIENT (NUNVISCNLUS Ka 0.0267 

RX/R c.2000 0.2500 0.3000 0.4000 0.5000 0.6000 

RADIAL LOAD CISTRIBUTION 
C0155 0.0428 0.0710 0.1267 0.1753 022037 

CHORDWISE LCAC CISTRICUTICN 
x/CHORD 

0. 0.0469 0.0679 001211 0.1705 0.1986 
0-10 0.0417 0.0686 0.1238 021723 0.2007 
0.20 0.0398 0.9698 0.1255 621739 0.2023 
0.30 020491 0.0700 0+1266 0.1751 0.2034 
0.40 0.0417 0.070e O.1273 0.1759 022043 
0-50 U.04%5 0.0717 0.1279 0.1765 6.2050 
0.60 0-0451 0.0727 0.1284 0.1768 062055 
0.70 020457 0.0734 0.12286 0.1768 222056 
0.80 020450 020732 0.1283 021765 0+2053 
0-90 0.0427 0.9715 0.1273 0.1760 0.2043 
1.00 0.0387 0.0675 0.1250 0.1752 0.2022 

LOAD CCEFFICIENTS (PLOG) 

° 0.0524 0.0409 6.0679 O.1211 0.1705 0+1986 
1 -0.2625 -0.0304 0.0057 0.0105 0.0104 0.0127 
2 020402 020764 -040123 -0.0257 -0.0064 -0.0152 
3 -0.605% ~-0.0561 0.0232 0.0251 0.0011 0.0144 
4 0.2067 O06011¥  -040136 -0-0106 -0.0002 -0.0067 
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in 
DESIGN LOAD 
DISTRIBUTION 

Fig. 7 - Radial load distribution from the inverse cal- 
culation as compared with the design load distribution 

4. Since the theory does not depend on the induced fluid flow but only on in- 
formation about the blades, as mentioned in item 3, we need not be concerned 

with whether the free vortex sheet is going to contract or roll up. 

5. The theory is used essentially to obtain the change in fluid velocity ina 
chosen fixed space due to the direct propeller blade action. Whether, in the 

absence of the propeller, the fluid in that space is already in motion makes no 
difference. Therefore the theory is applicable to a propeller in either the open 

water or the behind condition. 
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PREDICTED LOAD 

= —— — DESIGN LOAD 
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LE CHORDWISE POSITION TE 

Fig. 8 - Chordwise load distribution from the inverse 
calculation as compared with the design loaddistribution 

6. Since the camber ratio involved in a practical marine propeller is only a 
few percent, especially at the outer radii where most of the loading is carried, 
the load distribution is placed on the chord rather than on the meanline. This 

saves computer time without losing the accuracy required for engineering pur- 
poses. However, the theory takes into account the difference between the blade 
element pitch angle £, and the advance angle 6. The former is a function of 

blade geometry, and the latter is a function of operating condition. They are in- 

dependent of each other and may differ appreciably. 

7. All geometrical features of a propeller blade are incorporated in the 
theory. Therefore, it is applicable to any practical propeller as far as propeller 

geometry is concerned. 

8. In view of item 2 the present theory can be easily extended to cover 
multiple propeller systems such as overlapping and contrarotating propellers. 
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9. It is planned to extend the theory to take the thickness effect into account. 
Supercavitating propellers with arbitrary blade contours and arbitrary o values 

will also be investigated. 

10. The effect of viscosity has been ignored in the present work. However 
since the theory can accurately predict the load distribution along various chords, 

it paves the way for investigating the effect of viscosity. 

11. Preliminary results have indicated that an efficient computer program 
can be developed on the basis of the numerical technique discussed in the paper. 
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Appendix 

SUPPLEMENTAL DISCUSSIONS ON THE BASIC CONCEPT SECTION 

During informal discussions with Prof. J. Weissinger, a point was raised as 

to the general applicability of our preliminary conclusion that the term q x € in 

Eq. (4) was zero and could be omitted in the subsequent mathematical develop- 

ment of the basic concept for the marine propeller problem. After a closer ex- 
amination, we found that our conclusion q x € is zero in the wake was apparently 
an error. In this appendix we would like to rectify our error by reasoning that 

we can assume as a Simplification that q x é is zero and offering the following 

discussion to supplement our reasoning and to bridge the gap in the formulation. 

We shall begin with the general equation of motion for an inviscid fluid par- 
ticle under the influence of an external force field, 

fee ee ee (A1) 

where q is the velocity vector, Ap is the gradient of the pressure field p,p, is 
the fluid density, and F is the external force per unit mass. The left-hand term 
represents the acceleration of the fluid particle which may be expressed in two 
parts, namely, a term representing the local acceleration at a fixed space and a 

convective term due to the movement of the fluid particle as follows: 

dq oq Se V . aiskenar: wa a (1) 

Combining Equations (A1) and (1) we obtain 

<t.- 5 vp-cav) a+ F. (A2) 
f 

Since 
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where €é is a vorticity vector, it follows that 

oq 1 1 ee = 2 ae Pe Vp 5 Vq-.+ qx € 4¢Es (A3) 

For an incompressible fluid, », being a constant, we have 

fe) 
Se os aa (A4) 

Applying the continuity equation, i.e., Vq = 0, Eq. (A4) yields 

WP (eet ga?) = Voan EAB) : (A5) 

We introduce a function ® and a generalized force vector k such that 

® = a " 2 q2 (7) 

and 

k =.q x. 6.4. F. (A6) 

Equation (A5) becomes 

v2 = Vk. (A7) 

This is a general governing equation for an incompressible inviscid fluid flow 
subjected to an external force field. 

Now we shall attempt to discuss the physical significance of this equation 

and its solution as applied to a propeller problem. 

Like an airfoil or wing, a propeller blade is considered to be a lifting sur- 
face on which forces are distributed, and this surface distribution of forces may 
be considered to be a limiting case of volume distribution by reducing one of the 
dimensions of the volume to zero while increasing the force intensity so that the 
total forceis the same. It can be shown that the action of such external forces 
upon a fluid will produce vortex motion, and specifically, the curl of the force 

vector represents the time rate of change of the vorticity generated. It can 
therefore be said that a lifting surface such as a propeller blade is a vorticity 
generator. When the blade advances in the fluid, it imparts vorticity to the fluid 
particles along its path as it passes, i.e., vorticity is left in its wake. 

Hence, the entire fluid field may be conveniently divided into three regions, 
the lifting surface, the wake, and the remaining field, and each region may be 
described by an appropriate equation based on the previously described general 

governing equation as follows: 
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1. Lifting surface where the general equation applies: 

V70 = V¢quiEG+F).: 

2. Wake: 

V?® = V(qx €) (A8) 

since the force F does not exist in the wake, and 

3. Remaining field where both forces and vorticity are zero: 

Wi7 Dii=s Oy (AQ) 

In the text we have discussed the significance of the last equation and briefly 
how a solution might be obtained. Also, we made a gross simplification, apply- 
ing this equation to the wake region as well as neglecting the term q x € in the 

wake. Now we shall proceed to discuss the implication of such a simplification. 

In developing a theory for wings with finite span, von Karman and Burgers 

(Aerodynamic Theory edited by Durand, Vol, 2, Chapters III and V) presented a 

thorough treatise on the solution of the general governing equation similar to 
Equation (A7).. They pointed out the difficulties encountered toward an exact 
solution to the real problem; they also showed that an approximate solution to 

the real problem might be obtained by neglecting in the wake the generalized 
force term which they referred to as the induced "second order" forces com- 
pared with either the k forces or the F forces and that the influence of the cor- 

rections to be deduced from these second order forces is only of the third order 
of magnitude. Hence, the resulting solution is correct to the second order of 
magnitude, the reason being that "notwithstanding their smallness, they will have 
a certain influence on all quantities considered; pressure, potential, and vortex 

motion. As a force, however, can never produce vortex motion at a point up- 

stream from it, the distribution of the vorticity within the region of lifting sur- 

face is not affected.'' They also showed how a higher order solution could be 
obtained by iteration based on the blade path rather than the slip-stream 
geometry. 

Thus, the general theory for propellers developed in this paper, neglecting 

the q x € term in the wake region, is considered to be a second order theory 

which is consistent with the definition of the "exact acceleration potential" in the 

text: 

On a lifting surface the vorticity € is always tangential to the surface since 
the velocity discontinuity is in the tangential direction only. If we denote q, and 
q,, to be the tangential and normal components of q, respectively, we have on 

the lifting surface the components of the generalized force: 

ky = 4, *>S (A10) 

k z .s ks (A11) 
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The tangential force component k, has an order of magnitude of q? because é is 
the difference in q on both sides of the surface. In general, a tangential force 
cannot produce a normal velocity component on the tangent plane. However, if 
the lifting surface has some curvature in it, as it usually does, the tangential 
component of the generalized force k, would have some effect on the lift distri- 
bution but the effect is also of the third order. Therefore, consistent with a sec- 

ond order accuracy, it is only necessary to consider the normal component of the 

singularity distribution k, on the lifting surface. This conclusion is significant 
because it is on the basis of this conclusion that the detailed theory has been de- 
veloped. Of course, a higher than second order result can be obtained by taking 

all the neglected small quantities into account with an iterative procedure. 

In practice we encounter two different types of problems: performance pre- 

dictions of a given propeller geometry and design for a specified load require- 
ment. In a performance prediction problem, we choose a proper expression for 
k, with a number of relevant parameters. Then © can be expressed in terms of 

these parameters. The acceleration at a field point P is -V®. The time integra- 

tion of -V® gives the velocity q at P. By choosing P to be on the surface pres- 
ently occupied by the lifting surface, we obtain q on the lifting surface in terms 
of these parameters. These parameters are determined by the boundary condi- 
tion on the lifting surface. Subsequently the lift distribution F is calculated from 
Equation (All). In a design problem an iterative procedure is necessary since 
the orientation of the lifting surface is not known. It has been found that the con- 

vergence is very rapid in such iterations. 

Any of the existing propeller theories based on a linearized acceleration 

potential can be applied only to lightly loaded propellers since the accuracy of 
the computed induced velocity on a lifting surface suffers from two possible 
sources of error. These are (1) the linearization of the governing equation, the 
equation of motion; (2) the assumption that the lift distribution is perpendicular 
to the velocity of the lifting surface rather than perpendicular to the relative 

velocity between the fluid and the lifting surface. 

In the case of a propeller theory based on vorticity distribution, effort can 

be made to have the bound vorticity properly oriented in space. However, a long 
iterative procedure is necessary in a performance-prediction problem even in a 

steady case because the geometry of the slipstream is not known. It is extremely 
difficult to use such a theory to analyze an unsteady propeller problem. 

It is felt that the theory developed here not only has the advantage of better 
accuracy but also has its simplicity in its application, especially to unsteady 
propeller problems. 
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DISCUSSION 

T. Y. Wu 

California Institute of Technology 
Pasadena, California 

After we have worked for a number of years on a difficult subject such as 
the general theory of propellers, with more and more untractable problems ac- 

cumulating in practice, it is always refreshing, and sometimes rewarding, to 

lean back and take a new look or try a new approach. This paper, I think, offers 
such a refreshing point of view. It is encouraging to hear the authors’ experi- 

ence that their theory, equipped with the simplifying assumptions they intro- 

duced, has made the numerical calculations noticeably simpler than the other 

existing methods. 

In the case of the linearized theory the difference between the method of ve- 
locity potential and that of the Prandtl acceleration potential is nothing more than 
a personal preference, since they always yield the same result. I believe that 

another linearized theory in terms of a different function, such as the linearized 
version of the present theory, must bear a definite correspondence with the 
former two. It should be valuable if Dr. Pien and Dr. Strom-Tejsen could clarify 
further these correspondences, including the boundary conditions. 

It is in the context of the authors' claim of the exactness and completeness 

of this theory that I wish to make a minor observation here. If I may put the 

formulation in a little different way, the relationship between the "exact accel- 
eration potential" ® = p/p + q?/2 defined by the authors and the velocity potential 
x, q = Vx is simply 

Ox 
— +® = const., 
ot 

which is the Bernoulli equation for inviscid, irrotational flows. For steady flows 
in particular, ® must be identically a constant and hence cannot be represented 
by a distribution of singularities. This situation may be changed if the calcula- 
tion is based on a perturbation of the linear quantities caused by a weak dis- 
turbance of a moving body, which may be replaced by a force system. Since this 
theory is new, its potential usefulness can be greatly enhanced when the exact 

significance of the approximations introduced here is fully understood. 

* * * 
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REPLY TO DISCUSSION 

Pao C. Pien and J. Strom-Tejsen 

We would like to thank Dr. Wu for his penetrating comments. In introducing 
the exact acceleration potential, we discussed a simple case of a lifting surface 
moving forward with a constant velocity V. Our objective was to obtain the per- 
turbation velocity caused by the action of the lifting surface in a coordinate frame 
F, fixed to the lifting surface. In our basic concept we used another reference 
frame F', in which an exact acceleration potential could be found as the two 
frames approached each other. Then the time integration of the negative gradient 
of the acceleration potential could yield the perturbation velocity in frame F’. 

When frame F’ coincides with frame F, the velocity field in frame F differs 
from that in frame F’ by the known relative velocity between F and F’. Dr. Wu 
has commented that if the flow is steady in frame F, p/p; + q*/2 is a constant, 

and there is no possible singularity in that frame. This is in accordance with our 
definition of the exact acceleration potential ©. However it does not imply that 
there is no possible singularity distribution for ® when referred to other frames. 
To facilitate our discussion we introduce the pressure equation with respect to a 

moving frame F’ as given by L. M. Milne-Thomson in "Theoretical Hydrodynam- 

ics'' as follows: 

op | 1 Q -—— = = U2 = C(t). 
ot 2 2 

where q, is the magnitude of the fluid velocity in frame F’ and U is the transla- 
tion speed of frame F’. If there is no force field 2, we may write 

Pp fr) 
Neh ene a eee) 

which shows that in any reference frame, the sum of the pressure divided by the 
fluid density and half of the velocity squared gives an exact acceleration poten- 

tial. This is the foundation of our approach. The body frame F is a particular 
case in which the acceleration potential is a constant. It simply means that we 
should not choose it as our reference frame for an acceleration potential. Ifa 
frame fixed in space far ahead of the lifting surface is chosen as our reference 
frame, q, becomes the perturbation velocity w. Therefore p/p, + w?/2 is an 
exact acceleration potential in that frame. It is up to us to choose whichever 

reference frame is the most convenient one to use. 
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Dr. Wu has also asked how the linearized version of the present theory 

compares with other linearized theories. In a lifting-surface theory based on 
acceleration potential, the governing equation is the equation of motion 

oq Pp 
——— oe V = \/ aie ner ae Pe 

This equation is commonly linearized by dropping the nonlinear term 

(qV)q. In our approach we simply move it to the right side as follows: 

oq _ p 1 2 } _ p 1 2 sa o(o fe) vane o(E be). 
which equation is valid in the whole fluid region where the vorticity is absent. 

We achieve a linear governing equation by a substitution of variable © for 
p/p, + q?/2. We have only a linear equation to begin with; hence we cannot in 
a meaningful manner define a linearized version of our theory. 

* * * 
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MODEL TESTS ON CONTRAROTATING 

PROPELLERS 

J. D. van Manen and M. W. C. Oosterveld 
Netherlands Ship Model Basin 
Wageningen, The Netherlands 

ABSTRACT 

This paper presents the results of open-water tests with a systematic 
series of contrarotating propellers, consisting of a four-bladed forward 
screw and a five-bladed aft screw. 

Based on the open-water test results, contrarotating propeller systems 
were designed for a tanker and a cargo liner. Comparative tests have 
been carried out with the tanker and the cargo liner both equipped with 
contrarotating propellers and with a conventional screw. The propul- 
sive efficiencies, the cavitation characteristics, the propeller induced 
vibratory forces, and the stopping abilities are dealt with. 

INTRODUCTION 

During the past years the trend of most ship designs has been toward higher 

speeds (cargo liners) and/or larger displacement (tankers or carriers) and 
therefore toward high-powered ships. As a result the problems of propeller 
cavitation and propeller induced vibration became matters of great concern. 

In an attempt to provide merchant ships with propulsion devices with supe- 
rior cavitation and propeller induced vibration characteristics in addition to a 

high propulsive efficiency, the application of contrarotating propellers have been 
the subject of several investigations [1-3]. This paper presents the results of 
investigations on contrarotating propellers performed at the Netherlands Ship 

Model Basin during the past five years. 

These investigations covered the following details. A systematic series of 
contrarotating propeller systems was designed and manufactured. These sys- 

tems, consisting of a four-bladed forward screw and a five-bladed aft screw, 
were designed for equal power absorption by the forward and the aft screw. 

Tests were carried out in the towing tank to determine the open-water charac- 

teristics of this series of contrarotating propellers. 

Based on these open-water test results, contrarotating propellers were de- 
signed for a tanker and a cargo liner. Comparative tests have been carried out 
with both ships equipped with a contrarotating propeller system and with a con- 
ventional single screw arrangement. In Fig. 1 the contrarotating propeller ar- 

rangement on the stern of the tanker model is shown. The propulsive efficiencies, 
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Fig. 1 - Arrangement of contrarotating propellers 
for a cargo liner model 

the cavitation characteristics, the propeller induced vibratory forces, and the 

stopping abilities were dealt with. 

The investigations on contrarotating propellers were given in detail in Refs. 

4 through 8; a recapitulation of the results is given here. 

TEST RESULTS WITH SYSTEMATIC SERIES 
OF CONTRAROTATING PROPELLERS 

An important method of screw design is that which is based on the results 
of open-water tests with systematically varied series of screw models [9,10]. 

According to the lifting line theory, as described in Ref. 11, a systematic 
series of contrarotating propellers, consisting of a four-bladed forward propel- 
ler and a five-bladed aft propeller, was designed. A problem which may occur 
on contrarotating propellers is that the cavitating tip vortices generated by the 
blades of the forward proreller may impinge on the blades of the aft propeller 
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and cause damage there. This problem was avoided by reducing the diameter of 

the aft propeller. This reduction was based on the expected slipstream contrac- 

tion at design condition. In addition, this reduction is attractive with regard to 
efficiency, because for equal screw loadings a five-bladed propeller has a 

smaller optimum diameter than a four-bladed propeller with equal blade area 

ratio. The sets of contrarotating propellers were designed in such a way that 
one set is representative for tanker application and another set for cargo liner 

application. Three additional sets complete the systematic series. The partic- 

ulars of the propeller models are given in Table 1 and in Fig. 2. 

Table 1 

Principal Characteristics of Table 1 Screw Models 
of the Contrarotating Propeller Series 

Expanded 

Blade Area 

Ratio 

Diameter, D Number of Pitch Ratio 

(mm) Blades at 0.7R 

Tests were carried out in the towing tank to determine the open-water 
characteristics of the series. The open-water test results were faired and 

plotted in the conventional way using the coefficients Ky = T/pn?D4, Ko = Q/pn?D5, 
and 7) = (J/27)Ky/Kg as functions of the advance coefficient J = V,/nD. The dia- 

gram is given in Fig. 3. In this diagram each set of contrarotating propellers 

is considered as one propulsion unit; the thrust T and the torque Q are based on 

the sum of the thrusts and torques respectively of the forward and aft screw. 
The diameter D denotes the tip diameter of the forward propeller. In addition, 
the ratio of the aft propeller thrust to the total thrust T,;,/T and the ratio of the 
aft propeller torque to the total torque Q,,,/Q are presented in Fig. 3. 

For design purposes, various practical results can be derived from Fig. 3. 
In the case where the power P and V, and n are given, the determination of the 
optimum diameter from a point of view of efficiency of the contrarotating pro- 

peller system can be solved by plotting 7, and § (8 = 101.27/J) as functions of 

the coefficient B, (B, = 33.08 Ké/?/J*/?). 

As a comparison the optimum curves for efficiency 7, and diameter coeffi- 
cient 6 of the contrarotating propeller series and the B 4-70 screw series are 
given in Fig. 4. Screws of the B 4-70 screw series are usually applied behind 

single-screw ships [10,12]. 
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Pitcn distribution in perc 

Fig. 2 - Particulars of the propeller models in the 
contrarotating propeller series 
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Fig. 3 - Open-water test results of contrarotating propellers 
(the numbers on the curves are the set numbers given in 
Table 1) 
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Fig. 4 - Comparison of optimum values for the contrarotating 
propellers with B 4-70 screws 

At the top of Fig. 4 the different ship types are indicated for which the B, 
values are typical. The lightly loaded screws of fast ships are at the left, and 
the heavily loaded propellers for towing vessels are at the right. This diagram 

gives quick information which type of propeller will be the best with regard to 
efficiency for a certain ship type. For fast ships (cargo liners) contrarotating 
propellers appear to give a higher efficiency than conventional screws. It must 
be noted, however, that by application of a conventional screw behind a ship, the 
rudder partly removes the rotational velocity from the propeller jet and hence 

improves the efficiency of the propulsion device. It is obvious that this im- 
provement in efficiency will not be found by application of contrarotating pro- 
pellers behind a ship. 

It can be seen from Fig. 4 that the optimum diameter of the contrarotating 
propeller series is considerably smaller than the optimum diameter of the con- 

ventional screw series. 
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COMPARATIVE TESTS WITH SHIP MODELS EQUIPPED WITH 
CONVENTIONAL AND CONTRAROTATING PROPELLERS 

Description of Hull Forms and Propellers 

Comparative tests have been carried out with a 32,500-DWT tanker model 
and a cargo liner model both equipped with successively a conventional screw 
propeller and contrarotating propellers. The principal dimensions of these 
ships are given in Table 2; the hull forms and the stern arrangements are given 

in Figs. 5 and 6. 

Table 2 
Principal Dimensions of Tanker (Fig. 5) and Cargo Liner (Fig. 6) 

Length 
Displace- 

ment Mld. 

(metric 
tons) 

Perpen- 

diculars 

(m) 

Fig. 6 - Body plan and stern arrangement of cargo liner 
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The propeller designs for both ships were based on 16,000 metric DHP at 
120 rpm, and with ship speeds of 16.5 knots for the tanker and 20.5 knots for the 
cargo liner. The conventional screws were designed according to the circulation 
theory for wake adapted propellers. The principal full-scale characteristics of 
the propellers are given in Table 3; further details of the conventional screw 

propellers for the tanker and the cargo liner are presented in Figs. 7 and 8. 
The particulars of the contrarotating propellers for the tanker (set 2) and the 
cargo liner (set 4) were already presented in Fig. 2. 

Pitch distribution 
in percent 102.8 1,0R, 

0.9R = 
0.8R 101.8 
0.7R 100.0 
0.6R 97.4 
0.5R ‘e 
0.4R 90.0 
0,3R : 
0.2R 82.6 

Fig. 7 - Particulars of single screw for tanker 

Pitch distribution 
10R_ in percent 100,1 

09R _ 
0.8R. 100, 3 

0,7R 1000 _ 
0,6R_ 99,2 
O5R 

04R ie : 
03R - 

0.2 R_ : 91,8 

Fig. 8 - Particulars of single screw 
for cargo liner 

Model Resistance and Self-Propulsion Tests 

Model tests have been carried out to obtain a comparison of the propulsive 

quality of the tanker and the cargo liner both equipped with successively contra- 
rotating propellers and a conventional screw propeller. Resistance and self- 

propulsion tests were conducted in the deep-water basin of the Netherlands Ship 

Model Basin, in accordance with established procedures. All model data were 
extrapolated to full-scale ship values using Schoenherr's friction coefficients 
with an addition of 0.00035 for correlation allowance. For turbulence stimula- 
tion, a trip wire of 1-mm diameter was fitted to girth each model at a section 
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> percent LBP at aft FP. The tanker model was tested at the loaded and the 
ballast condition; the cargo liner model was tested only at the loaded condition. 

The results of the resistance and self-propulsion tests are presented in 

Tables 4 through 6. Figs. 9 and 10 show the performance predictions for the 
tanker and the cargo liner. Table 7 compares the results of the propulsion tests 
with the ship models equipped with the conventional screws and the contrarotat- 
ing propellers. Table 7 shows that application of contrarotating propellers on 

both ships gives a significant reduction in DHP. The DHP of the tanker model 
with contrarotating propellers is about 4.5 percent less in the loaded condition, 
and 8 percent less in the ballast condition, when compared to the model with the 
conventional screw propeller. The contrarotating propellers behind the cargo 
liner require about 6.5 percent less DHP than the conventional screw propeller 
in the loaded condition of the ship. The gain in trial speeds, due to application 
of contrarotating propellers, is at maximum power absorption (16,000 DHP): 

tanker in loaded condition, 0.12 knot; 
tanker in ballast condition, 0.30 knot; 
cargo liner in loaded condition, 0.21 knot. 

The tanker with the conventional screw arrangement suffered from air sucking 
into the propeller plane in the ballast condition, whereas this phenomenon did 
not occur when the contrarotating propellers were fitted to the model. This 
must be attributed to the smaller diameters of the contrarotating propellers. 

An analysis of the various propulsion factors shows that the wake fraction 
was larger for the contrarotating propellers than for the conventional screws. 
This is due to the smaller diameters of the contrarotating propellers. In the 
case of the tanker the thrust deduction factor did not differ very much. This 

factor was somewhat larger for the cargo liner with contrarotating propellers 
than with the conventional screw. For the tanker, the increase in propulsive 
efficiency due to contrarotating propeller application was principally obtained 

by a better hull efficiency, whereas for the cargo liner this increase was ob- 
tained by both a better hull efficiency and a higher open-water efficiency of the 

contrarotating propellers. More detailed data must be made available, however, 

to give a complete explanation of the obtained reduction in DHP. 

Cavitation Tests 

Cavitation tests were conducted in the 40-cm-diameter slotted wall cavita- 
tion tunnel with flow regulator of the Netherlands Ship Model Basin (13,14), 
simulating the full-load operating conditions. The axial wake distributions be- 
hind the two models, as measured in the deep-water basin by means of a pitot- 

tube were simulated in the tunnel. The results of the velocity surveys in the 

way of the propeller are described in Fig. 11 for the tanker and the cargo liner. 

The results of the cavitation tests are presented in Figs. 12 and 13. From 
an examination of the various test results it can be concluded that the conven- 
tional screw and the forward propeller of the contrarotating propellers are quite 

comparable as far as blade cavitation is concerned. This holds as well for both 
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Fig. 9 - Power and rpm curves for the tanker 

the tanker and the cargo liner. The extent of sheet cavitation on the back of the 

aft propeller of the contrarotating propellers was for both ship types consider- 
ably smaller than that on the forward propeller. Apparently the forward propel- 
ler smoothes the peripheral irregularities in the flow behind the ship and con- 

sequently in the inflow to the aft propeller. 

From the test results it can be seen that with regard to the strength of the 
tip-vortex cavitation, the contrarotating propellers were slightly better than the 
conventional screws. This was to be expected, since the nine blades of the con- 
trarotating propellers were less loaded than the four blades of the individual 

screws. 
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Propeller RPM 

18 185 19 195 20 205 21 215 
Speed in knots 

Conventional screw 
Contra-rotating propellers 

18 1a5 19 195 20 205 21 215 

Speed in knots 

Fig. 10 - Power and rpm curves for the 
cargo liner 

In the upper and lower part of the aperture, the tip-vortex of the forward 
propeller of the contrarotating propellers interfered with the blades of the aft 
propeller, especially for the cargo liner propellers, which led periodically to 
unfavorable cavitation phenomena. The chance for the appearance of these phe- 

nomena depends on the angular conjunction of the blades of the forward and the 
aft propeller. To avoid these phenomena it may be useful to reduce the diame- 

ter of the aft propeller slightly more. 
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Table 7 
Extent to which the Contrarotating Propellers are Better (+) 

or Worse sean age than the Conventional Screw Propellers 

fre teseatetrranacey ee) 7) Cargo Liner 

in the 

Loaded Ballast Loaded 

Condition Condition Condition 

Tanker 0.60 076 Cargo liner 
050 & 

0.40 ~ 4075 

0.80 

0.30 

0.20 1085 

\ 0.90 : Wake 
\ fraction y 

0.96 

Wake 

fcaction y ES 

Baseline i bignacT] 

Speed =165knots 

3885 Ae 

Speed=205knots 

Fig. 11 - Wake distributions in way of the propeller 
of tanker and of cargo liner in the loaded condition. 
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Conventional screw Contra -rotating propellers 
Ky=0.174 o,=1238 Ky=0.169 Go=12.41 

forward propeller 
> . 

aft propeller 

a fr 

Fig. 12 - Cavitation patterns of conventional 
and contrarotating propellers behind tanker 

Measurements of Propeller-Induced Vibratory Forces 

Comparative tests on propeller induced vibratory forces have been carried 

out on the cargo liner model equipped with successively the conventional screw 

propeller and the contrarotating screw propellers. To measure these forces, a 
special arrangement had to be made in the case of the contrarotating propellers 
to use the existing measuring equipment (15). The forward propeller was driven 

by the normal dynamometer, installed in the ship model. The aft propeller was 
driven by a dummy dynamometer. This dummy dynamometer was installed in 

an open-water test boat, mounted behind the ship model. A stiff coupling shaft 
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Conventional screw Contra-rotating propellers 
Kyr20.186 G494 Kr=0186 ©,=480 

forward propeller aft propeller 

Fig. 13 - Cavitation patterns of conventional and 
contrarotating propellers behind cargo liner 

synchronized the combination. By exchanging the real dynamometer and the 

dummy dynamometer, the vibratory outputs of both propellers were determined. 

The results of the measurements of the propeller induced vibratory forces 
are given in Figs. 14 through 17. Samples of the instantaneous torque and thrust 
of the conventional screw and of the forward and aft propeller of the contrarotat- 

ing propellers are shown in Figs. 14 and 15. The instantaneous thrust eccen- 

tricity for the different propellers is given in Fig. 16, and the instantaneous 

transverse forces are presented in Fig. 17. 

152 



| eee. va | | 

Torque in ton m. 

Thrust in tons 

le | — 

Model Tests on Contrarotating Propellers 

Conventional screw 
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propellers 
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Fig. 15 - Instantaneous thrust of cargo liner propellers 

153 



van Manen and Oosterveld 
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E Hor in meter 

Fig. 16 - Instantaneous thrust eccen- 
tricity of cargo liner propellers 

Figs. 14 and 15 show clearly that the variations in torque and thrust of the 
forward screw of the contrarotating propellers are about the same in magnitude 
as those of the conventional screw, which implies that these variations, ex- 

pressed in percentages of the mean values, are about twice as large for the for- 
ward screw of the contrarotating propellers as those of the conventional screw. 
The variations of the aft screw are lower than those of the forward screw of the 
contrarotating propellers. Apparently the forward propeller smoothes the pe- 
ripheral irregularities of the flow in the way of the aft propeller, as was also 

evident from the cavitation tests. 

It appears from Fig. 16 that the thrust eccentricity of the forward screw of 
the contrarotating propellers is considerably larger than that of the conventional 
screw. However, the thrust of this forward screw is about half as large as that 
of the conventional screw, so that the maximum bending moments due to the ec- 
centricity of the thrust will not change very much. This implies that the stresses 
due to these bending moments must be almost equal, if the diameter of the outer 
shaft is the same as that of the shaft of the conventional screw. Since the inner 
shaft diameter is smaller, possibly the loading of this shaft increases, since its 
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Fig. 17 - Instantaneous transverse forces 
of cargo liner propellers 

stiffness against bending is only about a fourth part of that of the conventional 
propeller shaft, whereas the moments are about half of those of the conventional 

propeller. 

Figure 16 shows that in many cases the eccentricities for the contrarotating 
propellers are in opposite direction, so that the bending moment on the forward 
screw may be reduced by that on the aft screw. The variations in thrust and 
torque of the forward and aft screw, however, may reinforce each other. 

It can be seen from Fig. 17 that the transverse force variations of the con- 
ventional screw are large, whereas those of the contrarotating propellers are 

negligible both in quantity and in direction. 

Additional measurements were conducted to determine the effect of a change 
of the angular positions of the mutual blade encounter of the contrarotating pro- 
pellers. From these tests it was concluded that no significant differences occur 

for different angular positions of the mutual blade encounter. 

Determination of Stopping Abilities 

Investigations have been carried out to compare the contrarotating propel- 
lers and the conventional screw with respect to their ability to stop the 
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32,500-DWT tanker. The propelling machinery was supposed to be a steam tur- 

bine or Diesel engine, each capable of developing 16,000 DHP at 120 rpm. 

The comparison of the stopping abilities of the contrarotating propellers 

and the conventional screw is based on a stopping maneuver as illustrated in 
Fig. 18. This maneuver is divided into four phases: 

I. Steam or fuel supply to the engine is shut, the propeller is running slack 

and the ship speed decreases due to the hull resistance until the propeller rpm 
is sufficiently low to enable reversing of the engine rotation. 

II. The ship is further slowed down by running the propeller system full 
astern, until a forward speed of about 6 knots is achieved. At this speed the ship 

will loose steerability, and tugs will have to render assistance. 

III. The propeller is stopped, and tugs make fast. 

IV. With the propeller slowly turning astern the stopping maneuver is com- 
pleted. In this phase the ship is steered by tugs. 

For a comparison of the conventional screw and the contrarotating propel- 

lers, the characteristics for phases I, II, III, and IV of the stopping maneuver 
were derived from the results of model tests. During these tests the total brak- 
ing force (hull resistance and propeller force) was measured at different speeds 
of the model and at different propeller rpm. The speed of the model was kept 
constant during a test. For the calculation of the head reach it was assumed 
that the ship's speed changes so slowly during the stopping maneuver that the 

values of the total braking force, as measured during the stationary tests, were 
correct. Thus a quasi-steady approach (as described in Refs. 12 and 16) has 
been used for analyzing the stopping maneuvers. This approach is correct for 
large ships having relatively low powers installed, so that long stopping times 
occur (16). To determine the added mass of the ship during the stopping maneu- 
ver additional dynamic stopping tests were performed. 

A comparison between the stopping abilities of the conventional screw and 
the contrarotating propellers can be made from the results presented in Figs. 
19 through 21, Figure 19 shows the head reaches of the turbine tanker to be al- 
most equal for the conventional screw and the contrarotating propellers. For 

the Diesel engine tanker (Figs. 20 and 21) the contrarotating propeller reduced 

the head reach in comparison with the conventional screw. The rpm at which 

the Diesel engine is reversed affects the head reach of the tanker considerably. 

CONCLUSIONS 

As a result of these investigations the following conclusions can be made: 

e Contrarotating propellers have an open-water efficiency which is slightly 
higher (about 2 percent) than that of conventional screw propellers; the optimum 
diameter of contrarotating propellers is less (about 15 percent) than that of con- 
ventional screws. 

156 



Model Tests on Contrarotating Propellers 

Wd Jaledosg 
dtys 

as32e,T 
e 

Jo 
z
9
A
n
a
u
e
w
 

Butddojsg 
- 

gT 
“
3
 

W
y
 

Ul 
Yoeas 

p
e
a
y
 

| | | = 4 

| 

is 

sos me = 

mz 
1S. 

L 

8 
bs 

9 
S 

7 
€ 

(4 
L 

O
F
 

|
 m
e
 

a
n
s
 maseug 

“TW aseug 
+
 

Teseug 
“Taseug 

a
 

a
e
 

= 
t
 

+
 

2 
= 

c
 
a
 

=p 

diys 
jo 

paads 
a 0
 

( 
fn 

{ 
| 

eo 

a 

aie 
+
 

a? 
4
 

S 
oL> 

| x
 

2) 
°
 

|
 

W
d
 

J
a
i
e
d
o
i
g
 

=
 

\ 
| 

if 

| 

ae 
lL 

i
e
 

St 

|
 

| 

:
 

a
i
e
 

i
i
a
 
b
e
 

Se 
: 

i
 

mene 
useyse 

Aymo}s 
Buluiny 

ysey 
a
y
e
w
 
s
6
n
}
 

u
s
e
3
s
e
 

yoeys 
B
u
i
u
i
n
y
 

masos 

m
a
s
o
s
 

ysey 
a
p
e
w
 

s
6
n
y
 

P
p
a
d
d
o
y
s
 
M
a
a
s
 

j
a
m
o
d
 

}
n
4
 

u
M
o
p
 

3ynys 
A
j
d
d
n
s
 

w
W
e
a
y
s
 

157 



van Manen and Oosterveld 

+200 T T T Fj 

Conventional screw. 
Steam turbine | i—-———— Contra-rotating 

ropellers. = ol hae ef BA 4a Ne ph hd Be __Propellers 6000 

Propeller RPM 

Head reach 
10 = Sn a a a a Fe =H ; 2000 

| { 

Head reach in meters i] 

Speed in knots | 
5 slaved 

| Ship speed in knots S ° 5S 

0 
0 250 500 750 1000 1250 1500 1750 

Time in seconds 

Fig. 19 - Comparison of the stopping abilities of 
conventional and contrarotating propellers for a 
steam turbine tanker 

e Contrarotating propellers offer a means of improving the propulsive effi- 
ciency of ships. The reduction in DHP due to application of the contrarotating 
propellers for a tanker was about 4.5 percent in the loaded condition and 8 per- 
cent in the ballast condition of the ship if compared with the ship with conven- 
tional screw. The contrarotating propellers behind the cargo liner compared 
with the conventional screw requires about 6.5 percent less DHP. 

e Conventional screws and the forward propeller of the contrarotating pro- 
pellers are quite comparable as far as blade cavitation is concerned. The ex- 
tent of sheet cavitation on the back of the aft propeller of the contrarotating 
propellers is relatively small. With regard to the strength of tip-vortex cavita- 
tion the contra-rotating propellers were slightly better than the conventional 
screws. 

e With regard to the propeller induced vibratory forces the thrust and 
torque variations as well as the thrust eccentricity of conventional screws and 

contrarotating propellers did not differ very much, although the average thrust 
and torque of each of the contrarotating propellers are about half of that of a 

comparable conventional screw. The application of contrarotating propellers 

causes a considerable reduction in transverse forces compared to a conventional 
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screw. These forces are practically constant both in quantity and in direction 

for the contrarotating propellers. 

e When stopping a ship with steam turbine machinery, the head reaches 
corresponding to the conventional and the contrarotating propeller are nearly 

equal. For a ship with Diesel machinery the application of a contrarotating 

propeller leads to a decrease in head reach. 
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DISCUSSION 

Hans B. Lindgren 

Swedish State Shipbuilding Experimental Tank 

Goteborg, Sweden 

This paper is very similar to the paper I will present in the final session on 
Friday with C. A. Johnson and G. Dyne as coauthors. Unfortunately the paper 

has not been available in printed version so that we could have made any quanti- 
tative comparisons. As our paper has been available for a long time, it would 
be interesting to know if the authors have made such a comparison. With regard _ 

to Mr. Oosterveld's presentation I should like to ask two questions. | 

First, Mr. Oosterveld mentioned that there is a danger that the tip vortex 

cavity of the forward propeller causes erosion on the aft propeller. He also 
mentioned that this could be avoided by decreasing the diameter of the aft pro- 

peller in relation to the forward. I should like to know how big a decrease has | 
been adopted and if the result was satisfying. At the Swedish State Shipbuilding 
Experimental Tank we use in our theoretical design method the hypothesis that 
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the tips of the two propellers lay on the same mean streamtube. This is not 
sufficient to avoid the problem mentioned, and a further decrease is necessary. 

My second question is related to the figures Mr. Oosterveld gave on the 
possible power gains with contrarotating propellers for the two different ship 
projects. Do the figures given refer to the same rpm for the contrarotating and 
the conventional propeller, or which assumption was adopted ? 

* * * 

DISCUSSION 

William B. Morgan 

Naval Ship Research and Development Center 
Washington, D.C. 

In the David Taylor Model Basin at the Naval Ship Research and Develop- 
ment Center we have run a large number of experiments on contrarotating pro- 
pellers. We have found that in general the hull efficiency, and relative rotating 
efficiency of the ship model are different from that of the same model with a 
single propeller. Also, we have shown that for best performance the design of 
the propellers should be based on their particular application. For these two 
reasons it is not clear to me how a series of open-water tests of contrarotating 
propellers can be used to pick the best performing propellers. 

* * * 

DISCUSSION 

C. A. Johnsson 

Swedish State Shipbuilding Experimental Tank 

Géteborg, Sweden 

I notice that the authors, when discussing the different propulsion coeffi- 
cients, do not mention one of particular interest in this context: the relative 
rotative efficiency. When we analyzed our self-propulsion data, we found that in 
some cases most of the gain when using contrarotating propellers could be traced 
to an increase in the relative rotative efficiency, for which values of 1.05 to 1.10 
were obtained. Such figures of this coefficient always makes the practical de- 
signer suspicious and often results in discussion of the accuracy of the instru- 

mentation, etc. We were therefore glad to find that test results from NSRDC 
showed similar figures, and we also got support from some theoretical calcula- 
tions. I should like to ask the authors what their values of the relative rotative 
efficiency look like. 
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The question of this efficiency is rather important. Our values seem to 
show an increase in the relative rotative efficiency with decreasing thrust coef- 
ficient K;. This indicates that the optimum diameter could be smaller than that 
obtained from open water tests. 

REPLY TO DISCUSSION 

J. D. van Manen and M. W. C. Oosterveld 

It was a great privilege to obtain at the final moment the opportunity to pre- 
sent the NSMB-results on contrarotating propellers at this symposium. 

The investigations performed at the NSMB were confined to efficiency, cavi- 

tation, vibratory forces, and stopping abilities of a contrarotating propeller sys- 
tem consisting of a four-bladed propeller forward and a five-bladed propeller 
aft. Our final conclusion is that we see a future for application of contrarotating 
propellers on fast cargo liners, since the power will increase so much that two 
propellers are needed to absorb the required power. 

Our future research will be concentrated on propeller induced vibratory 
forces for well-selected combinations of the blade numbers fore and aft. In our 
opinion the problem of propeller induced vibratory forces will be the most criti- 
cal one in future discussions about the application of contrarotating propellers. 
The other qualities such as efficiency, cavitation, and stopping are no longer a 

serious point to delay a possible application. 

With regard to Mr. Lindgren's remarks concerning the diameter reduction 
of the aft propeller, it should be noted that for the tanker and the cargo-liner 

contrarotating propeller sets these reductions were 12.4 and 6.5 percent respec- 
tively. Especially of the cargo liner the tip vortex of the forward propeller in- 
terfered with the blades of the aft propeller in the upper and lower part of the 
aperture and caused unfavorable cavitation phenomena. 

Therefore it may be useful to reduce the diameter of the aft propeller 
slightly more. In regard to Mr. Lindgren's second question it must be empha- 
sized that the propeller designs for both ships were based on given DHP, rpm, 
and speed and that for the determination of the optimum diameter of the contra- 
rotating propeller sets and the conventional screws, use was made of open-water 

test results with the contrarotating propellers and conventional screw series. If 
the propeller designs were based on given DHP, speed, and diameter (for in- 
stance the maximum allowable propeller diameter), and if the optimum rpm's 
with regard to efficiency were chosen, then it can be expected that the reduction 
in DHP due to contrarotating propeller application in comparison with conven- 

tional screws will be larger than by comparing systems with equal rpm. 
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We agree with Dr. Morgan that for best performance the design of a contra- 
rotating propeller set should be based on a particular application, as was still 

the case in our contrarotating propeller investigations. However, for the deter- 
mination of the optimum diameter or rpm of the contrarotating propeller sys- 
tem, the results of open-water tests with a systematic series of contrarotating 

propellers are very useful. 

With regard to Mr. Johnsson's comments it is interesting to note that for 

the tanker and the cargo liner in the case of contrarotating propeller application 

the relative rotative efficiencies were 1.050 and 1.065 respectively. These val- 
ues are of the same order of magnitude as found by tests performed at the Naval 
Ship Research and Development Center and at the Swedish State Shipbuilding Ex- 

perimental Tank. 
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EXPERIMENTAL AND ANALYTICAL 
STUDIES OF PROPELLER-INDUCED 

APPENDAGE FORCES 

August F. Lehman and Paul Kaplan 

Oceanics, Inc. 
Plainview, New York 

ABSTRACT 

During the past several years experiments involving unsteady forces 
induced on an appendage by a propeller have been carried out at 
Oceanics, Inc. Most of these experiments concerned a propeller 
downstream of an appendage, although certain measurements were 
made with the propeller upstream (rudder case). An associated theo- 
retical analysis to predict the influence of various physical parameters 
on the magnitude of the induced forces was also developed, based upon 
two-dimensional flow considerations. Two-, three-, and four-bladed 

propellers were studied, with blades of two thicknesses. The effects of 
spacing distance between the appendage and the propeller, appendage 
asymmetry, and the appendage attack angle on the induced forces were 
of primary interest. This paper presents the more pertinent results of 
these investigations and discusses a technique of using a single-bladed 
propeller to predict multibladed propeller induced forces. Limited 
comparisons between the developed theory and the experimental data 
are also presented. 

INTRODUCTION 

In evaluating the vibratory characteristics of naval vessels, knowledge of the 
appendage forces induced by a propeller is important. By the early 1960's theo- 
retical work (1-5) had for the most part preceded any experimental evaluation of 
this problem, primarily because of the difficulties of satisfactory unsteady meas- 
urements. In 1960 Lewis (6) reported on the first successful experimental measure- 

ments of the transverse or side forces induced on an appendage upstream of a 
propeller. This initial work was amplified by further published data in 1963 (7). 

In 1964 Oceanics, Inc., was supported by the Naval Ship Research and De- 
velopment Center on the first of a series of model studies to obtain certain 
propeller-appendage test data. This first study involved a measurement of both 

the axial and transverse induced forces; and a series of investigations covering 
various aspects of this problem followed. The present paper summarizes the 
pertinent results of those investigations. 

The basic measurements were unsteady axial and transverse fluctuating 
forces induced on an upstream appendage by a propeller at blade-rate frequency 
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(the number of blades of the propeller times the propeller rotational speed) and 
higher harmonic frequencies. Specifically, the propeller-induced appendage 
forces were examined as a function of propeller-appendage spacing for varia- 

tions in the propeller blade thickness, number of blades comprising the propel- 
ler, appendage asymmetry, appendage attack angle, and appendage location 
(downstream or upstream of the propeller). 

An associated theoretical analysis that predicts the influence of the various 
physical parameters on the magnitudes of the induced forces was also developed, 
based on two-dimensional flow characteristics. Limited comparisons between 
this theory and the experimental data are also presented in this paper. 

TEST FACILITIES 

All of the testing was performed in the Oceanics Water Tunnel. This tunnel 
is a recirculating, closed-jet-type tunnel having both the water velocity and the 

test section static pressure as controllable variables. The test section is ap- 
proximately 20 in. on a side (with rounded corners) and about 7 ft long. The 

water velocity is controllable to about 40 ft/sec, and the static pressure can be 
independently controlled from about 0.1 to 2 atmospheres absolute. For the 
majority of these tests the water velocity in the tunnel was 5.23 ft/sec. This 
rather low free-stream velocity was required for low speeds of propeller rota- 
tion along with acceptable levels of thrust while still allowing the frequencies of 

interest to be in a range adequately covered by the dynamic response of the 
balance-appendage system. 

An external dynamometer can be placed at either end of the upper horizontal 

leg of the tunnel; thus propellers can be driven from either their upstream or 
downstream side. For these tests, the propellers were driven from their down- 
stream side. The axial position of the propeller in the test section can be easily 
changed, as the dynamometer and propeller drive shaft are connected as a unit 

which rests on a bed similar to that employed on lathes. The propeller is posi- 
tioned axially by a lead screw which is independently powered. 

In the settling section just ahead of the nozzle there is a honeycomb to im- 
prove the flow conditions before the water enters the nozzle and passes through 
the test section. At the entrance to the test section, screens can be inserted to 
create the desired profile of a particular wake (axial components only). For the 
investigations discussed here, no screens were used, and a uniform flow approached 

the appendage-propeller system. A drawing of the tunnel circuit is shown in 
Pigs: 

PROPELLERS 

The two propeller designs used in most of these tests were selected from a 

series with eight variations of blade thickness which received extensive study at 
the National Physical Laboratory (8). The propellers selected are identified in 
Ref. 8 as BT-1 and BT-2. The same identification nomenclature is used in this 
report. The propellers were manufactured as individual blades fastened to a 
common hub. This permitted testing as one-, two-, three-, and four-bladed units. 
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Fig. 1 - Tunnel 

The BT-2 propellers had a 100% increase in blade section thickness over BT-1, 
together with a pitch reduction of 7.5%. Detailed characteristics of the propel- 
lers are shown in Fig. 2. The four-bladed propellers are shown in Fig. 3. All 
test propellers had a diameter of 8 in. 

APPENDAGE-BALANCE SYSTEM 

The success of an experiment involving dynamic measurement involves a 
satisfactory sensing or balance system, a stiff (high-resonant-frequency) 

balance-appendage system, and an adequate dynamic calibration technique. For 
completeness, each of these components will be discussed in some detail. 

Dynamic Balances 

The basic balance element consists of a strain-gaged force unit designed on 
the flexure plate principle with one balance unit mounted on each end of the ap- 

pendage. The use of flexure plates is a common approach in instrumentation 

design wherein sensitivity to forces in only one direction are desired. The 
flexure plate unit consists of extremely stiff top and bottom plates separated by 

two very thinside members. The upper and lower plates can move parallel to 
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Fig. 2 - Test propellers 

one another very easily if a force is applied to either plate in a direction normal 
to the weak sides of the unit. Forces applied in any other direction result in ex- 
tremely small deflections of one plate relative to the other because of the in- 
creased stiffness of the unit in all other directions. 

In certain instrumentation application the weak sides of the sensing elements 
are strain gaged; in other applications the coil of a linear differential trans- 
former is attached to one plate and the core to the other plate. Either of these 
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Fig. 3 - Four-bladed test pro- 
pellers; the BT-1 blades are at 
the right, and the BT-2 blades 
are at the left 

techniques permits the motion of one plate relative to the other to be calibrated 
as a function of applied force. While this approach is satisfactory for most 
steady-state force measurements, it is of little value in sensing dynamic force 
fluctuations as the deflection of one plate relative to the other is quite large and 

thus the resonant frequency is quite low. 

To overcome this defect a system was employed using the advantage of a 
flexure plate sensing element while limiting the deflections to extremely small 
increments, thereby producing a system which is quite stiff. This technique 
uses pretensioned strain-gaged beams. In this application a thin strip of metal 
having four strain gages mounted upon it is attached to an opening in one plate of 

the element (Fig. 4). This opening (as well as the strain-gaged strip of metal) is 
located perpendicular to the weak sides of the element. This strain-gaged strip 

of metal is then placed in tension between its end-clamping members by stretch- 
ing it before tightening the end clamps. To the bottom plate of the sensing ele- 
ment is attached a very rigid massive member, which in turn is then clamped to 
the center of the strain-gaged strip of metal. In this manner, while the two stiff 
plates of the element still retain their capability of easily moving relative to 
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Strain Gages Members Holding 
Strain Gage Beam 
Under Tension 

Strain Gage Beam 

Face Which 
Deflects 
Under Load 

Fixed Face 

Fig. 4 - Pretensioned strain-gaged flexure element 

each other when a force is applied normal to the thin sides of the unit, the strain 
gaged strip of metal permits only as much motion as the force is capable of ad- 
ditionally stretching the metal strip. Thus deflections are very small, and the 
unit has a relatively high resonant frequency. The wiring of the strain gage 
bridges is shown in Fig. 5. 

Any number of such basic elements as shown in Fig. 4 can be fastened to- 
gether so that forces in the desired directions can be sensed (and determined). 
The interaction of such systems is extremely low, somewhat under 0.5% for all 
forces or moments except those about an axis perpendicular to both stiff plates, 

where the interaction is approximately 1.0% (9). 

Appendage- Balance Arrangement 

The initial propeller appendage investigations (10) had the appendage com- 
pletely spanning the test section. In this arrangement the appendage was not as 
stiff in the transverse direction as might be desired for obtaining data at fre- 
quencies above the blade rate. The appendage design was therefore modified, 

based on the suggestions of Dr. Murray Strasberg of the Naval Ship Research 
and Development Center. This design, used for most of the tests reported here, 
consisted of having the test appendage perpendicular to the support members. 
A sketch of this test arrangement with a two-bladed propeller is shown in Fig. 6. 
It can be noted that the appendage was held in place by two support bars extend- 
ing through the holes in the mounting windows and then fastened into the dynamic 

balances. Using the pretensioned strain-gaged force balances discussed, the 
motion of the support bar under an induced force loading is less than 0.001 in.; 
thus radial-lip shaft seals can be employed without introducing significant seal 
reaction forces on the support bars. Consequently the forces introduced on the 

appendage by propeller action are not affected by seal dynamics. The support 
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Excitation Voltage 
532=VOLles ac at 20) KG. 

Horizontal Bridges Wired for Summing 

Excitation Voltage 
bae2 VOLES ac at) 20) K.C. 

Vertical Bridges Wired for Summing 

Fig. 5 - Schematic of balance 
gages wired for summing 

bars themselves are covered with streamlined fairings fastened to the tunnel 
wall, thus preventing water flow forces from influencing the measured append- 
age forces. However, it should be pointed out that the propeller is operating in 
the wake of a cruciform appendage arrangement with measurements made only 
on the vertical appendage. 

Asymmetry of the appendage was introduced by adding extensions to one 

semispan of the basic symmetrical appendage. The basic appendage had an 

ogival cross section with a chord of 8 in., a span of 8 in., and a maximum thick- 

ness of 1 in. The basic appendage extended 1/2 propeller diameter; i.e., 4 in., 
to either side of the propeller center line. Extensions having a span of 2 in. 
were then added to one semispan of the basic appendage to produce the desired 
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KF
 

(POZA 

Strain 
Gage Balance 
Unit 

Fig. 6 - Test arrangement 

asymmetry. In this manner, one extension resulted in an appendage extending 

1/2 propeller diameter below and 3/4 propeller diameter above the propeller 

center line. Two extensions resulted in an appendage extending 1/2 propeller 
diameter below and 1 propeller diameter above the propeller center line. Photo- 

graphs of the appendage, fairings, and dynamic force balance are shown in Figs. 

7 and 8. This appendage is considered three-dimensional, as the ends are rather 
far from the tunnel walls. 

Dynamic Calibration of Appendage- Force Sensing System 

In calibrating the appendage force sensing system a constant force was ap- 
plied to the system by a small electrodynamic shaker monitored by a force gage 

in a small impedance head. The output from the force sensing element (dynamic 
strain gage balances) was read on the meter of a Hewlett- Packard wave ana- 
lyzer.* The wave analyzer readings thus permitted plotting the response of the 

*A capacitor was installed in parallel across the meter terminals to produce a 
smooth signal. The bandwidth of the analyzer is 7 Hz for 3 dB attenuation. 
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Fig. 7 - Test appendage, exten- Fig. 8 - Dynamic balance 
sions, and balance unit 

system in terms of millivolts per pound of applied force as a function of the fre- 
quency at which the shaker was operating. Figure 9 is a block diagram of the 
dynamic calibration setup and wiring of the electronic instrumentation. 

The dynamic balance calibrations during this series of investigations were 
undertaken in the following ways. In the earlier studies the foil was completely 
submerged during the transverse calibration as the shaker was attached to one 

end of the support rod which extended outside of the tunnel. However for the 

axial calibration the shaker was attached to the center of the foil and the cali- 
bration undertaken in air. The response of the system in the axial direction as 
a function of frequency was then plotted. The foil was then completely sub- 
merged, and with the output of the dynamic balances fed to an optical galvanom- 
eter the foil was struck a sharp blow in the axial direction. The resonant fre- 

quency was then determined by examining the optical galvanometer record of the 

response trace. The calibration curve which had been obtained in air was then 

shifted by this slight change in the resonant value to obtain the curve used for 

data evaluation. 

During the later studies the transverse calibration was performed in the 

same way as for the earlier investigations, but for the axial calibration the 
transducer was encapsulated in a rubber protective cover so that this calibra- 

tion was also performed while the foil was submerged. Thus all calibration data 

were obtained with the foil completely submerged in the operating medium. 

The system was calibrated for each test condition prior to taking data. This 
technique permitting establishment of the exact calibration (+0.02 Hz) at the sub- 

sequent desired frequency of interest. By calibrating each system prior to test- 
ing, any change in the system response due to foil extension attachment, etc., 

was included. Flow background levels were also taken at this time. A typical 
plot of system calibration and flow background levels is shown in Fig. 10. 
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Propeller-Induced Appendage Forces 

100 

50 

Resonance 

No Measurements Taken 
*n This Frequency Range 

System Calibration 

Millivolts per lb of Applied Force 

nw o 

0.005 

Millivolt Output 0.002 

0.001 

i 

to) 25 50 75 100 125 150 175 

Frequency (cps) 

Fig. 10 - Dynamic calibration of the symmetrical appendage 
system, and flow background levels 

TEST PROCEDURES 

In undertaking a test run the desired appendage was mounted in the tunnel 

and the balance-appendage system was calibrated using the technique just de- 
scribed. The propeller was then moved into the proper position, since it was 
located approximately 6 propeller diameters downstream during the determina- 

tion of the calibration and flow background levels. The desired tunnel velocity 
and propeller rotational speeds were established, and then for each propeller- 
appendage spacing ratio the induced force, as indicated by the output of the strain 

gage balance system, was recorded at specific frequencies of interest. The test 
arrangement was then changed and the entire procedure repeated. As was men- 

tioned, most of these tests were undertaken at a free stream velocity of 5.23 ft/ 

sec and a normal rotational speed of 13 rps; thus the advance ratio for most of 

the tests was 0.603. 

DATA EVALUATION 

The initial test readings consisted of millivolt levels from the wave analyzer 
and propeller thrust readings from the dynamometer. The thrust value was cor- 
rected for the tare load determined by operating at test conditions without the 

propeller on the dynamometer shaft. The net thrust value was determined by ad- 

justing the measured value by the tare influence. 
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The millivolt value recorded from the wave analyzer was converted into 
pounds of induced force in the following manner. The initial value was adjusted 
for the influence of the "flow background" by taking the square root of the differ- 
ence of the squares, a procedure implying an uncorrelated test condition. As 
noted in Fig. 10 the flow background was extremely small and resulted in a 
meaningful change in the adjusted millivolt value in very few cases. The ad- 
justed millivolt value was converted into pounds of force by dividing this value 

by the millivolts-per-pound calibration value existing for that particular fre- 
quency and the particular arrangement undergoing test. The final data form was 
obtained by dividing the "true" induced force by the net propeller thrust value, 

and this ratio is employed for most of the data presented. 

DATA PRESENTATION AND DISCUSSION 

Before discussion of the propeller induced appendage forces which existed 

at specific blade rate harmonics, it is perhaps of value to clarify two points 
which are raised most often after presenting unsteady appendage data. 

The first clarification is to demonstrate that propeller induced appendage 
forces exist only at the blade rate and its harmonics. During a test the entire 
frequency range encompassed by the blade rate harmonics is scanned to insure 

that the induced appendage forces occurring at specific frequencies (correspond- 
ing to certain blade rate harmonics) are larger than any force values measured 
at other frequencies. However, only those values occurring at blade-rate fre- 
quencies are normally recorded. Figure 11 illustrates that this contention is 
true. This figure is a plot of the measured force level ratio as a function of fre- 
quency. The data on this figure present the axial induced appendage forces asso- 

ciated with a four-bladed propeller (double-thickness blades) when operating be- 
hind a symmetrical appendage. Data taken over the entire frequency range of 
interest are shown. The information is presented for two spacing ratios. From 
this figure it can be noted that the induced appendage forces do exist only at fre- 

quencies corresponding to specific blade-rate harmonics and that the induced 

force magnitudes decrease rapidly with an increase in spacing ratio (this latter 
observation will be illustrated more fully in other figures). 

The second point of clarification concerns the relationship between the num- 

ber of blades on a propeller and the nature of the induced appendage forces. 
Theory (5) states that a propeller with an even number of blades should induce 
only axial unsteady forces and that a propeller with an odd number of blades 
should induce only transverse unsteady forces. All experimental data verify 
this contention except at extremely close appendage-propeller spacing ratios. 
For close spacing ratios a propeller with an even number of blades induces some 
transverse force on the appendage and a propeller with an odd number of blades 
induces some axial force. An investigation of the effect that the appendage at- 

tack angle has on the unsteady propeller induced appendage forces supplied a 
clue as to the reason for this apparent inconsistency between experiment and 

theory. 

During an investigation involving appendage attack angle (11) it was observed 
that the appendage attack angle has a significant effect on the nature of the in- 

duced appendage forces. Very slight appendage attack angles resulted in the 
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Spacing = 0.0625 
ie) Propeller Diameter 

Spacing = 0.3125 
Propeller Diameter 

Shaft Rate 13 rps 

First Harmonic 

102 x Induced Force/Propeller Thrust 

| > 

Second Harmonic 

Third Harmonic 

Frequency (cps) 

Fig. 11 - Axial induced appendage force levels as a function of 
scanned frequency for a double-thickness four-bladed propeller 
and a symmetrical appendage 

introduction of both axial and transverse forces regardless of whether there was 
an even or odd number of blades on the propeller. It therefore seems reasonable 
to conjecture that with extremely close propeller-appendage spacings the action 

of the propeller on the flow about the appendage is such as to result in an effec- 
tive angle of attack of the appendage. This contention is further strengthened by 

the fact that these "inconsistent" induced appendage forces completely disappear 
with slight increases in the spacing ratio, and it also follows that the effect of the 
propeller on the flow field about the appendage does decay rapidly. An example 
of the magnitude of the "contradictory" transverse force associated with four- 

bladed propeller tests is shown in Fig. 12. 

With those two points clarified the following discussions which involve an 
appendage at a zero attack angle will be restricted to comments relating only to 

the appropriate propeller- appendage induced force; i.e., axial induced forces will 

be discussed with even-bladed propellers and transverse induced forces will be 

discussed with odd-bladed propellers. 
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Zero Appendage Attack Angle 

The first case considered is that of the four-bladed propeller. Figure 13 
illustrates the influence of blade thickness on the induced appendage forces for 
the first, second, and third harmonics of the blade rate for a symmetrical ap- 
pendage. From this figure it can be noted that blade thickness is an important 
factor in determining the magnitude of the axial induced appendage force. How- 
ever appendage asymmetry has little effect, as is shown in Fig. 14. In this same 
figure, blade-rate (or first-harmonic) data are presented for two propeller blade 
thicknesses and three appendage asymmetries. This plot reinforces the obser- 
vation that the blade thickness has the dominant effect and appendage asymmetry 
has minimal effect. The minimal effect of appendage asymmetry is also shown 
in Fig. 15, where the unsteady axial induced appendage forces associated with the 
first, second, and third harmonics of the blade rate are shown for a four-bladed 
propeller having double-thickness blades. This figure shows that the induced 
appendage forces associated with the first harmonic of the blade rate are 30 to 

40 times as large as those associated with the second and third harmonics of the 

blade rate. 

For transverse induced appendage forces and operations with a three-bladed 
propeller and a symmetrical appendage, Fig. 16 illustrates the effect of propeller 
blade thickness on the induced appendage forces for the first, second, and third 

harmonics of the blade rate. In this case, as for the case of the axial induced 
unsteady appendage forces, blade thickness is an important factor in determining 
the magnitude of the forces associated with the first harmonic of the blade rate, 

but the second and third harmonics of the blade rate are notas strongly influenced 
by propeller blade thickness as for the case with axial induced appendage forces. 

Appendage asymmetry has a much more dominant effect on the transverse 

induced appendage forces than on the axial induced forces. Figure 17 illustrates 

the first harmonic data for both of the propeller blade thicknesses and three 

cases of appendage arrangement. Compare this figure with Fig. 14 to note the 

different effect appendage asymmetry has on the magnitude of induced axial and 
transverse appendage forces. The effect of appendage asymmetry on the un- 

steady induced appendage forces associated with the first, second, and third 

harmonics of the blade rate are shown in Fig. 18. It is shown that the effect of 
appendage asymmetry and the propeller blade rate harmonic condition both have 

a strong influence on the transverse induced appendage forces. 

Single-Bladed Propeller Tests 

During this series of investigations, data were obtained with a two-bladed 
propeller as well as with three- and four-bladed units. The information obtained 

with the two-bladed propeller, coupled with that obtained with the three- and four- 

bladed units, was then used to verify a test technique developed during these 
studies which establishes a basic relationship between the unsteady induced ap- 
pendage force and the propeller thrust. This technique involves testing a par- 
ticular propeller as a single-bladed unit and from this information then deter- 

mining the induced appendage forces for a multibladed propeller. Using this 

technique, it was found that the unsteady force induced on an appendage by a 

183 



102 x Induced Force/Propeller Thrust 

Lehman and Kaplan 

3.00 ) 

2.00 

Basic Thickness Blades 

—-—ws Double Thickness Blades 

First Harmonic 

0.10 

0.08 

vee Second Harmonic 

0.04 

Third Harmonic 

0.01 4 0.25 0.50 0.75 
Spacing/Propeller Diameter 

Fig. 13 - Blade-thickness effects on axial measurements at 
various propeller harmonics with a four-bladed propeller 
and a symmetrical appendage 
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Fig. 14 - The effects of blade thickness and appendage 
asymmetry on the axial forces associated with a four- 
bladed propeller 
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Fig. 15 - Appendage asymmetry effects on axial forces for a 
double-thickness, four-bladed propeller 
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Fig. 16 - The effect of propeller blade thickness on the transverse 
forces for a three-bladed propeller with a symmetrical appendage 

single-bladed propeller, when examined in terms of the ratio of the induced ap- 
pendage force divided by the single-bladed propeller thrust, resulted in good 

agreement when compared with the same induced force/thrust ratio associated 
with a propeller composed of more than one blade. Comparisons must naturally 
be made at the same frequency. For a three-bladed propeller the first harmonic 
of blade rate is three times the shaft rate; thus the single-bladed propeller data 
must also be examined at a frequency corresponding to three times the shaft 
rate to make a valid comparison. 

Using the single-bladed-propeller technique, the ratio of the induced append- 
age force and the propeller thrust of a multibladed propeller can be determined 
quite accurately once reasonable propeller thrusts (or K; operating values) are 
employed. The inaccuracy of this method arises when extremely light propeller 
loadings are employed, since the induced appendage force is actually composed 
of two components: one due to propeller loading and one due to propeller blade 

thickness. The thickness of the propeller should contribute a certain amount to 
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Fig. 17 - Effects of propeller blade thickness and 
appendage asymmetry on transverse measure- 
ments with a three-bladed propeller 

the induced force which is independent of the propeller thrust coefficient, but the 

percentage of the induced force attributed solely to the thickness term becomes 
larger as the absolute thrust of the propeller decreases. In other words, ata 
condition of zero propeller thrust there would still be a force induced on the ap- 
pendage due to the thickness of the passing propeller blade. 

The technique proposed here of presenting the induced appendage force as a 
ratio solely dependent on propeller thrust is thus recognized as not representa- 
tive of a true scaling parameter, as the thickness contribution is lumped to- 
gether with the loading contribution. However it does seem that the ratio 
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Fig. 18 - Effect of appendage asymmetry on transverse forces 
for a three-bladed propeller with the basic blade thickness 

presented here is valid for engineering purposes when the thrust coefficient of 
the propeller is representative of actual propeller designs. 

An example of the results of this test technique is shown in the following 
figures. Figure 19 presents the axial induced appendage force, as determined 
from single-bladed propeller operation, compared with forces induced by pro- 

pellers having two and four blades. Of interest on this figure is the fact that the 
induced force associated with the second harmonic of a two-bladed propeller is 

about as large as that induced by the first harmonic of a two-bladed propeller. 

This is somewhat contrary to what might be expected, but it is verified from 
both the single-bladed and two-bladed measurements for these propellers. Fig- 

ure 20 presents a comparison of the induced force ratios associated with single- 

bladed and three-bladed propeller units. These data are shown for both the first 
and second harmonics of the blade rate. From the preceding figures, as well as 
other data obtained during different test programs, it appears as if this technique 

is well suited for experimentally evaluating the induced appendage forces of a 
particular propeller design. It requires the manufacture of only one blade, and 
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Fig. 19 - Comparison of axial induced appendage forces 
for single- and multibladed, double-thickness propellers 
with a symmetrical appendage 

from this one blade all induced forces associated with a propeller having a multi- 

ple number of blades can be determining for engineering purposes. 

Effect of Appendage Thickness and Span 

The effect of appendage thickness and span on the induced appendage force 

magnitude was also investigated for the case involving axial induced forces. For 
these studies the test arrangement was as shown in Fig. 21. (The propellers 
employed in this particular study and in the remainder of the discussion of ex- 
periments were commercial outboard-motor propellers. They were two- and 
three-bladed propellers, both having a diameter of 8 in. and a pitch of 6 in., and 
are shown in Fig. 22.) The appendage span varied from one extending completely 
across the tunnel test section (19.56 in.) to smaller spans of 14 and 8 in. 
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Fig. 20 - Comparison of three-bladed and single-bladed operation 
with transverse induced forces and a symmetrical appendage 

For the smaller span appendages, fairings having the same cross section as 

the appendage itself were attached to the tunnel walls. All appendages had a 

ogival cross section and a chord length of 8 in. One foil had a maximum thick- 
ness of 1.0 in., and the other had a maximum thickness of 0.5 in. Figure 23 
illustrates the effect of foil thickness and span on the axial induced forces asso- 
ciated with the two-bladed propeller. 

Appendage Attack Angle 

The effect of appendage attack angle on induced appendage forces is of con- 
siderable interest, since the appendage attack angle significantly changes the in- 

duced appendage forces compared to the case with a zero appendage attack angle. 

Figures 24 and 25 present the axial induced forces with a two-bladed propeller 
at appendage attack angles of 0° and 10°. A comparison of the data contained on 
these two figures is shown in Fig. 26. This figure shows that the induced ap- 
pendage forces associated with both the first and second harmonics of the blade 

rate increase with appendage attack angle, with the second harmonic value 
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Strain Gage Balance 
Unit 

Fig. 21 - Test arrangement for appendage 
thickness and span studies 

Fig. 22 - Commercial 8-in.-diameter 
propellers used in the arrangement 
of Fig. 21 
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Fig. 24 - Induced force ratio vs spacing ratio for a 
two-bladed propeller downstream of an appendage, 
axial measurements, and an appendage angle of 0° 

approaching that associated with the first harmonic value for the condition of 
zero appendage attack angle. It must be remembered in this discussion that the 
direction of the axial and transverse forces remains referred to the free stream 

velocity vector and not the appendage chord. 

The transverse induced appendage forces associated with a two-bladed pro- 
peller are zero for the case of zero appendage attack angle (except for very 

close spacing ratios, as noted earlier), but with the introduction of an attack 
angle of 10° the transverse induced forces exceed the axial induced values, as 

shown in Fig. 27. 

For the case of the three-bladed propeller, Fig. 28 presents the transverse 
induced appendage forces for a 0° appendage attack angle and Fig. 29 presents 
the forces for a 10° appendage attack angle. A comparison of these figures again 

shows the strong influence that appendage attack angle has on the induced forces; 
the force ratios are decreased by about a factor of 2 when the appendage is at an 
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Fig. 25 - Induced force ratio vs spacing ratio for a 
two-bladed propeller downstream of an appendage, 
axial measurements, and an appendage angle of 10° 

attack of 10°. With a three-bladed propeller, the axial induced force is essen- 
tially zero when the appendage attack angle is zero, but with an appendage attack 

angle of 10° the induced force becomes significant. Data supporting this result 

are shown in Fig. 30. 

Rudder Case 

A few cases involving the unsteady forces induced on an appendage down- 
stream of a propeller, i.e., the rudder case, are presented in this discussion to 

illustrate the complexity of the unsteady propeller induced forces for the ar- 
rangement. At the time of this reporting, only some initial studies have been 
completed, but additional studies are being carried out. 
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Fig. 26 - Comparison of axial induced appendage 

force ratios with a two-bladed propeller down- 

stream from the appendage for the first and 
second propeller blade harmonics over a range 
of appendage attack angles 
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Fig. 27 - Induced force ratio vs spacing ratio for 
a two-bladed propeller downstream of an appendage, 
transverse measurements, and an appendage angle 
of 10° 
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Fig. 28 - Induced force ratio vs spacing ratio for a 
three-bladed propeller downstream of an appendage, 
transverse measurements, and an appendage angle 
of 0° 
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Fig. 30 - Induced force ratio vs spacing ratio for a 
three-bladed propeller downstream of an appendage, 
axial measurements, and an appendage angle of -10° 
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Two interesting observations were made during this study. The first con- 
cerned the introduction of both axial and transverse appendage forces by either 

an even-bladed or odd-bladed propeller as soon as the appendage was at an attack 

angle, similar to the case of an upstream appendage discussed previously. The 

second observation, and one which was perhaps more unusual, concerns the un- 

dulatory variation of the induced force ratio as a function of propeller-rudder 

spacing. While this variation of the force ratio would not be expected, particu- 
larly in view of the test results associated with the case of a propeller down- 

stream of an appendage, Sugai (12) has hypothesized that such force variations 
could exist. The present initial experimental data support that hypothesis. 

Figure 31 shows the axial induced rudder force ratio for a two-bladed pro- 

peller at a 0° rudder angle. Figure 32 shows the induced rudder force ratios 
with the rudder at an attack angle. The data on these figures show that the un- 
dulatory variation of the induced force ratio with axial distance exists both with 

and without rudder angle. Figure 33 illustrates the transverse induced rudder 
forces associated with a two-bladed propeller. This figure shows that even- 

bladed propellers induce transverse forces when the rudder is at an attack angle 

and that the undulatory nature of the force occurs for this case also. 

For the case of transverse induced rudder forces with a three-bladed pro- 

peller Fig. 34 shows the force ratios associated with a 0° rudder angle and Fig. 
35 presents data for a 10° rudder angle. These figures again illustrate the un- 
dulatory nature of the induced rudder force. Figure 36 presents the axial in- 
duced rudder force associated with a three-bladed propeller. Here once again 
the existence of an axial force associated with a three-bladed propeller is shown, 

together with the persistent undulatory variation with distance of the induced 

force ratio. 

SUMMARY OF EXPERIMENTAL RESULTS 

Since a detailed listing of the many implications which can be derived from 
the data would be very lengthy, only generalized key observations will be pre- 

sented here. 

1. Induced appendage forces are associated with only blade harmonic fre- 

quencies. 

2. Propeller blade thickness is a major factor influencing both the axial and 
transverse appendage forces. An increase in blade thickness produces significant 

increases in the induced force ratios. 

3. Appendage asymmetry has a strong influence on the magnitude of the in- 
duced force ratio for the case of transverse forces (odd-bladed propellers) but 
only a minor influence on the axial induced force (even-bladed propellers). 

4. Even-bladed propellers induce axial forces and odd-bladed propellers 
induce transverse forces on an appendage at a zero attack angle. Discrepancies 
at close propeller spacings can be logically explained as a result of propeller- 

induced ''steady" attack angle changes. 
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Fig. 31 - Induced force ratio vs spacing ratio for a 
two-bladed propeller upstream of an appendage, 
axial measurements, and an appendage angle of 0° 

d. All induced forces on an upstream appendage decrease rapidly with an 
increase in propeller spacing. This holds whether the appendage is at an attack 
angle or not. In general, once the spacing has approached a propeller radius, the 
induced force is less than 1% of the propeller thrust. 

6. Generally, the induced force values associated with the second and third 
harmonics of blade rate are well below those associated with the blade rate, but 

there are certain exceptions, such as the axial induced forces with the two- 
bladed propeller. 

7. The force ratio defined by the unsteady induced appendage force divided 
by the operating propeller thrust is recognized as not being a proper scaling 
factor in that both the thickness and loading contributions are lumped together. 
However, its use for conventional propeller loadings seem valid. 
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Fig. 32 - Induced force ratio vs spacing ratio for a 
two-bladed propeller upstream of an appendage, 
axial measurements, and an appendage angle of 10° 

8. Single-bladed-propeller tests can be used to predict the induced append- 
age force levels associated with multibladed propellers. This technique can be 

employed for determining both the axial and transverse appendage forces. Com- 
parisons have been made between single-bladed and two-, three-, and four-bladed 
propeller units. This is perhaps one of the more useful unsteady induced force 

test techniques developed to date. 

9. Introducing an attack angle to an appendage results in both axial and 
transverse forces for both even- and odd-bladed propellers. 

10. With an appendage attack angle of 10° the induced force ratio associated 
with a two-bladed propeller approximately doubles for the blade rate harmonic. 
The value for the second harmonic of the blade rate approaches that for the blade 

rate harmonic at a 0° appendage attack angle. 

11. With an appendage attack angle of 10° the induced transverse force ratio 
associated with a three-bladed propeller decreases to about 1/2 the value asso- 

ciated with the 0° appendage attack angle. 
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Fig. 33 - Induced force ratio vs spacing ratio for a 
two-bladed propeller upstream of an appendage, 
transverse measurements, and an appendage angle 
of 10° 

12. For the rudder case the most important observation is the undulatory 
variation of both the axial and transverse forces with an increase in propeller 
spacing. This condition holds for all cases, both with and without attack angles. 

13. For the rudder case and a two-bladed propeller the axial induced force 
at a 10° rudder angle reduces to about 20 to 25% of that existing at a 0° rudder 
angle. At 10° the transverse force approaches 50 to 60% of the axial force ata 

0° angle. 

14. For the rudder case and a three-bladed propeller the transverse force 
generally reduces with the introduction of attack angle. Little axial force is in- 
duced with a 0° rudder angle, but with a 10° rudder angle the axial force is about 

1/2 the transverse force. 
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Fig. 34 - Induced force ratio vs spacing ratio for a 
three-bladed propeller upstream of an appendage, 
transverse measurements, and an appendage angle 
of 0° 

THEORETICAL STUDIES 

At the start of this overall program it was recognized that measurements 
would be made of relatively small interaction effects, and since the work was 
exploratory it would be important to have a guide as to the expected relative 
magnitude and character of the various force components. Thus a coordinated 

approach of combined theory and experiment was carried out, so that compari- 
sons could establish a predictive tool for future studies. The theoretical study 

described herein (abstracted from Ref. 5) is intended to determine the relative 
magnitude of the transverse and axial forces acting on upstream appendages in 
the presence of a rotating propeller without considering (for this present work) 
the changing forces on the propeller blades due to the interaction. The mathe- 

matical analysis of the flow problem is based on two-dimensional ideal non- 
viscous flow for which potential theory is applicable, similar to the work on this 

problem described in Refs. 1 through 4. 
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Fig. 35 - Induced force ratio vs spacing ratio for a 
three-bladed propeller upstream of an appendage, 
transverse measurements, and an appendage angle 
ef 10° 

The propeller blade will be represented by a vortex distribution, and an in- 
finite cascade of propeller blades will be considered to pass the appendage, 
thereby introducing periodicity effects. In addition to the vortex representation 
the thickness of the propeller blades will be represented by a source distribu- 
tion. Similar 
tion, in the same manner as for the vortex representation. This inclusion of 
propeller thickness will allow a relative separation of the force effects on the 
appendage due to the propeller thrust and due to the pressure field arising from 
the propeller thickness effects. Neither propeller thickness nor periodicity ef- 
fects have been considered in any of the previous theoretical studies of propeller- 

appendage interaction. 

concepts of cascade theory will be used for this source distribu- 
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Fig. 36 - Induced force ratio vs spacing ratio for a 
three-bladed propeller upstream of an appendage, 
axial measurements, and an appendage angle of 10° 

The hydrofoil appendage will be represented initially as a source distribu- 
tion in a uniform flow, thereby accounting for the appendage thickness problem. 

The effect of the velocity field induced by the cascade of propeller blades will 
be used for determining the lateral crossflow on the foil and the longitudinal 
velocity field superposed on the oncoming uniform flow, both of which are non- 

uniform and nonsteady. 

The normal velocity induced at the appendage results in a vorticity distribu- 
tion on the appendage, and a nonsteady distribution of axially oriented dipoles 
along the chord line of the appendage is used to cancel the effect of the longitu- 
dinally induced velocity component. The various hydrodynamic singularities that 
represent the flow around a propeller blade and the appendage is represented in 

Fig. 37. The periodic lateral and longitudinal forces acting on the appendage are 
determined by application of fundamental hydrodynamic theories for the forces 
acting on singularities in oncoming flows, and illustrations of the derivation of 

particular force components are presented in the following discussion. 
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Fig. 37 - Hydrodynamic singularities representing 
a propeller blade and an appendage 

The problem of a propeller rotating in the vicinity of an appendage is for- 
mulated in terms of the geometric arrangement indicated in Fig. 38, where the 
propeller blades are represented as an infinite cascade of finite chord foil sec- 

tions moving with a velocity V = oR, in the negative y direction past another 

finite chord foil section representing the appendage, with the entire system ina 
uniform free stream velocity U in the x direction. It can be shown that the com- 
plex velocity on the appendage due to a cascade of concentrated vortices of 
strength I’ on the line x = x, spaced a distance d apart is given by 

dw’ il’ 7 4 

ail Wo anole Baul h bad Acoli eaimio ko ai aeliisived 
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Fig. 38 - Geometric relations between an appendage 
and a propeller blade cascade 

For |x, + iy) - x| > 0 the coth function can be represented in a series whose 
nonsteady portion is given by 

dw’ aah ee = pietc v ee bg ee ( 27m/d)(xgtiyg-x) 

Za) a d doe : 
m=1 

This expression is now generalized to a distribution of vorticity of magnitude 
Yp(%p) dx, over each propeller blade chord of length 2c, with the quantities x, 
and y, chosen as the coordinates of the reference propeller blade centroid: 

* if 0 b-Glit 26): , 

(1) 
Ve="sOR 4S -cesin dy» 
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where R, is the effective radius of the propeller, assumed to be 0.7R, and the 

angle a, = tan” * (V/U),. 

With the definition 

rs = | MCX) dx, ' 

and making the substitution x, = c cos @, the vorticity distribution is 

A,(l- ‘cos 0) 

sin @ 
Y'= 2v, | + 2A, ‘sin | ; ; (2) 

where 

Vjj=-U cos*ta¥? V sin a, = yU7 + V2. 

This choice of steady propeller vorticity distribution includes the effect of angle 
of attack on a flat plate airfoil (represented by the A, term) and a circular arc 
camber (represented by the A, term). 

Using the definition > = 2c/d_ , which is the blade solidity, where the pro- 
peller blade spacing d = 27R,/N, with N the number of propeller blades, the com- 
plex velocity induced at the appendage is 

dW re © N . 
7 v es p e mx/R imy,t 

dZ Dale ye & 
L=sx, m=1 

where Vy = Nw and 

Q -on /c)ri si ] GY = sal eae m[(x9/c)-i sin a, A, (3) 

in which 

A A Bier PB ees 0 : 1 ( 
me ROA, Soo! Peele og eran homme get 

where the argument of the Bessel functions is 

=il(7/2)7a,] 
o7rme 

The velocity field induced by the propeller blade thickness can be accounted 

for by a source distribution along the chord line of each propeller blade, given by 

Vp 
MCX) =a fax 5) ; 
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where f(x,) is the propeller profile function, chosen for the present purposes 

as a symmetric blade with a parabolic profile given by 

eee een 
Following the same procedure as for the vorticity distribution, the complex 

velocity induced at the appendage by the source distribution of the propeller 

blades can be found, and the total nonsteady complex velocity induced at the ap- 
pendage by the propeller blades, including both the vorticity and the thickness 

effects, can be expressed as 

oo 

dW mNx/R i t 

7 dZ = oS Yn e : 7 eo" A ’ 
(4) 

Z=x m=1 

where 

is iB Ne) 
1 

a Pp v c € t 
re In? Gy s ae aN G,, 

with GY defined in Eq. (3) and 

eonme "(4 - ener.) 
Gite ee gs ee “ol | 

m2 

t 
m 

ia, ia 
=e 5 2EmMe (1 + oO77me »)| 3 

Using the expressions for the complex velocity induced at the appendage, the 
normal velocity is given by 

oO 

mNx/R imv_t 
v(x,t) = -Im )- Yn & ASAE ee 

m=1 

so that it is expressed as an infinite sum of components, each of which is of the 
form 

-iu_x/U imr_t 
e m e Pp 

Vin o Wn 

where 

_ imNU 
Lm me R 

(3 

Using the results of unsteady airfoil theory (13), the nonsteady transverse force 
(lift) on the appendage due to the propeller blade vorticity and thickness is rep- 

resented by a sum of two terms: Y,.’ due to the propeller blade vorticity and Y; 

due to propeller blade thickness. These terms are given by 
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m=1 
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(2) (2) c (e 2 ; imyv_t 
ve = -Im | aera pee ys Ge Ky (mw SAA) pene 

m= 1 

where 

1 2 aw! Ky(@",A) = JOA) Co") + ES TOY 

is the Theodorsen function, in which 

ve 
; iN? ' P TOA) = JgQ) = iJ, QQ) Vat ssp —, 8 sae 

and 

K, (iw’ ) 
C 6a" oe ae ee eee eer 
Ces) K, (iw) + K;(i@",) 

Forces also arise due to the induced flow field of the propeller interacting 
with the source distribution representing the finite thickness appendage, where 
the source distribution for that profile is given by 

Hc = 5 (B)(%) 
in which s, is the maximum thickness of the appendage and it is assumed that 

the appendage profile is also parabolic. By application of Lagally's theorem (14) 
the forces arising due to this interacting are represented by 

g 

Xo = a Y, =. 27 | M(x) (- qz ee ; 

~Q x 

where the total complex velocity induced at the appendage by the propeller is 

given by Eq. (4). 

The nonsteady distribution of axially oriented dipoles induced within the ap- 
pendage has a strength given by 

1 So x) 
POG a> See) aaa hoe op , 
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where u(x,t) is obtained as the real part of Eq. (4). The forces on the appendage 
due to this dipole distribution are determined from the unsteady Lagally theorem, 
which includes a quasisteady term and a nonsteady term. The resulting forces 
are given by 

g 
d?W 

Keay 2s 270 ii fL Gxaat)) x 
=p dz 

Z= x 

for the quasisteady term and 

; fc) 
Xpit. GYYo=1e Qa i ser aa dx (5) 

2 

for the unsteady term, which is found in this case to be only an axial force on the 
appendage. 

Examination of the expression for the quasisteady dipole term shows that 
the force magnitudes are expected to be small and to produce higher harmonics, 

since the dipole strength is proportional to the induced complex velocity and it 

is multiplied by the velocity gradient. Thus this term will be deleted from fur- 
ther consideration, since numerical evaluation has also shown that it provides a 

negligible contribution. The unsteady axial force term arising from the dipole, 
given by Eq. (5), can be expressed as 

: 3} 

12PSyVp (5 bs Nm, /R -Nm, /R iment Xo Re ————— = ile e/SefNme _ g/Re/ Nme ss 4 e 72 N eS = ye R, 1) +e R eel e P 
e 

from which it is possible to separate the effects of propeller vorticity and thick- 

ness as in the previously derived force expressions. 

Since the appendage is also represented by an unsteady vorticity distribution, 

a leading-edge axial suction force will arise. This term will also be small, since 
it is proportional to the square of the induced vorticity, and hence the induced 

velocity field, as well as contributing only higher harmonics. Therefore it will 
be neglected when considering numerical evaluations. 

To apply the previous results to an actual three-dimensional propeller- 
appendage combination, it is necessary to include two infinite cascades of blades. 
Thus, as the blades on one side of the vertical plane through the propeller axis 
are moving down past the appendage, the blades on the other side of the plane are 

moving up. The previous expressions will hold if the directions of certain veloc- 

ities, angles, etc., are reversed; and an analysis was made in terms of the ef- 
fects of the different velocities when separately considering odd-bladed and 
even-bladed propellers. The details of the required analysis are presented in 

Ref. 5, and the conclusions obtained by considering the effects of the two cas- 
cades are summarized as follows: 
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Neven:-“m-edd or even:’’ Y(t = 105 

X(t) + 0, LOD? IB GUY. F840, 

N odd: m even: ¥,(t) = O, 

XC tjvé -0., 1-=4, 5.4, 

m odd: Yet) 4.05 

XeCtjr= 07, 1S 1 eg AG 

Thus it is seen that the number of blades, odd or even, determines the nature of 
the induced forces. In the case of a symmetrically disposed appendage the pre- 

vious results show that even-bladed propellers induce only axial forces and odd- 

bladed propellers produce only transverse forces for the fundamental blade rate 
frequency. Odd-numbered harmonics for an odd number of blades result in only 
transverse forces, whereas any condition where the product Nm is even results 

in only axial forces. 

With the vorticity distribution on the propeller given by Eq. (2) the two- 
dimensional lift on each propeller blade is 

2 2 L = 27pcv, Cala tA) 

Assuming equal contributions to the lift from the angle of attack and camber 
terms (A,=A,) the total thrust on the propeller is given by 

re 4npc.V. A,NR sin ty 

where c, is the effective half-chord length at 0.7R. The thrust coefficient C, is 
then found in terms of the advance ratio J, defined by J = U/nD = U/2nR, with n 
the number of shaft revolutions per second, where 

Cy = sear cnet : 

eU27R2/2 

A graph of C; vs J is given in Fig. 39, where the value of NA, is chosen to 

correspond to the particular operating condition C; = 1.0 for J = 0.7, for the 
value c,/R = 0.1875. These conditions are selected as an appropriate range for 
calculations that would illustrate the nature of the results of the theoretical 
study. 

The variation of the forces, as functions of the parameters characterizing 
this physical problem, is determined from numerical computations for the fol- 

lowing set of conditions: 

propeller diameter, 2R = 16 ft, 

propeller chord at 0:7 radius, 2¢. = 3 ft, 
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Fig. 39 - Propeller thrust coefficient as a function 
of advance ratio 

appendage chord, 20 = 14 ft, 

appendage thickness ratio, s/20= 0.15, 

appendage span = propeller diameter = 16 ft. 

Since the theory developed herein is two-dimensional, the total force on the 

appendage is therefore proportional to the total span, and the present set of com- 

putations are appropriate to the conditions described above. The parameters 
‘that will be varied in the numerical computations are the number of blades N, 
the propeller advance ratio J, the propeller thickness ratio t,/2c,, and the sep- 

aration distance between the propeller and the appendage, represented by the pa- 

rameter £ defined in Eq. (1). 
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An example of the results obtained from the present theory is shown in 
Fig. 40 for the fundamental blade rate transverse force on an appendage for a 

three-bladed propeller, at a spacing corresponding to 6 = 0.05. The total force 
amplitude and the separate contributions of the propeller loading (vorticity) and 
propeller thickness amplitudes, assuming each acted separately, are shown in 
this figure, and no phase information between the vorticity and thickness terms 
is given. The force is nondimensionalized on the basis of forward speed and 
propeller disk area (,U*7R?/2) and plotted as a function of the advance ratio J. 
Since the thrust coefficient C; is defined in the same way, the ratio of the in- 

duced force to the propeller thrust can be obtained to compare with experimental 

data presented in that manner. 
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Fig. 40 - Transverse force as a function of the advance ratio 
for a three-bladed propeller, showing the influence of the 
propeller thickness and loading (vorticity): ¢ = 0.05, N = 3, 
ty/2e = 0.05 
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Figure 41 presents similar results with the thickness ratio of the propeller 
doubled; it can be seen that the thickness contribution per se has also been 
doubled but that the total force is not increased in proportion to the increase in 

propeller thickness. Thus it is seen that the phase difference between the vor- 
ticity and thickness contributions is a significant factor in determining the total 
force magnitude. 

-18 total 
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08 thickness 

Fig. 41 - Transverse force as a function of the advance ratio 
for a three-bladed propeller: g = 0.05, N = 3, ty/2c = 0.10 
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For the axial induced force the relative effects of vorticity and thickness of 
the propeller are shown for a two-bladed propeller in Figs. 42 and 43, where the 
effect of doubling the propeller thickness is shown to be smaller as compared 
with the transverse force results. The blade rate results for the case of a four- 
bladed propeller are shown in Fig. 44, where the influence of the propeller thick- 

ness increase, relative to the magnitude of the total force, is greater. Thus the 
influence of propeller thickness for both the transverse and axial appendage 
forces is significant in determining their total amplitude. 
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Fig. 42 - Axial force as a function of the advance ratio for a 
two-bladed propeller: g¢ = 0.05, N= 2, t,/2c = 0.05 

The present theory includes expressions for forces at higher harmonics of 
the blade rate. The variation of the second-harmonic axial force for a two- 

bladed propeller is shown in Fig. 45, and the values for the blade-rate axial 
force for a four-bladed propeller are shown in Fig. 46. The total force, as well 
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Fig. 43 - Axial force as a function of the advance ratio for a 
two-bladed propeller: £ = 0.05, N = 2, ty/2c = 0.05 

as the constituent elements due to propeller vorticity and propeller thickness, 

are seen to be almost exactly the same for these two cases. An examination of 

the various theoretical expressions shows that the existence and magnitude of a 
force depend on the product mN. Thus the first-harmonic blade-rate axial force 

amplitude of a four-bladed propeller should be the same as the second-harmonic 
amplitude of a two-bladed propeller, with all other parameters being equal (same 

value of J, 4, propeller thickness, etc.), and this equivalence is exhibited in 
Figs. 45 and 46. 

The main contributors to the axial force are the terms denoted X, and X,, 
where X, arises from the sources that describe the form of the appendage ina 

free stream and X, is due to the dipole that corrects for the axial induced flows. 
Computations were carried out to determine their separate magnitudes, as well 
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Fig. 44 - Axial force as a function of the advance ratio for a 
four-bladed propeller: ¢ = 0.05, N= 4, ty/2c = 0.10 

as the total axial force, for a number of conditions. Typical results are given in 
Fig. 47, where it is shown that the dipole term is the predominant term, and the 
same effect is true for the higher harmonics of the axial force. Thus it is es- 
sential to include this particular induced singularity effect to obtain the major 
component of the total axial force caused by a rotating propeller. 

The theoretical expressions show that the forces decay exponentially with 

the distance between the propeller and the appendage, with this variation of the 

form e~"*0/Re | so that there is a faster decay with distance for the higher har- 
monics and more blades. The exponential variation with distance holds for both 
the terms due to the propeller vorticity and propeller thickness, so that the total 

also varies in this manner. The variation with distance between the propeller 
and appendage is shown by Figs. 48 and 49 for both the axial and transverse 
force blade-rate components for the particular case where J = 1.0. The varia- 
tion for a larger number of blades, and for the higher harmonics, is in accord- 
ance with the exponential form indicated above. Since there is no dependence on 

the advance ratio J in the expression for variation with distance, the theory im- 

plies that the same decay rate will occur for all advance ratios. 

Another theoretical result is the proportionality of the axial force to the ap- 
pendage thickness. The computations illustrated in the figures are carried out 

for only one value of appendage thickness, and the axial force due to any other 
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Fig. 45 - Second-harmonic axial force as a function of 
the advance ratio for a two-bladed propeller: , = 0.05, 
N= 2, m= 2Z 

020 

total : 

-015 
vortici 

X 

5 U2nR? 

-010 

005 
thickness 

Fig. 46 - Blade-rate axial force as a function of 
the advance ratio for a four-bladed propeller: 
gB=0.05, N=4, m=1 
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Fig. 47 - Axial force as a function of the advance ratio for 
a two-bladed propeller, showing the separate contributions 
from sources in the appendage and the correcting dipole: 
B= 0.05, N=2 

appendage thickness can be obtained by simple proportionality relations in ac- 
cordance with this theory. 

Another result indicated by the present theory is shown in Fig. 50, where 
the ratios of the induced blade-rate axial and transverse forces to the propeller 
thrust are plotted against the advance ratio J. This presentation shows that 
there is only a small dependence of these force ratios on the advance ratio, 

which implies a small influence of the propeller loading characteristics on the 
induced forces (when they are presented in this way). Since the variation with 
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Fig. 48 - Blade-rate axial force as a function of the spacing 
distance for a two-bladed propeller: J = 1.0, N= 2, m= 1, 
ty/2c = 0.10 

spacing distance between the propeller and the appendage does not depend on J, 
the same results hold true for other spacings. 

SUMMARY OF THEORETICAL RESULTS 

The various conclusions obtained from the theory are summarized in the 
following. 

1. The induced appendage forces occur only at blade-rate and higher har- 
monic frequencies. 

2. The number of blades and whether they are odd or even determines the 
nature of the induced appendage forces; even-bladed propellers produce axial 
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Fig. 49 - Blade-rate transverse force as a function of the 
spacing distance for a three-bladed propeller: J = 1.0, 
Nes Sis in = I tg/2c = 0.10 

forces and odd-bladed propellers produce transverse forces as the fundamental- 

blade-rate effects on a symmetrical appendage. The existence of a particular 
force depends upon whether the product (Nm) of the harmonic number and the 

number of blades is even or odd. 

3. The influence of propeller thickness is significant in determining the total 

amplitude for both the transverse and axial appendage forces. The force ampli- 

tudes for a propeller with a particular number of blades are a function of the 

product Nm, so that higher-harmonic force amplitudes for a propeller will be the 
same as those for the blade-rate amplitude of a propeller with a larger number 

of blades but the same Nn. 

4. The axial forces are proportional to the appendage thickness. 

5. All induced forces on an upstream appendage decrease exponentially with 
an increase in propeller spacing, with a faster decay for the higher harmonics 
and for an increased number of blades. This decay with distance exhibits no de- 
pendence on the advance ratio, implying the same decay rate for all advance 

ratios. 
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Force 

Thrust 

Fig. 50 - Ratios of the induced axial and transverse forces 
to the propeller thrust as a function of the advance ratio: 
B:= 0.05 

6. The induced forces at the higher harmonics are less than those at blade 
rate, for propellers with the same number of blades. 

7. The induced forces at blade rate decrease as the number of blades is in- 

creased, for the same value of thrust coefficient. 

8. The ratios of the induced appendage forces to the propeller thrust show 
only a small dependence on the advance ratio. 

COMPARISON OF THEORY AND EXPERIMENT 

With the availability of the experimental results that have been presented 
herein, comparisons can be made to determine if the experimental data verify 

the conclusions indicated by this theory. Only limited data from Ref. 10 were 
available at the inception of the theoretical study, for which certain limited com- 
parisons could be obtained, and the additional work in Refs. 15 and 16 provided 

more data for comparison purposes. Since the values of propeller thickness, 

chord, loading, etc., were selected as representative for purposes of computa- 

tion and illustration, no direct comparison can be made with the data in the 
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references cited above, which are also included in the present paper. However, 
comparison of trends and indicated behavior can be made and will be described. 

The influence of propeller thickness on both the axial and transverse induced 
forces acting on an appendage is shown by the experimental results described 

earlier in this paper, and is illustrated by results such as those in Figs. 13 and 
16. The theoretical verification of the lack of blade-rate axial forces for odd- 
bladed propellers, and the similar lack of transverse forces for even-bladed 
propellers, is shown in the experimental results cited earlier for the case of a 

symmetrically disposed appendage. Since the present theory is two-dimensional, 
the total force of a symmetrical appendage is proportional to the span of the ap- 
pendage for a fixed propeller diameter. As a result the induced forces will vary 
linearly with the appendage span for a particular separation distance, and this 
behavior is verified, in a limited sense, by the data in Ref. 10. Thus, the agree- 
ment indicated for these particular characteristics supports the qualitative pre- 
dictions of the theory. 

The exponential decay with distance for the induced forces is indicated by the 
experimental results with the exception of data at large separations, where very 

small force magnitudes (with possible errors in measurement, noise effects, 
etc.) occur. Thus the exponential variation appears to be a plausible represen- 

tation for the decay with increasing separation distance. Since no dependence on 

the advance ratio is indicated by this exponential form, the variation should be 
the same for all values of J and depend only on the number of blades. Although 

only limited data are available and precise comparison cannot be made, it ap- 

pears that this result is plausible, as illustrated by the data in Figs. 24 and 28 

for the range of significant thrust values. 

The data in Ref. 10 consider the variation in axial force brought about by 
changing the appendage thickness, and it is shown there that the axial force is not 
linearly proportional to thickness. The present theory predicts proportional 

values, and a possible explanation for this disagreement is the influence of the 
wake of the appendage through which the propeller must operate. However no 
evaluation of this particular hypothetical influence can be obtained from the 

present theory, since wake effects and any interaction of the appendage in alter- 
ing the propeller thrust characteristics have been neglected in the theoretical 

development. Further experimental and/or theoretical work will be necessary 

to determine the influence of this primarily viscous effect. 

The theory shows that the ratios of the induced axial and transverse forces 
to the propeller thrust have only a small dependence on the advance ratio, as in- 

dicated by Fig. 50. Experimental results in Ref. 16, as illustrated in Fig. 51, 
indicate this lack of significant dependence of the force ratios upon the propeller 
loading, thereby supporting the theoretical contention. The data in Fig. 51 indi- 
cate this agreement in the range where significant thrust values occur; depar- 
ture from this behavior occurs only in the range of higher J values. 

While precise comparisons cannot be made because of the particular se- 
lected conditions for computation, it can be seen that the general magnitudes of 
the induced forces inferred by the theory are of the same order as the actual 
values experienced in the experiments. The spacing distance is defined in the 

226 



Propeller-Induced Appendage Forces 

102 x Induced Force/Propeller Thrust 

Fig. 51 - Blade-rate axial appendage forces as a 
function of the advance ratio and the spacing for a 
four-bladed propeller and a symmetrical appendage 

theory by the parameter 6 = 0.05, corresponding to the spacing ratio S/D = 0.02, 
while 6 = 0.10 — S/D = 0.063 and 6 = 0.20 — S/D = 0.107, where this correspond- 

ence was evaluated at J = 0.6. The relation between the theoretical and experi- 
mental values can then be examined in terms of these particular distances, lead- 

ing to the conclusion of good qualitative agreement. 

A significant consequence of the theory is the dependence of the magnitude of 

a particular force component on the product of the number of blades N and the 

particular harmonic term m, so that the product Nm determines the nature of the 
force. The equivalence of the second-harmonic amplitude for a two-bladed pro- 

peller with the blade-rate term for a four-bladed propeller, as illustrated in 
Figs. 45 and 46, demonstrates this feature of the theory. This same effect 
occurs in the interpretation of the behavior of a single-bladed propeller, where 
examination of appropriate harmonics of the propeller shaft rate provides data 

for a multibladed propeller. The present theory was evaluated for conditions 
wherein the thrust coefficient given in Fig. 39 was constant for all the different 
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propeller configurations evaluated herein. Thus the ratio of the induced forces 

to the thrust of the propeller, under these conditions, would be expected to be 
the same for the particular case of the two-bladed and four-bladed propellers 

referred to. Similarly the theory would then produce the same values of the 
ratios of the forces to the propeller thrust for a single-bladed propeller, when 
examining the output at the higher harmonics, i.e., for N = 1 and m = the cor- 

responding harmonic number that will include the effect of the number of blades. 
Thus some indication of the reasons for the predictive capability of single-bladed 
propeller testing is provided by the present theory, although it is considered 

under the constraint of requiring constant thrust characteristics. While no pre- 
cise proof of this technique is provided by the present theory for arbitrary con- 
ditions, and more conditions should be evaluated analytically with greater care 
in determining the actual thrust characteristics of propellers with different 
numbers of blades, there is indication that a theoretical basis does exist for the 

method of single-bladed propeller testing described in the experimental section. 

As a reSult of the general agreement between the present theory and avail- 
able experiments a number of possibilities exist for extending the present com- 
putations to other cases to obtain further fundamental information on this phe- 
nomenon of propeller-induced forces. The theoretical procedures can then be 

applied to a number of varied operating conditions and thus used to provide use- 
ful insight into the important factors that determine the blade-rate forces and 
their harmonics. The theoretical results will guide particular experimental 

programs that seek ways of reducing the vibratory input excitation to naval ves- 
sels from these propeller-induced effects. 

CONCLUSIONS 

The previously described experimental and theoretical studies have pro- 

vided a number of significant results for the problem of propeller-induced forces 
on nearby appendages. The emphasis in this work has been devoted to append- 

ages upstream of the propeller, and most of the conclusions obtained from this 

work are concerned with that particular arrangement. However certain conse- 

quences due to other geometric and/or hydrodynamic influences were found, and 
their features also provide signficant information. 

Considering the case of appendages parallel to an oncoming stream and up- 
stream of the propeller, the main conclusions derived from this study are the 
occurrence of a force in accordance with the number of propeller blades and 

whether that number is odd or even, the importance of propeller thickness in de- 
termining the magnitude of both transverse and axial appendage forces, and the 
nature of the decay with distance between the propeller and the appendage. All 
of these features have been illustrated by the experimental results, and the 
theoretical model also predicts the same effects. 

An important experimental technique for this arrangement is the use of the 

single-bladed propeller to determine induced appendage forces in terms of the 
ratio of the induced force to the thrust of the tested propeller system, with pre- 

dictions obtained for a multibladed propeller. The small dependence of the 
ratios of the induced appendage forces to the propeller thrust on the advance 
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ratio J, for the range of significant thrust values, allows a scaling of model 
results for estimation of full-scale characteristics. A theoretical basis for both 
the single-bladed experimental technique and the limited dependence on propel- 

ler loading (advance ratio) is given by the present theory, thereby providing 
basic correlation between theory and experiment. 

The present investigations have also demonstrated a significant difference 

in the behavior of the forces measured on an appendage downstream of the pro- 
peller as compared with an upstream appendage, especially in regard to the 

decay of the forces with respect to increasing distance between the propeller and 

the appendage. Another difference exists between the case of major interest, an 

appendage parallel to the stream, and the case of an appendage at an angle relative 

to the stream. Definite differences in magnitude and behavior of the forces in 
regard to their variation with number of blades, effects of asymmetry, etc., are 

found when the appendage is at an angle of attack, whether the appendage is 

ahead of or behind the propeller. 

The foregoing results indicate progress in understanding and predicting un- 

steady induced forces on appendages due to a propeller rotating nearby. Certain 
main features have been observed and correlated with theory, while other effects 
require further investigation. Some work involving wake effects is presently 

being studied, and those results as well as others that should be pursued in this 

area will provide the necessary information and guidelines for design application. 

REFERENCES 

1. Breslin, J.P., ''The Unsteady Pressure Field Near a Propeller and the Na- 

ture of the Vibratory Forces Produced on an Adjacent Surface,'' Davidson 
Laboratory, Stevens Institute of Technology, Report 609, June 1956 

2. Pinkus, O., Lurye, J.R., and Feit, D., ''The Unsteady Forces Due to 

Propeller- Appendage Interaction,'' TRG, Inc., Report TRG- 146- FR, Mar. 

1962 

3. Breslin, J.P., ''Review and Extension of Theory for Near- Field Propeller- 
Induced Vibratory Effects," in ''Fourth Symposium on Naval Hydrodynam- 

ics: Propulsion and Hydroeleasticity,"' Aug. 27-31, 1962, Office of Naval 

Research Report ACR-92 

4, Pinkus, O., Lurye, J.R., and Karp, S., "Interaction Forces Between an Ap- 

pendage and a Propeller," in Fourth Symposium on Naval Hydrodynamics, 

Propulsion and Hydroelasticity,'' Aug. 27-31, 1962, Office of Naval Re- 

search Report ACR-92 

5. Kaplan, P., Feit, D., and Myers, M.K., "A Theoretical Study of Propeller- 

Excited Forces on Nearby Appendages,'' Oceanics, Inc., Report 67-40, June 

1967 

229 



10%; 

it: 

12. 

13. 

14. 

15. 

16. 

Lehman and Kaplan 

Lewis, F.M., ''Vibratory Hydrodynamic Forces on Struts Located Forward 
of a Propeller ,"’ MIT DSR 5-7851, June 1960 

Lewis, F.M., ''Propeller-Vibration Forces," Trans. SNAME 71 (1963) 

O'Brien, T.P., ''Some Effects of Blade Thickness Variation on Model- 
Screw Performance," North-East Coast Institute of Engineers and Ship- 
builders Trans. 73 (1957) 

Gurney, G.B., "An Analysis of Force Measurements," Pennsylvania State 

Univ., Ordnance Research Laboratory Report TM 19.8841-24, Apr. 1963 

Lehman, A.F., ''An Experimental Investigation of Propeller- Appendage 

Interaction,'' Oceanics, Inc., Report 64-11, Jan. 1964 

Lehman, A.F., ''An Experimental Study of Propeller Induced Appendage 
Forces as Influenced by Appendage Attack Angle and Propeller Position," 
Oceanics, Inc., Report 68-44, Jan. 1968 

Sugai, K., "On Vibratory Forces Induced on the Rudder Behind a Propel- 
ler,'' Eleventh International Towing Tank Conference, The Society of Naval 
Architects of Japan, Tokyo, Oct. 1966 

Kemp, N.H., and Sears, W.R., "Aerodynamic Interference Between Moving 
Blade Rows," J. Aero. Sci. 20 (Sept. 1953) 

Milne- Thomson, L.M., "Theoretical Hydrodynamics," third edition, Mac- 
Millan, New York, 1957 

Lehman, A.F., ''An Experimental Investigation of Propeller Blade Thickness 

and Appendage Asymmetry on Propeller-Appendage Interaction,'’ Oceanics, 
Inc., Report 66-24, July 1966 

Lehman, A.F., ''Further Experimental Studies of Propeller Blade Thickness 

and Appendage Asymmetry Effects on Propeller- Appendage Interaction," 
Oceanics, Inc., Report 67-35, May 1967 

* * * 

DISCUSSION 

R. Wereldsma 

Netherlands Ship Model Basin 
Wageningen, The Netherlands 

The authors made an interesting investigation of propeller induced append- 
age forces, particularly interesting is the undulatory variation of the appendage 
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force with increasing propeller spacing. This is important for optimizing the 

rudder location. 

Their statement that the forces are significant only at the blade rate and its 
harmonics is valid only for a noncavitation condition. When cavitation occurs, 

appreciable nondeterministic phenomena can be expected. Therefore these 

measurements should be extended to cavitation conditions to gain more knowledge 

about these effects. 

DISCUSSION 

Jerome H. Milgram 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 

Two effects related to this paper require further examination. The first is 
that the spatial rate of decay of a hydrodynamic disturbance due to a body should 
follow an inverse power law in the far field. The authors stress the prediction 
and observation of an exponential decay for their studies. As regards theoretical 

studies, exponential decay could be obtained for certain configurations of infinite 
cascades of hydrofoils. However, in interpreting such results for an application 
in which infinite cascades do not exist, an interpretation that leads to power-law 

decay would be correct. The authors interpretation of their experimental obser- 
vations is not justified on the basis of the limited data available. It is easy to fit 
an exponential curve closely to a few data points. If more data were available, a 
more accurate fit to the spatial decay rate would be obtained by an inverse power 

law. 

The second effect is that of force measurements on a foil spanning a tunnel 
of rectangular cross section. Although the geometry appears two-dimensional at 

first glance, the flow is not two-dimensional, due to the boundary layers on the 

side walls of the tunnel. These boundary layers reduce the lift on the foil and 
increase the drag on the foil. The change in lift is usually very small, but the 
induced drag due to the boundary layer has about the same magnitude as the fric- 

tion drag of the foil. 

231 



Lehman and Kaplan 

DISCUSSION 

J; P> Breslin 

Davidson Laboratory, Stevens Institute of Technology 
Hoboken, New York 

Figure 51 reveals that the two-dimensional cascade representation of a pro- 
peller leads to forces on the appendage some 8 to 10 times that measured. The 
velocity and pressure fields of a propeller are roughly three-dimensional. Their 

blade frequency components are strongly three-dimensional, having very rapid 

decays in all directions. Thus it is not surprising that the two-dimensional 
theory provides gross overestimates in magnitude and errors in phase. 

Mr. Lehman's data provides one of the first opportunities to make compari- 

sons with a three-dimensional propeller-rudder interaction theory recently de- 
veloped by Dr. Tsakonas and Miss Jacobs at the Stevens Institute of Technology. 
To obtain results for the experimental configuration it will be necessary to 
modify the computer program in a straightforward manner. Hopefully when 

support is found for such calculations, much closer agreement between meas- 
urement and theory may be expected. More importantly the character of the 

force decay with increase of axial clearance should be well predicted. 

* * * 

REPLY TO DISCUSSION 

August F. Lehman and Paul Kaplan 

We appreciate the interest in our work and the comments made. With re- 
gard to the comment by Dr. Wereldsma, we are definitely interested in the in- 
fluence of cavitation on propeller-induced forces, although we did state that our 

conclusions were applicable only to the case where no cavitation occurred in the 
system. We recognize that fluctuating cavitation on a propeller will contain a 

broad spectrum of pressure disturbances, since such a force on the appendage 
will occur at frequencies other than those corresponding to the blade rate and its 
harmonics, but we still also expect to have large discernible blade rate force 
signals. The problem of the influence of a cavitating propeller is certainly one 
in which we have definite interest, and for which we can obtain measurements of 
induced forces by the same basic techniques described in our paper. Thus we 

would welcome the opportunity of extending our work to such conditions. 

The comment by Dr. Milgram can be answered by recognizing that the 
mathematical model used in our work was based on an infinite cascade, and the 

exponential rate of spatial decay directly follows from the analysis, similar to 
the treatment of aerodynamic compressor blades in the work of Kemp and Sears. 
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This form manifested itself in nearly all the data obtained in an extensive series 

of tests, but it is possible to expect a power-law decay in an asymptotic sense 

for large spacing distances. In that case, at large distances, the magnitudes of 
the forces would be extremely small and it is not expected that any useful infor- 

mation could be obtained if such a power law was adhered to in the evaluation 

and interpretation of the results. The other comment by Dr. Milgram is con- 
cerned with the effects of boundary layers on the walls of the water tunnel and 

how they influence our experimental results. All of our data are the values of 
the amplitudes of oscillatory dynamic forces induced on the foil appendages by 

the action of a propeller. Boundary layer effects, as mentioned by Dr. Milgram, 

will influence only the steady lift and drag forces, which are of no concern in this 
study. It is not expected that the influence of the boundary layers on our water 

tunnel will affect the dynamic forces of concern in this program. 

Dr. Breslin's comment concerning the magnitude of the theoretical forces, 

as compared to the experimental measured forces, must be examined in greater 

detail before assuming that the two-dimensional theory has no applicability to 
force prediction in the present case. The axial forces are predicted in a much 

closer fashion than the transverse forces, as illustrated in our figures. It is 
optimistic to expect the very simple blade element treatment for the propeller 

thrust, assuming an equivalent single vortex, lack of interference between blades, 
equivalent contributions of angle of attack and camber, etc., to provide a useful 

model of the disturbance strength provided by the propeller. Since the magni- 
tude of the relative contribution of various components to the total force depends 
upon the strength of a single vortex derived from the simplified thrust represen- 

tation, it can be seen that it is difficult to expect good agreement under those 

circumstances. A more sophisticated two-dimensional treatment of the propel- 

ler representation would be expected to lead to better agreement. 

The use of our data as a means of comparison with the extensive theoretical 

work that has been carried out at the Davidson Laboratory and other organiza- 
tions is an important aspect of our work. We certainly look forward to the re- 
sults of a comparison with the theoretical work at the Davidson Laboratory so 
that a rational explanation of the variation of the forces with separation distance, 

especially for the rudder problem, will be available. 

* * * 
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THE VIBRATORY OUTPUT OF 
CONTRAROTATING PROPELLERS 

R. Wereldsma 
Netherlands Ship Model Basin 
Wageningen, The Netherlands 

ABSTRACT 

For high-powered ships unconventional propulsion arrangements such 
as contrarotating propellers have proved efficient. The fluctuating 
forces generated by this propeller combination were determined ex- 
perimentally. The wake has a dominant influence on thrust as well as 
torque fluctuations of both propellers. The fluctuations, expressed as 
a percentage of their respective mean values, are comparable with the 
fluctuating output of single propellers. The lateral forces are consid- 
erably reduced. The thrust eccentricity shows a high-frequency dis- 
turbance introduced by the mutual blade encounter of the propellers. 

Guidelines are given for the dynamic analysis of the axial and torsional 
vibrations of the shafting for two types of gearings in combination with 
a turbine engine: conventional and epicyclic gearing. For the epicyclic 
gearing it is expected that the frequency modulation, introduced by load 
variations due to ship motions and orbital water motions, is stronger 
than for a conventional gearing. For the high-frequency analysis a 
number of unknown coefficients describing the mutual propeller inter- 
action have to be estimated to determine whether they are significant. 

NOMENCLATURE 

A = gear ratio 

A. = aft perpendicular 

Ay = developed blade area 

A, = disk area of propeller 

B = gear ratio 

CWL = construction waterline 

D = disturbing torque 

F = torque-rpm characteristic of propeller 
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F_ = forward perpendicular 

I = moment of inertia 

M = mass 

P = pitch of propeller 

Q = torque, torque of propeller 

R = propeller radius 

T = propeller thrust 

Z = mechanical impedance 

n = speed of rotation 

x = axial vibratory motion of the propeller 

z = blade number of the propeller 

6 = angular position 

g = rotational vibratory motion of the propeller 

Subscripts 

A refers to aft propeller 

F refers to forward propeller 

T refers to turbine 

1 refers to aft propeller shafting system 

2 refers to forward propeller shafting system 

Superscripts 

G refers to gearing 

INTRODUCTION 

During the past decade much knowledge has been gained about the vibratory 
effects of ship propellers operating in the wake of a hull. Theoretical as well as 
experimental techniques have been developed for the study of propeller-generated 
vibrations. 
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From this experience it is possible to give indications about changes in the 

fluctuating forces to be expected due to changes in important parameters such 
as blade number and hull shape (1,2). Also the effect of propeller geometry has 

been studied, and guidelines for a favorable vibration level can be given in the 
design stage. All this information, however, refers to conventional single-screw 
propulsion systems and moderate power absorption. 

Since the general line of ship development tends toward larger units with 
increased power, efforts have been made to overcome practical difficulties such 

as limited propeller diameter, which restricts the efficiency and maximum 
power absorption of single-screw ships. To maintain a favorable propeller ef- 

ficiency and to prevent cavitation damage for these high-powered units, ducted 
propellers and contrarotating propellers are seriously considered and have 
proved to be beneficial (3, 4). 

For vibration analysis of these type of propulsion systems, however, it is 

unacceptable to extrapolate knowledge and insight about the dynamic aspects of 

conventional propellers. Therefore, instantaneous force measurements have 

been carried out on a set of contrarotating propellers operating behind a fast 

cargo liner. In this paper the results of this investigation are reported and in- 

troductory considerations on the dynamic analysis of ''contrarotating-propeller- 
shaft-engine systems" are given. 

THE SHIP AND PROPELLERS AND THE 
MEASURING TECHNIQUE 

The combination of two contrarotating propellers has proved efficient when 

operating behind a fast cargo liner. The measurements were performed with a 

model of that ship type (scale 1:24). The body plan of the ship is given in Fig. 1. 
The particulars of the ship are as follows: the length at DWL is Lp = 160 m, the 
ratio of Lp to the molded breadth B is Lp/B = 7.13, the ratio of B to the draft T is 
B/T = 2.53, and displacement /L,BT = 0.5879. 

| | CWL 

. 

Hy i 
ZAZA 

! pra ET NG 20=FP O=AP 10 

Fig. 1 - Body plan of the investigated ship 
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The choice of the propeller combination is based on efficiency considera- 

tions and on expected favorable vibrational behavior. A four-bladed propeller 
was chosen for the forward propeller. To avoid impinging of cavitating tip vor- 

tices of the forward propeller on the blades of the aft propeller the diameter of 
the aft propeller was reduced. This reduction is based on the expected slip- 
stream contraction at the design condition of the system. It was decided to have 
a five-bladed aft propeller. The particulars of both propellers are given in 

Fig. 2. 

PITCH DISTRIBUTION 

PERCENT 

5-BLADED RIGHT HANDED AFT PROPELLER 

AFT 
PROPELLER | PROPELLER 

522m | 488m 

; FORWARD 

| 
1083 | 1.196 

| 

Fig. 2 - Plan of the pair of contrarotating propellers 

This combination is expected to have a reduced vibratory output. The 
lateral effects, mainly generated by the five-bladed propeller, are expected to be 
reduced due to the more uniform inflow, being the wake of the forward propeller. 
Also the total axial excitation, mainly generated by the forward propeller, is 
expected to be relatively small, due to the distribution of the power between two 
propellers. 

The measurements have been carried out for the following condition: 

ship speed 20.78 knots, 

propeller speed 121 rpm, 
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draft 8.839 m, 

absorbed power: 16,000 SHP, 

forward propeller 8,200 SHP, 

aft propeller 7,800 SHP. 

To measure the vibratory output, a special arrangement had to be made to use 

the existing measuring equipment. Because it was not possible to have the usual 
hollow-shaft combination for the measurements, the two propellers were driven 

by two synchronized separated systems. The forward propeller was driven by 

the normal dynamometer, installed in the wooden model of the ship under inves- 

tigation. The aft propeller was driven by a dummy dynamometer. The dummy 

dynamometer was installed in an open-water boat mounted behind the ship model 
in such a way that both propellers were properly positioned relative to the hull. 

A stiff coupling shaft synchronized the combination. By exchanging the real 
dynamometer and the dummy dynamometer the vibratory outputs of both propel- 
lers were determined. Figure 3 shows the combination of the ship model and the 

open-water boat. 

COUPLING SHAFT 

cee / 

OPEN WATER BOAT MODEL 

Fig. 3 - Schematic view of the ship model and open-water boat 

Due to the vibratory interaction of the two propellers an exact synchronism 

was required to avoid a nonsynchronous signal that could not be reduced properly 

by the correlation equipment. Different positions of mutual blade encounters 
relative to the hull can be characterized by the angular positions of the mutual 

blade encounters. In Fig. 4 the angular positions and the sequence of the mutual 
blade encounters are shown for the case when the first blade encounter is ver- 
tically upward. The angular position of the nth encounter 6, is then given by 

. 2 - rT; (n-1) 27 radians . 
oi 
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DIRECTION OF ROTATION 

PORT 

STARBOARD 

5 Se a aa 
ay) 

Fig. 4 - Angular position and numbered sequence 
of mutual blade encounters of a four-bladed and 
five-bladed contrarotating propeller combination 
with synchronous drive and equal rpm. The lst, 
Zlst, and 4lst encounters are made by the same 
two blades. 

The angular position of the 41st encounter coincides with the first encounter and 
occurs after one revolution of each propeller. 

A completely different angular position of the two propellers occurs when the 
angular positions of the mutual blade encounters are between the radial lines 
shown in Fig. 4. That means 

0, = gy (n-l art (1) 

It is expected that this small difference of the relative angular position does not 

result in a significant change in the vibratory output of the combination. 

Since the periodicity of the propeller combination equals one revolution due 
to the unequal blade numbers, the fundamental frequency of the signals equals 
the speed of rotation of the propellers (number of revolutions per second). The 
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frequencies below blade frequency being lower multiples of the rps can be de- 
fined as low-frequency interaction of both propellers. The frequencies of mu- 

tual blade encounter are high-frequency interactions. 

RESULTS OF THE MEASUREMENTS 

The frequencies generated by the propeller combination can be estimated 

as follows. The four-bladed propeller will generate blade frequencies and its 
multiples, i.e., 4x rps, 8x rps, etc. The five-bladed propeller will generate in 

a Similar way 5X rps, 10 x rps, etc. From previous experience it is reasonable 
to neglect the wake-generated components, having frequencies higher than 3 X 
blade frequency. Also very low frequencies from the low-frequency interaction 
can be expected as well as very high frequencies due to the mutual blade encoun- 
ter: 

The records of the thrust and torque fluctuations of the forward and the aft 
propeller are shown in Figs. 5 and 6. The peak-to-peak values of the thrust 
fluctuations of the four-bladed forward propeller amounts to 36% of the mean 

thrust. The peak-to-peak values of the torque fluctuations amounts to 28% of the 
mean torque. For the five-bladed propeller the peak-to-peak thrust fluctuations 
amount to approximately 23% of the mean thrust. The peak-to-peak torque var- 
iations equal 20% of the mean torque. These percentages for both propellers are 
not unusual for four-bladed and five-bladed propellers behind this ship type, 
which has sharp wake peaks. 

20 

-20 

PERCENTAGE OF AVERAGE THRUST VALUES 

a are ONE REVOLUTION 

Fig. 5 - Recording of the thrust fluctuations of (top) 
the four-bladed forward propeller and (bottom) the 
five-bladed aft propeller 
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20 

: J 
—20 

PERCENTAGE OF AVERAGE TORQUE VALUES 

pe eae all oye REVOLUTION 

Fig. 6 - Recording of the torque fluctuations of (top) 
the four-bladed forward propeller and (bottom) the 
five-bladed aft propeller 

The high frequencies of mutual blade encounter cannot be distinguished in 
the records. The influence of the wake dominates for the forward as well as 
aft propeller. For the five-bladed propeller a small irregularity has been re- 

corded, probably caused by the interaction with the four-bladed propeller. 

The records of the horizontal and vertical bending moments of the four- 

bladed and the five-bladed propeller are shown in Figs. 7 and 8. From these 
records the mutual blade encounter can be detected. Forty time per revolution 
a disturbance occurs. Due to the fact that one blade at a time encounters an- 
other, the effect in lateral direction is much greater than in axial direction. 

The peak-to-peak variations at blade frequency of the vertical as well as the 

horizontal bending moment of the four-bladed propeller expressed as a percent- 
age of the mean thrust times the propeller radius amounts to approximately 10%. 
On these blade frequency fluctuations a high-frequency disturbance due to the 

mutual blade encounter is superimposed. The peak to peak amplitude of this 
high frequency output equals from 1% to 2.5% of the mean thrust times the pro- 

peller radius. (These figures are corrected for dynamic amplification, as de- 
scribed in the next section.) For the five-bladed propeller the vertical bending 
moment fluctuations at blade frequency amount to 15% peak-to-peak and the 
horizontal bending moment to 10%. Superimposed on these blade frequency 

fluctuations there is an extra ripple of approximately 1 to 2.5% due to the blade 
encounter. 

242 



The Vibratory Output of Contrarotating Propellers 

VERTICAL BENDING MOMENT 

& 5 
< 
= 
a 
5 

O 

a 
a 

= 
> -5 

= 
ro) 
a 

HORIZONTAL BENDING MOMENT 

STARBOARD 

SIDE 

8 Li | t / 

PERCENTAGE OF MEAN THRUST x PROPELLER RADIUS 

PORT SIDE 

Fra eed eee ONE REVOLUTION 

Fig. 7 - Recording of the vertical and horizontal 
bending moment variations of the four-bladed 
propeller 

For a proper evaluation of the thrust eccentricity, the lateral forces have to 

be determined with an additional recording. It appears, however, that the fluc- 

tuating lateral forces for the forward as well as the aft propeller were not meas- 

urable in an accurate way. Apparently the amplitudes are reduced considerably 

and are hidden by the noise of the measuring system. For further evaluation of 

the results (determination of the thrust eccentricity) it is assumed that the fluc- 

tuations of the lateral forces are negligible for both propellers. 

A vectorial summation of the horizontal and vertical thrust eccentricity for 
both propellers is presented in Fig. 9. To keep the figure readable only about 

1/4 of a revolution is presented (blade encounters Nos. 1 through 10 (Fig. 4)). 
Besides the normal thrust eccentricity and its modulation due to the finite num- 
ber of blades, again we can distinguish the high-frequency modulations due to 

the mutual blade encounter. 

Additional measurements were conducted to measure the effect of a change 
of the angular positions of the mutual blade encounter. The new angular posi- 

tions of mutual blade encounter follow from Eq. (1). The results of these tests 
are reviewed in Table 1 and compared with the results of the first tests. From 
this table it can be concluded that no significant differences occur for both 
conditions. 
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VERTICAL BENDING MOMENT 
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Fig. 8 - Recording of the horizontal and vertical 
bending moment variations of the five-bladed 
propeller 

UPWARD 

FOUR- BLADED 
FORWARD PROPELLER 

FIVE - BLADED 
AFT PROPELLER 

PROPELLER 
ROTATION 

PROPELLER 
ROTATION 

20% OF FORWARD ; 20% OF AFT 
PROPELLER RADIUS \g \ PROPELLER RADIUS 

STARBOARD 

Fig. 9 - Instantaneous thrust eccentricity of (left) 
the four-bladed propeller and (right) the five- 
bladed propeller 
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DISCUSSION OF RESULTS 

Since the natural frequency of the measuring system amounts to approxi- 

mately 600 Hz, the high frequency of blade encounter (approximately 400 Hz) 
cannot be recorded without unacceptable dynamic error. 

The internal stiffness of the propeller influences the measurement sig- 
nificantly when the natural frequencies of the individual propeller blades come 
closer to the excitation frequency. Therefore the records of these high- 
frequency phenomena must be seen as indicative rather than accurate. From 
previous calculations (5) a dynamic amplification of the measuring system of 
2.5 times can be estimated for this frequency. This figure must be taken into 
account for the evaluations of the records of Fig. 7 and 8. It can be concluded 
that the blade encounter excitation is small compared to the wake excitation. 

Also the low-frequency interaction is small compared to the blade frequency 

signals, as is illustrated in Figs. 5 through 8. 

The unequal wake is still the dominating input for both propellers, and the 
interaction of both propellers is shown to be less significant. The relative am- 

plitudes of excitation are comparable with those of single propellers. Since the 
total propulsive power is divided between the two propellers, the absolute value 
of the excitations is favorable. The sum of the absolute excitations of both pro- 

pellers, in the axial direction as well as in the lateral direction, is shown to be a 
compromise between the behavior of a single four-bladed and five-bladed pro- 

peller having the same power absorption. 

For this combination of a four-bladed and a five-bladed propeller it appears 

that the high-frequency interaction is negligible in the axial direction and de- 
tectable in the lateral direction. It can be expected that for a combination of 

propellers with an equal blade number this interaction is negligible in the lateral 
direction and relatively large in the axial direction, due to the simultaneous 

blade encounter of all the blades. 

FURTHER STEPS FOR THE DYNAMIC ANALYSIS 
OF CONTRAROTATING PROPULSION SYSTEMS 

To obtain insight into the vibratory behavior of a contrarotating propulsion 

system as installed aboard a ship, indications will be given about the dynamic 
analysis of the shafting. The analysis will be split in two parts: (a) the low- 
frequency behavior in the torsional direction, taking into account the modulation 
of the propeller speed, due to the fluctuating propeller loading caused by ship 
motions and orbital water motions, and (b) the high-frequency behavior in the 
torsional and axial directions, describing the propeller vibrations resulting from 
the fluctuating propeller loading due to the unequal ship's wake. For both types 

of analysis it is assumed that a turbine engine is installed. 

Low- Frequency Behavior 

For the analysis of the low-frequency behavior the internal elasticities of 

the shafting and gearing system are neglected. 

246 



The Vibratory Output of Contrarotating Propellers 

It is interesting to compare the dynamics of a conventional gearing and an 
epicyclic gearing, since the latter may lead to a simple and less expensive in- 

stallation (6). 

Conventional Gearing -- The turbine installation with a twin reduction gear 
and two contrarotating propellers is shown in Fig. 10. The block diagram shown 

in this figure describes the dynamics of the system. The two propellers are 
represented by a single inertia I, or I,, each being the sum of the mechanical 

and hydrodynamical inertia effects. Additional feedback signals represent the 

static characteristics of the propellers. It is assumed that one torque-rpm rela- 
tion exists, without mutual interactions of both propellers. This assumption is 

acceptable when the ship speed and the ratio between the speed of both propellers 

have a constant value. The following equation can be derived: 

[I A2(1 GT 2, G dny A2 2 t+ ACCT +1,) + BY(T,"+1,)] => + PACE (ny) t BoE Gis) ine = On= ADS = BDe.. 

This equation gives the dynamic relation between the torque generated in the 

turbine, the propeller load fluctuations D, and D, generated by ship motions and 
orbital water motions, and the rotational speed of the engine and propellers. 

4 

CONTRA ROTATING 

PROPELLERS 

Fig. 10 - Low-frequency analysis of contrarotating 
propeller arrangement with conventional gearing 
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G 
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ir I, 1, 
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| PROPELLERS 

GEARING 

Fig. 11 - Low-frequency analysis of contrarotating 
propeller arrangement with epicyclic gearing 

Epicyclic Gearing — The basic construction of an epicyclic gearing and its 

block diagram for the low-frequency behavior are shown in Fig. 11. The sum of 
both propeller rpm's multiplied by their specific gear ratios equals the turbine 
rpm under all conditions. The ratio between the rpm's of both propellers, how- 
ever, is not predetermined, as in the case of a conventional gearing, but depends 
on the characteristics and absorbed torques of both propellers. Therefore, the 
propeller characteristics F, and F, are functions of n, and n,, as shown in the 
diagram. The equations of motions of both propellers are 

dn dn 
1 2 (1, +1,0+A71q) 5+ + AB Iy G2 + Fy(myn) ny = AQz- D, (2) 

dn dn 
(I,+19+B?I,) =? + AB Ip Zo + Fy(m2n1) m2 = BQz- D, - (3) 

In addition, 

An, + Bn, = ny. (4) 
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Comparison of Both Systems —- We assume that the turbine rpm is constant, 

which is reasonable from a practical viewpoint, due to the large moment of in- 
ertia of the turbine. For the conventional gearing it follows simply that also 

both propeller rpm's are constant. No excessive differences between single or 
contrarotating propeller turbine installations can be expected. For the epicyclic 

gearing, however, it follows from Eq. (2) 

Cy a peor ese (5) 
dt B dt 

and, for small deviations from the nominal rpm, 

any . (6) a 

Combining Eqs. (2) through (6) we obtain for epicyclic gearing the following rela- 
tions between the disturbances D, and D, and the speed of the propellers: 

2 2 
A dn 

Ir, + 1 + (4) a, +18)| =r +[Fyouina) + (4) F,(nany) |, = Di rf = p, (74) 

2 4 ; 

(3) (er Ss) + (I,+ 19)] = (3) F
i(nysny) + F(enn) Rg = D5at z D,- (7b) 

From these equations follows, in contrast to conventional gearing, that rpm 

fluctuations of both propellers will still occur, due to disturbances from sea- 
waves, even if the turbine rpm is kept constant. Therefore, it is expected that, 

in comparison with the conventional gearing, larger deviations from the nominal 

rpm of both propellers will occur. From Eq. (7) follows additionally 

dn dn 
B la. Fo) ase +, Eng avy my >,| = Al, +19) Ts +.F,(nig.ny,) 1, + p,| : 

This formula shows that the low-frequency torque variations of both propellers 

are their mutual reactions. For the steady state conditions without disturbances 

D, and D,, 

BIE Gig) nqd- = ALE (n5, n,m, dc 

This relation also follows from the equilibrium conditions of the planet wheels 

of the gearing. 

Remarks 

1. In general it can be concluded that, in comparison with the conventional 
gearing, for the epicyclic gearing stronger frequency modulations of the fluctuat- 
ing forces can be expected and as a consequence stronger requirements have to 

be fulfilled to avoid critical shaft vibrations. 
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2. For the epicyclic gearing a disturbed action of one of the two propellers 

will be mechanically reflected in the operation of the other propeller, as distinct 
from conventional gearing, where both propellers are driven independently. 

3. The important advantage of epicyclic gearing, however, is its simple, 
less-expensive construction, well adapted to the shafting problems of contra- 

rotating propellers. 

High-Frequency Behavior 

For an analysis of the axial and torsional vibrational behavior of the two 
propellers, four degrees of freedom have to be taken into consideration, namely, 
the axial and torsional vibratory motion of both propellers. Also the individual 
elasticities and inertias of both propeller shafts and gearing systems need to 
be taken into account (Fig. 12). 

TORSIONAL SYSTEM AXIAL SYSTEM 

FORWARD 

PROPELLER 

S xe 

FORWARD 

PROPELLER 
a van 

18 

AFT PROPELLER 

Re f Xa » 

AFT PROPELLER 

=" r |e 

Fig. 12 - High-frequency analysis of a contrarotating 
propeller arrangement 

The individual and mutual coupling effects of both propellers are shown in 
Fig. 12, and the corresponding equations of motion are given in Fig. 13. Four 
driving-point impedances can be distinguished, indicated by Zip, Zpp, Zx,, and 
Zaa, Yepresenting the dynamic behavior of the shafting, gearing, and turbine. 
Four transfer impedances Zip, Ziq, Zkp, and Z},, representing the mechanical 
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EQUATIONS OF MOTIONS OF CONTRA ROTATING PROPELLER ARRANGEMENT 

Gel: -forly forls forks feel’: : ; : 
I, 4 + poll Pe alee + |] Xe [E] Xe + [=] a + te |] Xa a 78 $n * oy as = Qe 

br or Xe XF ba en Xa AF FF 

FORWARD 
PROPELLER 

2 T T T Teles (in 
Mees Xie tex Kg | pee POEs eee Xa aKa | elieace|—E liby + aN epe ee] Te 

Xp Xp t, ¢, Xa Xa ‘A ‘A Zar Zee 

i Q : Tat Oat oes. lela, + he parol RU a] RL arg BOL se fy SE +4, Tie = Q 
can bn te F Xr XF Cann Z Sy 

AFT 
PROPELLER 

- T T T Tac les Tah ne | 1 
Ma: Xq + STE coger UES Va UES i na RUC | UL Ip Mc X, +1] 4, =| on? oe dade are Xa = Ta 

Xa Xa can cy Xp Xp o, o, FA AA 

x‘ ~—~_ Xv ~/- WY Ur UY Ye, 

MECHANICAL ADDED MASS AND INTERNAL MUTUAL HYDRODYNAMICAL COUPLING MECHANICAL SUPPORT OF EXCITATION 

MASS OF DAMPING OF THE HYDRODYNAMICAL OF FORWARD AND AFT PROPELLER FORWARD AND PROPELLER 

PROPELLERS INDIVIDUAL COUPLING OF THE AFT COUPLING SHAFTS 
PROPELLERS INDIVIDUAL BY THE SHAFT ( DRIVING POINT 

PROPELLERS ( TRANSFER IMPEDANCE) 
IMPEDANCE) 

EXCITATIONS ARE CAUSED BY THE WAKE AND THE MUTUAL PROPELLER INTERFERENCE 

Te = THRUST EXCITATION OF FORWARD PROPELLER 

Qr = TORQUE EXCITATION OF FORWARD PROPELLER 

Ta = THRUST EXCITATION OF AFT PROPELLER 

Qa = TORQUE EXCITATION OF AFT PROPELLER 

Fig. 13 - Equations of motions for high-frequency analysis 
of a contrarotating propeller arrangement 

coupling of both propeller shafts and introduced by the gearing and turbine, 

are taken into account. 

For both propellers the normal added mass, damping, and individual cou- 

pling coefficients can be distinguished. In addition 16 coefficients, representing 
the mutual hydrodynamic propeller interactions, are introduced. Further inves- 
tigations are required to estimate the importance or negligibility of the coeffi- 

cients, before calculations of the forced vibrations resulting from the experi- 
mentally determined excitations of the propellers can be started. 

CONCLUSIONS 

1. The unequal inflow of the ship's hull is still the dominating cause of the 
unsteadiness in the operation of both propellers of a set of contrarotating pro- 
pellers. The fluctuating thrust and torque, expressed as a percentage of their 

mean values, amount to about the same value as for single-propeller arrange- 
ments. The lateral effects show a reduced amplitude. The absolute excitations 

reduced by the division of the total power over two propellers, may result in 
advantages. 

2. The number of blades of both propellers is an essential parameter in the 

vibratory interaction problem. For the case of a four-bladed and five-bladed 

propeller the interaction can be divided into alow-frequency and a high-frequency 
range (respectively below blade frequency and above 3 times the blade frequency). 
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The low-frequency interaction is of reduced significance. The high-frequency 
interaction (mutual blade encounter) results in a lateral excitation. Critical 
conditions of shaft whirling and propeller blade resonance have to be avoided. 

For the case of a propeller combination with equal blade numbers the interaction 

is expected to be important in torsional and axial directions, having frequencies 
equal to the sum of the blade frequencies of both propellers and its multiples. 

3. For a proper determination of the resulting vibratory propeller motions 
and accompanying forces the mutual hydrodynamic interaction coefficients of 

both propellers have to be estimated in addition to the normal hydrodynamic 
propeller coefficients. For the high-frequency excitations generated by the mu- 
tual blade encounter the internal elasticity of the propellers affects the hydro- 

dynamic coefficients (propeller blade elasticity). 

4. Compared with the conventional gearing of a turbine installation the epi- 

cyclic gearing will result in a broader range of excitation frequencies as a re- 
sult of a stronger rpm modulation due to seawave disturbances. 
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DISCUSSION 

J. Strom-Tejsen 

Naval Ship Research and Development Center 
Washington, D.C. 

Dr. Wereldsma's paper is most interesting and timely. According to his 
measured results, the fluctuating thrust and torque of either of the contrarotating 
propellers are roughly the same with or without the presence of the other pro- 

peller, since the dominating cause of propeller fluctuation forces is the spatial 
variation of the wake field behind a ship. I would like to ask Dr. Wereldsma 

whether such an interesting result also would be valid for the overlapping pro- 

peller arrangement? 

Since the development of the overlapping propeller arrangement at the Naval 

Ship Research and Development Center a few years ago, several towing tanks in 

the United States and in Europe have conducted powering tests with this arrange- 
ment. However, to my knowledge no investigation of the vibratory forces similar 
to Dr. Wereldsma's has been conducted. 

In most cases it has been anticipated that the two overlapping propellers 

would be driven with exactly the same rpm through the same gear box. By 

proper phase adjustment of the propellers, any of the three vibratory forces can 
be eliminated. 

At the present time, however, consideration is being given to installation of 
an overlapped propeller arrangement, using two power plants independent of 

each other. This would, for instance, be the case when using two Diesel engines 
without any phasing of the two propellers. This configuration would, in principle, 
be very similar to the contrarotating propeller arrangement from a vibratory 

point of view. It would be of great interest if Dr. Wereldsma would extend his 

investigation to such an overlapping propeller arrangement. 

* * * 

REPLY TO DISCUSSION 

R. Wereldsma 

It is difficult to extrapolate from one extraordinary case to another, par- 

ticularly in the field of propeller vibrations. If neglect of the interaction of both 
overlapping propellers is allowed, the relative vibratory shaft output will be 

comparable to that of the single screw. The bending moments in the individual 
blades, however, will be considerably increased because of the increased lower 
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harmonics encountered by the blades of propellers having eccentric location. Of 
course these statements have to be verified by measurements. 

A couple of questions were also raised by Mr. J. B. Hadler of the Naval Ship 
Research and Development Center which I will comment on. We did not make 

measurements of the wake of the ship combined with the open-water boat. It was 
assumed that the effect of the open-water boat on the fluctuating propeller output 
was negligible. From the point of view of vibrations I do not expect considerable 
differences when the design is changed to a five-bladed forward propeller and a 
four-bladed aft propeller. Still the wake will have a dominant influence. These 

statements of course have to be confirmed by additional investigations. 

* * * 
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EXPERIMENTAL DETERMINATION OF 

UNSTEADY PROPELLER FORCES 

Marlin L. Miller 

Naval Ship Research and Development Center 
Washington, D. C. 

ABSTRACT 

Unsteady propeller forces were measured on propellers in a water 
tunnel in a nonuniform flow produced by wire screens. In order to 
make these measurements, dynamometers, instrumentation, and testing 

techniques had to be developed. The effect of blade width and skew of 
single propellers and the effect of changing the angle between the pro- 
pellers of a tandem set on the unsteady forces were determined. 

INTRODUCTION 

One of the principal causes of vibration of ships is the unsteady hydrody- 
namic action of the propeller. Due to its periodic structure, the propeller can 
excite severe vibrations in the ship's structure in two ways. The nonuniform 

pressure field of the propeller rotating past nearby portions of the ship's hull 
will excite them into vibration and the propeller moving through the spatially 

nonuniform flow behind the ship will produce unsteady forces that are trans- 
mitted to the hull through the propeller shaft and bearings. Since it is usually 
more convenient to measure these forces separately, it is important that phase 

angles, as well as amplitudes, be considered, since the net excitation is the 
vector sum of these two types of forces. In this paper, only the experimental 
determination of the unsteady forces and moments and their phase angles that 

the propeller transmits through the shaft will be considered. 

In order to be able to reduce these vibratory forces to a minimun,, it is 
necessary to know how they are related to the propeller design parameters and 

the characteristics of the flow into the propeller. A number of theoretical 
methods for calculating these forces have been developed, ranging from simple 
quasi-steady methods based on open-water characteristics to highly sophisti- 

cated methods using three-dimensional unsteady propeller theory. Application 
of these theories produce widely differing results, and, in order to evaluate 
them, it is necessary to have experimental results for comparison. A number 
of propeller dynamometers for unsteady forces have been developed at NSRDC 
and elsewhere (1-8). The early ones measured only thrust, or thrust and torque, 
and had questionable dynamic characteristics or were limited to low frequen- 
cies. Some more recently developed dynamometers have highly improved char- 
acteristics, and some are able to measure the six components of the propeller 
forces and moments. At NSRDC three unsteady — propeller dynamometers are 
in current use. The MK-III dynamometer, for thrust only, uses a capacitance- 
type gage between the propeller and an inertial mass [8]. The "Bass" six- 
component dynamometer was developed for use with ship models in the towing 
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basin. It uses a six-component strain-gaged balance similar to the string- 

mounted balances used for wind-tunnel testing. Its design, construction, and 

calibration are described in detail in Ref. (8). A third dynamometer was devel- 

oped for use with propellers in the 24-inch water tunnel. Its design, operation, 
and some typical results will be described here. 

DESIGN OF THE WATER-TUNNEL DYNAMOMETER 

In order to be useful over the range of test conditions used in the water tun- 
nel, a dynamometer must have a relatively flat frequency response extending 

from the lowest shaft frequency to several times the highest propeller blade 
frequency. This range extends from about 10 Hz to at least 400 Hz. It should 
also be able to measure the steady components of the forces and moments. To 
simplify calibration, it would be desirable to have a flat response through the 

working range and extending continuously to zero. The system must be isolated 
from the vibrations of the tunnel and must be small enough so as not to cause 
too much disturbance of the tunnel flow. A preliminary examination of these 
requirements showed that it would be impossible to avoid some resonances well 
below the upper limit of the desired working range. For isolation, it was de- 
cided to mount the propeller and measuring elements on a stiff, heavy shaft ro- 
tating in soft mounted bearings and driven through a soft coupling. For each of 
the six components to be measured, at low frequencies, this propeller, balance, 
and shaft assembly can be considered as a one-degree-of-freedom system with 
the natural frequency being determined by the stiffness of the supports and cou- 
pling and the mass or moment of inertia of the system. Simple calculations 

showed that it would be possible to keep the axial, torsional, heaving, and pitch- 
ing resonances below 8 Hz. In order to reduce the diameter without increasing 

the torsional frequency, it was decided to construct a substantial portion of this 
assembly of tungsten. A schematic of this system is shown in Fig. 1. It can be 

contained in a housing about 4 feet long with a maximum diameter of 7 inches 

tapering to 2 inches at the propeller. 

Support Springs ¢ 
>, shes Measuring Spring 

Drive Coupling 
Mass of Propeller 

Fig. 1 - Simple schematic of two-degree- 
of-freedom system 

The next problem was to make all the higher vibrational modes fall at fre- 
quencies above the operating range. The lowest of these is determined by the 
mass or moment of inertia of the propeller and the stiffness of the measuring 
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elements and to some extent, particularly for lateral modes, by the characteris- 

tics of the sting. Starting with a preliminary design, a number of progressive 

changes were made in the sting and balance until the system was tree of reso- 
nances within the working range. In order to evaluate these design changes, the 
system was represented by lumped parameters as shown in Fig. 2. The values 
of these parameters were put into a computer program (9) to calculate the 

strains in the gaged elements for a unit force applied to the propeller. Very 
little trouble was experienced in obtaining a good frequency response for thrust 
and torque. However, 36 modifications had to be made and computed before an 
acceptable response was obtained for lateral excitation. The computed response 
of the final design for lateral excitation is shown in Fig. 3. The resonance at 
about 6 Hz is due to the sting and balance assembly vibrating as a rigid mass on 

the soft bearing supports. The next resonance, at 465 Hz, is the first bending 
mode. The region between these resonances is the useful working range. The 
response curves for thrust and torque were similar except that the useful range 
extended to higher frequencies for thrust. 

Bending Moment (1b-in) epee 
ee bo 3 bocahmolanp_o 0 oor> 

AFT MOMENT CENTER 

1 é ) 8 y d 60 80 100 100 

Frequency 

Fig. 3 - Computed response to lateral excitation 
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The final assembly is shown in Fig. 4. The flywheel, sting, and balance as- 
sembly weighs 160 pounds and is supported by rubber-mounted bearings on 
either side of the tungsten flywheel. This assembly is connected to the main 

tunnel drive shaft by a rubber coupling. Electrical signals from the balance are 
transmitted through a cable in the shaft and the unsteady signals are amplified 
before passing through the sliprings and brushes to the analysis and recording 

instrumentation. 

A simplified drawing of the balance is shown in Fig. 5. It has the form of a 
steel cylinder with two thin-walled sections on which semiconductor strain gages 
are mounted. The balance fits a taper socket in the end of the sting and the pro- 
peller mounts on the taper on the other end. Figure 6 shows a developed dia- 

gram of the gaging and wiring diagrams of the bridges for measuring the six 

components of force and moment. After gaging, the balance was waterproofed 
using wax covered with a protective coating of soft epoxy. The completed bal- 

ance is shown in the photograph of Fig. 7. 

Although semiconductor gages are more temperature-sensitive than metal- 
lic gages, no difficulties have been experienced with them. This is probably due 
to the relatively small changes in temperature in the laboratory and the tunnel 
water and the four-arm bridge arrangement of the gages. There is a consider- 
able drift in the zero readings, but this would only affect the steady measure- 
ments and they are made immediately after the bridges are balanced. 

CALIBRATIONS 

Both static and dynamic calibrations were made for the completed dyna- 
mometer. The static calibrations were made for the balance alone outside the 
tunnel. The dynamic calibrations were made with the balance on the flywheel 
and sting assembly and supported on rubber mounts. The calibrations were also 
repeated after installation in the tunnel and with the tunnel filled with water. 

For the static calibrations, pure torque and thrust were applied in a con- 
ventional manner. Since the axial position of the side force determines its in- 
fluence on the bending-moment reading and an applied pure moment produced 
some side force reading, it was necessary to obtain the side force and moment 
calibrations for the particular axial position that the center of the propeller 
would occupy. Instead of making individual calibrations for each propeller posi- 

tion, a general calibration was obtained by fitting a cylindrical sleeve to the 
propeller end of the balance and hanging weights at several measured axial lo- 
cations. This is a method commonly used for calibrating sting-mounted wind- 
tunnel balances. This procedures yields enough information to determine side 
force and bending moment for any axial position of the propeller. The results 

of this calibration showed that, aside from the effect of side forces on the 
bending-moment readings inherent in this type of balance design, the only sig- 
nificant interactions were a small effect of torque on the thrust readings and 
some effect of bending moment on the output of the side-force gages in the same 

plane. 
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Fig. 5 - Simplified 
drawing of balance 

Dynamic forces and moments were applied to the assembled system with 
electrodynamic shakers and measured with piezoelectric force gages. The gages 
were attached to a metal block on the end of the balance in positions determined 
by the force or moment to be applied. The force was transmitted to the gage 
through a thin rod in order to avoid any lateral excitation which had been found 
to affect the calibration of the force gages. Care had to be taken to distinguish 
resonances in the driving rod from those of the dynamometer. Driving-rod 
resonances were eliminated by changing its length or by clamping weights to the 
rod. Preliminary calibrations were made in air, but after it was found that the 
shakers would operate in water and the force gages were waterproofed, the final 
calibrations were made with the tunnel filled with water. The results are shown 
in Figs. 8-11. Figure 8 includes a calibration made in air, which shows very 
little difference from the one made in water. The calibrations showed good 
repeatability except for the horizontal bending moment, where three separate 
calibrations showed considerable spread at the lower frequencies, although the 

side-force calibrations obtained with the same loading showed excellent agree- 
ment, These frequency response curves are in good agreement with the theo- 
retical curves that were computed for the final design, except for the small 
resonances in bending moment and side force at approximately 230 Hz. The 
cause of these resonances has not been determined, and attempts to eliminate 
them have been unsuccessful. The outputs shown in these figures are in rela- 
tive units. The values used for reducing the test data were derived from these 
curves at blade frequency. The calibration was put into the computer program 
in the form of a 6x6 matrix. When the instantaneous readings in millivolts of 
the six channels are multiplied by this matrix, the thrust, torque, side forces, 

and bending moments are obtained in pounds or pound-feet. 

A typical calibration for one propeller position follows as a coefficient ma- 
trix of a set of equations giving the forces and moments as functions of the mil- 
livolt output of the six strain-gage bridges: 

T = 1.75 e, + 0.029 e, + 0 +0 +0 +0, 

Q=0 420,076:e, + 0 +0 + 0 +0, 

Pe =10 +0 -1.96e;, +0.137e, +0 +0, 

M, =0 +0 + 0.072 e¢, + 0.086 e,, +0 +0, 

B= 0 +0 +0 +0 - 1.89 e,, + 0.098 ee 

M, = 0 +0 +0 +0 - 0.069 e,, - 0.085 Crue 



s
u
t
s
e
3
 

jo
 

wi
ea
rs
et
p 

pe
do

Te
aa

es
q 

- 
9 

*3
1q
 

3
3
V
4
N
!
i
S
 

O
N
I
S
V
D
 

J
O
 

L
N
3
W
d
0
1
3
A
3
0
 

Experimental Determination of Unsteady Propeller Forces 

= 
A 

H
 

K
 

H
 

A
 

S3
90

14
8 

Ni
 

$3
9V

9 
JO

 
LN

3W
S9

NV
UN

Y L 
© 

3N
O0

Y¥
OL

 

— 
AW
S € 
=
 

AW
E 
a
 

A4
 

c
y
 

a
e
 

G2
 

BY
 

_
-
4
3
7
7
3
d
0
u
d
 

i
 

1S
au

v3
N 

Oo
 
W
N
O
M
V
I
S
 

|
 

F 

00
9 

00
2 

20
8!

 
20

6 
Ae)

 

i}
 

a
g
 

I
T
U
 

e
e
 

S 
as

 
eee 

| 
18
b 

19
¢ 

Lo
p 

Le
b 

ie
} 

I
l
 

IS
P 

I 
&
 

Ti
p 

a
E
 

1 
f
f
 

a
S
 

S
E
 

] 
de
 

A 
6£
 

ae
 

Hd
 

ze
 

h4
 

aa
 

H
a
 

2 
"
3
 p
s
 

Te
 

H4
 

Ne
 

62
 

f
e
 

92
 

ie
 

ve
 

t |
 

Of
 

o0
9¢

 
00
22
 

20
8!
 

20
6 

Re
) 

e
 

@ 
NO
IL
VI
S 

Vv 
NO
IL
VL
S 

1
1
M
 

O€
0'

X 
"
0
0
 

S2
2"
! 

i
i
 

S
3
9
V
4
Y
N
S
 

O
N
I
D
V
D
 

261 



Miller 

The zero terms in the above equations represent interactions that were not 

measurable or were too small to be significant. Only the (T, e,), (M,, ae 
and the bee e;,) terms are due to inaccuracies in the balance. The (F,, ) 
and (F,,e Bey terms are inherent to the design and due to the fact that the cen- 
ter of the propeller is displaced axially from the moment center of the balance. 
The remaining terms, on the diagonal, are of course the principal responses of 
the balance to the six components. 

© In Air 

x« In ‘ater 

0. eae 

pea oA 

Frequency 

Relative Output 

Fig. 8 - Dynamic calibration of thrust 
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Frequency 

Fig. 9 - Dynamic calibration of torque 

VERTICAL BENDING MOMENT 

Frequency 

Fig. 10 - Dynamic calibration of vertical side force and bending moment 
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Relative Output 

Frequency 

Fig. 11 - Dynamic calibration of horizontal side force and bending moment 

The overall accuracy of the system is approximately +5% for blade frequency 

and harmonics up to about 200 Hz when values from the calibration curves at 
blade frequency are used in the calibration matrix. Thrust measurements will 
retain this accuracy up to 600 Hz and torque measurements can be used to 400 
Hz with corrections. Side forces and bending moments are limited to 200 Hz, 

due to the resonance at 230 Hz. 

INSTRUMENTATION 

The instrumentation was designed for both obtaining a record on magnetic 
tape and for making an on-the-spot analysis of the signals directly from the dy- 

namometer during the tests. 

Figure 12 shows a block diagram of the system. Power is supplied to the 

thrust, torque, side-force, and bending-moment strain-gage bridges by four 
separate power supplies. These supplies are adjustable between 5 and 24 V, and 
the excitation for each channel is set to a value that will produce a strong signal 

but will not overload the amplifiers. The output of the gages goes directly 
through the sliprings and brushes to zero balancing circuits and then to a de 
microvoltmeter for measuring the steady components of the propeller forces. 
The signals also go to ac amplifiers contained in the drive shaft and then through 
sliprings and brushes to ac recording and analysis instrumentation. The dc out- 
put circuit is also used to introduce a measured ac calibration signal to the out- 

put of the strain-gage bridges in order to measure the gain of the ac system. 
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The ac outputs are passed through adjustable-gain amplifiers, where the signal 
levels are set to the optimum level for magnetic-tape recording. Near the fly- 

wheel are two toothed wheels that generate 1 and 60 pulses per shaft revolution, 
Figure 13 shows these pulses for a portion of a revolution before and after pass- 
ing through a pulse-shaper. The 60 Hz square wave controls the digitalization 
of the signals, and the single pulse acts as a start signal and as a phase refer- 
ence. These pulses are recorded on the magnetic tape, along with the six chan- 
nels of data from the propeller. A digital time code is recorded on the tape to 
identify the data and to permit the use of an automatic tape-search unit during 

digitalization. A voice announcement is also used to record additional informa- 
tion concerning the tests. Each of the six data signals is also photographically 

recorded from an oscilloscope screen, along with the single reference pulse. 

Fig. 13 - Reference pulses before 
and after shaping 

For on-the-spot analysis, a two-channel constant-bandwidth wave analyzer 

and a phase meter are used. The analyzer consists of a common local oscilla- 
tor, two mixers, and two 20.5-kHz crystal filters. These filters have a band- 
width of 5 Hz and are matched for frequency and phase. One channel is con- 
nected to the phase reference pulse. Since this is a narrow symmetrical pulse, 
it contains many strong harmonics of shaft frequency that are in phase with each 
other. Whenever the analyzer is tuned to one of the unsteady signals, there will 
be a reference signal that has a fixed phase relationship to the angular position 
of the propeller. The phase meter is connected to the two outputs of the ana- 

lyzer to measure their phase angle, and the signal channel is connected to a 
voltmeter to measure the amplitude. The input of the analyzer can be switched 
to analyze any of the six components. To simplify setting the analyzer to the 

desired signal frequency, the local oscillator frequency is mixed with that of a 

20.5-kHz crystal oscillator to obtain the frequency component being analyzed. 
This frequency is compared with that of a sine-wave generator connected to the 

drive motor. Since all the frequencies of interest are simple multiples of shaft 
frequency, it is easy to tune the local oscillator by setting it for a stationary 

pattern on the oscilloscope. 
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DIGITAL ANALYSIS 

A digital analysis of the recorded data is performed using an IBM-7090 
computer. Each of the data channels is digitized at intervals corresponding to 
6 degrees of shaft rotation for 200 shaft revolutions. These values are then 
averaged to obtain an average cycle for one revolution and calibration signals 

on the tape are used to scale these average values to represent the input to the 

recorder in volts. The photographic record made from the oscilloscope can be 
compared directly with this output from the computer. These average values 
are then divided by the gain of the amplifiers, which has to be entered into the 

computer program for each test. The result is the output of each strain-gage 

bridge in millivolts. Each set of six voltage values, for each 6° increment of 

shaft rotation is now multiplied by the 6x6 calibration matrix to obtain the pro- 
peller forces and moments in pounds and pound-feet. Since the gages are rotat- 
ing with the propeller, the side forces and bending moments are relative to a 

rotating reference frame. To obtain vertical and horizontal forces and mo- 

ments, they are resolved by using trigonometric relationships. A harmonic 

analysis of these results gives the amplitudes and phase angles of any desired 
number of harmonics of the shaft rotation frequency. 

TYPICAL TEST RESULTS 

The unsteady forces produced by a propeller have frequencies determined 
by the blade frequency and the frequency components in the wake. Unsteady 

thrust and torque are present only if the wake has frequency components equal 

to the blade frequency or any of its harmonics. Unsteady side forces and bend- 
ing moments are present only if the wake has frequency components equal to the 

blade frequency or a harmonic plus or minus one. The forces relative to the ro- 
tating shaft will have this frequency. However, when resolved into vertical and 
horizontal forces relative to a fixed reference frame, these frequencies become 

equal to the blade frequency or its harmonics. 

Figures 14 and 15 show the outputs of the thrust and moment gages for a 
three-bladed propeller in a three- and four-cycle wake. These wakes were ap- 
proximately sinusoidal with only a little harmonic content. Figure 14 shows that 

in the three-cycle wake a strong three-cycle thrust signal was produced, but the 

moment signal was rather complex and actually much weaker than indicated by 

the photographs, since the gain of this channel was greater. Figure 15 shows 

that in the four-cycle wake the thrust was complex and weak, while the moment 
shows a strong four-cycle component. When resolved into vertical and horizon- 

tal moments, they will become three-cycle or blade frequency signals. These 

are the unfiltered electrical signals and must be corrected for the gain of each 
channel and multiplied by the calibration matrix to obtain values in the mechani- 

cal units of force and moment. The pulses seen on each record represent shaft 
revolutions and are used as the phase reference for both the digital and the on- 

the-spot analysis. 

The three- and four-cycle wakes were produced by screens using the method 

developed by McCarthy (10). Figure 16 shows a drawing of the three-cycle 
screen. Figures 17 and 18 show the harmonic analysis of the longitudinal veloc- 

ity component in the propeller plane as measured with a pitot rake. 
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Fig. 14 - Three-bladed propeller in 
three-cycle wake 
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Fig. 15 - Three-bladed propeller in 
four-cycle wake 
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Fig. 16 - Three-cycle screen 
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These simple wakes were used in all the water-tunnel tests because the ob- 
jective was to obtain a better understanding of the influence of the parameters 
affecting unsteady forces rather than to model full-scale conditions and deter- 
mine unsteady full-scale vibratory forces as is usually done in the unsteady 

tests conducted with models in the towing basin. 

Two series of tests have been completed in the water tunnel. The first was 
an investigation of the effects of blade width and skew on the unsteady forces and 

moments of three-bladed propellers when operating in three- and four-cycle 
wakes. Some of these results have been used in Refs. (11) and (12) for compar- 
ison with theoretical methods. The propellers (Fig. 19) had expanded area ra- 
tios of 0.30, 0.60, and 1.20 with no skew and 0.60 with skew equal to the blade 
spacing. All were designed for the same operating conditions. The second se- 
ries of tests used the tandem set of two three-bladed propellers shown in Fig. 20. 

Each propeller of the set had an expanded area ratio of 0.30 and the set was 
tested in the three-cycle wake with the blades set at a series of different angles 
relative to each other. All propellers were 12 inches in diameter. Unsteady 
forces and moments and their phase angles were determined over a range of 

loading extending from zero thrust to about twice design thrust. 
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Fig. 19 - Three-bladed single propellers 

Fig. 20 - Tandem propellers set at 60° angle 
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The variation of blade frequency thrust, torque, side forces, and bending 

moments with mean propeller loading for the single propellers is shown in Figs. 
21, 22, 23, and 24, respectively. The directions of these forces and moments 
are defined in Fig. 25. The unsteady thrust and torque were obtained in the 
three-cycle wake, where they were dominant, while the side forces and bending 
moments were obtained in the four-cycle wake. The thrust and side forces are 

nondimensionalized on design thrust, and the torque and bending moments on the 
torque measured at design thrust. As the loading decreased with increasing ad- 

vance coefficient, all six blade frequency components increased for the unskewed 
propellers. This is apparently due to the increased amplitude of the velocity 
variations as the mean velocity was increased. The decrease in these compo- 
nents at the higher velocities for the skewed propeller is not understood. The 

largest unsteady forces were obtained with the expanded area ratio of 0.60, al- 
though with only three blade widths the value for the maximum cannot be deter- 
mined accurately. The skewed propeller showed a considerable reduction of the 
unsteady forces over those of the unskewed propeller. The blade frequency 
thrust and torque were only about 10% and the side forces and moments about 

50% of those for the unskewed propeller of the same blade width. 

O 030 .E.A.R. 

© 0.60 EAR. 

4 1.20 EAR. 

O O60 EAR. Skewed 

~ 

Blade Frequency Ky / Design Ky 

Orsue7O.6201017%. 0:8. £09 Ow al Ke iS 

Advance Coefficient, J = oe 

Fig. 21 - Blade-frequency thrust 

Phase angles are shown in Figs. 26-28. The angles given are those by which 
the sinusoidal components of propeller loading lead the same frequency compo- 
nents of the longitudinal velocity at the radial line through the midchord of the 
root section of a propeller blade. The thrust is assumed to be in the direction 
for normal propulsion of a ship, i.e., in phase with the torque and opposite to the 

direction shown in Fig. 25. With this assumption, and from steady theory, the 
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Fig. 22 - Blade-frequency torque 

thrust and torque should lead the velocity by 180° for a narrow-bladed propeller. 
The effect of blade width shown on these figures is apparently due to the effec- 
tive line of encounter being shifted forward for the wider blades and aft for the 

skewed blades. 

The tandem set was tested in the three-cycle wake, so that the only signifi- 

cant unsteady components were thrust and torque. Titoff and Biskup (13) have 
reported bending moments for tandem propellers. The type of flow they used 
was apparently more complex and included frequency components that excited 

these moments. 

Figure 29 shows the unsteady thrust developed by the tandem propellers in 

the three-cycle wake at design loading. When the blades of the two propellers 
are aligned with each other, a strong blade-frequency thrust component is pro- 

duced. As the angle between the two propellers is changed, the blade-frequency 
thrust is reduced and has a minimum value when the forward propeller lags the 

after by approximately 60° or half the blade spacing of one propeller. The 
higher harmonics of blade frequency also show an effect of blade position. This 

blade-position effect is mostly due to the fact that the three-cycle wake also has 

small sixth-, ninth-, and twelfth-harmonic components. This figure also shows 
the blade-frequency thrust component for the single three-bladed propeller, 
which has an EAR of 0.60, equal to the total EAR of the tandem set which was 
designed for the same operating conditions. The curves in this figure have been 
drawn through the points obtained from the computer analysis. They are con- 

sidered more reliable than the on-the-spot analysis, since they represent aver- 

ages for 200 shaft revolutions. Also, the values read from the on-the-spot 
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Fig. 24 - Blade-frequency bending moments 
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Direction of 

Propeller Advance 

Fig. 25 - Forces and moments 
acting on propeller 

instrumentation are shown for blade frequency and are in good agreement. The 
agreement is equally good for the higher frequencies. Figure 30 shows similar 

results for blade-frequency torque. 

The effect of the relative angle between the two propellers on the phase 
angle of the blade-frequency thrust is shown in Figure 31. The curve is drawn 
through the values obtained from the computer analysis, and again the on-the- 

spot values are in good agreement. The phase reference is the centerline of the 
aft propeller blade. It is seen that as the lag of the forward propeller position 

is increased, the lead of the phase angle is decreased. The phase angles for 
torque are essentially identical and the agreement of the on-the-spot results is 

even better. 

Figure 32 shows how the waveform of the thrust changes as the angle be- 
tween the propeller is changed from 0° to 100° in increments of 20° as recorded 
from the oscilloscope. 

CONCLUSIONS 

Several dynamometers having high accuracy and good frequency response 
characteristics are available to obtain reliable measurements of unsteady pro- 

peller forces both in the towing basins and in the water tunnel. Experimental 
results can be obtained which are required for evaluating the sophisticated the- 

ories that are being developed, and parametric studies can be made to explore 
the details of propeller geometry for their effects upon performance. Evalua- 
tion tests can also be made to determine the characteristics of specific propel- 

ler and hull combinations. 
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(b) Forward propeller lags 20 degrees 

Fig. 32 - Waveforms of unsteady thrust 

284 



Experimental Determination of Unsteady Propeller Forces 

(c) Forward propeller lags 40 degrees 

(d) Forward propeller lags 60 degrees 

Fig. 32 - Waveforms of unsteady 
thrust (Continued) 
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(e) Forward propeller lags 80 degrees 

(f) Forward propeller lags 100 degrees 

Fig. 32 - Waveforms of unsteady 
thrust (Continued) 
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The water-tunnel dynamometer was designed theoretically, using a computer 

analysis to obtain the dynamic characteristics. The dynamic calibrations of the 
completed system agreed quite well with the predicted frequency response 
curves, except for a small resonance in bending moment and side force. Analog 
instrumentation for obtaining on-the-spot measurements of amplitudes and phase 
angle of the harmonic frequency components was developed for the water-tunnel 
tests. Both amplitude and phase values obtained from this instrumentation agree 
very well with those computed from the digitized tape recordings. 

Water-tunnel tests of propellers with three blade widths showed the unsteady 
forces to be maximum for an expanded area ratio of 0.60. A propeller having 
extreme skew and the same blade width had only 10% of the thrust and torque and 
50% of the side forces and moments on the unskewed propeller. Tests of a set 

of tandem propellers showed that the phase angle between the two sets of blades 
has a considerable effect on the unsteady forces. For any given application, the 

vibratory forces can be reduced by proper adjustment of the angle between the 

two sets of blades. 

Future work will include determinations of the effect of pitch ratio and skew 
and studies of contrarotating and tandem propellers. Propellers for specific 
applications will be designed and their performance will be evaluated experi- 

mentally. 
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DISCUSSION 

R. Wereldsma 

Netherlands Ship Model Basin 
Wageningen, Netherlands 

My first question refers to the dynamic calibration of the six-component 
balance: Did the author take into consideration the hydrodynamic effects of the 
propeller, being a part of the complete system ? 

288 



Experimental Determination of Unsteady Propeller Forces 

When these effects are considered, it is not possible to measure thrust 
fluctuations having frequencies higher than the terminal natural frequency of the 

system, due to the hydrodynamic interaction of the thrust and the torque system. 

A second question refers to the extremely skewed propeller, showing oppo- 

site trends of vibratory output versus advance ratio, as compared to regular 

propellers. Is the dynamic response of the propeller blades probably the cause 
of this phenomenon? 

REPLY TO THE DISCUSSION 

Marlin L. Miller 

The dynamic calibrations were made in water with a mass approximately 

equal to a propeller mounted on the balance. This did not provide the coupling 
between the thrust and torque that is present when a propeller is being tested. 
With a propeller, the thrust response will be limited by the torsional resonance 
of the system. However, the frequencies measured have been well below this 

limit, so that the results have not been affected by this coupling. 

The resonant frequencies of the blades of the skewed propeller have been 
measured in water. The hub of the propeller was driven by a shaker and the 
resonant frequency of each blade determined with a hydrophone held close to the 

blade. The average resonant frequency was found to be 97 Hz. This is close to 
the second harmonic of blade frequency, which was 90 Hz for the tests reported 
in this paper. An examination of the test data has shown an unusually large 
second-harmonic component of thrust and torque and a somewhat more complex 

harmonic distortion of the side force and moment signals at the two highest val- 
ues of advance coefficient for the skewed propeller. Therefore, these values, 
shown in Figs. 21, 22, 23, and 24, are not reliable. However, little or no har- 
monic response was observed for the two lower values of advance coefficient, 
and these values are considered reliable. 

* * x 
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THE RESPONSE OF PROPULSORS 
TO TURBULENCE 

Maurice Sevik 
Ordnance Research Laboratory, the Pennsylvania State University 

University Park, Pennsylvania 

ABSTRACT 

The response of a propulsor to random velocity fluctuations has been 
analyzed. As a special case the theory has been used to predict the 
force fluctuations on a propeller of low solidity having blades of high 
aspect ratio and operating in a homogeneous, isotropic turbulence 
field. The response depends critically on two functions which involve 
the ratios of the propeller diameter and of the chord of the blades toa 
characteristic length scale of the energy-containing eddies. The power 
Spectrum peaks at the origin and drops off rapidly with increasing 
frequency. Experiments performed in a water tunnel with a free- 
stream propeller placed downstream of grids of various mesh sizes 
indicate good agreement between theoretical predictions and experi- 

mental results. 

INTRODUCTION 

It is well-known that the fluid-dynamic forces on the blades of turbomachines 
are unsteady. These unsteady forces may cause a number of undesirable effects 
such as fatigue failures, high vibration levels, or objectionable acoustic radia- 

tion. 

In many applications the spectrum of the time-dependent forces exhibit 
strong lines which generally correspond to harmonics of the blade frequency. 
These lines are created by effects which are periodic over one revolution of the 

machine such as mutual interactions between rows of blades or spatial nonuni- 
formities in the inflow velocity field. Kemp and Sears (1, 2) were the first to 
contribute to our understanding of the fundamental unsteady flow phenomena 
which occur in compressors and turbines by analyzing the aerodynamic inter- 

ference between rows of blades in relative motion. In the naval field Lewis (3) 

pioneered theoretical and experimental investigations as early as 1936 in con- 
nection with unsteady propeller forces which often cause severe vibrations in 
ships. Recently Tsakonas (4) developed a lifting surface theory which predicts 
the time-dependent forces acting on marine propellers possessing numerous, 

low-aspect-ratio blades. Good agreement between Tsakonas' predictions and 

test results were observed by Boswell (5). 

The studies mentioned, as well as numerous other investigations which have 
been published from time to time, are all concerned with nonuniformities in the 

291 



Sevik 

flow which are deterministic and periodic in nature. However numerous cases 

exist in which the blades of turbomachines are subjected to random fluctuations 

of a flow field. A common example is the fan of a household air conditioner op- 
erating behind an ornamental grill. Another example is a marine propeller 

immersed in the turbulent boundary layer of a ship. 

In this paper a theoretical analysis of the response of a propulsor to random 

velocity fluctuations is given. As a special example the theory has been used to 
predict the force fluctuations on a propeller of low solidity with blades of rela- 
tively high aspect ratio operating in a homogeneous, isotropic turbulence field. 
It is reasonable to expect that the response of the propeller will depend on two 

parameters, namely, the ratio of propeller diameter and the ratio of blade chord 
to a characteristic turbulent eddy size. It is shown that the power spectrum 
peaks at the origin and drops off rapidly with increasing frequency. 

THEORETICAL CONSIDERATIONS 

The statistical properties of the force fluctuations experienced by a propul- 
sor operating in a turbulent flow can readily be related to those of the random 

velocity fluctuations, if the response of the propulsor is linear. Imagine the 

propulsor to be subdivided into an arbitrarily large number of small surface 

elements, and consider one such element located at y; (Fig. 1). Steady and un- 
steady fluid velocities are measured with respect to a Cartesian coordinate sys- 
tem a'(a’ = 1',2',3') which is fixed in space. An unprimed system a (a= 1, 2,3) 
rotates with the propeller and is oriented so that one of its axes coincides with 

the axis of symmeiry of the propeller. 

ELEMENT OF PROPULSOR 
2 (Hest OF i? SURFACE 

a3i FREE-STREAM 
AXIS OF ROTATION _-; VELOCITY 
OF*PROPULSOR: 915 [E G22 == r U 

a _— 
jC — 

Fig. 1 - Coordinate systems. The primed 
coordinate system is fixed in space, and 
the unprimed coordinate system rotates 
with the propulsor. 
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The fluctuating aerodynamic forces acting on the various surface elements 

are interdependent by virtue of induction effects as well as by virtue of spatial 
and temporal correlation of the turbulent velocity fluctuations. Since the quanti- 
ties involved in this problem are tensors, the index notation, including the sum- 

mation convention in the case of repeated indices, constitutes the most conven- 

ient choice. 

Directions are denoted by superscripts, whereas subscripts denote the 
propulsor elements involved. For example u,2(7") denotes the component of the 

fluctuating velocity at time 7‘ in the direction 4 of the rotating reference frame 
at the element k. Similarly, Fee (t;7") denotes the aerodynamic force acting on 
the ith element in the direction « at the instant of time t caused by a velocity 
fluctuation of unit magnitude in the direction 6 to which the kth element was sub- 
jected at the instant of time +’. Finally, ¢*(t) indicates the aerodynamic force 

acting on the ith element at time t in the direction a. In terms of these quan- 

tities and neglecting higher order terms, the lift force is given by 

t 

| FRP(E 7!) ue (r')dr (1) 
=o 

I eck) 

where 

Ties aye are 

In most cases the aerodynamic force tensor is time invariant and Eq. (1) 

can be written as a convolution integral: 

foe} 

E(t) = [ Be) nea) dr , (2) 

0 

where 

ite oe Ole 

The force acting on the entire propulsor at the instant of time t in direction a of 
the roating reference frame is given by the sum of the the lift forces acting on 

each individual element: 

m 

L*(t) = )° &f(t) . | (3) 

Since L%(t) is a random function, it is determined statistically by the complete 

system of joint-probability distributions of the values of the function at any n 

values of t, where n may take any integral value. Fortunately, from an 
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engineering standpoint the correlation tensor (L%(t)L*(t+7)) and its Fourier 
transform are the most significant quantities; consequently only a knowledge of 
the second-order two-point-product mean values of the turbulence is required. 

In Eq. (2) u represents the velocity of the fluid relative to a rotating ele- 
ment of the propulsor. Referring to Fig. 1, let y, denote the location of the ith 
element relative to the unprimed reference frame. As was stated this unprimed 
reference frame is fixed to the propeller and rotates with it. 

Suppose that at time t the fixed and rotating frames coincide momentarily; 
then the position vector of a fluid particle will be the same in both frames. If 0 
denotes the angular velocity vector of the rotating frame, the velocity compo- 
nents of the fluid relative to the propulsor element considered are given by 

uA = aha ul - ehay ()o y;” ; (4) 

where « is the permutation symbol. 

Note that all terms in Eq. (4) are time dependent: © could, for instance, 

represent fluctuations in angular velocity resulting from a torsional vibration of 
the propeller shaft. If the propulsor rotates at a steady speed, we obtain 

B= gha yla uj a u; ‘ 

In forming average values of the forces and fluid velocities we assume that 

the random processes are stationary and ergodic. The mathematical expectation 

it 

E[L® ¢t) L4(t:+7)) =;dim ref L&(t)y7L4( tit 7) -dt.= GEC) (5) 
Too 

0 

is equal to the sum of the auto- and crosscorrelation functions of the forces 

acting on the constituent segments of the propulsor. This can be shown by sub- 

stituting Eq. (3) in Eq. (5): 

T 

@%4(7) = Lim + | y 2 bey (eer) dt = »; 2 OA (7) 
i 

The crosscorrelation tensor Off ;(7) can be expressed in terms of the 

aerodynamic force functions and the velocity correlation tensor: 

T 

OFF (7) = Lim val ES COE Gear ect bisa | To 0 

o (oo) TT 

= f FEC) ary | Fee (T,) dry Lim 1/ u (t-7,) ud(t+7-7,) dt 
0 0) ' T70 0) (6) 

(Cont) 
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ioe) 

ore (ry = [ FRC) or Oe 
ae 0 0 (6) 

where RY? (7) is the velocity correlation tensor for the points located at y, and 

y, respectively. 

The spectrum tensor of the forces acting on the propulsor is the Fourier 

transform of the force correlation tensor 6%4(7), It consists of the sum of the 

spectral and cross-spectral densities of the forces acting on the individual seg- 
ments of the propulsor. The spectrum tensor is given by 

G°4(w) = al Dae ete dr 

foe) 

= al ee OF, (7) ered 
o j j 

= a8 @W) , 

where i = y-1. It is convenient to express the spectrum tensor in terms of the 

frequency response functions of the individual segments of the propulsor. From 

Eq. (6) we obtain 

= De een ay 
ij 

=o 

ran ; (w) 

{oo} 

i Perc, ) ere aT, { BG) eo 8 ar, al Reecr) e7 14T dz 

0 0 = 00 

8 = [HEZc@y]" [HPece)| Gre () 5 (8) 

where the frequency response function H(~) is given by 

5 oe 3 -iowt 
Hit (2) = i I Ga e 2 dine 

0 

and where the * denotes the complex conjugate of the quantity. The spectrum 

tensor of the turbulence has the form 

7 c 

a) 

G2? (a = ak R?°(7) e7i®T dr. 
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APPLICATION TO A PROPELLER 

As an illustration consider a propeller of low solidity with blades of high 
aspect ratio operating in a turbulent flow. The turbulence considered is homo- 
geneous and isotropic. The unsteady aerodynamic forces correspond to two- 
dimensional theory applied to stripwise elements of the blades. 

When the turbulence is homogeneous and isotropic, the velocity correlation 

tensor adopts a simple form. In terms of the distance r between two points and 
the mean square value of the velocity fluctuations u? it is given by 

2 A 
Rr) = u? - 4 ro rB 4 (1 +3 a) a8 (9) 

i OT 

The function f(r) has been measured by Stewart and Townsend (6) and is 

shown in Fig. 2 together with its approximate representation used in this paper, 

namely, 

f(r) = ent Ba: 

where » = 2.5 and M is the mesh size of the grids producing the turbulence. The 

symbol é in Eq. (9) represents the Kroenecker delta. 

As for the aerodynamic response function our analysis is restricted to two- 
dimensional theory applied to stripwise element of semichord b with spanwise 

width R. The appropriate form of this function has been given by Sears (7) as 

H;(w) = 27pV,b; 5R; {C(k; [Jo (kj) - iJ, (k;)] + iJ, (k)} - 

where 

aR the resultant velocity at the jth propulsor element, 

Jy. J, = Bessel functions, 

C(k) = Theodorsen's function, 

k, = wb,/V; = reduced frequency. 
J 

The relationships established so far permit the calculation of the response 

of a propeller to turbulence by numerical means. Clearly it is desirable to ob- 
tain a relatively simple expression for the rms thrust coefficient and the spec- 
trum tensor in terms of readily available propeller parameters. For this pur- 

pose, we make some approximations and assumptions: 

1. The axis of rotation of the propeller is colinear with the free stream 

velocity vector. 

2. The resultant velocity and chord of the various propulsor elements may 

be represented by those of a single "typical section'' located at some fraction of 
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u(x+T) 

u(x) 

4 ae ito: u(x) u(x+T) 
-2.5 6 = aa Mae 

AP IMATION f(r)= 2 “a PROX ON f(r)=e u 

0.6 

f (r) 
0.4 

MEASURED VALUES 
ON TO REF. 6 

Or 

Sr = _——S> 

(0) O75 1.0 RS 2.0 

r/M 

Fig. 2 - Correlation curve for isotropic turbulence. 
The measurements were made at 30M downstream, 

where Mis the mesh size of the grid producing the 
turbulence 

the span of a blade and denoted by the subscript T. A good choice would be the 

section exerting the largest steady lift force. 

3. The velocity correlation tensor is approximately represented by 

Ree) = e7 Aq/M Ree (7) . 

where q represents the distance between the elements k and r of the propeller. 

As a consequence we obtain the following components: 

Ren?) u2 me aca) 
Vr ’ 

\ U -A((U,+4)/M] 
Reet u2{t-3 ihe a , 

R72) = REG) = Oe 

We can now obtain an expression for the mean square thrust coefficient. 
Consider the geometry of a propeller element, as shown in Fig. 3. We approxi- 

mate the angle / by 

aa rae 
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V RESULTANT VELOCITY VECTOR 
LOCAL LIFT FORCE ! 

BE, B 

2 

Fig. 3 - Geometry of a propeller element 

From Eq. (7) and (8) we obtain an expression for the spectrum tensor of the 

fluctuating thrust force: 

GHi@)i= Dey Ye ES H;(#) cos? B; cos? B; Gii(@) 
iq 3 

J 

1 : 
a H¥(w) H,;() sin 24; sin 28; 022(.)| ; (10) 

where 

fee) ; foe) - U M : 

Gij() = a [ RECT) ent Tid; = aa, u?.e ALU, ta) (i) er tery dir 

0 0 

AU 

ou? | Mo. _ su -iq/M = ee q/ 

(= tisGie 
M (11) 

and 

2 i R?5(7) e71¢T dr = = 

0 

Ui AU)! 
3 — - iw — =a 

14120 Silom apnrorxii gtigileAUid alien oie }ee-ha/M 
AU) 2M Lom yy t aro “ay M M (12) 

We now introduce the concept of a "typical section" as was mentioned in 

assumption 2. A simple expression for the product of the aerodynamic response 

functions is then obtained: 
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T (13) 1+ 2— 

Vy 

Hi() H;(@) © H7() Hy(w) = |Hy(~) |” © (2mpVyzby)* (eg 

At this stage the major steps of the theory have been stated. The remainder 

consists of formal mathematical operations. We substitute Eqs. (11), (12) and 
(13) in (10) and obtain an expression for the real part of the thrust force spec- 
trum. After some algebraic manipulation this reduces to 

1 r ee 
Re G!1(T) = A ee 14 eG (=a (; : alle : =)I¢ ee Te] eauR.r) ; (14) 

where 

rp. @M 
U 

a = 7R2u2UM (2610 & 
ab 

io) I [1 (53) 
mTU/QR = advance ratio , ay ul 

R= tip radius of the propeller . 

The function g(M/R,\) relates two characteristic length scales of our prob- 

lem and is given by 

g(M/R,A) = [[e-sam R,R, dR, dR, , (15) 

where the integration is applied over all the elements of the propeller. In the 

case of a two-bladed propeller this function can be readily integrated; we obtain 

AR AR 
g(M/R,A) = a (=) = igre" ee (=) (1 + 5) (cosh = =. sinh ~*) : 

3 \AR AR AR M AR M 

For propellers containing a larger number of blades Eq. (15) has been evaluated 

numerically and the results are plotted in Fig. 4. 
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6 BLADES 
P 

ec O06 
~N 
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oO 

0.4 4 BLADES 

02 2 BLADES 

% 2 3 4 
M MESH SIZE OF GRID 
R PROPELLER RADIUS 

Fig. 4 - Results of numerical 
evaluation of Eq. (15) 

The mean square of the fluctuating thrust force is obtained by integrating 

Eq. (14) over all frequencies: 

foe) 

{ GIE(T ida 
0 

UTZ) 
z\Ic 

Three general functions emerge from the integration: 

{oo} 1 
pene = S| | dd 
No ad { (; : mike + = (ea) 

gome ian (16b) 
oue)e fe = ceva Fs 

foe) r ?) 

: ar. 16 
tare) } (ot + wl eo ear il| i 
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Vr, 

as Zz 
oe QR 

0.6 VELOCITY 
DIAGRAM 

Fig. 5 - Functions f,, f,, and f, 

according to Eqs. (16) 

These integrals, which can readily be evaluated, are plotted in Fig. 5. In terms of 
these functions the mean square of the fluctuating thrust force is given by 

U 
(1?) 2S (cf, +f, 6 £,) eGUR,A) - (17) 

A fluctuating thrust coefficient can now be obtained by dividing Eq. (17) by 

(pU2nR 2/2): 
2 2 

= 16;fu\ . [Pr 
(eq?) = = (4) (=) = [cfs agte f, | g(M/R,A) . 
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The conclusions which may be drawn from this analysis can be summarized 

as follows: 

1. The rms thrust coefficient is directly proportional to the turbulence 

level u/U. 

2. The rms thrust coefficient depends on the ratios b/M and R/M, namely, 
the ratio of chord to grid mesh size and radius to grid mesh size. 

3. The dependence on the advance ratio J is not very pronounced. - 

4, The spectrum tensor Re G!!()varies as |-%/? for large values of the 
frequency parameter!’ = oM/U. Most of the energy is concentrated at the low- 

frequency end of the spectrum. 

EXPERIMENTAL INVESTIGATIONS 

To verify the theory experiments were conducted in the water tunnel of the 
Ordnance Research Laboratory at the Pennsylvania State University (8). This 
tunnel has a test section 4 feet in diameter and 14 feet long. Velocities as high 
as 80 ft/sec can be achieved, and the static pressure can be varied from 3 psia 

to 60 psia. A honeycomb of large ratio of length to diameter in the settling sec- 

tion of the tunnel reduces the turbulence level in the test section to about 0.1%. 

The propeller used for this investigation had ten blades with a constant 

chord length of 1 inch and a radius of 4 inches. By means of hub inserts the 
number of blades can be changed and the propeller can be operated with two or 

five blades. The design static thrust coefficient based on propeller disk area is 

0.183, and the advance ratio at the design thrust coefficient is 1.17. The pro- 
peller, and its installation in the water tunnel, is shown in Fig. 6. 

A special balance was designed for measuring the unsteady propeller thrust 

force. These measurements require an instrument having a high sensitivity, a 
low noise level, and a natural frequency much greater than the range of frequen- 
cies of interest. Figure 7 illustrates the arrangement used. A piezoelectric 
crystal is mounted in a steel cup at the end of the propeller shaft. After assem- 
bly the cup is positioned by set screws until the hemispherical ball bonded to the 

crystal lies exactly on the centerline of the shaft, thus minimizing the crystal's 
response to bending distortions of the shaft caused by hydrodynamic moments 
acting on the propeller. 

The frequency response and the linearity of the balance are shown in Fig. 8. 
These measurements, made in air, indicate that the useful range of the balance 
is approximately 600 Hz in water. As shown in Fig. 8 the frequency response 
was measured by means of an electromagnetic exciter whose force output was 
monitored by a calibrated force gage. The propeller was driven by a 20-hp de 
motor housed in a streamlined enclosure. It was mounted as far downstream as 
possible in the test section and was carefully aligned so that the propeller shaft 

was concentric with the center line of the tunnel. 
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Fig. 6 - Free-stream propeller and balance 
housing mounted in the water tunnel test section 
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SMOOTHLY POLISHED 
HARDENED STEEL INSERT 

PIEZOELECTRIC CRYSTAL 
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A SHAFT 

LUCITE PROPELLER SPINNER 

LECTRIC LEAD STEEL CUP FROM CRYSTAL 
EMISPHERICAL 
TEEL BALL 

PROPELLER 
BLADES 

Fig. 7 - Unsteady-force balance 
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Fig. 8 - Linearity and frequency response of 
the dynamic-force balance shown in Fig. 7 
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During the tests turbulence was generated by grids mounted 20 mesh sizes 
upstream of the propeller. Two grids were used with mesh sizes of 4 inches and 
6 inches respectively. The first had a solidity of 0.34 and was fabricated with 
3/4-inch-diameter rods. The second had a solidity of 0.27 and consisted of 
7/8-inch-diameter rods. Figure 9 shows the propeller photographed from up- 

stream of the 4-inch grid in the water tunnel. 

. 4 F A i. OPIN aE ge 

rite 
AmaaaRe: % 

duunsseedaa ’ PE EE LL. | : 
| Aauecccsssssaseserezes) | 
ae ee 
(BERR RR RRR EA Ree 
miliilititeiatititia lt ie 
MITT ee 
BLTITLILLLIITI TIT LLeL lal La 
MITELLITITLILIILII tia tle 

) VERS Re eee eee EE RE! 
Ski SOP SRR RReBAEL AB) 
Yaa TTT Cerra rr iy 
hl Yeuett || lll iiags| yy 4 
Ri CN ORR BEE SRE A. 
‘SRS BAe 

Fig. 9 - Propeller as seen through a 4-inch 
grid upstream of the propeller 

The test were performed at a velocity of 15 ft/sec and at two advance 
ratios. Initially, runs were made without grids in order to establish the noise 
level of the balance and of the electronic data acquisition system. The grids 
were then mounted in the tunnel, and the measurements were repeated. During 
the entire test program the tunnel pressure was maintained at 20 psia, which 
ensured absence of cavitation. At the completion of the program the balance 
was recalibrated, and it was established that its characteristics were unaltered. 

The circuitry used for data acquisition is shown in Fig. 10. Three SKL 
Model 308A variable electronic filters were set up as a bandpass filter. Two, 

used as high-pass filters, were cascaded to produce a 48-dB-per-octave rejec- 

tion rate below the cutoff frequency. These filters eliminated the strong bal- 
ance output at a frequency corresponding to the shaft rps. The cutoff frequency 

of the high-pass filters were varied with the rps of the propeller shaft. For the 
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DYNAMIC FORCE BALANCE 
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SKL VARIABLE ELECTRONIC 

FILTER MODEL 308-A 

VARIABLE CUTOFF (HIGH PASS) 

SKL VARIABLE ELECTRONIC 

FILTER MODEL 308-A 

| KC CUTOFF (LOW PASS) 

CEC MAGNETIC TAPE RECORDER 

TYPE GR-2800 

Fig. 10 - Circuitry for data acquisition 

OSCILLOSCOPE 

data presented here this frequency was 29 Hz. The third filter was used as a 
low-pass filter with the cutoff frequency fixed at 1 kHz. 

After the signal was filtered, it was recorded on a CEC Type GR2800 mag- 

netic tape recorder. The force balance signal was monitored and compared on 
an oscilloscope at several points in the circuitry as well as from the magnetic 
tape immediately after being recorded. This was done to detect and prevent any 

signal distortion in the data acquisition system. 

The data were analyzed by means of the instruments indicated in Fig. 11. 
The signal was played back from the magnetic tape and passed through a 
Hewlett-Packard Model 302A wave analyzer. This has a constant bandwidth of 
7 Hz between the half-power points. The filtered signal was then squared by a 

Ballantine Model 320 true rms voltmeter and finally integrated for 60 seconds 
with a Dymec Model 2401C integrating digital voltmeter. All voltage outputs 
were then converted to forces by using the measured calibration factors. 

The data are shown in Figs. 12 and 13. As mentioned before, the low- 
frequency end of the spectrum had to be filtered to eliminate a strong line com- 

ponent corresponding to the shaft frequency. Consequently it was not possible 
to determine experimentally the rms thrust coefficients. However, Figs. 12 and 

13 indicate good agreement between the theoretically predicted and the measured 
power spectral densities, except where the measurements show a hump. The 

reason for this discrepancy is at present not clear. 
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Fig. 11 - Circuitry for 
data reduction 
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Fig. 12 - Power spectral density of the response of a ten- 
bladed, 8-inch-diameter propeller to turbulence (Test 5531, 
Run 2: distance between the grid and the propeller = 20M = 
80 inches; measured water-tunnel turbulence level without 

the grid u = 0.0011U; turbulence level at the propeller due 
to the grid u = 0.03U; tunnel velocity u = 15.4 ft/sec; pro- 
peller advance ratio J = 1.22) 
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Fig. 13 - Power spectral density of the response of a ten- 
bladed, 8-inch-diameter propeller to turbulence (Test 5530, 
Run 2: distance between the grid and the propeller = 20M = 
120 inches; measured water-tunnel turbulence level without 

the grid u=0.0011U; turbulence level at the propeller due 
to the grid u = 0.03U; tunnel velocity U = 15.1 ft/sec; pro- 
peller advance ratio J = 1.22) 
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In the case of the 4-inch-grid the theory predicts an rms thrust coefficient 

of 0.0234, which is equal to 12.8% of the steady-state thrust coefficient. In the 
case of the 6-inch grid the corresponding values are 0.0250 and 13.6%. In view 
of the good agreement of the power spectral density at low frequencies, these 

values appear to be reliable. 
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DISCUSSION 

Paul Kaplan 

Oceanics, Inc. 
Technical Industrial Park, New York 

This paper presents an aspect of unsteady propeller forces that differs from 

those discussed earlier: it covers a stochastic influence rather than a regular 
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periodic effect. However it is possible that there is a relation between the two 
that shows up in the present results, in particular which is concerned with the 

discrepancy in the figures exemplified by the hump in Fig. 12. Simple calcula- 
tions indicate that the propeller rotational speed in that case was 19 rps, and the 
blade rate associated with this case for a ten-bladed propeller would then cor- 

respond to 190 Hz. The appearance of the hump in the spectral density presented 

in Fig. 12 could possibly be due to the existence of a periodic blade-rate signal, 
which would be obtained via a wave analyzer with the bandwidth characteristics of 
the equipment used in this study. It is thus possible that the blade-rate signal 
occurs, since the fluctuations in the propeller thrust force should be due to ve- 
locity fluctuations about a steady value, corresponding to the inflow speed, which 

should be constant circumferentially at any radius. Even though the grid is as- 
sumed to be symmetric, and also the tunnel as well, it would be best to survey 
the flow field that is entering the propeller disk to be certain that no harmonics 
of blade rate are present in the oncoming flow. A detailed consideration of this 
point is essential if any random process is analyzed, since the analysis must al- 
ways refer to a base reference, and the characteristics of that reference should 
be known and used in analyzing the characteristics of any random response. It 
is suggested that careful consideration of these points may eliminate spurious 
results in the future. 

REPLY TO DISCUSSION 

Maurice Sevik 

The hump in Fig. 12 was a matter of concern, and the reason for its pres- 
ence was investigated after completion of the experiments. It was felt that vi- 
brations of the propeller blades might be the cause. The first two natural fre- 
quencies of the propeller blades were established by calculation and verified 
experimentally. The fundamental frequency occurred at 127 Hz; the associated 
mode shape is shown in Fig. Dl. The second mode occurred at 231 cps and its 
modal shape was essentially torsional. The hump in Fig. 12 is located at about 

220 Hz, and it appears that it is due to the second mode of vibration of the indi- 
vidual blades, whose resonances are spread in the vicinity of this frequency. 

However, I agree that Dr. Kaplan's explanation is also a reasonable one. 
It is unfortunate that the blade-rate frequency and the natural frequency men- 

tioned above fall so close together that a separation of the two effects is not 

possible. 
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@ MEASURED 
— CALCULATED 

Fig. Dl - Mode shape associated 
withthe fundamental natural fre- 
quency of vibration of a typical 
propeller 
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RECENT PROGRESS IN THE CALCULATION 

OF POTENTIAL FLOWS 

A.M. O. Smith 

Douglas Aircraft Division, McDonnell Douglas Corp. 
Long Beach, Calif. 

ABSTRACT 

Since about 1954, work has been underway at Douglas Aircraft on the 
problem of calculating flow about arbitrary bodies by means ofa surface 
source-sink treatment that leadsto solution of a Fredholm integral equa- 
tion of the second kind. The method has been quite successful, and a 
general review of this work was published in 1966. The present paper 
describes workdone since about 1965, the latest year reportedin the pub- 

lished review, and begins with a review of the basic method. \Then at- 

tention is directed tothe principal topics dealt with since 1965. They are: 

1. Nonlinear, unsteady airfoil and hydrofoil theory, including two- 
body problems. 

2. Compilation of a report containing extensive flow-field charts 
for a variety of two-dimensional and axisymmetric bodies. 

3. Numerical integration of oscillating functions having nonlinear 

arguments. This problem arises in wave resistance theory. 

4. The dynamics of a three-dimensional floating body subject to 
simple harmonic motion in any of the six modes (heave, roll, etc.) but 

otherwise at rest. 

5. Some remarks about Laplace problems that do not necessarily 

deal with fluid flows. 

Several interesting results from work on these topics are available and 
are presented as supporting material. 

INTRODUCTION 

The subject of this paper is a very general method of flow calculation about 
arbitrary bodies. A broad review of the work up to 1965 can be found in Ref. 1, 
which was issued late in 1966, This work has continued to be active, and it is 
timely to report on the developments that have occurred since 1965. As many 
readers are not familiar with the work, we shall begin by presenting a short 
description of the basic method, as well as some examples. We will follow with 
descriptions of the new work, which includes unsteady-airfoil theory, flow fields, 
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several problems of naval hydrodynamics, and other problems stemming from 

Laplace's equation. 

A preliminary idea of the power and of the state of development of the 

method of analysis will be conveyed by an example. Studies supported by NASA 

(e.g., "Study and Development of Turbofan Nacelle Modifications to Minimize 

Fan-Compressor Noise Radiation,'' Contract NAS1-7130) are underway to re- 

duce the noise of jet engines. Figure 1 illustrates one type of inlet that has 

been designed. It was tested on the ground at full scale under full-power con- 
ditions. The two ring airfoils have a double purpose; first, to block passage of 

noise to the exterior from the fan blades, and second, to provide more area for 
sound-absorbing material, because the vanes are constructed of such material. 

The ring airfoils have outwardly directed lift to keep them in tension. As the 

sketch shows, the inlet consists of four separate bodies; the outer cowl, the 
two ring airfoils, and the centerbody. The problem further consists of mixed 

internal and external flows. The vanes as well as the basic inlet were all 

analyzed as a unit, so that mutual interferences would be properly accounted 

for. The vanes were shaped and positioned so as to obtain minimum disturb- 

ance to the flow by selecting a total configuration, calculating the flow, finding 
bad pressure distribution features, and correcting them by changes in shape, 

recalculation, etc., until all the pressures appeared to be the best that could 

be expected. Boundary layer calculations went hand in hand with the potential 

flow calculations. The design and analysis were performed by John Hoehne, 
who is strictly a routine user of the computing program as a design tool, with- 

out any need for assistance from those such as John Hess, who has done most 

of the development. As a matter of fact, while the author was aware of the 

NASA noise reduction project, he was quite unaware of this particular work 

until told of the successful ground tests. These tests showed a large reduction 

in sound level and a barely measurable loss in thrust. 

Xs NRA AN 
. MQQQY WN . 

SAS b. Ww XG 

Fig. 1 - An experimental ''quiet'' turbojet in- 
let designed by means of the present method 
of potential-flow calculation. 
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A SHORT DESCRIPTION OF THE BASIC METHOD 

General Remarks 

In this section a general description of the basic method will be given, using 
a minimum of mathematical formulas. All the basic equations and formulas can 

be found in Ref. 1. If a maximum amount of detail is desired the reader is re- 

ferred to the various reports and papers listed in (1). Three classes of shapes 

are treated: two-dimensional bodies, axisymmetric bodies, and truly three- 

dimensional bodies that may or may not have planes of symmetry. 

Mathematical Statement of the Problem 

The problem considered is the irrotational flow of an inviscid, incompres- 

sible fluid about an arbitrary body surface or surfaces on which the normal ve- 

locity of the fluid is either zero or a known quantity. Furthermore, the geometry 
itself may vary with time. Except at the known body surface, the fluid is un- 

bounded, and the onset flow, i.e., the velocity field that would exist in the fluid if 
the body were removed, is prescribed. This is a so-called Neumann problem for 

Laplace's equation and can be formulated mathematically in the following way. 

Let the surface of the body be denoted by S, and let the velocity field that 
would exist in the fluid if the body were removed be denoted by V,,. In most 

cases the onset flow is a uniform stream, and hence V, is a constant vector. 
The situation is sketched in Fig. 2 for the case of a fully three-dimensional flow 
about a single body surface S, For more than one body surface, the situation is 
not essentially different. The disturbance velocity field due to the presence of 

the body surface is assumed to be irrotational, and thus it may be expressed as 

the negative gradient of a potential function 9». This function must satisfy three 

conditions: It must satisfy Laplace's equation in the region R’ exterior to S, 
must approach zero at infinity, and must have a normal derivative on the surface 

S equal but opposite to the normal component of the onset flow. (The last condi- 

tion is where the total normal velocity on the body surface is prescribed as zero. 
If it is prescribed as nonzero, there is no essential change.) These three condi- 

tions may be expressed symbolically as 

vV?29 = 0 in region R’ , (1) 

lgrad p| > O for (x?+y7+z2) 20m, (2) 

lu) x 
ea = +n-Vo (3) 

S s 

where n is the unit outward normal vector on the surface as shown in Fig. 2 and 

n denotes distance along this normal. The Laplacian operator is denoted by V?. 

The plus sign in Eq. (3) is because the normal velocity due to the body is - 39/én. 
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Fig. 2 - Flow about athree-dimensional body 

Representation of the Solution by a Surface-Source Distribution 

In the present method, the solution is expressed as the potential of a source 
distribution over the body surface. The potential at a point P due to a point 
source of unit strength at q is 1/r(P,q), where r(P,q) is the distance between 
two points (Fig. 2). Accordingly, the potential at a point P with coordinates x,y,z 

due to a source distribution o over the surface §S is 

ere (pacts, aes (4) 
r(P,q) 

Ss 

where q is a point on the surface S, and dS is an elemental surface area as 
shown in Fig. 2. Reference 2 has shown that the function satisfying Eqs. (1), (2), 
and (3) can indeed be represented in the form given Eq. (4). The function 9 as 
given by Eq. (4) satisfies Eqs. (1) and (2) identically for any function co. This is 
true simply because the function 1/r(P,q) satisfies these conditions. The function 
oc is determined from the boundary condition on S, Eq. (3). Applying Eq. (3) re- 
quires the evaluation of the limit of the normal derivative Eq. (4) as the field 

point P approaches a point p on the surface S. The derivatives of 1/r(P,q) now 
become singular as P approaches p, and care is required in evaluating the limit. 

The limiting process is discussed in detail in Ref. 2. The results are stated 
here without proof. The limit of the normal derivative of the integral of Eq. (4) 
consists of two terms. One is the expected term, which is the integral of the 

normal derivative of the integrand of Eq. (4) evaluated on the surface, i.e., P = p. 
This integral is an ordinary integral, not a principal value, because its integrand 

is integrable. The other term is something of a surprise. It is a "local effect" 
term that expresses the fact that an infinitesimal neighborhood of the point p has 
a finite contribution to the normal derivative there. As is shown in Ref. 2, the 
"local effect" term is ~—270(p). Finally, the result of applying Eq. (3) to 9 as 

given by Eq. (4) is 
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vie 1 
2 710°( - — o ds == Pp Vireee 5 p) iv aed (a) n(p) (5) 

where the unit outward normal vector has been written n(p) to show explicitly 
its dependence on location. The onset flow velocity V,, may or may not vary 

with position. Equation (5) is seen to be a Fredholm integral equation of the 

second kind, over the body surface S. Once this equation is solved for the source 

density distribution o, the potential » may be evaluated from Eq. (4) and the dis- 

turbance velocity components from the derivatives of Eq. (4) in the three- 

coordinate directions. 

This method of solution is very general. The body surface S is not re- 
quired to be slender, analytically defined, or even simply-connected; that is, 
there may be several bodies, as in the example of Fig. 1. The only restriction 
is that S must have a continuous normal vector n(p), which means that the 

method cannot be guaranteed to give correct results for bodies with corners. In 
practice, this difficulty can be avoided by rounding off any corners with a small 
radius. Trial calculations show that the method does however give correct re- 

sults for convex corners, but there may or may not be significant errors near 

unrounded concave corners. The onset flow V,, is not restricted to being a uni- 
form stream. It may be any flow consistent with the assumption that the pertur- 

bation velocity field due to the body is irrotational. This is satisfied if the onset 
flow has a constant vorticity — a uniform shear, for example — since it can be 

shown that the perturbation velocity is irrotational. 

The efficiency of the method is that only the body surface itself needs to be 

considered, not the entire exterior flow-field. Thus the dimensionality of the 
problem is reduced by one: from three to two in three-dimensional problems, 

and from two to one in axisymmetric and two-dimensional problems; for in 

these cases the double integral of Eq. (5) can be reduced to a single integral by 

performing one integration analytically. The area of interest is also shifted 

from the infinite to the finite. 

General Description of the Method of Solution 

The central problem of the present method of flow calculation is the numer- 
ical solution in Eq. (5). The integral equation is replaced by a set of linear alge- 

braic equations in the following way. 

The body surface is approximated by a large number of surface elements, 
each of which is small in comparison to the characteristic dimensions of the body. 

Over each surface element the value of the surface source density is assumed 

constant. That assumption reduces the problem of determining the continuous 
source density function > to the problem of determining a finite number of values 
of o, one for each of the surface elements. The contribution of each element to 
the integral in Eq. (5) can now be obtained by taking the constant but unknown 

value of > on that element out of the integral and then performing the indicated 
integration of known geometrical quantities over the element. Requiring Eq. (5) 

to hold at one point of the approximate body surface, i.e., requiring the normal 
velocity to vanish (or to take on a prescribed value) at one point, gives a linear. 
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relation between the values of o on the elements. On each element one point is 
selected where Eq. (5) is required to hold; i.e., one point is selected where the 

normal velocity is required to vanish. That requirement gives a number of linear 
equations equal to the number of unknown values of 0. Once they are solved, flow 
velocities may be calculated at any point, on or off the body surface, by summing 

the contributions of the surface elements and the contribution of the onset flow. 
Usually, velocities and pressures on the body surface are of greatest interest. 
Because of the way in which the body surface is approximated, these must be 

evaluated at the same points where the normal velocity was made to vanish. 

Approximation of the Body Surface 

Figure 3 shows the surface elements used to approximate various types of 

bodies. Three-dimensional body surfaces are approximated by plane quadrilat- 
eral elements, axisymmetric bodies by frustums of cones, and two-dimensional 
bodies by infinite plane strips. In three-dimensional cases, the body is specified 
by the coordinates of a set of points distributed over the body surface. These 

points are used to form quadrilateral elements. For two-dimensional or axisym- 

metric bodies, only a single-profile curve is specified by points. These points 
are connected by straight-line segments, which are then the traces of the infinite 

plane strips or the frustums of cones in the plane of the profile curve. 

/—DEFINING POINTS ~\ 
Y —— MIDPOINTS —— 

x 

=e a 

TYPICAL FRUSTUM ELEMENT = 

Fig. 3 - Approximation of the body surface by elements (a) two- 

dimensional and axisymmetric bodies, (b) three-dimensional bodies 

If the body surface is axisymmetric, it is not necessary that the flow itself 
also be symmetric about the same axis. If the flow is axisymmetric, it is inde- 

pendent of circumferential location about the axis of symmetry, and thus the sur- 
face source density is truly constant over each frustum element. It is only neces- 
sary that the flow vary with the circumferential location in a known way. The 
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source density is then constant over each frustum only in the axial direction and 

varies in a prescribed manner circumferentially. This is the situation, for ex- 

ample, when there is flow over a body of revolution at angle of attack. As Ref. 1 
shows, this problem may be solved without resort to fully three-dimensional 

techniques. 

For two-dimensional and axisymmetric bodies, the edges of adjacent ele- 

ments are coincident, but this is not necessarily so for three-dimensional 

bodies. In general, a three-dimensional body cannot be approximated by plane 

quadrilaterals in such a way that the edges of adjacent elements are coincident. 

Any errors due to these gaps are of a higher order than, and negligible with 

respect to, the errors due to the approximation of the body by plane elements 

in the first place. Nevertheless, the fact that small gaps exist between the 

elements is sometimes disturbing to people hearing about the method for the 

first time. It should be kept in mind that the elements are simply devices for 

finding the surface source distribution and that the polyhedral body shown in 
Fig. 3 has no direct physical significance, in the sense that the flow eventually 

calculated is not that about the polyhedral body. Even if the edges of adjacent 

elements are coincident (as, for example, can be arranged for any body of 

revolution), the normal velocity is zero at only one point of each element and 

there is flow through the remainder of the element. Also, the computed veloci- 

ties will be infinite on the edges of the elements whether these are coincident or 

not, as long as there is a break in slope or in source density. The unimportance 

of the gaps has been further demonstrated by calculating axisymmetric bodies 

with element distributions that had coincident edges and then recalculating with 

slight gaps. The two types of element distributions gave essentially identical 

results. The gaps between the elements can be eliminated by the use of plane 

triangular elements. This procedure, however, results in no increase in ac- 

curacy — in fact may cause a loss of accuracy — and so greatly complicates the 

input to the digital computer program as to impair its usefulness as a design 

tool. On many bodies of technical importance such as ships, wings, and hydro- 

foils, approximation of the shape by quadrilaterals is much more natural than 

approximation by triangles. However, the triangle is merely a special case of 

a quadrilateral, and the present method can, in fact, handle triangular approxi- 

mation, if that is desirable. 

This method of geometric representation has been used without modification 

as a basis for analyzing complicated shapes in hypersonic flow. Figure 4 is 

taken from some of this work to give an impression of the accuracy of the method. 

The figure was made by an SC4020 plotter (3). 

Induced Velocities 

On each element one point is selected at which velocities and pressure are 

to be evaluated. For two-dimensional and axisymmetric bodies, the point selec- 

ted is the midpoint of the line segment that is the trace of the element in the 
plane of the profile curve, i.e., the average of two successive points that were 
used to define the profile curve (Fig. 3). This is the obvious choice for two- 
dimensional bodies and probably a reasonable selection for axisymmetric 
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Fig. 4 - Geometric representation of the NASA 

HL-10 reentry vehicle. Each half is represented 
by 1278 quadrilateral elements 

bodies, although not as obvious for the latter. For the plane quadrilateral ele- 
ments used with truly three-dimensional bodies, the proper point to use is not 
obvious at all. For rectangular elements, it seems evident that the point should 
lie at the center, but there are many possible definitions which reduce to the 

center for these elements. On each quadrilateral element there is one point 

where a constant source density on that element gives rise to no velocity in its 
own plane, i.e., there is a point where the effect of the element is entirely nor- 

mal to itself. It was decided to evaluate velocities and pressures at this point. 

For elements that are nearly rectangular this point is located near the centroid 
of the area of the quadrilateral, but for certain types of quadrilaterals the two 

points may be a significant distance apart. For all types of body surfaces the 

point on an element where velocities and pressures are evaluated is designated 

as the control point of that element. 

Once the body surface has been approximated by elements of the appropriate 

type, the elements are ordered sequentially and numbered from 1 to N, where N 

is the total number of elements. The exact order of the sequence is immaterial. 

It is simply a logical device for keeping track of the elements during the com- 
putational procedure. Reference will accordingly be made to the ith element 
and the jth element, where the integers i and j denote the position of the ele- 

ments in the sequence. 
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Assume for the moment that the surface source density on the jth element 

has a constant value of unity. Denote by V;; the vector velocity at the control 

point of the ith element that is induced by a unit source density on the jth 
element. The formulas for the induced velocity V;; are the basis of the pres- 
ent method of flow calculation. They are obtained by integrating the formulas 
for the velocity induced by a point source over the element in question, and thus 

depend on the geometry of the element and the location of the point where the 

velocity is being evaluated. Since there is no restriction on the location of the 
control point of the ith element with respect to the jth element, the formulas 
for V;; are those for the velocity induced by an element at an arbitrary point 

in space. The dependence of the induced velocity on the geometry of the ele- 
ment means that there are three completely distinct sets of formulas for V; ;, 
corresponding to the three different types of elements that are needed. Differ- 

ent kinds are used according to whether the bodies are two-dimensional, axi- 
symmetric, or three-dimensional. The axisymmetric situation is further sub- 

divided into the case where the flow is also axisymmetric (i.e., the source 
density is independent of circumferential location), and the case where the flow 
is not axisymmetric but is due to a uniform stream perpendicular to the axis of 
symmetry of the body (i.e., the source density varies with circumferential loca- 

tion in a known way). The induced-velocity formulas (1) are rather lengthy and 

will not be given explicitly here. A brief discussion of their nature follows. 

In two-dimensional and three-dimensional cases the elements are those of 

a plane, and the integration over an element may be performed analytically to 

obtain explicit expressions for V;; in terms of logarithms and inverse tangents. 

(Obviously, the two-dimensional formulas can be obtained as limiting cases of 

the three-dimensional formulas, but this is not a computationally efficient pro- 

cedure.) In three-dimensional cases, so many elements are required to approx- 

imate adequately the body surface, that the use of the rather complicated induced- 
velocity formulas obtained by direct integration is quite time-consuming. Ac- 
cordingly, these formulas are used only when the control point of the ith ele- 
ment is within a few element dimensions of the jth element. For points farther 

away, approximate formulas based on a multiple expansion are used. If the point 

in question is farther from the centroid of the element than four times the max- 

imum dimension of the element, the actual quadrilateral source element may be 

replaced by a point source of the same total strength located at its centroid, 

with no loss in the overall accuracy of the method and with a very large saving 
in computation time. In both two-dimensional and three-dimensional cases, the 

computation is not significantly complicated by the condition i = j; i.e., the 
velocity induced by an element at its own control point is calculated without un- 

due difficulty, because the integration is analytic. This velocity has a magnitude 

of 27 and a direction normal to the element [see the discussion preceding Eq. 5)]. 

For axisymmetric bodies the surface element is a frustum of a cone, and 

the integration over the element of the velocity induced by a point source cannot 
be performed analytically. First, the integration in the circumferential direction 
is accomplished, to give the velocity induced by a ring source, which is expressed 
in terms of the complete elliptic integrals. The resulting expressions are then 

integrated numerically over the line segment that is the trace of the element in 

the plane of the profile curve, as shown in Fig. 3. The number of coordinates 
used in the numerical-integration scheme decreases with increasing distance of 
the control point from the element in question. Thus, a saving in computation 
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time is effected with no loss of overall accuracy. The case of i = j, i.e., the 

calculation of the velocity induced by an element at its own control point, re- 

quires special handling for axisymmetric elements. Here the result cannot be 

predicted in advance, as it can be for the two-dimensional and three-dimensional 
elements, because of the complicated nature of the ring-source formulas. The 

procedure is described in detail in Ref. 1. Basically, it consists of a series ex- 

pansion of the integrand about the singularity at the control point. In the case 

of axisymmetric flow, the induced velocities have two components, one parallel 
to the axis of symmetry of the body and one radially outward from or inward to 

this axis. In the case of flow due to a uniform stream perpendicular to the axis 

of symmetry, the circumferential variation of the surface source density gives 
rise to an additional circumferential component of induced velocities. 

The Set of Linear Equations for the Values of Surface Source Density 

A complete set of N? induced-velocities Vv; ; 1s computed, to give the veloci- 
ties induced by all elements at each other's control points. (It will be recalled 

that N denotes the total number of elements used to approximate the body sur- 
face.) In this calculation a constant unit-value of source density is assumed on 
each element. The quantity 

Abtcameyib (6) 

obtained by taking the dot product of V;; with the unit normal vector n, of the 
ith element, is thus the normal velocity induced at the control point of the ith 

element by a unit source density on the jth element. Multiplying A;; by the 
constant but unknown value of o; of the source density on the jth element then 
gives the actual normal velocity at the control point of the ith element due to 
the jth element. This is the contribution of the jth element to the integral of 

Eq. (5), where that equation is being required to hold at the control point of the 
ith element. Summing the normal velocities due to all elements at the control 
point of the ith element, setting the result equal to the negative of the normal 
component of the onset flow at that point, and repeating the process for the con- 
trol points of all elements will give a set of linear algebraic equations for the 
values of the source density on the elements. Specifically 

Maz > Q | i} s < 8 e I — i) Za ie I A pO? i ee , (7) 
iva | 

where V.., is the onset flow evaluated at the control point of the ith element. 
The set of equations in Eq. (7) is the approximation of Eq. (5). 

The set of linear equations in Eq. (7) is solved by an elimination procedure, 

the method of successive orthogonalization, if the order N is less than 275. 
This number of elements is sufficient for good accuracy in most two-dimensional 
and axisymmetric cases. ForN greater than 275, the capacity of the computer 
does not permit solution by direct elimination, and an iterative procedure must 

be used. In practice, this means iterative solutions are used for three- 
dimensional bodies and elimination for two-dimensional and axisymmetric bodies. 
Many conventional matrix-iteration techniques are not efficient in this case, 
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because the matrix A;; is neither symmetric nor sparse. In fact, none of the 

terms of A;; need iteration by zero in general. The matrix does, however, 
have a dominant main diagonal. It will be recalled that the diagonal terms A;,; 
are exactly 27 in two-dimensional and three-dimensional cases. They are 

fairly close to this value in axisymmetric cases. To a first approximation, the 

sum of all diagonal terms equals the sum of all off-diagonal terms, and thus on 
the average each diagonal term equals the sum of the other term in its row. For 
convex bodies all terms are positive, and thus similar statements hold for the 

absolute values of the terms. Because of the dominance of the main diagonal, 
the Gauss-Seidel iterative procedure has been found to be quite effective in the 

solution of the set of equations in Eq. (7). It has converged in all cases. 

Usually, convergence is quite rapid, although for certain extreme types of 

bodies this may not be true. Unfavorable cases typically require as many as 
200 iterations, but normal cases converge in about 16 iterations or, more pre- 

cisely, 4 iterations per decimal place in o. Methods of accelerating the con- 
vergence have been studied and found effective, but have not been incorporated 
into the method. A great deal more information about convergence rates is 

given in Ref. (1). 

Calculation of Velocities 

Once the set of equations in Eq. (7) has been solved, the velocities at the 

control points of the elements are calculated from 

Vee Nie Yee bo 1, een oY (8) 
jrl 

Potentials can also be calculated, using similar types of formulas, if desired. 
The pressure coefficient C, is computed by means of Bernoulli's formula. For 

unsteady flow, it is 

De bre ie ieee a3) ae (9) 

where P(t) is independent of position in the field. For steady flow, Eq. (9) leads 

to the well-known formula for pressure coefficient, 

Rall “(pp V2/2 Von 

Velocities and pressures at points off the body are calculated from Eqs. (8) and 
(10) after sets of V;; appropriate to the points in question have been calculated. 
This method is well suited to the simultaneous calculation of several onset flows 

at once, since the induced velocities V;; do not depend on the onset flow as long 

as the basic form of the source density is not affected, which is always true for 

two-dimensional and three-dimensional cases. This feature has been found 
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useful for calculating unsteady flows at successive instants of time and for the 
frequently occurring application of flow about a two-dimensional lifting airfoil. 

Maximum Element Number and Computation Times 

The maximum number of elements that may be used to approximate a body 

surface has been largely a matter of arbitrary decisions made during program- 
ming and does not represent any true limit. In two-dimensional and axisym- 

metric cases, the maximum number of elements N is 400. Such a large number 
has rarely proved necessary in practice. As was stated previously, most cases 

of interest can be handled satisfactorily with less than 275 elements. Recently, 

the old machine language program for three-dimensional flows has been re 

placed by a FORTRAN IV program (20X). With it, up to 1000 unknown values of 
o can be used to approximate the body, i.e., if the body has no plane of sym- 

metry it can be approximated by 1000 elements. Provision is made in the pro- 
gram to account for planes of symmetry. Therefore, if there is one plane, the 
body can in effect be approximated by 2000 elements. For two and three planes, 

the effective element numbers become 4000 and 8000 respectively. Most ap- 
plications have at least one symmetry plane. Since the entire surface — not 
just a single curve as in two-dimensional and axisymmetric cases—must be 
approximated by elements, the element limits are somewhat lower than is de- 

sirable. Very satisfactory results are obtained for single bodies if the shape 
is not too extreme, but for interference problems the number of available ele- 
ments is marginal. It is desirable to double the number of elements; beyond 

this, little need for anything greater can be envisioned. 

Computing times are somewhat variable and depend on the geometry of the 
body as well as on the number of elements. As a rough approximation, the com- 
puting time is divided evenly between the calculation of the induced velocities 
V;; and the solution of the linear equations in Eq. (7). In axisymmetric cases 

the calculation of induced velocities requires a somewhat greater fraction of the 
time, and in two-dimensional cases requires somewhat less. The above division 

of computing time varies considerably with changes in computing equipment. 

For the IBM 7094 computer, the following rough estimates of total computa- 
tion time are useful for 100-element cases: two-dimensional bodies 1.6 min- 
utes; axisymmetric bodies in axisymmetric flow, 2.6 minutes; and axisymmetric 
bodies at angle of attack (including the axisymmetric flow), 4 minutes. These 
estimates assume that only surface velocities are required. If the flow ata 

large number of points off the body in the flow field is required, computing times 
are increased. Of course, three-dimensional cases take much longer. Typical 

computing times for cases of 650 elements are 1.5 hours on the IBM 7094. For 
certain applications it is possible to reduce drastically the element number. 

Useful results have been obtained in as little as 15 minutes. 
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UNSTEADY TWO-DIMENSIONAL FLOWS 

General Remarks 

Because the method just described can handle nearly any kind of boundary 
condition with great accuracy*, it is quite capable of treating unsteady flows, 
which involve unusual boundary conditions. One major complication develops if 
the bodies are capable of developing lift — airfoils, for example. In the process 

of changing its lift, the body must shed vorticity equal and opposite to that 
gained on the body itself. If the fluid is originally at rest, the fluid has no 
vorticity; if the fluid is inviscid, vorticity is conserved no matter what the mo- 
tion of the body may be. Any positive vorticity developed on the body or bodies 
must therefore be balanced by equal but opposite vorticity off the bodies, so 
that the total remains zero. Hence vortex sheets are shed. Now since they are 

likely to distort with time, their position is unknown in advance, and our prob- 

lem takes on a new aspect — nonlinearity. J. P. Giesing has been working on 

problems of unsteady two-dimensional flow since about 1965, and I wish to de- 

scribe here briefly his method and some of his results. Work on the one-body 

problem was published in Ref. 4 and work on the two-body problem in Ref. 5. 

Description of the Method 

Because the two-body problem is more complicated, our description will be 

of this type of the method. The one-body problem is a great deal simpler and 

allows many time-saving specializations, especially if the body never changes 

its shape, because influence coefficients can be calculated once and for all. As 

will be seen, the treatment is a step-by-step process. Therefore it is at its 
best in handling transients, although steady periodic motion can also be analyzed, 
but at greater expense in computer time. In the two-body problem the bodies 
are assumed to be moving in an inviscid, incompressible fluid. In the existing 

computer programs the bodies may move relative to each other in arbitrary 

paths with arbitrary velocities. It would not be very difficult to extend the 
method to solve problems involving bodies whose shape changes with time. A 
vibrating plane flap on a hydrofoil or the swimming of a two-dimensional "fish" 

are examples solvable by an extended program. 

If certain fundamental facts are not forgotten, the concept upon which the 

analysis is founded appears rather simple, although the execution is difficult, 

These facts are: 

1. The flow is potential. 

2. No fluid particle can have a rotation if it did not originally rotate. 

*An independent assessment of the accuracy of this and several other airfoil 
methods has recently been compiled in England (D. N. Foster, ''Note on Methods 
of Calculating the Pressure Distribution over the Surface of Two-Dimensional 
Cambered Wings," Royal Aircraft Establishment Technical Report 67095, April 
1967). Of the truly general methods considered, the present was found to be 

the most accurate. 
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3. Fluid particles that at any time are part of a vortex line always belong 
to that same vortex line. 

Statements 2 and 3 are two of the Helmholtz vortex theorems. 

4, Slip is permitted because of the inviscid character of the fluid, but if the 
walls of the bodies are impervious, fluid at any point is displaced in a direction 

normal to the surface with a velocity equal to the velocity of the surface along 

that normal. If V, is the vector velocity of any point of the surface and n the 

unit normal vector, this kinematic condition can be stated very compactly as 

On au Es: (11) 

An obvious and easily handled modification of Eq. (11) would accomodate 

mass — transfer types of problems. 

d. If pressures are desired, the unsteady Bernoulli equation must be used. 

From the unsteady Bernoulli equation the following formula for the pressure co- 

efficient C, can be derived for a translating and rotating frame of reference 
fixed in a particular body: 

‘2 Ie Po = ve 2 eu) 

eae pecs pon gs) ea tae ee 
Here V, is the magnitude of velocity of any point on the body, U, is the refer- 
ence velocity, and V. is the relative velocity of the fluid. In steady flow, V, is 
constant at all points on the body, and it is natural that the reference velocity U, 

becomes V,. Then the first term reduces to 1. Also, in steady flow o9/ot = 0, 

and so one recovers the common formula C, = 1- (V, SE. 

Implementation of the method involves solution of boundary-value problems 

that fall into three classes with respect to computing procedure. Figure 5 

shows them. The two bodies are assumed to be moving in some sort of path, 
and leave vortex wakes as sketched. We must find a total solution that meets 
the condition of no-flow through the walls (if impervious), satisfies Kutta con- 

ditions if required, and accounts for wake and interaction effects. The total 

solution can be built up from those shown. The first solution is called the quasi- 

steady flow ¢Q. Here, the bodies may be considered as translating and rotating, 
each in its own way, along separate paths, with arbitrary velocities. Then every 

point on each of the bodies must satisfy the fundmental boundary condition Eq, (11). 
The 9Q solution is the nonhomogeneous solution because 39/én is not zero. In 

this solution no attempt is made to satisfy the Kutta condition. 

The other two basic flows are the ones needed to satisfy the Kutta condi- 
tions and the conservation of vorticity. If the bodies are changing their lift, vor- 
ticity is shed in a continuous sheet. For practical computing purposes, the con- 

tinuous sheet is approximated by a series of discrete vortices as indicated in the 

middle sketch of Fig. 5. Each one produces its own onset flow on both bodies, 
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QUASI-STEADY FLOW (79) POINT VORTEX FLOW ((p'2), q=1) CIRCULATORY FLOW ((),'9), q=1) 

Fig. 5 - Shematic of streamlines associated 
with quasi-steady, point vortex, and circula- 

tory flow fields 

and the total onset flow is due to the total effect of all the lumped point vortices 

in both wakes. Strengths of these vortices is determined by the basic facts that 
total vorticity of the system remains equal to zero and that the Kutta condition 

must hold. These wake-flow influences create additional onset flows. However, 

the airfoils are now considered to be at rest, so that the boundary condition 

over all the surfaces is 59/3n = 0. This condition means that the normal veloc- 

ity due to the surface source distribution is equal and opposite to that created 

by the vortices in the wake. Hence, since ®%9/2n = 0, the solution may be called 

a homogeneous solution, It is called »G, in which G denotes gamma (/'). It is 
identified as a different solution because of the details of the calculation pro- 

cedure. The method of solving the basic Neumann boundary-value problem is 
no different, however, because in the end the only difference between it and the 
method of solving for »Q is the column matrix, which amounts to no more than 

a different set of numbers. 

A vortex moves along with the flow. Hence, if there is an array of vortices 

like that of the middle sketch of Fig. 5, it is evident that the vortices will move 
as a result of the influences of all the other vortices and the influence of the 
bodies. Therefore, calculation of the effect of the wake requires knowledge of 

where the wake is. Differential equations for the motion of the vortices can be 

written and integrated to find the position of each lumped vortex point. The inter- 

action of the vortices can be violent, as will be seen in some of the examples. 

The flows 9Q and 9G account for motion of the bodies and effects of the 
wakes, but the Kutta conditions are not satisfied. The third basic flow is used 

to satisfy these conditions. It is called 9K, in which K denotes Kutta. As can 
be seen in the figure, it is a circulatory flow; and in the process of meeting the 
Kutta conditions, two circulatory flows must be used, one for body 1 and one for 
body 2, The circulation about an airfoil is generated by a constant vortex sheet 
of unit strength covering all the surface of the airfoil. (This known vortex sheet 
is in addition to the unknown source distribution used to satisfy boundary condi- 

tions.) This method of covering the surface with a constant strength vortex 
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sheet is far from being the only procedure, but it has great practical advantages 
in computing speed and accuracy. The vortex sheet generates a third type of on- 

set flow, which again generates a set of values of d9/0n, So that the third flow, 
like the second, has homogeneous boundary conditions; i.e., the body is treated 
as stationary. The Kutta conditions are then satisfied by the proper linear com- 
bination of circulatory flows 9K with flows 9Q and 9G. A proper linear combina- 

tion will satisfy all the boundary conditions, the Kutta conditions, and the 
vorticity-conservation condition. 

Space is not available to enter into computational details, which in fact are 

considerable. Both the single-body and two-body problems are programmed on 
the IBM 7094. For the single-body problem, the body can be defined by as many 
as 100 coordinate points and 100 time steps can be taken. Often in practical cal- 

culations, pressures, forces, and moments are not needed at every time step. 

Trial runs show that the computing time is given approximately by the following 
formula, if 72 defining elements are used: 

NT NPT 
= 2.70 ee + gis ne minutes 20 . 20 

T Haas ie Oia (13) 

where NT is the number of time steps taken and NPT is the number of times at 
which pressures, forces, and moments are wanted. For example, if NT = 60 
and NPT = 20, the computing time is 14.25 minutes. For the two-body problem, 
each body can be defined by up to 50 elements, and up to 250 time steps can be 
taken, Core capacity determines these limits. About 1 minute is required for 
each time step. Hence, on an IBM 7094, computations can become quite lengthy. 

A maximum-capacity problem would take over 4 hours. 

Examples of Single-Body Problems 

An Airfoil Whose Angle of Attack is Suddenly Changed- Figure 6 shows what 
happens to the wake when the angle of attack is suddenly changed. An 8.4 percent- 

thick symmetric von Mises airfoil first moves at zero angle of attack. Then, 

after traveling 0.6 chord lengths, the airfoil is suddenly pitched to 10°. It re- 
mains at this position until total travel is 3.05 chords, at which point it returns 

to a = 0°, The motion was broken up into steps of length 0.05c, where c is the 
chord. The figure shows the motion of the wake and the rollup of vortices. It 
is interesting to note that each vortex carries the other downward, so that there 

is a net downward flow. This behavior is consistent with momentum considera- 
tions, which require a definite downward displacement of some fluid if lift is 

developed for a period of time. 

Wake Shape - A question can be raised regarding the accuracy of the wake shape. 
Since no exact solutions are available for reference, assessment was made by 

using different step lengths in the calculation of the motion. In one case, step 
lengths differing by a factor of 3 gave nearly the same wake shape. J. B. Bratt, 
Ref. 6, has determined wake shapes behind an oscillating NACA 0015 airfoil by 

using smoke. The airfoil oscillated up and down with an amplitude of 0.018c 
without pitch. Test conditions were duplicated as well as possible. A compari- 

son of calculation and experiment is shown in Figure 7 for the same amplitude at 
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pc - 4 

| p+ 4 

0.5 

Fig. 6 - Shape of the vortex wake (at three separate times) generated by a sym- 
metric 8.4-percent-thick von Mises airfoil, that has been given a sudden in- 
crease (10°) in angle of attack at time 0.55 U/c and a sudden decrease (10°) at 

time 3.05 U/c 

Vy = 0.07869 COS(4.31) 
AMPLITUDE 

amp V, = 1.0 

NACA 0015 

we 
— CALCULATED 

(a) 
Fig. 7 - Shape of the vortex wake generated by anNACA 0015 airfoil 
vibrating in a simple harmonic manner with an amplitude of 0.018c 
(a) frequency = 4.3 U/c. 
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(b) 

Fig. 7 - (Continued) (b) frequency = 17.0 U/c 

two different frequencies. The close agreement between the experiment and the 
prediction of the effect of frequency are encouraging. 

Kussner, Wagner, and Theodorsen functions were calculated by the exact 

step-by-step procedure for airfoils of several thicknesses, thus identifying the 

effects of thickness on the Kussner, Wagner, and Theodorsen functions. The ef- 
fect of thickness is significant. Results for thin airfoils indicated good agree- 

ment with classical results derived from flat-plate theory (4). 

Comparison of Theoretical and Experimental Forces on an Oscillating 

Airfoil - Spurk (7) has experimentally measured forces on several airfoils os- 
cillating symmetrically as shown in Fig. 8, which presents the results for one 
test. Reduced lift and moment coefficients are used; the imaginary part repre- 
sents phase lag, and the real part, amplitude ratio. At low reduced frequencies 
rather good agreement occurs, but as frequencies increase, theory and experi- 

ment diverge considerably. Because many more studies in addition to those 

presented here indicate that the present method has great accuracy for a per- 

fect fluid, the failure to agree with experiment can probably be attributed to 
viscous effects, i.e., the boundary layer, although it should not be forgotten that 
experimental determination of dynamic effects is difficult and not highly accurate. 

Examples of Two-Body Problems 

Two Airfoils Passing Each Other in Opposite Directions - Two airfoils 

passing each other in opposite directions is an exciting problem, if it is thought 

of as two airplanes passing each other close-by in opposite directions. Two 8.4- 

percent-thick von Mises airfoils at angles of attack of 5.73° (Fig. 9) are initially 

at rest with noses spaced one chord length apart. They are impulsively moved, 

and the motion is traced. Figure 9a shows the wake shape after the airfoils have 
each traveled 1.5 chord lengths. Figure 9b shows the lift history as the airfoils 
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Fig. 8 - Comparison of calculated and experimental reduced 
circulatory lift and moment coefficients for a symmetrical 8.4- 
percent-thick von Mises airfoil oscillating in a simple harmonic 
manner withan amplitude of 0.06. C, = lift coefficient (less the 
added mass terms proportional to accelerations) divided by 
quarter chord amplitude. e. =moment coefficient analogous 
to Ce. 

pass each other. The general level of the lift is low because the airfoils have 

not moved far enough to develop steady-state lift. As can be seen, the lift is 
generally consistent with isolated flat-plate theory. When the airfoils are 

directly over each other (tU,/c = 1.0), the two airfoils have a tendency to 
be drawn into each other. It would be interesting to see results with a longer 
run before the airfoils passed each other, in which they would more nearly 

reach the steady state (C,/C, eat or Expensive computer time has, so far, pre- 

vented such an experiment. 

An Airfoil with an Oscillating Flap - A second example is given in Fig. 10. 
In this case the flap of an NACA 23012 airfoil is given a simple-harmonic rota- 
tional motion (angular range 0° > 45°). The flap was moved from its original 

position (Ax = - 0.047c, Ay = -0.02c) before the motion was initiated (Fig. 10b). 
Figure 10a shows the wake shed from the main section and the flap at two dif- 

ferent times. The flap deflection in one case is 45° and 0° in the other. The 
pressure distribution over the airfoil and flap system when the flap is at its 
maximum deflection (45°) is given in Fig. 10b. The configuration is shown at 
the upper left in the figure. The flap is shown undeflected beneath the pressure 

plot. For comparison, Fig. 10b includes the steady-state pressure distribution. 

A Rotor Blade Passing a Stator Blade - As a final example, we consider a 
rotor blade and a stator blade of a compressor stage, both of chord length c. 
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Fig. 9 - Calculated Results for two 

8.4-percent-thick von Mises air- 

foils moving past each other at an 

angle of attack 
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(b) Calculated pressure distribution when 

the flap is at maximum deflection (45°). 

The steady-state result is also shown in 

(b). Rearward movement of flap has in- 

creased chord by 4.7%. 

Fig. 10 - Calculated results for an NACA 

23012 airfoil with a flap undergoing simple- 

harmonic rotational motion of angular- 

range amplitude 45°. 
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The stator blade is an 8.4-percent-thick von Mises symmetrical airfoil and the 

rotor blade is a cambered 11.4-percent-thick airfoil obtained by conformal 
transformation. When the trailing edge of the rotor blade is immediately in 
front of the leading edge of the stator blade, the gap is 0.412c. The stator blade 

is aligned with the remote onset flow U,. The problem is illustrated in Fig. lla. 
The figure includes wake shapes shortly after the rotor blade has passed in 
front of the stator blade. The rotor wake opens up to pass around the stator as 

it is carried downstream by the general flow U,. Figure 11b shows a very highly 
loaded blade. Here the deflections of the wakes are much greater. The vorticity 
shed from the rotor is so great that rolling-up instability is developing. Refer- 
ence 5 presents pressure-distribution and time-history information on the blade 
force coefficients that is not repeated here. It is interesting to note that the 
present method can solve exactly a two-dimensional simplification of a Voith- 
Schneider propeller having either one or two blades. 

FLOW-FIELD CHARTS 

Charts of flow fields are a rarity; that is why they are mentioned here, even 
though they represent no advance in basic capability. Reference 8 has been 
written with the primary objective of providing a set of charts and formulas by 
which one may conveniently estimate perturbation velocities at any point in the 
field around some arbitrary shape. In many problems of design, such informa- 
tion is needed. Both two-dimensional flows and flows about bodies of revolution 

are treated. 

Two-Dimensional Flows 

A two-dimensional lifting flow can be resolved into three subflows: a uni- 
form onset flow parallel to a chord line, a uniform onset flow perpendicular to 
a chord line, and a purely circulatory flow (Fig. 12). If there is no lift, of 
course, the third flow is zero. Now for each flow the body induces perturba- 

tions that can be resolved into components parallel and perpendicular to the 

chord line. Hence to cover all cases of a lifting two-dimensional flow, six 
charts are needed, which present the following quantities, all of which are 
perturbations: 

We Sry Vis Vy vy Vy ah Vy 

Vis Vis : VoCL i Mig V, V. Cr 
x y; A x y 

The first line is the set of V, perturbations, and the second the set of V, pertur- 

bations. The velocity V., is the entire onset velocity, which equals (Vz, + VZ,)”2 
By reading the charts, V, and V, perturbations can be figured quickly by means 

of the following formulas, if the surface is at an angle of attack a: 

V V V V xp _ x rs Se 6 x (14) as (re 7 cos @ + (rs sin’ a + ee Cee 

x y 

V V V V 
yp y : vy = (a Jes a + = - ) sin a + Ga Cee (15) 

y y 
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Fig. 12 - Resolution of a flow into V,,, Vooy » and circulatory components 

Flows About Bodies of Revolution 

If x is the distance parallel to the axis, ¢ the angular measure around the 
body starting from the top, and r the radial distance from the axis, it is clear 
that a body of revolution will have three velocity-perturbation components V,,, 

Vop, and V,,. Again referring to Fig. 12, it is clear that for the general angle- 
of-attack condition we will have two basic onset flows V., and V.,, but no cir- 
culation. The V., flow is parallel to the axis and generates radial and axial 
perturbations. The crossflow component V., generates perturbations in all 
three directions, x, r, and @. According to crossflow theory, there are then 

five velocity perturbation components, as follows: 

tira ify allel x. o ahoetittine 2 Wefawr qoew fi Venone 
Vv. “4 Wee GPSae ciate. Me (eos. 11 Ne. Sin 6 

x y x ¥ yi 

ile 

The combined perturbation velocities in the three directions are: 

V Vv V 
sae x pee se KS ot (16) v. = (x 7 cos a {y, ae sem 8 sin a , 

x y 

Vv V Vv bP. r z r ui ; 
v, = (x Jevs a + aor Sree 7 cos 6 sin a, (17) 

x y 

Vop ‘4 Ve seni me 
rae = V_.Sin 6 Bin O 7 1) san Stim a) (18) 

y 

For this problem only five charts are needed. Provided the bodies are not too 

close together, the charts can be used to work out interference effects. An ex- 

ample would be the determination of the effect of two hydrofoil struts upon each 

other. The report (8) is written as a sort of manual. 
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Charts 

Charts have been drawn for the shapes listed in Tables 1 and 2. The double 

wedge was chosen to provide a low block coefficient and the semicircle-flat body 
to provide a high block coefficient. The ellipse is a natural intermediate case. 

The same three profile families were used in the axisymmetric problem. A total 
of 111 charts are required to cover the configurations listed in the tables. Two 
sets are presented, Figs. 13 and 14, one for the NACA 65(1)-412 airfoil and the 
other for the 12-percent-thick hemisphere-cylinder body of revolution. The 
fields for the NACA 65(1)-412 airfoil are defined by 2632 points. For the bodies 
having double symmetry about 1/4 this number were used. It is informative to 

compare the two sets and see how much less the disturbances at some distance 

from the body are for the body of revolution. 

Table 1 Two-Dimensional Bodies for Which Flow-Field Charts 

Have Been Computed 

Thickness Body Profile 
Body. Eye er ee AOE Ck = Ra t/c 

| Elliptic cylinder | 0.0600 [00 —————=————=> SY cylinder 

Double wedge 

0.18 

0.06 

0.12 

0.18 

Double semicircle- 

flat body one 

0.12 

0.18 

NACA 65(1)-012 

Airfoil 

aoe 

———— 
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Table 1 (Continued) Two-Dimensional Bodies for Which Flow-Field Charts 
Have Been Computed 

Thickness ; Body Profile Body Type Ratio t/c 

NACA 65(1)-412 

Airfoil 

Prolate spheroid 

Double Cone 

Double hemisphere 
cylinder 

NUMERICAL INTEGRATION OF AN OSCILLATING FUNCTION 
OCCURRING IN THE THEORY OF WATER WAVES 

Background 

The function under consideration is Havelock's source function, and it is our 
purpose to report some progress on its rapid calculation. One part, correspond- 
ing to the near-field term, involves evaluation of the complex exponential integral. 
A good working formula that is valid for all Froude numbers has been developed 
and is described in Ref. 1 in connection with hydrofoil theory. A second problem, 
which amounts to evaluation of functions of the form 

feos o20 gi(x) da, () 

occurs in connection with the far-field term. 
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Fig. 14 (Continued). (e) Radial - y onset flow, Vg perturbation 

If our method of attack were applied to the problem of the wave resistance 
of three-dimensional bodies, such as ships, and if a linearized free-surface 
boundary condition were used, we would replace our simple source distribution 

by a distribution of Havelock sources (Wehausen and Laitone, Ref. 9). The 

source function can be written as 

1 1 
Pr (XYZ) TEV eT a? ; (20) 

where 

7 ‘i “i k(Rtiw gro adea dimRel=® [see |. SO ae __ ae 
Poe “7 o k -' (v sec?@-ipsec 0) 

Some familiarity with this formula is assumed; therefore the terms will not be 
defined. To evaluate this integral in a rapid and accurate manner, it is desir- 
able to approximate the integrand with functions that can be integrated analyti- 
cally. With that in mind, we see that the integral presents two difficulties: 
first, the integral over the variable k develops a singularity as > 0; second, 
there is the fact that the exponential is complex and does not lend itself to a 
polynomial approximation. Both difficulties can be overcome if a contour in- 
tegration is performed in the complex k-plane. This process leads to the fol- 

lowing transformed equation: 

+77 
a _ 

O(%,¥,2) = 2 | vsec?6 Suet ate ad Sie ey Sab atc 
0 vsec*@ y2 + [vsec?(@) pcos (O0-a)] (21) 

gas (Cont) 
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ae 
2 

OCKiyeZ)= | Peete! sec19Cy'D) can [vsec?@ p cos (O--a)] dé. 

2 (21) 

The exponential integral in u can be evaluated with great accuracy by means of 
a relatively simple algebraic formula, as mentioned previously. The purpose of 
the present section is to describe a quadrature technique capable of evaluating 
the monstrosity on the second line, known as the far-field term. 

When the substitution t = tan @ is introduced, the far-field can be reduced 
to an expression of the type 

vers | Fa Come [ (Bt yt) yl + t? at |, (22) 

where a, 6, and y are measures of distance in the y-, x-, and z-directions, 

respectively. The quantities 6 and y may vary from less than 1 to more than 
10,000 in practical calculations, and hence under some conditions the integrand 
in Eq. (22) is a wildly oscillating nonlinear function. It falls within the class of 
functions covered by Eq. (19). 

Description 

The essential feature of the method of numerically evaluating Eq. 19 is re- 
placement of the nonlinear function g(x) by a linear function plus an increment 
6(x). If step lengths in the x-direction are chosen so that 6 does not vary 

greatly over the interval of integration, then sin 5 or cos 5 can be approxi- 
mated satisfactorily by low-order polynomials, and quadrature of Filon's type 
can be performed. A detailed description of the development will now be given. 

The quantities f and ¢g are arbitrary functions such as those sketched in 

Fig. 15, which is drawn to illustrate specifically the five-point quadrature 

treatment, i.e., n= 2. For simplicity, we can assume without loss of general- 

ity that the origin of x is at the center of the range of integration. At equally 
spaced steps of length h, the quantities f and g have values as indicated. We 

now approximate ¢g in the range of interest by a line segment plus an increment 
6(x). Numerous treatments are possible, but the following appears to be as 
simple as any: A straight line AB is passed through the two values of g at the 
extremes of the integration range. In Fig. 15 the line passes through the points 
(-2h,g-,) and (2h, g,). Next, we construct the line CD parallel to AB and pass- 
ing through the origin. Then we can write 

g(x) =Ax + 8(x), (23) 

where 6 is the difference between g and the line CD, and \ is the slope of line 
CD. It is useful to observe that 5(0) is just the value g, and that 5(2h) = 8(-2h) 

= (22+ g-2)/2. The quantity 5 can have any magnitude; but d (Fig. 15) should 

never exceed about one radian, because d measures the extent of the sine or 
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Fig. 15 - The approximation treatment 

cosine function that must be approximated by a polynomial. The step length 

must be chosen so that d is kept reasonably small. 

Now by means of Eq. (23), Eq. (19) can be written as 

i f (x) Bau (x +5) dx . (24) 
sinh 

Next, we expand the trigonometric expression and designate the sine form of in- 
tegral by S, and the cosine form by C,, where the index n corresponds to that 

specifying the range of integration. We obtain 

nh 

Ss =| f(x) [sin Ax cos § + cos Ax sin 8] dx (25) 

-nh 

and a similar form for C,. These expressions can be written as 

nh 

Si = [G(x) sin Ax + H(x) cos Ax]-dx , (26a) 
=—"riih 

and nh 

€. -| [G(x) cos Ax - H(x) sin Ax] dx , (26b) 
=nh 

where G(x) = £(x) cos 5(x),.,and-H(x); =, fix). sin d(x). 

If the variation of 6 is such that d is always less than about one radian, and if f 

is a not too rapidly varying function, then G and H are both sufficiently smooth to 
be approximated by low-order polynomials. It should be emphasized that it is 
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the variation, d, in 5 that is important. Shifting the line CD up and down in Fig. 
15 merely represents a phase shift, but the variation of 5 gives a measure of the 

number of radians that are involved in the polynomial approximation of the sine 

and cosine functions. 

Each of the terms in the integrands of Eqs. (26a) and (26b) is of the form 

first treated by Filon. Quadrature formulas with sin \x or cos Ax as weighting 

functions are readily constructed, since the terms x? sin Ax and xP cos Ax can 

be integrated analytically. The details are presented in Ref. 10, which gives 
both three- and five- point formulas. We shall be content to present here only 

the three-point formulas. They are 

By ~t—-Be : 
S, = h[-ki(Fi- fa) cos 5 + 2¢k,+k,) f, Sin 

a. Gaeta 4 
= koCf..+ fp) sin ae , (27) 

and 

rae ae fee 
p=rh |-2.(ky+ k,), £5: cos veg cide qty tay ecos 5 

+ 

+ kf, =—f.,) 810 a (28) 

For these formulas: step length = h; complete interval = 2h; 6 = g, - g_,/2; 

and ky, k,, and k, are defined in terms of ¢, which may be large or small. 

Two sets of formulas for the k values are given, for if @ is small the first 

set loses accuracy because of roundoff. 

Formulas for k,, k,, andk,for large values of @: 

= , k, = —t (kg - cos @), k, = = (2k, + sin 0). 

Formulas for k,, k,, and k, for small values of 6; 

62 Q4 g6 e8 Q10 

+ + 
5a! Te AN O76 Ay <8)! 13°10! 

roug 1 k 3 + 

key = — F (Ok, + sini’)  ky’=°4(Ok, — cos 8) - 

Because the k-factors must be evaluated in terms of sin @ and cos 6, practical 

use of the quadrature formula requires a computer. The cosine formula in Eq. 
(28) reduces to Simpson's rule as @ ~ 0, as it should. Integration over an extended 
range is accomplished by repeated application of the formula. 

Figure 16 indicates the formula's accuracy. For this problem, steps can be 

about 10 times as long as those required by Simpson's rule for the same accuracy. 
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When a = 1000, Simpson's rule fails entirely. Unfortunately, when the oscilla- 
tions are rapid, many short steps must still be taken to obtain reasonable 
accuracy. 

A THREE-DIMENSIONAL BODY OSCILLATING IN 
THE PRESENCE OF A FREE SURFACE 

The previous sections have dealt with work considered as completed. Here 
we consider some work that is in progress. The problem is that of solving the 
motion of a true three-dimensional body oscillating with small amplitude in the 

presence of a free surface. It is the key to the solution of very general prob- 
lems of motion of a body, according to Ogilvie, Ref. 11, whom we quote: 

"If we can find velocity potentials for the six problems corre- 
sponding to the sinusoidal oscillations of a ship in calm water, we 
can evaluate these potentials far away from the ship (effectively at 
infinity) and from the resulting simplified functions determine some 
of the damping coefficients. From the same asymptotic forms of 
the potentials we can also find the forces ona ship due to sinusoidal 
incident waves from any direction, without having to solve the prob- 
lem of determining the diffracted waves around the ship. In both 
problems we avoid the necessity of integrating the pressure over 
the ship hull. It is only necessary to integrate over a simplified 
mathematical surface far away from the ship. Finally, in any case 
for which we know the damping coefficients we can find the corre- 
sponding added-mass coefficients." 

Furthermore, if these six problems can be solved, the force and moment on a 
ship restrained in incident waves can be computed. 

A straightforward and very general attack on this problem is to use the 
basic method described at the beginning of this paper, but to replace the simple, 

steady 1/r-type of distribution with an oscillating source distribution that will 
satisfy the linearized free-surface condition. Wehausen and Laitone present 

equations for this type of source (9). The general approach is consequently 
unchanged, except that the Fredholm integral equation acquires a new kernel. 
The six kinds of motion, rolling, heaving, pitching, surging, etc., are all solv- 
able by the same method. The only difference is in the boundary conditions on 

the body, which amounts to no more than different numbers in the column ma- 

trix.of Bq. (7). 

The Oscillating Source Potential 

Let an oscillating point source be located at the point whose Cartesian 
coordinates are a, b, c. The potential of this source at a field point with co- 

ordinates x, y, z may be written 

ae er?4 du 
am cee 2 = 7 anc RTs QTive 

1 oO. VR tacut ye) 
os = ¥CytD) HCDGR). (29) 
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where 

r= (x-a)2.% (yeb)*+5¢z-'e)? ., (30a) 

ae = (x =a)? af (y +b)? + (z= cc)? ; (30b) 

Rat (x a) Ceo). (30c) 

eee (30d) 
g 

and where H‘!) = J, + iY, is the Hankel function of the first kind and g is the 
acceleration of gravity. The term u is the vertical distance measured from the 
image point. It is assumed in this formula that the free surface is the plane 
y = 0 and that the region of interest is the half space y < 0. The y-direction 

may thus be considered vertical and the x- and z-directions horizontal. In 
particular, R is the horizontal distance between the oscillating point source and 

the field point. It is evident that the first two terms of Eq. (29) are the poten- 
tials of two 1/r-type point sources - one at the location of the oscillating point 
source and one at the image of this point in the free surface. The integration of 
these two terms over a quadrilateral can be accomplished by the basic method 

described early in this paper and described in detail in Ref. 1. It is the other 

two terms that concern us. 

The third term of Eq. 29 is the potential of a 1/r-type line-sink of expo- 
nentially decaying strength which starts at the image point (a2, -b, c) and runs 
vertically downward through the free surface to minus infinity. This term is 
denoted the line-source term. The fourth of Eq. (29), which involves a Hankel 

function, is called the Bessel function term. For large values of vR, it is known 
that this term oscillates with increasing horizontal distance R at a circular fre- 

quency of v. Thus » denotes the spatial circular frequency, and its relation to 

the temporal circular frequency » is given in Eq. (30d). Rapid evaluation of Eq. 
(29) over a quadrilateral element is the heart of the problem, for otherwise 
there is no change in the formation of the basic integral equation. 

The basic method chosen for evaluating the line-source term is the Laguerre- 
Gauss quadrature. However, accuracy becomes poor when the horizontal dis- 
tance between the oscillating point source and the field point is small. Here, an 
expansion valid for this condition is developed. A large amount of computing 
has been done to determine the number of terms required in the Laguerre- 

Gauss quadrature to meet the specified accuracy. Systematic studies have 
been made to determine the range of validity of the special expansion. Details 
of the formulas, as well as tables presenting the accuracy studies are contained 
in Ref. 12, which is in the nature of a progress report to the Naval Ship Re- 

search and Development Center on this work. 

The field due to the oscillating source of constant strength distributed over 
a plane quadrilateral element is found by the multipole expansion method. This 

method is applied to the last two terms of Eq. (29). Evaluation of the Hankel 
function term in Eq. (29) is no particular problem, because standard Bessel 
function subroutines for the computer are available. Several tables in Ref. 12 
present the results of error studies in evaluating the field of a square element. 
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Once the entire procedure for determining the influence function for an ele- 
ment covered by sources of this type has been established, it should be a rela- 

tively minor problem to modify the existing three-dimensional computer pro- 
gram. Exactly the same kind of modification procedure has already been 
accomplished for hydrofoils. It appears that the present work is producing a 
practical method of evaluating this special source, although whether or not it 

is the best possible procedure is open to question. A full report on evaluation 
of this source function is expected in late 1968. 

DIRICHLET AND OTHER PROBLEMS 

Problems of fluid mechanics are normally Neumann-type problems. There- 
fore, in our work, we have been concerned with first boundary-value problems. 

Although the computing programs have the inherent capability of solving a wide 

variety of these problems, only a few of these have been run, so that we are 
unable to make such definite statements about their accuracy and ability to ob- 
tain solutions as those we can make for fluid problems. A few studies have 

been made of a temperature distribution in solids for which analytic solutions 
exist, and the accuracy was found to be good. Our principal reason for men- 

tioning Dirichlet problems is to remind the reader that the basic procedure 
encompasses that capability. To know this may be useful to someone who finds 
himself faced with a problem that falls into the Dirichlet class, as was the case 

with a missiles engineer who was studying the problem of cooling reentry bodies. 
The basic type of problem will be described to show the Dirichlet capability. 
John Hess conducted preliminary studies to ascertain our capability, and the 
following is taken chiefly from his memo which summarizes the work. 

As part of a reentry study program, we were asked to perform 
certain calculations with our axisymmetric-potential-flow program. 
The problem of interest is the cooling of a reentry body by forcing 
liquid from a reservoir in the interior of the body through a porous 
medium to the surface. See Fig. 17. As is well known, the flow of 
liquid through a porous medium is governed approximately by Laplace's 
equation in the pressure for incompressible flow or in the square of the 
pressure for compressible flow. The boundary conditions are that the 
pressure equal the constant reservoir pressure on the interior surface 
of the porous medium and that the pressure equal the surface pressure 
of the exterior flow (as obtained from hypersonic theory) on the exte- 
rior surface of the porous medium. This is thus a Dirichlet problem 
in the "thick shell'' region between the reservoir and the exterior. 

As part of a study of added-mass effects sponsored by the Naval 
Ordnance Test Station in Pasadena, program 50D had previously been 
modified to handle axisymmetric Dirichlet problems. This capability 
had been verified by comparison with analytic solutions for exterior 
problems. Past experience had indicated that an interior problem 
often leads to considerably more calculational difficulties than the 
corresponding exterior problem, especially when, as in the present 
case, a surface source distribution is used to obtain the solution. Ac- 
cordingly, a test case was set up and run for several boundary condi- 
tions for which simple analytic solutions are available. The configura- 
tion is shown in Fig. 17. It consists of two concentric spherical shells. 
The outer one has a radius of unity and the inner one has a radius of 0.8. 
Four boundary conditions were considered for the potential 9. They are: 
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Here ¢ is the angular coordinate measured from the symmetry axis 
as shown in the figure. The Legendre polynomials P, and P, are de- 
fined above. Two element numbers were used. In the smaller case 
each element on each sphere had a 3° angular extent. For an exterior 
problem this is certainly adequate. However, the element length on 
the outer sphere is longer than one-fourth the 0.2 distance between 
the spheres. In the larger case the elements were simple halved to 
give a 1-1/2° angular spacing and an element length of about one- 
eighth the distance between the spheres. Calculations were com- 
pared with analytic solutions for the values of the radial (normal) 

derivative of the potential on the sphere surfaces. The maximum 
errors in the calculated derivative are shown in Table 3 as per- 
cents of the maximum value of the derivative on the surface for each 
case. The accuracy is quite good even for the smaller (large element) 
case. For all boundary conditions halving the element size halves 
the error, so accuracy is linear in element number. Computing time 
is quadratic in element number, and thus it is advisable to use small- 

point number cases. 
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Table 3 

Maximum Percent Errors Obtained for Values of the Surface 

Normal Derivatives for the Case of Dirichlet Conditions 

on Concentric Spheres 

3° Elements- 1-1/2° Elements- 
Element Length Element Length 

Equals 1/4 Distance | Equals 1/8 Distance 
Between Spheres Between Spheres 

(0.8) = 1, o(1) = 0 

(0.8) = 0, o(1) =1 

9 (0.8) = 0, o(1) = P,-(cos*0) 

9(0:8):= 0, @(1)-= P,(cos 2) 

By suitably combining the above solutions, it is possible to obtain the 

solution to a problem typical of those of the reentry body application. 

The boundary conditions are: 

9(0.8) = 16900 

9(1) = 618.06 Py(cos 6) + 2793.14 P,(cos 6) ~ 133.60 . 

Figure 17 compares analytic values of +” 09/4r with those calculated by 
using the smaller element number. Agreement is good. The quantity 

dp/dr is weighted by r? to correct for the difference in surface area of 

the inner and outer walls. If there were no circumferential flux in the 

porous material the two curves would coincide. The fact that they do 

not is evidence of appreciable flux in the circumferential direction. The 

corresponding curve for the larger element number case lies exactly 
halfway between the two in the figure (half the error). 

In summary, the ability of the existing surface source density program 

to calculate accurate solutions to the interior Dirichlet problem using 

reasonable element numbers has been demonstrated. The present ap- 
plication is an unusual one. 

Presumably, since the method is not configuration--limited, it could 

solve similar problems for general shapes with about the same accuracy. 

I will close by citing an instrument problem that is especially interesting 

because Laplace's equation applies so rigorously. That is not the case with fluid 
flows, because of the effects of viscosity. In fluid flows the Navier-Stokes 
equation applies rigorously; what we are doing now is approximating it by using 

Laplace's equation. 

The problem is that of a superconducting bearing suspended in a magnetic 
field. Because the bearing is superconducting the field is unable to penetrate 
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the bearing, and this inability to penetrate leads to the condition 59/0n = 0 over 

the surface. Here again we find a classical Neumann problem. Roger Bourke 
studied such a bearing at Stanford University for his Ph.D. dissertation (13). It 
is a body of revolution and is shown in Fig. 18. By using the methods of this 
paper he first calculated the relation between the current and the displacement. 
A comparison of theory and experiment is included in Fig. 18. Agreement is 
within experimental accuracy. He then studied the stability problem by analyz- 

ing other displacements (rotational and sideways) and obtained the same good 

agreement between theory and experiment. 
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Fig. 18 - A superconducting bearing suspended 

in a magnetic field. The graph on the left com- 
pares theory and experiment for displacement 

in the axial direction. 
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DISCUSSION 

George P. Weinblum 

Institut fur Schiffbau der Universitat Hamburg 
Hamburg, Germany 

The paper by Hess and Smith, ''Calculation of Potential Flows About 
Arbitrary Bodies," has become within a short time a classical chapter in ship 
theory. A more difficult special problem has been treated independently by 
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H. Nowacki - the interaction between a simplified shipform and the propeller 
pictured by a sink disc (JSTG 1963). This latter method is based on an iter- 

ation procedure; the results are valuable notwithstanding a minor slip ina 

boundary condition. 

It appears that a large number of problems in ship hydrodynamics will be 

solved by properly extending Dr. Smith's method, following the lines indicated 
by himself - the flow around bodies in the presence of a bottom, tank walls etc; 
i.e., the determination of shallow water and blockage effects, which so far have 

been treated by approximate procedures only. 

Valuable fluid charts of the pressure field around general ellipsoids have 
been treated earlier by Maruhn (Jahrbuch der Luft-fahrtforschung, 1941) before 

computers had been developed. 

Of special interest are the author's remarks on two-body problems as a 
foundation for determining the interaction forces of passing or overtaking ships. 

DISCUSSION 

Louis Landweber 

Institute of Hydraulic Research 
University of Iowa 
Iowa City, Iowa 

I wish to discuss the integral equation applied in the paper to obtain surface 

distributions of sources, viz 

eee, 1 
=at P, dSo ; P, = : o(P) (P) 7 K(P,Q) 7(Q) dSg , K(P,Q) = 57 ang Gay 

where f(p) is a given function and P and Q are points on the given surface Ss. 
This integral equation, which formulates the Neumann problem for the surface, 
has the well-known properties that the eigenvalues » of the kernel K(P,Q) are 

real, that A = -1 is the eigenvalue of smallest absolute value, and that \ = +1 
is not an eigenvalue. Then, according to the fundamental theorem of Fredholm 

integral equations, a solution of (1) exists. 

If we write, instead of (1) 

O41 @p) =F (py + rf K(P,Q) 7;(Q) dSq , 
Ss 
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and take c,(p) = f(p), we obtain a sequence of functions 

Ce eee sf xyes 2 { Kb deer aif ee 

As i>, this gives for o(p) an infinite series in \ with a radius of convergence 
equal to the distance from the origin to the nearest eigenvalue \ = -1 in the com- 
plex \-plane. Since \ = +1 also lies on this circle of convergence, the conver- 

gence of the sequence o, is not assured when \ = +1; it converges conditionally, 

if at all. 

The slow convergence of the iteration formula reported in the paper is attrib- 

utable to this property. By analogy with the Gershgorin integral equation for con- 
formal mapping, in which the identical properties occur, I believe, however, that 
the functions &, = 1/2 (7;,, +o), or some modified version of successive pairs 
of approximations, may converge much more rapidly, and I would suggest that 

such a modification be tried by the author. 

* * * 

DISCUSSION 

, L. Mazarredo : 
Asociacion de Investigacion de la Construccion Naval 

Madrid, Spain 

I want to ask whether an analytical solution has not been attempted for three- 

dimensional bodies. Although not essentially needed, it might be of great help in 
obtaining an efficient, rapid, and accurate way of preparing formal data. We found 

this out when we began to work on the potential flow around a three-dimensional 

body that approximated a ship. Our approach was based on the classical relaxation 

method, but this makes no difference. 

In this case, an analytical definition might help in finding the boundary con- 
dition. Since the speed induced by a source (q) ona point (p) varies as (pq) 
an element may be replaced by any other, provided it is parallel, has the same 
solid angle - as seen from p- and the same intensity of the original one. The 
original element can also be approximated by a spherical surface element inside 

the same solid angle and center in p, if we increase its intensity in order to 

maintain oS. 

If we know the equations for the boundary lines of the original elements, a 
change of coordinates in order to move the origin to p and the z axis-to-the- 
normal to S, would not present any difficulty. The unit vectors of these curves 
would give spherical elements whose projections on the xy plane, when multiplied 

by o(q)/cos qr!, will give the normal component of the speed. Thus, the in- 

tegrations are reduced to surfaces on a plane. Of course, this idea, which is 

very similar to one currently used in radiation transfer, would require small 
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elements in the neighborhood of p, to limit the solid angles to small values. 
But the elements can easily be divided around the point calculated (maintaining 
o for the subelements), if the analytical definition is known. 

Finally, I want to congratulate Dr. Smith for his achievements in this study, 
which opens many possibilities. 

REPLY TO DISCUSSION 

A. M. O. Smith 

I wish to thank Dr. Weinblum for his complimentary remarks. I am glad to 
be reminded of the work by Karl Maruhn on flow fields about ellipsoids. About 
the time of World War II, I was aware of his work, but it had since gradually 
faded from my memory. The report (Ref. 1) mentioned in my paper, covering 
velocity fields, includes the ellipsoid family, but of course, it also covers many 
more shapes. 

With regard to Dr. Landweber's comments, I wish to say that the present 
paper is restricted to a very brief discussion of various aspects of the method. 
A more complete analysis of iterative solutions of this problem is contained in 

section 5.4 of Ref. 1. 

The analytical procedure mentioned by Dr. Landweber is numerically ap- 
proximated by the point-Jacobi iterative matrix method. Indeed, for exterior 
flows this method has a negative convergence factor slightly less than unity in 
absolute value. This means that once the procedure has steadied out, succes- 

Sive iterates oscillate about the true solution with slow convergence. Clearly, 

in this circumstance the averaging of two successive iterates produces a much 

improved result. The only problem is how many iterations are required before 
the iterative procedure becomes steady. For single smooth bodies only a few 

iterations are required, but multiple-body problems require a large number. 

Averaging is not effective for interior flows. For these the convergence factor 
is positive and thus the iterates form a monotonic sequence. 

Reference 1 states that the iterative procedure actually used is the Gauss- 
Seidel, which is always superior to the point-Jacobi. For typical exterior flows 

this procedure requires only four iterations per decimal place of accuracy - a 

very fast convergence. For interior flows it requires about half as many itera- 

tions as the point-Jacobi method. The convergence factor is always positive. 

Tables summarizing the detailed results may be found on pages 78 and 80 of 
Refi 1. 

Recent experience has shown that direct-matrix solution is efficient at 

higher element numbers than had been supposed. Eventually a direct solution, 

whose computing effort varies as the cube of the matrix order, must be slower 
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than an iterative solution, whose computing effort varies as the square of the 
order. However, the direct solution is faster for matrices of the order 500, 
and is particularly efficient in cases where solutions are required for several 
onset flows. 

I have no comment to make on Dr. Mazarredo's discussion. 
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NAVAL HYDRODYNAMIC PROBLEMS 

SOLVED BY RHEOELECTRIC 

ANALOGIES 

L. Malavard 

Faculté des Sciences (Chaire d'Aviation) 
Universite de Paris 

Paris, France 

INTRODUCTION 

For the past 10 years the Centre de Calcul Analogique of the Centre 
National de la Recherche Scientifique has made various contributions to the 
study and solution of a large number of naval hydrodynamic problems. These 
contributions are significant, because they have been made by a small team of 
research scientists using very simple computing equipment which would seem 
inadequate to people who are accustomed to using large, sophisticated computers. 

It is not feasible to consider these studies of naval hydrodynamics in com- 

plete isolation from the context of rheoelectric analogy which has made possible 

important developments in the various fields of mathematical physics. In this 
connection, it is convenient to recall that the first studies carried out in France 

using electric analogy techniques for solving some hydrodynamic problems 
(flows around bodies with or without circulation — Oseen flows (1,2), flows with 
jetstream lines (3), etc.), gave promise of future development. This develop- 
ment has been realized intensively since 1958 because of the experience gained 

by the Centre de Calcul Analogigue in the study of problems in incompressible 
aerodynamics, thin foils, lifting lines, lifting surfaces, cascades, simple heli- 
coidal machines, etc. (Refs. 4 through 6), and because of the introduction by 
Tulin and Burkart (7) in 1955 of the linearized theory of cavitating flows. 

One of the assets which has assured the success of rheoelectric analogy 

Since its early beginnings has been its ability in solving Laplace field equations. 
This computing capacity, together with the experimental character of the tech- 

nique employed, makes rheoelectric analogy ideal for the practical worker, 
engineer, or physicist, who remains in contact with a model on which his control- 

ling action may be exercised without any restraint. Nevertheless, for an inten- 
sive and complete use of the method, analog simulation often requires turning to 

certain methods of theoretical formulation familiar to the mathematician. It is 
in this way, for example, that the knowledge of elementary analytical solutions, 

the use of conformal mapping, the analysis of singularities, etc., allow the solu- 
tion of each problem in the most efficient way. 
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From these three elements — experience acquired in incompressible aero- 

dynamics, the linearized theory of cavitations, and auxiliary analytical data — 
naval hydrodynamic studies have been developed, as outlined below and illus- 
trated in Fig. 1. 

Two-Dimensional Problems 

In 1958, Luu carried out studies on the solution of the direct problems of 
supercavitating hydrofoils (8,9). These studies were the continuation of impor- 

tant research devoted to the problem of thin jetstreams in aerodynamics (Refs. 
8 and 10 through 12) and came within the framework of linearized free boundaries. 

In 1960, a research program was envisaged concerning the effects of the free 
surface on slightly immersed sub- and supercavitating hydrofoils. In the case of 
small Froude numbers, where there is a considerable influence of the gravity- 

field effect, it was possible to proceed easily to hydrofoil design for imposed 
pressure distribution (inverse problem) (13,14). These studies took into account 
the gravity effect on the free surface and on the finite cavity, which, to our 
knowledge, had not yet been treated. The direct problem in the case of the im- 
mersed flat plate was also solved and allowed a useful comparison with analytical 
results (13, 15). 

In the case of high Froude numbers and zero cavitation number, Luu and 

Fruman published, in 1963, a rheoelectric method permitting the design of ven- 

tilated hydrofoils with arbitrary local pressure distribution (16). The results 

obtained agreed with those of Auslaender (17), published shortly before, and ex- 
tended them by the definition of shapes with larger lift-drag ratios. It was 
proved that the drag of supercavitating hydrofoils is related to the angle of the 

spray far downstream, and it seems natural that these studies led to the design 

of base-vented hydrofoils with zero drag (13). 

Subcavitating cascades had been thoroughly studied earlier by Malavard, 
Siestrunck, and Germain, Refs. 18 through 22, within the framework of the foil 
theory. The linearization used by Luu in the case of thin-jet flap on the trailing 

edge of cascades (8) was easily extrapolated to supercavitating cascades (23) 
which were liable to be used in certain types of pumps and turbines. 

Three-Dimensional Problems 

Hydrofoils — The two-dimensional studies on supercavitating hydrofoils led 
Luu to carry out an analog simulation with finite-span wings (24). The experi- 

ence gained in lifting-surface problems, published in the work of Malavard, 
Duquenne, Granjean, and Enselme, Refs. 25 through 28, allowed a very rapid 

implementation of the supercavitating problem in an unbounded flow field, by the 
introduction of an ingenious decomposition of the potential. This will be ex- 

amined in detail later in this paper. 

The method used also permitted the design of supercavitating wings at zero 

cavitation number near the free surface (29). The optimal vortex distribution 

over the span was obtained by using the properties of the potential in the Trefftz 
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plan (30) and by transposing the analog simulation used in the principle of the 
"lifting-line computer" (31). Finally, in order to compare analog results and 
experiments in a small high-speed hydrodynamic channel, a special simulation 
device permitted the design of supercavitating wings with strut and wall effects 

(32, 33), and calculation of the hydrodynamic characteristics of flat supercavitat- 
ing wings. 

Screw Propellers — On the same principle as the "lifting-line computer," 

Siestrunck had conceived, in 1944, an ''analog propellers computer" for large- 
aspect ratio blades. This realization was taken up again in 1959 by Sulmont, 
who improved it by introducing a resistance network, thus making it easier to 

use. He also adapted it to simulate hub effects easily (34). 

Because of the small span ratio of their blades, naval propellers can be cal- 

culated from aeronautical theories only by introducing more or less justified 

empirical correction coefficients. It was only in 1959 that our first efforts were 
made to apply the theory of lifting surface to helical flows. The many difficulties 
in solving this problem by analytical and numerical methods are well known; they 
are caused mostly by the complexity of the flow field to be considered. 

The rheoelectric method allows the representation of this flow field, and thus 
the design of small-span ratio blades becomes possible by means of techniques 
similar to those perfected for wings of arbitrary shapes (35). The boundary con- 

ditions corresponding to supercavitating blades can also be imposed without 

major difficulty and lead to a correct definition of the lower surface for the im- 

posed pressure distribution (34,36). This problem has not yet received any 
numerical treatment, and accordingly the studies being made at present at the 
Centre de Calcul Analogique are attempting to transpose the analog method into 

a program that could be used on large computers. 

In the same framework, Sulmont has studied the problem of ducted propel- 
lers; by making some assumptions of the propeller's nature (infinite number of 
blades), he has been able to define adapted duct forms which seem to promise 
high propulsion efficiency. 

To complete this account we must mention the studies being carried out at 

the Centre de Calcul Analogique. At present, our attention is directed towards 

the solution of the problem of immersed or semi-immersed bodies which may 
be so thick that the linearized boundary conditions relative to the obstacle are 
no longer applicable, although the linearized free surface is preserved. A two- 

dimensional study (37) has permitted us to test the validity of a new theoretical 
scheme (38), and in forthcoming studies results in the three-dimensional area 
should be obtained very soon. At that point, the calculation of the wave resist- 

ance of a thick hull will be undertaken. 

It would be difficult to sum up completely here all the publications which 

have been referenced above. We can only present some of the most significant 
examples of the rheoelectric method and the most outstanding results of its use. 
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THE HYDRODYNAMIC PROBLEM 

General Equations and Boundary Conditions 

Consider the permanent and irrotational flow of an inviscid, incompressible, 

and heavy fluid with density » past a supercavitating hydrofoil located at a depth 
d beneath the free surface, the velocity far upstream being V,. A set of Carte- 

sian coordinates, x’, y‘, and z’ is chosen in such a way that the positive direc- 
tions of the x‘ and z’ axes are respectively those of V, and of the upward di- 

rection. Because the plan-form of the wings is generally symmetrical, the field 
simulation can be limited to a quarter of the space. 

The movement is described by the perturbation velocity potential ¢’, 
which must fulfill the following boundary conditions (Fig. 2): 

1. On the free surface, z= 0, the pressure p, is constant, and thus the 
equilibrium condition gives 

2 

Es yer (1a) 
Ox? on 

which is a Poisson condition for ¢; where F = V,//gd is the Froude number, ¢ 
the gravity force, n the inward normal, and where ¢= $'/V,d, x = x'/d, and 

n = -z/d are nondimensional magnitudes. 

+ 0 -2 E 
= => F syde rts Jeo ae 

1 FP (y=2x + Pyros dg 
t 

DIRECT PROBLEM INVERSE PROBLEM 

7 dhs : C, (Y) 
=: . PB N= Hg OYA 

Fig. 2 - Boundary conditions for a 
supercavitating wing at y = C, 
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2. Inside the cavity where p = p, the equilibrium of its boundary requires 

that 

arya t | MCR (2a) 

which becomes after integration 

p* = Py (Y) ap 9 
Segal (Zo 02) des, (3) 

59 

where ¢, is the value of the perturbation velocity potential at point ¢y, zo, 
(for example, the velocity potential of the leading edge), and where the signs + 
and - relate to the upper and lower surface of the cavity. The cavitation number 

co is defined as 

Po E Po 

(PVy"/2) 
Om 

3. On the lower surface of the hydrofoil the boundary condition can be given 

in two ways: 

A. Direct problem. The geometric form of the wing (- (x,y) is given, 
then the velocity tangential condition permits us to write 

oe AG. ; (4a) 
Oz “dx 

which is the classical Neumann condition. 

B. Inverse problem. The pressure distribution over any local chord 

Ap’ = p- p, is given. The boundary condition may be written 

op -~2 o 1 Ap’ o 1 
= F%(z,-2) + = - Fm 4 C(x) + *FO72(Z)-2)- 
Ox 0 2 2 (PVy?/2) 2 2 p 0 

This equation can be integrated to obtain a Dirichlet condition 

¢” = &(y¥) + $Ce(y) e(x- xy) + Sx t Pr? | (zy - 2) dé , (5a) 
& 2 

where Ce(y) = 2 (y)/V,C(y) is the local lift coefficient at a given section y = cte 

with chord C(y),!(y) is the circulation around this section, 
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Dey) = Oy =O, = — Ap! dx) (6) 

and x, = x,(y) is the position of the leading edge at the same section. The func- 

tion g should be such as g(x,,y) = 0 and g(x,,y) = -1. 

4, On the trailing edge of the wing the Kutta- Joukowski condition must be 

respected 

ad 

ean ac: (7) 
art 

with x, = x, + C as the position of the trailing edge. 

5. On the plane y = 0, by the symmetry of the flow, the normal velocity is 

3p (2) <0 
and at infinity upstream the gradient of ¢ also is 

grad-d= 0 .« (9a) 

6. The cavitation pocket must be closed, i.e., ina section y = cte, ona 

closed contour surrounding the foil and the cavity 

Gh ax = Gas = 0 (10a) 
Oz n 

7. The boundary value problem defined by the conditions of Eqs. (1a), (3), 
(7), (8), (9a), and (4a) or (5a) is not yet determined because the distributions of 
the potentials on the lower and upper surface of the cavity remain arbitrary. 

This does not, however, constitute an indetermination, for they are connected in 
the inverse problem by the known value of C,(y) in Eq. (5a). In the direct prob- 

lem it may be considered as the unknown of the problem which fulfills the con- 

dition of Eq. (7). We shall not discuss this question in detail, but rather insist 

on the methods used for its solution. 

8. In the two-dimensional case there is an associated harmonic function y, 
perturbation stream function, defined by the transformation of conditions in 

Eqs. (la), (3), (7), (8), (9a), and (10a): 

On the free surface 

Ou 
= ~2¢- Bey yok: (1b) 

on the upper and lower surface of the cavity 
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o =) 57 = a+ F “(y- Yo) ; (2b) 

on the lower surface of the foil in the direct problem 

a feed UE (4b) 

in the inverse problem 

= a = Cye(x) + 5 +.F(b- by) (5b) 

at the infinity upstream of the field 

grad Vie Oe, (9b) 

so that the closure cavity condition is now written 

poe Wiss (10b) 

where c and c’ are two points placed at the downstream top of the cavity on 
both sides of the slit. 

The symbols have the same signification as in the three-dimensional case, 
except C,, the global lifting coefficient, and g(x), the function which should now 
fulfill the conditions g(x.) = 0, g(€) < 0 for x, < é< x,, and 

RHEOELECTRIC ANALOGIES — PRINCIPLES 

The principles of rheoelectric analogies are classical and various publica- 

tions on this subject (5,6, 39) give sufficient information on the special technol- 
ogy required. It may be helpful, however, to recall some of these principles, in 

a general way. 

An analogy can be made between the Laplacian of the velocities potential (or 
of the stream function) and the Laplacian of the electric potential, created ina 

homogeneous and isotropic conductor. The latter is generally comprised of a 
liquid contained in a rheoelectric tank and confined by boundaries where elec- 
trodes are placed, of judiciously determined form and disposition. The boundary 
conditions are introduced in a generally discontinuous way, by means of suitable 
electric setups. The two most simple conditions which are very often found in 
the problem are those of either the constant potential, which is the condition of 
Eq. (la) for F = ©, or the zero normal derivative, which is the condition of Eq. 

(8), on one or several boundaries. They are conveyed respectively by conductor 

or insulating surfaces. 
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BOUNDARY CONDITION ELECTRICAL REPRESENTATION 

- A- DIRICHLET 
2 Vek 

P = P(s) V, Electrical Potential 
7 

Ss 

— 
_B ~- NEUMANN ae Qa 

oP _ oY, coh 
On on R on 

nv S 

-C - FOURIER i v V=b 

oP _ R =a 
9- an b . 

_ A_DIRICHLET-FLOW CONSERVATION 

ae V— Vv =A (s) 
— — P=A PIs) 

. B’. NEUMANN- FLOW CONSERVATION faa] eit 
a | R= 

aP_a¥_ av (s) aaa oP 
On on On fa On 

Vv 

-C’. FOURIER- FLOW CONSERVATION roa ee AV=b 

v g=088- (am) AT (eRe 
n g ve R=a 

wi ass 

Fig. 3 - The three boundary conditions and 

their electric analogs 

Figure 3 shows the three types of boundary conditions — Dirichlet, Neumann, 

and Fourier — and the corresponding analog setups. The Dirichlet condition, po- 

tential given on a boundary, Eq. (5a), is easily given by the use of potentiometers 
or of voltage dividers. The Neumann condition of the Eq. (4a) type is realized 
using resistances of a high value &, so that, in feeding by a unity reference po- 
tential, the potential on the electrode is equal or inferior to 0.05. Thus is found 

on OR As 

where As, represents the surface of an electrode and K an analog constant. The 

values of are determined by As * 1/og K(0¢/on), Where og is the conductivity 
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of the conducting fluid. The Fourier condition, linear relation between the po- 

tential and its normal derivative, is frequent in heat problems and thin-jet flap 
problems (8) or lifting-line problems (2). Considering block C of Fig. 3, the 
Kirchhoff law permits us to write 

OV 
Ves i Wome As Se Ge V , 

a on 

which is comparable to 

ad 
p = aia an =" ib F 

provided that & = a/o,4s and V = b. 

For these three conditions, it is sometimes necessary to impose the con- 

servation of the flow between the two sides of a slit. In this case, the electric 
setups are similar to those of A, B, and C, but additionally they require a trans- 
former which automatically assures this supplementary condition (blocks A’, B', 

and C' of Fig. 3). 

It is evident that the precision of the analog representation of a problem de- 
pends fundamentally on the electric transposition of the boundary conditions. To 
describe in detail the techniques applied to make the boundary systems as accu- 

rate as possible would go beyond the limits of this paper. Nevertheless, it is in- 
teresting to note that, even in the most difficult cases, the elements inserted into 

the electric circuit are passive, i.e., resistances, potentiometers, and trans- 
formers. This process of simulation contrasts with that used elsewhere (40), 
in which active elements, of intricate electronics, are incorporated in rheoelec- 

tric experiments which are in themselves of great simplicity. 

TWO-DIMENSIONAL PROBLEMS 

Subcavitating Hydrofoil Near the Free Surface 

Although the study of the subcavitating hydrofoil is not chronologically the 

first naval hydrodynamic problem to be treated at the Centre de Calcul Ana- 
logique, we believe it is interesting to begin the review of two-dimensional prob- 
lems with this study. 

Solution of the Direct Problem — Consider an immersed foil represented by 
its mean line, ¢ = ¢(&), near the free surface. The hydrodynamics characteris- 
tic of the hydrofoil are determined in solving the following boundary value prob- 
lem: on the free surface we have the condition of Eq. (1b), on the slit LT repre- 
senting the foil, ¥* = ¥" = -¢, on the trailing edge, oW*t/on + o¥~/on = 0. The 
electrical simulation of the condition in Eq. (1b) is performed by the use of nega- 
tive resistors (40), but their use is not easy and sure. We preferred to use an 
indirect method which allows the replacement of the Poisson condition by a 
Dirichlet condition. It takes into account the fact that for each vortex distribution 
connected to the lifting foil, the ordinates of the free surface, which is in fact 
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induced by the vortices, may be computed numerically by the composition of 
known (41) elementary perturbations. 

The solution of the problem may be obtained for a given shape of the hydro- 

foil by a series of operations, each consisting of two stages. First, for arbi- 
trary values of ¥ in the linearized free surface, the vortex distribution over the 
chord of the foil is computed, by rheoelectric analogy, which fulfills Joukowski's 

condition on the trailing edge, without, however, complying with the constant 
pressure condition at the free surface. Second, the ordinates of the free sur- 
face, which would in reality induce the preceding vortex, are determined nu- 

merically. This allows a new distribution of potentials on the z-axis and a new 

analog computation of the connected vortex. The cycle of operations is continued 
until the potentials on the free surface and the vortex distribution converge 
simultaneously towards functions which represent the solution of this boundary 
value problem. A few approximations are generally sufficient. Instead of intro- 

ducing an arbitrary free surface into the first analogical approximation, it is 
easy to introduce the boundary conditions corresponding to zero or infinite 
Froude numbers. 

The accuracy of this method was verified by comparison of analog results 

to those obtained by Isay (42) in the case of a flat plate with incidence (Fig. 4). 
The application of the rule of reverse flows to free-surface flows and finite 
Froude number (15) permits the useful exploitation of results obtained in the 

case of the flat plate and the rapid determination of the influence of the free 
surface on foils of arbitrary shapes (Fig. 5). An interesting example of the pos- 

sibilities of the method is given in Fig. 6 which shows for different Froude num- 
bers the distribution of perturbation velocities on the lower and upper surfaces 

of a flat plate with flap slightly immersed. 

Design of Subcavitating Foils Near the Free Surface - The same method 
may be used to design hydrofoils with given load and thickness distributions. 
Two effects must be then considered separately; the first corresponding to the 

distribution of the connected vortex y(é), i.e., the lifting effect, and the second 
to the equivalent distribution of sources and sinks, i.e., the thickness effect. 
The boundary value problem is now completely defined and the rheoelectric 
simulation is very simple. 

Figure 7 shows, for different Froude numbers, the mean lines obtained for 
the NACA 65 pressure distribution. From the linearized theory results and in 
order to verify them, a hydrofoil and the corresponding free surface were repre- 

sented in a rheoelectric tank. By considering the streamlines of this flow as 
shown in Fig. 8 it is possible to verify how the Joukowski condition on the trail- 

ing edge and the free-entry shock condition at the leading edge are fulfilled. The 
lift coefficient computed from the value of the circulation, corresponding to the 
electric results, is 0.3% higher than that chosen to design the hydrofoil. 

Supercavitating Hydrofoils Near the Free Surface 

Small Froude Numbers — In the case of small Froude numbers the gravity 
field effects on the free surface and on the boundaries of the cavity may be con- 
sidered. The rheoelectric method enables us to take them into account with 
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0,5 

© Analog computation 
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Fig. 4 - Comparison of analog results with Isay's computation, 
using flat plate with incidence 

2H p-2y 

Cro = 24a 

CLi@ = 3,4896T 

= Creo = 4,5986T 

NACA 65 Coo = 4X mox 

Fig. 5 - Determination of the free surface on foils of arbitrary 
shapes from results obtained with the flat plate 
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u 
Flat plate with flap 

ice ie 7400 a= 0,20 

-20 

Fig. 6 - Distribution of perturbation velocities for 
different Froude numbers on the lower and upper 
surfaces of a flat plate with flap slightly immersed 

precision and without complicating the computing process. An important sim- 

plification is obtained by introducing two auxiliary functions ¥, and ¥,, defined 

by the following boundary conditions: 

On the cavity 

Oye g cn 
ete — 2 nee. sn 7 + F*(y, ere and + ae = Rey = Y,) : ar 
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SUBCAVITATING HYDROFOIL 

Fig. 7 - Mean lines obtained for the NACA pressure 
distribution for different Froude numbers 

FREE SURFACE 
018 
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Fig. 8 - Flowlines about a hydrofoil with a corresponding free 
surface in a rheoelectric tank 

380 



Hydrodynamic Problems Solved by Rheoelectric Analogies 

On the lower surface of the foil, taking into account the gravity effect, 

en re: Fy, - 41) 

and 

ae oa = om Cpe (R) toF gb a,) .- 
On 

The first function corresponds to a nonlifting and free-of-wave-resistance 

effect, as has already been shown (13). The second function represents the lift- 
ing effect connected with the expression of the local pressure distribution. The 

calculation is made by starting with the solution for F = ™, which is of an easy 
analog determination because at the free surface 3¢/dn = 0, and the above con- 

ditions are of the Neumann type, with flow continuity (Fig. 3B). From this first 
solution it is easy to define distributions of sources and sinks and of vortices in- 

duced by the cavity, so that we can now calculate numerically the free surfaces 
for finite Froude numbers. The iterations are then carried out as described 
previously in the subsection Solution of the Direct Problem. 

Figure 9 shows the form of foils for the same immersion depth, at the same 
cavity length, and for Froude numbers infinity and 3.99, as a function of the pa- 
rameter C,/c. The results for the infinite Froude number are given as a means 
of comparison; it is evident that in this case the hypothesis of a finite cavity is 

no longer valid, since the cavitation number tends to zero in both instances. 

Infinite Froude Number — On the free surface, the upper and lower surfaces 

of the cavity, we have 3y//dn= 0; on the lower surface of the foil a Neumann 

condition is imposed,-3¥"/9n = Cy; g(x). This makes rheoelectric simulation 

easy. Figure 10 is a comparison of foils computed for different linear pressure 
distributions with a foil fulfilling the two-term law of Tulin-Burkart. The com- 
parison of the lift-drag ratio is favorable in the former and shows the advantage 

of the rheoelectric method in the exploitation of pressure distribution which is 
hardly accessible to analytical treatment. 

If a convenient pressure distribution over the upper surface of the foil is 

imposed, it is possible to design base-vented hydrofoils with zero spray-jet drag. 

The depressions thus imposed should be such that the cavitation formation is ex- 

cluded upstream of the trailing edge. For this purpose a number co; must be de- 

fined, which is a function of the physical characteristics of the fluid, the vapor 
pressure, the degree of air dissolved, etc. Three foils, obtained for different 
pressure distributions and presenting the same value of C; ~,, are shown in 
Fig. 11. 

Hydrodynamic Characteristics of Supercavitating Hydrofoils 
in Unbounded Flow 

These studies were intended to test the feasibility of analog representation of the 
Singularities which arise in the solution of the direct problem of supercavitating 
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Fig. 9 - Supercavitating hydrofoil near the free surface 
for a small Froude number in comparison with infinity 
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? F rf ) B a 
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es ane ae 

7) i eae ee is aa 
SUPERCAVITATING HYDROFOIL 

O=0 ; f= 

Fig. 10 - Comparison of foils of different linear pressure distributions 
with a foil fulfilling the two-term law of Tulin-Burkart 

foils. It is known that near the leading edge of a hydrofoil, if the slope is finite 

at the lower surface and the pressure constant at the upper surface, the com- 

plex perturbation potential ¢ + ij gives a singularity of -ikz?’* which corre- 
sponds to a complex perturbation velocity u - iv = -ikz~!’/*. The pattern of the 
singularity is given in Fig. 12a, where it is seen that the equipotential line from 

the upper surface of the slit is bending in the leading edge, forming an angle of 

240°. Analogically this can be obtained by means of an apparatus shown in the 
Fig. 12b. The electrode representing the upper surface of the cavity is extended 
by a small conductor plate placed at an angle of 240°. In the prolongation of this 
plate a probe is installed, by means of which the correct configuration of the 

equipotential line can be controlled by adjustment from the potentiometer. 

This setup is successful only in two-dimensional problems. It cannot be 

used in three-dimensional situations because of the complexity encountered. 
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Fig. 11 - Comparison of three base-vented foils of 
different pressure distributions 

pri =-iKz°/4 

Z=xt+iy 

cl @) = : : 

Null indicator 

Fig. l2a - Supercavitating foil in 
unbounded flow 
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Another method must be used, which will be described in the section on Three- 

Dimensional Problems. 

Supercavitating Cascades 

The study of supercavitating cascades is of practical interest in the field of 

hydraulic machines such as pumps and turbines. It has been possible to design 
convergent or divergent cascades constituted by supercavitating foils which sup- 

port imposed pressure distribution. Here, the rheoelectric method shows the 

possibilities open to the design of supercavitating propellers. 

Suppose that the foil camber is small. It is possible to consider, as in the 

case of isolated profiles, the linearized flow with respect to the velocity far up- 

stream. The periodicity of the velocity field allows the study of the function ¢ 

in a bounded strip (Fig. 13). The boundary conditions are defined, no longer on 

a slit as in the preceding cases, but on the two surfaces limiting the strip. The 

flow is supposed independent of the gravity field, and the boundary conditions are 
given by Eqs. (3), (5a), (7), and (10a). A supplementary condition which takes 
into account the periodicity of the field is conveyed by ¢p = ¢,., where B and B’ 

are two points periodically apart upstream of the foils. 

~ ~ ‘=0 + 

ae P= Py + Sx) Po~ Pe = CL 

S $= 844 Stone) 9 9 
control of CL 

control of 9. 

2 Bee 
Fig. 13 - Supercavitating cascade: function of ¢ in a bounded strip 
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The analog representation of these conditions is extremely simple, as can 

be seen in Fig. 13. The law of potentials on the cavity as well as the potential 
differences between the lower surface of the foil and the upper surface of the 

cavity are obtained by means of potentiometers. The closure cavity condition 
is fulfilled automatically, owing to the transformers which insured the conserva- 
tion of the current. 

Figure 14 shows the form of the lower surface and of the cavities obtained 
for a uniform load distribution over the foil. The configurations depend on the 
length of the cavity and the value of the lift coefficient imposed on each foil. The 

highest limit of C,/2c is dictated by the degree of thickness tolerance which may 

be allowed. 

“Q2 04:06:08 51:12 14 6 © #2 Xe 

Fig. 14 - Configurations of the lower surface and 
of the cavities for a uniform load distribution 

over the foil 
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THREE-DIMENSIONAL PROBLEMS 

We will consider first the problems involved in the calculation of super- 

cavitating wings. Sub- and supercavitating screw propeller problems will then 

be considered next. 

Supercavitating Hydrofoil with Non- Zero Cavitation 
Number in Unbounded Flow 

The inverse problem was defined earlier in the section on the Hydrodynamic 

Problem (paragraph 3B). To simplify the analog representation, the velocity po- 
tential may be written in the form 

@(x,y,z) = x + as TiPiCK sez) 

The perturbation velocity potential ¢ is then defined by boundary conditions 
slightly different from those corresponding to the function ¢ = ® - x. These 

conditions are: on the upper and lower surface of the cavity, 39¢/0x = 0; on the 
lower surface of the wing the pressure is higher than or at least equal to the 

cavitation pressure. We thus have the condition 6¢/0x 2 0, and to define the 

distribution of ¢ we will have, according to Eq. (5a), 

f= do(y) + FCg(¥) EC Xe) 5 (5c) 

where g is given and fulfills the conditions indicated in paragraph 3B. At infinity 
we should find the velocity of the undisturbed flow; hence 

(2). 
The closure cavity conditionis conveyedinany section y = cte, by $(0¢/0x) dx = 0. 
With the overall boundary conditions we have just established, the ordinates of 
the lower surface of the wing and of the contour of the cavity are given, if we 
take, as Tulin suggested, the tangential velocities condition in the form dz/dx 
= v/(V, tu) instead of “dz/dx = v/V,, by 

(9c) | 9 

a 2 { ax, 
EERO Z 

The rheoelectric simulation can be simplified still more if the potential ¢ 
is subdivided into three parts 

b= ?ei + Peat Pop » 

where ?¢,g, and ¢,, represent two even-potential functions characterizing the 

cavity thickness effect. ¢op represents an odd potential function corresponding 

to the general camber effect. The representation of these functions is extremely 
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simple analogically, since it amounts to imposing on the plane of the wing, and 
outside the wing, the cavity, and the wake, a zero normal derivative condition 
for an even function, or a constant potential condition for an odd function. These 
three potentials are defined by their boundary conditions so that their sum on 
each boundary is equal to the condition of the potential ¢. Thus, for example, 
on the lower surface of the wing and cavity we will have 

Pr = A(y) 5 

Co(y) 
Pp = Bcy) + 5 E(x = Xe VW) 

Ce(y) ye te eon 

The constants A(y) and B(y) are connected according to the above expressions 

by 

Cc 
ACY). 2B eyy-S Cy) eee 

Figures 15 and 16 show the shape of two supercavitating wings: one of 
rectangular planform with a span ratio of 4, and the other having an elliptical 
leading edge and a straight trailing edge, with a span ratio of 4.5. The chosen 
pressure distribution following the chord of each section is of the Tulin-Burkart 

type; that of the span circulation is elliptical. The maximum length of the 
cavity, in the median section, is three times the chord. Especially notable are 
the difference between the sections of the two hydrofoils and the thickening of the 

rectangular wing at the wingtip. 

Supercavitating Hydrofoils with Zero Cavitation Number 

In the case of high Froude numbers the flow around the wing is similar to 
that already studied for two-dimensional bodies in the subsection on Infinite 
Froude Number. However, the solution of the optimum distribution of span cir- 
culation should precede the design of supercavitating wings. 

Luu (3) has shown that this problem is reducible to that of the optimum 
vortex distribution of the finite span biplane, i.e., constant induced velocity 
over the span, as treated in (43) and (44). In these publications are found only 
global results concerning the lift-drag ratio, and not the vortex distribution on 
the span which is the most interesting feature. Although it is possible to obtain 

a solution to this problem by analytical methods, it is appropriate to indicate 
that the rheoelectric method can be utilized advantageously. Consider the flow 
observed in the Trefftz plan. The potential ¢,, which is the harmonic function 
in y, z, is defined by the following boundary conditions: 
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ctangular wing with 
a span ratio of 4 

Fig. 15 - Supercavitating re 

edge, with a 

Fig. 16 - Supercavitating wing having an elliptical 

of 4.5 
leading edge and straight trailing 
span ratio 
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= 0, the free.surface 

= Ct, on the wake (z=-d,-sSys) (11) 

for y = 0, by symmetry. 

We can see that these are classical conditions; Dirichlet on the free surface, 

Neumann with flow continuity on the wake, and Neumann on the symmetry axis — 

the analog simulation is immediate. Figure 17 shows the distribution of I’/sw, 
thus obtained, where [ is the circulation, s the half-span of the wing, and w,, the 

induced velocity, versus y/s for different values of the parameter d/s. These 

results permit us to approach efficiently the solution of the inverse problem for 
a supercavitating wing near the free surface. 

Fig. 

icc 
=oo | | ad | 
2 
iS pee ore eee 10 ie 
0.7 L i 05 1 
04 
0,3 
0,2 pee 
01 
= pays 

17 - Distribution of I'/sw,, 
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Design of a Supercavitating Wing — The boundary conditions on a section 
y = cte are the following: 

(a)r@ =105;,70n, z= @ 

(b) gt = Poly) on zt = -d, XQ < xX <- JQ 

(c).@° = (Cy); “on 27 =-d; x, <x<o 

(12) 
Cy(y) 

Pp = &Cy) + = g(X-Xg,y), on Ze = eX Sox Sox; 

(d) lim [ (+ )ax so. 

g 
x30 on on 

When co is zero, the growth of the cavity thickness is simulated by a source 

distribution over the wing and the cavity with a density q(x,y), defined by 

L: opt : OPT 1594 iz Gem 

WOES) s on on Ox Ox 

Far downstream, q is reduced to a function which depends only on y. However, 

for the inverse problem we have a certain latitude in the choice of the source 
distribution. In fact, the boundary conditions (a), (b), and (c) allow that on each 
line parallel to the x-axis, within the limits defined by the wingspan, the potential 

¢ is fixed at an arbitrary level. If we indicate by k(y) the mean value of ¢, and 

?,, we have 

Ce(y) 
ky) = Oey) Ho 

It is evident that the distribution of q over the surface of the wing and the 

cavity, i.e., the cavitation shape, is directly influenced by the choice of the law 

attributed to k(y). 

In order to facilitate analysis of the problem, the potential ¢ is subdivided 

into two parts, defined by the following boundary conditions: 

Ga Sh = 0s Gh, = Ov on. 42 = 0 

(6°) OL = by Cy) OE = (yi on 2" F-d xy < x < 

Key Py) a ?, = k,(y), on ZS ae k= x 

$1 = $1,(¥) + Co(y)e, $2 = ka(y), on z= -d, xX <x < xX, (Cont) 

X (06, 95 i f OPa OP5 
d') im [ —— + — ]dx 0, lim | — + dx +0. 

( on on 
xg 
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Following the decomposition of the movement, the function k(y) is also split into 
two parts: k, and kj. We see that the arbitrary choice of this function is sup- 

ported by ¢,, and that ¢, is completely defined by its overall boundary condi- 

tions. The solution of the boundary value problem of ¢, depends on the choice 
of k.,(y), which finally amounts to the choice of the thickness distribution of the 
hydrofoil. In the most general way, the choice of k2(y) is essentially dictated 

by the structural point of view. The drag coefficient is available by considering 
the kinetic energy on the Trefftz plane. 

An example of the possibilities offered by this method is presented in Figs. 
18a and 18b. The planform of the two wings is trapezoidal, the aspect ratio is 
\ = 4, the taper ratio is 1/3, and the swept angle back of the line situated at 

25% of the chord is 15°30'. The local distribution chosen is constant along the 
chord and optimal over the span for the immersion depth d/s = 0.2. The cal- 

culations were made so that in each section the thickness relative to the local 
chord should not be lower than 1.6% at 10% from the leading edge. The choice 
of a lower C,, 0.3 instead of 0.5, led, in the case of Fig. 18b, to a higher lift- 

drag ratio, 9.52 instead of 6.9. 

Design of a Supercavitating Wing with Strut and Walls Effect — This special 

study was carried out in order to verify analog experimental results. The con- 

figuration of the testing channel (Fig. 19a) is taken into account in the calcula- 
tions by considering the strut and walls effects. The latter are easily repre- 
sented by rheoelectric analogy, since the zero normal velocity on the walls is 
conveyed by a zero normal derivative of the potential. The introduction of the 

strut does not complicate the problem, which is devoid of lifting effect. The 
strut sections are obtained by the introduction of an appropriate distribution of 
potential on the projection of the strut and the cavity of its sections on the y = 0 
plane. The method of solution is similar to that described in the Design of a 
Supercavitating Wing, above. 

Figures 19b and 19c show clearly the influence of the strut on two wings of 
the same planform with the same load distribution. In the first case, where the 
length of the strut is equal to that of the central chord, considerable thickening 

of the sections near it can be noted. In the second case, the width of the strut is 
imposed to 70% of that of the central chord, the central section is thinner, and 
this permits a lift-drag ratio 25% higher than that of the preceding illustration. 

Hydrodynamic Characteristics of a Flat Wing with Strut and Walls Effect — 

We have already indicated the difficulties involved in the solution of the direct 
problem. In the subsection on the Hydrodynamic Characteristics of Supercavitat- 
ing Hydrofoils in Unbounded Flow, a method applicable to two-dimensional cases 
was described. In three-dimensional situations at o = 0 it seems possible, 
granting a plausible approximation, to remove these difficulties. With this ob- 

ject, consider the expression of the drag coefficient C, 

A Cle) Cie pee 0 (<2) ds , 
2 awn? 8n 
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(b) 

Fig. 19 - Design of a supercavitating wing with strut and walls effect. 

(a) configuration of the testing channel, (b) length of the strut is equal 

to that of the central chord, and (c) width of the strut is 70% of that of 

the central chord. 

where the integral is applied to the slit representing the wake of the wing with 

strut. Because the leading edge of the wing is supposed sharp, the suction drag 

is here zero. This equation, as applied to the wing only, represents the resist- 

ance due to the pressure being exerted on the lower surface. We can thus as- 

sume that the resistance of a section of the lower surface is equal to the con- 

tribution of the preceding integral, at points corresponding to this section in the 

Trefftz plan; i.e., 

(ie (2) ac = A (or ME or BEY 
x, Sox] \dx - dn on 
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This property, accurate in two-dimensional situations, is only approximative 

in three-dimensional cases. In adopting it for the latter, we are at least assured 

that the balance of the total resistance will always be respected. For a flat wing 
placed at incidence « the above expression becomes even more simple, since 

dt/dx= a 

1 [-z4-O8* =n OP 
Gos (? on * * aa 

The solution of the problem is then to impose the overall boundary condi- 
tions of the function ¢, as indicated in Fig. 20. Because of the function of the 
transformer, the zero-flow condition is automatically fulfilled; the potentiome- 
ter P, allows the Joukowski condition on the trailing edge, and the potentiome- 
ter P, regulates, by successive approximations, the condition of equality between 

the potential difference Cyg(y) = ¢,(y) - # (y) and the value of the resistance cal- 
culated at the same section in far downstream. 

Resistors 

L 

Fig. 20 - Overall boundary conditions of the function ¢ 

Lower Surface 

Figure 21 shows the shape of the cavity thus obtained for a flat wing of 
trapezoidal planform, with a strut of the same width as the central chord, for 

incidence a = 5°. The calculated lift coefficient is Cy = 0.12 and the lift-drag 
ratio L/D = 11.5, for a reduced immersion d/s = 0.4. The high value of the 
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0.2 - Lower- d. -Upper- 
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-01 5 . 

10 

Me A. 
of «5° 
C.- 0,12 

Gi Cyl, 5 
d/s -0,4 

Fig. 21 - Cavity shape for a flat wing of trapezoidal planform, 
with a strut of the same width as the central chord, for in- 

cidence a = 5° 

lift-drag ratio with respect to the foils designed according to given pressure 
distribution is not surprising, as the C, corresponding to a = 5° for the flat 

wing is very low. 

Marine Screw Propellers 

The usual aerodynamic theories of screw propellers are particularly effec- 
tive for airscrews. They do not solve satisfactorily the problems presented by 
the marine propeller, nor do they permit the analysis of two important factors; 
one is geometric and concerns the low aspect ratio of the blades, and the other 
is hydrodynamic and concerns cavitation phenomena. Indeed, the first factor has 
destroyed the fundamental simplification of the classic theory in which the blade 

section could be substituted conveniently by an equivalent lifting line. The sec- 
ond factor requires a precise knowledge of pressure distributions on the blades — 
the only means of foreseeing or avoiding cavitation— which a too general theory 
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is unable to provide. Only the theory of the lifting surface, applied to the marine 

propeller, is able to solve these two problems. 

Theory of the Lifting Surface of the Screw Propeller-- The linearized lifting 
surface theory, often used in the case of wings, can easily be adopted for the 
screw propeller. 

Assume that the propeller's blades are infinitely thin, inducing only a small 
perturbation in the relative flow resulting from the uniform velocity V, in the 

negative direction of the z-axis and the angular velocity « around this axis, and 
that the blades lie on a helicoidal flow- surface of the nondisturbed flow (Fig. 22). 
For a p-bladed propeller with maximum radius R, the perturbation velocity 
field is periodical in space and the study is thus confined to a region between two 

helicoidal surfaces deduced from one another by a rotation of a 277/P angle. The 

flow field is defined by the following boundary conditions of the perturbation ve- 
locities potential ¢’. 

4 

Fig. 22 - Screw propeller blades 
on a helicoidal flow-surface of 

nondisturbed flow 
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1. On the blade surface, the zero normal velocity condition for radius r is 

in Sy ee (Gn a) a (13) 
on 

where ¢ = ¢'/oR’, \ = V,)/oR, € = r/R, and i* is respectively the slope of the 
upper or lower surface of the blade at a given reduced radius, ¢, and the curvi- 

linear abscissa along a chord, 7, n the normal directed towards the fluid. 

The tangential velocities are connected to the pressure by 

Og! 5 BABES. at 
OT OT CES E2 

where C,(é,7) = (p- - p*)/(pw?R?/2) is the local pressure coefficient. 

Ce(E,7) 5 (14) 

This expression can be integrated with respect to 7, which brings us to a 
condition similar to that of paragraph 3B in the Hydrodynamic Problem section 

of this paper. As in that paragraph, there are here two problems: 

Direct problem: i (€,7) is given, which is equivalent to giving the form of 
the blade, or — 

Inverse problem: Cp(€,7T) = C (€) e(€,7-%) is given. 

2. On the trailing edge the Joukowski condition is conveyed by 

3. The pressure continuity in the wake is conveyed, according to the 
linearized Bernouilli equation, by a potential difference 5¢(¢)=¢; - ¢;, which 
depends only on €, between the two sides of the helicoidal free vortex sheet. 

4. At far downstream, the potential presents, as in the lifting line theory, 
the helicoidal symmetry of p-order. The blowing of the propeller implies the 
existence of induced velocities in the axial and tangential directions. If, then, 
the reproduction of the field is limited at infinity by a surface perpendicular to 
the axis, conditions on the normal derivative to this surface must be respected. 

According to the conditions in Eqs. (13) and (14), it is evident that the func- 
tion ¢ is defined in the present case by conditions resembling those in para- 
graph 3B, except for the factor /\? + €2, which is taken into account here. It 

is easy to see that the equilibrium condition of a cavity with constant pressure 

Pp. is given by 

2¢.§_*_(3), (15) 
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where o = (Py - P.)/(eVo?/2) is the usual cavitation number. Having this, there 

is no difficulty in expressing boundary conditions corresponding to a super- 

cavitating blade. 

Analog Solution — The rheoelectric solution of this problem requires the 
construction of a special tank. The electrolyte is contained within the volume 

between two helicoids. The tank is thus made up of two helicoidal surfaces 

(Fig. 23) covered with electrodes, the radial angle between them being 27/P. One 
surface represents the lower surface of the blade as well as the lower surface of 

the cavity and/or the lower side of the free vortex sheet; the other surface rep- 

resents the upper surface of the blade and/or the upper surface of the cavity as 

well as the upper side of the wake of the adjacent blade. The two helicoidal sur- 
faces are elongated and follow a radial direction to a radius sufficiently large 

that the perturbations are negligible. Small electrodes placed on these surfaces 

and symmetrically short-circuited assure the potential continuity. Upstream of 

the blade the symmetry can be assured more simply by constructing two surfaces 

a period apart and passing through the axis. A central core and a flat sector 

perpendicular to the axis complete the tank. 

The tank comprises 160 small helicoidal components moulded in resin, each 

one containing 20 electrodes. Certain of these components are removable for 

better presentation of the geometry of the blades and cavities. A total of 3600 
electrodes is required for each calculation. For this purpose there is an elec- 

tric setup which consists of about 250 transformers, 200 potentiometers or volt- 
age dividers, and interconnecting units which allow information to be collected at 

about 250 points on the lower and upper surfaces of the blade. 

The geometry of the helicoid is characterized by the speed ratio V)/o, which 

here is equal to 6.6 cm/rad (or 4.8 cm per revolution). 

Subcavitating Propellers — The rheoelectric installation just described is 
especially useful for the solution of the inverse problem, because of the possi- 

bility of regulating and controlling precisely the pressure distribution on each 
section of the blade. To illustrate this, we shall describe the different stages of 
a complete propeller design that permitted a useful experimental verification in 

free water and in a cavitation tunnel. 

The characteristics of the propeller were the following: 

Advance velocity V, = 7.25. m/sec 

Number of revolutions n = 3.75 t/sec (w = 25.36 rad/sec) 

Blade radius R= 1.20 m 

Advance coefficient ee Mo = 0.256, A=— = 0.805 
WR nD 

Thrust T = 7200 kg 

399 



Malavard 

MERLE UANA NTI 
LUT inh A nn 
PT 
SCL PTT Un 
PTT 
gg Ha Qnaunuinnnanitte 
se gynnannaniiintnnsuii 
SPT 

Ait 
mT lnc: 
PTTL 
TTT LL 
MTT LLL 
OUUREEROUIISESUEONGN OO 
Tr 
HUEENEERILREDERIIES ES! 
TTL 
SUUEERDULIEROULACER ER 
EUOUEEDOECUEDNETEIIEE 

Fig. 23 - Tank model for the 
rheoelectric solution of the 
hydrodynamics of the screw 
propeller 

T Cpe 2s tog hits 
Pe? pw*R 

Thrust coefficients 

Ky = Enis 0.147 
pn?D4 

Developed area ratio 0.40 

Number of blades 3. 

The conditions imposed were of two kinds: (a) Hydrodynamic -- pressure 

distribution on the blades was as regular as possible and higher than the value 
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of the saturated vapor pressure; optimal span circulation distribution. (b) Me- 

chanical — span thickness distribution that ensured everywhere a sufficient me- 

chanical resistance. These conditions can be ensured independently, because 
it is possible, as in the case of wings, to divide the problem into two parts; one 

referring to the determination of the lifting effect of an infinitely thin surface, 
and the other to the calculation of the thickness effect while entirely free of 
lifting. 

For the first part, the load distribution, a constant on eight-tenths of the 

chord and decreasing to zero at the leading and trailing edges, together with 

optimal span circulation distribution are chosen. The shape of each section and 

the distribution of velocities on the lower and upper surfaces are then deter- 

mined. If the depression created by the velocities is considered significant, it 

is possible to change the load distribution until acceptable levels are reached. 

For the thickness effect, the calculation process is similar. The form of the 

lower and upper surfaces corresponding to a nonlifting foil in a helicoidal flow 
and the distribution of velocities on them, are determined. Once these two op- 
erations are completed, the blade sections are deduced by comparison of the lift- 

ing and thickness effects. Figure 24 shows the forms of different blade sections 
according to the parameters just described. Table 1 gives the expected values 
of the drag and torque coefficient and the values obtained in a test in free water 

carried out at the Bassin des Carénes, Paris. 

Table 1 

Expected Values of the Drag and Torque 
Coefficient and the Values Obtained in 

a Test in Free Water at the Bassin des 

Carénes, Paris 

ee ee ee 
Expected values 0.147 0.0258 0.730 

Measured values 0.148 0.0268 

It will be seen that the agreement between these values is satisfactory except 
for the propeller efficiency, which is lower than estimated. The difference 

seems due to an underestimation of the friction resistance in consideration of 

the Reynolds number imposed by the test conditions. The experiments in a cav- 
itation tunnel show, as was expected, that for the design value of » the propellers 

function without cavitation on the upper surface of the blades, except very near 

the blade tip (0.95 << 1) where the end vortex is attached. 

These satisfactory observations seem to prove that two important objectives 
- have been attained -- control of pressure and a condition of adaptation — and that 

analog calculation is likely to provide an effective solution to the theory of the 
lifting surface of propellers. 
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Supercavitating Propellers — The boundary conditions and the analog equip- 
ment necessary for this study have already been taken into account in Eq. (15) 

and in the subsection on Supercavitating Cascades. The boundary conditions will 

now be imposed in the intersection of the straight cylinders ¢ = Ct, for the 

helicoids. 

Notice, however, the advantages of the lifting surface method as applied to 

supercavitating propellers when it is compared with the approximate calculation 

methods in use at the present time. First, the blade and cavity contours are 
correcting represented, which allows, for a given blade form, the study of the 

influence of the cavity form on the performance of the propeller. Second, the 
cascade phenomenon and that of the interaction of the cavities are taken into 

account during the calculation without having to introduce corrective terms. 

Various propellers have been designed by this method. The first propeller 
calculated was tested in the cavitation tunnel of the Bassin des Carenes, Paris. 

The results obtained did not confirm the theoretical estimates. This discordance 
does not seem to be due to a fault in the theory, verified in the subcavitating 

case, but to an unrealistic choice of speed coefficient. Three propellers have 

recently been calculated and one of them should be tested very soon at the U.S. 
Naval Ship Research and Development Center. Figure 25 shows one of these 
propellers, designed for an optimal span circulation distribution and pressure 

distribution on each section of the blade such that, at the leading edge a very 
localized infinite pressure encourages the starting of cavitation (behavior of the 

flat-plate foil), and the most heavily loaded part of the foil is near the trailing 
edge (high lift-drag ratio criteria in the two-dimensional case). The charac- 
teristics of these three propellers are summed up in Table 2, not taking into ac- 

count the friction resistance. The figures in the table are for an advance coef- 

ficient \ = V)/oR = 0.261, a cavitation number o = 2(P, - P.)/eV,” = 0.4, and 
various blade and cavity forms. 

Table 2 
Characteristics of Three Supercavitating Pro- 
pellers Calculated by the Lifting Surface Method 

Propeller Number 

0.0855 0.0868 0.0579 

0.0357 0.0338 0.0225 

62.3% 67.1% 67.1% 

Ducted Propellers— The advantages of ducted propellers over ordinary pro- 
pellers, for certain speed coefficients, have long been known. However, very 
little study has been devoted to improvement of the functioning of the nozzle and 

to increasing the efficiency of the propeller-nozzle system. The analog method 

(11,45) offers calculation possibilities for this type of device which promise a 
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considerable improvement of its efficiency in performing the functions required 

of it. 

To conduct this study, we are obliged to admit certain hypotheses. We shall 

assume that: the downstream flow is made axial by straighteners, the propeller 

is approximated by an actuator disc (infinite-number-of-blades hypothesis) with 
a discontinuity of constant pressure during its passage (constant circulation 

hypothesis). Consequently the flow is axisymmetric and its study can be limited 
to a demiplan meridian. Although this first simplification is necessary, it is not 

ultimately sufficient, because if we are to represent the flow correctly we must 

know the discontinuity surface of the velocities which escapes from the trailing 

edge of the duct; i.e., we must know the free-boundary-with-equilibrium condition 

which imposes equality between the pressure jump and the difference of the 
square of the velocities on each side of the jetstream. The difficulty in repre- 

senting such a condition requires the use of a linearized schema wherein the 

boundary conditions are imposed on a straight semi-indefined cylinder of gen- 

erators parallel to the unperturbed velocity, and on an image of the duct and 

of the discontinuity surface. The flow can then be defined by means of the 
perturbation-velocities- potential harmonic revolution function, which is easily 
represented by the electric potential of a tank with an inclined bottom. 

Because of the many conditions which must be satisfied in order to improve 
the hydrodynamic functioning and efficiency of the nozzle, it seemed useful to 
take as a starting point a given duct form, which is then redefined during the 

calculation on the basis of the results obtained. The process is greatly facilitated 
by consideration of several elementary potentials which have in the past revealed 

the interactions of the propeller and hub on the duct. 

This method permits us to show the role played in the increasing of effi- 

ciency by two effects; the downstream divergence of the mean line of the duct in 

connection with the increase of velocity in the plane of the actuator disc, which 

facilitates and improves the functioning of the latter; and the ''adaptation" con- 
dition, imposed during the design on the nose of the duct, which reduces the 
risks of flow separation on the inner surface of the nozzle, and consequently en- 

courages its efficiency, as well as that of the propeller. We must point out 

nevertheless that the widening effect of the nozzle can be obtained by the blowing 

effect on the trailing edge, an effect also studied by rheoelectric analogy by 

means of analog hypotheses (11). 

This method has been used for the calculation of a combined propeller- 

rectifier-nozzle with the following characteristics: 

Thrust T = 19,000 Kgr 

Diameter of the propeller D = 2.58 m 

Length of the nozzle L = 1.87m 

Advance coefficient A = V,MD = 0.696 

Thrust coefficient Ky = T/pn*D* = 0.258, 
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of which 0.056 corresponds to the thrust provided by the nozzle and 0.202 to that 

of the propeller. 

A model of the ducted propeller given in Fig. 26 has been tested at the 
Bassin des Carenes, Paris. The results obtained were very encouraging, since 
the thrust of the nozzle corresponded well to what was expected, as did the ef- 

ficiency of the overall propeller. The conclusions drawn were 66% experimental 

instead of 70% theoretical. The total thrust, however, was only attained to within 
16%. In any case, with regard to the so-called nozzle itself, the study showed 
the advantage of the method of calculation used: if improvements should be 

sought, they ought to be concerned with the calculation of the fan and of the 
straighteners. To support this argument it may be noted further that the com- 
parison of the efficiency of this nozzle with a Wageningen no. 9 nozzle fitted with 
a K 4.55 propeller, which was considered to give the best performance, resulted 
in a preference for the former. With a practically equal diameter, the gain in 

efficiency of the first nozzle is about 5 to 13% higher depending on the power. 

STUDY OF FLOW AROUND THICK BODIES 

In most studies already described the bodies are supposed very thin. In 
this case the linearization hypotheses are valid. Nevertheless, when the rela- 
tive thickness of the bodies is important it is not possible to simplify the bound- 
ary conditions over their surface. Thus, if we consider the perturbation veloci- 
ties potential ¢ = ® - x, with a harmonic function in x, y, and z, it is conven- 
ient to write, for the whole surface = limiting the body, the tangential velocity 

condition as 

og 
Fp ial Cy i aZa ders 

where f (x;,y;,z;) iS a known function of points M(x,,y,,z;) over the surface >. 
This function depends on the local slope of the body and its motion. 

The body can be slightly immersed beneath, or can traverse, the free sur- 

face. In general, it is possible to simplify the equilibrium condition of this 
surface by supposing that the perturbation induced by the body is not very im- 

portant. The linearized boundary condition on the free surface still holds good 
and can be written in the same form that in the General Equations subsection, 

described earlier 

2 976 2¢ 
= 70)" 3 

Ox? ° oz 

Far upstream we have the condition 

lim grad = 0. 
x7=—0 

This problem can then be solved according to the method described in the 
subsection on Subcavitating Hydrofoils. The ¢ function, which is the solution of 

406 



Hydrodynamic Problems Solved by Rheoelectric Analogies 
stieqg 

‘
s
o
u
e
r
e
g
 

s
e
p
 
u
t
s
s
e
g
 

9y} 
1e 

p
e
a
s
e
}
 
r
a
z
j
a
d
o
a
d
 

poayonp 
e 

Jo 
s
u
o
t
z
e
o
t
s
1
D
E
d
s
 
T
e
p
o
W
 

- 
97 

“
S
q
 

1 'U 
US 

4 
W
S
E
1
\
 

\nS% 
A
D
U
 

da 
99/4jDI9UIO 

$
6
0
0
1
 

no 
5 

o
r
a
t
o
r
 
e
 

teen 
~ 

5 
70 

t 
=
 

f 
+
 

Zot 
0
%
 

a
o
e
 

703t 
7 0L 

z
a
t
 0
6
%
 

YT 

0 
or 

|
 
|
 

|
 

e2jbs9us9 
S
9
0
 

jal 
a
 

z 
row 

ds 
S"90F 

oro g 

r
v
i
s
'
9
 “b0s*s 

s
i
o
s
e
y
 

Gara 
“=a 

_ S
0
E
S
*
e
 

| 
~ O'6LS*1 

(Li9*0 
v
o
n
s
e
s
 

©
)
 8
)
 uz/H 

—
—
—
 

pe 
|
e
 
/H 

2
S
 

a 
i
c
 
|
 

y
e
s
h
 

eee 7eS2L 
Ts 

» o _ 

22/4j0/0Ua6 

0) 
D 
a/D/ipoy 

_ 

= 

———a 

fi? 

i 

= 

| 

: 

0 

a 
i 

2 

2] 

t 

, 

- 

~ 

: 

= 

: 

& 

iS 

4 

faa 

= 

z 

(ee) 

f=) 

dt 

= 

= 

Ss 

|e 

ae 

o 

{ 

7 

s 

+ 

= 

s+ 

~ 

” 

. 

— 

a 

= 

” 

fae 

Bae 

Y 

| 

4 

- 
= 

= 

— 

: 

a 

= 

= 

Zi 

= 

£ 

= 

enbis09u1 

oo 

a 

a 

B38 

>— 

sl 

gialosd 

snojuor 

+_| 

[e.cof 

| 

| 

kK 

mae 

Ney, 

| 

| 

2%, 

5 

| 

o 

a 

Z 

. 

alae 

a 

1 
- 

: 

¢ 

ia 

IE 

= 

= 

a 

Sar 

= 

: 

3 

|e 

7 

a 

ee 

ee 

ee 

el 

2 

S 

LeSH/ 

fe 

=|) 

= 

pglelem 

= 

ese 

|e 

| aoe 

? 

Gd 

coe 

ES 

7 

22/1j01pU99 

S"90E 

at 

Pgcrueg 

ae 

ae 

many. 

“row 

dz 

S"90C 

svor 

490 

S906 

“70 

ae 

eee 

s"90e 

— 

x 

| 

Unk 

oteee 

. 

vale, 

$a) 

570, 

249An} 

0) 

Ins 

1+ 

anjset 

ep 

suetes 

$a) 

sno 

4Nassaspeas 

np 

sosg 

221/74 

SU01}20S 

NWSE. 

hs 

eS? 

/0 

% 
z
e
 

a
s
9
h
n
}
 

D} 
a
p
 
u
o
l
j
2
e
S
 

2s9ssip 
J
 
2/6u0,) 

n
a
s
 
s
n
a
s
s
a
s
p
e
s
 
Np 

Su0Ij20S 
$8} 

I
N
O
 

DION 

J
n
a
s
s
e
s
p
e
s
 

np 
v
o
l
e
s
 



Malavard 

the given boundary value problem, can be considered as the sum of elementary 
potentials induced in the field by a convenient source distribution. We can then 

write 

P = f 4(%5,9;52; C(O, +2.) do , 

where q is the singularity density of the simple layer potential at points 

(x.3y4 : 2:3) of the surface 2, do is an elemental surface around this point, and 

Q, and ©, are the singular and regular parts of the potential of an immersed 
source of unit strength. In the two-dimensional case, these two parts are given 

by the following classical expressions 

A, = Re A [log(£- 0) + log(Z- &;)] 

DataCore) -iK,(U-L: 
On= Ree PV aK A ae o( _ 

where. @ = x) izsiCpiecx: + ize) and-K, =cg/V,"\: 
1 1 

The ¢ function is also in two parts: ¢, and ¢, 

Pa PErtp., 

where ¢, corresponds to the singular part of 1,, i.e., 

qQ.do . 

2 

Its value is the same on both sides of >, while its normal derivatives are dis- 

continuities. The difference between its normal derivatives (0¢%/0n - 0¢7/én) 
represents the source flow q. In the present case the superscripts + and - 

correspond to the external and internal domains defined by >. 

The potential function ¢, must then satisfy the following boundary conditions 

og, 

a), onj-z =O; = 
on 

ib) for | sco grad ¢. = 0 (b) | x| (16) 

Ode ‘ ode 

on on 
(Ce), oni 2s, ( )= q(%55Y 7325) 

with the external normal derivative given by 
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+ 

p 
pasts Sie (XY 25) -| grad {2 nqdo. (17) 
on = 

a 

Computation Procedure 

The analog simulation of the above boundary condition is very simple. 

Nevertheless, two different rheoelectric tanks are necessary, one to represent 

the actual flow field outside the body, and the other to represent the field inside 

the body. 

The computation procedure is as follows: 

1. For the initial iteration it is supposed that o¢{/on = f (x;,y;,2;), i.€., 
that the regular part ¢, of ¢ is neglected. The computation corresponds to the 

solution of the external field problem for a zero Froude number. The potential 

distribution ¢t(x,;,y;,z;) on each point of > is then obtained. 

2. These values are then introduced on the corresponding points of the 

internal domain. The measure of the normal derivatives 0¢3/0n gives a first 

plausible distribution of q(x;,y;,z;) = (eff/dn - 0¢%/0n). With these values it 

is possible to compute numerically, for a given Froude number, the normal 
derivatives over = due to the regular part, i.e., the normal derivatives induced 

by the free surface 

{ grad { nqdo . 

2 

3. Introducing this integral into Eq. (17) gives a new corrected distribution 

of 30¢t/dn, which is then imposed on the surface = of the external flow field. 

Hence, a new distribution of the ¢{ potential is obtained and permits us to con- 

tinue the procedure by step 2. This iteration procedure is repeated until the 

convergent values of ¢? are obtained. 

Application of the Method 

To test the validity of this method the above computation procedure was 

applied to the case of an immersed circular cylinder beneath the free surface. 

The results obtained were in good agreement with those computed from the 

analytical solution by Havelock (46) (Fig. 27). 

At the present time, the work carried on at the Centre de Calcul Analogique 

concerns the study of three-dimensional flow fields with free surface. The stud- 

ies will permit us to obtain the pressure distribution over a thick hull and the 

wave drag attached to it, over a wide range of Froude numbers. The proposed 

hull is represented in the rheoelectric tank by 240 electrodes, i.e., the velocity 

tangential condition is satisfied on 240 control points over its surface. To com- 

pute this problem numerically it was necessary to solve a 240 x 240 matrix at 
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05 
— Havelock ‘’s solution 

© Present method 

-O05 

Fig. 27 - Comparison of analogic computation of flow 
around thick bodies with Havelock's solution 

each iteration. We hope these studies will be a valuable contribution to the 
problem of thick hulls and wave resistance, which is one of the most important 

aspects of naval hydrodynamics. 

CONCLUSION 

The purpose of this paper was to give a glimpse of the possibilities of 
rheoelectric analogies in the field of theoretical naval hydrodynamic problems. 

The examples given were chosen to illustrate these possibilities and may be 

summed up as: sub- and supercavitating hydrofoil problems, with or without 
free-surface effect; supercavitating cascade design; hydrodynamic character- 
istics and optimum design of finite-span wings, with or without free-surface, 
strut, and wall effects; design of sub- and supercavitating marine screw pro- 
pellers; and finally, a tentative method for solving the problem of thick hulls. 

Rheoelectric analogy is a very suitable method of study for these hydro- 
dynamic problems, because most of them can be considered as potential flows 
defined by the Laplace equation. The rheoelectric tank is, indeed, a practical 
and effective method of simulation of these harmonic functions. The knowledge 

of their boi.ndary conditions is sufficient for realizing the simulation. There- 
fore it is not necessary hereafter to look for an explicitly analytical formulation 
of the problems. 
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Some of the examples given show that to obtain the best results from the 

rheoelectric method, it is convenient, very often, to modify the theoretical 

statement of the problem with a view to simplifying the electrical setups of the 
boundary conditions and still obtain a good workability. This approach may 
suggest to some a new way of constructing theoretical models for hydrodynamic 
problems in order to simplify the analogy. On the contrary, these models would 

prohibitively complicate the task of the mathematicians who may try to solve 

hydrodynamic problems by analytical or numerical methods. Rheoelectric 
methods utilize the possibilities of both numerical analysis and computers to 

facilitate the preparation of data and to exploit their results. Numerical and 

computer analysis is also employed in the establishment of new hybrid analog- 

digital methods. The solution of the thick hull problem shows clearly this 

interconnection between numerical and analog computation. 

Many kinds of problems can be treated directly numerically, but our ex- 

perience shows that before any extensive programming is undertaken, it is use- 

ful to check the validity of the theoretical model by rheoelectric simulation. The 
physical nature of the analogy often allows a good criterion for disclosing the 

difficulties of the proposed mathematical model. 

Finally, it should be observed that specialists in rheoelectric analogy are 

convinced of the usefulness of large computers. The analog point of view when 
applied to numerical solutions, often permits us to obtain conventional yet effec- 

tive methods. 
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ABSTRACT 

This paper describes an Eulerian finite-difference technique for solving 
the complete nonlinear Navier-Stokes equations. The technique is 
applicable to transient flows of viscous, incompressible fluids with free 
surfaces. The basic features of the finite-difference method are first 
explained in terms of a simple linear convection equation. The dis- 
cussion covers questions of accuracy and computational stability. These 
results are then applied to the solution of the complete time-dependent 
Navier-Stokes equations. Techniques are also described for incorpo- 
rating free-surface stress conditions, as well as other boundary condi- 
tions. The complete numerical scheme that is developed is referred 
to as the Marker-and-Cell (MAC) method (1). Two applications of 

the MAC method are discussed in detail. The first application is to 
the flow of water under a sluice gate. This example illustrates how 
the MAC method is kept computationally stable. The second application 
deals with the formation of a hydraulic jump. This example reveals 
several important aspects of the numerical treatment of boundary con- 
ditions. The hydraulic jump example also illustrates an attempt of the 
numerical method to simulate fluid turbulence. This leads to a discus- 
sion of a new method for obtaining the numerical solution of time- 

dependent fully turbulent flows. 

INTRODUCTION 

The Marker-and-Cell (MAC) technique is an Eulerian finite-difference 
method for solving the complete nonlinear Navier-Stokes equations (1). The 
MAC method is applicable to transient flows of viscous, incompressible fluids 
with free surfaces. Examples are the surge of water under a sluice gate, the 
splashing of liquid drops, and the formation of hydraulic jumps. 

In this paper the method is presented for arbitrary two-dimensional flows. 

Three-dimensional calculations are not treated here since they are impractical 
with the speed and size of today's computers. Special considerations are given 
to the conditions for computational stability and accuracy, and to the derivation 
of boundary conditions, especially at free surfaces. Finally, a brief discussion 

is presented of a new method for studying fully turbulent flows. 
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The paper is divided into several sections. In the first section a simple 
linear difference equation is used to demonstrate several important features of 
finite-difference equations that we shall use in developing the MAC equations. 

The following sections develop the basic MAC difference equations and subsidi- 
ary details. The next-to-last section presents two applications involving free- 

surface flows, while the final section makes several comments on the applica- 
tion of high-speed computers to the study of turbulence. 

A LINEAR EQUATION 

We begin by investigating the properties of a simple finite-difference equa- 

tion. Many results derived here are directly applicable to the Navier-Stokes 
equations. 

Consider the differential equation 

) 0p 
CC ae ee (1) 

ot Ox Ox 2 

which describes the convection and diffusion of a scalar function o(x,t). The 
convection velocity u and positive diffusion coefficient » are assumed constant. 

A simple, explicit, finite-difference approximation to Eq. (1) is 

ntl on 
CanbatioR ir arta, os Hh Buna 

St Dx SP inds Pjradce aa (e541 = 203° cla Pena) (2) 

where ;' = e(j5x,nét), 5x is the space increment, and $t is the time incre- 
ment. The simplicity of Eq. (2) does not guarantee that it is a good approxima- 

tion to Eq. (1). Equation (2) may have solutions that exhibit computational insta- 
bilities or other inaccuracies making it useless. 

Equation (1) is stable in the sense that its solutions are bounded and other- 

wise well behaved. The stability properties of Eq. (2) can be determined by the 
Fourier method proposed by von Neumann (2). Equation (2) has exponentially 
growing solutions that oscillate in sign if (2v5t/5x?) > 1, and nonoscillating ex- 
ponentially growing solutions if v < (u75t/2). In either case these growing so- 
lutions in no way approximate the bounded solutions of Eq. (1). Thus, the in- 
equalities 

S193 y > urst (3) 

are stability conditions for the difference Eq. (2). For specified values of v, 5x, 

and u these conditions define a range of ét values that do not lead to exponen- 
tially growing solutions. 

Stability conditions in Eq. (3) can be determined in another way. The alter- 

native method we shall describe is more useful for our purposes than the linear 
Fourier method, because it is also applicable to the nonlinear Navier-Stokes 

416 



Numerical Simulation of Viscous Incompressible Fluid Flows 

equations. The method is based on an examination of truncation errors. Each 
term in Eq. (2) is expanded in a Taylor series about the point x = jix, t = nét, 

e 2a 

4 2 aw) 
p Sx2 9°P 

a ta) oro Z + + Or = NOX, ox —_— #08 ly: Pray = PCH, ©) 55 2 au 

Collecting terms, Eq. (2) becomes 

= = x2. 2 
30 30 3“p 3“p = 
ee nor (4) 
ot Ox Ox 2 + dt2 

where all second and higher order terms in 5x and st are represented by the 

order symbol 0(5x?,5t*). The zero-order terms on the left-hand side of Eq. 

(4) are the original differential Eq. (1). All terms on the right-hand side of Eq. 
(4) are called truncation errors. These terms are responsible for the differ- 
ence between solutions of the difference Eq. (2) and solutions of the differential 

Eq. (1). This observation is important, because it suggests that the stability 
conditions in Eq. (3) might be obtained directly from the truncation errors. 

That this is indeed possible, at least approximately, has been shown in Ref. 3. 
The prescription developed there is to keep only the lowest order even and odd 
derivative terms with respect to each independent variable. As applied to Eq. 

(4), this means keeping the first and second derivative terms with respect to 

both x and t. After a slight rearrangement of terms, we have 

Fees (5) 

which is not identical to Eq. (1), the equation we set out to approximate. Equa- 
tion (5) is a hyperbolic equation with characteristic lines whose slopes are 

(dx/dt) = eiC2y/st)1/ 2. 

Similarly, difference Eq. (2) propagates information into a region of the x-t 
plane bounded by lines whose slopes are (dx/dt = +5x/5t). If difference Eq. (2) 
is to have a solution approximating the solution of its counterpart in Eq. (5), 

then its "region of influence" must at least include the region of influence of 

Eq. (5),1e:, 

(ey 2 ay, (6) 
ot 

Courant et al. (4) have shown that a violation of this type of region-of-influence 
condition leads to oscillating and exponentially growing solutions for the differ- 
ence equation. This is also true in our case, since Eq. (6) is exactly the first 
stability condition in Eq. (3). 

The condition in Eq. (6) can be given a physical interpretation. It states 
that a wave disturbance must not travel more than one space increment 5x in 
one time step 4t. We would expect this condition to be necessary for accuracy, 

since difference Eq. (2) relates space location j only to neighboring locations - 
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j + 1. On the other hand, implicit finite-difference equations can avoid this type 
of instability, since they require all space locations to be dependent on one an- 
other. The region-of-influence condition will be called the wave propagation 

condition for stability. 

The second stability condition in Eq. (3) is also obtainable from Eq. (4) if 
the term proportional to 6t is expressed in terms of space derivatives. Using 
Eq. (4), we have 

+ v2 — + 0(st) ; (7) 

020 024 Chie 
esa pyle an ena 8 — + PT aL Se OE FN, PRI PAT I P (8) ; ( 

Ox? ox3 ox4 

Keeping the lowest order even and odd derivative terms with respect to each in- 

dependent variable gives us 

0p 
Sai age aaezeee ates (9) 

This truncated equation is similar to Eq. (1), except that it has a different diffu- 

sion coefficient. If 5t is too large, the diffusion coefficient in Eq. (9) is negative, 
and Eq. (9) then has exponentially growing solutions. For bounded solutions, the 
diffusion coefficient must remain positive: 

cieett (10) 

The condition in Eq. (10) is the second stability condition in Eq. (3). It states 
that some v diffusion is necessary to keep the difference equation stable. 

Equation (9) also has a bearing on the accuracy of Eq. (2). For a given 
value of v the effective diffusion coefficient is, to the terms of order 5x? and 
5t?, v - (u?5t/2), which increases as 5t decreases. Solutions of Eq. (2) are 

smoother as st decreases, but for finite values of 5t, solutions of Eq. (2) are 

subject to less diffusion than solutions of Eq. (1). 

All observations made about the linear difference equation can be applied to 
difference equations in general. We shall make use of the wave propagation and 
positive diffusion coefficient conditions to establish stability conditions for the 
MAC method. Some important comments also will be made about diffusion-like 

truncation errors in the MAC equations. 
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THE MAC DIFFERENCE EQUATIONS 

The discussion in the previous section showed the futility of applying explicit 

finite-difference methods, designed for compressible flows, to the solution of 
incompressible flow problems. Time increments must be chosen very small to 

limit the distance which sound waves travel in one time step to less than one 

space increment. The incompressible limit assumes, however, that sound 

speeds are much larger than fluid speeds, so that it would be necessary to cal- 

culate an enormous number of time steps to see a significant flow change. Thus, 

the wave propagation stability condition precludes the use of purely explicit 

finite-difference methods. An implicit method is needed that will adjust the flow 
field simultaneously at all space locations to maintain fluid incompressibility. 

The MAC technique accomplishes this task in a fast and novel way. We be- 

gin with the incompressible Navier-Stokes equations 

du Chae, (11a) 
Ox Oy 

du du? 3 3? 92 ee (11b) 
ot Ox Oy Ox ox dy? 

3 3 ov? 3 : 2 Eg Oh es ae ty ay cael CA (11c) 
ot Ox oy oy ox? dy? 

where 9 is the ratio of pressure to constant density, g, and gy are the compo- 

nents of a body acceleration, and v is the kinematic viscosity. 

Finite-difference approximations for Eqs. (11) require a finite set of points 
on which to specify local values of the field variables. In MAC, this is accom- 
plished by covering the flow region with a mesh of stationary rectangular cells. 

The region actually occupied by fluid is further covered by a set of marker par- 

ticles (Fig. 1). These particles move with the fluid and are used to locate free 

surfaces, but they do not otherwise influence the flow dynamics. More is said 
about marker particles in the section on Corrective Procedure. In each cell of 
the stationary mesh, flow variables are specified at the positions indicated in 
Fig. 2. By not recording all variables at the center of the cell it is possible to 

obtain more compact finite-difference approximations. It also makes it easier 
to satisfy boundary conditions at rigid walls, if the walls are assumed to coin- 
cide with the cell boundaries. 

Fig. 1 - Schematic of a typical 
cell and marker particle layout 
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Fig. 2 - Location of flow 
variables ina cell 

Equations (11) are statements of the conservation of mass and momentum. 
Our finite-difference approximations should likewise maintain these conserva- 
tion properties. The horizontal-momentum equation is approximated with the 
explicit-difference equation thus : 

Lign+s mJ mad! i2 Jenna 
St 0449 U4 1) = 3x cus) - (uz, 4) 

1 j-1/2 jt 1/2 
U Sele tet eS ante 

j j 
a, erate Visi) + Bx 

1 j j j 
mY ee (115 ayers QUE day, ait an tie) 

jt j rie! 

2 (ian 2ubeaatultyal (12) 

A similar approximation is used for the vertical-momentum equation, 

1 IWagiesae/h9 : 1 ; 

os (Sey es Pye ite 3x [exceed 

4. Ga (vit)? | (13) 
by 1 rt 

(Cont) 
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il j+1 j j j Vig? 5 i a aes ear 2 

+ v| ge vies eed eg a 

avi Aa view )| (13) 

the notation used here is, e.g., nj; = u(idx,joy,nét). All quantities on the right- 
hand side of Eqs. (12) and (13) are evaluated at time nét. Several quantities in 
Eqs. (12) and (13) are located at positions other than those indicated in Fig. 2. 
In each case a simple average is implied; for example, 

ee j j 
ee tee (ulsiyatUieiya) » 

or 

jt-t/ 2 +1 jt <egtl / = aay J {2 J mee 

p17 2 D) i itl 

For a product, each factor is first averaged and then the product is formed, i.e., 

jr1/ 2 j j 
(uv) as ~ ae (vj2 iyo) 

fae j jet b/ 2 jt / 2 

= (uj iat uj-yo) (vind + Yj ). 

Equations (12) and (13) conserve momentum exactly. A sum over consecutive i 
and j in either equation leads to a cancellation in pairs of terms on the right- 
hand side. The only momentum changes occurring in a group of cells are caused 

by surface fluxes. 

The momentum equations are completed by specifying the pressure. The 

pressure must then be determined to make the velocity field satisfy the 
conservation-of-mass condition, the first equation of Eqs. (11). For this pur- 
pose we need the finite-difference expression for the velocity divergence in cell 

6234). 

a 1 es & 1 c F nes 

Bega J J El bee 1/ 2 

a sy Wiese 7 Yi 2) + = (vj so ). (14) 

Then, the conservation-of-mass or incompressibility condition is 

eB =p (15) 

for every (i,j). Inserting Eqs. (12) and (13) for the values of u and v at 
(n+1) 5t, into Eqs. (14) and (15) yields the following equations for 9,’ 
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+ 

5xdy 

Equations (16) are the approximation for a Poisson equation for the pres- 
sure. These equations must be solved by matrix inversion or an iteration proc- 

ess. The necessity for solving a set of coupled equations arises because of the 

fluid incompressibility. Each finite-difference cell containing fluid influences 
every other cell containing fluid. This is the implicit part of the difference ap- 

proximations needed for incompressible flows. 

It is very important to note the presence of D, } terms in Eq. (16b). The 
D, ‘_type term is the source term for the Poisson equation. These terms are so 
important that we will digress here to consider them in more detail. 

CORRECTIVE PROCEDURE 

Let us assume Eqs. (16) are solved by an iteration method (matrix inver- 

sions are too time-consuming). Every iterative solution of Eq. (16a) must be 
terminated with some error. Thus, "*'D,’ will not be exactly zero. An error in 

the velocity divergence, however, means an error in mass conservation. To 

maintain the accuracy of a MAC calculation, in which Eqs. (16) are repeatedly 
solved at each time step, the accumulated value of D,’ must be kept as small as 
possible. This could be accomplished, for example, by iterating the pressure 
equation to a high degree of accuracy at each time step. Unfortunately, the 
computing time needed to solve sets of linear equations like Eq. (16a) increases 
very rapidly as the convergence criterion is refined. Another means of pre- 

venting a significant accumulation of D error is used in MAC. The D terms re- 
tained in Eq. (16b) act as a self-correcting mechanism. An error in D at time 
step n is automatically corrected at time step n+ 1, since the difference equa- 

tions are set up to make "*!D zero, regardless of the value of "D. Therefore, a 
relatively crude iteration solution of Eq. (16a) can be tolerated at each time step 
without leading to a disastrous accumulation of error after many time steps. 
Enormous savings in computer time are realized with this technique. 
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An additional advantage is that initial conditions for a calculation do not 

have to satisfy the incompressibility conditions. After one cycle of calculation 

the condition is automatically satisfied. A complete discussion and generaliza- 

tion of this corrective procedure can be found in Ref. 5. 

WALL BOUNDARY CONDITIONS 

Boundary conditions are needed to complete the basic MAC difference Eqs. 
(12), (13), and (16). Free boundaries introduce special problems and will be 
considered later. Here we are deriving conditions for rigid, input, and output 

boundaries. 

Rigid boundaries are assumed to coincide with cell boundaries, otherwise 

cells would have variable dimensions and this would require additional computer 

storage. Boundary conditions are imposed by specifying the appropriate values 

for field variables located in fictitious cells immediately outside the boundary. 

For the purposes of illustration, suppose that a vertical boundary coincides 

with the right-hand side of cell (i,j), and that cell (i+ 1,j) is outside the 
boundary. Rigid boundaries are further classified as free-slip or no-slip. At 

a free-slip boundary, the normal component of velocity is zero, and no tangen- 

tial shear is allowed: 

j Z j¥1/2 pt 172 17 
Mey ets fd sae vei : (17) 

At a no-slip boundary, both the normal and tangential velocity vanish: 

j a jP1/2 i a4 /9 18 
Wan a ee ae Mae arto a (18) 

The one velocity component of the fictitious cell still undetermined, ee 
is chosen to make D},, zero. If this D is not zero, it will diffuse into the flow 
region through Eqs. (16). 

The necessity for a condition on D in the fictitious cell arises from the form 

chosen for the differential equations in Eqs. (11) and the cell layout in Fig. 2. 
We might just as well have written the viscous terms in Eqs. (11), which are 
components of the vector 

vV-Vu , (19) 

as components of the equivalent vector 

vy VxVxu. (20) 

When Eq. (20) is used as a starting point for making finite-difference ap- 
proximations, the D diffusion terms will not appear in Eq. (16b) and the fictitious 
cell velocity ree , Will not otherwise be required. Equation (20), therefore, is 

preferred, but we have chosen to describe Eq. (19), since it was used in the orig- 

inal MAC development. 
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For both free-slip and no-slip walls, boundary conditions on the pressure 

are derived directly from the difference equations. Since uj,,,, is identically 
zero, Eq. (12) relates »},, to 9;) and other known quantities in the wall vicinity. 
Remembering that Dj,, is zero, 

7 : D4 
J = J S ws 

Q. = @. + g.ox + 
vi ge 1 x Sx 

Tee (21) 

Similar conditions can easily be derived when the rigid wall coincides with a 

different side of cell (i,j). 

This completes the necessary boundary conditions for rigid walls. Condi- 

tions for prescribed input boundaries are straightforward and can be found in 
detail in Ref. 1. For output boundaries, there are no unique prescriptions. The 

investigator is free to choose conditions consistent with whatever flow he imag- 
ines to exist outside the region being studied. One choice that has worked quite 

well for many applications is described in Ref. 1. 

FREE-SURFACE BOUNDARY CONDITIONS 

With various combinations of rigid-wall, input, and output boundaries, it is 

possible to simulate a great variety of confined flows. Many interesting incom- 
pressible flows, however, involve free boundaries. Waves, jets, and splashing 

drops are good examples. To treat these free surface flows we must have some 
means of locating the free surface and of satisfying the surface boundary condi- 

tions. 

Marker particles are used to solve the first of these problems. They rep- 
resent selected points whose coordinates are calculated to move with the fluid. 

An analogy may be drawn with the hydrogen bubbles often used in laboratory ex- 

periments as a means of visualizing a flow. Any cell that contains a marker 

particle is assumed to contain fluid. If such a cell is next to a cell containing 

no marker particles, then it is designated as a surface cell, i.e., it contains the 

free surface. 

Free-surface boundary conditions are applied at each surface cell. The 
correct boundary conditions are the vanishing of the normal and tangential sur- 
face stresses. If the curvature of the surface is small, the stress conditions in 

two dimensions can be approximated by 

re) 

g-27 —"= 9, (22) 
n 

ou ou 
yee (23) 

om on 

where n refers to the outward normal direction to the surface and m to the tan- 

gential direction. Allowance is made for an applied surface pressure 9,, which 

can be useful on occasion. 
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To correctly satisfy the conditions in Eqs. (22) and (23), and the conserva- 
tion of mass requires a knowledge of the exact location and slope of the surface 
within a surface cell. This information is not available in MAC. Instead, sev- 
eral approximations are introduced which have been found to work quite well, 

except at very low Reynolds numbers. 

The quantities to be determined in each surface cell by the boundary condi- 

tions are the pressure and the velocities at each cell boundary adjacent to an 

empty cell. Conservation of mass is approximated by choosing the velocities to 

make D vanish in each surface cell. This is just an approximation, since D 

should be zero only in that part of the cell which is filled with fluid. If the cell 
has more than one side adjacent to an empty cell, the vanishing of D does not 

uniquely determine all the velocities. In this case the finite-difference forms of 
du/dx and ov/dy are individually required to vanish. Other possibilities can be 

envisioned, but this particular choice seems to work well. 

Tangential velocities needed in empty cells at the surface are chosen to 

make the normal derivative of the tangential velocity zero ou,/dén = 0. The tan- 
gential stress condition in Eq. (23) is approximately satisfied by this choice. 

Once the surface velocities are determined, it is easy to satisfy the normal 

stress condition in Eq. (22). Complete details are given in Ref. 6, where it is 
shown that the tangential stress condition and the viscous contribution to the 
normal stress condition are important only at Reynolds numbers less than about 

10. 

STABILITY AND ACCURACY 

To use the MAC equations effectively, it is necessary to know their stability 

properties. We have already seen that with an incorrect choice for 5t, the sim- 
ple difference Eq. (2) has very misbehaved solutions. Similar solutions develop 
in MAC. Analogous to the example in the Linear Equation section, there are two 
kinds of stability conditions for MAC: wave propagation, and the positive diffu- 
sion coefficient. 

Wave propagative instabilities occur for two reasons. First, in free-surface 

flows, surface waves may develop with wave speed 

1/2 

ce E tanh (hk) (24) 

where k is the wave number, h the depth of fluid, and g the downward accelera- 
tion of gravity, gy --g. The first wave propagation condition, therefore, limits 

the distance surface waves travel in a single time step. Second, in two dimen- 

sions the condition is 

ee ea, (25) 
5x + by 

The second wave condition is analogous to that needed for Eq. (2). For two 

dimensions, 
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Sx2 Sy 2 

ou StieaK ou! (26) 
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The necessary diffusion coefficient conditions are derived by collecting all 

truncation errors in the MAC equations that contribute to diffusions of u and v. 
Keeping only these terms through order 5t and 5x2, 

SA BUN Saw Oa o Hy a2 fh ae Ou 
ot ox oy ox Bx 2 ZO Aas 

‘ (> - bg ot ae 
: 4 dy/ dy? 

(27) 
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ot ox dy by 2 2 4 98x] dx? 

fl (> - y2 ot _ dy? dv\a?v 
2 2 dy/ay? 

Several remarks can be made about the diffusion coefficients appearing in Eq. 
(27). First, the MAC equations are always unstable if » = 0. Second, neglecting 
the 5x? terms, the diffusion coefficients are positive if 

a, y > Vek. (28) 

These conditions are approximately the stability conditions obtained from a lin- 
ear Fourier analysis (7). However, the 5x? terms cannot be ignored, which re- 
quires 

ae ; (29) 

where u’ is a typical velocity derivative in the direction of flow. Instabilities 

do occur when Eq. (29) is violated, and they are quite insidious, since a reduc- 
tion in st cannot cure them. Furthermore, they are more likely to occur when 

v is small, i.e., in high Reynolds number flows. Therefore, it is extremely im- 

portant to recognize the condition Eq. (29), and to distinguish these numerical 

instabilities from physical instabilities. 

The relationship between diffusion-like truncation errors and computational 
stability is applicable to all finite-difference approximations. It should now be 
clear why it is so difficult to perform high Reynolds number calculations. Oc- 
casionally an investigator claims to calculate at very high Reynolds numbers, 

but a check on truncation errors most often reveals positive diffusion terms 

much larger than the real viscosity. 
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APPLICATIONS 

The surge of water under a sluice gate is an example of a complicated non- 
linear fluid flow. Figure 3 shows the marker particle configuration obtained in 
a MAC calculation of such a flow. Fluid falls under the influence of gravity and 
jets under the gate into a stagnate pool. A surge wave is formed moving to the 
left. A velocity vector plot, Fig. 4, shows a large eddy at the back of the wave. 
Each line segment in Fig. 4 characterizes the velocity magnitude and direction 
for a single computing cell. 

Fig. 3 - Marker particle configuration of a sluice gate calculation 

It is evident from the velocity plot that some difficulty is developing along 
the bottom of the flow region. The irregular appearance of the velocities indi- 
cates a computational instability. Although many stable sluice gate problems 

have been calculated and have given excellent agreement with experimental data, 

we have purposely chosen a bad example to illustrate an instability. 

There are, in fact, two instabilities in this calculation. One is behind the 
sluice gate and the other is under the surge wave. A decrease in 5t by a factor 
of 20 eliminates the instability under the wave, but produces no significant 
changes behind the gate. A decrease in 5x (and 5y which is equal to 5x) elim- 

inates the latter instability also. The instability under the surge wave is due to 

a violation of the condition in Eq. (28), and the other instability to a violation of 
the condition in Eq. (29). With sufficiently small space and time increments, or 
a sufficiently large value of v, the sluice gate calculation is stable. | 
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Fig. 4 - Velocity vector plot for the sluice 
gate calculation shown in Fig. 3 

Another interesting flow occurs when fluid piles up against a rigid wall and 

forms a hydraulic jump. The jump conditions relating uniform states of flow on 
either side of a hydraulic jump are easy to derive — they are conservation of 
mass and momentum. Kinetic energy decreases in the transition. The lost en- 

ergy usually reappears as fluid turbulence. At very low Reynolds numbers, 

however, there can be enough viscous dissipation in a laminar transition to 

preclude the development of turbulence. Figure 5 shows a laminar jump at Reyn- 

olds number 4.33 (based on incoming fluid depth and speed relative to the jump). 
Fluid is input at the right-hand boundary and piles up at the left boundary, which 
is a rigid wall. A hydraulic jump is traveling back to the right. Clearly, the 
flow is laminar. The overshoot in elevation and a slightly low jump speed are 
believed to be caused by a failure to satisfy correctly the tangential stress con- 
dition of Eq. (23). When the Reynolds number exceeds about 10, the free-surface 
approximations discussed in the section on Free-Surface Boundary Conditions 

are satisfactory. 

Fig. 5 - A hydraulic jump calculation at Reynolds number 4.33 
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Figure 6 shows a hydraulic jump at Reynolds number 79.25. The flow in 

this case is no longer laminar. Large eddies have developed in the transition 

region in an attempt to simulate turbulence. The calculations do not represent 

true turbulence, because of the course resolution and the restriction to two- 
dimensional flow. 

TURBULENCE 

It is interesting to speculate on the contributions that high-speed computing 
can make to the understanding of turbulence. Three directions appear open to 

numerical studies. The first is to use existing computing techniques to make 

detailed studies of the breakdown and growth of laminar instabilities. Some 
work on the stability of Poiseville flow has already been undertaken (8). Suc- 
cess in these investigations will continue as the ability to calculate high Reyn- 
olds number flows increases. 

The second approach is to calculate the detailed structure of a turbulence 
flow. Such calculations will be extremely difficult, however, because they must 

be done in three dimensions and require high resolution. Computers are too 
slow and memory is too limited to permit much progress in this direction. 

The third possibility is to develop a capability to calculate the mean motion 
of turbulent fluid, without regard to its detailed structure. In this approach the 
turbulence is characterized by a small number of field variables. The variables 

are postulated to satisfy transport equations that account for the processes of 
production, decay, convection, and diffusion. A mean flow is influenced by an 
exchange of energy with the turbulence and by turbulent diffusion of mean mo- 

mentum, 

Although it is too soon to assess the full potential of this last approach, it 
does appear highly promising. For further details, reference may be made to 
the work of Harlow and Nakayama (9). 
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DISCUSSION 

M. T. Murray 

Admiralty Research Laboratory 
Teddington, England 

I should like to ask Dr. Hirt the following questions: 

1. What computer was used ? 

2. What running-time did the examples require? 

3. What limit does computational feasibility place on the complexity of 
problems which can be dealt with? 

* * * 

DISCUSSION 

A. M. O. Smith 
Douglas Aircraft Company 

Long Beach, California 

Dr. Hirt and the Los Alamos group certainly deserve congratulations for 
their pioneering efforts in this field. 
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Now I have two questions. 

1. In most aeronautical and marine applications the surfaces are curved. 

Have you any comments about methods for handling such boundaries ? 

2. I understand that Professor Roache at Notre Dame has developed a finite- 
difference method for the same problems as yours that is stable. Do you know 
about it and do you have any comments about it? 

* * * 

REPLY TO DISCUSSION 

C. W; Hirt 

REPLY TO COMMENTS BY M. T. MURRAY 

The computer used was the IBM 7030 (STRETCH) machine. This is a 98,000 
(base 10) word machine, which was programed for the MAC method directly in 
machine language. 

The 7030 machine can handle a maximum of 4440 cells with 12,500 marker 
particles. If fewer cells are used more particles can be included because there 
is some tradeoff in storage space. Typical problems usually involve on the or- 
der of 2000 cells and several thousand particles. For example, the hydraulic 
jump calculation used 100 x 25 or 2500 cells and approximately 2700 particles 
(not all cells contain particles), and the sluice gate calculation used 47 x 32 or 
1504 cells with approximately 6200 particles. 

The computer time needed for a problem depends crucially on the number 

of cells and particles used. The sluice gate calculations, as a typical example, 
required approximately 12 seconds per cycle. This is not unreasonable consid- 
ering that one cycle consists of the solution of a Poisson equation for pressure, 

advancement of all velocity components, and the movement of particles. The 
loss and gain of surface cells must also be recorded during each cycle. 

REPLY TO COMMENTS BY A. M. O. SMITH 

Curved boundaries are generally a problem, but not an insurmountable one. 
It is certainly possible to think of a MAC technique that uses a mesh of irregu- 
lar polyagonal cells. Assuming that a curved boundary can be approximated by 

a set of short-line segments, the fluid region could be covered by a mesh of 
polyagonal cells extending out from the boundary. In this way problems with 

curved boundaries could be solved. We have not yet attempted this approach 
with the MAC method, but we are investigating a similar method for compressi- 
ble flow calculations. 
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THEORETICAL STUDIES 

ON THE MOTION OF 

VISCOUS FLOWS 

PREFACE 

These studies are in six parts, comprising six papers on various 

aspects of the motion of viscous flows, prepared by Paul Lieber of the 
University of California, Berkeley. Two of the papers were prepared 
in collaboration with Kirit Yajnik, who is now at the Indian Institute of 

Technology, Kanpur, India. One paper each was prepared in collabora- 

tion with Shrikant Desai of the University of California, Berkeley; and 

with Lionel Rintel, who is now at William and Mary College, Williams- 
burg, Virginia. 
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Studies on the Motion of Viscous Flows--I 

I—Fundamental Properties of Eddies 

Kirit Yajnik 
Institute of Technology 

Kanpur, India 

and 

Paul Lieber 
University of California 
Berkeley, California 

ABSTRACT 

A new concept of eddy is rigorously introduced here, by stating it in 
precise mathematical definition. This definition originated in a de- 
scription of certain general differential-geometrical features of flows 
which are based on a rotation tensor of the third rank. It is used here 
to investigate mathematically some fundamental and general properties 
of eddies. Because any criterion based on the distribution of vorticity 
alone does not distinguish eddies from other regions (rigid-body rota- 
tion and plane Couette flow, for example), new descriptions of rotation 
having more information than vorticity are needed. The definition pre- 
sented here is formulated in terms of angular velocities of differential 
elements of material curves and surfaces. A characteristic kinematic 
property of an eddy is the positive value of a certain invariant of the 
velocity gradient. Although vorticity cannot be zero in an eddy, exam- 
ples show that nonzero vorticity is not sufficient and that concentration 
of vorticity need not occur in eddies ofa real fluid. Other kinematic 
properties include connections of whirling or closed streamlines with 

the presence of eddies in plane flows or axisymmetric flows without 
tangential component of velocity, and with the presence of convex 
streamlines within the eddies. The connection of eddies of Newtonian 
fluids of constant properties with low-pressure regions is indicated by 
the characteristic dynamic property that V?p - pV: F is greater than a 
certain datum determined by the local three-dimensional character of 
the flow. The values of the datum for plane flows and axisymmetric 
flows without tangential component of velocity are zero and ~-(30/2)(u,/r)?. 
The no-slip condition on a stationary solid boundary is shown to lead to 
large interference of even thin rods with eddies, and experimental evi- 
dence given here and elsewhere supports this conclusion, A highly ef- 
fective method of vortex control can be devised from the conclusion, 

INTRODUCTION 

Eddies have been extensively investigated on account of their role in fluid 
motion. The earliest model of an eddy was a potential vortex and its study led 
to many conclusions about the dynamical behavior of rectilinear vortices and 
vortex rings. The stability of the vortex street and its associated drag received 
considerable attention following the successes of the pioneering work of von 
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Karman in 1911 and 1912 (1). Despite its successes, certain limitations of the 
model were recognized. The physical impossibility of velocities being arbitrar- 
ily large, and associated difficulties such as infinite angular momentum and ki- 
netic energy led to the modification of Rankine which requires a rigidly turning 

core with a matching potential flow outside. The new model of steady flow was 
still not suitable for describing the diffusive and dissipative action of viscosity, 
particularly near solid boundaries. The unsteady exact solutions of Navier- 
Stokes equations obtained by G. I. Taylor in 1918 (2), Oseen in 1911 (3), Hamel 
in 1916 (4), and Rouse and Hsu in 1951 describe the growth and decay of a recti- 
linear vortex away from a solid boundary and in the absence of neighboring 

vortices. The three-dimensional behavior of certain eddies has also been de- 
scribed by the exact solutions of N. Rott in 1958 (5) and others. 

The picture of an eddy or vortex which has emerged from these studies is 
that it is essentially a region of concentrated vorticity surrounded by a region 
of negligible vorticity (Kichmann, 1965) (6). The axisymmetric or two- 
dimensional character of some of the exact solutions is a mathematically con- 

venient assumption meant to render tractable the problem of integration of 

Navier-Stokes equations. 

The conceptual difficulties created by this picture are many. The picture 

refers to vorticity distribution, with the inference that if two flows have identi- 
cal distribution of vorticity and one flow can be called a vortex, the other can be 
also. But the vorticity distribution of a rigidly turning fluid is the same as the 
plane Couette flow, so that if a rigidly rotating core of a Rankine vortex is 
called an eddy, so should the plane Couette flow. However, it is clear that the 
plane Couette flow does not possess the same whirling character as the rigidly 

rotating fluid. 

Another dilemma created by the picture is that there can be no eddy ina 
fluid undergoing creeping motion for which vorticity satisfies Laplace's equa- 

tion, since vorticity or its magnitude cannot be a maximum at any interior point. 

However, Moffatt in 1964 (7) obtained such flows possessing whirling regions as 
indicated by closed streamlines. 

Even the area of vortex streets is not free from difficulties (Wille, 1960) 

(8). The earlier model of a line vortex of ideal fluid led to a constant spacing 
ratio, whereas it was observed that the street becomes wider downstream from 
the bluff body. Second-order analysis always predicted instability, whereas the 
vortices preserve their regular pattern for a considerable distance. Theories 
based on superposition of the vortices of Oseen and Hamel lead to the conclusion 

that the street becomes narrower downstream. 

The work of Michalke in 1964 (9) reveals that the interval between regions 
of closed streamlines is half that between the locations of maximum vorticity in 

the case of an unstable free-jet boundary. 

These anomalies have led the authors to question whether the whirling 
property can in principle be described by vorticity distribution. The whirling 
property is identified by the common operational test of closed streamlines in 
two-dimensional flows. Hence the authors questioned whether there existed any 
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connection between maxima of vorticity (or its magnitude) and closed stream- 
lines. It was simple to construct two flows satisfying a continuity equation in 
such a way that closed streamlines existed in the absence of maxima of vorticity 
in one flow, while in the other flow, maxima of vorticity occurred in the absence 
of closed streamlines. These flows are given by the stream functions 

Ye Ce thy dt x? Py 79/4174 

and 

Wo = ¥(x-ytxty)/2 5 

and associated vorticity fields are given by 

&, sella (x24 y-)] 

and 

Sy bes et veo) 

In the first flow, streamlines are concentric circles and vorticity is minimum 
at the origin. In the second flow (Fig. 1), there are no closed streamlines, al- 
though vorticity is maximum at the origin. Thus if there exists at all a one-to- 

one connection between concentration of vorticity and closed streamlines, it 
cannot be on the basis of kinematics or conservation of mass alone. However, 
hydrodynamics does not provide such a connection, as the computations of Hung 
and Macagno (1966, 1967) (10,11) show that the regions of closed streamlines in 
two-dimensional and axisymmetric flows of a Newtonian fluid in a channel or 
pipe with a sudden expansion do not possess interior points of maximum vorticity. 

This paper is devoted to the formulation of a new concept of an eddy related 

to closed streamlines and to the study of its fundamental properties. The new 
results obtained are summarized in the following paragraphs. 

The angular velocities of elements of material curves and surfaces are de- 

fined and are shown to be determined by two tensors of third rank. The tensors 
bring out the connection between these angular velocities, the vorticity, and the 
dissipation in a Newtonian fluid of constant properties. The tensors have more 

information about rotation than the average measure vorticity. 

The curvature and torsion of streamlines are shown to be determined by 

the angular velocities and the velocity. The whirling behavior of streamlines 
near a point of zero velocity is also shown to be determined by the angular ve- 

locities. 

General conclusions regarding closed or spiralling streamlines in plane 
flows are established in terms of the product of maximum and minimum angular 
velocities of an element of material curve in the plane of motion. It is shown 
that if the product is positive at a point of zero velocity, the streamlines spiral 
around the point, and conversely, if the streamlines spiral around a point, the 
product cannot be negative. Also if the product is positive, the curvature of the 
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Fig. 1 - Absence of closed streamlines (——) near a point of 
maximum vorticity (lines of equal vorticity are shown by ---) 

streamline at the point cannot be zero. Similar conclusions are valid for axi- 
symmetric flows without tangential component. 

A precise and general definition of an eddy is given in terms of the angular 

velocities and it is shown to be a region of positive discriminant of the charac- 
teristic equation of the deviatoric part of velocity gradient Vu-(V-wa)1/3. The 
definition implies that an eddy in one inertial frame is also an eddy in any other 
inertial frame. Although vorticity cannot be zero in an eddy, presence of vor- 
ticity is not sufficient to make a region of fluid an eddy. Also, since the dis- 
criminant is zero for a viscous fluid on a stationary solid surface, even thin 
rods can cause a large interference with eddies. This conclusion is supported 
by photographic evidence presented here. It is shown that if V2p is positive at 

a point, in the flow of a Newtonian fluid of constant properties in absence of 
body forces, the point is in an eddy. The converse is also true in plane flows. 
Hence the characteristic feature of the stress field in plane eddies is superhar- 

monic character of pressure. It is also shown that the streamlines in plane 
eddies are convex and that velocity can be zero at, at most, one point in a convex 
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eddy. In the case of incompressible fluids, if at least one streamline is closed 
around a point of zero velocity in each of its neighborhoods, and if all the deriv- 
atives of velocity do not vanish, the point is in an eddy. Furthermore, if a point 
of zero velocity is in a plane eddy, there is at least one closed streamline 
around it in each of its neighborhoods. Similar properties of axisymmetric 

eddies are also discussed. 

These results thus describe the properties of eddies in terms of angular 
velocities, vorticity, spiralling or closed streamlines, and the convexity of 
streamlines and low-pressure spots on the basis of the new concept of eddy 
which differs essentially from the prevailing notion of concentrated vorticity. 

ANALYSIS OF ROTATION 

Angular velocities of elements of material curves and surfaces are defined 
and their properties are presented in this section. Let the location of a material 
filament at time t be given by x = x(h,t), the parameter h remaining un- 
changed for a given particle during the motion. The rate of change of a differ- 

ential element dx = (0x/dh) dh is then given by 

dx = (92%/ohdt) dh = (00/dh) dh = dx-Va , (1) 

where a superposed dot indicates a material derivative and u is the velocity 
field. The rates of change of the length ds and the unit tangent vector t of the 
line element are then governed by 

dst+dst-=ds €-Va, (2) 

where 

dx=dst, t-t=1,t-t=0. (3) 

The rotation of the element is most conveniently described by the angular ve- 

locity w given by txt, since it can be seen from Eq. (3) that 

ees he te, (4) 

One can verify that the angular displacement in time interval t is equal to the 

magnitude of wAt to the first order of t. 

The angular velocity w can be evaluated from Eqs. (2) and (3) as 

w= tx(t:Vu) = tx (Vet), (5) 

where the deviatoric part of the velocity gradient is given by 

We iva = (7 a) Bayh (6) 

and I is the identity diadic. 
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We will briefly depart from the vector-diadic notation to introduce a tensor 

of third rank. Rewriting Eqs. (5) and (6) in the tensor notation, we have 

Wie orig ge “yt, Mises RK nk, tea} 
where 

Vie Me Ug 6,773. (6a) 

To exploit the symmetry in tit,, we define 

Rijn = CCijg Use + Cixe Us, j/2 

: 7 
Ce; jg Vex t Sixg V 93/2 (7) 

so that 

W; SoBe i; fp. (8) 

Each component of the angular velocity of the line element is thus a quadratic 
form in its direction cosines, and the coefficients of the quadratic form consti- 

tute a tensor of third rank. The tensor R, Sak is symmetric in ; and k and will 
be called the rotation tensor. Note that the rotation tensor and hence the angu- 

lar velocity are independent of dilation V-< . 

To analyze the rotation of a material surface, let its location at time t be 
given by f(x,t) = 0 . Note that f will be zero on the surface. If n is a unit 

normal at a given particle, 

FES Wiles han wea lome sea ea (9) 

for some )\, and 

nee Oe Pee en eo ee (10) 

Defining the angular velocity w of the normal as 

We ee a (11) 

we get 

— abe _- 

n= W x n 

and 

W = (VG) Al x R= GV x A. i12) 
Note the conjugate character of Eqs. (5) and (12). Rewriting Eq. (12) below in 
tensor notation, we have 

eee z= 12a Wr v= 'e7.¢ 2 MM = Cgji Veg TM, ( ) 

We define 
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of = / 

R i:jk.— S"eji, UR? “eK: Uj 9/2 

= (C955 ive es Cais Vig )/2, (13) 

so that 

wie= Rj 1% - (14) 

Thus each component of the angular velocity of the normal can also be written 
as a quadratic form in the direction cosines of the normal and the coefficients 

constitute a tensor of third rank. The tensor R*. jx Will be called the adjoint 
rotation tensor for reasons which will become apparent shortly. This tensor 
and the angular velocity is also independent of expansion V-%i . 

For brevity, we will call W the angular velocity of a surface element, al- 
though it is the angular velocity of the normal. 

Vorticity w, can be readily expressed in terms of the rotation tensors 
from Eqs. (7) and (13) as 

w. - R.... = RK , (15) i Lis 4 rahe} 

It is now easy to show that vorticity is an average measure of the angular veloc- 
ities. In terms of the spherical polar angles @ and ¢ (t, = cos @ cos ¢, ty = 

sin 6 sing, and t, = cos ¢), the average overall direction is 

[ { w; sin @ dé d¢ 
0 Th 

TT 7 

‘| J sin ¢ dé d¢ 

0 Sally 

= (Ry. y/4m) [ i) tjt, sin f dé dd 

0 Sat 3 (16) 

= Ris ik 6 54/3 =w,/3 . 

A similar computation can be made for w; . Vorticity is therefore three times 
the average of the angular velocities of line or surface elements taken over all 
possible directions. It is well-known that vorticity is proportional to different 

types of averages, such as the average over three mutually normal directions 
or all directions in a plane (Cauchy, 1841, and Truesdell, 1954) (12,13). 

Let us now consider a line element in the direction of t or a surface ele- 
ment normal to n such that the angular velocity of the line or surface element 
is zero. Then from Eqs. (5) and (12) 

far x 
YN 
< fax 

NS 
| =) Be 51 < 

as 
x 51 W ro) 

or 

OPSVy © sO) AO AL = Vso (17) 

for some real. The above conditions are necessary and sufficient for the an- 
gular velocity of a line or surface element to be zero. The first condition was 

essentially the contribution of Thomson and Tait in 1867 (14), and the second 
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that of Bertrand in 1868 (15). (See also, Truesdell in 1954 (13), and Ericksen in 
1955 (16).) As with Eqs. (5) and (12), the two equations here are conjugate. 

The number of possible directions of line elements of zero angular velocity 
and of normals to surface elements of zero angular velocity at a given point is 
influenced by the characteristic equation 

det |I - Vi = 0, 

or (18) 

A3 + MA-N2=O, 

where 

M=- V: V/2, N= det |Vl, t, V= 0. 

The quantity 4m3+27N? is proportional to the discriminant of the cubic equa- 
tion. It will be called "whirlicity,"" as it has an important role in deciding the 
whirling character of streamlines. 

We will recall the following theorem which is mainly in accordance with 
Thomson and Tait (1867), Bertrand (1868), and Truesdell (1954). At any point 
and time, there is at least one line element and one surface element with zero 
angular velocity. The number of distinct directions of such line elements or 
normals of surface elements are: (a) three; or (b) one, two, or infinity; or (c) 
a number determined according to whether the whirlicity is negative, zero, or 
positive. A direction refers to a vector a or -a. The details of the proof can 
be found elsewhere (Yajnik, 1964) (17). 

Next we examine the behavior near a point of zero velocity. Suppose that a 
streamline approaches it in such a way that the unit tangent vector t= % ap- 
proaches to a limit, say a4. Suppose further that the length parameter increases 
as the point of zero velocity is approached. Then for any given « >0 , there is 
some s, such that 

Peale creas Ss (19) 

As t and 4 are unit vectors, we then obtain 

ON ee 
(1-£)st-asa, 

and, by integration, we find 

1 «2 = x ‘as eee) (CS. - Se Se a Ly eS (sess 

where x; is the position vector at s = s 1: Since the central term in the above 

inequality approaches to a limit as the point of zero velocity is approached, s 

442 



Studies on the Motion of Viscous Flows--I 

cannot increase indefinitely but must approach a finite value, say s, . Applying 
the mean value theorem to each component of 

separately, and using Eq. (19), we get 

l(% - (s- s9) al S36 ,Cs9.= 3) for sp.2 Ss 2 Sy. (20) 

since 

ute-= “a (21) 

The expansion of velocity into a Taylor series and the use of Eq. (21) leads to 

or 

where 

Ns la- Val. 

Hence we see by using Eq. (5) that the angular velocity of a line element in the 
limiting direction 4 is zero. Clearly, the above argument, with minor modifi- 
cations, applies when s decreases on approaching the point of zero velocity. 

Thus a streamline approaches the point of zero velocity in such a way that 
if its unit tangent vector approaches a limiting value a, the angular velocity of 
a line element along 4 is zero. This theorem shows that the question of whether 
or not the streamline whirls around a point of zero velocity is directly related 

to the angular velocity of line elements. 

The above results were obtained for use in subsequent sections of this 

paper. It should be pointed out, however, that since these results throw light on 
the connections between the rate of rotation of line and surface elements, vor- 

ticity, curvature, and torsion of streamlines in a general way, they have a 

broader significance than many other theorems in this paper. 

The dynamical significance of the angular velocities can be gauged from the 
observation that the dissipation in a Newtonian fluid of constant properties can- 
not be expressed in terms of invariants of vorticity, but is proportional to the 

following invariant of rotation tensor: 

C4Ro oe Reeck 7, oir aa Ricknd/ Sen J) KG eget sj) We ate 

as can be verified by using Eq. (7). 
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GEOMETRY OF STREAMLINES IN PLANE FLOWS 

We shall examine in this section closed or spiralling streamlines in the vi- 
cinity of a point with zero velocity, in terms of angular velocities of line ele- 
ments. The discussion is confined to plane flows which are, by definition, flows 
in which the motion of the fluid takes place in parallel planes. The velocity is 
assumed to be differentiable. Let an inertial observer be at rest relative toa 

given fluid particle. With the z axis normal to the plane of motion, the equa- 
tions of streamlines, which lie in the plane of motion, are 

dx/dh = u, dy/dh = v, (22) 

where the velocity components u and v relative to the observer depend on co- 
ordinates x, y z andtimet. The behavior of streamlines can be easily de- 
scribed if the velocities are linear in x andy. From the results of ordinary 
autonomous equations (Hurewicz, in 1958, for example) (18), one can describe 

the streamline behavior in terms of 

_ (2u av _ du wv) tf, av)? 
>= (22 ey ey ~) "4 (3 : | (23) 

If (0u/dx) (dv/dy) - (du/dy) (dv/ex) is different from zero, the necessary and 
sufficient condition for closed or spiralling streamlines is that S be positive at 
the given particle. If, in addition, the flow satisfies the continuity equation of an 

incompressible fluid, the streamlines are closed. It may be noted that nonzero 
vorticity is necessary but not sufficient for positive S. 

The kinematic meaning of S , which we shall call swirl, can be readily un- 
derstood. The angular velocity of a line element in the plane of motion can be 
seen as parallel to the z axis from Eq. (8). It is given by 

5, COs por (2e - 38) sin d cos ¢ - = sin’ ¢ 

=F (3 - 4). (Seo) cos 2p + (2 - 4) sin 26| (24) 

for an element inclined at an angle ¢ with the x axis. Its maximum and mini- 
mum values are then 

2 f (2 7 he (25) 

Their product is the swirl, while their sum is the z-component of vorticity. 
Note that positive swirl is associated with maximum and minimum angular ve- 
locities of the same sign, and hence with the absence of any line element having 

zero angular velocity in the plane of motion. 
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To extend the results of the linear case, let a whirl point be defined as a 
point x, of zero velocity which has a segment of a streamline x=x (h) , 

h, < h< h, in each of its neighborhoods, satisfying the following conditions: 

1. For any given unit vector t , there is a point x (h) on the segment so 

that x(h)-x)=kt for some positive k . 

2. x,=(x, for some positive ¢, where x, and x, are the ends of the 
segment. 

3. The segment does not pass through x,. 

The definition essentially describes what is generally meant by streamlines 
whirling around a point. The main result in this section, which is believed to be 
new, is the following theorem. 

Theorem I: Any point of zero velocity where the swirl is positive is a 
whirl point. Conversely, the swirl cannot be negative at a whirl point. 

Some preliminary results are required for its proof. Let the point of zero 

velocity be chosen as the origin. The equations of streamlines in cylindrical 

coordinates are 

dr/dh = u_, rd0/dh,=ug- . (26) 

The conditions on the segment of the streamline for a whirl point are then that r 
does not vanish anywhere on it, that for any given a there is a point on it with 
the angular coordinate a + 2n7, n being an integer, and that 6; and @, at the 

ends differ by a multiple of 2n7. One can also estimate the velocity components 
by using the mean value theorem 

ou 
che ry < < 

Gh ap fia bas senate (27a) 
and 

ou dé 6 
aT Nader et i; ORES REESE ces (27b) 

Note that ou_/dr and dug/dr are the rate of deformation and the angular velocity 

of a radial line element. 

Now one can prove the first part of the theorem. If a neighborhood of the 
point of zero velocity is specified, we can choose a circular neighborhood of 
radius R within the given neighborhood such that the swirl is positive in the 
circle. This is possible because the swirl given by Eq. (23) is a continuous 
function. 

The streamline through any point in the circle, except the origin, can be 
continued until it approaches a point of zero velocity or the circumference, 
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since it is an integral curve of the differential equations in Eq. (22) (Hurewicz 
[18]). It will be shown in the next section of this paper that velocity in the two- 
dimensional region of positive swirl cannot vanish at two points. Hence the 
streamline through any point other than the origin can be continued until it ap- 
proaches the origin or the circumference. Now we want to show that a point can 
be chosen within the circle so that the streamline through it turns around by 27 
before it approaches the origin or the circumference. Such a streamline will 
clearly provide a segment satisfying the definition of a whirl point. 

Since the rate of deformation and the angular velocity of any radial line 
element appearing in Eqs. (27a) and (27b) are continuous functions, they take 
maximum and minimum values, say d, , d,, w; , and w,, inthe ciscle. Hence 
we have 

d; |v (dr/dh)/r > dy (28a) 

w, > d@/dh > wy (28b) 

at any point in the circle of radiusR. Since the angular velocity of a line ele- 
ment cannot vanish in a region of positive swirl, w, and w, are of the same 

sign. One obtains from Eqs. (28a) and (28b) 

A> (dr/d0)/r >B, (29) 

Where A and B are equal to d,/w, and d,/w, if w, is positive, or to dj/w, and 
d,/w, if w, is negative. Hence for any point (r,?) ona streamline through 
(r,, 6,) in the circle, we have 

A (6 - 6,)>n(r/r,) > B (6 = 4,). (30) 

If A and B are zero, the streamlines are circles and the origin is a whirl- 
point. If A is zero, the streamline through any point in the circle cannot cross 
the circle, because r cannot increase and B is zero, so that A cannot approach 
the origin. 

Suppose A is not zero. Consider a point (r,, @,) with r, =Re ?” Al inside 
the circle. If the streamline through the point touches the circumference, Eq. 
(30) would require that for the point on the circumference, A (@-96,)>27|Al, so 
that 6 and 0, differ by more than 27. Such a streamline can provide a seg- 

ment meeting the requirements of the whirlpoint. If, on the other hand, the 
streamline approaches the origin, B is different from zero and there is an in- 

termediate point where r=r, e-?'8'. Then, from Eq. (30) we have 

- 27 |B| > B(@- 0,) 

In this case, the streamline also would provide a segment required for the 
whirlpoint. If A is zero, but B is not, the above argument can be applied to any 
point r,<R . Thus, in any event, the point of zero velocity where the swirl is 
positive is a whirlpoint. 
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Suppose the swirl at a whirlpoint is negative. Let the radial line 9=9 be 
chosen to coincide with the direction of a line element at the origin that has ex- 
tremum angular velocity. Then one can see from Eq. (24) that a normal element 
at the origin will also have an extremum value of angular velocity. Let these 
angular velocities be denoted by “% and w,/2. They will have opposite signs, 
as the swirl is assumed to be negative. The differentiability of velocity permits 
us to choose a neighborhood where the derivatives of velocity occurring in Eq. 
(24) at any point differ from the corresponding derivatives at the origin by less 

than one-sixth of min (\w,|,{w,/2|). Then the angular velocity of a line element 

in the direction @=0 situated at any point in the neighborhood differs from the 
angular velocity of a parallel element at the origin by less than one-half of 
min (|wo|,|W,,/2!) . Hence the angular velocity of any line element in the direc- 

tion @=0 has the same sign as w, , and similarly the angular velocity of a 

normal line element has the same sign as w,,,. Now consider the segment of 
streamline in the neighborhood of the whirlpoint. If 6 increases from 6, to 6, 
as h increases from h, and h,, ¢ changes from values in the first quadrant to 
those in the second at some intermediate point and from the second to those in 

the third at some other intermediate point. Clearly, dg/ih cannot be negative 
at these points. One can see with the help of Eq. (27b) that neither y, nor Wis 
can be zero, and hence that swirl at the origin, being the product of w, andw_,, 
cannot be negative. A similar argument can be made when @¢ decreases as h 
increases from h, to h). This contradiction leads to the required result. 

Some light is thrown on the question of whether or not the swirl can be zero 
at a whirlpoint by the conclusion that (ou/ox) (dv/dy) - (du/dy) (dv/ox) must be 
different from zero there, provided that all of the derivatives in the expression 
do not vanish simultaneously. To see this, consider the segment of streamline 

satisfying the requirements of the definition in any neighborhood of the whirl- 

point. Now for any given unit vector t , there are two points x, and x, such 
that x,=k,t, x,=-k,t for some positive k,andk,, and as a result 

3 ei Xy TS Oo 

for a unit vector n normaltot. Then, by the mean value theorem, 

(dx/dh) - A= 0 

at an intermediate point. Hence, in any neighborhood of the whirlpoint, there is 

a particle whose velocity is normal to any specified unit vector n. 

Suppose (du/dx)(dav/ay) - (du/ay)(dv/ox) is zero at a whirlpoint. Then 

there is a nontrivial solution (a,b) to the following simultaneous equations 

(dv/dx)a - (du/dx)b = 0 

(Ov/dy)a - (du/dy)b = 0, 

and for any values of x andy, 

a [(ov/3x) x + (av/ay)y] - b [(au/ox) x + (dau/ay)y) = 0. 
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Hence as (x,y) approaches the origin, the ratio u:v approaches a:b. But if we 

choose the unit vector n inthe direction of the vector (a,b), we find that no 
matter how small a neighborhood we choose, there is always a point where ve- 
locity is normal to (a,b). 

If the continuity equation for an incompressible equation fluid is used, a 
stronger result can be obtained. Let a vortex point be defined as a whirlpoint 
where the value of ¢ in the second requirement of the streamline segment is 
unity. This ensures closed streamlines. 

Theorem II: In the plane flow of an incompressible fluid, any point of 
zero velocity where the swirl is positive is a vortex point, and con- 
versely, the swirl at a whirlpoint is positive if all the derivatives 

du/dx, du/dy, ov/ox, and @v/ay do not vanish simultaneously. 

Consider any point of zero velocity where the swirl is positive: then it is a 
whirlpoint according to Theorem I. Suppose the value of ? in the second re- 
quirement of the streamline is different from one. Then we can consider the 
two-dimensional region bounded by the streamline segment and the radial seg- 
ment joining the end points of the streamline. Since the flux across the radial 

segment is zero on account of incompressibility, the tangential component of 
velocity must be zero somewhere on the radial segment, and Eq. (27b) then im- 

plies that angular velocity must vanish somewhere. But the neighborhood can 
be chosen to be so small that swirl is positive everywhere and the angular ve- 
locity of a line element cannot vanish. Hence follows the first part of the theo- 
rem. The second part follows from Theorem I and the conclusion that (9u/ax) 

(av/dy) - (du/ay)(dv/ax) cannot vanish at a whirlpoint when the velocity deriva- 
tives do not vanish simultaneously. 

Consider the curvature of streamline at a point where velocity is different 
from zero. We see from Eq. (20) that if the curvature is zero, a line element 

tangential to the streamline has zero angular velocity. Hence the curvature of a 
streamline cannot vanish in a region of positive swirl. 

The geometrical behavior of streamlines, then, is decisively influenced by 
the angular velocities of line elements. The dynamic implications of these kine- 
matic results will become clear in the following section. 

DEFINITION AND GENERAL PROPERTIES OF EDDIES 

The formulation of a clear idea of an eddy is prerequisite to a systematic 
study of the properties of eddies. Since they are often identified in experimen- 

tal investigations by closed or spiralling streamlines, it is but natural to seek a 
formulation in terms of the angular velocities of line and surface elements 
whose intimate relation with the streamline geometry has been pointed out in 
the previous sections. This approach differs from the prevailing approach in 
which eddies are regarded a priori as regions of concentrated vorticity and no 
attempt is made to formulate an unambiguous notion of an eddy. 
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A fluid particle in a plane flow may be regarded as being in an eddy, de- 
pending on whether or not the streamlines, relative to an inertial observer 
which is at rest with the particle, possess the whirling property in the particle's 
vicinity. Alternatively, we may decide whether or not a particle is in an eddy on 

the basis of positive swirl or the absence of a line element having zero angular 
velocity in the plane of motion. Note that any line element normal to the plane 
and any surface element parallel to the plane have zero angular velocity. 

Generalization to arbitrary three-dimensional flow is facilitated by the 
theorem of Thomson (14) and others (see the section, Analysis of Rotation, 
which was presented earlier in this paper). The theorem asserts that there is at 
least one line and one surface element having zero angular velocity. Note also 
that in flow u=Ay, v=0, and w= Az , the line elements parallel to the x or z 
axis have zero angular velocity, and that there are planes in which line elements 
with zero angular velocity are absent although the streamlines do not show any 
whirling property. Consequently, it is necessary to examine the line elements 

in a chosen plane. Hence the following definition: 

A fluid particle is said to be in an eddy at a given instant if, at 
that time, all the line elements, which are parallel to a sur- 
face element of zero angular velocity, have nonzero angular 
velocity. 

Any particle in a region of positive swirl in a plane flow is certainly in an 
eddy. In particular, any particle in a rigidly rotating fluid or the core of a Ran- 

kine vortex is in an eddy. It will be shown later that no fluid particle in a plane 
Couette flow is in an eddy. 

The advantages of the above definition are many. Since the properties 
given in this section include connections with streamline geometry, vorticity, 
and low-pressure spots, the definition pinpoints a characteristic property of the 

phenomena. Furthermore, it provides a basis for deduction of properties and 
interpretation of experimental data. Several qualitative observations about the 
flow with eddies can be readily explained, as will be seen later. The analytical 
content of the definition can also be readily extracted in the form of the follow- 

ing theorem: 

Theorem Ill. A fluid particle is in an eddy at a given instant, if and 
only if its whirlicity 4M?+27N? is positive. 

The theorem of Thomson (14) and others, as was described earlier, ensures 
that there is at least one surface element of zero angular velocity. With the 
z- axis normal to such a surface element, V,, and Ve vanish according to Eq. 

(12), and the angular velocity of a line element in the x-y plane is parallel to 
the z axis and is given by 

cos 26 + (Was WP)" sin 20|/2, (31) 

@ being the angle made by the element with the x axis. The swirl in the x-y 
plane, being a product of maximum and minimum velocities, is a-£* , where 
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aBDVeEMINES Ebi so veu a! BarV 72 ax(Vig. sav aly: (32) 

Since the invariants M and N are given by 

iL . 2 Me iV tapvitih eles Simos Ti wo’ cizet  sesti lA ocbe Maten Ss is 

(33) 
NeaiVal QV DeVeg avy y Mi yao2ep, 

the whirlicity can be expressed as 

QMS" s FIN? = 4 (a= B2) [(a = 62) + 967) 2. (34) 

Hence the whirlicity is positive if, and only if, the swirl 2 - 8? is positive and 
the theorem follows. 

Since the whirlicity is an invariant under Galilean transformations, an eddy 
in one inertial frame is also an eddy in any other. 

Unlike vorticity, the whirlicity is nonlinear. Whereas the superposition of 
two irrotational flows always leads to an irrotational flow, flows with zero 
whirlicity behave differently. Two plane Couette flows in perpendicular direc- 

tions (u= Ay, v=w=0; v=-Ax, u=w-=0), when superposed, lead to rigid 
body rotation. It is to be expected then that an unstable flow with a wavelike 
disturbance may have eddies, although neither the streamlines of the flow nor 
those of the disturbance may display any whirling property. Many flows and 
disturbances analyzed in the hydrodynamic stability theory have this property. 

It is known that the appearance of eddies transforms the flow in a marked 
way and that the dynamic and thermodynamic consequences of the transition are 
unmistakable, whereas the picture of concentrated vorticity does not give any 
clue to the difference in kind between the flows with eddies and those without 
them (the definition given above fills this lack). Let the z axis be chosen as in 
the proof of Theorem III. Now if the whirlicity is zero or negative at a point, 
there is a line element at the point in the x-y plane with zero angular velocity, 
and x the axis can be chosen in its direction. Then Eqs. (8) and (14) imply that 
dv/dx, ow/ax , and gw/dy are zero, so that the convective part of acceleration 

can be written in the canonical form: 

uQu/dx + Vou/dy + wou/dz 

vov/ay + Wav/dz 

wow/ dz. 

If, on the other hand, we similarly examine a particle in an eddy, the form 
for the convective part of acceleration would be 
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udu/ dx + vou/oy + Wwou/daz 

udv/dx + vav/dy + wov/dz 

wow/ dz. 

Thus the inertia terms introduce a stronger coupling between the equations 
in the presence of eddies. This coupling offers an explanation for larger trans- 

fer of momentum and energy in the presence of eddies. 

Consider a surface on which fluid velocity vanishes everywhere. Clearly, 
the angular velocity of an element of such a surface is zero, and so also is the 
angular velocity of a tangential line element. The arguments used in Theorem 
III lead to the conclusion that particles on such a surface cannot be in an eddy. 
The significance of the conclusion stems from the no-slip condition. If a sta- 

tionary, impervious solid is introduced in an eddy, the fluid particles at the 
solid boundary would cease to be in the eddy and the value of whirlicity would 
decline in the neighborhood of the solid boundary. Notice that the viscosity of 
the fluid enters in the argument only through the no-slip condition and that the 
geometry of the surface does not enter the picture at all. Hence, it can be con- 

cluded that if a stationary, impervious, thin bar is introduced in an eddy of a 
fluid of low viscosity such as water, there will be a noticeable change in the 
flow, although the diameter of the rod may be very small in comparison with the 
diameter of the eddy. A crucial experiment to test this conclusion was made at 
the University of California, Berkeley. A steady draining vortex was generated 
in a vertical circular cylinder of 11-1/2 inches diameter, turning at 20 rpm and 
having an axial hole of one-inch diameter. The apparatus is sketched in Fig. 2 
and was described by Einstein and Li in 1955 (19). The depression of the water 
surface indicates roughly the pressure distribution in a horizontal plane, as 
vertical accelerations are low. Low-pressure gradients in the horizontal plane 

are associated with small slopes of the free surface. If the introduction of a 
bar reduces the whirlicity and thereby constrains the whirling motion, its con- 
sequences on the free surface would be apparent. When a bar of 1/8-inch diam- 
eter was kept near the boundary of the drain hole, the depression in the water 
surface reduced by 70%, although the cross-sectional area of the bar was less 
than 3% of the area of the hole (Fig. 3). When it was placed at the axis of the 
hole, the depression was reduced by 30%. Comparable reductions were obtained 
with rectangular and square bars. Such noticeable effects of thin, solid mem- 
bers on eddies have also been observed in the wake of a bluff body (Roshko, 
1954) (20) and in the leading-edge vortex from a delta wing (Harvey, 1962). 

This constraining effect has to be taken into account in the interpretation of 
data obtained by small probes in eddies, and the interference of the flow may be 
considerably larger than what one would expect from the probe size. The con- 
straining effect can also be used as an inexpensive and highly effective method 
of control of vortices near the outlets of reservoirs, or the intake chambers of 

pumps (J. P. Berge, 1966). 

It is to be expected that vorticity cannot vanish in an eddy; for no line ele- 
ment has zero angular velocity in a particular plane, and hence the normal 
component of vorticity, being the average of the angular velocities of all such 
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Fig. 2 - Apparatus for creating 
a draining vortex 
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thin rod with the vortex 

Fig. 3 - Draining vortex experiment 
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line elements, cannot be zero. Eddies may thus arise in a region of sensible 
vorticity such as the boundary layer or the wake of a body. 

One may also expect that if the velocities in the vicinity of a particle are 
parallel, it cannot be in an eddy. With the z axis in the direction of the veloci- 
ties oN 355 Vee, Vpxs and V., can be seen to be Zero and so also whirlicity. 
Hence rectilinear flows, including plane Couette and Poisuelle flows, do not 

have any eddies. 

It should be remarked in passing that an eddy is thought to be a connected 
set of particles of positive whirlicity. For the sake of definiteness, we will take 
it to be a maximal connected set. This avoids the possibility of intersection of 

eddies. 

Consider the boundary of an eddy where whirlicity vanishes. The velocity 

of propagation normal to itself is then given by 

3(4M3 + 27N?)/ot + c|v(4M3 + 27N2)| = 0, 
or 

2 / . = 2M? _aM/at_+ 9NaN/at (35) 
|(2M?VM + 9NVN)| 

if the denominator is different from zero. Since this velocity will in general be 
different from fluid velocity, particles may enter or leave an eddy. 

Now let us consider eddies of an incompressible fluid. The invariants M 

and N reduce to 

M = -Vau; Va/2 = -(V-u)/2., (36a) 

N = det|Val . (36b) 

Thus M is proportional to the divergence of acceleration, whereas N? is a local 
measure of three-dimensionality of the flow. If N is zero, there exists a non- 
zero vector a such that (Vu)a vanishes and the flow in the vicinity of the parti- 

cle relative to an observer travelling with the particle is normal toa. Note 
that three-dimensionality always favors the occurrence of eddies. This conclu- 
sion is compatible with the observations of more prevalent eddies in three- 
dimensional turbulent flows than in two-dimensional flows. 

Since the equations of motion of a Newtonian fluid of constant properties are 

pa = - Vp + pF + ua, (37) 

(,2,p, and F being respectively, density, coefficient of viscosity, pressure, 
and body force, the invariant M can be calculated with the help of a continuity 

equation as 

M= (V2p - pv'F)/2 . (38) 
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Hence the characteristic feature of the distribution of pressure and body 

force is such that (v?p- ,»v-F) is greater than a certain datum which is deter- 
mined by the local three-dimensional character of the flow, i.e., - 30 (2N?)!/3. 
The datum value can be readily calculated in certain flows such as plane flows 
and axisymmetric flows without tangential velocity, because elements of certain 
planes are known to have zero angular velocity. In any event, a fluid particle is 
in an eddy if V*p-,v-F is positive. When gravitational force is the only body 
force, this sufficient condition reduces to positive V?p. Regions where mini- 
mum pressure occurs will particularly have eddies. This is fully supported by 
observation. 

Eddies in plane flows have interesting properties. Because a surface ele- 
ment parallel to the plane of motion has zero angular velocity, the characteris- 
tic kinematic property of an eddy is positive swirl or the absence of a line ele- 
ment in the plane of motion having zero angular velocity. The component of 
vorticity normal to the plane cannot be zero in an eddy, and the circulations 
along any two closed curves in the plane within an eddy have the same sign. 
this property can be used to distinguish a clockwise eddy from a counterclock- 
wise eddy. Also, Theorem I implies that a point of zero velocity in an eddy is a 

whirlpoint. The results in the previous section of this paper further imply that 

the curvature cannot vanish in an eddy. The center of curvature of a streamline 
in an eddy remains on one side, as the curvature is continuous and finite if the 
velocity is differentiable and nonzero. Convex streamlines are thus to be ex- 
pected in eddies. Indeed, the computations of Yih in 1959 and 1960 (21,22) and 
Michalke in 1964 (9) show such streamlines. 

If velocity vanishes at two points in the plane of motion, 5v/9x vanishes at 
an intermediate point according to the mean-value theorem, the x axis being 
parallel to the line joining the points. The zero angular velocity of a line ele- 
ment at the intermediate point parallel to the line ensures zero or negative 

swirl. Hence if the two-dimensional cross section of the eddy is convex, veloc- 
ity cannot be zero at two points in the cross section. 

The intimate relation between the closed streamlines and plane eddies of an 
incompressible fluid is brought out by Theorem II. Ifa particle in an eddy has 
zero velocity, it is a vortex point. Conversely, a vortex point is in an eddy if 
the derivatives du/dx, du/dy, ov/ox, and dv/ay do not vanish simultaneously. 

The dynamic characteristic property of a plane eddy of a Newtonian fluid of 
constant properties is readily obtained from Eq. (38) and from the observation 
that N is zero everywhere. Thus a fluid particle in such flow is in an eddy if, 
and only if, v2p-,v-F is positive. When gravity is the only body force, super- 
harmonic character of pressure is then the essential feature. If pressure is 
minimum at a point within a region in the plane of motion, then there is an eddy 
in the region, because Vp is positive somewhere in the region. The optical 

method of identifying eddies by locating low-pressure spots in waterflows is 
justified by the above argument. 

Eddies in axisymmetric flows without a tangential velocity component have 
analogous properties, although the different form of the continuity equation 
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ou, or ar u,/5 a0 du,/9z = O (39) 

introduces some differences. Since any element of a meridian plane has zero 

angular velocity, the positive value of swirl ¢- 6? is a characteristic property 

of an eddy where « and £ as given by Eq. (32) can be expressed in the cylindri- 

cal coordinates 

a "I (ou,/or) (du,/dz) - Goud Log) ou BE) 
(40) 

B= - (du,/or + 9u,/dz)/2 = u,/2r. 

Hence, from Eqs. (33) and (38), 

v2p - pv « F= 2p (a - B?) - 68". 

The characteristic dynamic property of such an eddy is then 

Vip - py: F >= 39 (u,/r)?'/2 (41) 

In particular, a particle at rest is in an eddy only if Vp - «’ - F is positive. 

Since Theorems I and II can easily be extended for the axisymmetric case, 

all the kinematic properties, with minor modifications, are valid for axisym- 

metric situations. 

CONCLUDING REMARKS 

Mathematical representation for the angular velocity w of a fluid line ele- 

ment and of the angular velocity of a fluid surface element are derived here. 

These angular velocities are shown not to depend on expansion u, ;. Vorticity, 

on the other hand, is shown to be three times the average of either velocity. 

The relation of curvature of the fluid line element, its velocity, and its angular 

velocity is derived, but to complete this fundamental relation it is necessary to 

develop the equivalent of Frenet's formula in terms of the Eulerian derivative. 

This has recently been obtained by Paul Lieber and his former student, Kirit 

Yajnik, on the basis of the work presented in this paper. The results bring out 

the differential-geometrical features of torsion of the fluid line element. The 

behavior of the line element in the vicinity of a singular point is decisively in- 
fluenced by the angular velocity w of the line elements at the singular point. 
The new definition of an eddy given in the present paper and its relation to 
whirlicity as it is defined here, has been deduced. In Theorem 3, which gives 
the relation between whirlicity and eddy, we have considered whirlicity to be 
positive. However, by considering it to be zero and/or negative, interesting 

results have also been recently obtained by Lieber and his student, which evi- 
dently concern the development of secondary and turbulent flows. These recent 
results which rest incisively on the results of the present paper, will be pub- 

lished in due course, and will point up the significance of the results presented 

here. 
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Studies on the Motion of Viscous Flows--Il 

li—Aspects of the Principle of 

Maximum Uniformity: A New and 

Fundamental Principle of Mechanics 

Paul Lieber 
University of California 
Berkeley, California 

INTRODUCTION 

A comparative study of the principles of classical mechanics has revealed 

that they are only conditionally equivalent, and that questions concerning their 
equivalence and completeness cannot be put with meaning, without naturally 
evoking a new concept pertaining to the existence in nature of categories of in- 
formation (1). The emergence of this concept in this study, shows that the 
equivalence or nonequivalence of the principles of mechanics, considered as 
propositions about the world of mechanical expérience, should be decided ac- 
cording to the nature of the information which they do and can render explicit 

about it. 

The observations and conclusions noted above, were developed by focusing 
attention on the principles of Newton, Gauss, and Hertz. In so doing, it was 
demonstrated that general and fundamental global information on the distribution 
of internal forces in many-body systems, which is rendered explicit and without 
integration by using the principles of Gauss and Hertz, at present appears inac- 
cessible in terms of the principles of Newton (2). This information is obtained 
within the edifice of the principles of Gauss (3) and Hertz (4), by reintroducing 
and underlining therein the concept force, which they sought to eliminate as a 

primitive notion, by its geometrization in terms of geometrical constraints. 
This was done for a nontrivial class of mechanical systems which included the 
gas model used by Maxwell, by first establishing and then using a fundamental 
connection between nonholonomic, unilateral, geometrical constraints and the 
impenetrability of matter (Refs. 5 through 11). In so doing it was found that the 
primitive role ascribed by Newton to the concept force is linked with the primi- 

tive concept of the impenetrability of matter, conceived here as the physical 

basis for the geometrization of force in terms of the geometrical constraints as 
used by Gauss and Hertz. That is, the ultimate ontological, geometrical prop- 
erty by which matter evokes its being and thus its existence in space-time, is 

local impenetrability, and it is this property of matter and evidently only this 
property which can account for the existence in nature of stringent geometrical 

constraints. Impenetrability of matter is accordingly envisaged here as an 
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ontological-geometrical property of position (local property) rather than as a 
property of extension. * 

The Principle of Maximum Uniformity was first established! in Ref. 2 by 
generalizing (to all classical mechanical systems) a theorem obtained on a 
global-positive definite measure of the internal forces for a particular class of 
mechanical systems. The conception of the principle of maximum uniformity 

ascribes to the force which is designated by the symbol F in Newton's proposi- 
tions a much more fundamental and universal aspect in nature, than it does to 
the terms which pertain to the acceleration of a material particle upon which 
the force is impressed. Accordingly, the restricted covariance of the proposi- 
tions of classical mechanics to Galilean frames, derives from the acceleration- 
dependent terms, and not from what is symbolically represented by F in New- 
ton's law which expresses the total connection between a particle endowed with 

an inertia 'm' and the universe in which it exists. 

This way of thinking about F, ascribes to it the same role as does Mach's 
principle to the inertia of a material particle, and consequently bestows upon it 
an equal significance. This allows the reconciliation of a principle of universal 

correspondence with Bohr's correspondence principle, by ascribing all forces 
in nature, including those which emerge in the domain of classical mechanics to 
the immutable processes in nature from which the dimensional universal con- 

stants emanate. In this way, the principle of maximum uniformity is directly 
extended to every domain of natural phenomena (nonclassical and classical), and 
all forces in nature which are posited to sensation and sense-awareness are 
thus conceived as the manifestations of this principle. 

The principle of maximum uniformity can be formulated in such a way that 
it embraces in addition to the equilibrium propositions of classical mechanics, 
a general stability principle which naturally accommodates chronological time 
and consequently implies historical commitment. 

The concept of nonuniformity refers to strictly intensive properties of 
space-time structure. These have familiar manifestations which include asym- 
metry, nonhomogeneity, isotropy, structure, curvature, and the number of pa- 
rameters necessary for the description of a phenomenon and the gradients of 
these parameters. Other examples include the impression of a fossil, printing, 
labelling, symbols, alphabet, and language. Force and information are of course 
outstanding examples. All of these are aspects of nonuniformity and would 
therefore be interconnected by a general proposition which pertains to, and con- 
ditions, a global measure of a fundamental aspect of nonuniformity in nature. 

*This in effect establishes within the edifice of classical mechanics the impene- 
trability of matter as the physical foundation of force; and the geometrical con- 
straints as an (geometrical) intermediary between force and impenetrability; 
and accordingly as a geometrical manifestation of their ontological connection. 
This principle was first established in (2) in a restricted sense and has since 

been generalized as it is presented in this paper. 
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As the concept nonuniformity refers to an intensive and general aspect of 
nature, it is not restricted to particular scales and therefore gives a basis for 
unifying phenomena that depend simultaneously on many scales. A principle 
which restricts a global measure of uniformity is therefore equivalent to a law 
that conditions, and thus connects, phenomena which are described and coordi- 
nated over a large range of space-time scales. Accordingly, the principle of 
maximum uniformity leads naturally to the concept of control centers which are 

seated in restricted space-time domains, and which control and organize the 

function of matter extending over much larger domains of space and time. The 
principle of maximum uniformity implies that these control centers are domi- 

nant sites of action in a global domain which it conditions. 

To evolve concepts necessary for comprehending the nature and function of 

control centers and for formulating general propositions which condition non- 
equilibrium thermodynamical processes, it is necessary to find a way simulta- 
neously to consider, condition, and thus connect natural phenomena which exist 
and which are coordinated over a large range of space-time scales. Only in 
this way can we expect to gain an insight into the nature of these centers which 

evidently are universal aspects of nature. They are of course phenomenologi- 
cally and strikingly displayed in the performance of living materials, by their 
facility to structure, organize, and coordinate the functions of matter which ex- 
tends over a large range of space-time scales. The principle of maximum uni- 
formity conceived as a generalization of explicit information, obtained as a 
theorem on the distribution of internal forces for a class of dynamical systems, 
does provide a conceptual framework for unifying and thereby interconnecting 
phenomena coordinated over a large range of space and time scales. It also 
provides a basis for seriously attempting a formulation of propositions govern- 

ing strongly nonequilibrium thermodynamical systems. 

Finally, this paper will consider the principle of maximum uniformity as a 
basis for formulating a general proposition pertaining to nonequilibrium thermo- 
dynamics, by citing the correspondence between the mechanical concept 'force' 
and the thermodynamical concept ‘availability,’ each conceived here as particu- 
lar manifestations of the principle of maximum uniformity. Certain hydrody- 
namical aspects of this principle and its role in the conception and application 

of variational principles in hydrodynamics will also be presented. 

THEORETICAL CONSIDERATIONS 

The present paper is the first of a series concerned with the identification 
of various aspects of evolution and their connection with a universal evolutionary 

process which emanates from irreducible and universal processes, identified 
here with the Dimensional Universal Constants of Nature. This paper is spe- 
cifically concerned with the nature of force, equilibrium, nonuniformity, and 
stability, envisaged here as particular aspects of evolution which is conceived 
as a universal process that reconciles everywhere in nature, constancy, and 

change. 

An outline will be given of the ideas and reasoning which led to the concep- 
tion of a proposition that may prove to be a general law of nature, fundamentally 
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endowed with aspects of evolution. This proposition embraces the laws of clas- 

sical mechanics, a general stability law, historical thrust and commitment, and 
information relevant to the formulation of a theory conditioning strongly non- 
equilibrium thermodynamical processes. The stability law so obtained bears 
the same kind of relation to stability, envisaged here as a general aspect of the 
performance of classical mechanical systems, as do the laws of classical me- 
chanics to another equally general aspect of their performance — equilibrium. 

The conception of the general proposition which embraces this stability law 
is inextricably linked with a conception of the nature of force. By this concep- 
tion, force is the universal and most fundamental global aspect of nonuniformity 
posited in nature to sense perception and sense awareness, and from which all 

sensation, experience, information, and consequently knowledge ultimately origi- 
nate. In the particular case of classical mechanics, force is here conceived of 
as the universal manifestation in sensation of global nonuniformity in nature, 
i.e., as the resultant of all nonuniform connections that exist between an inertial 
body instantaneously situated at a particular location and the universe in which 
it is contained. From these considerations it follows that the dynamical aspect 
of classical mechanics (more specifically, the kinematical aspect), which is 
based on a conception and description of processes ascribed to immutable bodies 
in motion, is significantly more restricted and consequently less fundamental 
than is the aspect of nature symbolically designated by F in Newton's proposi- 
tions. I use the word designated, rather than represented in order to emphasize 
that this symbol, as it is used in classical mechanics, is not brought into corre- 
spondence with the anatomy and structure of nature's space-time manifold. 

A critical examination of Newton's formulation and use of the known laws of 
classical mechanics does in fact suggest that he may have also tacitly conceived 
of force as an ultimate and global aspect of nature, and of his law of motion as a 
relationship between this ultimate aspect of nature and the motion of a body en- 
dowed with inertia. This point of view differs essentially from that taken by 
most of his followers as well as from a consensus among contemporary scien- 
tists who choose to interpret his law of motion as a definition of force. Accord- 

ing to the ideas of this paper, force as designated by the symbol F in Newton's 
propositions, in fact dominates the established laws of classical mechanics 
which are here understood to express only some and consequently not all of its 
fundamental aspects in nature. According to this view F assumes the funda- 
mental and dominant role in Newton's propositions. It dominates the dynamical 
term appearing in Newton's law of motion, which expresses only one of its par- 

ticular manifestations within the domain of classical mechanics, and conse- 
quently does not define it. Indeed, by this symbol, Newton implicitly designated 
the resultant and thus total connection between a body endowed with inertia and 
the universe in which it exists. In so doing he implicitly assumed that this con- 
nection is independent of the frame of reference in which the motion of the body 
is described and calculated. This is tantamount to postulating by implication 
that the global aspect of nature symbolically designated by F, and the connection 
it represents between a body and the universe, is covariant under all coordinate 
transformations. By treating force in this way Newton evidently displayed hu- 
mility and wisdom. Humility, because he instinctively realized that the nature 
of the global connection between a body and the universe in which it exists is the 
most fundamental and least understood aspect of mechanics; and wisdom, by 
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treating force as primitive and thereby not imposing arbitrary restrictions on 

what is not understood of it. The interpretation given in the present paper to 
force as it appears in the propositions of classical mechanics is not presented 

in Newton's writings, but rather is inferred here from its usage and the way the 

symbol F is formally treated in his propositions. From the above considera- 

tions it follows that the global connection designated by F and called force, has 
the same stature in classical mechanics, as does inertia interpreted according 

to Mach's principle, according to which inertia is also a manifestation of a 
global connection between a body and the universe —a connection which however 
is characterized by a scalar, and is therefore intrinsically endowed with high 
uniformity. 

What is strictly local in Newton's propositions is the kinematical content on 

which their dynamical aspect is based. It is this dynamical and local aspect 
which restricts their covariance to inertial frames and consequently limits their 
generality. From this it also follows that it is naive to interpret Newton's law 
of motion as a definition of force, as it is nonsense to define a fundamental as- 
pect of nature that has unrestricted covariance, in terms of an aspect whose co- 
variance is limited to inertial frames. We see here again, from this point of 
view, that force does in fact dominate the laws of classical mechanics. 

These considerations show that in classical mechanics, the presence of a 
resultant force impressed by the universe on an inertial body which is conse- 
quently not free, implies a nonsymmetrical and thus nonuniform connection be- 
tween the body and the universe. When the connection between an inertial body 
and the universe is symmetrical and thus uniform —in the particular sense that 
individually impressed forces cancel vectorially — the body is then said to be 
free according to the established laws of classical mechanics and consequently 

moves according to Galileo's principle. We shall show in the section titled 
"Hierarchies of Uniformity' that there in fact exists a hierarchy of free bodies, 
i.e., bodies which can with meaning be distinguished as being more or less free, 
but all of which are equivalent and therefore not distinguishable by the estab- 

lished laws of classical mechanics. 

These and other considerations concerning the nature of force made within 
the framework of classical mechanics are sufficient to demonstrate that all 
forces in nature may be conceived of as manifestations of the existence in 
nature's space-time manifold of nonuniform connections between inertial bodies 
and the universe. According to this thinking, forces that are revealed in the 
domain of classical mechanics emerge from the same ultimate and universal 
processes in nature as do all other forces. Force, thus conceived as the uni- 
versal manifestation of nonuniformity in the space-time manifold posited to 
sense-perception and to inertial bodies embedded in this manifold, brings into 

universal correspondence the various domains of physical theory which we have 
by convention learned to distinguish as classical and modern. These ideas and 
considerations are particularly designed to point out the fundamental connection 
between nonuniformity in nature and in force, and to establish the thesis that 
force is the universal manifestation of these nonuniformities invoked in sensa- 
tion and experience. 
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I shall now introduce the observations and ideas which led me to the con- 
ception of the principle of maximum uniformity in which force is conceived as 
the fundamental physical aspect of nonuniformity. The identification of a natural 

law is not an exercise in formal logic, nor is what its propositions assert, prov- 

able. General propositions about nature are testable only by experience — by 
what they predict and explain of it. In the present case the principle of maxi- 
mum uniformity was discerned by fully generalizing explicit global information 
which was obtained as a theorem for a class of dynamical systems, by suitably 
modifying and using Gauss's and Hertz's formulations of the principles of clas- 

sical mechanics (2). This information pertains to a global, positive, definite 
scalar measure of the internal forces generated at each instant within such a 
system. The modifications of the Gauss-Hertz variational principles of me- 
chanics which render this general information explicit and without quadrature, 
consist of ascribing to force the dominant role in mechanics, and of identifying 
all forces in nature with an ontological-geometrical basis for the production of 
stringent geometrical constraints, which were in Refs. 2, 6, and 9 originally 
conceived to emerge from the impenetrability of matter understood as a prop- 

erty of position. This information, which bears directly on the fundamental 
problem of continuum mechanics, has not been made explicit, and as far as I 

see cannot be made explicit by Newtonian mechanics in which the only represen- 
tation given to force in its propositions is vectorial. This means that in the sig- 
nificant sense of information-rendering, the various formulations of the princi- 
ples of mechanics are only conditionally equivalent. This development led me 
inexorably to the concept of 'Categories of Information,' in terms of which 
questions concerning the equivalence and nonequivalence of various formulations 

of the principles of mechanics can be rationally examined and resolved. This 
led to identification of eleven distinct yet related categories of information, by 
examples derived from familiar as well as more sophisticated aspects of expe- 

rience. Once cited, these examples invoke consensus (1). 

The global information so explicitly obtained as a theorem on the distribu- 
tion of internal forces, asserts that a positive, definite scalar measure of all 
the internal forces is instantaneously less for the actual motion, than it is for 
any other motion which satisfies the initial conditions and the geometrical con- 

straints (as well as the external forces) which are instantaneously impressed 

upon the dynamical system. This theorem was established for a particular 
(nontrivial) class of dynamical systems. For this class, the scalar measure of 
the internal forces can be directly interpreted as a global measure of nonuni- 

formity in momentum space. 

The principle of maximum uniformity as it pertains to classical mechanics 
and classical continuum mechanics was obtained by (a) interpreting the infor- 
mation obtained from the above theorem as a particular aspect of a general law 
which holds in all mechanical systems, and (b) introducing the concept of condi- 
tionally stringent geometrical constraints and relating these to material prop- 
erties through which they are implemented in nature. This brings the principle 
of maximum uniformity into correspondence with the thermodynamical aspects 
of the equations for the constitution of various materials, and relates the idea of 
conditionally stringent geometrical constraints to uncertainties in the initial 

conditions from which historical commitment, causality, and a general stability 

principle naturally emerge. 
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The phenomenological description of the performance of classical mechani- 
cal systems, reveals two general and mutually independent characteristics; 
equilibrium and stability. The known propositions of classical mechanics refer 

strictly to equilibrium, by invoking the condition that forces be instantaneously 
in equilibrium everywhere and for all time in the system. This is their infor- 

mation content. They report nothing of stability which is an equally general and 
fundamental aspect of the behavior of classical mechanical systems. The laws 
of mechanics give but limited expression to the principle of maximum uniform- 
ity by asserting that the forces acting everywhere in a system sum vectorially 
to zero in all directions. This restriction allows a multiplicity of directional 

and spatial distributions in the magnitude of the forces impressed upon a body, 
but without exercising a condition on preferred distributions which the stability 

principle presented here, in fact, does. 

Concerning the Nature of Evolutionary Adaptation 

The considerations noted above help demonstrate that force, equilibrium, 
and stability are particular manifestations of an overriding tendency in nature 
to increase a global measure of uniformity identified with the global structure 
of the space-time manifold. This process is envisaged here as universal and 
conditioned by the principle of maximum uniformity, with the following postu- 
lates: that force is the instrument for increasing uniformity in nature, or what 

is equivalent —the instrument for effecting reduction of global nonuniformity 
existing in the space-time manifold; that all forces in nature emerge from these 
global nonuniformities, and constantly act to reduce them; that forces are the 
universal manifestations of nonuniformities in nature insofar as they are di- 

rectly posited to sensation. 

Evolutionary adaptation is envisaged here as a universal aspect of all proc- 
esses in nature; an aspect which reconciles constancy and change in all of their 
ramifications in natural phenomena. The thrust of evolutionary adaptation, so 
conceived, derives from the ultimate processes embedded in the space-time 

manifold, which drive and structure the manifold by irreversible connections 
that must necessarily exist between these ultimate processes and the manifold. 
The irreversible connections are implied by the immutability of these ultimate 
processes, called here the universals, as they are reflected in and revealed by 
the 'Dimensional Universal Constants of Nature,' with which they are here 
identified. 

The universal adaptive process described above has been conceptually 

identified with and has emerged from a conceptual model of nature's space-time 
manifold that is endowed with certain essentially ontological features inferred 
from the dimensional universal constants (7). These ontological characteristics 
were independently discerned in a concurrent study initiated in 1947, which is 
based on Gauss's and Hertz's formulations of the principles of classical me- 
chanics. Both Gauss and Hertz were motivated by a quest to understand the 
nature of force by attempting to establish force on a strictly geometrical foun- 

dation. This endeavor was initiated by Gauss in 1829 and culminated at the turn 

of the century in Hertz's last and monumental work entitled "Principles Of Me- 

chanics.'"' In this profound and beautiful work Hertz formally constructs a 6N 
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dimensional Euclidean manifold in which the motion and state of a classical me- 
chanical system consisting of N bodies free of prescribed forces, are described 
and represented. Hertz restricts the admissible motions and states of the me- 
chanical system, by formally subjecting the coordinates of its bodies to con- 
straints which in the most general case are considered as nonintegrable and 
therefore nonholonomic. As the application of these geometrical constraints to 
a body restricts its freedom geometrically, these restrictions must emerge in 

the Newtonian scheme as forces. 

The study based on the Gauss-Hertz formulations* has produced two results 
which bear on the conception of the principle of maximum uniformity and on the 

identification of a physical, i.e., of an ontological-geometrical basis for the pro- 
duction of actual, stringent, holonomic as well as nonholonomic constraints in 
nature's space-time manifold. This ontological-geometrical basis gives physi- 
cal support and justification for the existence in nature of the geometrical re- 
strictions which Hertz used to effect a formal reduction of force to geometry, 
and serves to identify the formal representations he gave to nonholonomic con- 

straints, with experience and thus with nature. 

The same study revealed that Hertz's construction, in which he formulated 
a general law governing the motion of forceless mechanical systems subjected 
to nonholonomic geometrical constraints, and which he showed renders valid all 
previously known formulations of the laws of classical mechanics, also accom- 
modates the formulation of a new and general stability law cited above. This 
law which bears the same kind of general relation to stability as the established 

laws of classical mechanics do to equilibrium, is found to be independent of the 

known laws of mechanics and to embrace fundamental and general information 

not included in these laws. This information bears on historical thrust and 

commitment and derives from an adaptive-evolutionary process ascribed di- 

rectly to the geometrical restrictions which impress nonuniformities on the 

space-time manifold, and from which all forces are understood here to emerge. 

This entails the identification and classification of holonomic and nonholonomic 

ontological-geometrical constraints into the following types: (a) Active Strin- 

gent Constraints, (b) Passive Stringent Constraints, and (c) Conditionally Strin- 

gent Passive Constraints. This classification led naturally to the idea that the 

annihilation of conditionally stringent passive constraints which are ascribed 

here to universal congruence restrictions impressed on the space-time mani- 

fold by the irreducible universals identified by the dimensional universal con- 

stants, constitutes a fundamental and general instrument of adaptation in the 

space-time manifold. It is this crucial instrument that allows one to conceive 

and posit a general stability law for classical mechanical systems and that af- 

fords, according to the principle of maximum uniformity, the mechanism which 

is essential for physically producing the required many-to-one mappings evident 

in biological systems. 

The annihilation of conditionally stringent constraints is accompanied by 

consequent modifications of the forces emanating from the nonuniformities in- 

duced by them in nature's space-time structure. According to the observations 

*Some results of this study are presented in Refs. 1 and 2. 
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and reasoning of this paper, the annihilation of conditionally stringent constraints 
is envisaged as an essential feature and instrument of adaptation, conceived here 
as a general and universal aspect of all processes in nature originating in the 
space-time manifold. This universal process of adaptation in nature and conse- 
quently the process of annihilation of conditionally stringent constraints upon 
which it incisively depends, follow, by the thesis of this paper, the principle of 
maximum uniformity. 

Concerning Aspects of Uniformity and Nonuniformity 

In this section, some significant aspects of uniformity and nonuniformity 

revealed in experience are cited. This is done to point up their universal role 
in natural phenomena, and as a consequence the strong implications they have 

for the principle of maximum uniformity which will be further examined in depth 
in a subsequent paper. 

The Aspects of Uniformity include — 

Symmetry 

Equilibrium: local, global, spatial, and temporal 

Stability: local, global, spatial, and temporal 

Isotropy: a local aspect 

Homogeneity: a global aspect 

Constancy 

Invariance 

Covariance 

oOnnNnt aon fF WwW NY FE Law 

= (=) Correspondence 

_ —_ Element 

Order 

13. Reproducibility: the ultimate criterion and requirement of scientific 
investigation 

_ Y 

14. Regularity. 

Some Corresponding Aspects of Nonuniformity include — 

1. The most fundamental and universal aspect of nonuniformity posited to 
sense-perception and sense-awareness is force. 

2. Asymmetry 

3. Information 

4. Curvature 
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Symbol 

Language 

Anisotropy: a local aspect 

Inhomogeneity: a global aspect 

oO on nm oO Gradient 

10. Structure 

11. Shear 

12. Constraints 

13. Uncertainty 

14. Fluctuations 

15. Disorder. 

To each set of conditionally stringent constraints there corresponds a posi- 
tive, definite, scalar measure of nonuniformity manifested in experience by the 
internal forces. The relaxation of such constraints increases uniformity, and 
the selection among a possible set of conditionally stringent constraints is made 
to maximize global uniformity in adherence with the principle of maximum uni- 

formity, as amplified in the following section. The universal constants embrace 
constancy and process and thus both uniformity and nonuniformity. This is the 
synthesis they reveal in the elementary processes. 

The process of reducing the nonuniformities in nature's space-time mani- 

fold is here envisaged to be the ultimate aspect of all adaptive phenomena in 
nature. Evolution becomes then a word to label this universal adaptive process. 
An aspect of evolution that is both essential and universal, is force, and its na- 
ture we evidently no more grasp in physics than in biology. 

HIERARCHIES OF UNIFORMITY 

We can interpret the resultant force posited to a nonfree body, as the vector 
sum of all nonuniform connections which exist between the body and the uni- 
verse. Each force individually contributing to this sum, posits to the body a 
nonuniform aspect of the universe. In cases when the vector sum of these indi- 
vidually applied forces vanishes, we previously considered the body as free but 
not disjoined from the universe. Here the individual forces may be envisaged 
as existing in mirror-symmetric pairs, the forces in each pair being conse- 

quently equal in magnitude. However, according to the usual laws of classical 
mechanics, the definition of a free body does not demand that the magnitudes of 
the individually applied forces be uniform for all pairs. 

From these considerations we learn that there exist hierarchies of free 
bodies, all of which are equivalent according to the known laws of classical me- 
chanics and which are therefore not discernible nor identifiable by these laws. 
The hierarchies of free bodies may be identified and thus distinguished by the 
degree either of uniformity or nonuniformity of the magnitudes of the individual 
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forces which are the immediate manifestations immanent in experience of par- 
ticular aspects of nonuniformity existing between a body and the universe. Since 
all free bodies which belong to these various hierarchies (of freedom) are equiv- 

alent according to the presently established laws of classical mechanics, these 
laws cannot, in principle, offer conditions which select from among the many 
actual possibilities these hierarchies afford at each instant a particular one that 
belongs to a particular hierarchy of freedom. The concept "hierarchies of free- 
dom' is a particular aspect of the concept 'hierarchies of uniformity." 

It is helpful to point out some other equivalent aspects of this concept, be- 
cause it assumes a crucial role in the statement of a general principle of evo- 
lution which is in accord with the principle of universal correspondence, and 
which is consequently understood to operate universally in all natural phenom- 

ena, including those which belong to the domain of classical mechanics and 
hydrodynamics. Some equivalent and related aspects of the concept ‘hierarchies 
of uniformity' include: 'hierarchies of symmetry,' 'hierarchies of certainty,' 
‘hierarchies of order,’ 'hierarchies of information,’ 'hierarchies of compati- 
bility," "hierarchies of harmony,' ‘hierarchies of forces,' and 'hierarchies of 
consistency.' Moreover, in all of these cases, it is important to distinguish be- 
tween what in each case corresponds to the local aspects of uniformity and what 

to its global spatial-temporal aspects. It is clear that the established proposi- 
tions of classical mechanics do not and cannot make such a distinction because 
the restrictions they impose on mechanical systems apply instantaneously and 
locally, everywhere as well as for all time. As the conditions they invoke, i.e., 
that forces be instantaneously in equilibrium everywhere and always, are con- 

stant and therefore uniform in space and time, they do not implicitly describe 
or define, nor do they condition the existence and the spatial-temporal evolution 
of local and global nonuniformity in their various hierarchies. For this reason, 
the known laws of classical mechanics are inherently devoid of historical thrust, 

causality, and evolutionary proccess. 

It is the universal character of all forces in nature, and therefore in partic- 
ular of those forces which in the classical domain are designated by the symbol 

F, that facilitates invoking and applying the principle of evolution cited above, 
in the domain of classical mechanics. The established laws of classical me- 
chanics, in all of their equivalent formulations, express a particular and re- 
stricted aspect of the principle of maximum uniformity, an aspect, which as was 
explained earlier is independent of location and time. These laws consequently 

express universal propositions, i.e., truths which are necessary in the strictly 
logical sense, and are therefore not contingent upon space and time. For the 
same reason, they are, in the sense of Liebniz, logically universal, i.e., neces- 
sary and analytic. It is important to emphasize in this regard, that these laws 
refer to a particular and restricted aspect of uniformity which is characterized 
and defined by the equilibrium of forces, and that they assert that this particular 

aspect of uniformity is constantly maintained at all locations and is therefore 
not contingent upon space or time. In other words, the laws of classical me- 
chanics as well as the particular hierarchy of uniformity to which they refer, 
viz., the hierarchy characterized by the equilibrium of forces, and which, as 
laws, they report to be general aspects of nature, are both constant in space and 

time, and are thus both free of contingency. If we follow this way of thinking, 
the usual laws of classical mechanics may be conceived as developing in two 
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steps. The first consists of a definition of equilibrium, in which force is the 
aspect of nature to which the word equilibrium in the definition refers. The 
second uses this definition to express the universal law which asserts that equi- 

librium so defined is constantly maintained in nature, i.e., everywhere and at 
all times. 

The existence in nature of hierarchies of uniformity which, as in the par- 
ticular case of equilibrium, are all directly revealed in experience by forces, 
leads here naturally to the identification of a universal law that although free of 
contingencies in its assertion, nevertheless conditions aspects of nature which 
are contingent upon the evolution in space and time of distinct hierarchies of 
uniformity. The law does not in this case constantly refer to a particular hier- 

archy, but reports a universal proposition that governs a process of evolution 

which is contingent upon the emergence in space and time of the various hier- 
archies of uniformity. The usual laws of mechanics which are indeed embraced 
by this general law, are a very special case of it, insofar as the particular 
hierarchy of uniformity in terms of which they are expressed is always constant 
and therefore not contingent. This is precisely the reason why the established 
laws of mechanics are inherently and completely devoid of contingency in all 
aspects, and consequently of historical thrust, causality, stability criteria, and 
evolution. This is, of course, also true for all of the equivalent formulations of 
the laws of classical mechanics, and in particular for their formulation in terms 
of the principle of least action. I refer here particularly to the principle of 

least action because of its power and unifying role in physical theory. The 
power of this principle in the formulation given to it by Hamilton, is seen by the 
fact that not only the classical mechanics of particles and rigid bodies, but also 
elasticity and hydrodynamics, electromagnetism and all modern field theories 
connected with ultimate particles (electron, proton, and neutron) can be formu- 
lated with its help. All of the theories formulated with its help therefore share 
with Newton's laws of classical mechanics the important feature of being devoid 
of historical commitment, causality, and inherent stability criteria. In other 
words, all of these theories are free of historical content, and consequently es- 

sentially devoid of an evolutionary principle. 

On A General Stability Principle 

We have shown earlier that the formulation of the laws of classical mechan- 

ics may be conceived in two essentially distinct steps. The first is a definition 

of equilibrium, and in the second the proposition is made that equilibrium as 

defined by the first step holds constantly everywhere, and for alltime. The no- 

tions of stability and equilibrium were both developed by observing and examin- 

ing critically the phenomenological behavior of classical mechanical systems. 

As was explained in the case of equilibrium, a general operational definition 

based on forces was established on the basis of experience, and then used in the 

formulation of the known laws of mechanics, which inherently report nothing 

about stability for reasons already described. Whereas the notion of stability 

has been described by many definitions, these have led to various stability cri- 

teria which are statements of convention rather than of a general law that refers 

to stability in the same way as the laws of mechanics refer to equilibrium. I 
shall now endeavor to formulate a statement of a general stability law which will 
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refer to all of the hierarchies of uniformity and will have the same kind of gen- 
eral relation to them as the known laws of classical mechanics have to the par- 

ticular hierarchy of uniformity characterized by the equilibrium of forces. For 
this purpose it is first necessary to identify and define descriptively the hier - 
archies of uniformity in terms of forces, which as explained above, are inter- 
preted here as the most fundamental, universal, and direct manifestation in ex- 

perience, of the nonuniform connections existing between the universe and the 

bodies contained within it. 

We may start by considering in some detail the very special and fundamen- 
tal hierarchy of uniformity to which the known laws of classical mechanics per- 
tain. This special hierarchy is defined by characteristics such that the vector 
addition of all the nonuniform connections existing between a body and the uni- 
verse which are posited in experience and which we designate by the name force, 
sums to zero. It is clear that there can exist a conceivably infinite number of 
distinct configurations of forces impressed on a material point, which individu- 
ally designate the individual nonuniform connections between it and the universe, 
and all of which equally belong to the very special hierarchy of force equilib- 
rium. It is the differences between these distinct but otherwise equivalent force 

configurations which I define as the hierarchies of uniformity. Figure 1 below 
illustrates how we can conceive of an infinite number of distinct force configu- 
rations, all of which belong to the hierarchy of uniformity defined by the equi- 
librium of forces, and which by their differences here define the hierarchies of 
uniformity. The figure shows various configurations of force equilibria, with 

uniformity increasing from left to right. 

The hierarchies of uniformity, defined in terms of force fields, are now 
used to formulate a Principle of Maximum Uniformity, which includes virtually 

all the known laws of classical mechanics, as well as a general stability law. 
The principle of maximum uniformity asserts that: among all the force config- 
urations, individually characterized by force equilibrium, which can be collec- 
tively and instantaneously accommodated in a finitely extended material domain 

that is nonuniformly connected to the universe by maintained forces, the partic- 

ular set of force configurations which actually evolves and which satisfies the 
instantaneous and stringently exercized geometrical constraints, instantaneously 
maximizes a global positive, definite, scalar measure of uniformity obtained by 
summing the local measures of uniformity that depend on the local force con- 

figurations over the entire domain. 

v ae peer ie 

Fig. 1 - Configurations of force of the 
hierarchy of uniformity defined by the 
equilibrium of forces 
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This statement of the principle of maximum uniformity differs essentially 

from the statements of the established laws of classical mechanics. As ex- 
plained above, the laws of classical mechanics are essentially a-temporal and 
a-causal, and consequently devoid of historical commitment and evolutionary 
process. The principle of maximum uniformity, though conceived here as a 
universal proposition, nevertheless refers to essentially contingent aspects of 

nature expressed in terms of hierarchies of uniformity which generally evolve 
nonuniformly in space-time. It is precisely because the universal and estab- 
lished laws of classical mechanics constantly refer to one, and only one, hier- 
archy of uniformity, that they are free of contingency in all respects, and are 
consequently amenable in principle to mathematical formulation; for all mathe- 
matically stateable propositions are essentially free of contingencies which re- 
fer to space-time and therefore in principle devoid of historical content. 

The principle of maximum uniformity is indeed a procedure rather than a 
formally stateable proposition — it is the description of a process which is un- 

derstood to operate universally. In this process the existence and operation in 
the space-time manifold of contingently stringent geometrical constraints, as 
well as absolutely stringent passive and active constraints, are among its essen- 

tial features. The description and statement of the operation in nature of the 
principle of maximum uniformity cannot be completely subjected to mathemati- 
cal formulation, because: (a) time is conceived of as duration rather than the 

times of events ordered as points on the real time line; (b) the ontological- 

geometrical ground for stringent, passive, geometrical constraints is ascribed 
here to the local impenetrability of matter; (c) force is the essential instrument 
in nature for effecting compatibility and excluding contradiction, by reconciling 
its universal and contingent aspects; and (d) the temporal and spatial contingen- 

cies are expressed by the space-time evolution of various and distinct hierar- 
chies of uniformity. 

This conclusion has a direct bearing on the questions concerning the nature 
of biological theory and the kind of laws we can expect it to produce. It also 
bears, of course, on the nature of physical theory and the fundamental implica- 
tions inherent in the formal statements of its laws. It is precisely because 
these laws can be given mathematical expression, that they are in principle de- 
void of all contingency and consequently of historical content and thrust, inher- 
ent stability criteria, causality, and evolutionary process. Conversely, it is 

because the present laws of physics are essentially a-historical and a-causal, 
that they can be given mathematical formulation. The second law of thermo- 
dynamics is unique among the laws of physics. Whereas the other laws of 
physics do not take into account aging, and therefore history, the second law of 
thermodynamics does consider and compare earlier and later states of systems, 

but not how they evolve from the earlier to the later states. 

We can sum up by saying that the physical laws as they are known are 
space-time invariant and thus not contingent, and that the aspects of nature to 
which they refer are devoid of the aging process. Laws of nature may however 
be space-time invariant and still refer to fundamental aspects of nature which 
are nevertheless contingent, and which therefore essentially include historical 
and evolutionary aspects. The principle of maximum uniformity appears to be 
such a law, and laws which we may expect to emerge in biological theory will be 
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essentially of this character. The principle of maximum uniformity will be 
considered in a larger context and in much more detail from the biological view 
in a later volume concerned with the constants of nature and biological theory, 
categories of information, and aspects of evolution, and in which it will assume 
a unifying role. 

Stability, according to the present definition, is a characteristic of the in- 

stantaneous state of a system, just as is equilibrium; moreover, the stability so 
defined has both local and global aspects, which again correspond to the case of 
equilibrium. The instantaneously stable state is defined as the force configura- 
tions belonging to the highest hierarchy of uniformity which instantaneously sat- 

isfies all the conditions cited above in the statement of the principle of maximum 
uniformity. According to this definition, instantaneous global stability is defined 
as the collection of instantaneous locally stable force configurations. The defi- 
nitions given here for hierarchies of uniformity and for stability are descriptive, 
pictorial, and conceptual, not analytic or quantitative in a mathematical sense. 
For this purpose it is natural to consider continuously extended material do- 
mains, in which the forces joining an element to the universe are characterized 

by a stress tensor. The principle of maximum uniformity and the general sta- 
bility law that derives from it will be in part formulated in more analytical 
(terminology) language in another volume, in which it is planned to treat this 
subject in a more comprehensive manner, particularly its biological ramifica- 

tions. 

The principle of maximum uniformity is manifested in the domain of clas- 
sical mechanics, as required by the principle of universal correspondence, by 

the evolution in time at different locations of various and distinct force configu- 

rations. Each of these force configurations belongs to the hierarchies of uni- 
formity, and has in common a particular member of the hierarchy, which is 
defined here by the equilibrium of forces. The progressive evolution in time of 
the hierarchies of uniformity is revealed in all experience, and therefore in the 
classical domain in particular, by the progressive evolution of different force 
configurations, each of which may also be interpreted as a hierarchy of order. 
As noted earlier, all forces are understood here to give direct expression in 
experience to the universals, which are reflected by the Dimensional Universal 
Constants, and consequently to what is referred to in Ref. 7 as the domain of the 
domain of the universals. By this way of thinking, the operation in nature of the 
principle of maximum uniformity and the conception of its operation demand the 
existence, and the consideration of the relation between, and interaction of, the 
domain of the universals and what I call in Ref. 7, the domain of the observables. 
This, of course, applies equally to the operation in nature of the universal sta- 
bility law manifested in every domain of experience, and which derives, as do 
the conventional laws of mechanics, from the principle of maximum uniformity. 

The principle of maximum uniformity and the universal stability law attend- 
ant upon it, have been made operational within the realm of classical mechan- 
ics, i.e., have been exercised computationally in this realm by the development 
of an algorithm, by modelling certain aspects of the domain of universals by a 
potential theory. This model allows the formal description of the interaction 
between viscous flow fields which belong to the domain of the observables, and 
an ideal domain characterized by the potential theory from which according to 
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the algorithm, they emerge by what is analogous to a process of evolution. This 
has produced mathematical representations of viscous flow fields that evidently 
satisfy the fundamental partial differential equations of classical hydrodynamics 
and realistic boundary conditions. 

The interaction between the domain of the universals and the observable 
domain brings necessarily under consideration multiple scales and the realiza- 
tion that they assume an essential role, especially their interrelationship, in the 
interaction between these domains. From the standpoint of classical mechanics, 

for example, such scales may be identified with temperature fluctuations in a 
heat bath which are related to the universal Boltzmann constant, and with the 
production of inelastic deformations in a solid subjected to forces impressed by 
the universe from the outside. These considerations, as well as the relation- 
ships between the principle of maximum uniformity, the stability law, the role 
of the constants of nature as the foundation of natural law and the development 

of biological theory; and the connection between these, and the existence in na- 
ture of Categories and Hierarchies of Information, all will be comprehensively 
examined together in a later volume more specifically directed at their ulti- 

mate biological aspects. 

CONCERNING DEVELOPMENT OF HIERARCHIES OF 
UNIFORMITY IN CONTINUA ENDOWED WITH 
RHEOLOGICAL CHARACTERISTICS 

In this section we will describe the spatial and temporal development of 
hierarchies of uniformity in classical continua, as a process, by presenting a 
procedure which gives operational expression to the principle of maximum uni- 
formity through an algorithm in which potential theory assumes the fundamental 
role. This procedure and the algorithm which formally describes it have al- 
ready been effectively used in the construction of analytical representations of 
viscous flow fields which satisfy the Navier-Stokes equation and which emerge 
from realistic boundary conditions. This procedure evidently has very broad 
applications, and consequently can be applied to physical continua endowed with 

various linear as well as nonlinear constitutive properties, provided they have 

rheological features. 

In all such cases uniformity, or its counterpart nonuniformity, is directly 
manifested and in experience, in its various hierarchies, by stress fields, which 
are understood here to correspond to force fields, as considered previously in 
conjunction with particle mechanics. Accordingly, the same fundamental role 
and meaning is ascribed here to stress, as I have done earlier to force, in the 
case of particle mechanics. In other words, stress directly posits to experience 
both the uniform as well as the nonuniform universal connections that exist be- 
tween an element of a continuously extended material domain and the entire uni- 
verse to which it belongs. 

Just as force has been shown above to dominate the propositions of classi- 
cal mechanics, so correspondingly, stress dominates the laws that condition 
natural phenomena which transpire in continuously extended material domains. 
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The uniform connections are represented by what corresponds to a locally iso- 
tropic stress field, whereas the nonuniform connections may be represented 
symbolically by the stress deviator tensor. 

The constitutive properties by which specific materials are conventionally 
identified, as well as their heat baths and thermal fluctuations, are all relevant 
in producing at each instant a manifold of actual possibilities, available for the 
selection at each instant, of a particular and preferred stress field as required 
and selected by the principle of maximum uniformity. Strictly speaking, ac- 
cording to this conception of the operation in nature of the principle of maximum 
uniformity, the so-called constitutive properties are not strictly constant, but 
may, according to this principle and the mental picture drawn above of its oper- 
ation, undergo change, which is tantamount to a change of state or of mechanical 

phase. In actual and familiar cases, what I am describing here is manifested in 
the plastic yield of solids and in the turbulence in fluids. 

With this background, we can present a statement of the principle of maxi- 
mum uniformity as it pertains specifically to the domain of classical mechanical 

experience. An amplified statement of this principle will be given in a separate 
volume, in the broader context of a unifying evolutionary principle which may 
pertain to all aspects of nature and consequently to hydrodynamical and biologi- 

cal phenomena in particular. The principle of maximum uniformity asserts — 
that among the manifold of actual-possible stress fields which are immediately 

and instantaneously available for selection in a continuously extended and 
bounded material domain, and which accord with the following conditions and 
aspects of the domain: (a) the instantaneous constitutive properties of the do- 
main; (b) the temperature field and its fluctuations; (c) the forces impressed 
and sustained at the boundaries and within the domain; (d) the established laws 
of classical mechanics; (e) the principle of conservation of energy; and (f) the 
appropriate equation of state —that the stress field which actually evolves, min- 
imizes an integral of a positive measure of the shear stresses extending over 
the whole domain. 

This is equivalent to maximizing a global measure of uniformity of the do- 
main, since according to the ideas of the present paper the shear stress of a 
differential element of the material is the direct manifestation in experience of 
its nonuniform connections with the universe. 

This statement of the principle of maximum uniformity, as applied to con- 
tinuously extended rheological materials, neglects nonuniformities in the inertia 
forces as manifested by the nonhomogeneity in their spatial distribution. When 
these are significant, they must, of course, be included in the total measure of 
global nonuniformity. Indeed, in an application of the principle of maximum 
uniformity to stratified flows presented in a later part of these studies, the 
global measure of nonuniformity includes only pressures and inertia forces, as 
viscous forces may be neglected in comparison. 

As this statement of the principle depends incisively on the idea of a mani- 
fold of actual-possible states of stress which are available for the selection of a 
particular member, it is necessary to consider this concept in some detail. For 
this purpose, we first introduce the concepts microstress and macrostress 
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states and fields. Microstress fields mean here fields of stress that extend 
over finite domains, but which have small magnitudes everywhere within these 
domains. A macrostress field instantaneously prevailing within a finite domain 
of a material body, is conceived here as a superposition of a collection of mi- 
crostress fields, each of which instantaneously agree with (a) force equilibrium 

conditions, (b) the instantaneously prevailing geometrical constraints in all their 
categories, (c) with the condition of the universe as it is posited by forces im- 

parted to the material domain, and (d) with the constitutive properties of the do- 

main, which can'be translated into certain of the categories of geometrical con- 
straint; in particular, the categories of active and passive conditionally stringent 
constraints. At each instant, the macrostress field is sustained over duration, 
and thus constantly evolves into new states which are derived by the selection 

and development of one of the fields of microstress which belongs to the imme- 
diately preceding field of macrostress. The selection and development of a 
particular microstress field that belongs at a particular instant to a macro- 
stress field is determined by the condition invoked by the principle of maximum 
uniformity. Each and every actual microstress field that belongs to the collec- 
tion that instantaneously corresponds to an actual macrostress field, is what we 
may call here an actual-possible state, in the sense that each is an actual mi- 
crostate and is endowed with the possibility of subsequently (in time) evolving, 
according to the principle of maximum uniformity, new states of macrostress. 
We see that the above statement of the principle of maximum uniformity ac- 
commodates the evolution in space and time of various and distinct micro- and 
macrostates of stress which reveal in experience the various hierarchies of 
uniformity. This principle, which is understood here to be universal and conse- 
quently not contingent, refers to a whole hierarchy of aspects of uniformity, 
rather than as in the case of force equilibrium, to a particular member belong- 
ing to the hierarchies of uniformity. From the present statement of the princi- 

ple of maximum uniformity, we see that it accommodates the emergence in 
space and time of various members of the hierarchies of uniformity. 

An Observation Concerning Turbulence 

Turbulence, i.e., its evolution, appears from the hydrodynamical study 
cited above, to derive from an aspect of the principle of maximum uniformity 
which is not embraced in the propositions of classical mechanics, and conse- 

quently not by the Navier-Stokes equations. 

In this sense, it follows that the information which can resolve the enigma 
of turbulence is not contained in the Navier-Stokes equations, and correspond- 
ingly, neither do the equations contain the information necessary to construct 

analytical solutions to them, which derive from realistic boundary conditions. 
One has to prescribe more information than the Navier-Stokes equations contain 

in the category of implicit information, in order to construct these solutions. 
This seems to be related to Gédel's theorem, which is here interpreted to be a 
particular aspect of a general law that concerns the accessibility and inaccessi- 

bility of information in its various categories. 

Some fundamental aspects of the principle of maximum uniformity derive 
from an interpretation of force, which ascribes to all of the forces in nature 
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certain universal characteristics that unify them, and by which they in turn 
unify all natural phenomena. A// of the forces in nature are accordingly under- 
stood to emanate from the universal and irreducible aspects of nature, and to 
join these directly with immediate experience. By this understanding, all of the 
forces in nature directly link what is most fundamental in nature with immedi- 
ate experience. This is an aspect of nature which all forces have in common 
and through which they bear to each other a correspondence which is universal 
rather than asymptotic, as is, for example, the correspondence that exists be- 
tween the classical and nonclassical physical theories invoked by Bohr's prin- 
ciple of asymptotic correspondence. Since this universal correspondence is an 
aspect of all of the forces in nature, it refers in particular to the forces which 
are manifested within the domains of experience that are now conditioned by the 
classical physical theories, and implies that through these forces the classical 
and nonclassical physical theories, in fact, bear to each other a much stronger 
correspondence than is demanded or revealed by Bohr's correspondence prin- 

ciple. It is through the forces that the classical and nonclassical physical theo- 
ries, and the phenomena as well as the principles revealed in their respective 
experimental domains, are brought into complete correspondence. The princi- 
ple of uncertainty, first identified in the experimental domain of quantum me- 
chanics, is a case in point. By this concept, all experimental domains, i.e., all 
aspects of experience, are brought into mutual and total correspondence by 
forces. This is the experimental aspect of the Principle of Universal Corre- 

spondence. 

The laws of classical mechanics have been and are still mistakenly con- 
strued to imply deterministic causal connections between mechanical phenomena. 
This misconception is largely based on a misunderstanding which claims that 
these laws define and consequently determine the aspect of nature, which is 
designated in Newton's propositions by the symbol F. The force designated by 
this symbol is, in fact, not defined and consequently not determined by the known 
laws of mechanics; it simply expresses a relation between them. This simple 
relation between forces, which is invoked by known laws of classical mechanics 
as a general feature of all bodies and which is defined as equilibrium, also in- 
cludes inertia forces in cases where equilibrium cannot be maintained statically. 

The nature of the connections through which the ultimate aspects of nature, 
called here the universals, are joined to immediate experience, is, of course, a 
most fundamental and open question —a question that concerns the nature of force 
itself — because all forces in nature, as they are envisaged here, are precisely 
these connections. By this thinking, what is common to all forces in nature and 
from which they all derive their causal features and evolutionary thrust — fea- 
tures which the known laws of classical mechanics do not express —is a con- 
stantly sustained process of adaptation to the irreducible space-time structures 
irreversibly impressed by the universals embedded in nature's space-time man- 
ifold. These immutable and irreducible phenomena which are envisaged here as 
being endowed with a dynamism by which they internally drive the space-time 
manifold, by irreversible connections, are called universals because they were 
conceptually identified by and inferred from the Dimensional Universal Con- 
stants. The universals are thus conceived as constantly-regenerating immutable 
space-time structures which are embedded in the space-time manifold, and 
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which constantly impress irreducible nonuniformities within the manifold. 
These nonuniformities may be envisaged as active-stringent geometrical- 
temporal constraints. 

The principle of maximum uniformity posits the constant evolution in nature 
of hierarchies of increasing uniformity and of their attendant forces, which con- 

stantly drive the space-time manifold towards states which are instantaneously 
and maximally compatible and thus maximally uniform with the irreducible uni- 
versals of the space-time manifold. 

These considerations are presented here as a foundation on which to base a 
new thesis —viz., that the universal correspondence understood here to exist 
between all forces and which is ascribed to their common origin in universals 
seated in the space-time manifold which have given them order, and structure 
and thereby irreversibly impart to them a constantly sustained nonuniformity — 
means that all natural phenomena are unified by these forces (since they all 
have a common source), phenomena which have been hitherto distinguished arti- 
ficially as animate and inanimate. This means that the forces which, so to 
speak, drive the life process correspond in all their essential features to the 
forces which, for example, are designated by the symbol F in Newton's propo- 
sitions —that they have a common ground and that they both originate from the 
universals as aspects of a universal process of evolution which operates equiv- 
alently in all natural phenomena, including those which we currently designate 
as inanimate. The present interpretation, that all forces in nature are the viable 
instruments of a process of evolution which extends and works equivalently in 
every aspect of nature, forces upon us the conclusion that those aspects of na- 
ture usually referred to as physical are fundamentally endowed with this uni- 
versal evolutionary process, and therefore challenge us with the task of experi- 

mentally identifying this process in the laboratory within the domain of classical 
mechanical experience. For this purpose it is important to distinguish between 

physical reality and physical theory, the latter of which is only a way of looking 
at, describing, and conditioning particular aspects of physical reality. Indeed, 
the laws of physical theory, which with exception of the second law of thermo- 
dynamics, are distinguished by being mathematically formulated equations, are 
also distinguished by the absence of concepts which have historical content and 
which accordingly refer to historical development as an essential aspect of 
physical reality. My point is, that physical reality is in both its fundamental 
and comprehensive aspects essentially equivalent, and fully corresponds to as- 
pects of reality which we currently refer to as biological. This total corre- 
spondence between biological and physical reality which derives from the uni- 
versal correspondence between all of the forces in nature, does not mean 
however that biological reality is encompassed by physical theory as we pres- 
ently know it. This complete correspondence does not therefore imply a reduc- 
tion of biological reality to physical theory in the usual sense. Instead, the total 
correspondence claimed here as existing between biological and physical reality 
means that contemporary physical theory does not in fact describe or condition 
certain fundamental aspects of physical reality; i.e., those aspects which cor- 
respond to, and which are phenomenologically imminent in, biological phenom- 
ena as known by ordinary human experience — aspects that concern historical 

development and evolution. 
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The reason historical development and evolution have not previously been 
recognized as fundamental aspects of physical reality, is that physical theory, 
which is but a way of looking at certain phenomena which we by convention call 

physical, is based on a description of nature and concepts which are formulated 
in mathematical statements, called principles or laws, that are in principle de- 
void of historical content and information. If we look at biological reality from 
the point of view of physical theory, what we see is not different, and in principle 
cannot differ, from what we see by adopting the same point of view in examining 

phenomena which we arbitrarily call physical. According to the present work, 
which claims a total correspondence between all natural phenomena, and in par- 
ticular therefore between phenomena which we have by convention designated as 
biological and physical, the evolutionary and historical aspects of nature should 
in fact emerge in what by convention is called physical reality, if we engage this 
reality directly by crucial experiments that are conceived to identify them. The 
expression, 'physical aspects of evolution’ will be used in what follows in order 
to refer concisely to the particular aspects of evolution which we may be able to 
identify experimentally and theoretically, within the experimental domain that 
physical theory now purports to condition fully by its mathematically stated laws. 

Whereas evolutionary and developmental processes are macroscopically 
imminent to us in certain materials which we have learned to call biological 

(and no doubt the reason for this is that we are made of these materials), as- 

pects of evolution and of historical development emerge in materials which we 
have learned to call physical, on time scales that are either much larger or 
much smaller than the time scale in which, for example, the aging of a man or 
the development of an embryo can be discerned by direct observation —i.e., 
without requiring specially designed experiments. It is the attenuation in these 
materials of the immediately apparent phenomenological manifestations of evo- 
lution, which has given rise to the misconception that there exists a real and 
fundamental dichotomy between two aspects of reality, called physical and bio- 
logical. This circumstance has, however, afforded man the important opportu- 
nity to identify experimentally in the nature of matter certain features that are 
constant in space and time and that are therefore maintained constant under the 
universal process of evolution, which is understood here to prevail and function 
equivalently in all matter and to be an equivalent aspect of all natural phenom- 
ena. These constant features of nature with which, according to the principles 
of universal correspondence, all matter is essentially endowed, but which were 
initially revealed in the behavior of so-called physical material, have been 
mathematically formulated by propositions which are now the established laws 
of physical theory. Again, by the principle of universal correspondence, it fol- 
lows that the laws of physical theory are laws that condition a// natural phenom- 
ena, and therefore in particular materials we now call biological. It also follows 
from the principle of universal correspondence, that physical theory does not 
give a complete description of or condition all of the essential aspects of physi- 
cal reality, viz., its evolutionary aspects. The forces in nature bridge and thus 
reconcile the aspects of nature which according to the laws of physical theory 
are maintained constant in space and time, with the evolutionary aspects which 

manifest themselves by the historical development and thus change of natural 
phenomena in space and time. This conclusion, which bears fundamentally on 

the nature of force and which is therefore equally relevant to all forces in na- 
ture, implies that all forces are the universal instruments of evolutionary thrust 
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and historical development, with which all matter is endowed and by which all 
aspects of matter are joined to the immutably constant features of nature, i.e., 
the universals, and by which they are mutually unified. The origin of the uni- 
versal process of evolution which constantly prevails in all matter and conse- 
quently in such materials which we have by convention tried to distinguish as 
biological and physical, resides in force. This means that the forces of evolu- 
tion (and historical development) in living materials, as well as those which we 
identify with physical reality through the laws of physical theory, and to which 

we here ascribe evolution in physical reality, are one. All forces in nature are 
therefore essentially equivalent insofar as they are the essential causal connec- 
tion between all historically developing events, which they motivate as aspects 
of a universal process of evolution. The motivating power of all forces is as- 
cribed here to the constant and immutable dynamism with which the universals 
are innately endowed, and in which forces are understood to emerge. They are 
all equivalently endowed with evolutionary thrust and historical commitment; in 
a sense, therefore, the notion of élan vital pertains to all forces. Consequently, 
rather than suggesting an ambiguous and false distinction between inanimate and 
animate nature, its usage here emphasizes that all forces in nature are equally 
endowed with an innate dynamism derived from the universals, and that they are 
the basis of all causal relations that lead to historical development in all nature. 

PHYSICAL ASPECTS OF EVOLUTION 

The principle of maximum uniformity and the principle of universal corre- 

spondence jointly imply that force is the essential instrument that unifies nature 
in its various phenomenological manifestations and joins them with the univer- 
sals which are the source of the power by which the forces jointly motivate a 
universal process of evolution. As stated in the previous section, this concept 
has motivated a search to identify, both conceptually and experimentally, aspects 
of the universal process of evolution revealed in natural phenomena which are 
now supposed to be fully accounted for by widely accepted physical theories. In 

this search, for conciseness, we shall cautiously refer to aspects of evolution 
which are revealed in such natural phenomena, as 'physical aspects of evolution.' 
We say cautiously, because in the previous section we concluded that physical 
reality bears a total correspondence to biological reality, and that therefore 
they are essentially and completely equivalent. We shall examine here certain 
examples of the physical aspects of evolution which concern the historical de- 
velopment of actual flow fields that evolve from real boundary conditions, i.e., 
flow fields actually produced in historical time. We also have the task of devel- 
oping their analytical representations on the basis of the Navier-Stokes equa- 
tions and realistic boundary conditions. We shall consider a fundamental geo- 
physical aspect of the principle of maximum uniformity which led to the 
discovery of a primary seismic driving force, and to its identification with the 
earth's rotation. This primary seismic driving force extends throughout the 
earth and constantly motivates historical and thus evolutionary changes in its 
tectonic structure, in its figure, surface features, physical constitution, and 

distribution of internal forces. 
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Hydrodynamical Aspects of Evolution 

The Navier-Stokes equations have long been considered and are still con- 

sidered to contain all of the essential information relevant to the development of 
actual flow fields in materials well-modelled by the Newtonian fluid. In mathe- 

matical terms, this is equivalent to saying that the Navier-Stokes equations are 
supposed to imply this information mathematically, and consequently that it is, 
in principle, obtainable without requiring the explicit statement of additional in- 

formation. The reason the fundamental problem of theoretical hydrodynamics 
has remained open for about a hundred years is that the Navier-Stokes equations 

do not contain, in principle, all the information which is necessary to obtain 
mathematically the kind of information which we so long expected of them; i.e., 
analytical representations of actual flow fields. This section of the paper en- 
deavors to explain on the basis of ideas and conclusions developed in the pre- 
ceding sections, why, in principle, this is so. We shall point out that it is nec- 
essary, in principle, to augment the information reported by the Navier-Stokes 
theory as general restrictions on actual flow fields, by statements which directly 
or indirectly pertain to the evolutionary development of such fields. The algo- 
rithm presented in the joint paper with S. M. Desai, included in the proceedings 
of this symposium, is not implied by the Navier-Stokes equations. It endeavors 
to give tacit operational expression to some information concerning actual flow 
fields contained in the principle of maximum uniformity — information which 

evidently is not included in the Navier-Stokes equations. 

The Navier-Stokes equations formulate for a Newtonian fluid the law of 
classical mechanics, which invokes the equilibrium of forces as a general con- 
dition that applies to all elements of the fluid, and which is constantly maintained 
at all locations and for all time. The information content of the Navier-Stokes 
equations is therefore equivalent to the information content of this law of me- 

chanics, which as explained earlier in this paper does not constitute a definition 
of force, and therefore does not, in principle, determine the space-time devel- 

opment of the forces between which this law expresses a simple relation —a 
relation which is in fact independent of space and time, and which is consequently 

devoid of historical information. The historical content and evolutionary aspect 

with which, by the present thesis, all forces are essentially endowed is not 
therefore implicitly or explicitly expressed by this law and consequently not by 

the Navier-Stokes equations. If the space-time structure of actual flow fields 
sustained by boundary conditions that are maintained constant with time depend 
on the historical process by which these boundary conditions are actually pro- 
duced in nature, then it follows that their dependence on the historical develop- 
ment of the boundary conditions, i.e., on their evolution, is, in principle, not 
implied and therefore not predictable by the Navier-Stokes equations. If this is 

generally the case, as our work indicates, then it follows that actual flow fields 
cannot, in principle, be predicted by the complete Navier-Stokes equations with- 
out augmenting them with general and fundamental information about these fields 

which they do not imply, and which specifically concerns their evolution. This 
information is, I believe, contained in the principle of maximum uniformity. It 
was given only an approximate representation in the original formulation of the 
Principle of Minimum Dissipation (6), where it was introduced as a fundamental 
restriction on viscous flow fields, which augments at all Reynolds numbers the 
restrictions implied by the complete Navier-Stokes equations. Only in the 
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limiting case of very small Reynolds numbers are the restrictions implied by 
the Navier-Stokes equations and the principle of minimum dissipation essentially 
equivalent; at all finite Reynolds numbers, they are evidently complementary 
and consequently imply different restrictions on viscous flow fields. This think- 
ing is consistent with the conclusions Ladyzhenskaya (1963) obtained in her work 
on the mathematical theory of the Navier-Stokes equations, which indicate that 
the Navier-Stokes equations are not sufficient to describe the motion of a vis- 
cous fluid for large Reynolds numbers. 

The principle of minimum dissipation used in conjunction with the Navier- 
Stokes equations and its extension by a theorem obtained from a variational 
principle which we formulated in order to give more complete hydrodynamical 
expression to the principle of maximum uniformity (Lieber and Wan, 1957), im- 
ply that the structure of actual flow fields is restricted by linear differential 
relations, which are referred to as a linear substructure, and by a nonlinear 
compatibility equation that implies certain necessary connections between sym- 
metry properties of actual flow fields and their time-dependent motion. 

The work of Desai and Lieber reported in the proceedings of this sympo- 
sium gives further, though indirect, hydrodynamical representation to the prin- 
ciple of maximum uniformity, through an algorithm which is implicitly endowed 
with a linear substructure that joins successive steps of an iteration procedure 

by which the algorithm is defined. The successive steps of this iteration pro- 
cedure correspond to successive finite steps in the development of a viscous 
flow field, which are not generally separated by small perturbations but rather 
by finite changes that become arbitrarily small only when the flows obtained by 
successive steps virtually converge to a fixed pattern. S. M. Desai (1965) intro- 
duced the very significant idea of using the potential flow solutions which corre- 
spond to particular shapes of physical boundaries, as the base flow upon which 

to initiate the iteration procedure that defines the algorithm cited, and by which 
analytical representations of viscous incompressible flow fields are obtained on 
the basis of the complete Navier-Stokes equations and realistic boundary condi- 
tions. Each step of the iteration process is thus made compatible with the 

Navier-Stokes equations and then with the law of force equilibrium. 

The potential flow on which the iteration is initiated has a fundamental lin- 
ear substructure, in the sense that its kinematics is governed by Laplace's 
equation, and is intrinsically endowed with the maximum uniformity attainable 
from ideal (slip) boundary conditions. This is because potential flows are a 

subclass of flows governed by a direct hydrodynamical formulation of the prin- 
ciple of maximum uniformity in which the integral constructed in formulating 
this variational principle is a positive, definite measure of force. This force 
measure of nonuniformity bears therefore a direct connection with the funda- 
mental scalar measure of force used in the conception and general statement of 

the principle of maximum uniformity. From these considerations, we envisage 
the potential flow on which the iteration procedure that defines our algorithm is 
initiated, as affording a formal representation within the framework of the algo- 
rithm, of the ideally maximum uniformity state toward which actual flow fields 
tend in their evolutionary development, in complying with the law governing 
their development —the principle of maximum uniformity. This, I believe, ex- 
plains the fact that by only one iteration on the base potential flow, we obtain a 
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sophisticated hydrodynamical structure that includes qualitatively essentially 
all the observable structural features of actual flows (including zones of high 
dissipation and eddy structure), and also the fact that this viscous flow structure 
which strongly differs from the potential flow from which it is obtained by a 
single iteration, is connected to it by a linear relation. This relation is an as- 
pect of the linear substructure noted above, which I believe is an intrinsic fea- 
ture of all actual flows. Moreover, the agreement of the quantitative results 
obtained from the first iteration with the measurements is striking. 

The application of higher order iterations directed toward improving agree- 
ment between quantitative results and measurements, necessarily calls for the 
inclusion of higher harmonics that correspond to the higher order terms of a 
Fourier series representation of the flow field. These higher harmonics as- 
sume a fundamental role in the development of eddy structure and become in- 
creasingly significant in our mathematical representation of the viscous flow 
fields as the Reynolds number increases. We envisage these higher harmonics 
as seeds of turbulence, which are highly attenuated in very low Reynolds number 
flows, but which must be used in increasingly refining flow fields at lower Reyn- 
olds numbers by successively applying increasingly higher order iterations. We 
may think of these higher harmonics as the grindstones on which the iteration 
process works and by which it progressively sharpens by higher iterations a 

finer hydrodynamical structural detail. 

On the other hand, if higher order iterations are applied without correspond- 
ingly introducing higher harmonics, even at lower Reynolds numbers, then we 
cannot expect the higher iterations to improve the flow fields previously calcu- 

lated by lower order iterations. As nonlinear effects grow in intensity, the 

higher order iterations become increasingly necessary, as do the higher har- 
monics to which they are applied, and these will increase in amplitude as the 

Reynolds number increases. 

We are presently engaged in extending the application of our algorithm to 
the calculation of actual time-dependent viscous flow fields. In so doing we have 
come to realize that its application to the calculation of higher Reynolds number 
flows demands that we give explicit consideration, and representation in the ac- 
tual calculation, to the historical process of their development. 

The concepts and considerations presented here on the physical aspects of 

evolution displayed in classical hydrodynamical systems, has motivated the con- 
ception and design of simple hydrodynamical experiments, by which we expect 
to identify experimentally the process of evolution in hydrodynamics as a proc- 
ess which accords with, but is not implied by, the Navier-Stokes equations. The 

evolutionary aspects in classical hydrodynamical systems are strongly linked 
with the features of flows which we now try to examine from the standpoint of 
hydrodynamical stability theory, without taking cognizance of their historical 
development. Hydrodynamical stability theory is accordingly basically limited, 
because in its deeper meaning the stability of a hydrodynamical system is inex- 

tricably linked with the process of its historical evolution, and therefore cannot 
be separated from it. At higher Reynolds number the flow fields corresponding 
to a particular boundary condition which is maintained in space and time, depend 
not only on the Navier-Stokes equations, but also upon the way the boundary 
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conditions are actually made, i.e., historically developed. This is the deeper 
meaning of stability, in the sense that the flow field that actually develops by a 
particular historical process is the most stable among the flows admitted by the 
Navier-Stokes equations, which do not imply a unique flow, and the maintained 
boundary conditions. According to the thesis of the present paper, the evolution 

of stable flows accords with the principle of maximum uniformity. 

Geophysical Aspects of Evolution 

The search for a primary seismic driving force, i.e., a force that causally 
drives earthquakes on a global scale, is as old as the science of geophysics and 
has been a most important challenge to the mind. The mechanical aspects of 
geophysics have been and are being considered primarily from the standpoint of 

the established laws of classical mechanics which are supposed to be complete 
in their application to the mechanics of the earth, and thus to contain all the in- 

formation necessary for answering all questions that concern the mechanical 
nature and behavior of the earth. This point of view has been applied equally in 
the search for a primary seismic driving force, and explains, I believe, why 
such a force has not been identified until comparatively recently. The reason is 
that such a force is a direct consequence of an evolutionary mechanical process, 

which it in part motivates, and the fact that the laws of classical mechanics as 
they are known, are in principle devoid of historical content and therefore of in- 

formation that concerns evolution as a process in a mechanical system, such as 
the earth. Therefore, the answer to the question put at the beginning of this sec- 

tion is simply not contained in the laws of classical mechanics to which man 
turned for the answer. The answer is evidently in the principle of maximum 
uniformity. A primary seismic driving force was discovered by the author on 
the basis of this principle about two years ago, and was specifically identified 
with the earth's rotation, which provides its primary source of energy. The 
idea that led to its conception is simple, once the principle of maximum uni- 
formity is brought into consideration. The rotation of the earth impresses a 
global nonuniformity on the earth, which is physically expressed by the nonuni- 
formity in the local and global distribution of forces that its rotation produces 
in conjunction with the nonuniformities of the figure of the earth, of its mechani- 
cal constitution, and of the nonuniform spatial distribution of its inertial mass. 
A necessary condition required for the development of this primary seismic 
driving force is that the earth be inelastic and that it accordingly accommodate 
relaxation phenomena which may progressively lead to reduction of shear 
stress — shear stress being interpreted here as a local and fundamental aspect 
of local nonuniformity of the force field around an element of material. The 
states of stress produced in a fluid in hydrostatic equilibrium are free of shear 
stress and consequently are states in which uniformity is everywhere locally 
maximized. When the primary seismic-tectonic force presented here is con- 
sidered in relation to a mechanical model of the earth's crust and mantle, which 
ascribes to the very upper mantle a thin layer of visco-elastic material of com- 
paratively low viscosity and high mobility, then according to the principle of 
maximum uniformity, forces will develop that cause the material to flow with 
velocity components that are parallel as well as perpendicular to the surface of 
the earth. This motion in the layer induces horizontal forces on the ocean floor 
that would cause spreading of the continents; but since the direction of the 
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horizontal flow is away from the continents, the meeting of the streams near the 

center of the oceans will produce oceanic ridges there. According to the princi- 
ple of maximum uniformity, the material in the thin layer of the model will con- 
stantly move to reduce everywhere its shearing stresses which are constantly 
imparted to it by the global nonuniformity impressed upon the earth by its rota- 
tion. It is this constant transfer of locally and globally nonuniform forces by the 

earth's rotation to the materials of the earth, which is enhanced by the geomet- 

rical nonuniformities of the figure of the earth and the nonuniformities in the 
physical constitution of its materials; and the rheological changes in the earth 
that constantly reduce these nonuniformities in accordance with the principle of 

maximum uniformity, which cause a constant redistribution of stresses in the 
earth that culminate in earthquakes. Since this process will continue indefinitely 

as long as the earth is rotating, nonuniform and nonisotropic stresses will be 
constantly imparted to its materials and their constant redistribution and con- 
centration will produce earthquakes more or less indefinitely. A basic struc- 
tural feature in the earth's crust which actively functions in the reduction and 
redistribution of shear stress as required by the principle of maximum uni- 

formity is the geological fault. 

CONCLUDING REMARKS AND DISCUSSION 

The above concepts and considerations draw attention to the fact that the 
known laws of classical mechanism are dominated by the fundamental aspect of 
nature designated as force, and that these laws are expressed only in terms of a 
hierarchy of uniformity which is defined by the equilibrium of forces. This en- 
ables us to make a sharp distinction between the familiar laws of classical me- 

chanics which (simply) express a simple relation between all the forces acting 
on and within a body, and the laws of force which are in principle and essentially 
independent of them. In other words, we must distinguish between the known 
laws of mechanics conceived and interpreted as invoking a particular but never- 
theless general aspect of the principle of maximum uniformity, which is charac- 
terized by a definite connection between all the forces acting on a body defined 
as mechanical equilibrium, and the general as well as restricted laws of force 
which express the connections between particular types of forces and the space- 
time structure. These considerations, in part, reveal as well as emphasize the 
facts that: (a) the forces designated by the symbol F in the familiar laws of the 

classical mechanics of discrete particles dominate these propositions and are 
therefore, in principle, not defined or determined by them; (b) that this is tanta- 
mount to and is an aspect of a principle of indeterminacy exercised within the 
domain of classical mechanics; and (c) that this indeterminacy principle is ex- 
plicitly revealed on two levels in the case of mechanical systems consisting of a 

very large number of particles. From these facts, three deductions may be 

made: the first concerns the fact already noted, that the known laws of mechan- 
ics do not in principle define and/or determine the forces; second, that even 

when the forces are prescribed by a force law, the task of computation easily 
exhausts all available capacities; third, in the case of the three-body problem, 
where the laws of mechanics are augmented by a law of force, i.e., the universal 
law of gravitation, the motion and consequent changes in configuration on which 

changes in the gravitational forces depend cannot, according to Poincare, in 
principle be determined analytically and precisely by mathematical procedures. 
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According to the thesis of the present paper, the known general force laws 
which refer to particular kinds of forces that are characterized phenomeno- 
logically and thus identified by particular experimental arrangements, are par- 

ticular aspects of the principle of maximum uniformity. This is also the inter- 
pretation given here to constitutive relations, by which materials are identified 

and phenomenologically distinguished in classical mechanics, and which are also 
interpreted as restricted force laws emerging from the principle of maximum 

uniformity. In general, it is understood here that all forces in nature are linked 
with, and are the concrete instruments of, a universal process of evolution 
which develops according to the principle of maximum uniformity, and that the 
general laws of force which express certain constant and thus uniform relations 
between certain kinds of forces and space-time, are universal but nevertheless 
particular aspects of the principle of maximum uniformity. 

In conclusion, it is significant to point out that the distinction between real 
forces, as compared to forces of reaction, is based on the idea that motivating 
forces are endowed with a causal aspect which is not expressed either implicitly 
or explicitly by the laws of classical mechanics; and that the laws of classical 
mechanics state a particular connection between forces which they define as 
equilibrium, but which in reality does not define them. This simple connection 
between forces acting on each and every material body in the universe, which is 
termed equilibrium, is a very special aspect of uniformity in nature, which ac- 
cording to these laws is a constant aspect of every material body in the universe 

of classical mechanics. The known laws of classical mechanics accordingly do 
not express the causal and, consequently, the historical and evolutionary aspect 
of force. This stems from the fact that what they report about forces does not 
in principle distinguish between motivating forces (the so-called real forces) 
and forces of inertia or forces of reaction, such as emerge, for example, from 

passive geometrical constraints when they are challenged by motivating forces, 

which, according to the principle of maximum uniformity, are in fact endowed 

with evolutionary thrust. 

The use of the principle of maximum uniformity —i.e., the derivation of a 

process of evolution from it —calls for applying and maintaining over chrono- 
logical time an agent which constantly impresses on the space-time manifold 
nonuniformities which are manifested in experience, and in bodies subjected to 
them, as forces. The nonuniformities so impressed on the space-time manifold 
may be envisaged as active-stringent geometrical constraints. 
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the Complete Navier-Stokes Equations 
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ABS RAG di 

In this paper the potential flows are shown to be fundamental as a basis 

leading to the construction of analytical representations of viscous in- 
compressible flows by a process of iteration. This concept reveals the 
linear substructure underlying the Navier-Stokes equations as applied 
to the problem of a two-dimensional flow of a viscous incompressible 
fluid past a circular cylinder. This linear substructure is here under- 
stood as characteristic everywhere in the domain and for all Reynolds 
numbers. A viscous flow is regarded as a deviation, not necessarily 
small, for the basic potential flow. A theorem (Theorem I) is estab- 
lished on the basis of a principle of minimum dissipation, to the effect 
that for a large class of real flows the velocity field tends to become 
irrotational and hence derivable from a potential. Iterative equations 

representing the linear substructure are obtained, and it is shown that 
at least two iterations are necessary, and are toa large extent suffi- 
cient, to obtain with good approximation an analytical solution which 
corresponds to the flow field around a circular cylinder as observed in 
nature 

On the basis of the linear substructure equations, an intimate relation 
between asymmetry and the time dependence of the flow field around 
the cylinder is shown to exist, and a symmetry theorem concerning 
them is proved. Experimental results are shown to be in accord with 

this theorem. 

An idea of a physically infinite distance is introduced and applied to 
obtain solutions to the sets of equations governing the first two itera- 
tions for a steady flow. These solutions are obtained in power series 
expansions of 1/c log, r as well as 1/ec log, (log, r+ 1), where r is 

the radial distance in polar coordinates and ec isa suitable scale fac- 
tor, both having aninfinite radius of convergence. It is shown that these 
two transformations, viz., s = 1/c log, r and s’="1/e log.;(log. rt 1), 

belong to a group of transformations. However, only the analysis using 
the second transformation is presented here. The analysis using the 
first transformation is presented in Refs. 1 and 2. Information about 
the structure of vortices and the wake is implicit in these analytical 
solutions insofar as they give the complete streamline field around the 

circular cylinder. 

Computer programs using double-precision arithmetic are developed 
and presented to evaluate these analytical solutions for any Re in the 
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range 0 < Re < 20, where Re is the Reynolds number based on the 
cylinder radius. Corresponding to the two transformations, there are 
two sets of programs. Solutions are evaluated specifically for the fol- 
lowing disernete values of Re (0.05; 01125, 0.1875, 0525; 0550; 0.75.20; 

2.0, 2.1, 2335 52245 2c9s52e7 5334.00, 2755 10.0, 15: O0;jands20;0; —These yield 
meaningful results. 

The computed results for solution constants yi(J), drag, pressure dis- 
tribution around the cylinder, and a measure of error in certain sim- 
plifying assumptions, are presented in a series of graphs. Plots of 
streamline fields for the above values of Reynolds number are obtained 
and they show that a vortex can be obtained as a sum of at least the 
first two harmonics in 9 of the stream function, and hence need not be 

viewed as a singularity in the flow field. Further, the critical Reynolds 
number at which separation begins is found thereby to be Re = 2.3. 
These results are discussed in detail with reference to the existing 
theoretical and experimental work. They are shown to be in accord 
with the experimental work. 

SYMBOLS 

This superscript designates dimensional quantities 

aes Radial coordinate 

ao Angular coordinate 

teat Time coordinate 

a yp Stream function 

a, u Radial velocity component 

viv Tangential velocity component 

@, w Vorticity field 

Pp, p Pressure field 

h, h Physically infinite distance for whole flow field 

tre: Error in measuring the radial velocity 

Ev eky Error in measuring the tangential velocity 

es} eZ Error in measuring the pressure 

E Rate of energy dissipation 

Dy Vorticity vector 

<) Velocity vector 
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n Normal vector 

® Dissipation function 

eee? Coefficients of viscosity of the fluid 

p Density of the fluid 

= = Kinematic viscosity 

Uy Dimensional uniform velocity at infinity 

Po Dimensional constant pressure at infinity 

Re = RE = uya/v Reynolds number based on the radius of the cylinder 

S Linear vector space 

oe Linear differential operators 

= Nonlinear differential operators 

S Formal solution to the Navier-Stokes equations and 

associated boundary conditions, etc. 

Wo Potential flow stream function 

Potential flow velocity components 

iy Potential flow pressure field 

ve Stream function corresponding to the nth iteration 

ney Velocity components corresponding to the nth iteration 

S Formal solution corresponding to the nth iteration 

F Force exerted by the fluid on the cylinder per unit 

length along the polar axis 

oe Radial stress 

or paca Tangential stress 

Pa Pressure field corresponding to the nth iteration 

PBs Fourier coefficients of the stream function 

sn) Fourier coefficients of the stream function 

es Refer to definition in Eq. (2.4) 
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Back, J) 

= B2(K,J) 

D1(K,J) 

2 = D2(Kry) 

= GJ; Y1; = 

Y2 

BRE, VER2 1, 

55 

Y1(J) 

, = Y2¢3) 

PRET1 

PREP 1 

PREC1 

PRES1 

PRET2 

PREP 2 

PREC2 

PRES 2 

PRESS 

PRESI 

ER22 
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Refer to definition in Eq. (2.50) 

The physically infinite distance for the iterative 
solutions 

Total drag coefficient 

Total first iteration drag coefficient 

Total second iteration drag coefficient 

First iteration pressure drag coefficient 

First iteration viscous drag coefficient 

Second iteration pressure drag coefficient 

Second iteration viscous drag coefficient 

Space variables defined by r = eS = ef® =) 

Constants in the power series expansion of %, 

Constants in the power series expansion of 3, 

Constants in the power series expansion of D, 

Constants in the power series expansion of D, 

Kronecker delta 

Constants involved in the first iteration solution 

Constants involved in the second iteration solution 

Fourier components of the pressure fields p, and p, 
as defined in Part 3 of this paper 

Potential flow pressure field 

Measures of error due to the assumptions 

BiCP)2=°0 5D (Cr) = Of nes 
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ne This is defined either by the transformation 
h = H = 1/c log, h¥, or by the transformation 

h =H = 1/c' log, (log, hat: 1) 

a Angle of separation 

a Angle of separation obtained without considering 
iterations higher than the first 

INTRODUCTION AND THEORETICAL BACKGROUND 

It is well known that there is a vast gap in our theoretical understanding of 
the flows around solid obstacles. At the extreme values, viz., Re ~0 and Re», 
of the characteristic flow parameter Re, the Reynolds number, we have some 
insight, but in the vast intermediate range our lack of knowledge is disquieting. 
The usual remarks about the difficulty of solving the highly nonlinear Navier - 
Stokes equations are, accordingly, quite challenging. The small perturbation 

theories which deal with flows with Re 0 set up a priori limitations to what is 
possible to investigate and then use a mathematical apparatus which is consist- 
ent with and circumscribed by these self-imposed limitations. Consequently, 
the possibility of being able to obtain a coherent and complete description is 
there abandoned at the beginning. For Re~~, where the boundary layer theory 

has prevailed, no satisfying description and explanation of the evolution and 
structure of the wake region can be found, because the assumptions of that theory 

make it invalid for these regions. It is evident that without this knowledge and 

understanding of these regions, the mechanism of turbulence still remains an 

open question, as does its theoretical foundation. 

During a period of more than a century, a large body of experimental work 

has accumulated. Thus information about the flows as they exist in nature is 

not lacking. Theoretical work and, wherever possible, its experimental confir- 

mation on all aspects of fluid mechanics so far seem to indicate that the Navier- 

Stokes equations do contain implicitly all the essential information for the flows 

of a large class of fluids. It appears, therefore, that if mathematical knowledge 

about the theory of nonlinear partial differential equations, in particular the 

Navier-Stokes equations, were sufficiently advanced, we could have all the in- 

formation about flow structures etc. in explicit and detailed form. The question 

then is, since we do not have this mathematical knowledge, how can we obtain it 

in the first place. : 

It is our belief that to make explicit any information from the Navier-Stokes 

equations, which are presumed to contain it implicitly, we must provide some 

prior information to initiate a process which leads to the information desired in 
explicit form. Evidently, the prior information to be provided must be consist- 
ent with the implicit information embodied in the Navier-Stokes equations. 
Therefore, an important question needs to be resolved first; i.e., what informa- 
tion should be provided and how can one be assured about its consistency with 

the implicit information embodied in the Navier-Stokes equations? Since we 

feel reasonably certain that the Navier-Stokes equations do represent the physi- 
cal laws governing the behavior of a class of fluids and since we have a large 
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body of information on the flows as they exist in nature, it is evident that what- 
ever information we seek to provide must not contradict experience; indeed, it 

must be taken from experience. Then we can be reasonably assured of its con- 
sistency with the implicit information presumed to be embodied in the Navier- 

Stokes equations. 

A natural question which now arises is this: What is the common factor in 

all our experimental and theoretical experience? The answer seems to be the 

prominent place of potential flows. All real flows are always found to have 
some parts of their flow field potential under suitable conditions and, more sig- 

nificantly, they can be made increasingly potential by definite manipulations of 
the flow parameters. Impulsively started motions are always potential in the 
initial stages. All existing theories, e.g., the boundary layer theory; water 
waves theory; wing theory; and the subsonic, supersonic, and hypersonic flow 
theories etc., give a central place to the potential flows. This realization leads 
us to believe that the key information can be provided by the potential flows. 

The next question to arise is: How shall we use the available explicit in- 
formation about potential flows in the Navier-Stokes equations to make explicit 
the information about flows as observed in nature without imposing any restric- 

tions on the flow parameters? It has been our conviction that one way to realize 
the evolution of a flow field characterized by nonlinear equations is through a 
process of iterations which yields a linear set of equations and that this process 
does not need to be assumed a priori to be valid for any specific range of the 
characteristic parameters that are not for any particular part of the flow do- 
main. In fact, we think that this process is of fundamental importance in arriv- 
ing at a mathematical solution of nonlinear partial differential equations, such 
as the Navier-Stokes equations, which contain information about physical phe- 

nomena. 

It is a remarkable fact that a very few cases exist for which explicit infor- 
mation bearing on the motion of actual flows has been extracted from the Navier- 
Stokes equations by strictly mathematical procedures, i.e., without using explicit 
information obtained from extramathematical sources. In the context of this 
work, it is equally relevant to note and emphasize that when explicit analytical 
and experimentally verifiable information has been derived from the Navier- 

Stokes equations, in almost all such cases explicit information derived from 
extramathematical sources was employed. Such extramathematical information 
is usually introduced by making judicious simplifying assumptions based on the 
observation of phenomena and the critical examination of experiments for which 
they are appropriate. Accordingly, a good simplifying assumption is a way of 

explicitly stating information which is already implicitly contained in the Navier- 
Stokes equations, in such cases for which the simplifying assumption is valid. 
Indeed, we may regard this as a mathematical criterion for a simplifying as- 
sumption to be appropriate in a particular case. That is, if we could solve the 
Navier-Stokes equations for such a specific case, the solution obtained would 

support the simplifying assumption. 

We should be open to the possibility that the reason we have been waiting so 

long for the mathematical apparatus which can render explicit useful informa- 
tion implicitly contained in the Navier-Stokes equations, is that the development 
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of this apparatus may require primitive notions yet to emerge. It is quite con- 

ceivable that such primitive ideas may, as they have in the past, emerge from 
extramathematical sources, and we believe that some of the results presented 
here may be of this nature. 

The work presented here is part of a comprehensive exploration and study 
in classical mechanics and hydrodynamics which was started in 1947 by Lieber 

[3] and has been sustained and brought into sharper focus since then. This study 

was initially motivated by a search for ways of extracting useful information 
from the Navier-Stokes equations, which information until now has remained in- 
accessible in terms of strictly mathematical procedures. In the works of Lieber 
and Wan [4-7] can be found some attempts to materialize this desire by the in- 

troduction of several significant ideas. 

In the course of the comprehensive study to which the work presented here 
belongs, it was seen by Lieber (class notes in Relativity), that there exist in na- 

ture distinct yet related categories of information. This came from the reali- 
zation that the different known formulations of the principles of classical me- 
chanics are only conditionally equivalent, and that questions concerning their 
equivalence cannot be meaningfully considered without invoking the idea that 
these categories exist in nature. It then became apparent that the task of ex- 
tracting useful and testable information from the principles of classical me- 
chanics is not strictly a mathematical endeavor, and that the feeding of explicit 
information obtained from one formulation of the principles of mechanics into 
another formulation can produce additional explicit information in analytical 
terms. These observations and ideas led Lieber to the formulation of a funda- 
mental theorem on the global distribution of internal forces which was obtained 

on the basis of Gauss' principle of mechanics [8]. 

With the realization that this information should be implicitly contained in 
the Navier-Stokes equations, attempts were made by Lieber and Wan to formu- 
late statements in terms of the parameters and functions appearing in the 

Navier-Stokes equations, in order to give this information formal representa- 
tion in the framework of classical hydrodynamics. The dissipation mechanism 
of Ref. 3 was used to construct a theoretical bridge between the internal forces 
and the Rayleigh dissipation function, as it shows that dissipation is proportional 
to the internal forces for a comparatively large class of initial conditions. In 
this way a connection was established between the information obtained on the 
global minimization of internal forces and a statement of the minimum dissipa- 
tion of energy in real fluids. The physical content of this statement is restricted 
by its mathematical formulation as given in Refs. 5 and 6, where a linear struc- 
ture emerges for the governing equations. 

A step to give it a less restricted formulation has been made by Lieber and 
Wan in Refs. 9 and 10 by postulating the existence of a fluid interface joining the 
rotational and irrotational flow regimes, into which the flow field is divided 
a priori. With the knowledge that the principle of minimum dissipation gives 

only approximate representation to the information obtained from the theorem 

on internal forces, they sought to give this information more complete represen- 
tation by formulating another variational principle which maximizes a global 
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measure of uniformity. The results obtained from both of these variational 

principles share a common denominator, by showing: 

1. That the velocity fields are conditioned by linear partial differential 

equations, thereby suggesting a linear substructure underlying solutions to 
Navier-Stokes equations for actual flows. 

2. That there exist necessary connections between the global geometrical 

symmetry properties of a body and the production of time-dependent flows under 
time-independent boundary conditions. 

3. That there is the necessity to postulate a fluid interface joining the ro- 
tational flow with a potential flow extending from the interface to infinity. 

An hypothesis has come out of our work which is strongly related to the 
principle of minimum dissipation and to its basis as established in the theorem 

on the global distribution of internal forces, obtained by Lieber [8]. The hypoth- 
esis is that solutions to the Navier-Stokes equations for actual flows tend every- 
where, as far as the actual boundary conditions permit, to approach asymptoti- 
cally solutions for a class of ideal flows which satisfy the Navier-Stokes equa- 
tions everywhere and a set of ideal boundary conditions at solid boundaries. 
The ideal flows of the Navier-Stokes equations are the class of potential flows 
which can dissipate only under very special conditions at fluid interfaces joining 
rotational-irrotational flow regimes [9,10]. Since these flows are kinematically 
determined by conditions expressed as linear partial differential equations, we 
may conjecture from the above hypothesis, that solutions to the Navier-Stokes 

equations for actual flows which are formally represented by an iterative proc- 
ess applied to a well-defined sequence of functions, must converge asymptoti- 
cally toward, and are thus bounded by, functions which satisfy linear equations. 

Such is the theoretical background of our work. 

In the present work, the iterative process is assumed to have a fundamental 
validity, and governing equations for successive iterations are obtained by as- 
serting the fundamental role of the potential flow as a base flow that is valid in 
the whole domain for all flow conditions to start the process of iteration. This 
is done on the basis of physical and mathematical reasoning. A real flow is 
viewed as a deviation, not necessarily small, from the basic potential flow. The 
linear equations governing the iterations are called here linear substructure 
equations. It is shown that at least two iterations are necessary and are suffi- 
cient for the restricted range of Reynolds number to represent the flow field 
around a circular cylinder. Boundary conditions are discussed and an idea of a 
physically infinite distance is introduced. 

Historically, starting with Boussinesq, various authors have used the poten- 
tial solution with a conviction that the results so obtained describe flows which 
deviate only slightly from potential flows, thus ruling out, a priori, any consid- 

eration of the regions close to the cylinder and in the wake. The governing 
equation obtained by them, which has been recently called ''Burger's equation" 
by Pillow, is formally equivalent to our base flow and first iteration equations 
taken together. The conceptual basis, motivation, and justification — mathemati- 
cal and physical —of our work is, however, entirely different from theirs. This 
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difference is reflected in the fact that the continuation of the iteration procedure 
was not recognized as an instrument for constructing analytical representations 

of actual flows at higher Reynolds numbers, particularly if the higher order it- 
erations are used in conjunction with higher harmonics as used in our represen- 
tation of the stream function. Our algorithm consists of an analytical procedure, 
i.e., of a set of mathematically specified rules for constructing analytical rep- 
resentations of viscous incompressible flow fields which are based on the com- 
plete Navier-Stokes equations and on realistic boundary conditions which define 
solid bodies fixed in the flow field. This algorithm is free of the a priori re- 
strictions used in the application of the small-perturbation theory for the con- 
struction of approximate solutions to the Navier-Stokes equations, and which, 

consistent with the reasoning underlying small-perturbation theories, have been 

severely limited by their authors (Oseen, Kaplun, Van Dyke, Lagerstrom, etc.) 
to a very restricted range of Reynolds numbers. Among these cases, in those 
in which solutions based on the potential flow theory are used as the basis for 
the application of the perturbations, it is either implicitly assumed or explicitly 
stated, that actual flows in general deviate strongly, i.e., significantly and thus 
finitely from potential flows, and that only in such cases where these deviations 
are very small, is it justifiable to use potential flow solutions as a basis for 
constructing analytical representations of viscous flows by a method of succes- 
sive approximations. The theoretical basis of our work has freed us from these 
ad hoc restrictions by rendering a new interpretation and understanding of the 
nature of potential flows, which ascribes to them a fundamental and distinguished 
position in the development of actual flow fields and therefore necessarily en- 
dows them with a dissipation process. The insight which revealed in our work 
that potential flows are essentially and universally connected with the detailed 
development of actual flow fields at all locations in the field, was inspired by 
phenomenological considerations similar to those which reinforced the concep- 
tual grounds on which we originally conceived the principle of minimum dissi- 
pation as a fundamental restriction on the development of viscous flow fields — 
a restriction not reported or implied by the Navier-Stokes equations. It is 
indeed the absence of the interpretation given here to potential flows and of an 
appreciation of their fundamental and universal role in the development of actual 

viscous-incompressible flow fields, which accounts for the fact that it was pre- 
viously assumed that potential flows can only be used to calculate viscous flows 
which deviate from them only slightly, thus justifying the application of the 
methods of small perturbation. The algorithm presented here is defined by an 
infinite sequence of iterations, successive steps of which are connected by linear 

differential relations. These linear differential relations are understood to rep- 

resent actual linear restrictions which constrain the development of actual flow 
fields. It is with this understanding that we assert that actual flow fields are 
essentially endowed with a linear substructure, and that this linear substructure 
frees the iteration procedure from restrictions adopted in the application of 
small-perturbation methods. These differences are further brought out in Part 1 
of the paper, where our equations are formulated, and in Part 3, where the re- 

sults of our work are discussed. 

Subsidiary equations governing the coefficients of the Fourier expansions of 
the stream functions of the first two iterations are obtained in Part 2. Expres- 

sions for drag and pressure are obtained here in terms of these coefficients. 
An intimate relation, which has been discussed by Lieber and Wan in their work, 
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between asymmetry and the time dependence of the flow field is shown to exist 
from.a consideration of solutions to these subsidiary equations, and a theorem 
concerning them is proven. 

Steady motion is investigated in Part 2 of this paper. The governing sub- 
sidiary equations for the first two iterations are solved, and the solutions are 

obtained in the form of power series expansions of 1/c log, r as well as 
1/c log, (log. r+1), Where r is the radial distance in polar coordinates and c 
is a suitable constant scale factor. As was previously mentioned, only the 
analysis using the second transformation is presented here; the analysis using 
the first transformation is contained in Refs. 1 and 2. Explicit expressions for 

drag and pressure are obtained with the help of these solutions. Streamline 
field and separation are also discussed; expressions are obtained for the angle 
of separation and the significance of streamline field is explained. 

Finally, in Part 3, the computed results and streamline fields are presented 
in a series of graphs and discussed in detail, with reference to the existing body 
of literature in the field. 

We may summarize the introduction to this paper by drawing the reader's 
attention to the salient results and conclusions, and which may be pursued in 

further detail by referring to Refs. 1 and 2. 

1. In this work the class of potential flows assumes a fundamental physical 
as well as mathematical role in the construction of analytical representations of 
steady and unsteady viscous-incompressible flow fields, which accord with the 

Navier-Stokes equations and realistic boundary conditions. This is achieved by 
developing an algorithm defined by an infinite sequence of iterations, successive 
members of which are connected by linear differential relations, and by intro- 
ducing a group of scale transformations that facilitate the numerical determina- 
tion of the coefficients of the analytical representation of the flow by the bound- 

ary conditions, with increasing Reynolds number. 

2. The fundamental and universal physical role, which according to the 
present paper potential theory assumes in the development of viscous incom- 
pressible flow fields in general and the linear differential relations connecting 
successive steps in the iteration procedure that defines our algorithm, are un- 
derstood here to correspond physically to fundamental aspects incurred in the 
development of actual flows. These features free the application of the algorithm 
presented here from the a priori restriction used in the application of small- 
perturbation theories to the calculation of viscous incompressible flows at low 

Reynolds number. 

3. The scale transformations introduced in the present work, to facilitate 
the application of the analytical representation of flow fields obtained from the 

algorithm to the numerical calculation of particular flow fields at increasing 
Reynolds number, are shown in the present theory to comprise a group. The 
group property of these scale transformations derives from the linear substruc- 
ture cited above and plays a fundamental role in the present theory. Members 
of this group of transformations may therefore, in principle, be applied succes- 
sively to the contraction of the scale of one of the space variables of the theory, 
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thereby facilitating the numerical calculation of higher Reynolds-number flow 

by available computer facilities. 

4, Another important result of this work concerns the asymptotic behavior 
of the solutions obtained when the location of the surface joining the strictly po- 
tential outside flow with the rotational flow inside, and in terms of which Desai 
introduced his concept of physical infinity, is extended away from the cylinder. 
This is illustrated in the graphical presentation of the results of numerical 

calculation. 

5. A fundamental and striking result obtained in the present work concerns 
a detailed field description of the evolution of flow fields with Reynolds number, 
including eddies distinguished by the closure of streamlines which obtains from 
the superposition of harmonics, in terms of which the solutions are here devel- 

oped according to the linear substructure. This reveals the remarkable fact 
that the superposition of two harmonics of the solution produces eddy structure 
whose distinguishing feature is the closure of streamlines, a feature derived 
from the linear substructure, and which was anticipated though not analytically 

deduced from it. 

6. Flow separation from the circular cylinder predicted by the present 

theory agrees favorably with available measurements. 

7. Though the drag calculated here for Reynolds numbers greater than 5 
differs from measurements, this discrepancy has helped us recognize that har- 
monics higher than the second must be included even at very low Reynolds num- 
bers in order to apply effectively the higher order iterations needed to obtain 
increasing accuracy in the calculation of the flow field, and in particular, of the 
drag. This means that higher harmonics, which may be envisaged as represent- 

ing the nuclei of turbulence which increase in strength with Reynolds number, 
are significant aspects of viscous flows, even at very low Reynolds number. 
Another reason for the discrepancy noted, is that for higher Reynolds number, 

we must locate the surface of physical infinity that joins the rotational and 
strictly potential regimes very close to the body, in order to work numerically 

within the limitations of the available computers. We can free ourselves of this 
restriction by applying another scale transformation. The close proximity of 
this interface (physical infinity) relative to the body in the cases where a dis- 

crepancy between calculated and measured drag was found, has the effect of 
artificially restricting and thus deforming the eddy structure of the rotational 
regime, thereby increasing the calculated drag over the actual value. 

8. The analytical representation of flow fields developed here is also found 
to imply certain necessary relations between time-dependent motion and the 

symmetry properties of flow fields, and correspondingly to reinforce the prin- 
ciple of minimum dissipation by a theorem presented here. 

9. Avery detailed field description of the pressure is obtained here and 
presented for all Reynolds numbers for which actual flow solutions have been 

calculated. 
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10. The purpose of the numerical calculations is two-fold: (a) to test the 
theory as it is presented; and (b) to obtain information that corresponds to ob- 

servables, but which extends significantly beyond available experimental infor- 
mation, and which bears on the details concerning the evolution of flow fields 
with increasing Reynolds number. 

11. Concerning procedures for extending the application of the present theory 

to the calculation of actual flows at higher Reynolds number, we are continuing 

to examine two possibilities: (a) the continued reapplication of the scale trans- 
formation cited; and (b) the development of an integral representation of flow 

fields, instead of the present power-series representation. 

A basic question which this effort will engage is whether or not the con- 
tinued application of the scale transformation has a theoretical basis. If it does, 
this means that, in principle, we have an instrument for calculating actual flows 
at higher Reynolds numbers. 

‘ 
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PART 1 

SUBSTRUCTURE FORMULATION 

In this section we shall formulate substructure equations for the flow of a 

Newtonian viscous incompressible fluid of density » and viscosity « around a 

circular cylinder of radius 'a' such that the velocity of the fluid at the cylinder 
wall is zero for all time t, whereas the velocity at distances from the cylinder 

approaching infinity is uniform in direction and with a magnitude u,, which may 
be a constant or a function of time alone. The starting point is the set of Navier- 
Stokes equations and the continuity equation in two dimensions. 

FUNDAMENTAL EQUATIONS IN TWO DIMENSIONS 

The fundamental equations for the flow are the two-dimensional Navier- 

Stokes equations and the continuity equation. As the boundary of the cylinder is 
circular, it is natural to use a two-dimensional polar-coordinate system. The 
reference frame is fixed to the cylinder so that the orientation of the polar axis 
is parallel to the direction of the velocity vector in the flow field as the radius 
vector r approaches infinity. Figure A illustrates the reference coordinate 

system. 

Fig. A - Reference coordinate system of a cylinder 

Conservation of Momentum Equations (the Navier-Stokes Equations): 
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Conservation of Mass Equation (the Continuity Equation): 

hy 
a (1.3) 
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The set of Eqs. (1.1), (1.2), and (1.3) can be conveniently reduced to a single 
equation of the fourth order by introducing a stream function, defined as follows: 

b= $8) , (1.4) 

such that 

Seibel eae) 1° 
u = u(r,6,t) = + —— (1.5) 

tr 06 

di a0 well oy 
y= PCRs Cnc, ATE (1.6) 

Or 

We observe that the stream function i is defined in such a way that the 

continuity Eq. (1.3) is identically satisfied. By differentiating Eq. (1.1) partially 
with respect to @ and Eq. (1.2) partially with respect to r and then eliminating 

between them the common term 6?p/dr0é@ in pressure, we obtain the Vorticity 
Transport Equation by using Eqs. (1.4), (1.5), and (1.6) to express uv, and 
their derivatives in terms of y and its derivatives. 

Vorticity Transport Equation: 

ee (1.7) 

dq 
to Ul 

+ 

+> 1 

the Biharmonic Operator is 

v4 = 92 (V2) 

and, by definition, the Vorticity Field is 

Bee Sh; Ro A 1 [ov 
® = w(r,d,t) = —~|— + 

2\dr 4> | <> 

es ee ): hes (1.8) 

Using the definition of Eq. (1.8) of 4, Eq. (1.7) can be written as 
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Ow 4, 101 Vv 0 Drs 
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or, briefly, 
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The first term of Eq. (1.9a) represents local time change of vorticity. The 
second and the third terms represent the convective change of vorticity. To- 
gether they represent the total change of vorticity. The term on the right rep- 
resents the rate of dissipation of vorticity due to internal friction. The form of 
Eq. (1.9a) clearly reveals the transport and the diffusion characteristics of a 
significant property of the flow, viz., the vorticity function. 

DIMENSIONAL BOUNDARY CONDITIONS 

Conditions at the Cylinder Wall 

The boundary of a solid circular cylinder is characterized by two proper- 
ties. First, it is impermeable except for adsorption effects. Second, it is vir- 
tually nondeformable with respect to the forces applied to it. By introducing the 
two ideas of impermeability and rigidity the cylinder boundary can be idealized 
for a simplified and yet representative mathematical formulation. The idea of 
impermeability ascribes this property to every point on the boundary of the 

cylinder. 

The condition of impermeability requires that, for a fluid element indefi- 
nitely close to a surface element of the cylinder wall, their relative velocity 
along the surface normal be zero. Since the coordinate system is fixed to the 
cylinder, the normal and the tangential components t and v respectively of all 
the surface elements are zero for all time t. Then the condition of imperme- 

ability is expressed as a kinematic condition 

G(a,6,t) = 0 (1.10a) 

for all fluid elements on the boundary of the cylinder. 

The ideas of impermeability and rigidity lead to a condition on the normal 
velocity component u, but not on the tangential component v at the cylinder wall 
[11,12]. To obtain a condition on ¢, the following three hypotheses were consid- 
ered during the 19th century: 

1. The velocity at a solid wall is the same as that of the solid itself, and 
changes continuously in the fluid, which has everywhere the same properties. 
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2. There is slipping at a solid boundary and this slipping is resisted by a 
force proportional to the relative velocity. 

3. Avery thin layer of fluid remains completely attached to the walls and 
the rest of the fluid slips over it. If the walls are of the same material every- 
where, the layer has a constant thickness, so that its surface presents to the 
current the same irregularities as those of the wall itself. The thickness of the 
layer is different for different liquids or different materials of the wall; and it 
depends on the curvature of the wall and on the temperature. Further, it is zero 
for liquids which do not wet the wall. 

The above hypotheses are essentially quoted from volume II, pages 676-677 
of Ref. 13. 

Serious objections can be raised against the third hypothesis. It includes 
two assumptions about the thickness of the fluid layer which contradict each 
other. The first asserts that if the walls are of the same material everywhere, 
the layer has a constant thickness, so that its surface presents to the current 
the same irregularities as those of the wall itself. The second asserts that the 

thickness depends on the curvature of the wall. 

To see how the above two assumptions involve a contradiction, let us sup- 
pose that we have a wall of the same material and that it has irregularities so 

that its cross section is as shown in Fig. B. Suppose A to be the maximum 
depth within which the surface irregularities are confined and that A is small 
enough compared to a representative dimension of the wall so that the surface 
variations within this depth can be considered as irregularities. Let us now 
construct a curve at a depth A/2 such that part of the surface variations fall 
above it and part of them fall below it. This would be a continuous curve drawn 
along the centerline C/L shown in Fig. B. We draw it separately in Fig. C. 

rN A 

Fig. B - Cross section of a wall 
with irregularities 

VI XV. 
Fig. C - Curve with surface variations 

partly above and partly below A 
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Since the wall has the surface as shown in Fig. B, if we interpret 'the cur- 

vature of the wall' to mean the curvature of the surface of the wall at different 
points on the surface then this curvature must be different at its different points. 
In that case, according to the first assumption, the thickness must be the same 

everywhere, while according to the second it cannot be so. This is a contradic- 
tion. However, if we interpret 'the curvature of the wall' to mean the curvature 
of the surface at various points after the irregularities are neglected anda 
curve such as the one in Fig. C is considered, the contradiction appears in an- 
other way. The curvature changes from point to point on the curve in Fig. C. 
Consequently, the thickness of the layer of fluid adhering to it must change from 
point to point. The resulting shape of the outer surface of the layer, therefore, 
will be different from that of the wall when the irregularities are neglected. If 
we now superimpose the original irregularities on this shape of the outer sur- 
face of the layer, the final shape presented to the current will have irregulari- 
ties which are oriented somewhat differently than before. Hence they cannot be 
regarded as the same irregularities as those presented by the wall itself. Thus 

we again reach a contradiction. 

Looking at the two assumptions from another point of view, a deeper ques- 
tion arises. The thickness of the layer may vary from point to point and ac- 
cordingly be a local attribute of the layer. Then how can it be influenced by the 

curvature of an imaginary surface obtained by neglecting the irregularities of 
the surface of the wall and not by the curvature of the actual surface of the wall 
which has these irregularities? Moreover, whether or not a surface variation 
can be regarded as a surface irregularity should also depend on the actual 
thickness of the layer as compared to the depth A. This would involve a serious 

investigation into the idea of the 'relative scales' of different aspects of an ac- 
tual physical process. 

Besides these questions there are other objections which Lighthill [14] has 
clearly presented as follows: ‘Supporters of this view do not seem to have dis- 

cussed the dynamics of such a layer, or thought about the necessarily continuous 
variation of velocity across it which results from viscous action, or about the 
effect on the fluid in this layer of the pressure gradients to which it is sub- 
jected."" It is then not difficult to see why this hypothesis has fallen into disfavor. 

About the first hypothesis, Lighthill says: 

Stokes (1851), in his great paper ''On Effect of the Internal Fric- 
tion of Fluids on the Motion of Pendulums," had shown that the 
condition of zero relative velocity of the fluid at a solid surface 
both was the most physically tenable boundary condition for the 
equations of motion of a viscous fluid, and led to remarkable 

agreement with a wide range of experiments in that problem, as 
it had also in the capillary-tube resistance experiments of Poi- 

seuille (1840) and Hagen (1839). 

Three questions arise in relation to this statement. First, how can one decide 

that this condition is the most physically tenable condition? Second, in what way 
is it the most physically tenable condition for the equations of motion of a vis- 
cous fluid, i.e., can it be deduced from or can it be shown to be the only condition 
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compatible with the equations of motion? Third, did Stokes in fact answer these 
questions ? Below we quote two relevant paragraphs from Stokes' [15, 16] papers, 

the first from the paper of 1845 and the second from the paper of 1851. 

The next case to consider is that of a fluid in contact with a solid. 
The condition which first occurred to me to assume for this case 

was, that the film of fluid immediately in contact with the solid 
did not move relatively to the surface of the solid. I was led to 

try this condition from the following considerations. According to 
the hypotheses adopted, if there was a very large relative motion 
of the fluid particles immediately about any imaginary surface 
dividing the fluid, the tangential forces called into action would be 

very large, so that the amount of relative motion would be rapidly 

diminished. Passing to the limit, we might suppose that if at any 

instant the velocities altered discontinuously in passing across 

any imaginary surface, the tangential force called into action would 
immediately destroy the finite relative motion of particles indefi- 
nitely close to each other, so as to render the motion continuous; 

and from analogy the same might be supposed to be true for the 

surface of junction of a fluid and solid. But having calculated, ac- 
cording to the conditions which I have mentioned, the discharge of 

long straight circular pipes and rectangular canals, and compared 

the resulting formulae with some of the experiments of Bossut and 
Dubuat, I found that the formulae did not at all agree with experi- 
ment. I then tried Poisson's conditions in the case of a circular 
pipe, but with no better success. In fact, it appears from experi- 

ment that the tangential force varies nearly as the square of the 
velocity with which the fluid flows past the surface of a solid, at 
least when the velocity is not very small. It appears however from 
experiments on pendulums that the total friction varies as the first 

power of the velocity, and consequently we may suppose that 

Poisson's conditions, which include as a particular case those 
which I first tried, hold good for very small velocities. I proceed 

therefore to deduce these conditions in a manner conformable 

with the views explained in this paper. 

For the purposes of the present paper there will be no occasion to 

consider the case of a free surface, but only that of the common 
surface of the fluid and a solid. Now, if the fluid immediately in 
contact with a solid could flow past it with a finite velocity, it 
would follow that the solid was infinitely smoother with respect 
to its action on the fluid than the fluid with respect to its action 

on itself. For, conceive the elementary layer of fluid comprised 
between the surface of the solid and a parallel surface at a dis- 
tance h, and then regard only so much of this layer as corre- 
sponds to an elementary portion ds of the surface of the solid. 
The impressed forces acting on the fluid element must be in equi- 

librium with the effective forces reversed. Now conceive h to 
vanish compared with the linear dimensions of ds, and lastly let 
ds vanish. It is evident that the conditions of equilibrium will 

ultimately reduce themselves to this, that the oblique pressure 

506 



Studies on the Motion of Viscous Flows--IIl 

which the fluid element experiences on the side of the fluid must 

be equal and opposite to the pressure which it experiences on the 

side of the fluid. Now if the fluid could flow past the solid with a 

finite velocity, it would follow that the tangential pressure called 
into play by the continuous sliding of the fluid over itself was no 

more than counteracted by the abrupt sliding of the fluid over the 
solid. As this appears exceedingly improbable a priori, it seems 

reasonable in the first instance to examine the consequences of 

supposing that no such abrupt sliding takes place, more espe- 

cially as the mathematical difficulties of the problem will thus be 
materially diminished. I shall assume, therefore, as the condi- 

tions to be satisfied at the boundaries of the fluid, that the veloc- 
ity of a fluid particle shall be the same, both in magnitude and 
direction, as that of the solid particle with which it is in contact. 

The agreement of the results thus obtained with observation will 

presently appear to be highly satisfactory. When the fluid, in- 
stead of being confined within a rigid envelope, extends indefi- 
nitely around the oscillating body, we must introduce into the so- 
lution the condition that the motion shall vanish at an infinite 

distance, which takes the place of the condition to be satisfied at 

the surface of the envelope. 

These quotations show that in 1845 Stokes was inclined towards the first 
hypothesis but quite undecided about it and in fact tried Poisson's conditions 
which in essence represent the second hypothesis. The second hypothesis was 

deduced from the molecular hypothesis by Navier. However, in 1851, Stokes 
makes use of the first hypothesis. According to his remarks, the choice of this 
hypothesis seems to be governed by the following criteria. 

1. Hueristic reasoning when applied to the conditions of equilibrium lead to 

a conclusion which seems exceedingly improbable a priori. 

2. Mathematical simplification of the condition. 

3. Experimental justification of the final results. 

From these criteria it is seen that Stokes did not show that the so-called "no- 

slip condition" was physically the most tenable condition for the equations of the 

motion of a viscous fluid—not at least conceptually. 

The second hypothesis includes, as a particular case, the first one. Light- 

hill's discussion [14], which is also based on molecular considerations, shows 
this to be the case. From this point of view the first hypothesis becomes a valid 

approximation under ordinary flow conditions. What happens under extreme 

conditions when thermodynamic equilibrium exists no longer is not so clear. 
The behavior of the superfluids also raises questions about the nature of this 

condition at a solid wall. 

Conceptually, it seems that the question about the nature of this condition at 
a solid wall is an open one. A good discussion on this condition is given by 

Langlois [17]. We intend to use the "'no-slip'' condition as a hypothesis on the 
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basis of the criteria of (a) mathematical simplification and (b) experimental jus- 
tification on the final results of the analysis. 

| 

The no-slip condition in the case of the flow under consideration is ex- 
pressed as a kinematic condition 

V (al O6)°= 0 (1.10b) 

for all fluid elements on the boundary of the cylinder. 

The two conditions of Eqs. (1.10a) and (1,10b) together represent the con- 
tinuity of the velocity vector at the interface of the two media, viz., the fluid and 
the solid cylinder. It should be noted that the conditions on G and v are ob- 
tained through the ideas of impermeability and no-slip and that the idea of ri- 

gidity is involved only as the particular form these conditions have taken here. 
The continuity of the velocity vector at a boundary separating the two media 

does not require the boundary to be rigid. 

Condition at Infinity and the Idea of Physically Infinite Distance 

Generally, this condition for the motion of a fluid around an obstacle is ex- 
pressed by the statement that the velocity at infinity is uniform in direction and 

has a magnitude which is either constant or a function of time alone. Sucha 
statement, in particular for a sudden relative motion which brings about a con- 

stant relative velocity from rest between a circular cylinder and an infinite 
mass of fluid, is expressed mathematically in either of the following two ways: 

(i) ARES: 

G(w,0,t) = 0 t= 0 

= -U, cos é t > 0 

7(w,8,t) = 0 t= 0 

="+u,, ‘sin 6 > 0 

p (0, 6, t) = Bess a constant. 

(ii) As roo, 

a(t,6,t) = 0 t= "0 

— =u, cos @ tO 

v(1,0,t) = 0 t = 0 

— tu, sin 0 tO 

p(T, toupee a constant. 
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These formulations of the condition at infinity are found in many books on 
fluid mechanics and in technical papers. In particular, references may be made 
to books by Milne-Thomson [11], Lamb [18], Schlichting [19], Rosenhead [20], 
and Landau and Lifshitz [21], and to papers by Kaplun [ 22, 23], Southwell and 
Squire [24], Bairstow, Cave, and Lang [25], and Hollingdale [26]. 

This manner of stating this condition is not entirely appropriate because it 

conceals a very Significant point. 

If we consider the ideas underlying such a condition we see that the condi- 

tion stems from a feeling that the changes introduced in the flow field by an ob- 
stacle in an infinite body of fluid must be finitely extended. The principle of 

conservation of energy would imply that an infinite domain cannot be disturbed 
everywhere at finite amplitudes. It might be asked what we mean by an infinite 

body of fluid. Experiments show that for steady motion of a fluid around an ob- 
stacle the flow field significantly far away is essentially the same as when the 
obstacle was absent. What is actually and decisively observed is that the dis- 
turbances, the physical changes in the flow field, attenuate with distance away 

from the obstacle. 

There are two categories of variables involved in the measurement and ob- 

servation of a physical process. The first category is the geometric category, 
i.e., the category to which the coordinate variables 7, 6, and t belong. The 
second category is the dynamic category to which belong the variables u, v and 
p. There is a significant difference between the variables belonging to these 

two categories in relation to their measurements. 

Let us consider a disturbance at some point in a body of homogeneous and 
isotropic fluid. Suppose there is some particular law of decay of this disturb- 

ance as it propagates outwards in the fluid from the source of disturbance. This 
law must be the same for all directions in the fluid because the fluid is assumed 
to be isotropic. However, the intensity of the disturbance at the source may be 
different in different directions. Now let us consider the measurement of the 
intensity of the propagated disturbance at some distance ? away from the source. 
Suppose the measurements are made in some Suitable but definite system of 

units. The measured intensity at ? can be expressed as some multiple of the 

unit of measurement selected or as a percentage of the magnitude of the inten- 

sity in this direction at the source. If the law of decay is such that increasing 
the intensity at the source increases the intensity at ¢ linearly, the percentage 
which expresses the ratio of these two intensities will remain unchanged thereby. 

Hence, considering other directions in which the intensity of disturbance at the 

source may be different in magnitudes, we come to the conclusion that with such 
a law of decay this percentage will remain unchanged at a distance ¢ in all di- 

rections; i.e., the isopercentage surface will be spherical, considering the 

source to be at the center of the sphere. We can obtain an isopercentage sur- 

face even if the law of decay does not exhibit the property of linearty mentioned 
above. If the fluid is nonhomogeneous and nonisotropic, even then one can obtain 
isopercentage surfaces, though the law of decay will depend on the direction of 
propagation of the disturbance. In these cases the surface is not spherical. 

However, on an isopercentage surface the magnitudes of the intensity of dis- 
turbance will, in general, vary from point to point. Just as we can obtain an 
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isopercentage surface, we can obtain an isomagnitude surface on which, in gen- 
eral, the percentages are different. 

When we want to say that a disturbance has died out in a domain of the fluid, 
we have two alternatives. We can say that beyond a certain isopercentage sur- 
face the disturbance is insignificant. Or we might say that beyond a certain iso- 
magnitude surface the disturbance is insignificant. Now the construction of an 

isomagnitude surface involves measurement only at points in the flow field, and 
no knowledge of the disturbance at the source is required except insofar as the 
Suitable selection of a system of units is concerned. On the other hand, the con- 
struction of isopercentage surfaces involves a detailed measurement and knowl- 
edge of the disturbance at the source, in addition to the measurement at points 

in the flow field. From the point of view of measurement, then, the isomagnitude 
surfaces are more appropriate. More significantly, however, the magnitudes 

and not the percentages based on the magnitude of the disturbance at the source 
represent the actual disturbance at a point. Hence, physically also, the isomag- 
nitude surfaces are more appropriate to delineate the domains of the disturbed 

and the undisturbed field. For mathematical convenience, we may construct a 
spherical envelope which would enclose the isomagnitude surface within it, by 
taking the largest distance between the source and the isomagnitude surface as 

the radius of the envelope, and then using it in place of the isomagnitude surface. 

Now we introduce the idea of a Physically Infinite Distance. 

Definition: Physically Infinite Distance in a certain direction is 
that smallest distance away from an obstacle at which the flow 
field is not significantly affected by the presence or absence of 
the obstacle. The word "'significantly" is to be interpreted in re- 
lation to the degree of accuracy with which the field variables are 
measured. 

Evidently, a change in the field variables in the dynamical category repre- 
sents a disturbance. The magnitude of this change is the magnitude of the dis- 
turbance. It is a matter of convention to decide when a certain magnitude of this 

disturbance is negligible. Any magnitude which falls within the limits of accu- 
racy of a measuring instrument, which is judiciously chosen so that the meas- 
urements made with it describe the physical conditions properly, may be consid- 
ered negligible. Then this magnitude may be used to construct an isomagnitude 
surface. The smallest distance in a certain direction from the obstacle to this 
surface is the Physically Infinite Distance in that direction. 

The Physically Infinite Distance will depend on the following: 

1. The physical nature of the fluid 

2. The intensity of the disturbance 

3. The direction in which it is reckoned 

4, The degree of accuracy of the measuring instruments. 
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Since disturbances may become, as they generally do, insignificant at 

mathematically finite distances, a physically infinite distance may be finite 
mathematically. Since a mathematically infinite distance embodies the idea of 

indefinitely large distance, it would then follow that a physically infinite dis- 
tance will always be less than, or at the most equal to, a mathematically infinite 
distance, and hence that at a mathematically infinite distance also the physical 

disturbances should be insignificant in the sense of being immeasurable within a 

certain degree of accuracy. 

In contrast to the idea of physically infinite distance, a mathematically in- 
finite distance depends on none of the four points on which the physically infinite 

distance depends. Moreover, the mathematical idea of the point at infinity is 
based on the idea of limit and hence a material point cannot be uniquely associ- 
ated with such a point at infinity. This is the essential difference between the 
abstract and the real. Herein lies both the strength and weakness of the mathe- 

matically infinite distance. Its strength lies in the fact that in most instances it 
leads to the possibility of a mathematical formulation which does not require 
the information demanded under the above-mentioned four points and yet can 
represent the corresponding physical process in essence. Its weakness is that 

in its reinterpretation in an actual situation, where the domain is always finite 

and hence the condition at infinity must be considered to apply at finite dis- 

tances, one must necessarily resort to the idea of physically infinite distances. 
Since the choice of the idea of mathematical infinity is governed by the criteria 
of mathematical convenience, the idea of physically infinite distance may be used 
if it is found to be more convenient than the other. It will then have the dual ad- 

vantage of being both convenient and realistic. 

The idea of a physically infinite body of fluid involves two notions. One is 
that of the physically infinite distance and the other is that of an inexhaustible 
supply of fluid. Sources and sinks are devices by which the latter is accounted 

for in some cases. For the corresponding mathematical idea, the indefinite ex- 
tension implied by the point at infinity is sufficient. 

It might seem that before any use can be made of the idea of physically in- 

finite distances one must necessarily possess the information about the nature 
of the fluid, the intensity of the disturbance, degree of accuracy of the instru- 
ments, etc. The nature of the fluid is adequately described by the knowledge of 
physical constants like density » and viscosity , as these are needed for any 

mathematical formulation. That the other information need not be known a priori 

for a mathematical formulation which makes uSe of the idea of physically infinite 

distances can be shown by considering the following examples. 

The flow of an inviscid incompressible fluid around a circular cylinder of 
radius 'a' must satisfy the harmonic equation V2, = 0, where y, = Yo Gee A) 

is the stream function. 

The solution of the above equation, which renders the flow at infinity uniform 
is given by 
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The normal and the tangential components of velocity are given by 

A A a2 a 
Ug =U ES 1 - ee cos @ 

r2 

2 2 4 a se ass ‘ 
Vo = (i + = Simi 7 ee —— a Constant. 

The corresponding pressure is given by 
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where p, iS a constant. 
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Atiic: sai, 

La e=, OL, ¥, = 20, sin@, Bo = 5 Pig? (200s 29-1) + B - 

We can construct Table 1, supposing @ = 45°. From the table it can be 
seen that the magnitudes of the components of the velocity vector evaluated at 
various finite distances along the line 9 = 45° and away from the cylinder ap- 
proach very rapidly those evaluated at infinity. Even at a distance as close as 
tr = 10a their difference is only 1% of the magnitudes at infinity. And at a dis- 
tance r = 50a this reduces to only 0.04% of the magnitudes at infinity. 

Table 1 
Measurement of Physically Finite Distance, with @ 

= Geobl:+0,0016) 
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If now the velocity measuring instruments are such that they cannot meas- 

ure accurately any quantities of the order of 0.0004 a, //2 or smaller, then 
within this accuracy the boundary condition at infinity is met at a finite distance 
of 50a. Such a distance would here be called a physically infinite distance. In 
fact, we may assert that the flow becomes uniform at a finite distance of 50a. 
That it is 50a we concluded after looking at Table 1 and the accuracy of the in- 

struments. Moreover, we made use of the solution obtained by the consideration 
of the condition at infinity. 

We shall now show that for the same physical process described by the pre- 

vious solution there is another mathematical procedure consistent with the physi- 

cal ideas to determine physically infinite distance. 

_ In this procedure we first make the assertion that there is a finite distance 

h at and beyond which the flow can be regarded as uniform. We may express 
this by the condition 

Re eran eles ns 
(ha =, SU cos? Aric cos? 

~A UA A 

(hy y= +u sin + Ey sin@ (A) 

Po(h 6) =. Pa Bens 

where u, and p, are constant magnitudes of velocity and pressure recorded by 

the instruments and which may be regarded as known completely. The errors 
€,, €, in velocity and es in pressure are to be regarded as unknown, but less 

than the error bounds of the instruments, which may be regraded as known. 

Using the method of separation of variables, we obtain as a general solution 
of the harmonic equation 

A ~ A 

py(7.8) = 0c, sind + on cos\8)(c, rh 4 Care) + c,d log. ti co 1c. log. rc... 

where c,, cy,---, cg, and A are arbitrary constants. This satisfies V2y5= 0. 

We may take c, = 0 because bo is to be determined within an arbitrary 
constant. For periodicity in 6 we must have ) an integer, Say n and c,, c, 

equal to zero. Superposition for all n gives 
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must 
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Moreover, the kinematic condition that the normal component of velocity at 
r = a be zero requires that c, + c,/a? = 0. 

Now there are three conditions on two constants c, and c,. In the evalua- 
tion of the previous solution where the condition of uniform flow was demanded 

as r— and €, = €, = 0, the first two of the above conditions reduce to a 
single condition that c, = -u, because the term in c, drops out. c, is then 
obtained from the third condition. This condition of overdeterminacy is pecu- 
liar to the example chosen and is not generally obtained, as will be clear when 
the actual problem of the flow of a viscous fluid around a circular cylinder is 
considered. It is important to note that, in general, such constants like c,, c, 
must be functions of h, the distance at which this condition is applied. 

. The overdeterminacy determines h directly in the above case. c,, c,, and 

h which satisfy these conditions are given by 
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The corresponding stream function is given by 

" : ; ; é, + €, 
Wo(F.8) = -|2.(3 - =| sind] [ eer ; (B) 

4u 

We can see from these expressions that as ¢,+ ¢,—0, ¢, - ¢, 0, and h— 
infinitely large distance, Yo reduces to the previous solution. Even though we 
happen to have a relation between h, € w and ¢,, h cannot be calculated be- 

cause we do not know <, and <,. In general, we do not have such an explicit 
relation. To see how c, and c, depend on h we may rewrite them as follows: 

a a K S ar a2 
. ete, Epica. Zita 

Chie Hoh diagnt ta 1 - K 75 
€ - € 2u h 

u Vv 0 

Since the actual nature of <, and €, is not known, we may assume that the 
ratio €, + €,/é, - €, will generally be finite and that ¢, + €, is definitely 
smaller than 20,, in view of the fact that they each are smaller than the error 

of the instruments. Hence c, and c, as functions of h approach asymptoti- 

cally the values -u, and +u,a? respectively as h becomes increasingly large. 

The pressure field is given by B(F,8) such that 

This also reduces to the pressure field as obtained before when <,, = €, = €, = 0. 

The stream function in Eq. (B) and the pressure field in Eq. (C) adequately 
represent the potential flow, though the conditions were applied at a finite dis- 

tance h. 

The situation can now be generalized. We apply the conditions of uniform — 
flow to the general solution of the equations of motion at a finite distance, say h. 
We then obtain the constants of the solution as a function of the distance h. If 
we find analytically or numerically that these constants are approaching limit- 

ing values as the distance at which the conditions of uniform flow are applied is 

increased, then we may take for solution that distance at which they approach 

the limiting values, and consequently the final solution does not change signif- 
icantly as the Physically Infinite Distance for the problem. Since the solution 

does not change, the physical quantities like drag and pressure should also ex- 
hibit asymptotic behavior with increasing h. 

From the above, we can State the condition of uniform flow as follows: 
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Atr=h, 

a(h,@,t) = 0 t= 0 

= (-Ug + €,) cos 8 t 2 0 

o(h,6,t) = 0 t = 0 
‘ ) (1.10c) 

= (+u,, + €) sin @ tf =0 

p (h, 6, t) = Po + os , a constant. 

E49 €,, and €, are to be less than the errors of the instruments, so that the 
solution exhibits asymptotic behavior with increasing values of h. 

It was mentioned earlier that there is a significant difference between the 
geometric and the dynamic categories of the variables. This difference is that 

the variables rt, @, and t are measured by instruments which have limitations 
of accuracy just as great as those instruments used for measuring velocities 

and pressure. Physically infinite distance, however, does not depend signifi- 
cantly on the accuracy with which the geometric variables are measured, but it 

does depend crucially on the accuracy with which the dynamic variables are to 
be determined. 

Summing up, the dimensional boundary conditions are as follows: 

ar = a, 

a(a,é,t) = 0 t >0 

¥(a,0,t) = 0 t) 320 

Wes al 

a(h,@,t) = 0 t= 0 Ghaiiou (1.10) 
= (-u,, + €,,) cos8 t>0 

0(h,@,t) = 0 t= 0 

= (+u, + €,) sind t>0 

p¢h, 0,4) 7= Po tr€y* eee 

The condition at 7 = h is to be interpreted as explained previously 
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NONDIMENSIONAL EQUATIONS AND BOUNDARY CONDITIONS 

Let us introduce the following nondimensional variables, as it is convenient 

to work with them. 

a Vv DeseP 
iol = errata v= = p= i 

Win us DLs 

=, ey ey a Qin) 
a= —— oe aS ee (no = : let 

u ES v a Pp 1 a 
he wie Be ee 7 Pug 

r 2 ~ Uy w 
r= = 8 oe wy = 

a a A 
au 

The Reynold's number based on radius is Re = u,,a/v. We note that u, and p, 
are constant magnitudes of velocity and pressure recorded by the instruments 

at and beyond some finite distance away from the cylinder. The symbol » is 
retained in the sense of the idea of a physically infinite distance. 

Using Eqs. (1.11), we get from Eqs. (1.1), (1.2), (1.3), and (1.7) the following 
nondimensional equations: 

ou du vou v2 1 Op 1 /d7u 1 du u 1 32u 2 ov 
— + u— +t - —- — =F - - + K |- $e ee (2) 
ot or r 306 is 20r Relodr2 ! Or r2 r?2 9062 729 

ov ov vouv 1 OP. cor fa2v 2 de av 1 02v 2 3u 
—— a fe ee a eo) 
fe) r ro r 2r 0@ Re \or?2 ror r? r? 3062 r? 34 

fs) re) 
cha ene a (1.14) 
or r r oO 

3Vv2 ow oV? ow oV2 See patie cae Bk cS ee a ene (1.15) 
ot LOG) Or Tor 0o@ Re 

where 

2 D 
i yee ge 

r? T Or r2 362 

and 

l<r<g<o O-S CLs 27; 

The corresponding nondimensional boundary conditions obtained from Eqs. 
(1,10) are: 
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yee aaa 

ow 
ule OF ty = (2) =~ (0) for all t 

r 00 
r=1 

ow 
v¢1,0,t) =4- — = 020 tor alle 

r 
c=] 

AL ate hh", 

ow 
vote = (ES) = 0 Ator’ t= 0 

r=h* 

= =¢1 -J4,,) .cos@i. Gort i710 

ay (1.16) 

v cht0,e) = (- =) =, tor So 
or : 

Tih 

I Hele) sind “for t.2°0 

p(t... t= ean for t>0O 

€y, €y, and e, fall within the limits of accuracy of the measuring instruments 

and hence are not registered. For the purposes of calculations they are to be 

regarded as negliglble. The physically infinite distance is h*, determined as 

discussed earlier. 

It is interesting to note that the condition at h* requires that 3/00 be 

equal to zero, because h* is a finite distance. The conventional boundary con- 

dition at infinity requires 

This appears a much weaker condition on 3oy/0¢ than the previous one. That 

this is not so can be seen when we take into consideration how the idea of a 
physically infinite distance h* is based on the requirement that all physical 
disturbances should attenuate with distances away from the source of disturb- 

ances and on the manner in which it is to be found mathematically. 

To complete the formulation of the problem, we should add to the boundary 
conditions an initial condition, depicting the state of the whole fluid at t = 0. If 
we neglect the initial and the boundary conditions at time t = 0 and look fora 
time-independent solution, the problem becomes simpler. The boundary condi- 
tions as stated correspond to the idealized problem of flow past a cylinder 
started impulsively from rest. The idealization consists in the discontinuous 
variation of the velocity at t = 0. A realistic formulation may need to alter this 
by allowing for a very rapid but continuous variation of the velocity at t = 0. In 
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principle, these conditions together with an initial condition permit an examina- 

tion of the transient flow. 

The choice of an initial condition is very important from the point of view 

of the progressive evolution of the flow structure. A critical examination of the 
governing questions reveals under what circumstances a flow can become time- 

dependent. This being the case, a condition which is mathematically simple and 

yet physically representative should be selected with care. In this work, the 
equations of motion for a time-dependent motion are carefully examined without 
attempting to solve them. Consequently, we have not formulated realistic initial 

conditions. The time-independent case for which the boundary conditions of Eqs. 
(1.16) suffice, is treated completely. 

POTENTIAL FLOW SOLUTION 

Let us consider the stream function 

Wo = W(t, 8) = = (: - 1) sind , (i170) 

which leads to the velocity components 

oy! 
Ug = Up(t.2)*= +P =-(1- 4) cose (1.18) 

r 

ay 
Vo = VatFat) = eas Sry | Sing. (1.19) 

and the pressure field 

1 1 
Po = Po(t+9) = 3 (20s 2 =) ; (1.20) 

These functions in Eqs. (1.17), (1.18), (1.19), and (1.20) satisfy the following 
equations: 

du, Oly . agotay 8Ven 1 °Po 
—$ +u, — + = mM - me Ere 
ot ovar Bt) Og a 2, Of 

ov ov Vi OV u,v op RLS Eau RAC IRE RL (1.21) 
ot r Sain eles r 2r 06 

du, U9 1 °Y%o 

— +—+=-—=0 
or E ro 

and they are such that 
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The boundary conditions satisfied by u,, v, and p, are: 

Aten = i, 
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10 

w(t.) =(F22) = 0 
ral 

re) 
V5(152) -(-=) =) 

p(t, 2):= 2'cos 29 1/6 

oy 1 0 
M(232) = eae = -cos@ 

roo 

owe 
Vat so = a> = +sind 

or 

Po(r,0) = 0. 

=10 

= 0 (1.22) 

=): 

(1.23) 

The set of Eqs. (1.21) consists of the Euler equations and the continuity 
equation in two dimensions. The Euler equations are equations of equilibrium 
for an idealized fluid which is assumed to be nonviscous. Historically, Eqs. 
(1.17), (1.18), (1.19), and (1.20) are obtained as solutions to Eqs. (1.21) and 
(1.23) when the flow is further assumed to be irrotational. However, in view of 
Eqs. (1.21) and (1.22), it follows that ¥,, u,, v,, and p, as given by Eqs. (1.17), 
(1.18),- (1.19) 5 and’ (1-20) ‘satisfy Eqs. (1.12), (1.13), (1.14), and (1.15) fora 
real viscous fluid. We emphasize that this is due to the condition of irrotation- 

ality which implies that the velocity field can be derived from a potential. A 
comparison of the kinematical conditions in Eqs. (1.23) with the conditions in 

Eqs. (1.16) shows that these solutions satisfy all but the no-slip condition for a 
real fluid. 
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POTENTIAL FLOW AS A BASE FLOW FOR 
AN ITERATIVE PROCESS IN ACTUAL FLOWS 

We shall consider the significance of the potential flow solution given by 
Eqs. (1.17), (1.18), (1.19), and (1.20) from both the physical and mathematical 
points of view. 

Let us write the Navier-Stokes Eqs. (1.12) and (1.13) as follows: 

= 2 C ye A 
EN a ee ee te ae Se aa ee eo belay 

r 96 r 2or Re r? ror r2 r230@2 r2 364 

3 3 3 op 32 2 1 3? oc SNesty dee Y 1 NON Uv Pelt (e ies, 5.48 (1.13a) 
ot or r 0@ r ar 0G Re r? ine (ole r2 T-2-0 T-. 00 

Here, the Reynolds number is Re = u,,a/v. 

There are three ways by which the Eqs. (1.12a) and (1.13a) can be reduced 
to the Euler equations: (a) We may assume, a priovi, the fluid to be nonvis- 

cous, in which case 1/Re = u/u,ap is identically equal to zero. Then the gov- 

erning equations for all such flow conditions are the Euler equations. (b) We 
may consider the fluid to be viscous, but assume 1/Re to be so small that zn 
some domain the right-hand sides of Eqs. (1.12a) and (1.13a) can be regarded as 
negligible and hence put equal to zero. In this case the Euler equations are the 

governing equations only when the specific conditions are met. (c) We may con- 
sider the fluid to be viscous, but assume the velocity field to be irrotational, in 
which case the terms in parentheses of Eqs. (1.12a) and (1.13a) are identically 
equal to zero. Here the Euler equations are the governing dynamic equations 

for a viscous fluid when the flow is assumed to be irrotational. 

Possibilities (a) and (b), which are quite distinct, impose restrictions on 
the Reynolds number Re. Possibility (c) imposes a restriction on the nature of 

the flow. Historically, the Euler equations are derived through the first possi- 

bility (a). 

The boundary layer theory assumes that, when the Reynolds number is very 
large, i.e., 1/Re is very Small, a real flow is a potential flow except near a solid 
boundary; accordingly, it asserts that near a solid boundary the terms in paren- 
theses of the right-hand sides of Eqs. (1.12a) and (1.13a) are significant, even 
though 1/Re may be made arbitrarily small. This theory, then, makes use of the 

second possibility (b). It has led to a widely held view that the potential flow is 

an approximation to the corresponding real flow only at very large Reynolds 
number. However, an alternative view, which is very significant in the present 
work, can be taken as shown by the following considerations. 

First, we note that the possibilities (a), (b), and (c) show that when 1/Re is 
assumed to be zero the velocity field need not be assumed irrotational and, con- 
versely, when the velocity field is assumed irrotational Re may have any finite 

value so that 1/Re differs significantly from zero. As we have already seen, the 
potential flow solution given by Eqs. (1.17), (1.18), (1.19), and (1.20) satisfies 
Eqs. (1.22) and thus satisfies the requirements of the third possibility (c). 
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Consequently, if the boundary conditions are not brought into consideration, this 
potential flow solution satisfies the Navier-Stokes equations for all Reynolds 
numbers, i.e., even though the solution is generally referred to as the solution 
for an inviscid fluid, it is in fact independent of the viscosity of a fluid. 

Let S denote the actual solution which satisfies the Navier-Stokes equa- 

tions, the continuity equation, and all the boundary conditions, and which, we as- 

sume, represents the flow field as observed in experiments. Let S, denote the 
potential flow solution given by Eqs. (1.17), (1.18), (1.19), and (1.20). Let the 
flow domain be denoted by M. The solution S, if substituted iz the Euler equa- 
tions, will not, in general, satisfy them everywhere in the domain M. However, 
it may satisfy them in some subdomain M, of M toa high degree of approxima- 
tion. Let M, denote the remaining subdomain of M so that M, + M,-=M. The 
solution S, satisfies the Navier-Stokes equations as well as the Euler equations 
everywhere in the domain M and consequently in the subdomain M,, regardless 

of the viscosity of the fluid. Therefore, in the subdomain M, the actual solution 
S must be a close approximation to the potential flow solution S,, but in the sub- 

domain M, it may be significantly different from it. Now A is said to deviate 
from B under a variable set of conditions C if A changes with C while B does 
not, and A approaches B when the variable set of conditions C approach one or 

more fixed sets of conditions D, E, etc. The actual solution S depends on the 
Reynolds number as a parameter and hence changes with it, whereas the poten- 
tial solution S,, being independent of the Reynolds number, remains constant for 
all Reynolds numbers. Therefore we can identify S with A, S, with B, Re with 
the variable set of conditions C, and fixed limiting values of Re with the fixed 
sets of conditions D, E, etc. If then the subdomain M, happens to enlarge as 
the Reynolds number Re approaches any one of the fixed limiting values, this 

fact may be taken to mean that the actual solution S deviates from the potential 

flow solution S, in the whole domain M and that this deviation decreases as the 
Reynolds number Re approaches any one of the fixed limiting values. The ob- 
servations at high values of Reynolds number show that the domain in which the 
real flow can be regarded as a potential flow does in fact increase with increas- 
ing Reynolds numbers. Similar observations at extremely low values of Reyn- 

olds numbers, e.g., for Hele-Shaw flows, show that the same is the case with 

decreasing Reynolds numbers. Consequently, if we assume that S does repre- 
sent the real flow as observed, the foregoing conclusion becomes compulsive. 

As we have shown, the potential flows satisfy the Navier-Stokes equations 

in a stricter sense than do the viscous flows, i.e., by leading to the vanishing of 
the separate parts of the governing equations whatever be the viscosity of the 
fluid—and this is all the more striking when the individual terms of the Vorticity 
Transport Equation are observed to vanish separately. The irrotational char- 
acter of the flow is what leads to this remarkable behavior. This is here re- 

garded to be of fundamental importance and consequently, for the present work, 
the third possibility (c) leading to the Euler equations is the meaningful one. In 
this light, we may think of a real flow as a deviation from the corresponding 
potential flow,* made in order to satisfy the no-slip boundary conditions, and 

*By corresponding potential flow is meant here the flow which satisfies the N-S 
equations and all boundary conditions except the no-slip condition. 
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that this deviation need not necessarily be considered small in any sense. The 
subdomain M,, may be a null domain for certain ranges of flow parameters, but 

for other ranges it may not be so and then the deviation would be small in it. 
This is to be considered incidental. However, as a hypothesis which is later 
supported on the basis of the principle of minimum dissipation, this deviation 
for a given Reynolds number will be considered to be a minimum consistent 
with the governing equations and the actual boundary and flow conditions. The 
potential flow then assumes the position of a base flow from which the deviations 
take place. This holds for all flow conditions and, in particular, for all Reyn- 
olds numbers. 

In the immediately following pages we present an examination and critique 

of significant experiments and observations made by distinguished investigators 
which accord with and support the above hypothesis. We shall consider the 
beautiful experiments carried out in 1899 by Professor Hele-Shaw [27,28]. It is 
helpful to quote here the following passages from his paper of 1899. 

If we take two Sheets of glass, and bring them nearly close to- 
gether, leaving only a space the thickness of a thin card or piece 
of paper, and then by suitable means cause liquid to flow under 

pressure between them, the very property of viscosity, which as 
before noted, is the cause of the eddying motion in large bodies 
of water, in the present case greatly limits the freedom of mo- 
tion of the fluid between the two sheets of glass, and thus pre- 
vents not only eddying or whirling motion, but also counteracts 

the effects of inertia. Every particle is then compelled by the 
pressure behind and around it to more onwards without whirling 

motion, following the path which corresponds exactly with the 
stream-lines in a perfect liquid. 

* * * 

But at this stage you may reasonably enquire how it is that we 
are able to state, with so much certainty, that the artificial con- 
ditions of flow with a viscous liquid are really giving us the 

stream-line motion of a perfect one; and this brings me to the 

results which mathematicians have obtained. 

The view now shown represents a body of circular cross-section 
past which a fluid of infinite extent is moving, and the lines are 
plotted from mathematical investigation and represent the flow of 
particles. This particular case gives us the means of most elab- 

orate comparison; although we cannot employ a fluid of infinite 
extent, we can prepare the border of the channel to correspond 

with any of the particular stream-lines, and measure the exact 

positions of the lines inside. 

By means of a second lantern, the real flow of a viscous liquid 
for this case is shown upon the second screen, and you will see 

that it agrees with the calculated flow around a similar obstacle 
of a perfect liquid. The diagram shown on the wall is the actual 
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figure employed for comparison and upon which the experimental 

case was projected. By this means, it was proved that the two 

were in absolute agreement. 

* * * 

Mathematicians, however, predicted with absolute certainty, that 
with stream-line motion the water should flow round and meet at 
the back, a state of things that, however slow we make the motion 
in the present case, does not occur owing to the effect of inertia. 

They have drawn with equal confidence the lines along which this 

should take place. We could either effect this result with the ex- 
periment you have just seen, by using a much more viscous liquid, 
such as treacle, or, what comes to the same thing, bringing the 
two sheets of glass nearly close together. 

In these quoted passages we See that there are three controlling factors by 

which a real flow configuration is created so that its streamline field is exactly 

the same as that of a corresponding potential flow. These are (a) the pressure, 
(b) the viscosity, and (c) the distance separating the two plates. 

Following Professor Hele-Shaw's experiments, Professor Stokes (1898) in 
his paper ''Mathematical Proof of the Identity of the Stream-Lines Obtained by 

Means of a Viscous Film with Those of a Perfect Fluid Moving in Two Dimen- 
sions" [29], starts out with the equations for a creep motion in which the non- 
linear inertia terms are neglected, and shows that, when the distance separating 

two plates is small, the stream function for the flow satisfies the harmonic 
equation and is uniquely determined by the condition that the boundaries shall be 
streamlines. And since a stream function for a potential flow meets these re- 
quirements, the identity is established. He continues: 'It may be objected that 
the streamlines cannot be the same in the two cases, inasmuch as the perfect 
liquid glides over the surface of the obstacle, whereas in the case of the viscous 
liquid the motion vanishes at the surface of the obstacle. This is perfectly true, 
and forms the qualification above referred to; but it does not affect the truth of 

the proposition, which applies only to the limiting case of a viscid liquid con- 

fined between walls which are infinitely close. Any finite thickness of the stra- 
tum of liquid will entail a departure from the identity of the streamlines in the 
two cases, which, however will be sensible only to a distance from the obstacle 
comparable with the distance between the walls, and therefore capable of being 
indefinitely reduced by taking the walls closer and closer together." 

In 1938, F. Riegels [30] carried out further experiments on Hele-Shaw flows 
and gave a theoretical representation of the same, based on an iterative scheme. 

As a Starting point he takes a solution of the equations of creeping motion, which 

may be written as 
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z2 

v= Vo (*%¥) 1 - 2 

w, = O07 

where u,(x,y) and vo(x,y) are the velocity components of the two-dimensional 
potential flow past a given body. The flow represented by the above equations 

has the same streamlines as the potential flow about the body, and the stream- 
lines for all parallel layers z = constant are congruent. The condition of no- 
slip at the plates z = +h is satisfied, but the same at the surface of the body is 
not satisfied [19]. 

Using the above solution to calculate the nonlinear inertia terms, he obtains 

a second approximation. For the case of a circular cylinder he gives the radial 

and tangential velocity components as 

and the component in the z direction is given as 

1 A ee AA ee 4 4 2") 
ee TA he eed a Re ee ee hE 

2 r® (4 h  105"h3"~ “15 hS° °105°h? 

Here Re = UL/v , where U is the maximum velocity of the stream in the center 
of the plate, v is the kinematic viscosity of the fluid, and L is a characteristic 

dimension of the obstacle, which for a circular cylinder is taken as the radius. 

It can be seen that u,, v, and w, satisfy the no-slip boundary condition at 

the plate z = +h, but they do not satisfy it at the cylinder wall. What is inter- 
esting is that the normal component u, is also not zero at the cylinder wall. 
The total solution is given by the sums u, + u,, v, + v2, and wy. 

Since u, and v, depend on the number (Reh?) and w, depends on the num- 
ber (Reh*), h being the nondimensional thickness of the fluid layer between the 
walls, Riegels introduces a characteristic Reynolds number for the flow config- 

uration as 

h’2 ‘Uh’ 2 , ne 
A = Re — = =REMin s he =—— 

R2 UR R 

For w, 

8} h'3 
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Thus for any obstacle, the characteristic Reynolds number is given by Uh‘?/vL, 
where L is a characteristic length of the obstacle and h’ is the distance sepa- 
rating the two plates. Since A is proportional to h’?, u,, v,, and w, all tend 
to zeroas h‘'— 0. Then, in the limit, the flow reduces to a two-dimensional 
flow with u, and v, as velocity components, w, being zero. This was the con- 
clusion of Stokes and the experimental observation of Hele Shaw. Riegels' ex- 
periments, carried out up to about A = 6, show that for A < 1 there is no dis- 
cernible deviation from the potential streamline field, but that for higher values 
of this parameter the deviation is noticeable. 

The pressure field for a creeping flow satisfies the harmonic equation 

V?p = 0 because the convective terms in the Navier-Stokes equations are com- 

pletely neglected, but the velocity field does not satisfy the equation. On the 
other hand, the velocity field for a potential flow always satisfies the harmonic 
equation, but the pressure field does not and is in fact given by V?p = -p(90uj;/0x; 
du;/ox;). When the product term p (0u;/0x; duj/dx;) can be neglected, the pres- 
Sure field of the potential flow is harmonic in the limit. Stokes has shown that 

the velocity field of a creep flow becomes harmonic in the limit. Hence in the 
limit, the velocity field and the pressure fields of a creep flow are potential. 
Thus these experiments and theoretical treatments show that there exists a 

three-dimensional real flow, which apparently satisfies the no-slip conditions, 

such that the streamline field due to it becomes identical with that due to a two- 

dimensional potential flow in the same space when the Reynolds number tends to 

become vanishingly small; and that this potential flow evidently does not satisfy 
the no-slip conditions. 

There are two noteworthy points in these experiments of Hele-Shaw and 

Riegels: (a) the three-dimensional flow becomes two-dimensional; and (b) the 
velocity field attains a potential character, i.e., it becomes irrotational. Of 

these two, the first may be regarded as peculiar to the particular geometry 
under consideration, and hence incidental. The second point, however, may be 
regarded as an expression of a general truth, and hence fundamental, for the 
following reasons. 

The rate at which energy E is dissipated in a body of fluid is given by the 
expression 

oe u | Od adh au [ [if - (Vx Q)) ds 
(Vv) (S) (1.24a) 

-2y [V - (m- grad) V] ds + af (div ¥V) n> Vids: , 

(S) (Ss) 

where 

Q = Curl V = vorticity vector 

< Il Velocity vector with components u, 
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Unit vector directed inwards along the normal to an element ds of 

the surface S bounding the fluid 
=| i] 

\, » = coefficients of viscosity. 

After transforming the surface integrals into volume integrals, the above ex- 

pression may be rewritten as 

b - fe con (1.24b) 

where 

® = Dissipation function 

2 2 
ou. pL Ou. ou; 

nN : uae aes ; (t.25) 

dX (=) " 2 a ‘ =) 

From (1.25) we see that © and hence E are nonnegative. It is also clear 
that ® and hence E can vanish only under the following two circumstances. 

(i) \ = 0, uw = 0, i.e., when the fluid is regarded as ideal. 

(ii) Ou,;/dx,= 0, du;/dx; + du;/dx, = 0, i.e., when there is no deformation 
and the fluid moves as a rigid body. 

For a real fluid for which \ > 0, u > 0, E can vanish only under the second con- 
dition and this is of little interest. We note that E = 0 is the absolute minimum 
which this function can attain. Under circumstances other than the one noted 
there will always be some dissipation of energy. If we postulate that the flow 

evolves to minimize dissipation [2,3,4], this is tantamount to a principle. 

PRINCIPLE OF MINIMUM DISSIPATION 

For all real flows, the rate of energy dissipation assumes the lowest attain- 
able value consistent with the conservation principles and the boundary condi- 

tions. 

To see the implications of this principle, let us write Eq. (1.24a) in the fol- 

lowing two groups: 

E= (1, #1,) + (1y+1,) (1.24c) 

(BD 4 Ub FR F1) 3 (1.24d) 
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where 

4 iH} Volume integral = al 0? dr 

tH iH} Surface integral i i) a= - ~ < x =) 
wH 

[aks Yn 

I, = Surface integral = -2u [ V- (n°: grad) Vds 

(S) 

1H i) Surface integral = af (div V) n- Vds 

Let us consider the circumstances under which the sum (I,+1,;+1,) of the 
surface integrals I,, I,, and I, vanishes. It would be a very special flow in 
which the surface conditions are such that the sum vanishes, but none of the in- 

tegrals I,, I,, and I, vanishes. Further, the class of flows in which the con- 
ditions are such that these integrals vanish individually but their integrands are 
nonzero will also be a special one. The third possibility, when the integrands of 

I,, I,, and I, vanish identically, is the most important. 

The integrands of I,, I,, and I, are zero when V= 0 on S. Thus when 
the fluid is enclosed within fixed boundaries this condition is realized. Alter- 

natively, the integrands of I,, I,, and I, vanish when n- (Vx) = 0, 
(n + grad) V= 0, and div V=0 respectively on S. In general, n will not be 

perpendicular to the direction of V = ©. Hence n- (Vx) can vanish if 
Vx Q = 0. But since Vz 0, this would require 2 = 0. It is important to note 
that the vanishing of 9 on S does not imply that it vanishes everywhere in the 

fluid. Similarly, div V= 0 on S does not imply that div V = 0 everywhere. 
However, if the fluid is incompressible, div V = 0 everywhere and, in particu- 
lar, div V = 0 onthe surface S. 

We may visualize the bounding surface S to be divided into the following 

parts: 

(i) Part S, such that at least the condition V = 0 holds. 

(ii) Part S, such that 0 = 0, (n- grad) V = 0, and div V= 0, but Vz 0. 

(iii) Part S, such that (m- grad) V = 0 and div V= 0, but Vz 0 and 07 0. 

(iv) Part S, such that none of the above conditions hold. 

It may happen that one or more of the above four parts are zero. 
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All fixed surfaces at which the no-slip boundary condition holds constitute 
the part S,. Whenever the condition of uniform flow at infinity is valid, all the 
conditions 9 = 0, (n~- grad) V= 0, and div V= 0 hold because they involve 

differentiation of the vector V which is constant when the flow is uniform. Hence 

the enveloping surface at infinity belongs to the class S,. The external flows 
for which the bounding surface S is made up of fixed boundaries in the interior 

and an enveloping boundary at infinity where uniform flow conditions prevail, 

belong to the class of flows for which the surface integrals I,, I,, and I, are 
zero, no matter whether the fluid is compressible or incompressible. For in- 
ternal flows where part of the enveloping surface is a fixed boundary and the in- 

let and outlet conditions are such that (n~- grad) V = 0 and div V= 0, but Vz 0 

and © + 0, the surface integrals 1, and I, vanish. We then see that for exter- 
nal flows 

oe uf Medias (1.24e) 

and for internal flows 

E = » | Q2dr + ait | [n+ (Vx Q)] ds (1.24f) 

(Vv) (S3) 

are valid expressions for E. 

If we assert that the principle of minimum dissipation holds, then that 

would imply that the integrals in Eqs. (1.24e) and (1.24f) achieve their lowest 
attainable value consistent with conservation principles and the surface condi- 

tions. We note that these integrals depend on Q, the vorticity field. If 9 van- 
ishes or at least becomes insignificantly small in most parts of the flow field, 
the contribution to the volume integral would be reduced materially. From Eqs. 
(1.24e) and (1.24f) it is also clear that as 9-0, E—0. Conversely, E—0 
should imply 2 —0 because both the integrands are positive-definite. We ob- 

serve that though for real fluids E cannot be zero in general, it must tend to 
zero according to the principle of minimum dissipation. Consequently, the va- 

lidity of this principle would lead us to infer that g—o. Since 9 = 0 implies 

that the velocity field is irrotational and hence derivable from a potential, we 

can now State the following as a conclusion: 

Theorem I: For a large class of real flows, the velocity field 
tends to become irrotational and hence derivable from a poten- 

tial. 

The Hele-Shaw flows belong to the class of real flows for which the above 
statement holds. Hence the fact that, as A—-0, the velocity field becomes po- 
tential can be viewed as the substantiation of the principle of minimum dissipa- 

tion. That large parts of a flow field become derivable from a potential as the 
Reynolds number of the flow is increased in experimentally well established and 

forms the basis of the boundary layer theory. The streamline pattern of a creep 
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flow around a sphere reminds one of the streamline pattern of the correspond- 

ing potential flow. 

A potential flow is thus seen to play a fundamental role at the lower as well 
as the higher ranges of the characteristic parameter, the Reynolds number, of 

the flow of a real fluid. This being the case, there Seems no a priori reason 
why it should not play a fundamental role all through the range of this parame- 
ter. The principle of minimum dissipation, if assumed to hold, indicates that it 
should play such a role. Consequently, we may regard it as the fundamental 

base flow for all Reynolds numbers. 

MATHEMATICAL CONSIDERATIONS 

In the theory of linear differential operators, the operator and its domain 
are defined as in the following paragraphs [30]. 

First, the linear vector space S of functions on which the differential oper- 
ator L, say of order n, operates is defined such that (a) the interval of the vari- 
able, (b) the nature of the functions, and (c) the scalar product are specified. 
The domain of the operator is the set of all functions u in S which have a piece- 

wise continuous derivative of the order n, which satisfy n independent and lin- 

ear conditions, and are such that Lu belongs to S. 

The differential equation Lu = f does not have a unique solution unless the 

conditions to be satisfied by u are given. Different sets of conditions lead to 
different solutions. Hence for precise notation, a different symbol should be 
used for the operator each time the conditions are changed. For convenience, 
however, the same symbol is used for the differential operator under all condi- 

tions, but the conditions which the solution of Lu = f is to satisfy are specified. 
Thus the operator is formally the same for all the solutions of Lu = f, but in 
fact is different for different solutions [30]. 

In solving linear boundary value problems with involved boundary condi- 

tions it is a common practice to consider the ultimate solution as made up of 

two or more parts, each part satisfying the governing equations completely, but 
the boundary conditions only partially so that when added together they satisfy 

the governing equations and all the boundary conditions due to the linearity of 
the operator. The number of parts into which the solution is divided is gener- 
ally finite. For example, if u is the final solution of a second order differential 
equation Lu = f such that it satisfies a set of conditions B,(u) = @,, B,(u) = a, 
for specified values of the variable, it may be conceived as made up of two parts 
u, and u,, such that 

? 

Bus =, 0 9. Balu WHO os ,BoG4,)-= 25.4 

and 

Due to linearity, 
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Lu = Lu, + Lu, = f 

B,(u) = By(u,) + B,Cu,) = « 

B,(u) = B,(u,) + B,(u,) = 

In general, therefore, we may write 

Eui="Lo, # fa, +032 4 Lo set § (1.26) 

where u,, u,, --., u, Satisfy different equations and boundary conditions. If 

we recall the precise notation, this should have been written 

AU) Liu fle tote Lau et), (1.27) 
1 n 

where L,, L,, ... , L, are differential operators which are formally the same 
as L, but with different boundary conditions. The functions u;,i=1, and n may 
be required to be the solutions of the operator equations 

eset eel ee GMO SUmmatdom) i, (1.28) 

where 

2 f, = f 

i=l 

and f; belong to S. The functions f; are suitably selected, depending on the 
problem. 

Let us assume that in the case of a system of nonlinear differential equa- 
tions, in particular the Navier-Stokes equations under consideration, there exists 

an infinite sum of functions 

Sgt yh hs t See 

of the space-time variables and the flow parameters such that it converges to 

the solution S, which satisfies the Navier-Stokes equations, the continuity equa- 
tion, and the boundary conditions completely, in the sense that the partial sums 

Set StS te 
3 n 

converge to the solution S; i.e., given « > 0, there exists an integer N(e) such 

that 

|S- Sal <e 

for all n >N. 

With the above assumption, we may write 
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1.29 
pe-"pe tp, Py t Pat ( 

Y= Wot wy + va t+ 3 + I 

where u, v, p, and w correspond to the solution S, while u,, v,, p,, and ¥, 

correspond to the function §S,,. 

Let us substitute Eqs. (1.29) in Eqs. (1.12), (1.13), (1.14), and (1.15). As- 
suming that a rearrangement and grouping of terms in these equations as made 

below is permissible, we get the following equations: 

au 

| ieee sa 
+ 

rn 
= o Se” y} 

|= 
+ 

Sn 

r Re\ dr2 or r? r2 36? r2 06 

ou ou, ViPevs ou, i ou, 

ar aE AP Oliget Dip dae fa = 36 or iF ar uy 

rs) 
5 eee) 2 at 2 
=- — + - £(v,+v,))v,]/+ - — 

(2 56 Capea oe \%o ») | ae (1.30) 

Re \ or? tor r2 r2 00? r?2 300 

ou, Vi, Ou ou, ou, = sag ou, 

+ Ha So. Geadonic. fe + ar (ipo? Mise ent Seen Z 56 
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(=e OV_ Vo 9VG a 1 dpe 
— + Uy — + — ——— g+¢x TP ete, _ 

ot or ele) r Ir OG 

2 EOP ae Mae =) 
ered ie i oes = So 

Re \ or? T Or r2 rr? -9@2 r? 06 

ov, ov, Vo +V,\ ev, Vets . s Pee 
— — —_— + — + SR CRE ett 5) ae + = = = = ; ; P 

06 Die 0 

1 (me 12%, Va , rice . ) = 

- Re or? ror r2 r2 062 r2 06 

Ov v, Ov u,v Ov Ov 
1 1 1 yal 

— — a + + == 
i (v, on i t 6 r ) [= Sea Wor rs 

Vai var V5 ov; Vet ava. Ve 

| ; se 7 z a Vente sta eae) 

1 ous OVE? 5 1 0? Vv, 2 ou; OVig | Mig OMe One, 
-— $= - St $ et ut te = 

Re \ or? or r2 r? 3062 r2 3 or 00 

+ = 0" 3 (1.31) 

Uy iG = @ uy — 

— + — + =~— J + fl — 4 + TH 
r r ee or r roo 

& ae ) = u, | 
+{— +— + = — }+ — += 

r a ENG) or r r 3 

+ =" Ome (1.32) 
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and 

oVey, : € aia) OW, (3 a 

ele) or r or 06 

r 06 or ror 06 

3VW, 19 oy, 12 ow, 

at a (- rag V7Cby +4 +49) | ee (2 = V7Ho + y+ a)] =n 

| 
: 

( 

vba) 

( 
| 

or 30 

13 oV2y, Ee aViw, 1 F 

% 1 = gta t¥2)] ae +{> Fe bot Ya +¥2)} 36 =n ee 

, 1 OW, oVy, 1 OW, aE) 

r 06 or Or 06 

a eee (1.33) 

Eqs. (1.30), (1.31), (1.32), and (1.33) can be rewritten concisely as follows 

so that certain regular features stand out: 

3 (+72 £+435) r 2 =) 
—- —(—— +t eer coat‘ eo CS u —|v 
et! Re \or? fuer 2 r? 362 S (eee or e 

“. 3 ‘| 3 7/2? Pai & ) 
oF a [Bye emt RS at ee eh eres NLU 
2. {2 cy, Try) in all r? ror r? r? 30@2 " 

Oe es ee) 
sa (ee — =-—J)|p +f = 0; 
( Pe Rer? = : G a 257 38 (1.30a) 
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n=1 {Lot t) 2n 36 Re r Cie ee 18S felle/ 

2 rc) 1- -9 
+ eda — —ju,+{——)p,+ f =" 0 
( 2n Re r? 7 3 CS so; * | (1 31a) 

re) 1 1 oO 
», —_ z vps oF an Wes 0 ; 
= or 00 (1.322) 

and 

(= Wo oe ) Ge OVAw, 1 %o 3V2W, ) 

ot Re 9 r 06 or ee 0@ 

= 3 3 3 1 
- — Vrt+a + bz, —+cec,—V24+d V2 a) ¥ 

2 (= 7 SOO a Re 7 

a Fel =O. 
(12334) 

Where 

n=] 

Fin = a Un ai Fon n 7 10 

m=0 

nal 1 

ee Z rt Ym Don n-? 0 
m=0 

The expressions in the following Eq. (1.34) show that a,,, b,,, etc., are 
functions of space-time variables and the flow parameters: 

re) 
cc ~ —— n> 0O 

In = aw m 

Fo Vira | " 5 

ae de (ey by, ) n> 0 (1.34) 
= 30 (Cont.) 
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joy 
~ 5 

Wl 

Sa ee 
| 

fay, ¢ 
3 

\ 
A] bo 

< 
3 
SS 

| Vv (=) 

ni 
Vv Ov 

di, = (“2 + = n> 0 
a0 be if or 

fn = 0 n= di 

“ Cured Vn-4 OUg-4 a 
= Ula = n> l 

ne Tor r 00 r 

foe = 0 int = al 

OV Vo-1 OV a4 Un-aYn-1 
= u__ + 2 1 

nee * sor r 30 S 

nee L (1.34) 
_ 1 Oo i 

We yan) 
m=0 

n=1 m 

= UL XG) 
ete eet elE n> 0 

m=0 Yr. 

13 
Cae Dt = Se Wh n> 0 

‘s m=0 30 m 

— 10 
d3y = a = T 5, Ym n> 0 

m=0 

fA = 0 ne= 

From Eqs. (1.30a), (1.31a), and (1.32a) we see that the groups are so 
formed that, for n > 0, the n-th group involves only the linear terms in u,, v, 
and their derivatives with coefficients a,,, b,,, etc., depending on u;, v; and 

their derivatives i= 1, 2, ..., n - 1. For n= 0, the group involves non- 
linear terms in uy, v, and their derivatives. We could have arranged the 
terms so that this group for n = 0 also involved only the linear terms in up, vo 
and their derivatives by transferring the nonlinear terms to the n = 1 group so 
that 
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Fe - ?) 
9Ug Vy Wy VG 

fect tgs a Sa 
or ro 606 r 

: OV 5 Vo ou, UgMo 

=u, —+— + 
21 0 Or r Pye) Tr 

Then the summation could have been taken from n = 0 onwards after defining 
an Gizuenotasa9.=:Pa0c= Cro =-Coo =-dad = 6x9 Sige] fog >: 0: “Phe reason tor. 
not doing so will become clear shortly. 

These groups can be expressed symbolically in terms of the functions 

Si Sige oS writ, SAS 

ESSE Sate). hsSyh fa) a0. (i235) 
nid 

where L is a nonlinear differential operator and L, is formally identical to L. 
The operators L, are linear differential operators which are not formally iden- 

tical because the coefficients differ for different n, but they nevertheless belong 
to the same class of differential operators because their structures are similar. 

The remarkable thing about these operators L,, is that they depend on the knowl- 

edge of the functions S;, i= 1, 2, ..., n- 1. In Eq. (1.27) we noted that the 
operators L;, i= 1, ..., n were formally identical. Moreover, they do not 

depend on the knowledge of the solutions u; in any way. Thus the linear differ- 

ential operators L;, i = 1, ..., n being formally identical, and having the 
Same structure and not depending on the functions u;, i= 1, ..., n- 1,forma 
subclass of the class of linear differential operators L, which have the same 
structure and which depend in some way on the functions S;, i= 1, ..., n- 1. 

One may therefore view Eq. (1.35) as a generalization of Eq. (1.27) for a non- 
linear case. 

To find u; in Eq. (1.27) a rule was prescribed in the form of Eqs. (1.28). 
The rule essentially states that not only the sum £(L;u; - f;) = (Lu- f) is 

zero, but that the individual elements of the sum are also zero. Analogously, 
we now prescribe the same rule for Eq. (1.35). This gives the equations 

L,S = 0 (1.36) 

Tee Shey hee = Oa ety rile (1.37) 

In the case of Eq. (1.27), it is proven that such a procedure will give u;, the sum 
of which is the required solution. We have no such proof for (1.37), but the 

strong analogy intuitively leads us to believe that such may be the case. If we 
believe that our equations truly represent the physical processes, then the solu- 
tion to these equations must represent the observed facts. Conversely, the ob- 
served facts can be regarded as describing the mathematical solution which is 

actually 'realized.' This gives us a possibility of a posteriori verification of 
our procedure by comparison of the solutions so obtained with observed facts. 
Indeed, the proof of the validity of such a procedure is here heuristic in nature. 
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As we have already noted in the Introduction, Eqs. (1.34) and (1.35) for n= 1 
together are equivalent only formally to the so-called ‘Burger's Equation’ ob- 
tained by various authors. After assuming, a priori, that the flow deviates only 
slightly from potential flows, they set u = up + uy, v = vo + vy, W=%ot+y, and 
then argue that the nonlinear terms can be neglected to arrive at their govern- 

ing equations. This procedure of obtaining a linear governing equation has no 

mathematical rationale except in the sense of a small-perturbation technique. 

On the other hand, the procedure outlined and argued by us assumes (a) the 
existence of an infinite sum ofpfunctions - S$, S$, ,°S,, ss, “Sas such that it 
converges to the solution S, and (b) that a rearrangement and grouping of terms 

with subsequent setting of each group individually equal to zero is permissible. 

The results of our work show that this procedure is valid in the whole domain 
and, at least, for the range of the Reynolds number investigated. Thus an es- 
sentially new mathematical justification of the assumptions involved in our pro- 

cedure, which is here justified by comparison with experiments, must be sought 

eventually. However, one conclusion that emerges from this procedure and its 
heuristic justification is that no ideas of small-perturbation theory need be 
brought into picture. 

There is an important difference in the set of Eqs. (1.28) and the set of 
Eqs. (1.36) and (1.37). The equations in Eqs. (1.28) may be solved in any order, 
because none of the operators L; depend on the knowledge of the solutions to 

any of the equations in the set. Equations (1.36) and (1.37) must be solved ina 
definite order, progressing with n from n = 0 onwards, since the operator L, 

is determined completely only when the preceding solutions S;, i=1, 2, ...,n-1 
are determined. This defines an iterative process. We shall call the set of 
equations corresponding to a particular n the equations for n-th iteration. 

For an iterative process, we must obtain a solution to Eq. (1.36) to start 

with. Consequently, it is important to choose the nature of this operator L, 
carefully. Either L, can be made formally identical to L, or it can be made 

structurally similar to L,, n 2 1. If a solution S, can be obtained to L,S, = 0 
with L, formally identical to L such that it satisfies a maximum number of 

given conditions, then we may call it, by definition, a close solution to the exact 
solution which satisfies the equation and all the given conditions. The nonlinear 
effects which correspond physically to dynamical effects are then taken into ac- 
count right from the beginning of the process of iteration. Because this is not 
the case with the second alternative, we should, if we can, make L, formally 

identical to L. Fortunately, a potential solution which satisfies all except the 
no-slip condition meets the requirements for being a close solution. Hence we 
select L, such that it is formally identical to L and S, as the corresponding 
potential solution satisfying all except the no-slip condition to start the process 
of iteration. 

If we took S, as a uniform flow through out the flow field, then it would 
satisfy the harmonic equation and hence the equation L,S, = 0. The equations 
for the first iteration would then be Oseen's equations. But, with particular 
reference to external flows, we see that such a selection for S, would satisfy 
only the conditions at infinity and none at the wall—not even the condition that 
the normal velocity component vanish at the wall. Thus it satisfies one condi- 
tion less than the corresponding potential solution which satisfies, in addition to 
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the conditions at infinity, the condition on the normal velocity component. It is 
therefore less close and therefore less appropriate than the latter. In fact, 

there cannot be any Solution closer than the potential solution, because if it 
were otherwise then it would have to satisfy all the conditions, and that would 

make it the exact solution which we assume not to be the case. 

Two solutions may be equally close from a mathematical point of view, i.e., 
they both satisfy the given equations and all except one of the given conditions, 
and yet be different because the conditions they do not satisfy may not be the 
same. If such is the case, then we have to decide upon the appropriateness of 

one with respect to the other. For the problems in fluid mechanics, all the con- 
ditions except the no-slip condition seem self-evident, and hence a solution sat- 

isfying them would seem to be more appropriate than the solution that does not 

satisfy one of them and satisfies instead the no-slip condition. If we adhere to 

this view, then the potential solution is the more appropriate. 

There is another way in which the appropriateness can be meaningfully de- 
cided. That solution S, which, first, allows us to determine in Some way the 

number of iterations necessary to secure sufficient convergence and, second, 
calls for a minimum number of these iterations would certainly be the most ap- 
propriate. As is shown later, for the problem of the flow around a circular cyl- 

inder the potential solution which satisfies all but the no-slip condition is the 

most appropriate according to this criterion. 

If L, were made structurally similar to L,, n 2 1, then the equation 
1,55 = 0 would represent the set of equations for a creeping motion. Stokes has 

obtained a Solution to these equations for the case of a sphere which satisfies all 
the conditions on the flow. Other cases of axisymmetric bodies have been ex- 
plored since then. But one cannot obtain, in all cases, nonsingular solutions to 

these equations which satisfy all the boundary conditions. The case of a cylinder 
is one such. However, what is interesting in this case is that the solution which 

Stokes obtains and discusses in Eq. 130 of Ref. [16] is one which satisfies the 
harmonic equation. A solution to the harmonic equation cannot satisfy all the 
conditions on the flow, and if one required all but the no-slip condition to be 
fulfilled, the streamline field will be identical to that for a potential flow. The 
pressure field found from the equations of creeping motion would appear con- 
stant everywhere, while that due to a potential flow is a function of space vari- 

ables and evidently much closer to the actual pressure field in most of the flow 
field. This shows that the dynamics of the potential flow as compared to that of 
a creep flow is much closer to the actual—a strong reason for the selection of 
L, such that it is formally identical to L and S, as the potential flow solution. 

As noted earlier, any solution of the harmonic equation will satisfy the 
equation LoS, = 0, where L, is formally identical to L. For the case of the 
flow around a circular cylinder, the appropriate general form of the stream 

function which satisfies the harmonic equation is the following: 

Weis (Ar *+Bet+Cr log. r+Dr°) sind . (1.38) 

Then 
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fe) ‘ 

utin= =e (Ar-2+B+C log.r+Dr?): cos @ (1.39) 

oy! 3 vi Sele! (Art? BC Calg gr aDr?) sings (1.40) 
T 

We have four conditions on the flow to consider. 

u! debe ) (1.41) 

Midanisqe 9 (1.42) 

lim u’ = - cos@ (1.43) 

iu Vo =+ sing - (1.44) 

Evidently all these conditions cannot be fulfilled. We would like to obtain those 
solutions which satisfy at least three out of the four conditions. We have four 
cases to consider: 

(i) v'|,., # 0: Applying the conditions of Eqs. (1.41), (1.43), and (1.44) to 
Eqs. (1.39) and (1.40), we get 

A+B+D=0 

BoUCCO VEFTDIC@ jis = 

- B- C(m) - C- 3D(m) = +1. 

This gives 

Bite A=e15 2oGssp= 6 

Consequently, 

yl=- (+ - 1) sin 6 

wi Ze (1 = a cos @ (1.45) 
r 

VS ae (14 “y) sina. 
a 

(ii) u’|,-, # 0: Applying the conditions of Eqs. (1.42), (1.43), and (1.44) to 
Eqs. (1.39) and (1.40), we get 

540 



Studies on the Motion of Viscous Flows--III 

A- B- €- 3D= 0 

Bie G@ (oo)r ty Dim) = ol 

- B- C- C(m) - 3D(») = +1. 

This gives 

iar! Ae ay Ge 

Consequently, 

yie-(r+4) sine 

i 1 
We) == (1 + 5) cos 0 (1.46) 

vis+(1- 3) sing. 
r? 

(iii) lim u' 4 - cos 6: Applying the conditions of Eqs. (1.41), (1.42), and 
(1.44) to Eqs. (1.39) and (1.40), we get 

A+B+D=0 

K\ = Ish = Ae = Sid) = (0) 

- B- C- C(w) - 3D(m) = +1. 

The last of these three conditions requires that C = 0, D= 0, and B= -1. But 

with C = D = 0, the first two demand that A= 0 and B = 0. Hence we conclude 

that there is no solution which can satisfy all three conditions of Eqs. (1.41), 

(1.42) and (1.44). 

‘ (iv) lim v' # + sin@: Applying the conditions of Eqs. (1.41), (1.42), and 
(1.44) to Eqs. (1.39) and (1.40), we get 

A+B+D=0 

A- B- GC-3D= 0 

B+ C(m) + D(@) = =-1 

The last of these three necessary conditions requires that C = 0, D= 0, and 
B= -1. But with C = D = 0, the first two demand that A = B= 0. Hence, in this 

case also there is no solution which can satisfy all three conditions of Eqs. 

(1.41), (1.42), and (1.44). 

The conclusion is that Eqs. (1.45) and (1.46) are the only solutions of the 
harmonic equations which satisfy three out of the four given conditions. Depending 
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upon which of the two sets of equations leads to the least number of iterations 
necessary to secure sufficient convergence, we can now decide as to the appro- 

priateness of one over the other. 

Let us first write down explicitly the governing equations for iterations up 
to n - 3. We shall call equations for n = 0 the Base Equations. The sets of 
equations as written down below correspond to the symbolic Eqs. (1.36) and 
(17371). 

BASE EQUATIONS (n=0) 

du, P OU Gg Vg Stlg, Vo 1 °Po . 1 = ; 1% 2 1 o7 ur, ) an 
a ee ee ee ee =. ay eee 
ot 9 Or r 306 r ) OT Re \ or? ror r2 r2 3002 r2 00 

8Vo 2VQg Vg 8% Ug Mo 1 op 1 (27% 12% Y% yoy 2 Uy 
— +uy—+—- —t ee a = 
ot or Tr 6060 u 2r oO Re \ or2 elie r2 r2 062 r2 0 

ou u ov 0 ) 1 ty) i Ls put. Gye 1.2la 
r T T P) ( ) 

V4, = 0 (12222) 

where 

ow 

iss — 
i 30 

aYo 

vo =-— 
4 or 

These are the equations for a potential flow. The first two equations are 

Euler's equations. 

FIRST ITERATION EQUATIONS (n= 1) 

ou, ou, ve ou, ous 1 %Uo 2N« 1 op, 
Se ty Cll, eee eee tA | ll ee ae 
ot or r/ 36 or NE) if 2) Or 

(1.47) 

ali Shs 8 party vat lie. ve as 
Re \ or? ior r? r2 0062 r2 36 
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SECOND ITERATION EQUATIONS (n = 2) 

du nv Aue: ee ean a 3 ae ] 
== u (le, )) = — ]— — (u u u 
ot Oy. hear r 30 Ar ee 2 

io 
+ T 3p (ga = = Cviaet Vacs 

( ou, Vy ely “Vi 1 oP, 
+ fu, — +> —-—]e- =e 

1 Or r 600 r 2 or 

pa ee ee ae 
Re \ or? tor r2 r2 3062 r? 06 

ov, Ov ( + ov, Vg t 4 38 , 
On + CNS stn) + = Sa. + . + Cveev ) | ate 

Up th Uy ov, vi ov, u,v, 

| - +22 yey] vo ae F ae Ser 

> 2 . ae 1 °%2 vas 1 ee =) 

Re or? r r r? r2 362 r2 00 , 

du, U5 1 Vy 
PS = = 0S 

or r ey) 
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2 3V2y, : 1 ey ay, (2 ee 
_ _ a + —- — 

ot ro 0¢@ or eee)» 06 

OV Ay oVAy 
ite) 2 ie 2 

+ [= tf- = — + =| —— E AL | is Who 1) | 7 TE 

rt E oy BVA 1 oy, suey a 

r 0d or For 30 

THIRD ITERATION EQUATIONS (n= 3) 

ou ou, (eueary du, A 

xt a Ue a) re 7 st ae +f ayrujruy| u, 

i 2 2 ou, 
ae a toe ae YD = e \%ot a7 V0 Vv, + \uU, =e 

v5 eu, 2) 1 OP3 1 ee ou; 7 u, 1 o7u, 
+> — -—/]=-- + — + =—— = — + — 

roo r 2 or Re \ or? r or r2 r2 062 

ov, ov Vo + Vy 17%, 
eae eg ty eS ae aera 

| et 

rv) 

%| 

w 

U5. ® UE + US fms 
+ = Gee von EY a) V3 

( ov, V5 ov, _ 1 op, 
FelUs + — — + - — — 

or r ce] r Ir 06 

eS = 
Re \ or2 i Or r r2 3062 r2 06 
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oVAy 3 ow 1 3 13 
— [- 42 ry +44) | [22 vy, +09] a 

R 3V2~ avy 1 3 3 13 a 
dr Wo + 42) aria ae 5p Wot Ya t¥a)| Tr 

(1.58) 

We observe that u, v, and p are physical quantities. They are the field 

variables in which we are interested. At any generic point P in the flow field 
these quantities should have a definite set of values at a given time. Since the 
choice of the zero direction for the polar axis from which @ is measured is ar- 

bitrary, and since after a complete rotation of the radius vector through an 

angle of 27 radians we arrive at the same geometrical point from which we 
started, any increase in @ by multiples of 27 should not affect the values of u, 
v, and p at any generic point in the field of any given time. This means that u, 

v, and p Should be periodic functions of 9 with a period of 27 radians. This 

periodicity condition is expressed as follows: 

W( neon t) = "WCrga + 20a) 

Vir, t) = VCr.e monnyt) on = thy 2. kas (1.59) 

pir.6,t) = p(r, 6 2n7,t) 

Consequently, we can assume that the stream function yr, 6, t) and hence 

the functions u,, v,, Pn, and vy, are also periodic functions of 9. Let us 
therefore assume the following Fourier representations for ¥,, ¥,, and , re- 

spectively: 

Ap Crait 2 
Were st) = “KES + a A,(r,t) cosn@ +:Bi(r,t) sinn@ (1.60) 

CAGrat 2 
Wo(r,8,t) = 2 4 , CG, t) cosa? + D(r,t) sinn? (1261) 

2 n=1 

Egcr..t = 
Y,(1,0,t) = aaa + »» E-Cret) cosn? + Fi(r,t) sinnd., (1.62) 

De n=] 

where A, B, C, D, E, and F stand for the coefficients of the Fourier repre- 

sentations. 

We now impose suitable boundary conditions on the solutions of various 

iterations. Let the first iteration velocity components u, and v, be such that 
the sums (u, + u,) and (vy, + v,) Satisfy all the velocity conditions on the 
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flow. Thus the condition not satisfied by the base flow velocities u, and v, will 
be satisfied by the first iteration velocities u, and v,. Let, for n > 2, u = 0 
and v, = 0 at both boundaries. From Eqs. (1.60), (1.61), and (1.62) we have by 
differentiation 

2 nA (r,t) nBi(r; t) 
u,(r,0,t) = + De - —-— sinnd + aaa cos ng 

n=1 

AaCr,t) = 
Vict. 2 tf) 3 - » [A,(t.t) cosn¢ + Bi(a, t) sinned |; 

mn =% 

MiGAGr ac) nDiGr,, te) 
UAC rss €) = + y 5 aS sinn@ Ae cos n@ 

pas | 

CuGe. &) 2 
Vi (50,0) == g : ss mm [etre t) cos ng + Dir, ty simmo| e 

n= i 

2 nE_(r,t) MEA Gr yt) 
MA CE.C,¢) = + De = sinné@ + = cos n@ 

n=1 

E/ (r,t) 2 
V,C8,02t)-== 2 5 = », (LE eCr ot) coon +N Cr.t) sinné] : 

nea 

where prime denotes partial differentiation with respect to r. 

(1.63) 

(1.64) 

(1.65) 

Consider, first, ¥,, uy, and v, as given by yw’, u‘, and v' in Eq. (1.45). 
Since v = 0 at r = 1, we must have for this case 

= -2 sing , 

and 

| | 
r=1 r=1 ee | 

Applying Eqs. (1.66) to Eqs. (1.63), (1.64), and (1.65), we find that 

AL Cine) 10 gai Clot) = Open di. 

A‘(1gt) = 0 nbss0e i, 2 

Bali). tony BENS Onis <3 
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CAQlt) 7-50, DCE) = 0 ona, ie) 

(1.67b) 
Cee Oo. Cl Oy a0 ayn a0, ly! Oa 

BaGty®)) = Oies eeeiet 10 en ai ot 

E’(1;t) i jo) Fifa) = je = OS al, 

The conditions of Eqs. (1.67a), (1.67b), and (1.67c) imply that at r = 1 we have 

ou, o7u, ou, ov, o?v, 

— -0O, =0, —=2cos90, —=-2cos8, = +2 sind 
cle) 362 or Cle) 06? 

ou 32u ou ov 32v 
eee Ser a aca A) ey a = (1.68) 
ela 362 or 300 002 

du 32u ou ov o2v 

a0 = Ope 2 =-0 a) 
tle) 062 or le, 3062 

We also have 

du, 

Uo = yy =.0 

and (1.69) 

ov 

Le 2 cos’? ; 
00 

All partial derivatives with respect to time are zero at the wall. The results of 

Eqs. (1.68) are a consequence of the periodicity condition. If we apply the con- 
ditions of Eqs. (1.66), (1.68), and (1.69) to Eqs. (1.47), (1.48), (1.51), (1.52), 
(1.55), and (1.56), we get r = 1 the following equations: 

re) 2 

Ben emicge eet ges pases (1.70a) 
2 or Re or2 Re 

r=1 rit 

fe) 32u . Neh: 1 2 
“a 2 aA Ak Sus cay ae ame 4 sin20 ae + RE Sao (1.70b) 

r=1 r=] 

OP, 1 7U, 

ea ee Conese reload 
r=] r=1 
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dp 302v Ov : 

-8 sin@ cos@ = - 2 ans + a ae rae t. 4 sin? (1.71a) 
2 00 Re \ or? or Re 

re | r= 1 

op 02Vv Ov 
+4 sin@ cos@ = - eq eee eles (1.71b) 

2 06 Re \ or? or 
r= r=] 

2 aoe LR : 4 OS ‘ ov; 

2 06 Re \ or? or (1.71c) 
r=1 r— 

The first terms on the left-hand sides of Eqs. (1.70a) and (1.71la) are the 
contributions of the linear convective terms in u, and v,. The first terms on 
the left-hand sides of Eqs. (1.70b) and (1.71b) are the contributions of the non- 
linear convective terms in u, and v, tothe pressure p, of the second itera- 
tions. Similarly, the terms on the left-hand sides of Eqs. (1.70c) and (1.71c) are 
the contributions of the linear convective terms in u, and v, and the nonlinear 
convective terms in u, and v,. These terms are zero. It is clear by compari- 
son that the order of magnitude of the linear and nonlinear convective terms in 
u, and v, is the same. Because of this, the second iteration must make about 
the same order of magnitude contribution to the pressure field p as the first 
iteration, but of opposite sign, as Eqs. (1.70a), (1.70b), (1.71a), and (1.71b) indi- 
cate. Since there is no contribution to pressure from convective terms in Eqs. 

(1.70c) and (1.71c), the pressure field p, may be assumed to contribute very 
little to the total pressure p if we bear in mind that the boundary conditions re- 
quire u, and v, to vanish at the wall as well as far away from the cylinder. 
Higher iteration pressure fields p, will behave essentially as p,, but with de- 

creasing intensity. This discussion is based on the pressure around the cylin- 
der and is not regarded here as rigorous. However, it is strongly indicative of 
the importance of the second iteration and the relative unimportance of the 

higher iterations. We may Say that two iterations are sufficient in this case to 
give results close to the actual solution. 

The case we have just discussed relates to the stream function ' as given 
by Eq. (1.45). This is, in fact, the potential flowstream function. Along similar 

lines we will now consider ¥,, u,, and v, to be given by w’, u’, and v’ asin 

Eqs. (1.46). We then have at r = 1 

= +2 cos@ 

ri , (1572) 

Applying Eqs. (1.72) to Eqs. (1.63), (1.64), and (1.65), we find that in Eqs. 
(1.67a) instead of Bi(1,t) = +2 and B,(1,t) = 0 we Should have Bji(1,t) = 0 
and B,(1,t) = 2. These conditions imply that for this case 
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ou o2u ou ov o2y 
1 , 1 
— = -2 sin@, — = -2 cos@, ae eG cos 0, ae Le, ERziON (1.73) 
00 002 or (ele) 3062 

which should replace the values given in Eqs. (1.68). We also have 

ov ou ov ou 

ee eG Ey oi ae ee (1.74) 

Using Eqs. (1.72), and Eqs. (1.73) with the rest of (1.68), and Eq. (1.74), we get 
for r = 1 the following equations from Eqs. (1.47), (1.48), (1.51), (1.52), (1.55), 
and (1.56): 

ic 32u 
+8 cos*@ = - pai! ape : pr omeosid (1.75a) 

2 or Re or? Re 
r= 1 5 ta | 

op 02u 
24h Gou2Ge me SUS) op gece ee (1.75b) 

i Des Re or? 
jee r=1 

op 02u 

Vee ee: ol aegis) |e (1.75¢) 
Destelbe Re or? 

peur | r=1 

Ov, op 02 Vv ov 

(-2 cos BY, ee + 4 sin@ cos @ = - i : i = a ) 4 sind 
or : 2g Re\ dr2 or Re 

= ame row * (4 -96a) 

ov op 02 Vv Ov 
(+2 cos @) ae a yee 2 + a cin —*) (1.76b) 

or 2 06 Re \ or2 Or 
pO | r=1 r=1 

op 02y ov 

a + 1 —) my Gleydst)) 
200 Re \ or? or 

toes! r=1 

The term (+8 cos?) of Eq. (1.75a) is the contribution of the linear convec- 

tive terms in u,, v, and their derivatives of the pressure gradient 90p,/cr at 

r= 1. The term (-4 cos?@) of Eq. (1.75b) is the contribution of the nonlinear 

convective terms in u,, v, and their derivatives to the pressure gradient 
op,/or at r = 1. They are of the same order of magnitude, but have opposite 

signs. Similarly, the left-hand side of Eq. (1.76a) is the contribution of the 

linear convective terms in u,, v, and their derivatives to the pressure gradient 
op,/o@ at r = 1, and the left-hand side of Eq. (1.76b) is the contribution of the 
nonlinear convective terms in u,, v, and their derivatives to the pressure gra- 
dient op,/o¢ at r= 1. Both of these terms involve 
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a quantity whose order of magnitude cannot be determined in advance. Conse- 

quently we cannot compare the orders of magnitude of the left-hand sides of 

Eqs. (1.76a) and (1.76b), although we recognize that these contributions have 
opposite signs insofar as the term involving 

is concerned. The result is that we cannot know in advance the orders of mag- 
nitudes of these contributions to the total pressure field p. Since there is no 

contribution to pressure from convective terms in Eqs. (1.75c) and (1.76c), the 
pressure field p, may be assumed to contribute little to the total pressure field 
p if we bear in mind that u, and v, vanish at both boundaries. As argued be- 
fore, higher iteration pressure fields p, will behave essentially as p,, but with 
decreasing intensity, and this indicates the relative unimportance of iterations 

higher than the second, which, on the contrary, is very significant. 

A comparison of this case with the case previously considered shows that 
in both instances the third and higher iterations are relatively unimportant as 
compared to the first two iterations. In both cases, we may Say that at least 

two iterations are necessary and that they are sufficient to take into acconnt, to 
a large extent, the significant convective terms which are related to the curva- 
ture of the streamlines. In this respect both the solutions of Eqs. (1.45) and 

(1.46) are equally appropriate as base solutions. However, the solution of Eqs. 

(1.45) is more appropriate than the solution of Eqs. (1.46), because the former 
allows us to estimate the orders of magnitude of the linear and nonlinear con- 
vective terms in u,, v, and their derivatives in advance, while the latter does 

not, because of the unknown magnitude of 

or 
r=] 

It is interesting to note that this comparison tempts us to say that 

ou, 

5, = -2 sing , 

r=1 

i.e., it almost leads us to information which we cannot have in advance without 
such a comparative study. Whether this information turns out to be correct or 
not, it is still true that Eqs.(1.45) is the more appropriate solution from the 
point of view of the a priori information that it provides. 

From both the physical and the mathematical considerations we then see 
that the irrotational potential flow solution of Eq. (1.17) which satisfies all 
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except the no-slip boundary condition is the most appropriate base flow for the 

process of iteration. The solutions S,, S,,..., S, define a linear substructure 

to the solution S, and the equations L,S, + f, = 0, n 21 define a system of 
linear substructure equations underlying the Navier-Stokes equations. The equa- 
tions for the first three iterations as given by Eqs. (1.47) to (1.58) inclusive are 

the explicit expressions of these substructure equations for n= 1, 2, and 3. We 
emphasize that in this theory no idea of small perturbations about a given solu- 
tion is involved and that there is no limitation imposed on the characteristic 

parameter, the Reynolds number, of the flow field. Consequently, this theory 

is not a small-perturbation theory. 

The potential flow solution around a circular cylinder was used by Wilson 

(1904) [32], Boussinesq (1905) [33], Russel (1910) [34], and King (1914) [35] as 
a means of convecting away heat from the cylinder. Later Burgers (1921) [36], 
Zeilon (1926) [37], Southwell and Squire (1933) [24], Meksyn (1937) [38], and 
recently, Pillow (1964) [39] have used it in a spirit of refinement over Ossen's 
work. The conviction, at least tacitly shared by these authors, is that their 
work is inherently restricted to flows that deviate only slightly from potential 

flows. An immediate consequence of this convection is that these authors do 

not consider their work as applicable close to the cylinder or in the wake. There 

is, therefore, a conspicuous absence of the recognition of the crucial importance 
which we have assigned to the higher iterations, among which the second itera- 
tion equations appear to be of particular significance, as explained earlier. 
Further, only in Southwell and Squire's work is there a clear recognition of the 

validity of their equation for all Reynolds numbers. Burgers and Zeilon have 

considered the case of v — 0, i.e., the case of large Reynolds numbers, and 
moreover, Zeilon has permitted convection by separated potential flows. Lewis 
[40], in his paper, states: "Of course, it is not at all obvious which irrotational 
motion is the one best suited in each particular case.'' Since the potential flow 
solution ¥ = -(r-1/r) sin@ approaches the potential uniform flow solution wy = 

-r sin@ far away from a circular cylinder, there, if a real flow is viewed as a 

slight deviation from the uniform flow, it just as well can be viewed as a slight 
deviation from the potential flow given by y = -(r-1/r) sin@, Thus the di- 

lemma stated by Lewis is natural when particular cases, in which some parts 

of the complete flow field can be viewed as deviating slightly from some irro- 
tational flow field, are considered in a technical spirit. In the present work 

where an evolutionary point of view is taken, the potential flow y = -(r- 
1/r) sin@ plays a fundamental role, valid in the whole domain, as the base flow 

from which deviations, not necessarily small in any sense, take place to accom- 
modate the no-slip boundary condition. In this sense we have ascribed a kind of 
reality to the potential flow solution under all flow conditions. Hence, even 

though all the studies just cited indeed lead to equations and conditions which 
are equivalent to our base flow and the first iteration equations and conditions, 

the conceptual basis, motivation, and justification of our work are entirely dif- 

ferent from those other studies. . 
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BOUNDARY CONDITIONS ON THE ITERATIONS 

At the Cylinder Wall (r = 1) 

First Iteration — 

Sr Sens 8 (2 =) =—0 for salle (1.77) 

root | 

ow 

v,(1;0,t) = i a) = 2 singe tor al leet. 0 (1.78) 

Tek 

Second Iteration — 

1 2 
UA Glse ey = = 36 = 0) for all t (1 79) 

r=1 

ow 
5150, t) = ie | ="0 tor alle = + (1.80) 

r=1 

Higher Iterations (n 2 3)— 

1 Yn 
UnGl5@, t). = = aa =1.0 for all t (1.81) 

Gael 

oy, 
v (1.0, t)= (- = = 0) forcall to: (1 82) 

or Z 
r= 

At Physically Infinite Distance (r = h*) 

We first note that according to Eq. (1.16) the actual flow field is such that it 
can be regarded as uniform beyond a certain distance h*. The potential base 

flow also becomes uniform with increasing distance, and during the discussion 
on a physically infinite distance it was shown, with reference to Table 1, that 
h* = 50 may be taken as the corresponding physically infinite distance. Now 
U =.Up tity t Ugt 222, and v= vo, +:vy,t,¥pe-¢°- Hence if. u, and,v,;..n,21 
all become zero at some distance h? evaluated in the sense of a physically in- 

finite distance, the flow beyond h¥ will be given by uo, and the condition of 
uniform flow will be satisfied by u because it is satisfied by u,. The distance 
h; must be found so that the solutions u,, n 21 donot change significantly if 

the condition of their vanishing is applied at any other distance greater than hj; 
i.e., h; is to be the physically infinite distance for the iterative solutions. We 

note that this distance h* must be the same for all iterations, because higher 
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iterations use lower iteration solutions which have already used a condition at 

this distance. 

The domain within a radius h* has viscous effects, whereas beyond h* the 
potential flow represents the real flow. In this sense one may say that h* is the 

thickness of a boundary layer surrounding the cylinder; indeed, this thickness 

may be several times the diameter of the cylinder for some values of the Reyn- 

olds number. However, we must expect this domain to become smaller, i.e., h? 
to decrease, with increasing Reynolds number when the flow is time-independent. 
Even for a temporal flow we should expect the part of the domain close to the 

cylinder to become smaller with increasing Reynolds number. 

Hence we have the following conditions to be satisfied by u, and v,, n 21 
at h?: 

First Iteration — 

* 1°41 
uch; ,9;, ©) = ro 3A = (0) for all t (1 83) 

r=h* . 

Chee t) ( aay) O- £ eae Vv 2 = = = ora : 
1 ae O 

1,84 ae (1.84) 

Second Iteration — 

oy 
u,(h*,0,t) = (2 a) - 0 forall t ae 

sys ( i ) 

(h*,9,t) ats 0 for all t v,Ch; 2, = |- — = ora : 
. 3 1.86 a (1.86) 

Higher Iterations (n = 3) — 

1 on 
Hohe. Get), = T 30 = 0 forall t (1.87): 

r=h* ; 

ow 
* a ey oe = 

v,(h; ,8,t) = ( <= = 10) forall to (1.88) 

r=h* 
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The component of force exerted by the fluid on the cylinder per its unit 

dimensional length along the polar axis in the direction of the velocity u, is 

given by 

Since 

where 

and 

and where 

using 

Y> 

N> 

r0 

[(p cosO-Ges cos@+o33 sin@) rt], doOdz. 
Tiel 

ee potest s Aleta FD 
Za p= 5 Pug Ps: per} oxa = puro, 

2 ou 

Re or 

a4 
Puy Tre 

(+P cos - a, 0089 + a, sind] dg, 
2 

Qn A 
Po 

{ —— cos¢g dd — 0. 
0 pu2 

rere 

The projected area per unit length of the cylinder is given by 

Hence the drag coefficient defined by Cp = F/ [1/2 (eu) x projected area 

is given by 

D 

27 

0 

Area = (Oa) a=: 2a2:. 

i, (4p cosa - o,, cos + og sind) 
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d@ = Ch(Re) . 
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Because the drag due to the potential flow is zero, we may write Eq. (1.90) as 

1 
Ca \ (; Pp, cos,0 Ce cos@ + 28, sin | dé 

0 r=1 a 

(1291) 
277 

1 
a (4 pp cos 8 - 0,4, 6088 + oy9, siné) a8 4 sie en 

where the first integral represents the drag contribution from the first itera- 

tion and the second integral represents that from the second iteration. 
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PART 2 

CONSTRUCTION OF ANALYTICAL REPRESENTATION 
OF VISCOUS FLOWS AROUND A CIRCULAR CYLINDER 

This part of the paper presents in outline some significant steps developed 

in the application of the theory of Part 1 to the construction of an analytical 

representation of viscous flows around a circular cylinder, based upon the com- 

plete Navier-Stokes equations and realistic boundary conditions. 

Here, the subsidiary equations governing the coefficients A,(r,t), B (r,t), 
C.(r,t), and D,(r,t) of the stream functions y, and ¥, as given by Eqs. (1.60) 

and (1.61) respectively are obtained from the sets of equations for the first and 

second iterations. Appropriate conditions at the two boundaries are respectively 

obtained for these functions and their derivatives, with respect to r, from the 
conditions of Eqs. (1.77) to (1.80), inclusive, and Eqs. (1.83) to (1.86), inclusive. 

FIRST ITERATION 

To obtain u,, v,, and p, which satisfy Eqs. (1.47), (1.48), and (1.49), and 
the boundary conditions of Eqs. (1.77), (1.78), (1.83), and (1.84), we solve Eqs. 
(1.50), together with the same boundary conditions, so as to obtain first y, and 
hence u, and v,. Then, from Eqs. (1.47) and (1.48), by integration we will ob- 

tain p,. Using Eqs. (1.18) and (1.19) in Eq. (1.50), we get 

Vly, aV2y 3V2y 
VA, ~ E (1 + =) sin a | : + E € = =) cos | _ Re Bg (2.1) 

r r2 00 r2 or ot 

Now, in Eq. (1.60) we have 

w= = An¢,) + eS A-(r,t) cosn@ + B (r,t) sinn?@ , 

n= 1 

where A,, A,, and B, are functions of r and t. These are the functions we 

wish to determine. 

Using Eq. (1.60) and putting 

G(rt) SG, tS Gr) 

2 

Ce) eee Oe ta) (2.2) 
i 

Bute, t) =e (rat )iot 
n2 

BAC ey) = porns) : 
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we obtain, after some algebraic manipulation, the following governing equations 
for @, and §&,: 

ay ty Re 1 Re 1 Re oy 
— —+—{(1+—)@,+ 1- —|@=— —; 
2 2. 25 u 2 

ie 3 if al? ay, il Re 1 5 Re 1 ; 1 ) 1 
at af aad = aa, -— (3 ar ae ee se te Re( 1 - 4)¢ = Re —— a 

r? i" 2 2 r r 2 ot 

(2.4) 
2 . 1 2. n (n+ 1) Re 1 (n- 1) Re 1 

See tt eagtin pe |S ag ies ae Seer Gea 

Re 1 ' Re 1 ' _ oa, 
ie (2 =| Cia tee te J) Gena = Re ae (2.5) 

N= 263, 4 

OB age tay-4ta,-B (+4 ja,+B(i-4t)a- re, 
i r2 r r2 ) r2 ot 

" 1 1 4 Re 1 ¢ Re 1 ou (2.6) 

a+ ta,-43,-= 1+) a+ = (1-5) a; 

OB 3Re il Re 1 
+ — {1+ —])8, + —(1- —)8i = Re — ; 

2r ( 5) : 7a =) ae (2.7) 

” 1g, n? (n= 1) Re 1 Re _1\9 
oP a. 9, - Goes 5) 8. , (3 72 Dey 

(n+1) Re ae he le one 38 
en ee a oa te Ene 

(2.8) 

n= 3;.:4, 

From Eq. (1.60) we have 

OY, 
Mk B78) 5) Fils 

2 DAC, nBeCr, t) 
= ye aa sinn@ ee oS cosn@ 

n=1 

oy, 
v,(r,9,t) = - 7 

@ 

= - Ae) - me [Ay(r,t) cosn@ + B'(r,t) sinn@] (1.63a) 
n= 
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The boundary conditions in Eqs. (1.77), (1.78), (1.83), and (1.84), when ap- 
plied to the expressions of Eqs. (1.63) which result from the periodicity condi- 
tion on u, and v,, imply that the following conditions on the functions A, and 

B,, Should hold: 

A Git) Ore Ait) 05, (2.9) 

ASCE +5) =/(0i5 Ai(1, t) = 10" A (hi, t) =O) AC (ht 5t) =0e 

(2.10) 
ne = lis 283 

B,Ci sty =0,> <8, GP B)ezutan Bat) 0, -Bi(he 1) 20s (2.11) 

Bi(1gt}i=.05 Bi(1.t)<.0 2 Bothy) =O, B,(hy.t) = 0; (2.12) 

Bids tp =04 BAC ey = OL)+* BEChyet) = 0.4 <BEChG, t=: 0 ¢ 

(2.13) 
n= 8,4 

For a steady flow, these boundary conditions together with the differential 
Eqs. (2.3), (2.19), and (2.8), suffice to determine the functions A, and B,. For 
a time-dependent flow, the nature of initial conditions also needs to be critically 

considered. Once the functions A, and B, are obtained uniquely, they deter- 
mine uniquely the stream function y, and hence the first iteration velocity field 

u, and v,. 

In view of the harmonic structure of the stream function, the pressure field 

also has the same structure, which is described in detail in Refs. 1 and 2. 

SECOND ITERATION 

To obtain u,, v,, and p, which satisfy Eqs. (1.51), (1.52), and (1.53) to- 
gether with the boundary conditions of Eqs. (1.79), (1.80), (1.85), and (1.86), we 
will solve, as in the case of the first iteration, Eq. (1.54) together with the con- 
ditions in Eqs. (1.79), (1.80), (1.85), and (1.86) to obtain first ¥, and then u, 
and v,. Since y,, like ¥,, is a periodic function of ¢ and has a Fourier series 
representation, an examination of the terms in Eq. (1.54) reveals that we must 

here obtain a Fourier representation of terms involving the products of two 
Fourier series. For this purpose, we refer to the following two theorems. 

Theorem II (Perseval's Theorem) [41]: If f(x) and F(x) are 
square integrable functions defined on (-7, 7), for which 

a foe) 

tt > (a, cosnx+b, sin nx) 

i n 
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A foe} 

H(x)i= ——e ys CA, cosnx+ B. sinnx) | 

2 jae | 

then 

rf FORO )de = a+ 2, (phy + BoB) - (2.14) 

Theorem Ill [41]: Using Perseval's Theorem, we can show that 
if the product 

fewer EC, = ie + Can cosmx t by a) 

n= 

(2.15) 
Ay = A : 

x co dL, (A, cosnx +B. sinnx) 

is represented by the Fourier series 

ay es 
i (Gio) o 1G) = oo on (a cosnx+ 6. sinnx) , (2.16) 

rola 

then the coefficients «,, «,, and £, are given by the following 
expressions: 

aghs 2 

oo 2 y Ee (a, A, + b,B,) 

n= 

agA,, 1 . 
ae 2 : 2 De pasGaen ae) i baCBnen t Baen)] (2.17) 

m= 1 

ayB, 1 = 
Pe = 2 + 2 ya lan CB ee Ban) - DCAriAe nan) 

m=1 

with the stipulation that 

(2.18) 

Using Eqs. (1.18) and (1.19) and Theorems II and III, we obtain from 
Eq. (1.54) 
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oVAy 2 OVA 
Re ( - 1) cose] aaa + = (> = nB. cosnd +nA, sian = 

: peg or 

ow R 
~< (54 +y Gi cosn@ + Bi sinae | ar 

avy = 3V2y cbs ( 4.) sine] = Belt as » As cosnd+ By inn - 
= 00 

(2.19) 

© fe) 
ae ae nB, cosn@ - n@, sinné gus 

J n=1 cs 

a, - ¥ 2 oVAy 
| ae = cnnt + (iy28) sna Re 25 

2 = ot 

@ = Ge, Bt, = 8 ; (2.20) 

a @ 

= » (nB.@’-nA 8") ; (2.21) 
2 rove a ae 

an = 1D, ImBg (Gren toe) = MAg(Bnen Bye ndD 5 (2.22) 
m=1 

By = LDL ImBg Bhan Boen) + my Gasn~ Open] (2.23) 
m=1 

ALE ALS puBlg= -Bie (2.24) 

ee : de were CARA 2.28) 
2 n= 

Yn ~ : 2a [mB a6 Antin.t Al =n) - m@ CBs act Baan] , (2.26) 
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oo 

Y (mB, (Bi, ,- Bi) + m@,( Any - Aga] - (2.27) m Ill 

bole 

In Eq. (1.61) we have 

(GA (Gienne) = 
Wo( FO, t) = ae + » CACr, t)cosng + 72D (ryt) ‘sinned? ©. 

n=1 

Putting 

“y = u" 1 ’ 
Cate) = CoCr at ja: 7 Colt t) 

2 ee ee n? CiGrt) = C Cn, ter es LO Cari) a 72 CoCryt) (2.28) 

a 7 ieee n? 
PCr t) = Dir, t) + =D Cet) = oy Pa’) ; 

and using Eq. (1.61) in Eq. (2.19), we obtain an equation which involves the 

trigonometric functions cos m@ and sin mé@. 

Since the terms in cos m@ (m = 0, 1, 2, ...) and sin m@ (m = 1, 2, ...) are 
linearly independent, Eq. (2.19) can be satisfied only if the coefficients of these 
terms are identically equal to zero. This gives the following equations connect- 

ing the functions C, and D,: 

Re 1 r] Re ~ O4 gt a + = ( = ale a e/y ncPatn AS) 

n=l 

DE csc cD) 

. R yam a RENN ee ate es sy mPa C8) += (1 + 5) += Bs n(Bat~ 68 

R a _ Rea a 
aos (%)- Yo) = Bie : (2.29) 

Re ’ al] rw Qt 

~ De ie [mB Ge Cea) a mA (Der t Dna) 

m=1 
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x 5 (mb, (@hn, + GL.4) — mOnGBi gi + 
I " a 

ae a In mDC Als, + Anes) ~ mCn(Baeat 
m=1 

ao 

Re C 1 

d Oe [mB Cnea t Cm a) ~ 

m=1 

3 
Re 1 

ae gee 

1 51 n2 Pl Re 1 all Ot 

7 &n 7 on 7 (: ~ +) (Cheat a-1) 

pe = Smbe( Ct Cee) SO a 
Mal 

y= 56 = (md (04 + Gt) % Cb tomo) 
mal 

R - 1+ = iGreen) Cal 

nN Re t eC 1 

or [m9,, ( jira ge Shere) 7m EU: eg enw | 
m2 

ie os [mB i Crteg Cres
 ~ mat Daher Disa)! 

m=4 ‘ 

Re 3e 
aay Uae) eRe aes TM i= Oy te 

F 1 Re 1 1 , Re os 
Lo: 4o,)+ Be (1-5) 5+ = (a+ z 

= at < [mB CE 

m=1 
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Bn-1)] 

Bn-1)] 

ma,(Dis ne Dae 1 )] 

(2.30) 
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~ R i ti ‘ 

es alt fyi DE Gls aaa Dae 1) + mC( G4 > Gea 
Med 2r 

1 > =. [mD_ (Bi, 7 Bre) + men (Ari G Ans 1)] 
m=1 <F 

S Re 7 t t ’ t a bn Ge Dat Dee 4) + mC CC rye Cay)! 
ii ib 

oD 
Re i 

n? R it 
(a; boy. 259, )+ 8 (1- =) Opa) 

= Re n all a 

py Pa [mB (Ditn ~ Dra a7 mA (Cs. 5- Soe 
hte | 2r 

— Re Qu ’ 

2h aT [mD.(Baen iv bee) 3: mC(Gn +n 7 Gn] 
m=1 “T 

Re 
¢ 

oe [ a 4) Gas 13) bee = Gna.) leas 

~ Re ' n a) ’ ’ 

De ee [mD, (Bien Basa e mn (Ant n 7 AL-n)] <r ye 

2 Re t ’ ’ UO 

Ms ay imo (D = Diane bs mC Ca-n)] 
m=1 ar 

oD 
Z = (B,-8,) = Re = nie Eee! (2.33) 

The boundary conditions of Eqs. (1.79), (1.80), (1.85), and (1.86) imply 

CrCl epee aoe: toy a4 0 [3 (2.34) 

CaCl, t3 OS YOCh(H, t) f= OL ek ChE! b} SOT RIVE ChE tye 0 

(235) 
Me ee a ee 
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DeClgt yy = Os. DEC t) S00" e Dah.) = 05 “Deh pyc Oy 

(2.36) 
glean) be) 

Equations (2.29) to (2.33) inclusive, together with the homogeneous boundary 
conditions of Eqs. (2.34), (2.35), and (2.36), complete the formulation of the sec- 
ond iteration. 

SIMPLIF YING CONSIDERATIONS 

The sets of subsidiary equations and the boundary conditions in Eqs. (2.3) 
to (2.13) inclusive, for the first iteration, and Eqs. (2.29) to (2.36) inclusive, for 
the second iteration, are in their most general form consistent with the assump- 

tion of the existence of Fourier representations for the stream function y, and 
wv. These equations and the boundary conditions can be simplified considerably. 

The terms in cos né@ and sin né respectively represent an asymmetric and 

a symmetric flow pattern. If the initial flow conditions are such that they repre- 

sent a symmetric flow pattern at the time t = 0, or if we are considering a 

steady flow problem such that A,, B,, C,, and D, are all assumed to be time- 
independent, then it is evident from Eqs. (2.3), (2.4), and (2.5) together with the 
boundary conditions of Eqs. (2.9) and (2.10) that A,(r,t) = 0, (n = 0, 1, 2,...) 
are admissible trivial solutions to these equations and conditions. Similarly, 
C,(1,t) = 0 are admissible trivial solutions to Eqs. (2.29), (2.30), and (2.33) 
together with the conditions of Eqs. (2.34) and (2.35). Since the set of Eqs. (2.3), 
(2.4), and (2.5) is a set of simultaneous linear differential equations with vari- 
able coefficients, they have unique solutions, if they exist, satisfying the condi- 
tions of Eqs. (2.9) and (2.10) and suitable initial conditions. The same is true 
of the set of Eqs. (2.6), (2.7), and (2.8) with the conditions of Eqs. (2.11), (2.12), 
(2.13), and suitable conditions for the functions B,. Hence we can conclude that 

A,(r,t) = 0 are the only solutions. Then a similar argument shows that the 

set of Eqs. (2.29) and (2.30) with the conditions of Eqs. (2.35) and (2.36) has 
only C,(r,t) = 0 as the only solutions. The only nontrivial solutions are in B,, 
and D,. And these correspond to symmetric terms in y, and ¥, respectively. 

Since the equations for y,, n 2 3 are structurally similar to the equations 
for y¥, and y,, and the conditions on the asymmetric parts of these stream 
functions y,, are the same as those on the asymmetric parts of the stream 

functions ¥, and ¥,, we can conclude by induction that the solutions corre- 
sponding to the asymmetric parts of the stream functions y,, must be only the 

trivial ones. This leads to the following theorem. 

Theorem IV (Symmetry Theorem): If the initial flow conditions 

are such that they represent a symmetric flow pattern at time t = 

0, or if the flow is steady, then the resulting flow pattern must be 
symmetric about the polar axis for all time t. Moreover, an 
asymmetric flow pattern must be time-dependent and can result 

only if an external disturbance at any time t or the initial flow 
conditions at time t = 0 introduce an asymmetry. However, a 

time-dependent flow is not necessarily asymmetric. 
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By introducing the principle of minimum dissipation as a hypothesis, 

Lieber and Wan [5| conclude that a two-dimensional flow field for a viscous 
incompressible fluid is governed by the Biharmonic Equation. Since, in addi- 
tion, the flow must satisfy the conservation-of-momentum principle in the form 

of the Vorticity Transport Equation, they regard the vanishing of the convective 

part of this equation as a compatibility condition. A physical interpretation of 

this condition based on the consideration of odd and even parts of the stream 
function brings them essentially to the conclusion stated in the Symmetry 

Theorem. Our work shows that the flow field cannot be strictly governed by 
the biharmonic equation, and that the separate vanishing of the biharmonic and 
convective parts of the vorticity transport equation is not necessary to arrive 

at the Symmetry Theorem, which is here proved by induction on the basis of a 
consideration of the solutions of the linear sets of the differential equations and 

the boundary conditions etc. governing the successive iterations. However, what 
is significant in our work and the work of others is the clear recognition of the 

relation between symmetry and time-dependence in viscous flows. We believe 

that some such relation should hold for all viscous flows in general. 

Using the Fourier representations of Eqs. (1.60), (1.61), (1.62), etc. for the 
stream functions y,, n = 1, 2, 3,..., together with the expression for y, in 

Eqs. (1.29), we get 

eA e529) #7 € GGuAt Er, tot =| 

i@,t). = er 
+ PAVGE tia CoCr tye k, Gr,.t ye 2-2). cos. 2 

+ |- (: = +) Byer, Cy reDiCe tye Bo Gr eti or a sind 

HITASCE stot Cr, tet (rt) es] geos 20 

+ BOrs ty rat ee Fert) oe?) sin 20 

(oe) 

+ » [ASGratyet CaCr ey) + Pr sta 2) cos ne. 

Nis 

+ [BaCrit) +) DiC rs tat i (r,t) ss) simng = (2.37) 

When the stream function y is such that its streamline pattern is symmetric 

about the polar axis, the terms in cos #, cos 20 and cos né@ drop out, giving us 

wWiCe,@,t)-= -(: = #4 BiGrec)) 4 DeCrs.f)) By Cr tok si sin@ 

tr BaGr,&)+ 1D, Gratis Eo Cryt tes yili sin 2e 

+ >; (B,(tst) + Cr, t) + F(x, t) + oo °) sin’n? . (2.38) 
nos 
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Let us put, for brevity, 

Weird ty = - (: = +), Birt) .t Dit, t) + bce, oy + | sind; (2.39) 

bee Ot)-= TRG) + DgGst) > Fy(riit}ied-rah sin Vay (2.40) 

v(r,0,t) =, (B-Cr,€) 2) Chat) + PoCE. te) a © i st nU eee (2.41) 

Then we may rewrite 

v(r,0,t) =~, + 9, + ¥, + see (2.42) 

From Eq. (2.39) we see that the terms in sin @, due to various iterations, 
combine with the corresponding term in the potential stream function y,. To- 
gether they make it possible for the stream function y and its derivatives to 
satisfy the required conditions at the cylinder wall. This is achieved by a 

modification of the potential flow field. If the lines 4, = constant are plotted 

they will have two axes of symmetry, viz., (a) the polar axis and (b) the line 

at right angles to the polar axis at the origin. The polar axis itself is one of 
the lines J, = constant, but the other axis is perpendicular to all the lines J, = 
constant. Evidently the lines %, = constant represent a streamline pattern 

markedly similar in structure to the potential streamline pattern. Similarly, if 

we plot the lines ¥, = constant, they will have four axes of symmetry, two of 
which are the same as for ¥, = constant. The other two axes of symmetry are 

mutually perpendicular lines making an angle of 45° with the polar axis. In 
this case, the polar axis as well as the line at right angles to it at the origin are 
the lines ¥, = constant, while the other two lines are perpendicular to all the 
lines ¥, = constant. If we write 

a OW, 1 ’ ' p Tee ee a ec ery) ca ie aoa sin @ : (2.43) 

oy = 1 0 1 Uy F Gg 7 F Bat Dy + +7) 2 cos 26 

fe oy ; } 
Oh an eee Dale i ES BO) Sane (2.44) 

where prime denotes partial differentiation with respect to r, then we have 

Wo) = tu (ma) 

v (8) = #9 C= @Y § (2.45) 
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u,(@) = +u,(7- @) 

V9 )= =V07 =O) 2 (2.46) 

The relations of Eqs. (2.45) and (2.46) show that, if at any generic point P(r,@) 
in the flow field the velocities u,, v,, uz, v2 have the same Sign so that u, + 
u, and v, + v, represent a strengthened velocity field, then at a point ®(r,@), 

which is the mirror-image of the point P(r,@) about the line at right angles to 
the polar axis, the velocities u, and v, will have signs opposite to the veloci- 
ties u, and v,, and hence their sums u, + u, and v, + v, will represent a 
weakened velocity field. The streamline patterns for ¥, = constant and J, = 
constant are sketched roughly in Figs. D and E respectively. The arrows indi- 

cate the direction of the velocity vector, which is tangential to the streamlines, 
and hence the direction of the flow at any instant. 

Fig. D- Streamline pat- Fig. E -Streamline pat- 
terns for y, = constant terns for yw, = constant 

Let us consider the superposition of the two streamline patterns given in 

Figs. D and E due to ¥, = constant and ¥, = constant, wherein we have as- 
sumed that in front of the cylinder u,, v,, u,, and v, are all positive. What- 
ever the relative magnitudes of u,, v,, u,, and v,, the resultant flow due to 
the superposition in front of the cylinder will be moving with higher velocities, 
and its appearance will be similar to that in Fig. D, but with the streamlines 

displaced outwards from the cylinder. Specifically, there cannot be any closed 

streamline in front of the cylinder. In the rear of the cylinder the resultant 
flow will be moving with lower velocities, and its appearance will depend on 

whether or not |u,| > |u,| and |v,| > |v,| everywhere. If |u,| > |u,| and 
|v,| > |v,| everywhere in the flow field, then the flow in the rear will resemble 
the flow pattern in Fig. D, but with very widely separated streamlines as indi- 
cated by lowered velocities. The streamlines, moreover, cannot be closed and 
there cannot be any separation. However, if in some velocity domain |u,| < |u,| 
and |v,| < |v,|, then the flow in that part of the domain which is at the rear of 
the cylinder will resemble the flow pattern in Fig. E, and this region will be 

characterized by the appearance of closed streamlines and points of separation. 
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These considerations show that the terms in sin 2¢ are the ones that account 
for the structure of the flow field in the wake of the cylinder. We conclude there- 

fore that these terms in sin @ and sin 2¢ which portray the essential features of 
the flow field and which completely account for the drag on the cylinder are the 

most important terms in the Fourier representations of the stream functions y 
and y¥,, n = 1,2, 3,.... With this in mind, let us introduce the following sim- 
plifying assumption. Let 

Barty = Op mia 3. Aho (2.47) 

Then Eq. (2.8) for n = 4, 5, 6, ... and the conditions of Eqs. (2.13) are com- 
pletely satisfied. The equations for n = 1, 2, and 3 are the following: 

tel oie) aren, te 1\q , Re ee o8y 
Be ae Ps 2 = ES B. iF Ta (1 a =| se + we (1 = 3) B, = Re SE . (2.48) 

vot ot fo te. NRE 1 Re VV Oo 
Bs + De = 72 By 3 a ( + =) Be hh a (1 = = By = Re aan ; (2.49) 

Re ae Re 18 \ 

eps taser) Ba She Aaa) hia fee 
Equations (2.48), (2.49), and (2.50) are a set of three equations for the two 

unknown functions B, and B,. We observe that the Eq. (2.50) is a first order 

equation in %,, while Eqs, (2.48) and (2.49) are second order equations in 8, 
and %, respectively. The set of Eqs. (2.50) and (2.51) together with the boundary 

conditions of Eqs. (2.11) and (2.12) form a well-defined boundary value problem 
when adjoined with a suitable initial condition, if the flow is considered time- 
dependent. If we solve this set to obtain unique solutions B, and B, and then 

find on substitution of these solutions into Eq. (2.14) that it is not violated to 
any significant degree in the domain, then we can conclude that these solutions 

are good approximations to the exact solutions to the set of Eqs. (2.6), (2.7), and 

(2.8), satisfying the conditions of Eqs. (2.11) to (2.13), inclusive. We therefore 
decide to verify this a posteriori and proceed to solve Eqs. (2.48) and (2.49), 
subject to the conditions of Eqs. (2.11) and (2.12), etc. We note here the in- 
trinsic symmetry and the consequent beauty of these two equations which govern 

the most significant terms of the stream function /,. 

If we compare the set of equations for the first iteration with that of the 

second iteration we see that in the first set the equations governing the functions 
A, and their derivatives do not contain the functions B, and their derivatives 

and vice versa, whereas in the second set the equations contain C,, D,, and 
their derivatives all mixed together. This means that the functions A, and B, 
are not connected explicitly. However, they are connected implicitly through 

the time variable t; and this connection will be lost when the flow is assumed 

to be steady. The functions C, and D, are connected explicitly. If the body is 
geometrically asymmetrical about the polar axis, as would be the case if an el- 

liptical cylinder were placed with its major or minor axis inclined at an angle 

to the flow direction, then again it can be shown that the resulting equations cor- 

responding to Eqs. (2.3) to (2.8) connect the functions A,, B,, and their deriva- 
tives explicitly. 
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Let us consider Eqs. (2.29) to (2.33) inclusive, with the stipulation that 
An Gr,t), =0 tor all n,'Bi(r,t) =,0, tor n 2 3, and .BL (r,t), Lorn,>.l and. 2 
are the solutions to Eqs. (2.48) and (2.49), satisfying the conditions of Eqs. (2.11) 
and (2.12), etc. In Eqs. (2.29), (2.30), and (2.31) all the terms which involve D, 
and their derivatives drop out, thus leaving them as equations in C, and their 

derivatives. On the other hand, in Eqs. (2.32) and (2.33) all the terms involving 
C, and their derivatives drop out, thus leaving them as equations in D, and their 
derivatives only. The essential effect is that the explicit connections between 
C, and D, are severed. These equations, then, deal with only one set of func- 

tions; either C, or D,. 

Since Eqs. (2.29), (2.30), and (2.31) are a set of simultaneous linear- 
differential equations with variable coefficients, they have unique solutions, if 
they exist, satisfying the conditions of Eqs. (2.34) and (2.35) with a suitable ini- 
tial condition when the above stipulations are taken into account. The trivial 

solutions C,(r,t) = 0 satisfy these equations and the required conditions of 

Eqs. (2.34) and (2.35). Hence, if the initial flow conditions are such that they 
represent a symmetric flow pattern, or if we are considering a steady flow prob- 
lem, then it follows that C,(r,t) = 0 are the only solutions to these equations 

and conditions. 

Now we made another simplifying assumption similar to as follows: 

Dir, f))= O- (n= S44 (2.51) 

As a result, we obtain the following equations governing the functions D, and 

D,: 

A) 1 Re ‘ 1 Re _, Re 1 Re nt i) (1+ %3,)9 eee ed 
1 1 r2 or 2 r2 

+ Re (i+ 4- Bj) 9, + 8 wa; -0i8,)+ * wy, - 0,83) 

foo (2h) 2B bay HE (8,3! - B'S) = Re ae ; (2.52) 
2T r ot 

o,¢h9,- 49, +8 (1-4-2)9,-E (r+ 4- ai), 

+ = (Dj8,- D, Bi) + a (BiB, - B,B)) = Re a (2.53) 

(r- }-n,) 9; - 2 (1+ 5 - Bi) 9, + 9,By- 28,95) 

(0,0, DB) ee (oe Dy Deo) ti( eb, Be, et Choe bs = 07 3(2,54) 

(5,0, - B),).+ (D,8.= D538.) +.(8,B,-85B,) = 0. (2.55) 
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As discussed in the case of Eqs. (2.48), (2.49), and (2.50), we regard Eqs. 
(2.52) and (2.53), which are of second order in 9, and §,, respectively as the 
governing equations for the functions D, and D,, and consider Eqs. (2.54) and 
(2.55), which are one order lower than Eqs. (2.52) and (2.53), to represent, in 
a sense, the error involved in the assumption. 

EQUATIONS AND CONDITIONS FOR STEADY FLOW 

As explained above, we may put A, = C, = 0 in the expression for the stream 

functions {, and , when the motion is considered to be time-independent. To 

simplify mathematical analysis, we assume here that B, = D, = 0 for 3,4,...= 
n. This enables us to reduce the stream functions ¥, and y, to the following: 

eb, Oo) = But) ‘sino i+ Bor). sin 20 (2.56) 

Watag) = Decry suo + .Do¢r). sin 20,6 (2.57) 

First Iteration 

Governing Equations 

Cia Rag 1. R ile R 1 ; 

BP iy 8 + he oe) BPE ES (DA) Be oO sirst oneRe) 
ae se 4. Re ry, Re 1 pire ; 

Bate BES iB th Tee) lh gether 
where 

¢ cs 7 ‘ 1 8, = BY + —B, - a Bsy; (2.60) 

a“ ‘ 4 B= Blt 7B, - 2B - (2.61) 

Boundary Conditions 

BiGl) oy Boe ante. as Cea Gn acd (2.62) 

B,(ht) = B,(hf) = By(h]) = By(hj) = 0. (2.63) 

Error Equation 

1\ 3. 1 « post peal aiey alee (2.64) 
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Second Iteration 

Governing Equations 

" 1 Re qe 
d; +(2+ Bep,) 9; -( 

Re 1 1 ¢ Re Qt 1 Re 1 Qe 
ts rey (1 F erry = Bi) D, its e, (D5, - D'8,)) t ral (Die, = D tod) 

Re ’ Qe Re Qe 1 + =~ (BB, - BB.) + = (BzB, - BIB.) = 0 | 

B ‘i LAs 4. Re 1 fe Weenie Re 1 pee 
is du Z i, ee UR ae ee (1 = +) Dp A SS ( tt )o, 

#4 bE or 

R ‘ 1G pe + = (p'B, - DB!) + 22 (BiB, - BB!) = 0 ; 
Pye 2r 

where 

¢ = u 1 ‘ 1 

IF = Di a Tr D, a oo D, ’ 

en ale 4 
D, =D, + Fy D, = ae D, 

Boundary Conditions 

D,(1) I Daly] Di 1] DC. 0 

Di Che) De Chee Dine) DiGi )a= Ov. 

Error Equations 

1 t 1 a 4 Qe 1 Re (: ras B, ) 95 - 2 (1 + ae B; )9, td = 285) teed be DEB) 

+ 2-(b,D, - 2,05) + (|B) = Bo.) + 2 (5B, - 8.6.) = 0% 

(B,D) - BLD.) + (D,Bi- DiB,) + (B,B,-BiB,) = 0. 

TRANSFORMATIONS OF THE SPACE VARIABLE r 

The radial coordinate r varies from 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

r = 1 to r = o, where the symbol o 
is used in the sense of the idea of a physically infinite distance. The solutions 
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of the preceding equations can be represented in the form of a power series. 
However, the power series solutions need not be expansions in powers of r. In 

fact, it is advantageous to use a transformation which affects a contraction in 
scale. We then have two advantages in the computation of these analytical ex- 

pressions: the first is increased precision, and the second is that there is a 
less number of terms to compute for a given value of r, because of the in- 
creased convergence. The application of the boundary condition at the wall is 

simplified if the transformed coordinate varies from 0 to » when r varies from 
1 to », The following class of transformations which affect a logarithmic con- 
traction in scale has this property. 

i= ec® 

= (eF=1) le< < G e S Uys f (2.73) 
c= elel® ~1)-4) (@) < S a 00 

and so on, c being a constant scale factor. At first, the transformation r = 
e©S was used, but when it was found that higher precision was needed in the 

calculation of the second iteration, the transformation r = e‘°*°*-!) was used. 

The results presented in this paper are obtained by using the later trans- 
formation r = e(*°*~!), The equations obtained by using these transforma- 
tions are contained along with relevant algebraic details in Ref. 2. These equa- 
tions are then solved by expressing the solutions as sums of power series in 

the variable s. We thus obtain 

4 = © j © j ate = K1J, ee K13,, 
B,(s) = ) ~ ; ef ) = sk ~ ee » sk 

j=l K k= 1 = 1 

Wive’h + (lgere (3 (2.74) 

4 = © j © j ; ee ieee MIO 3° bs aes M143 
B,(s) = » | - (- e 7s : s* -e MD : s 

Neca | k=a k=1 

rp ate a ee ee a (2.75) 

8 

Ds) = Do 2i( as a oe (2.76) 
1 k=1 k=1 J 

8 

Ds) = > ¥2( D2\! — + Do dag stra; (2.77) 
1 k=1 igo kK 
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where Y1; and Y2;, 1 < j <8 are constants determined by the boundary condi- 

tions, while the constants K11,), K13,/, M14, D1,J, D2,), and M10, 1 <j <8, 
1 < k < » are obtained by using the recurrence relations arising from the gov- 
erning differential equations. These are explicitly defined, and the manner of 

obtaining them is described in detail in Ref. 2. On applying the boundary condi- 
tions to the general solutions in Eqs. (2.74), (2.75), (2.76), and (2.77), we obtain 
the following expressions for the stream functions: 

Yo = 2fece® et) 2 er CeS*=1)} “sin 6 ; (2.78) 

-2 Pees) al | e K13 
vm =i ia S [- > : sk - e7 $ oe k * sind 

2 k=1 XK ki XK 

ee rec M10,. rm aec8 o, M14, : ; 
tf nm so = eS Ss Silla Hie) = (2.79) 

a k=1 K eal Is 

where 

4 4 

Kit, =P vijKii sia, = DY vinKia 
j=t y=1 

4 4 

>, Yi,Mi0,3, M14, = )) Y1,M14,3 M10, = 
j=l 

jal 

9 9 

= j = j } 
Dio = 5° vais Da, = yore. (2.81) 

j=1 
peal 

The constants Y1; and Y2; in Eqs. (2.81) are known values and Y2, is by defini- 

tion taken as unity. Adding Eqs. (2.78), (2.79), and (2.80), we obtain 

ik “| - ye Dis | sin @ 

eon are deaead, ye ce Sy M14, 2 
7 eze sk - e72e sk ] + D2, sk-1] sin 26. (2,82 Ben FS pale om, 2.80) 

As shown in Ref, 2, Eq. (2.82) can be rewritten in the following form: 

w= [F(s) + G(s) cos 6] s? siné@ , (2.83) 
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where F(s) and G(s) are known functions of s. 

It can be seen from Eq. (2.83) that the cylinder boundary for which s = 0 
is a streamline with y = 0. Also the lines of symmetry with 6 = O0and @6=7 

are streamlines with y = 0. In other words, the streamline y = 0 has branch 
points at the front and rear stagnation points. Since streamlines are lines for 

which y has constant values, two streamlines having two different constant 

values cannot meet. Therefore, if a streamline does meet the cylinder bound- 
ary at any point it must be a branch of the streamline y = 0, and the point at 
which it meets the wall is then a branch point of the streamline y = 0. From 
Eq. (2.83) we see that y can be zero evenif s 4 0 and 6 #7 0, when the 
terms in the brackets vanish. This is, 

F(s) 

G(s) _ 
cos 0 = - (2.84) 

Since |cos 6| < 1, it may happen that there are no points in the flow field which 
satisfy Eq. (2.84) if the right-hand side of the equation has an absolute value 
greater than one for all s 2 0. Since the value depends on the Reynolds number 
of the characteristic flow parameter, the existence of a line satisfying Eq. (2.84) 

also depends on it. 

Let us assume that the Reynolds number is such that a line the points of ‘ 

which satisfy Eq. (2.84) exists. Then, on this line, ¥ = 0. Since cos@ =cos 
(-6), we conclude that the part of the streamline given by Eq. (2.84) is sym- 
metric about the polar axis. We may regard it as consisting of two parts, each 

a mirror image of the other, about the polar axis. In other words, we may say 
that Eq. (2.84) gives two more branches of the streamline y = 0. Denoting the 

angle @ at s = 0 on these branches by a, we obtain the angle of separation 

@=m7- cos} Ea , (2.85) 

If we drop the terms corresponding to the second iteration from the functions 
F(s) and G(s), and denote the resulting functions by F,(s) and G,(s) respec- 

tively, we obtain separating streamlines due to the first iteration alone from 
the equation 

@=- eon Gs) (2.86) 

F,(0 
OG. =e & cose) Ea : (2.87) 

1 
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PART 3 

RESULTS, DISCUSSION, AND CONCLUSIONS 

This part of the paper presents the results of computations of viscous flow 

fields around a circular cylinder based on the analytical representations ob- 

tained from the algorithm and its attendant linear substructure as they were ap- 
plied in previous sections to complete the Navier-Stokes equations and boundary 

conditions. These results are discussed with reference to the existing body of 
literature which covers a range 0 < Re < 20 of Reynolds number based on the 
radius of the cylinder. Following the discussion, we present conclusions in the 

light of the results and discussion. Numerical information is given in Table 2 
and in a series of plots which are placed at the end of this paper. 

RESULTS 

The first and second iteration solutions are computed for 18 discrete val- 
ues of the Reynolds number. The results of the computation are presented con- 

cisely in Table 2. They are given in detail by plots contained in Figs. 1A through 
34F. These plots are divided into two sections. Figures 1A through 20F give 
information about the drag, pressure, separation, and behavior of solutions with 
increasing Reynolds number and the radius at which the boundary conditions of 

Eqs. (2.62), (2.63), (2.69), and (2.70) are applied. Figures 21A through 34F give 
streamline plots showing the development of viscous flow fields with bound 

vortices as the Reynolds number is increased from 0.05 to 20. 

In Fig. 1A the total drag coefficient CD is plotted against the Reynolds num- 
ber on a linear scale. Tritten's (1959) experimental results are included for 
comparison. In Fig. 1B logarithms of total drag coefficient CD are plotted 
against the logarithm of the Reynolds number (-1.5 < log,, Re < 1.5), and the 
results of Bairstow, Cave, and Lang (1923), and of Tritton (1959) are included 
for comparison, Figure 1C is exactly the same as 1B, except that here the 

least values of the first iteration drag coefficient CD1 are plotted instead of the 
total coefficient CD. Figure 1D shows on a linear scale the plot of the second 
iteration drag coefficient CD2 against the Reynolds number Re. Figure 1E gives 
an enlarged portion of the plot of CD against Re together with the results of 
Lamb (1911), Kaplun (1957), and Tritton (1959) for comparison. Figure 2A gives 
plots of the ratios 7, 7,, and 7, of pressure drag to viscous drag against Re. 
Figure 2B gives plots of the angle of separation «, obtained by the first itera- 
tion and of the angle of separation «, obtained by the first and second iterations 
against Re. Figures 2C and 2D give, respectively, the plots of the stagnation 
pressures in front and at the rear of the cylinder against Re. In these figures 

we have plotted PRESS-PREC2 instead of the stagnation pressure PRESS which is 
the result of the first and second iterations together, because, due to its small- 
ness, PREC2 could not be calculated accurately, and erroneous values were ob- 
tained for it due to lack of precision in computation at that stage. Figure 2E 

gives the plots of PREC1, PRET1,,,,, and PREP1,;,, v/s Re. These quantities are 
the constant, the first harmonic, and the second harmonic amplitudes of the 

first iteration pressure field around the circular cylinder. 
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Figures 3A through 20F constitute eighteen sets of figures, each corre- 
sponding to one of the eighteen discrete values of the Reynolds number at which 
solutions are evaluated. Each of these sets is composed of six graphs. The 
number, such as 3 in Fig. 3A, refers to the set belonging to a particular Reyn- 
olds number, while the alphabetical characters A, B, C, D, E, and F refer to 
the six graphs in that particular set according to the following scheme. 

Character A: Plots of yi(J), J =1, 2, 3, and 4 against r. 

Character B: Plots of the drags CD1, CDP1, and CDV1 against r. 

Character C: Plots of PRECI, PRETIM, and PREPIM against r. 
PRETIM = PRET1,,,,, PREPIM = PREP1,;,, aS defined earlier. 

Character D: Plots of ER1 against S(H); 0< S< H. Here the symbol (H) 
is used to signify that the range of S depends on H. 

Character E: Plots of PRES1, PRET1, PREP1, and PREC] against @. 

Character F: Plots of PRESS-PREC2, PRES2-PREC2, PREP2, PRET2, PRES1, 

and PRESI against 6. The reason why PRESS-PREC2 and 
PRES2-PREC2 instead of PRESS, PRES2, and PREC2 are plotted 
is as explained earlier. 

To examine salient features of these results, let us consider the set of 
plots corresponding to the Reynolds number Re = 0.05, viz., Figs. 3A through 
3F. The plots in the first three are all against r. They show the effect on the 
first iteration solution for a given Re, here 0.05, of applying the boundary con- 

ditions at various distances from the cylinder. In Fig. 3A the constants y1(J), 
J = 1, 2, 3, and 4 increase very rapidly in absolute magnitude below r = 7. 
In general, they may behave erratically below a certain value of r. From r = 
7 to r = 300 all the four constants behave asymptotically and tend to a limiting 
set of values. However, the inherent numerical errors involved in computation 
with finite precision and a large number of operations cause the calculation to 
break down for r > 340. Since the drag coefficients depend explicitly on the 
constants Y1(1) and Y1(2), Fig. 3B displays a similar behavior. So also is 
the case with PRECI, PRETIM, and PREPIM in Fig. 3C. The numerical breakdown 
which occurs for r > 340 with a double-precision program using the transfor- 
mation r = ecg < takes place for r > 22.198 with a double-precision program 
using the transformation r = e°*, andfor r > 11 with a single-precision pro- 
gram using the same later transformation. However, the distance r = 7 at 
which the values for the constants y1(J) stop changing rapidly and start behav- 
ing asymptotically remains the same whatever precision program and trans- 

formation are used. In fact, the results of computation using the transforma- 
tion r = e°S show that in this case, figures corresponding to 3A, 3B, and 3C 
have plots which remain the same up to r = 11 for both single- and double- 
precision computations. However, with a different transformation of values of 
Y1(J), the corresponding plots differ, as far as magnitude of the constants is 
concerned. Whereas the numerical breakdown occurs for r > 11 with a single- 
precision program, it is deferred to r > 22,198 by the use of a double-precision 
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program based on the same transformation r = e°*, Itis still further de- 
ferred to r > 340 by the use of a double-precision program based on the trans- 
formation r = ee¢s’-1, This shows two things. First, the numerical breakdown 
can be deferred so that it occurs at some later stage by increasing precision as 
well as by using a transformation belonging to the group of transformations dis- 
cussed in Part 2 of this paper. Second, the behavior of the solutions when the 

boundary conditions are applied at points for which r is less than 7 is not due 
to any numerical errors, but indicates that significant viscous effects cannot be 

restricted to a domain bound by r < 7. Consequently, the imposition of the 

boundary conditions in a domain bound by r < 7 is physically unrealistic and 

hence unacceptable mathematically. In other words, the domain bound by r < 7 

is the smallest domain for Re = 0.05 in which the viscous effects must be con- 
sidered extremely significant, and therefore the physically infinite distance h? 

cannot be smaller than r = 7. We define the lower bound of h; for a given 

Reynolds number as the number below which the value of h} cannot be chosen. 
The asymptotic behavior is terminated for r > 340. Below and near this value 
of r, the solution for Re = 0.05 does not seem to change significantly with r. 
The distance r = 340 relates to the results of the first iteration computations. 
It can and does happen that at such a limiting distance the second iteration cal- 

culations involve numerical breakdowns. To obviate this, a distance such as 
r = 275 is chosen as h; such that the second iteration calculations can be car- 
ried out successfully. In carrying these out with two or three other radii, it is 
seen that the second iteration solution retains the asymptotic behavior. Hence 
we take the physically infinite distance h* as the distance 275 at which mean- 
ingful information is possible but beyond which the solution breaks down nu- 

merically. It should be noted that the value of the physically infinite distance 
then depends on the precision and transformation with which the computations 

are carried out. This, of course, is true up to a point. However, improved pre- 
cision and new transformations simply extend the range in which the asymptotic 

behavior is obtained by shifting the point at which the numerical breakdown oc- 

curs, And if the extended portion of the range is such that no significant change 
occurs in the solution evaluated with r = 275, then improved precision and/or a 
new transformation are unnecessary. Otherwise, improved precision and/or a 

new transformation, if possible, are desirable. Herein lies the significance and 
the strength from a numerical point of view of the idea of a physically infinite 

distance. It should be noted that because h% is selected so that no numerical 
breakdown takes place in either iterations, it is possible that the solution cor- 

responding to this h} may give a first iteration drag value CD1 which is higher 

than the least value indicated by figures such as 3B. Figure 3D gives for the 
solution evaluated at r = 275, a plot of ER1, the error involved in the simplify- 
ing assumption B,(r) = 0 for n 2 3, against S, where 0< S<H and RT = 
ht = ee“"-1 = 275, sothat H = 1/c log (1+ log hj ) = 0.9448. Figures 3E and 
3F show the harmonic components of the pressure fields due to first and second 

iterations respectively. The plot of PRESS-PREC2 in Fig. 3F shows the distribution 
of total pressure around the cylinder except for a constant term PREC2 which, 

due to numerical errors, could not be evaluated accurately. It is, however, a 
small value. 

The same features displayed by the set of graphs for Re = 0.05 are also 
present in all the other sets of graphs for the remaining 17 values of Re. They 
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then hold for all Reynolds numbers in the range 0 < Re < 20. Table 2 contains 
all of the significant information, a part of which is also presented in Figs, 1A 
through 2E. 

Bearing in mind that there is some arbitrariness involved in the choice of 
RT = h¥ and its lower bound for a given Reynolds number, the corresponding 

values from Table 2 for different Re show that even with increasing Re, the 
physically infinite distance h¥ decreases, while its lower bound at first in- 
creases but ultimately decreases for the most part. This means that viscous 
effects become increasingly localized near the cylinder as the Reynolds number 
is increased. And this, of course, is confirmed by experimental observations. 

The existence of asymptotic behavior of the first and second iteration solutions 
for all Reynolds numbers considered is conclusive support of the validity of the 
idea of a physically infinite distance as applied to this problem. Figures 1A 

through 1E for drag, and Figs. 2C, 2D, and 2E for pressure, show that though 
the solutions for various Reynolds numbers are obtained by applying the condi- 

tions of Eqs. (2.62) and (2.63) at different distances h¥, in general, the corre- 

sponding points for drags and pressures when plotted against Re give smooth 

curves which behave asymptotically with increasing Re in the range 0 < Re < 20. 
This further supports the validity of the idea of a physically infinite distance, 
for otherwise the curves would not be smooth. However, the values of drag 
plotted in these figures for Re > 4 could be lower than those shown if the physi- 

cally infinite distance could be increased. This is indicated because, for Re > 4, 
the values of drag plotted lie close to the bend in the drag v/s r plots fora 
given Re and are not the asymptotically limiting values. This accounts for the 
discrepancy for Re > 4. It also indicates the need to take more harmonics into 

consideration. 

Figure 3D shows that the second iteration drag for Re > 4 becomes positive. 
Referring to Table 2, we see that the viscous component CDV2 of this drag re- 
mains negative whereas the pressure component CDP2 becomes positive. Be- 
cause of possible numerical errors arising from the application of boundary 

ditions at short distances, in order to avert numerical breakdown, it is not con 
conclusive that CDP2 and CD2 are indeed positive. If they remain positive after 

the possibility of computational inaccuracies is ruled out, in our opinion, this 
would support the conjecture that, even at very low Reynolds number, higher 

harmonics must be used in order to effectively apply higher order iterations to 
improve accuracy in numerical representations of flow fields. 

Figures 21A through 34F give streamline plots for all the Reynolds num- 
bers considered, except for Re = 2.1, 2.3, 2.4, and 2.5. There are two harmonics 
and two iterations. Both the harmonics and their sum are plotted for each itera- 

tion. Therefore, there are basically six plots for a given Reynolds number. How- 
ever, when a vortex appears in the flow field, an enlarged plot of the vortex is 
added to the set. The only exception to this is the case of Re = 20, where the 
vortex in the flow field is not plotted. The reason is that the computer program 

had to be modified at this stage, to plot the vortex. Figures 22C and 22D for 
Re = 0.125 are the same, except that the latter shows a discontinuous behavior 
in the streamline pattern. The reason for this is that when the two harmonics 

are added together, due to the discontinuous behavior of the second harmonic at 
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6 = 7/2, the sum also displays this behavior. If more harmonics are taken into 

account this behavior will be smoothed out. In anticipation of this and for the 

sake of clarity, the discontinuous behavior in Fig. 22D is smoothed out by draw- 
ing tangential lines to opposite branches of the streamlines. Figures 22G and 
22H, 23C and 23D, and 23G and 23H are also included to show that the discon- 
tinuous behavior takes place for all Reynolds numbers. Figure 28B and similar 
other plots of the second harmonic for higher Reynolds numbers show the stream- 
lines intersecting each other near the +45° lines. This is purely due to the fact 
that the points on the streamlines are obtained as intersections of the radial 

lines with the streamlines, and hence when these lines are more or less parallel 
to each other their intersections cannot be determined accurately. In short, this 
feature is attributable to the mode of obtaining points on the streamline, and is 
not a property of the streamlines. 

Figure 27C shows a tiny vortex behind the cylinder for Re = 1.0. But this 
disappears when the second iteration contribution is added, and all that is left is 

a wake without a vortex. The same happens at Re = 2.0, except that the vortex 

in Fig. 28C is larger. However, at Re = 2.75, the vortex appears with both iter- 
ations; but the second iteration vortex is much smaller than the first iteration 

vortex. This shows that the effect of the second iteration is to delay the separa- 

tion and also affect the size and structure of the vortex. The calculations for 
Reynolds numbers between Re = 2.0 and 2.75 show that the vortex begins to ap- 
pear in the second iteration plots from Re = 2.3 onwards, i.e., the flow separa- 

tion begins at Re = 2.3. The vortex structure does not show fully rounded con- 
tours, because only two harmonics are taken into account. There are three 
noteworthy features here. If we observe Figs. 29G and 29H we see that the 
gradients within the vortex are smaller than the outside flow field by some or- 
der of magnitudes. This means that in the initial stages of the development of 
a vortex its appearance may not be noticeable by the naked eye or even by a 
microscope, because its size as well as the movement within it are extremely 

small in the beginning. The experiments, therefore, must give a higher value of 
Re for separation than does the theory. Further, the velocities in a vortex such 
as in Fig. 31H are higher near the separation streamline and the cylinder wall 
than near the center, in contrast to the case with potential vortices. This is, of 
course, what is observed in real vortices. The vortex is here obtained as a 
result of the addition of two harmonics which are continuous functions of the 
space variables r and @ and hence must be represented by a continuous func- 

tion. Therefore, a vortex need not be represented by or viewed as a singular 

structure in the flow field. With increasing Reynolds number the point of sepa- 

ration first moves forward on the cylinder wall, and then attains a limiting posi- 
tion as shown by the plots of the angles of separation «a, and a in Fig. 2B. 

This agrees with what is observed in nature. 

DISC USSION 

The existing explicit theoretical knowledge about flows of viscous fluids is, 
for the most part, obtained from the Navier-Stokes equations by the application 

of small-perturbation techniques [42]. Here we have attempted to depart from 

this thinking. Although we have used an iterative process for solving the 
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Navier-Stokes equations, no ideas of parameter or coordinate perturbations are 

invoked. Instead, a fundamental role for potential flows is, a priori, asserted 
and the iterative process is used as a method of obtaining solutions to the Navier- 
Stokes equations. In this, we differ fundamentally from the existing theories. 

It has been our desire to understand the flow around a circular cylinder as 

it evolves, because the understanding gained would also be gained for flows around 
other obstacles as well. The existing theories do not shed light on the continuous 
evolution of a flow field. This means that we must abandon well-trodden paths 

and examine the nature of this flow with a fresh outlook. Well-chosen and criti- 
cally performed experiments with actual flows provide information on which we 
are building a theoretical structure, an image of reality which is also a reflec- 
tion of our understanding of it. This information has accumulated over a period 

of years, but there has been no theoretical structure which embraces all or even 
a large part of it. Experience with small-perturbation theories and comparison 

between them and actual experimental results lead us to believe that the Navier- 
Stokes equations contain implicitly essential theoretical information about flows 
of a class of actual fluids. Computer experiments [43,44,45,46] performed by 
using the Navier-Stokes equations vividly demonstrate that the equations do 

have this information implicitly. Consequently, the present work considers the 
Navier-Stokes equations as embodying the essential theoretical information im- 
plicitly and differs from other theories insofar as it endeavors to make explicit 

as large a part of this information as it can, without setting a priori limits to 

what is possible. 

Because a steady-flow situation actually exists in nature and because from 
an analytical point of view it is the most appropriate one to study first, we have 
directed our efforts to obtain concrete results for this aspect of the flow field 
after obtaining the general information contained in the Symmetry Theorem 
about the conditions under which the flow can be time-dependent. Fromm and 

Harlow in their fine work [45] on the nonsteady problem of vortex street devel- 
opment have used numerical techniques based on a method of iterations. They 

have observed the following: 

All examples started at time t = 0, with the walls and fluid im- 
pulsively accelerated to this velocity, and the first cycle iteration 

procedure immediately adjusted the configuration to the nonvis- 

cous laminar flow solution. Advancement of the configuration 
through subsequent time cycles resulted in a gradual transition to 
the viscous steady-state solution whose most prominent feature is 
an eddy pair just behind the plate. Since the solution procedure 

preserves symmetry to approximately one part in 10°, the steady 

solution persists for long times, even for large values of R. Thus 
we found it desirable to introduce a perturbation, accomplished by 

artificially increasing the value of w by a small amount at three 
mesh points just in front of the plate; this was done at a time when 

the double eddy pattern was well established. In all cases, the 
perturbation was small enough that no immediate change was 
visible in the flow pattern; nevertheless, such a small perturba- 
tion was always effective in starting the vortex shedding process 

within a fairly short time, provided, of course, that R was 
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sufficiently large. For R < 40 we found that the steady-state 
flow pattern never visibly changed after introduction of the 

perturbation. 

The above observation shows two things. One is that the evolution in time 
of a viscous steady-state configuration takes place from an initial nonviscous 
laminar flow configuration, i.e., a potential flow configuration. Consequently, 
the viscous steady-state configuration may naturally be conceived of as a devia- 

tion from a basic potential flow configuration. This is, indeed, the view basic 
in the present work. Second, is that the steady-state motion is preserved so 

long as symmetry is preserved, and it is destroyed only by the artificial intro- 

duction of small perturbations. This is exactly what the Symmetry Theorem 

asserts. Grove, Shair, Petersen, and Acrivos in their experimental work [47] 
observe the following: ''By artificially stabilizing the steady wake, this system 
was studied up to Reynolds numbers R considerably larger than any previously 

attained, thus providing a much clearer insight into the asymptotic character of 

such flows at high Reynolds numbers." The first part of this statement is fac- 

tual, whereas the second part is an interpretation of the significance of the first 
part. From the point of view of the present work, the significance of the factual 

part lies in the fact that it demonstrates the validity of the Symmetry Theorem. 
The wake was stabilized, i.e., made steady by them, by the introduction of a 
splitter plate along the line of symmetry in the wake. This device, in essence, 
forces a symmetry, with the result that from all possible configurations — 
symmetric and asymmetric — only a symmetric configuration emerges. This 
symmetric configuration is a steady-state configuration. Thus, with forced 
symmetry, a steady-state emerges — a result consistent with the Symmetry 

Theorem. That Allen and Southwell [48] could calculate through relaxation 
methods flow fields at R = 100 and R = 1000 which display steady-state con- 

figuration, is to be considered a consequence of the Symmetry Theorem, be- 

cause they started with equations and conditions which do not involve time as a 
variable. However, for reasons which Kawaguti [49] has already pointed out, 
their streamline fields and the pressure distributions over the surface of the 

cylinder are suspect to some sort of error. Kawaguti and Apelt both find in 
their numerical solutions that steady-state solutions are possible for somewhat 
higher Reynolds number, even though they may not exist in nature. This is 
again consistent with the Symmetry Theorem. 

Southwell and Squire [50] have used the potential solutions instead of a 
uniform-flow solution to obtain governing equations for the flow past a plate 

and a circular cylinder. They also point out that other authors, e.g., Zeilon, 
Burgers, Boussinesq, Russel, and King have worked along similar lines. This 
approach leads to their equation (no. 16) and conditions (no. 10) which naturally 

correspond to our base flow and first iteration equations and conditions taken 

together. However, their approach in obtaining the equations is technical in 

spirit and does not recognize or assert the fundamental role which we have as- 
signed to the potential flow as a base flow that is valid in the whole domain, 
including, of course, the points near the wall and in the wake, for all Reynolds 

numbers. To show this is the case, we quote the following from their work. 
"Now we know from experiment that the undisturbed velocities u, v are approxi- 

mately irrotational in parts of the field which are not very near to the solid 
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boundary or to the 'wake.' Hence, to replace them by irrotational velocities 
should be a closer approximation to the truth than to replace them by undis- 

turbed velocities ... And we may conclude that (16) will be a satisfactory ap- 
proximation to the exact form (11) of the governing equation throughout the 
whole of the speed-scale range, provided that « is the velocity potential func- 
tion appropriate to a cylinder of the form which we are considering. For the 
experimental evidence (5) indicates that the actual flow pattern at high speeds 
does in fact approximate to irrotational flow pattern, except at points very 

close to the boundary of the cylinder and in the 'wakes'.'"' These quotations 

show that although they have indicated that their equation (16) may be applicable 
to high value of Reynolds number, they have not attached any significance to the 
use of a potential solution as far as points very close to the cylinder and in the 

wake are concerned. In fact, the idea of deviation from a potential flow is ab- 
sent. Their work differs in other respects also. The method adopted by them 

to solve their governing equation is quite different from ours. And consequently 

there are no equations in their work like the subsidiary equations which we have 

derived and used. The recognition that the results up to the first iteration must 
give a value of drag higher than that observed in actual experiments by a con- 
siderable margin, and that the second iteration is essential to account for this 
difference, is absent in their work. In fact, their drag formula for a circular 
cylinder gives a value which is less by 20% than Lamb's [18] and by 7% than 
Bairstow's when R = 2. In principle, this should be the same as our first itera- 

tion drag. But the value we have at Re = 1, i.e., at R = 2 since R = 2Re,isa 
little higher than Bairstow's, as can be seen from Table 2 and Fig. 1B. Since 
we have shown that the first iteration values are lowered by taking into account 

the second iteration, the discrepancy between their and our first iteration drags 

when R = 2 shows that their value cannot be accurate. In their approximate solu- 
tions to the governing equations they have applied the boundary condition at the 

wall in such a way that it is satisfied at only a discrete number of points. This 

is not the case with our method. 

A central feature of all the works which use the potential flow solution is 

their use of the Boussinesq coordinate transformation from the Cartesian space 

coordinates to the velocity potential «-stream function 6 coordinates. Burgers 

neglects 02w/d82, where w = Vy, in the differential equation for w and hence 
works ultimately with an equation different from the one which corresponds to 

our base flow and the first iteration equation. Lewis, using Meksyn's analytical 

methods for obtaining Green's function for the stream function removes the limi- 
tations involved in the works of Southwell and Squire, and Burgers, but gives no 
specific information about drag, pressure, etc. Pillow's work treats flow past 
a parabola and uses similar techniques; consequently, a direct comparison be- 
tween his and our work is not possible. However, to show the difference in 
basic ideas involved in his and our work we quote the following from his work. 

A construction is given for the general solution of the Burgers 
vorticity equation. Such a solution which satisfies the boundary 
conditions at infinity provides a general outer solution for real 
viscous flow past bodies, into which any inner solution must 
ultimately match. 
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In any iterative procedure working inwards and based on a Burgers 
flow as a first approximation, it becomes important to construct 

particular solutions of the non-homogeneous form of the Burgers 

vorticity equation in which the successive estimates of the self- 

convection effect appear as perturbation terms on the right-hand 

side’... 

... However, it must be clearly understood that boundary layer 
flow must inevitably dominate the inner flow region sufficiently 
far downstream. In such a region, non-linear self-convection 
effects become comparable with Burgers convection ... 

These statements show that the ideas of inner and outer expansions are cen- 
tral in his work. Although the last quotation shows, in a sense, the recognition 
of the importance of our second iteration, it is used to refute the validity of the 
process of iteration for the whole domain consistent with the ideas of inner and 

outer expansions, as the following statement indicates: ''... In its outer region, 
this solution merges with a suitable Burgers flow but, owing to the finite differ- 
ence of displacement thickness, not the one one obtains by a naive application 
of linear theory right up to the boundary of the parabola. A blind iteration from 

such a linear solution fails ...'"" This statement shows the fundamental differ- 

ences between his and our work. 

Starting with Stokes' [16] treatment of the creeping motion of a sphere, which 
neglected the inertia terms completely, and Oseen's work [51,52,53] which by 
taking into account, to some measure, these inertia terms, aimed at resolving 
Whitehead's paradox [54], a large body of work has been based on their approach 
to the external flow problems for low values of Reynolds number. Lamb's solu- 
tion [18], based on Oseen's equations for a circular cylinder, has provided a 

milestone for work on cylindrical objects. Stokes' paradox [16] in case of a cir- 
cular cylinder is resolved in a sense by the use of Oseen's equations instead of 

Stokes’ equations for creeping motion. It is also resolved, as Bairstow [55] has 
shown, by using Stokes' equations together with a flow field which is partially 

bounded at infinity. S. Goldstein [56] has given an exact analytical solution of 
Oseen's equation for the case of the steady flow of an incompressible viscous 
fluid past a sphere. For the case of a circular cylinder, Faxen [57| provided 

the solution. The solution given by Bairstow, Cave, and Lang [25] for a circular 
cylinder is based on an extension of Lamb's treatment. Tomotika and Aoi [58] 
have given similar solutions for a sphere and a circular cylinder along lines 
following Goldstein's work on a sphere. Both of these works have carried out 
calculations of drag for a circular cylinder in the range 0< R < 23, where R is 
based on the diameter of the cylinder. This is just a little more than half the 
range which we have examined in detail. As noted by Tritton [59], the results of 

Bairstow et al. and Tamotika and Aoi are essentially the same as far as the drag 
is concerned. Hence only the results of Bairstow et al. are plotted for compari- 

son in Fig, 1B. 

The methods of small perturbation in fluid mechanics are discussed in de- 

tail by Van Dyke [42]. Stokes’ and Oseen's solutions are shown to be asymptotic 
expansions of the solutions of the Navier-Stokes equations for small values, 
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usually regarded as less than 1, of the Reynolds number. Two ideas generated 
by S. Kaplun have made it possible to extend methods in this field of asymptotic 
expansions. Lagerstrom [60| has stated them as: ''(1) The discovery of suit- 
able inner and outer limits; (2) An extension of the technique of matching be- 
tween various expansions." The works of Lagerstrom and Cole [61], Kaplun 

and Lagerstrom [62], and Kaplun [22,23] in this field are quite significant. 
Kaplun has given a higher approximation solution than Lamb's for a circular 

cylinder that is valid for small Reynolds numbers. We have plotted Lamb's as 
well as Kaplun's results for drag in Fig. 1E. Lamb's expression for drag is as 

follows: 

1 ages Lt by la ac a ie Re 
Re 0.5 \ Re 
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Kaplun's expression for drag includes one more term than Lamb's. It is 

Reynolds number based on radius I 
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It is easy to see that both of these expressions become unbounded for Re = 
3.73. For this value Lamb's expression becomes + and Kaplun's becomes -o, 

though the latter obviously tends to -w faster than does Lamb's, which tends to 
+o as Re—3.73. As noted by Van Dyke [42], all such higher approximations 
will have expressions for drag which are expansions in powers of A,. Hence 
they cannot be meaningful beyond Re = 3.73, although their actual range of 

validity is successively increased within these limits 0 < Re < 3.73. 

By using ideas of inner and outer expansions and matching procedures, 
Proudman and Pearson [63] have also obtained higher approximations to the 
flow past a sphere and a circular cylinder than those represented by the solu- 

tions of Stokes and Oseen. The results are essentially same as Kaplun's for a 
circular cylinder. Proudman and Pearson as well as Van Dyke [42] regard the 
works of Bairstow et al. [25], Goldstein [56], and Tomotika and Aoi [58] as of 
limited value. Proudman and Pearson [63| remark that "there is no point in 
solving the linear equation (2.12) to a greater degree of approximation than that 
of the inertial terms neglected by substituting the Oseen equations for Navier- 
Stokes equations, and so the simple solution given by Lamb (1911) is as good 

an approximation as it is possible to obtain from the linearized equation."' The 

equation (2.12) to which the remark refers is (V,? - R 3/ox) V,2y = 0. Van Dyke 
[42] states that the approximation is qualitatively as well as quantitatively in- 

valid at high Reynolds number and, to support his view, gives the reason that 
Oseen's approximation gives boundary layers whose thickness is of the order 
R'! rather than R'!’?, as in Prendtl's correct theory. Moreover he points to 
Yamada's work [64] to invalidate qualitative results even at low Reynolds 

584 



Studies on the Motion of Viscous Flows--IlIl 

number. We think that these views are not well justified. It is true that Kap- 
lun's expression for drag represents a higher approximation than Lamb's ex- 
pression to which, surely, the expressions of Bairstow et al. and Tomotika 
and Aoi reduce for the range of Reynolds number in which both Lamb's and 
Kaplun's expressions are meaningful. However the expressions due to Bair- 

stow et al. and Tomotika and Aoi are asymptotic in nature with increasing 
Reynolds number and show no unboundedness, at least within the range they 
have investigated, whereas those due to Lamb and Kaplun are otherwise and 
become unbounded for Re = 3.73. The results that do not become unbounded are 
more of value, even if they are quantitatively somewhat different from the ex- 
act results produced by those expressions that do. This shows that expansions 
in terms of Re as a perturbation parameter, as obtained by Lamb and Kaplun, 

are not mathematically equivalent to the solutions obtained by Bairstow et al., 
Tomotika and Aoi, and others, except in a narrow range, for otherwise, they 
all should show unboundedness at Re = 3.73. The range 0 < Re < 12 whichis 
the one investigated by Tomotika and Aoi as well as Bairstow and others is a 
range in which the assumptions of the boundary layer theory are invalid. Con- 

sequently, the thickness of the boundary layer argument cannot be applied to 
this range. For this range, then, these works cannot be invalidated totally on 

this count. As for Yamada's work [64], his results as shown in Fig. 3 of Ref. 
64 do not seem to be correct. The reasons are as follows. 

The experimental work of Thom shows that for R = 3.5 the maximum 

stagnation pressure in front of the cylinder is p - p,/(pv?/2) = 2.3. Figure 6 
in his work shows that for higher values of R, this must be decreasing. Conse- 

quently for R = 4, the value must be less than 2.3. Since the pressure drag is 
somewhat directly related to, and has a value in excess of, that of the maximum 

stagnation pressure for this value of Reynolds number, we can also estimate 
what value this maximum pressure may possibly have. From Tritton's work 
[59] the value of total drag at R = 4 is about 4.85. According to Oseen's theory 
the pressure drag is half the total drag. This would give the pressure drag 
2.425. On the other hand, if we take the pressure drag as 0.65 times the total 
drag as found by Kawaguti [65] and as can be roughly estimated from Fig. 8 in 
Thom's work [66], it turns out to be 3.152. In any case, then, the maximum 
pressure cannot be larger than 3.152. However, Fig. 3 in Yamada's work [64] 
shows this value obtained by considering the exact Navier-Stokes equations to 
be 5.2, which is much too large in comparison to the maximum estimated value 
3.152 and the possible experimental value which may be less than 2.3. Hence 
we cannot but conclude that Yamada's results are in error. Consequently, Van 

Dyke's statement, which is based on Yamada's work, has to be discounted. 

The method of inner and outer expansions has been utilized by Blair et al. 
[43], Brenner [67], Brenner and Cox [68], Caswell and Schwartz [69], Chester 
[70], and many other authors. But the limitations of the small-perturbation 

theories are too severe to help us understand the evolution of a flow field for 
the complete range of a characteristic parameter. Lagerstrom [60] rightly 

considers that the main importance of their work lies in the analysis of basic 

problems in asymptotic expansions. 
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The measurements of the drag on a circular cylinder made by Tritton are 
the most recent experiments and extend down to the lowest value — 0.416 — 
of the Reynolds number, based on diameter, as yet attempted. The results of 

Wieselsberger [71] and Relf [72] are in agreement with Tritton's. Those of 
Fage [73,74,75|, Schiller and Linke [76], Roshko [77], and Humphreys [78] cover 
the range of high Reynolds numbers and hence are not useful for comparison 

with the present work. The results obtained by Thom [66], Kawaguti [65], and 
Apelt [79] by numerical integration of the exact Navier-Stokes equations are in 
agreement with Tritton's results. Allen and Southwell's [48], and Southwell and 
Squire's [24] results are somewhat higher than Tritton's. Since Tritton's paper 
gives a comparison of these other works with its own results, it is considered 
sufficient to compare our results with Tritton's. For this purpose, Tritton's 

drag v/s Re curve is plotted in Figs. 1A, 1B, and 1C. From them it can be seen 
that the first and second iteration results behave asymptotically in the same 

fashion as Tritton's, but that these curves for higher Re lie above those of 
Tritton's. The values of the first iteration drag are lowered by the negative 
contributions of the second iteration results for Re < 4. We expressly state 
that the second iteration drag results for Re > 4 are not very accurate and that 
they should be considered indicative of what the second iteration leads to rather 

than as conclusive. 

Figure 2A shows that the ratio of the first iteration pressure drag to the 

viscous drag remains essentially equal to 1. The divergence with increasing 
Re may be an indication of decreasing accuracy of computation, though this has 
not been ascertained in the present work. By comparing these results with 

those which may be obtained by computation with multiple precision, we can de- 

cide on this issue. It is interesting that, like Oseen's theory, this ratio has 
turned out to be unity. However, this is not the ratio of the total pressure drag 
to the total viscous drag obtained by considering both the first and the second 
iterations together. The results of the second iteration show that the ratio will 
be different from unity. Kawaguti's [65] and Thom's work [66] show that this is 
indeed the case. 

Definition of points of separation similar to the one we have given have 

been used by Van Dyke, Proudman and Pearson, and Yamada. These first two 
authors have correctly pointed out that the results of Tomotika and Aoi are 
seriously in error as far as the determination of points of separation is con- 

cerned. Figure 2B gives the angle of separation determined with first iteration 
as well as first and second iterations together. It shows the general behavior 

found in experiments by Grove et al. [47], Thom [66], Homann [80,81], and 
Taneda [82]. It shows asymptotic behavior with increasing Reynolds number. 
At Re = 0.75 the angle a, is zero, which implies that according to the results 
of the first iteration separation begins at Re = 0.75. On the other hand, a, is 
zero at Re = 2.3, showing that the separation begins at Re = 2.3 when two itera- 
tions are taken into account. Nisi and Porter [83,84] estimate the Reynolds 
number at which the separation begins to be 1.6. Homann [80,81] gives a value 
of 6.0. Taneda [82] estimates it to be 2.5, and this recent value is close to the 
theoretical Re = 2.3 predicted by the present work. Experimental values must 
be slightly higher than theoretical values, because a vortex and separation 

associated with the former cannot be discerned until after they have reached 

a finite size which can be observed. Theoretical values, on the other hand, 
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refer to the Reynolds number at which there is no vortex but above which sepa- 
ration begins and a vortex forms. Hence Taneda's value of 2.5, which is just 
above 2.3 of the present work, confirm the linear substructure theory. 

Figures 2C and 2D give respectively the stagnation pressures in front and 
in the rear of a circular cylinder for a first iteration. The qualitative behavior 

of these curves is again the same as found by Grove et al. [47], Thom [66], and 
Homan [80,81]. The pressures behave asymptotically and tend to a constant 
value with increasing Re in the range investigated. This is one of the main ob- 

servations of Grove et al. They [47] state: 'First, that the rear pressure 
quickly reaches a limit of approximately -0.45 as the Reynolds number is in- 
creased; and second, that this limit is attained, for all practical purposes, at 

a Reynolds number as low as 25."" From Fig. 2D it can be seen that the pres- 
sure becomes essentially constant from Re = 4, i.e., Re = 8 onwards. Thus 
there is complete qualitative agreement. Figures 3E, 3F, 4E, 4F, etc. give the 
distribution of total pressure, ideal pressure, first iteration pressure, second 

iteration pressure, and their harmonic components on the surface of the cylin- 

der for different values of Re. The total pressure, as stated earlier, is given 
as the sum of the ideal pressure, the first iteration pressure, and the second 

iteration pressure. Figure 2E shows how the amplitudes of the harmonic com- 

ponents of the first iteration pressure varies with Reynolds number. It can be 

seen that the amplitude PRET1,,,, is at first very large, then decreases rapidly 
in a narrow range of the Reynolds number, and thereafter behaves asymptotically 

with increasing Re, tending to a constant value. The other two components, viz., 
the constant PREC1 and the amplitude PREP1,,;,, also behave asymptotically with 

increasing Re, but they do not attain very high values like PRET1,,,, for small 
Re. This then means that, for small Re, the harmonic PRET1 in cos 6 dominates 
so that the total first iteration pressure PRES1 and hence the total pressure 

PRESS behaves essentially as this harmonic. On the other hand, for high Re, the 

harmonic PREP1 in cos 2¢ and the constant PREC1 make significant contributions 
to the pressure PRES1, and hence to the total pressure PRESS. The qualitative 

behavior in Figs. 3E, 3F, 4E, 4F, etc. is as observed in experiments. 

Figures 3D, 4D, etc. give an idea of the error involved in the assumption 
that B,(r,t) = 0 for n 2 3 for different values of Re. They show that ER1 
takes extreme values at the two boundaries. Further, the absolute magnitudes 
of these extreme values which are at first small increase with increasing Re. 

However, bearing in mind that these curves are plotted against S and that the 
actual distance is given by r = ee°s-!, we see that in most of the flow field the 
absolute magnitude of ER1 remains very small compared to the absolute magni- 

tudes of these extreme values. The assumption seems to be justified, though 

these curves do give an indication that for larger values of Re one may have to 

introduce corrective measures for this error. 

In the present work we have not gone into an investigation of the time- 

dependent motion. Consequently, the literature available on this aspect of the 

flow field is not discussed. The experimental works of Grove et al. [47], 

Gerrard [85|, Roshko [86,87,88], Relf and Simmons [89], Tyler [90], Hollingdale 
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[26], and other authors are significant. Of particular importance is the work of 

Taneda [82]. When investigation is carried out for large values of Re, then the 
literature based on the boundary layer theory becomes significant. However, 

this latter literature cannot provide any understanding of the wake. The litera- 
ture based on free-streamline theories which display infinite wake and on 

theories which lead to finite wakes or no wakes at all, show attempts to give 

the solutions to the Euler equations a central place. Boundary layer theory 

definitely gives an important place to the potential solution. In the present 

scheme we have attempted to unify the picture by asserting the fundamental 

role of the potential flow as a base flow for actual flows under all conditions. 

CONCLUDING REMARKS 

The conclusions based on the general aspects of the theory and investiga- 

tion of the steady flow in the range 0 < Re < 20 are as follows: 

1. The potential flow solution does play a fundamental role inasmuch as it 
has lead us to results which are in good agreement with the experimental re- 

sults for Re < 4, and which shed light on the evolution of the vortex structure. 
Moreover, a theoretical value of the Reynolds number at which separation be- 

gins is obtained, in agreement with experiments. 

2. The results support the existence of a linear substructure underlying 
the Navier-Stokes equations in the present case. 

3. The time-independent subsidiary equations and their solutions for the 

first and second iterations show by induction that the coefficients of the sub- 
sidiary equations for all iterations will be analytic with infinite radius of con- 
vergence, leading to corresponding solutions which also have infinite radius of 

convergence (Refs. 1 and 2). 

4. The analytical solutions for the first two iterations contain implicitly 

all the information about the structure of vortices and the wake insofar as they 
give rise to the streamline field around the circular cylinder. 

3d. Nonsymmetric wakes and the evolution of vortices which are distin- 

guished by closed streamlines are the result of the same process of superposi- 

tion of the harmonics of the streamline field, and consequently one might view 
a vortex structure to be inherent in the flow field even at the smallest Reynolds 
numbers, although explicitly identifiable closed streamline structures may not be 

then manifest in the field. 

6. The discrepancy in the drag at higher Reynolds numbers is attributable 
to the fact that in these cases the boundary at which the flow is assumed to be- 
come potential is situated close to the cylinder to avoid numerical breakdown of 

the computations. And to maintain this situation there, a highly rotational flow 
is required to be constrained within a smaller domain than is physically 
admissible. 
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7. The numerical calculations have served a twofold purpose; (a) to test 

the theory, and (b) to give information that corresponds to observations but 
extends significantly beyond available observed information and which bears 
on the details concerning the evolution of flow fields with Reynolds number. 

8. The Symmetry Theorem is supported by the experimental evidence, It 
predicts the asymptotic behavior which was looked for and found independently 

by Grove et al., through experiments. 

9. The results support the validity and the use of the idea of a physically 

infinite distance. 

10. The presence and the behavior of a subdomain in which the viscous 
effects are very significant is demonstrated by the results. 
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DISCUSSION 

Dr. I. M. Schmiechen 
Versuchsanstalt ftir Schiffbau 

Hamburg, Germany 

The approach of Prof. Lieber will undoubtedly be of great importance in the 

theory of viscous flows, and I congratulate him on the numerical results he has 

obtained sofar. Actually, I tried to follow the same line on a smaller scale 
years ago. Coming from the thermodynamics of irreversible processes, I was 
wondering whether the principle of minimum entropy production might have any 

bearing in hydrodynamics. At that time I was involved in basic research on vor- 

tex streets in connection with the general theory of propulsion. The stability 

problem appeared to be most fundamental and at the same time most tractable. 
In fact, I derived a criterion of minimum instability for Karman vortex streets, 
which is in better agreement with experiments than those derived in the cus- 

tomary fashion. 
* * * 

DISCUSSION 

Dr. K. Wieghardt 

Institut fiir Schiffbau der Universitat Hamburg 
Hamburg, Germany 

A variational principle equivalent to the Navier-Stokes equations can be 

formulated when Lagrange's coordinates are used. Yet, the principle of mini- 

mum dissipation expressed in Eulerian coordinates corresponds to the Navier- 

Stokes equations only in some restricted cases. Why should it be correct in 

general ? 
* * * 

REPLY TO DISCUSSION 

Paul Lieber 

I will first respond to Dr. M. Schmiechen's written discussion and refer to 

the materials presented therein in subsequently responding to the written com- 
ments of Professor K. Wieghardt. A self-contained bibliography is attached to 
facilitate the examination of the references cited in my response to the comments 
of the two discussants, 
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COMMENTS ON THE DISCUSSION OF DR. SCHMIECHEN 

Dr. M. Schmiechen's encouraging written comments are very much appreci- 
ated, as they are evidently motivated by an exceptional insight into the nature of 

our work, which is concerned with the foundations of the theory of viscous flows, 
and by a grasp of its significance in producing an algorithm for constructing 

analytical representations of flow fields using the complete Navier-Stokes equa- 

tions and realistic boundary conditions. We are especially grateful to Dr. 
Schmiechen, as his comments are somewhat characteristic of the encouraging 

response to this work which some colleagues kindly communicated to me in per- 
son during the symposium. Accordingly, the present reply affords the oppor- 

tunity to also express here in writing my thanks to Professor R. Timman, Pro- 

fessor E. Laitone, Dr. H. H. Chen, and Dr. N. Francev in this regard. 

Dr. Schmiechen's insight into our work no doubt stems partially from his 

researches concerned with the hydrodynamical implications of the thermody- 
namics of irreversible processes, and in particular with the principle of mini- 

mum entropy production, which he cites in his comments and from which he 

derives a very interesting criterion of minimum instability pertaining to the 
development of the Karman vortex street. The reported criterion of minimum 
instability appears highly significant in the context of our study, as it evidently 

bears a correspondence to and may be a particular aspect of a general stability 
principle which has emerged from our work. This stability principle and the 

conceptual background which lead to its identification are discussed in some de- 
tail in the paper appearing in the present studies with the title "Aspects of the 

Principle of Maximum Uniformity: a New and Fundamental Principle of 

Mechanics." 

The theoretical basis of the materials presented in the six papers included 
in the present studies were originally and conceptionally motivated by informa- 

tion we obtained by using Carl Gauss's [1] and Heinrich Hertz's [2] formulations 
of the principle of classical mechanics, and by introducing and underlining 

therein the concept force which they, in fact, endeavored to completely eliminate 

in their formulations by formal representations of geometrical constraints. 

This information which was obtained as a theorem on the distribution of in- 
ternal forces for a hydrodynamically significant class of mechanical systems 

[3], and which was then generalized by hypothesis to be an aspect of all mechani- 
cal systems, was the theoretical basis for introducing the principle of minimum 
dissipation as a general restriction on realizable flow fields in nature [4|. This 
restriction was thus originally introduced in hydrodynamical theory with the 
understanding that it augments and compliments the restrictions imposed by the 
Navier-Stokes equations which were then and are still understood in our work to 

admit a larger class of flows than the class of realizable flows. However, when 
we originally introduced the principle of minimum dissipation in 1957 as a gen- 
eral condition on realizable flows, we did not realize, as we do now, that the 
Navier-Stokes equations do not in principle afford a criterion by which realiz- 

able flows are selected in nature from a larger class of admissible flows which 
also satisfy the physical principle expressed by the Navier-Stokes equations, 
but which do not in general satisfy a condition of realizability. 
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Although the theorem on the distribution of internal forces mentioned above 
was first established in 1953 and subsequently presented on numerous occasions 
in lectures, it was published in 1963 [3], and then, with modifications, in the 1968 
issue of the Israel Journal of Science and Technology, with the title ''A Principle 

of Maximum Uniformity Obtained as a Theorem of the Distribution of Internal 

Forces.'' The principle of minimum dissipation was conceived as a general re- 

striction on the class of realizable flows, by identifying a relation between in- 
ternal forces produced by binary collisions and a dissipation process according 

to which the energy dissipation was found to be proportional to these forces when 
the collisions are oblique. Consequently, for the class of oblique collisions that 

are responsible for dissipation in gas flows, we found that the principle of mini- 

mum dissipation may be used to give an approximate and indirect representation 
to the information obtained from the theorem on the distribution of internal 
forces cited above. The dissipation mechanism used for this purpose is pre- 

sented in Ref. 5 and is further discussed and used in Ref. 6. 

As previously noted, the principle of minimum dissipation was originally 

conjectured as a principle of realization from information we obtained by ap- 

propriately using the Gauss-Hertz principles of mechanics, and by interpreting 

this information as a particular and limited aspect of a general natural law, 
called here the principle of maximum uniformity. This principle evidently in- 
cludes the established laws of classical mechanics, as well as a realization 
principle which is tantamount to a stability law. The evolutionary and historical 

content of the information expressed by this principle of realization is absent in 

the known laws of classical mechanics, and as far as I can see it is, in fact, not 
included in any of the known propositions of physical theory as they are written 

today. The principle of minimum dissipation is, in general, not implied by the 

Navier-Stokes equations and can be deduced from them only for a highly re- 

stricted class of viscous flows which are in fact endowed with unique solutions, 
because of the linearity of the Navier-Stokes equations by which they are condi- 

tioned and uniquely determined. Due to the linearity of the Navier-Stokes equa- 

tions governing this restricted class of flows and the consequent uniqueness of 

their solutions, a principle of realization that would in general select a realiz- 

able member among multiple admissible solutions to the Navier-Stokes equa- 

tions is redundant. For this very restricted class of flows the principle of 
realization, which is the principle of minimum dissipation in the present dis- 

cussion, and the laws of mechanics as expressed by the Navier-Stokes equations, 
are equivalent. 

Stability criteria which are based on various definitions of stability are es- 
sentially motivated by a search for realization criteria that augment and com- 
plement the conditions of force equilibrium expressed by the principles of 
mechanics. The laws of classical mechanics concern a particular aspect of 

uniformity characterized and defined by the equilibrium of forces. They ac- 
cordingly express and assert the proposition that this aspect of uniformity, as 

characterized by the equilibrium of forces, is maintained for each and every 

body in nature everywhere and always. The notion of force equilibrium to 

which these laws refer is instantaneously associated with the states of the bodies 
governed by the laws of mechanics, as are all the other parameters by which the 

mechanical system is described in the statement of these laws. 
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We thus see that the information content of the classical laws of mechanics 
can be noted in two steps: the first consists of the definition of force equilibrium 

that characterizes a particular aspect of uniformity, and the second consists of a 

proposition that is based on the previous definition and which asserts that equi- 

librium so defined is a condition which is constantly and instantaneously main- 

tained everywhere in the domain of classical mechanics, Neither in the defini- 

tion nor in the proposition does the notion of perturbation appear, since all 
parameters and statements pertaining thereto are brought into correspondence 
with the instantaneous configuration of a mechanical system. In man's endeavor 
to grapple with the notion of stability, elucidate its nature, and grasp the phe- 

nomenon of stability as an aspect of nature, he has endeavored to comprehend it 
by couching it in definitions. This has produced in the literature many defini- 
tions of stability, each of which produces different stability criteria. All of these, 
however, seem to share the notion of a perturbation in terms of which various 
definitions of stability are formulated. Many of these endeavors inquire into the 
stability of a mechanical system by subjecting such a system to a perturbation 
and investigating the subsequent changes the system follows with the passing of 

time. 

The principle of maximum uniformity identifies the stability of a particular 

member of a mechanical system with its instantaneous state, and correspond- 
ingly the global stability of a mechanical system with its instantaneous global 
state. As in the case of the propositions of classical mechanics, which are ex- 
pressed in terms of force equilibrium and which assert that this aspect of uni- 

formity is instantaneously and everywhere constantly maintained in classical 
mechanical systems, so correspondingly according to the principle of maximum 
uniformity all realizable states are instantaneously maximum-stable under the 

instantaneously prevailing forces and the constraints to which the system is in- 

stantaneously subjected. By this concept of stability there does not exist an 

instantaneously realizable unstable state, and this concept, like the concept of 
force equilibrium, does not appeal to the notion of a perturbation. I accordingly 
believe that Dr. Schmiechen's minimum stability criterion which he derived for 
the Karman vortex street may be an aspect of the stability principle cited here, 

and according to which all realizable flows are instantaneously maximum-stable. 

When the principle of minimum dissipation was conceived and originally 
formulated in hydrodynamical terms as an approximate but reasonable repre- 
sentation of the restriction on realizable flows implied by the original and re- 

stricted version of the principle of maximum uniformity, we were cognizant of 
existing thermodynamical theories of weakly irreversible processes and of the 

principle of minimum entropy production. We were, however, interested in work- 

ing within the framework of the description, parameters, and functions that are 
characteristic of classical hydrodynamics, and therefore were interested in 
formulating restrictions on realizable flows in terms of these, such as, for ex- 
ample, the dissipation function. Furthermore, by so doing we do not necessarily 
restrict the conditions of realization of actual flows which were introduced to 
augment the Navier-Stokes equations, to weakly reversible processes. In this” 

regard it is interesting to note that Prigogine, who, I believe, established the 
principle of minimum entropy production as a theorem in 1947 for highly re- 
stricted conditions, has only recently considered and used the principle of 
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of minimum dissipation as a restriction on a development of viscous flows. As 

noted, we recognized from the beginning however that the principle of minimum 
dissipation does not give full expression in hydrodynamical terms even to the 

restricted version of the principle of maximum uniformity as presented in Ref. 
3. For this reason we formulated in 1957 in hydrodynamical terms [7] a more 
comprehensive statement of the principle of maximum uniformity which in fact 
rendered the principle of minimum dissipation as a theorem for a more re- 

stricted class of viscous flows. In both of these formulations the integrands 
are expressed in terms of quantities which have the physical dimension of 

energy. 

The extended version of the principle of maximum uniformity as discussed 

in the paper appearing in the present studies with the title ''Aspects of the Prin- 

ciple of the Maximum Uniformity: a New and Fundamental Principle of Me- 
chanics," gives increasing emphasis to the idea that the most fundamental as- 

pects of nonuniformity in nature are directly manifested by forces rather than 
by energy. This subsequent theoretical development and an indeterminancy in- 

curred in the application of the hydrodynamical variational principle presented 

in [7] accounts, in part, for the procedure which led to the algorithm presented 
in these studies for constructing analytical representations of viscous flows by 
using the complete Navier-Stokes equations — a procedure which gives tacit ex- 

pression to the principle of maximum uniformity, i.e., without explicitly refer- 
ring to a global force measure of nonuniformity. For the above reasons we have 
tried to formulate the extended version of the principle of maximum uniformity 

in mathematical terms for Newtonian fluids by constructing an appropriate 
global force measure. Concurrently, we have also endeavored to carry out the 

same program in developing a kinetic theory of gases with internal degrees of 

freedom in which the principle of maximum uniformity is formulated as a con- 
dition of realization of actual states. We have in both cases achieved some suc- 
cess. In the hydrodynamical case, we have formulated new hydrodynamical 
principles which may be effectively used for the numerical calculation of steady, 

inviscid, stratified flow fields. This is noted in the paper of the present studies 

entitled ''Comparative Studies of Hydrodynamical Principles, Based on the Prin- 

ciple of Maximum Uniformity." These formulations are being extended, but with 
difficulty, to include viscous forces and time-dependent forces as well. We are 
doing this in two steps. First, the inclusion of time-dependent forces without 

viscous forces. This we have been able to carry out for a significant class of 
inviscid time-dependent flow fields by using a global force in the statement of 
the appropriate variational principles. We have considerable difficulty, how- 

ever, in carrying out the second step, which will include viscous as well as 
time-dependent forces in the force functional of the variational principle which 

expresses hydrodynamically the condition of realization of actual flow fields as 

invoked by the principle of maximum uniformity. 

Concerning the embodiment of the principle of maximum uniformity in a 
kinetic theory of gases and its application to specific situations, we have al- 
ready obtained some encouraging results. In so doing, we find linear substruc- 
tures underlying solutions to the nonlinear equations obtained from the applica- 

tion of the principle to the kinetic theory gases, that are analogous to the linear 

substructure of the complete Navier-Stokes equations on which the algorithm 
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used in the present volume to construct analytical representations of viscous 

incompressible flows is based. 

In concluding my response to Dr. Schmiechen's obviously inspiring dis- 
cussion, it is relevant to present here the conjecture that the question of sta- 

tistical stability versus the stability of individual flows as noted by Professor 
R. Kraichnan may possibly be resolved, if we understand averaging to be an 
aspect of uniformity and therefore to offer implicitly a condition of realization 
for actual fields. This, in principle, is not included in the Navier-Stokes equa- 

tions for the reasons given above, and which are given more extensively in 

some of the papers we present in these studies. It is also relevant to draw 
attention here to the possibility that the dramatic reduction of the friction co- 
efficient obtained by the addition of minute quantities of certain polymers to 

turbulent flow may also be an aspect of the principle of maximum uniformity. 
We are trying to pinpoint the connection between them, with the guiding hy- 
pothesis that the polymer material physically produces sites of high nonuni- 
formity in the viscous flow fields, and therefore as a consequence of the prin- 

ciple of maximum uniformity both assume the role of control centers that 

dominate the evolution of actual flow fields. 

COMMENTS ON THE DISCUSSION OF DR. WIEGHARDT 

First, in Ref. 8, we presented in 1957 a formulation of a hydrodynamical 

variational principle that gives the complete Navier-Stokes equations as the 

Euler-Lagrange condition expressed in terms of the Eulerian description of 

flows. As noted in the paper in the present studies entitled ''Comparative 
Study of Hydrodynamical Variational Principles, Based on the Principle of 
Maximum Uniformity," this hydrodynamical variational principle has been suc- 
cessively applied by us and subsequently by others for the purpose for which it 

was invented. 

I believe that an adequate response to the important question Dr. Wieghardt 
raises concerning the range of validity of the principle of minimum dissipation 

is contained in my response to Dr. Schmiechen's discussion and in the materials 
included in the six papers we present in these studies. It was this question 

which in part motivated my extended response to Dr. Schmiechen's remarks. 

CONCLUDING REMARK 

In responding above to the comments of Dr. Schmiechen and Dr. K. Wie- 
ghardt, a fundamental distinction is made between flow fields allowed by certain 

established laws of physics and flow fields that are realized. This distinction 
is grounded in the observation that the laws of classical mechanics are essen- 

tially devoid of evolutionary content and information and that a principle of 

realization is a principle of evolution, i.e., evolution is the process of 
realization. 
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I¥V—Comparative Study of 

Hydrodynamical Variational Principles, 

Based on the Principle of 

Maximum Uniformity 

Paul Lieber 

University of California 
Berkeley, California 

In this paper I endeavor to communicate the salient features and results of 

a study originating in 1953, which has since then been committed to the concep- 
tion and application of variational principles to flow fields conditioned by the 

complete Navier-Stokes equations. 

At the beginning of this search, we formulated two distinct types of varia- 
tional principles which were motivated by essentially different considerations 
and objectives. In one case we sought to formulate a statement as a variational 
principle which renders, according to a prescribed procedure for performing 

the variations, the complete Navier-Stokes equations, as its Euler-Lagrange 

differential equations. In so doing, the variational methods of Rayleigh-Ritz, 

Galerkin, and related methods, may be used to obtain approximate but neverthe- 
less useful analytical representations of viscous flow fields, in a manner which 
is analogous to the application of these variational methods in the mechanics of 

solids, where the variational principles to which they are applied have already 
been known for some time. Such a variational principle was formulated and ef- 
fectively applied by Lieber and Wan, and is presented in the Proceedings of the 

IX International Congress of Theoretical and Applied Mechanics, published in 
Brussels, Belgium, in 1957[1]. Since then, it has been successfully applied by 
Wan and others (Prigogine and Shecter), with small modifications, to obtain use- 
ful approximate mathematical representations of viscous flow fields produced 

in nature. These successful applications of this variational principle attest to 

its power and practical value, 

At this point, it is convenient and important to draw attention to the funda- 

mental distinction that must be made between a variational principle and a 
variational method, a distinction which evidently is not understood even by indi- 
viduals who write comprehensive papers on the search for variational princi- 

ples [2].* A variational principle is a proposition that refers to and conditions 

*Ref. (2) overlooks this distinction by not grasping the outstanding contribution 

of M.A. Biot. 
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natural phenomena — it is a statement of a natural law. A variational method is 

a mathematical scheme for deriving the analytical consequences from a state- 
ment that expresses the stationary quality of a certain functional, and in particu- 

lar of a variational principle which is so formulated. In the case noted above, 

the information content of the variational principle which we formulated is es- 

sentially equivalent to that of the Navier-Stokes equations, which are its Euler- 

Lagrange equations. The Navier-Stokes equations express the proposition that 

all forces acting on each and every element of the materials in nature which are 
adequately modeled by a Newtonian fluid, are constantly in equilibrium, i.e., 
everywhere and for all time. The statement which formally defines a Newtonian 

fluid expresses a connection between force geometry and time, and is of the 
nature of a force law which is however restricted to, and thus identifies, cer- 
tain macromechanical features of a class of natural materials. The known laws 

of mechanics which are statements of the equilibrium of forces, are not laws of 
force, but are instead propositions asserting certain necessary and constant 

connections that are maintained between all forces acting on any and every com- 

ponent of a classical mechanical system. 

The particular simple connection between forces, by which mechanical 

equilibrium is defined, is a particular aspect of uniformity which according to 
the laws of classical mechanics is constantly maintained everywhere in space 

and always in time, for all material bodies. The fact that the known laws of 
mechanics do not determine the so-called motivating forces which are included 

in their formulation and which express a connection between them and the mo- 
tion of material bodies, is made abundantly clear when we consider a substance 
continuously extended in space as a model for depicting the macromechanical 
characteristics of systems consisting of a very large number of discrete bodies. 
In so doing, we obtain, by applying the laws of mechanics, a set of three scalar 
equations which conditions the three components of acceleration, and the space 

derivatives of nine components of the stress tensor of each element of the ma- 

terial continuum. The resultant force externally applied to a characteristic 
element of such a material continuum depends on the stress tensor by which it 
is externally joined to the universe in which it is situated. By applying the laws 

of classical mechanics to such a model, we obtain a set of three scalar differen- 
tial equations which relate the three components of acceleration of a character- 

istic element of the material, to the partial coordinate derivatives of the nine 
components of stress, which designate the resultant force by which such a char- 

acteristic element of the continuously extended material is externally joined to 
the universe. From a strictly mathematical viewpoint it is obvious that the nine 

components of stress in terms of which these forces are formally written are 
in principle not determined by the principles of mechanics. Indeed, from a 
mathematical point of view these stresses are highly undetermined , even if we 
ascribe very strong properties of continuity and differentiability to the material 

substratum. It is for this reason that it has been necessary to specify constitu- 
tive relations between stress, geometry, and time in order to obtain an equiva- 
lence between the number of relations and the number of parameters used to 

describe the mechanical features of the system. 

The constitutive relations are tantamount to restricted force laws by which 
the macromechanical properties of particular classes of materials are charac- 

terized. Augmenting the laws of classical mechanics by general and/or restricted 
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force laws is necessary to obtain a physical theory which is determinate even in 

the strictly mathematical sense. We know from experience, of course, that actual 

materials cannot in general be mechanically characterized by a fixed constitutive 

relation that remains constantly appropriate for all physical environments of the 

material. It is therefore significant to recognize that in general the restricted 

force laws used to depict appropriately the macromechanical properties of actual 

materials, may change significantly as their physical environment changes. We 

are therefore given to consider the concept of the evolution of force fields, i.e., 

the idea that different kinds of force fields individually depicted by particular 

constitutive relations, may evolve as the environment of the material changes. 

We have familiar examples of marked changes in the macromechanical proper- 

ties of solids when they yield plastically, and of fluids when turbulence develops 

in them. 

The second type of variational principle which Wan and Lieber formulated 

in 1956 was motivated by an attempt to express and formulate in terms of the 

parameters of classical hydrodynamics, explicit and general information on the 

global distribution of internal forces in a many-body classical mechanical sys- 

tem, which Lieber obtained by using Gauss's and Hertz's formulation of the 
principles of mechanics. This was done with a fundamental modification, which 

reintroduces and underlines in their formulations the irreducible fundamental 

nature of force and its nonreducibility to purely abstract geometry [3]. 

It was the emergence of this fundamental theorem on the distribution of in- 

ternal forces within the edifice of Gaussian-Hertzian mechanics, and the reali- 
zation that this information is not rendered explicit without integration, by 
Newtonian mechanics, that led to the concept "Categories of Information" and to 
the realization that the various categories of information which were identified 

are aspects of nature that assume a fundamental role in scientific inquiry and 

in the development of mathematics [4]. Accordingly, it was realized that ques- 
tions concerning the equivalence between various formulations of natural laws 
which pertain to a particular domain of experience and experimentation cannot 

be meaningfully considered and resolved without taking cognizance of the vari- 

ous categories of information which were identified. 

These considerations become particularly relevant when there emerged in 

our work the question of augmenting the Navier Stokes equations by formal 
statements of the condition on flow fields purported to comply with the restric- 

tions implied by the Navier-Stokes equations. More specifically, questions con- 

cerning consistency and redundancy arise, when we introduce statements of in- 

formation augmenting the Navier-Stokes equations, as in the case when we 
formulate variational principles that indirectly express the global information 
on the distribution of internal forces which we have obtained as a theorem by 

using Gauss's and Hertz's formulation of the principles of classical mechanics. 
The question concerning the equivalence of the various known formulations of 
the principles of mechanics is particularly relevant at this point, because the 
Navier-Stokes equations are based on Newtonian mechanics, from which general 
information concerning the distribution of internal forces evidently cannot be 

derived in the category of explicit information. 
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The concept ''Categories of Information" and the identification of the various 

categories give us insight into the nature of applied mathematics and have pro- 
duced the realization that applied mathematics is an art that uses the various 

categories of information contrapuntally - where, for example, the same infor- 

mation prescribed in more than one category of information does not in fact 

constitute a redundancy, but is instead a viable instrument for further render- 
ing explicit information otherwise restricted to the category of implicit infor- 

mation. Specifically, introducing a simplifying assumption which, for example, 
is appropriate to and correctly reports a fact about a particular aspect of fluid 

flows, e.g., in the case of boundary layer theory, is tantamount to specifying 
information in the category of explicit information, which the Navier-Stokes 

equations purportedly already include in the category of implicit information. 

As is well known, this procedure is neither redundant nor sterile. It is, in fact, 
the very crux of applied mathematics and the only viable instrument which has 

so far rendered explicit, and thereby useful, information which the Navier- 
Stokes equations include in the category of implicit information. 

It is with this understanding that we originally formulated the principle of 

minimum dissipation for viscous flows as a proposition which augments without 
contradiction and/or redundancy the Navier-Stokes equations, and which in fact 
rendered new and fundamental information about viscous flows which had not 
been previously obtained by studies restricted to the Navier-Stokes equations 
themselves. It was in this way that we first recognized that there exists a 

linear substructure underlying the Navier-Stokes equations; that the prominence 

of actual flows that tend to be potential over the principle part of a flow field, is 

an aspect of the principle of minimum dissipation; that the principle of minimum 

dissipation may be an aspect of a general stability principle according to which 
a particular flow configuration among multiple configurations equally admitted 
by the Navier-Stokes equations and boundary conditions is selected, thereby 
suggesting a correspondence between hydrodynamic stability and minimum 

dissipation. 

This in turn suggested to us a connection between a generalization of the 
information first obtained as a theorem on the distribution of internal forces, 
and a new general and fundamental law of mechanics. This new law includes 
the propositions of classical mechanics as well as of a general stability princi- 

ple which, in fact, gives expression to the evolutionary aspects and historical 
thrust of the motivating forces in nature -- aspects of force which the known laws 
of classical mechanics do not express or include in any category of information. 

The realization that the principle of minimum dissipation gives only limited 

expression to the principle of maximum uniformity as it was originally con- 

ceived and formulated in terms of a positive, definite scalar measure of force, 
prompted us to give it a more complete hydrodynamical expression by formu- 

lating a new Hydrodynamical Variational Principle [6]. Although this varia- 
tional principle does in part achieve this objective, it is nevertheless formulated 
in terms of an integral of a function of gradients of energy, rather than directly, 

in terms of a positive, definite, scalar force representation and measure of 

nonuniformity. 
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Both the principle of minimum dissipation as we originally formulated it in 

Ref. 5 and the hydrodynamical variational principle we subsequently formulated 

in Ref. 6, produced some fundamental information and implications for hydro- 
dynamical fields. These were obtained by requiring that the restrictions these 

variational principles impose upon admissible flow fields be compatible with the 

restrictions imposed by the conservation laws, including, of course, the Navier- 
Stokes equations. It was in this way that we originally conceived the idea that 
actual hydrodynamical fields are subject to linear differential restrictions, 
which we now realize are not implied by the Navier-Stokes equations and which 

must be explicitly expressed by statements such as variational principles, or 

implicitly expressed by an analytical algorithm, which augment the Navier- 

Stokes equations. We refer to these linear differential restrictions as the linear 

substructure of actual hydrodynamical fields. Another result originally re- 

vealed by the application of the variational principles of Refs. 5 and 6, concerns 

necessary and evidently fundamental connections between spatial symmetry 

features of flow fields and their dependence upon time. The necessary connec- 
tion between the time-dependent features of hydrodynamical fields and the sym- 
metry properties of their space-dependent structures, was first revealed by the 

compatibility conditions obtained by formally requiring that the hydrodynamical 

variational principles cited above be compatible with the restrictions imposed 

by the Navier-Stokes equations. 

We then endeavored to construct analytical representations of actual flow 
fields by jointly applying the linear differential restrictions on flow fields im- 
plied by the variational principles, in conjunction with the nonlinear compatibility 

equation which insures the compatibility of these linear restrictions with the 

nonlinear restrictions implied by the Navier-Stokes equations. In so doing, we 

restricted our attention and objective to the class of fully developed steady-state 
flows, which are maintained by boundary conditions that are fixed intime. Thus, 
by construction, we removed from our consideration the historical development 

of these fields and of the boundary conditions by which they are maintained, an 

aspect which we have since discovered to be fundamental and evidently essential 
for the production in nature of space-time-dependent flow fields. This ad hoc 
restriction which we used in trying to obtain actual steady-state flow fields from 
the hydrodynamical variational principles noted in conjunction with the Navier- 

Stokes equations, may explain the fact that in every case we were left with an 

arbitrary coefficient not determined by the formal statement of the problem -- 

a statement which omits the historical development of steady-state flows, as 

well as the historical development of the boundary conditions which maintain 
them. If this explanation is valid, then the fact that we were consistently left 

with an undetermined coefficient when certain essential historical aspects were 

excluded by the formal statement of the problem, is then indeed a positive and 
possibly important result. This conclusion obtains, because if the space-time 

structure of steady-state flows depend in fact upon their historical development, 
then obtaining an analytical representation of them without giving representa- 

tion in the analysis to their historical development would be untenable. 

When we originally conceived and applied the hydrodynamical variational 

principles used to augment the Navier-Stokes equations, we interpreted the 

linear differential restrictions on the actual flow field implied by them as cor- 

responding to real linear restrictions which are understood to exist in actual 
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flows, and to which we refer as a linear substructure of flow fields. This idea, 
which led us to conjecture that all flow fields are essentially endowed with 

fundamental linear restrictions, was then reinforced by observing that in the 

class of potential flows, a linear substructure is preeminently distinguished by 
the fact that the velocity field is completely governed there, by a linear partial- 

differential equation. Moreover, this remains the case even though the force 
fields of potential flows remain conditioned in the absence of viscous forces, by 
nonlinear partial-differential equations. 

During 1961, Lieber worked with Shrikant Desai to resolve the indetermi- 
nacy in a coefficient appearing in the analytical representation of flow fields ob- 
tained from the linear restrictions implied by the hydrodynamical variational 
principles, used in conjunction with the complete Navier-Stokes equations. The 

difficulties incurred encouraged us to conceive and develop a mathematical al- 

gorithm which has been effectively used in the construction of analytical repre- 

sentations of flow fields, based on the complete Navier-Stokes equations and 
realistic boundary conditions. In so doing, Desai gives particular emphasis in 
his Ph.D. dissertation to the idea that potential flows are fundamental in the 

development of actual viscous flows, and he incorporated this important idea 

in the algorithm cited above, thereby putting it to very practical use. The algo- 

rithm consists of an iteration procedure consisting of an infinite sequence of 

iterations applied to the complete Navier-Stokes equations, the successive steps 

of which are joined by linear differential relations. These relations are evi- 

dently an aspect of the fundamental linear substructure of actual flow fields, 

discussed earlier in this paper. 

The application of this algorithm has produced analytical representations of 

steady flow fields around a circular cylinder for a range of Reynolds numbers 
extended from .015 to 20. These representations have been used to calculate 
flow fields which correspond to eighteen distinct values assigned to the Reynolds 
number. The calculations reveal, for the first time, fine detail and features of 
the structure of a real vortex formed behind a cylinder, and in particular that 
the outer boundary of such a vortex is like a membrane at which vorticity and 

dissipation are concentrated with relatively high intensity. These and other re- 
sults which are presented in detail in a joint paper with Desai have been com- 

pared with experiments and generally supported by them. 

When, however, we endeavor to construct analytical representations of time- 

dependent flow fields which naturally develop at higher Reynolds number, we find 

that it is evidently necessary in such cases to incorporate in the calculations, 
where the iteration procedure is actually applied, a model of the historical de- 
velopment of steady-state flows. Unless we do so, we cannot in principle pro- 

ceed to calculate by the application of our algorithm space-time flows. This 
again supports the ideas and conjectures set forth in another related paper, 

which hold that hydrodynamical fields in general display, and are in general de- 
termined by, physical aspects of a universal process of evolution that follows a 

new and fundamental law. 

Comparatively recently, Lieber formulated with L. Teuscher a new hydro- 
dynamical variational principle based on the principle of maximum uniformity 

that is specifically designed for application to the calculation of steady-stratified 
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flows under the simplifying assumption that viscous forces are negligible. In 

the application of the principle of maximum uniformity to stratified flows, the 
integral of the hydrodynamical variational principle is expressed in a positive, 

definite, scalar measure of all the prevailing forces. This places it in direct 

correspondence with the scalar force measure used in the statement of the 

fundamental principle of maximum uniformity. We find that generalizing this 

new hydrodynamical variational principle for application to time-dependent 

stratified flows, again necessarily brings under consideration the idea that 
time-dependent flows and therefore turbulent flows in particular are neces- 

sarily strongly conditioned by the process of their historical development. 

CONCLUDING REMARKS 

In this paper I have tried to demonstrate the crucial and unifying role of 
the principle of maximum uniformity in revealing certain new and fundamental 

features of hydrodynamical fields, such as (1) an underlying linear substruc- 

ture, (2) a hydrodynamical principle of minimum dissipation, (3) fundamental 
as well as necessary connections between spatial symmetry properties of actual 

flow fields and time-dependent motion, and (4) the concept and discovery that 

the space-time structures of hydrodynamical fields are in principle determined 

by their historical development, and furthermore that the evolutionary aspects 

of such fields are not in principle implied and therefore not mathematically de- 

termined by the Navier-Stokes equations. This puts in perspective the signifi- 

cance and role of various hydrodynamical variational principles which we have 

formulated in order to give at least partial representation to the principle of 

maximum uniformity in the context of classical hydrodynamics. 

The theoretical ground of the algorithm and the linear relations that connect 
successive steps of an interaction process by which it is defined, are evidently 
also contained in the principle of maximum uniformity, which does indeed ex- 
plain why potential flows are distinguished and fundamental in the development 

of viscous flows. The various formulations of hydrodynamical variational prin- 

ciples cited in this paper, with the exception of the first which was conceived 

with the object of rendering the Rayleigh-Ritz methods available to hydrody- 
namical theory, are particular and restricted aspects of the principle of maxi- 

mum uniformity, formulated in the context of hydrodynamical theory. The hy- 
drodynamical variational principle, by which we recently formulated the 

principle of maximum uniformity for stratified inviscid flows, bridges the two 

principle objectives which directed our original work concerned with the formu- 

lation of hydrodynamical variational principles. This new hydrodynamical vari- 

ational principle achieves in part the two objectives simultaneously, because it 
does afford a viable instrument for using effectively and economically the 
Rayleigh-Ritz and Galerkin methods, for calculating with good approximation 

steady-stratified flow fields, and because this variational principle is based on 

a functional which represents a positive, definite, scalar measure of all the forces 
acting in the field. We find that the generalization of this variational principle to 

include viscous forces will necessarily require that we consider the flows as 
time- as well as space-dependent, and the historical aspects of their development. 
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In conclusion, we draw attention to our work on hydrodynamical stability 
which originated in 1955, and in which the question concerning the stability of 
hydrodynamical fields jointly subjected to multiple- maintained gradients in the 
state parameters was originally posed and brought under theoretical examina- 

tion. Here also, the motivating concept for posing this question was the princi- 

ple of maximum uniformity, and the idea that the response of a hydrodynamical 
system jointly subjected to multiple gradients maintained in the state variables 
is in general determined by the principle of maximum uniformity. A paper in 
these studies written with L. Rintel, demonstrates the ideas by which we origi- 

nally attacked this problem from the standpoint of small-perturbation analysis. 
A direct connection between the principle of maximum uniformity and hydrody- 

namical stability is under examination in our work, and will take time to de- 

velop in a form suitable for presentation. 
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ABSTRACT 

Mathematical conditions are formulated for flows displaying symmetry 
and antisymmetry with respect to a plane. When homogeneous incom- 
pressible Newtonian fluids manifest such properties, the equations of 
motion restrict the distribution of the stresses, This report establishes 
that pressure is symmetrical in symmetrical flows. When the flow is 
antisymmetrical, the asymmetrical part of pressure is harmonic, Fur- 
thermore, each component of vorticity obeys the heat conduction equa- 
tion in antisymmetrical flows. Thus the vorticity transport equations 
reduce to linear equations in antisymmetric flows. More than ten exact 
solutions of Navier-Stokes equations satisfy these linear equations. 
Finally, such antisymmetrical flows can be represented as a superposi- 
tion of potential flow on a flow in which each component of velocity sat- 

isfies the heat conduction equation. 

INTRODUCTION 

Experiments on fluid flow often are designed so that the solid boundaries 
have properties of symmetry. The departure from symmetry occurring in these 

boundaries are reduced toa minimum. Yet the flow of fluids in a majority of 
cases does not enjoy the symmetry property. The wake of a circular cylinder 
placed symmetrically in a water channel or an air tunnel exhibits a Karman vor- 

tex street in a limited range of Reynolds numbers, and the flow in the wake is 
not symmetrical about the central plane of the channel or tunnel. When a water 
channel or air tunnel bifurcates into two, forming a Y-intersection, there is a 
regime where the flow takes place in one arm of the bifurcation. Here too the 
flow does not possess the symmetry of the boundaries. This lack of respect of 

fluid for symmetry is a striking and puzzling property. 
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Here we attempt to obtain some insight into the above problem by posing a 
slightly different question, viz., what are the general properties of symmetric 
and antisymmetric flows. The starting point of the present study is the formu- 

lation of conditions of symmetry and antisymmetry. Their application to the 

equations of motion immediately provides the information which was sought. 

This study was in part motivated by a result relating to the existence of 
necessary connections between the geometrical symmetry characteristics of a 

boundary and the production of time-dependent 
motion under time-independent boundary con- 

ee ditions [1]. This result was obtained as part 
of a comprehensive study concerned with the 

/ ye formulation and application of variational 
! MIRROR PLANE principles in the study of viscous flows [6,7, 
ony 8,9,10]. 

Fig. 1 - Velocity vectors Symmetry and Antisymmetry 
about a mirror plane 

Let Q and R in Fig. 1 be mirror images 

about a plane. Let the velocity vectors at Q 
and R be also mirror images of each other. Then the components of velocity 

parallel to the mirror plane must be equal and the components normal to the 

plane must be equal in magnitude, but opposite in direction. If the velocity vec- 

tors at any such image points about a mirror plane are images of each other, 

then the flow is here called symmetrical about the plane. If, on the other hand, 
the velocity vector at R is equal and opposite to the image of the velocity vector 

at Q, then such a situation would be an antithesis of the symmetrical flow. We 
may call a flow antisymmetrical if the velocity vector at the image point of any 

point is equal and opposite to the velocity vector at the point. 

Let us leave the optical analogy aside and start with analytical definitions. 
If a flow satisfies the conditions 

U,(%,)%_.%3,t) = uy (x,. — x,,%,,¢t) 

Uy (X11 %Q M3, b) = “uy xy, — X_,%3,€) (1) 

Ul, (XpoXs » Xoo FE) SUL CUy x XH, ED 

for all values of x,, x,, x,, and t, the flow is said to be symmetrical about 
the plane x, = 0. Here x,, x,, and x, are Cartesian coordinates, t is time, 
and u,, u,, and u, are components of velocity parallel to the x,, x,, and x, 

axes. If, on the other hand, the flow satisfies 

Wy Xp Ks Xan 6) Uy ow Kae hy RED 

Uy (X19 Xo %q_s t) = UL (X,,.— X»X,,t) (2) 

U3 (X11X_.X50t) = -u,(xX,, 7 %X,,xX,,t) , 
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it is said to be antisymmetrical about the plane x, = 0. 

It is easy to see (see the Appendix for illustration) with the help of the 

definition of partial derivatives that uy ¢; uy 43 4,33 U3,¢3 43,13 43,3) U2,23 

V2u,; and V2u,; are even functions of x, in the symmetrical flow and odd func- 
tions of x, in the antisymmetrical flow. Here, a comma followed by index 
1, 2,3, t means partial differentiation with respect to x,, x,, x3, or t. V?f 

denotes: 3; 24:f495-4> fy33.~ Thatjis, 

Uy ¢(%Xy, +X X3>t) SU EC es Xan 

if the flow is symmetrical, and 

uy, th eqs oi eae) “Uy ¢(*%17— XQ X3> Es 

if the flow is antisymmetrical. 

Similarly, u, ¢3; U2,13 U2,33 YU1,2) U3,23 and Vu, are odd in the symmetri- 

cal flow and even in the antisymmetrical flow. 

Now let us consider a homogenous incompressible Newtonian fluid. The 

flow obeys the equations 

Ui _¢ t UU | =P A hye, ° (3) 

and 

Us «= © « (4) 

Here P is the pressure divided by the density, and v the kinematic viscosity. 
The body forces are assumed to be absent. It is now convenient to define 

PCR ya Soo gn bare LP Ota Xa at) PCa han ©] 

and 

P8C% 15% yr %_rt) = [PCX go Xi X git) - P(x,, AX. Xs; vit,)] 

Hence, 

Pe CX tg akgt it Chas = Kye ean) (5) 

Poop eat) = =P8(X5) = X54 X55 8) 4 (6) 

and 

PS + Pa=p., (7) 
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Substituting Eq. (7) in Eq. (3), we obtain 

Ui der Upuy a= RE om Pas 4 vV2u, } (8) 

Consequences of Symmetry 

Let us now consider symmetrical flow. The even and odd terms in Eq. (8) 

are indicated by e and o: 

= s = a 2 : Wye P Wy Mey, oot Yate, git PA Pay Ug : 

e e e e e fe) e 

=——=Pps =) pa V2 Uy ¢ + UgUy y + UW, 4 + U3U, 4 Ee P + OVENS 

fey fe) fe} fe) oO e fe) 

= pis? + a V2 U,¢t UUs , + UU, 4 + U3U3 3 P*; jes Hiv VEU ss 

e e e e e fe) e 

Uij4+ Uy,2+ Uz,3 = 9 

e e e 

Since even and odd parts must vanish individually, we get 

Ug tT Wpug = Pet vV2u, (9) 

P4,.=..0 (10) 

Wen =) Oe (11) 

Since P* does not vary with x,, 

PAG) Xs yt) = P8(xy, — Xy,%y,t) - 

Hence, by virtue of Eq. (6), P? vanishes everywhere. In other words, 

Pik, ps ys C= PCR, 5 XQ0%,,t) 

Thus, pressure must be symmetrical in a symmetrical flow. 

Consequences of Antisymmetry 

Now let us consider antisymmetric flow. The even and odd terms are indi- 

cated below by e and o respectively: 
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and 

Let Wi 

from Eq. (12), 

Thus, 

Cj jkUk, j be vorticity. 

Studies on the Motion of Viscous Flows--V 

-~ PA + yV4u c Cc + Cc c + c c Ul _ps Poi est, hehe o Bales A 1? 

e e e e fo) fo) 

= =ps a a 2 UZUy 4 + UyU5 orf UQUS 4/= ES Peg PP Melinds 

fe) ° fe) fe) e e 

Sy US = a 2 uju3 4 + U,U3 9 + U3U3 3 = ae P*, + VV us 3 

e e e e fe) fey 

Un ot U3 5= 0 

fe) fe) 

= pa 2 Ui t i + vV*u; 

Seep 2 
be ee Bae 3 

Use 10 

fs 2 
Wietes  OWE 

(12) 

(13) 

(14) 

Then, 

(15) 

Each component of vorticity obeys the heat conduction equation in an anti- 
symmetrical flow. (A similar argument was previously given by Lieber and 

Wan in Ref. 1.) 

Also from Eq. (13), we have 

Ci KUG MK = Ci jKUjekemUm,e 

Ss (1/2 u.u;): + P jo 

(P84 1/2a,u.)) 
i 
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Let HS = PSx+1/2(uj,u7). 7Then 

C550; Mie = Hop (16) 

It follows that 

H®,u; = H8,w, = 0. (17) 

That is, the symmetrical part of the total head (HS) does not vary along a stream- 
line or a vorticity line. HS is as a result constant in the surface of the stream- 

line and the vorticity line. Further, from Eq. (16), we have 

He = (0) 
Crm} “nj Mk) an ~ ©i mn, nm 

That is, 

(UpW in) om x CunWe) am = 0. 

= UAW py = Oa (18) 
Wit ¢ | m 

This means that the increase of the velocity vector u, along a vorticity 

line is equal to the increase of the vorticity vector w, along a streamline. 

Examples of Antisymmetric Flow 

The result wherein each component of vorticity obeys a heat conduction 

equation is severe. This leads us to believe that the hypothesis of antisym- 

metry is severe. A question naturally arises whether there are any flows 

which satisfy the hypothesis. The following two examples show that there are 

indeed flows where the conditions given by Eqs. (2) are met. 

Rectilinear Flows -- In rectilinear flows, all particles move in parallel 
straight lines. Let the common direction of motion be chosen as the x, axis. 
Then 

2 

Continuity requires that 

Thus, u, is independent of x,. Consequently, 2 

Uj(X4,X%9,X3,t) = ug(X,, —X,,%3,t) . 

Since u, and u, are identically zero, Eqs. (2) are satisfied. 
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Plane Axisymmetric Flows without Radial Velocity —In such flows, u, = 
-qXy) U2 = qx,, uz = 0; where q =q(r,x3,t), and r? = x, + x. Such flows 
clearly satisfy Eqs. (2). 

Let us list the known exact solutions of the Navier-Stokes equations which 

belong to the above two families: 

Examples of Rectilinear Flows — 

1. Steady flow between parallel plates 

2. Steady flow in a circular pipe (more generally, of arbitrary section) 

3. Flow in Stokes' first problem 

4. Flow in Stokes' second problem 

5. Pipe flow starting from rest 

6. Flow between plates starting from rest. 

Plane Axisymmetric Flow — 

1. Rigid body rotation 

2. Steady flow between concentric cylinders 

3. Potential vortex 

4. Vortex of Hamel and Oseen [7] 

5. Vortex of Taylor [8] 

6. Vortex of Rouse and Hsu [9]. 

Since the above examples refer to plane motion, a doubt lingers as to 

whether any three-dimensional motion satisfying Eqs. (2) is dynamically possible. 
To remove this doubt, we give a three-dimensional solution. 

Flow through a Rotating Pipe — 

u, = -Ax,, u = Ax. -3 (1-5). 
R2 

where A, B, and R are constants, and r? = x, + x,?. If we put A equal to zero, 
the flow reduces to Poiseuille flow. If we take pressure P as 1/2 [A?(x,?+x)] - 

4(B/R*)vx,, and substitute in Eq. (3), we have 

Ue + UU, , + UQuU, , + uu, , = AX, (=A)iy 
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= 2 SS Ace, Piva + VV uy = Asx 

UD ¢ Uo gt Motion a: te UUs >= ~Ax,(A) 2 

a 2 => AA? P + vV uy A*x, 

ee UU, . + UU, , + UU, 3 = oO: 

4Bv 4Bv 
=P eV oee = - = ; 

and 

u ar abl + u =) 

Hence the above flow is dynamically possible. If we have a long pipe with rea- 
sonably smooth entrance conditions, the actual flow would approximate the 

above solution for low Reynolds numbers. 

We have additional information. From Thom's work, we know that vortices 
behind a cylinder have approximately elliptical streamlines, and consequently 

stream function is approximately symmetrical about one diameter [10]. If this 
diameter is chosen as the x, axis, 

W (Xp) Xoo X gant) = WX 954 Xq. Xr) - 

Since u, = -¥,, and u, =¥y,, u, is odd and u, is even in x,. Equation (2) is 
satisfied approximately. We can thus expect that the vorticity satisfies the heat 

conduction equation. This was observed by Thom [10]. Thus we have corre- 
lated two observed features of a separated flow. 

Integration of Equations of Motion for Antisymmetrical Flow 

Having convinced ourselves about the physical significance of the family of 
antisymmetrical flows, let us proceed to the task of integration of the equations 

of motion. From Eqs. (12) and (14), 

iit * Poig — VV uz; =P es (19) 

Hence the antisymmetric part of the pressure is harmonic. Let 

p= -fP? (ohe es (20) 

Then 

Ona, BeBe (21) 
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Also 

Ogg = AGP2 yg pdt = 0, (22) 

as P? is harmonic. Substituting Eq. (21) in Eq. (12), we obtain 

Up eS Oke FV VA0y 

or 

(uj-% 4) 4 = vV7u; . 

On account of Eq. (22), we have 

(i= "Oy yn VA Pa! (23) 

In other words, the flow can be decomposed into two parts. One part arises from 

a potential ¢. The other is such that each component obeys the heat conduction 
equation. We then conclude that any antisymmetric flow obeying the Navier- 

Stokes equations can be written as 

WSO ot Ue (24) 

where 

Paw = 0 | (25) 

and 

Dea, (26) 

and 

upelias (OV. (27) 

Equation (18) imposes an additional condition on ¢ and u’. Let 

Wi = CigRUK Gj - (28) 

Then 

wi= Wit Cig? a = Wi: (29) 

Substituting Eq. (28) in Eq. (18), we obtain 

Wal md en mo (ee ow, pa Ole (30) 

So the integration of the equations of motion amounts to finding a velocity field 
u; [1] and a potential ¢ satisfying the following conditions: 

p Pa = (0) 
(25) y it 
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ti a> 0 (27) 

uy = vV7u; , (26) 

and 

Wi Pam HN A) (Pe tO) Whim = 0 = (30) 

CONCLUSIONS 

1. When a flow is symmetrical about a plane, the pressure is also 

symmetrical. 

2. When a flow is antisymmetrical about a plane, the antisymmetrical 
part of the pressure is harmonic. Also, such a flow of homogeneous incom- 
pressible Newtonian fluid can be written as 

u; = Pi + U: & 

where 

PEt 0 

u; a 

uf, = vVPu! 

and 

’ Hi ‘ _ 

Wait? am? nom fa (Pt Ue) Wom = 0. 

3. Antisymmetrical solutions are available and are of physical interest. 

More than ten such solutions have been noted. There are steady and nonsteady, 
two-dimensional as well as three-dimensional flows in this category. Bound 

vortices behind a cylinder come close to enjoying this property. 
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APPENDIX 

THE DIFFERENTIABLE FUNCTIONS f AND g 

Let f(x, y,t) and g(x,y,t) be two differentiable functions such that 

f(y 5,0) =f x.-y, t) > Vand ye(xiy tyr =[2i((Sey Ayo) o (Al) 

We then obtain 

of f Avie Pe 

Recs Groh aah ehh a il ak 
oy Ay>0 y 

Px Ay, t)e= £(x,-Vvy) 

Ay>0 y 
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of 
—(x,y,t)= Lt 
Ox 

£96 HAY, t): =e REx aya) 

(-Ay) 

1h OS AVA Re NN IS 6 Go. a 2 2 

Ax 

f(x+Ax,ry,t) <-f(x,<y)t) 
=. Lt 

Ax70 Ax 

3 
= pees (Ry Ve Ces 

of t) of ( t) 
— (x,y, = =— (XtS yy 4 

ree ot Y. 

We also obtain, by similar reasoning, 

og og 
Se OR VEG Dh Se EX at : ay | y,t) ay yt) 

og og 
Si et SSS (Rae Os 
Ox oy 

og og 
Spe Ky Vk at a ae ee ee) 
ot 3 

Thus of/ox, of/ot and dog/oy are symmetric, whereas og/0x, og/ot, and of/dy 

are antisymmetric. 

Notice that fg is antisymmetric. 

(x,-y,t), then 

Also, if f + g vanishes at (x,y,t) and at 

P(x Voter  P(xayet hat) LC xeove tet (xe y. ts = Oe 

Hence f and g must vanish individually. 

We shall make use of these properties of symmetric and antisymmetric 

functions. 
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ABSTRACT* 

The critical conditions for the convective instability of a horizontal 
layer of fluid which has constant gradients of temperature and con- 
centration of a diffusive substance are derived. The parameter de- 
termining the stability is a sum of twodimensionless parameters of the 
form of Rayleigh numbers, one based on the quantities determining the 
molecular heat transfer across the layer, and the second based on those 
quantities determining the molecular transfer of the diffusive sub- 
stance. For liquids, a strong stabilizing or destabilizing action of the 
molecular diffusion results, which depends on the sign of the gradient 
of the salt concentration. When the gradient of salt concentration sta- 
bilizes, overstable oscillations are found to provide the mechanism of 
the stabilization. 

INTRODUCTION 

Convective vortices in fluids are associated with unstable equilibria of 

forces which act on and/or are produced by the motion of the fluid. It has been 
found that a class of convection-causing agents, characterized by transfer 

*This paper is based on a technical report issued under the same title by the 
Institute of Engineering Research, University of California, Berkeley, as Report 

Nonr 222(87), MD-63-6, in November 1963. 
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properties, interact in a simple way. The stability or instability of a fluid sub- 

jected to such forces, with respect to convective vortex perturbations, was 
found to depend on the value of an interaction number, defined as the sum of 
the parameters measuring the stabilizing or destabilizing action of the separate 
agents. As atypical example of such an interaction, the case of the stability of 

a nongravitating fluid confined between two cylinders rotating with different angu- 
lar velocities and maintained at different temperatures, was conjectured (Lieber, 
1957) and then initially treated analytically (Lieber, 1959). This treatment in 
which was originally projected the idea concerning the effect of simultaneously 

impressed gradients of macroscopic-state parameters on hydrodynamic stability, 
was restricted to a small gap between cylinders rotating with nearly equal ve- 

locity in the same direction. This result was extended in order to examine the 

effects of the gap as well as of angular velocities, differing both in magnitude 
and sign and reported in a doctoral dissertation (Rintel, 1961). The results of 
an approximate free-surface theory (Lieber and Rintel, 1965) for the case of 

counterrotating cylinders provided a basis for a unified presentation of the re- 
sults. In all of these cases the interaction number is the sum of the Taylor and 
Rayleigh numbers, and its critical value is found to be independent of the kine- 

matic parameters (Lieber and Rintel, 1962). These results are to be presented 
in a comprehensive paper accommodating some recent experimental results and 

in subsequent analytical investigations using the same ideas. 

The phenomenon examined in this paper belongs to the same class of phe- 

nomena and can therefore be considered as another model of this class. The 
two agents interacting in this case are the buoyancy forces, generated by the 
gradient of temperature and the gradient of concentration of the diffusive sub- 

stance. The simplicity of the present model facilitates a schematic representa- 

tion of the stabilizing or destabilizing action of the various agents. 

THE CRITICAL CONDITIONS 

The differential equations associated with the problem are those of Navier- 
Stokes, the continuity and molecular transfer of heat, and the diffusive substance: 

dv 2 1 
— + : d = vV - = d -k aE VY, grad) v Vv v are g 

diva = 05% 

dT ee 
———hrVves erad: [= k* VA. (1) dt 

de 
—+v--: gradc = Vic. 
dt 

In these v designates the velocity vector, 7 the pressure, p the density, g the 
gravitational constant, T the temperature, c the concentration of diffusive sub- 
stance, and », k’, and k” are respectively the coefficients of viscosity, molecular 
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transfer of heat, and diffusive substance. Equations (1) are interrelated by the 

equation of state, which for small variations in concentration and temperatures 

is: 

or 1 90 1 = py(ltasT+a"Sc) , a = —~—a"= — —- p= py(ita c) Oe ae Ts (2) 

The basic solution of Eqs. (1) is that of molecular transfer of heat and salinity 

across this layer of stationary fluid 

Z 

wee moze | paz, Lipa Leth ot Cia br Dee ya (3) 
0 

where the constants y' and y” andthe gradients £' and 4” are determined by 
the boundary conditions. By superimposing the basic solution in Eqs. (3) on 
small perturbations, we have from Eqs. (1) and (2) the linearized equations for 

the perturbations 

dv, 1 

(a) ae vV? Vv, - Preis lee eet on ca) 

div vy, = 0 

dT (4) 
1 = Dw i Qe 

(b) se eee 

de, 
Aix 72 u“ (c) eri are oer 

In Eqs. (4), in accordance with Boussinesq's equations (1904) as used by Ray- 
leigh (1916), the small quantities which arise from variations of density are 
neglected, with the exception of those which represent the buoyancy force. 

Taking the divergence of Eq. (4a) by use of Eq. (4b), we obtain 

1 a of 3c, 
— V ‘TT = es a! 2S qa” wees . 

Pp “1 8Z 3Z (5) 

Elimination of 7, from Eqs. (4) and (5) gives 
1 

rs) 

(= - vv?) View, 7 ale (a'T,+a"%c,), (6) 

where 

V2=2V?-— == +. 

695 



Lieber and Rintel 

For considering stability with respect to convective vortices, the standard 
form of the perturbations in dimensionless form is (Pellew and Southwell, 1940): 

wy = ert £(E,7) aL) 

Te Neer eG Ce ay Tan), 5 
(7) 

y Zz 
CPAC dot £ (2m) CCL) . Soe eee oe ee 1 e CE.) © (CL) € = = z 

where f is the solution of the membrane equation for the particular form of 
horizontal periodicity of the perturbations 

2 2 

CE aS acer 

CLF nea? 

AT is a characteristic temperature difference, AC is a characteristic differ- 

ence of concentration, and h is the depth of the fluid layer. The constant k 

arises from the separation of variables and depends on the particular geom- 
etry of periodicity of the perturbations. This geometry is not specified in the 

present investigation, so that the result is valid for hexagonal cellular vortices 
as well as for longitudinal rolls arising when a small shear is applied to the 
fluid. Equations (4) and (6) thenreduce to 

le - — cp?-K?) | cr = —— B'u* , 
hAT 

(8) 
G - = (D? - k?) (D?- &?) of |- k?g (a'AT » - a” CC*) 

a eS 

D.= 

Q Fr | 

By construction, the stability or instability of the basic solution of Eqs. (3) is 

determined by the sign of the real part of >. Thus the margin of instability 
will be characterized by the vanishing of the real part of o. Concerning the 
imaginary part, two possibilities are considered: (a) the marginal instability 

is characterized by the principle of exchange of stabilities, i.e., the imaginary 

part of o also vanishes for the state of transition; and (b) overstable oscilla- 

tions characterized by the nonvanishing imaginary part of o are relevant to 
the instability. By using a method developed by Chandrasekhar (1963), Mr. H. 
Weinberger (1962) has shown that in the case considered here overstability 

can be the first kind of instability to evolve. However, experiments performed 
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by Goroff (1960) have shown that overstable oscillations do not result in sig- 

nificant changes of heat transfer (and thus presumably no significant changes 

in the transfer of diffusive substance). He also found that for the critical value 

of the characteristic parameter predicted by the use of the principle of ex- 

change of stabilities, there evolves convective motion, which is superimposed 
on the overstable oscillations. Since this convective motion is accompanied by 

transfer properties and is therefore of more interest, in terms of Goroff's ob- 
servation we simplify the analysis by using the principle of exchange of sta- 
bility. Consequently, according to the present notation, and consistent with 
Eddington's motivation for introducing the notion, overstability is here con- 
sidered as a case of stability, although in the formal mathematical sense it is 
a case of instability. Subsequently we will show that the overstable oscillations 

indeed provide the stabilizing mechanism as a case of stability. The differen- 

tial equations for the state of transition to convective motion are 

h3 

(a) (D?=k2)0* = -k? 2 ca'ate* + a" AC- Cry , 
p2 

hv b D-k2 * = 1o* : (ob) ¢ )r amet (9) 

(ce) (D-k2yc*# = Brat 
k"AC 

Operating by (D? - k?) on Eq. (9a) after elimination of C* and +* by use of the 
remaining Eqs. (9), we obtain 

(D?2-k?)a* = k?Raw® , (10) 

where 

cua , oO htga’ Bt Resa Nar 9) Sascue eo 
ki v 

(11) 
me h*ea? B" 

: k"v 

is the generalized Rayleigh number. In terms of a virtual temperature gradient 

dé i! a 
dz * a’ ke p ; 

this Rayleigh number can be represented as 

h* ga! dé 

kop idz 

Rane (12) 

697 



Lieber and Rintel 

Since Eq. (10) differs from Rayleigh's equation determining the convective 
instability of a layer of fluid heated from below only by a virtual temperature 
gradient as defined by Eq. (12), critical conditions are (Pellew and Southwell, 

1940): 

I Two rigid boundaries Re 1708 

Upper boundary free from 
tangential stresses and Re 1100 (13) 

boundary rigid 

Ul 

Two free boundaries Ra ncs (698 

CONCLUSIONS 

The critical conditions of Eqs. (13) are valid both for gases and liquids; in 
the latter case the diffusive substance is dissolved salts. For this case, since 

a, < 0 and a, > 0, the following situations are possible: 

GeO. 87 0) Both gradients, that of the temperature and that 
of the concentration of the dissolved salts, are 

destabilizing. 

(b) 692205, 60 The temperature gradient destabilizes, while that 
of concentration of salts stabilizes. 

(ec) 78" <70;, (3° <0 The gradient of salt concentration destabilizes, 

while that of temperature stabilizes. 

(dp 6" = (0; 387 30 The basic solution of Eqs. (2) is stable with 
respect to convection. 

Moreover, the stabilization or destabilization of the gradients of concentra- 
tion of salts and temperature are respectively weighted by the reciprocals of 
k‘ and k”, Since for common salts the numerical value of k' is two orders of 

magnitude larger than that of k", in case (b) above a very small gradient of 
concentration of salts can stabilize a much larger adverse temperature gradi- 
ent and, vice versa in case (c) a very small decrease in salt concentration with 

depth can destabilize a fluid layer with density increasing with depth. This 
particular case has been considered in detail by Stern (1960). For case (b) 

the result can be interpreted as follows: 

Convection is a mechanism of heat transfer by means of vortices of finite 
dimensions. The heat into (from below) and out of (from above) the convective 

vortices is supplied by the molecular diffusion. In the case of gradients of tem- 
perature and concentration of salts, the convective vortex transfers salts and 

heat upward, as represented schematically in Fig. 1. 

In state 1 of the figure, salts and heat are diffusing into the vortex at 
point a and out of it at point b. The resulting buoyancy forces cause the 
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< ye \ | Z } STATE | rn / STATE.2 ~ 5 =a a —_ — 

Fig. 1 - Schematic representation of 
stabilization by the molecular diffu- 

sion of salts 

vortex to rotate and transfer the heat and salts upward. After completing the 
rotation to state 2, part of the heat and salts which diffused into point a in 
state 1 are transmitted upward, while new quantities of heat and salts diffuse 
into point 6. However, because of the much smaller numerical value of the 
coefficient of diffusion of salts as compared to that of diffusion of heat, an ex- 
cess of the quantity of salts as compared with the quantity of heat will be 
present at point a. For the same reason, the quantity of heat diffused in b will 

exceed the quantity of salts at the same point. Consequently, because of the 
buoyancy, a restoring momentum arises, turning the convective vortex in a di- 

rection opposite to that of its original rotation. In this way, the delay of the 
molecular diffusion of salts inhibits the rotation of the convective vortex and 
causes an oscillating motion. Indeed, Mr. H. Weinberger (1962), has shown 
analytically that in case (b) above, overstability can precede the convective 

instability. 

As noted, case (c) has been considered in detail (Stern, 1960). It is inter- 
esting to note the reversal of the phenomenon: as reported by Stern, in case 
(c) internal gravity waves are inhibited in favor of convective instability, while 

as shown here in case (b) convective instability is inhibited by means of over- 

stable oscillations. The present theory may explain some interesting obser- 
vations concerning the antarctic Lake Vanda. In the lower part of the lake 
(Wilson and Wellman, 1962), from 170-ft depth down to the bottom of the lake, 
a stable-stratified solution with gradients of salinity and temperature is ob- 
served. Between 50 ft and 120 ft depth no gradients of temperature and sa- 
linity are observed, and this part of the lake is most probably in a state of tur- 

bulent convection. In the remaining two parts of the lake, from a depth of 
about 125 ft down to 165 ft, and from 45-ft depth up to the ice level, starting 
at about 10 ft, a small gradient of salinity seems to be stabilizing a larger 
temperature gradient. Abnormally hot saline water has also been found in the 
red sea (Swallow, 1965). However, from the limited data reported in this 

case, it is not possible to distinguish regions of overstability. 

An attempt to investigate the results concerning case (c) in the laboratory 

has not been successful (Turner and Stommell, 1964). This may be ascribed 

to difficulties in simulating a virtually unbounded horizontal domain, with 
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respect to salinity, in a laboratory. Therefore the presence of vertical 
boundaries produced currents resembling the ones first observed in vertical 

tubes and incisively interpreted in the literature (Taylor, 1954). 

In the 38th Guthrie Lecture delivered in 1954, Sir G. I. Taylor examined 
conditions for convection of a fluid contained in a vertical column (tube) and 

subjected to a gradient in the concentration of a diffusive substance. His pur- 
pose was to determine the effect of gravity on dispersion in a vertical tube as 

an adjunct of his comprehensive study on "Diffusion and Mass Transport in 
Tubes," inspired by a physiological problem. In so doing, Taylor established 

on theoretical grounds that equilibrium becomes stable and that vertical cur- 
rents stop when the vertical gradient in concentration, dc/dz, becomes less 
than 67.94. Du/geaa*, where 2a is the diameter of the tube, D is the coeffi- 
cient of diffusion, g the acceleration of gravity, and » the viscosity. 

When we set 8‘ = O in the present work, we obtain a result that corre- 
sponds to the results obtained in 1954 by Taylor for diffusion in a vertical tube 
of radius a. For if we define X = a/h and identify our K” with Taylor's sym- 

bol D for the coefficient of diffusion, the result of Eq. (12) reduces, when use 

is made of the relation in Eqs. (3), to 

dc D ft) fad 
Finaee GR, x?) 

which corresponds to Taylor's result 

dc D 
weed ys 67.94 a (15) 
dz goaa‘ 

Thus the fact of the proportionality of dc,/dz to Du/goaa* is found to be the 
same in both works. We may rewrite Eq. (14) as 

dey E Du 

ap ein eae (16) 

and Eq. (15) as 

dc, Fi Du 

dz . “2 gopaat (17) 

where ec, = R,X* in the present work and e¢, is given numerical value 67.94 in 
Taylor's work. If we regard the upper and lower boundaries to be free, then 

we may take R, = 658, which makes «, = 658 X*. 

If now we require that «, = €,, then this would mean that 

apne S6RRexec 2 (18) 
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In considering the numerical value 67.94 assigned by Taylor to «,, there can 

be two alternative interpretations of the relation in Eq. (18): 

(i) X = a/h is a constant with a definite value (67.94/658)!/4 which is 
nearly equal to «,. 

(ii) «, is afunction of x and hence its numerical value will be different, 

in general, from 67.94, 

The first case would imply that the solute as described in Taylor's experi- 

ments should penetrate to a depth equal to twice the radius of the tube, irre- 
spective of the nature of the solute. If on the other hand the depth of penetra- 

tion is found to be different from the diameter of the vertical tube, then the 
numerical value of «, must, in general, vary. 

Furthermore, if the present theory is appropriate to the experiments 
described by Taylor, then we can obtain from Eq. (14) by writing dce,/dz = c)/z 
(following Taylor), 

C, EP az? 
Die = ; (19) 

where c, is the concentration of the solute at top of the tube and z is the depth 
of penetration of the solute. 

Equation (19) can then be used, following Taylor's reasoning, to determine 
the diffusion coefficient D experimentally, whatever the depth of penetration z. 

In the above expression we have used R, = 658, If, however, rigid-free bound- 
aries are more representative of a particular experimental arrangement, then 

R, = 1100 is appropriate. It remains to be decided experimentally whether Eq. 

(18) holds in nature, and if so, by which of the two possibilities noted above as 
cases (i) and (ii).” 
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A Contribution to the Theory 

of Turbulent Flow Between 

Parallel Plates 

A. 8. Iberall 

General Technical Services, Inc. 
Upper Darby, Pennsylvania 

INTRODUCTION 

The study of the stability of motion of a viscous fluid was begun by Reynolds 
to determine those conditions under which laminar flow might no longer persist. 
Theory and background are presented by Lin [1]. In this report, an alternative 
study is undertaken of conditions under which stable nonlinear limit cycles might 

persist at Reynolds number well beyond the laminar flow limit. The case of tur- 

bulent, low-Mach-number flow between parallel plates is discussed. Since the 

turbulent field beyond the critical Reynolds number appears to be stable and 
marked by a stationary though stochastic spectrum of fluctuations, there is con- 

siderable reason for attempting to identify the suggestive nonlinear behavior 

with limit cycles. Since sustained oscillations in a distributed field are associ- 

ated with propagation, one type of which is concerned with compressible waves, 

compressibility is retained. While an apparent added complexity, if it is not 
needed in any particular hydrodynamic problem, it should drop out naturally as 

negligible. Actually, it will be shown to be needed to establish limit cycles in 

parallel-plate flow. Turbulence in that problem is thereby traced to a coupling 
of acoustic waves with the hydrodynamic field. 

EQUATIONS FOR TURBULENCE 

In Cartesian tensor form, the continuum equations of hydrodynamics for a 

fluid, which is not concerned with mass diffusion, body forces, or radiation, are: 

Momentum equation 

Energy equation 

ia 25.2 : Rei fetss] teat Ya] Wa | Fe Nika (1) 
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Equation of continuity 

De ; 

be 

Thermodynamic relations (valid for near-equilibrium fields), one of 

which is the relation of state 

oy 

(ae! = ——= ela) = avert = 
C2 

Cc 
Pp a 

ds = = dT = a dp , 

A relation of compatibility 

y= Co 

Symbols are identified in the section on nomenclature. 

By examining their derivation within a modern statistical mechanical 
framework [2], it is possible to determine the following limits [3,4] for their 
applicability to continuous phenomena: 

Bla t+A/eli< 02002 S215; 

D Gl tis/edhi ee OFic<<hh en: 

where 

8 = v/Ch (a spatial continuum parameter — the ratio of mean free path 

to dimensions), 

- =v0Q/c? (atemporal continuum parameter — the ratio of molecular re- 
laxation time to shortest fluctuating period). 

In any hydrodynamic field, whether laminar or turbulent, in which these 

conditions are met, the molecular ensemble will not manifest their fluctuations. 
Any fluctuations that do exist must arise from the macroscopic dynamics that 

are fully represented by Eq. (1). 

In this development for one elementary form of turbulent phenomena, that 
induced by pressure gradients, attention will be restricted to small compressi- 
bility effects by assuming that the square of the Mach number is not significantly 
large compared to unity. Since there may still remain other sources of turbu- 

lence, typically induced by heat transfer, rotation, or other relative wall mo- 
tions, the set is specialized for fields that only show small density changes and 

little temperature changes. This may be represented by the following nonlinear 
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set, in which the derivatives of density and entropy have been eliminated by use 
of the thermodynamic relationships: 

DV; 9 
Poo Dt = 7 Ps sigan Bool tie i> Bie ¥ [3 baie oe [8s sos ’ 

; DT Dp Dj 2 

Poo Sprig = boo 0° Ht | Kee! fig + Heo l¥r, 5 #¥5 1%) ,27 [3 Moo Asef ¥. 5 ’ (2) 

Yoo Dp 
— — Qa Pp ——  _ 

Cy Dt Gor So 3) t Bs Ie ae 

The parameters with oo subscripts are now constant. It is this set involv- 

ing five variables, three components of velocity, one of pressure, and one of 
temperature, that will be explored subject to the boundary conditions for parallel- 

plate flow. 

Solutions for the linear (small-amplitude) set were explored earlier [5,6,7]| 
for flow in atube. Their validity (the solutions representing both laminar flow 

and all modes of propagation) over the entire frequency range of possible con- 

vergence of the Navier-Stokes (NS) equations was quite sharply tested by Green- 

span [3]. The question now arises whether a second nonlinear solution, other 
than the small-amplitude set, can exist. 

First, transforming the equations into dimensionless form: 

Momentum equation 

DR; ae 
tsa uk ae oe ome ae le cae ie Re ee 

Energy equation 

ine DP 1 
ct 2 

De he0 Fe Pooh yt PR Efe (3) 
Id 

Continuity equation 

DS DP 2 14 = 

ale 3 | as 

Incompressibility may be invoked by letting £,, approach zero. This lowers 
the order of the combined equation set. Such a procedure is quite dangerous in a 

nonlinear set. It leads to defects that are already suggested by the small- 

amplitude linear solution. For the NS equations to be valid, 8 must be small 
(in tube or plate experiments in the laboratory with normal air it will be about 
10°°). The parameter [ = 4? must also be small. (The parameter © isa 
dimensionless frequency.) However, £~ is not very restricted, and, in fact, the 
small-amplitude equations show that low-loss acoustic resonances are possible. 

(In the turbulent field, the magnitude of 6 may range from 0 to 10 or more.) 
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Thus, it is not ruled out that near resonances may be excited into a turbulent 
field. It is only by satisfying all boundary conditions that one can determine 

what propagation modes are permitted by the field. Nonlinear excitation of 

elastic modes cannot be dismissed in any material medium even though their 
amplitude may not be considered to be of any importance. 

The nonlinear problem will be examined under the assumption that a turbu- 

lent field exists with an unknown mean velocity distribution whose maximum 

value is sufficiently removed from zero that fluctuating propagative modes per- 

sist. Decomposed into a time-dependent (1 subscript) and time-independent 
(0 subscript) set, they are 

R= R(%.y.z) + R,(x) Al ae a) ae R, + R 
(eS Coie 

= J} (@rT 5 Pre Pops taPpe@eysz it ade Pi(xyied tayt+8z) _ Po oh Pit + Peay 

af + SCs) aL >, Ji Ge) el (ertaytsz) ag rs a st 
oo oo 0 

II 

CD, 

in which the propagation constants ~, a, § are assumed tobe real. They are 
here indexed in the primitive form of traveling waves. (The vector indices i 
have been omitted for clarity.) 

The justification for the search in this form may be considered to be 
Poincare's concept of characteristic exponents. As Whittaker's ''Mechanics" 
states, in discussing stability of types of motion of dynamical systems, ''Hence 
a necessary condition for stability of the periodic orbit is that all the charac- 

teristic exponents must be purely imaginary." 

The solution technique is basically also known as the describing-function 
technique. Even though the fluctuating components sought are trapped into 

oscillation by the nonlinearity of the overall process, their amplitudes are as- 

sumed to be small. Thus, they will be assumed to contribute, in the quadratic 
terms, to the time-independent processes, but the fluctuating components aris- 
ing from difference frequencies in the quadratic terms will be neglected. As 
a first-order theory for the fluctuating components, it can only furnish neces- 
sary conditions for the existence of nonlinear limit cycles. Intuitively, one 

expects that if the fluctuating components possess small amplitude, the tech- 

nique should be reliable. The decomposed equation sets are: 

For the mean state: 

[Sa = ae 2 R, OR, + R14) {OR g > -OP, +R, + do R,) 

Te SPO S= 1) RE ORE + Ryo GP) (4) 

= -1 ?} 

; E90 [Rij t, Ro § cid Ro gg. t Soop clued Rea, Ray get rose Hos: 

Pelee (Ry APs + Re goal oj img Tyce Rag VOT; pO lasmeRpy 
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where time-averaged quantities are under a bar, vectors are in black type, and 

Claas yale 

For the fluctuating state: 

te) 2 
per Niet Boy Elia! Boy. ey = OE aS R.,, + qO(O-R,,)), 

3 TT or (7 aay eR) Geis. * Rey eo) = Ose!) 

O 

x [Pay + Ro “OP, 1) + Roy) aP,| = oo Sota toi) Seiad (5) 

upee oyere Els: +R cryisat Bag, it) Boga * S60 (1)? 

+R "OP. = Rays 5 - 

BOUNDARY CONDITIONS 

The following boundary conditions are assumed for one-dimensional long- 
channel flow between parallel plates. For the fluctuating field components, let 

Reis = (aU ery COV cay RW) =) 2 (Us Ve koa? ey Pz) 

represent the components of the fluctuating flow; 

R =) at x +1 (velocity zero at the walls), 

Sf = (0) at x +1 (temperature deviations zero at the walls). 

For the mean field components, let 

R, = kR,(x) = kR,,[1-9(x)] 

represent the undetermined form of the mean velocity; 

ll Ry (x) 

Po (z) = -~£2Z. 

0 at‘:x,=.41, 

g is assumed to be constant independent of x ; 

Jy CX) = 0% 
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Because of the low Mach number and the long isothermal wall system, the ef- 

fects of any minor cross-channel temperature distribution will be disregarded. 

The boundary condition commonly invoked — see, for example, Laufer [8] — 
relates the pressure gradient to the shearing stress at the wall. Typically, this 

is achieved by integration of the appropriate NS momentum equation written in 

the form of Reynolds stresses. Assuming, for parallel-plate flow, that the mean 
values of the quadratic terms involving the fluctuating components have no axial 
variation, it is first shown that the pressure gradient g has no cross-channel 
variation and then that the first integral of the equation of motion is 

gx + = U W 

Thus, at the walls, 

In addition, there is a second condition which is not commonly noted. The 
mean momentum equation in the z direction is 

GRICE Sp ae eG a a ea 0 - ) 
i Yay Sa) Ney ble =]¥ay gia 

dx? 

Thus, a second boundary condition is 

2 d?R, 

dx? 

Laufer demonstrates quite satisfactorily (Ref. [8], Figs. 8 and 19) that the 
shear stress obtained from the velocity gradient and the pressure gradient are 
in accord with the first boundary condition, and consistent with the known devi- 
ations near the wall of the von Karman logarithmic velocity law ([8], Fig. 7). 
The relation 

is approached at the wall (the common normalization based on the friction ve- 

locity which is computed from the wall shear). Another experimental study [9] 

presents more detail on the flow field near the wall. 

Consistent with Laufer's data and the universal von Karman curves, Fig. 1 
depicts the character of the mean velocity distribution near the wall in terms of 
the properties of 9, »', and o" in an attempt to clarify the boundary conditions. 

This may be transformed into the more familiar parameters of the loga- 
rithmic presentation. In terms of the variables of this paper, the variation 

near the wall was estimated to be 
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MEAN VEL. DISTRIB. 
Roo=REY. NO. (= Hwo/)~) 
Ro=CHANNEL VEL. (NORM.) 

Wo=MEAN 2 VEL. AT CTR 
Y=NON-DIMENS. FUNCT 
H=HALF SEPAR 

X=DIST. FROM CTR. (NORM) 

Fig. 1 - Properties of the mean velocity 
distribution for one-dimensional flow be- 
tween parallel plates driven by a constant 
pressure gradient (data from Laufer (8)) 

Ros 124300: 

h2 2 
=. SMS 91) + 10,800 eC = 2/428! te, ee. xh 0.0005 
Wy dx 2 

h dW 
— ——= -'21 + 21 (1-*x/h) + 5,000 (1-:x/h)? , 
Wo dx 

— = 21 (1-'x/h) -° 10.5 (1-'x/h)? =: 1,670 (1-'x/h)3 ; 
0 

Roo = 30,800: 

h? d?W 
= ais 46 + 300,000 (1-x/h), to 1 -'x/h = 0.0065 
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Sa Rey en 7 (l=x/h) +. 150,000! (1'= x/h)? 4, 
W. dx 

0 

W 

at 46 (1 x/h) - 23 (1- x/h)? -- 50,000 (1- x/h)3 ; 
(0) 

Roo = 61,600: 

h2 d?2W 
— — = 83+ 600,000 (1-x/h), to 1- x/h = 0.0035 
Wi Abe 

h dW 
— — = -§83 +.83)(1=.x/h) + 300,000 (1--x7h)?’ , 
Wo dx 

= = 83 (1-x/h) - 41.5 (1- x/h)? - 150,000 (1-x/h)3 . 
0 

In terms of the logarithmic presentation (using Laufer's nomenclature), 

r e 

d 
ee pee ea : 

dx dy 
y=0 

eats: 
U 

1 & 

+ U, 

Norey ¢ 

SETS 202 ay 2 OB: 3 ph (ss) 
R 2/1 dx Uy \d 

so that 

ut = Roo W 

yt = ve (1-x/h) , 

transforms our variables to Laufer's; 
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Re 2 S00. 
feje) 

We = (Cy? r= 0.99% 10S (y 2 029: 107127)? ll 

O< y* < 4.8; 

R.. = 30,800 , 
oo 

B= Cy ) = Fede 10 y 2 = 77x 10. oy 

(Oe ge ey nc 

R.. = 61,600 ,; 
oo 

Y= (v7) = 2.2% 10 4(y )7.2 24 = 10°7G 3? c I 

OF a Ore 

It is impossible to detect the graphic difference from u* = y* for this 
"boundary-layer" region. Since experimental data (e.g., [8] or [9]) show no de- 
viation from u* = y* over arange y* upto7or 8, Fig. 1 derived from Laufer 

[8] is a more sensitive presentation of the boundary layer. However, what Fig. 
1 succeeds in doing is to show quite explicitly the existence of a boundary- 

layer region (namely, the region in which 9' is nearly constant). 

Intercomparison with [9], the logarithmic law, and the form of »' and 9" 
provides some measure of the so-called laminar sublayer. In agreement with 
[9], a sublayer may be identified below y* = 6, more probably below y* = 4. 
It is not surprising that a simple linear gradient is found only within the range 

up toi? =. 16. 

It thus appears safe to infer that there is a region— typically x = 0.998 - 1 

(or y* = 0-1.5) —in which the variation in »' is essentially small; anda 
region — typically x = 0-0.8 (or y* above 500) — in which the variation in 9' 
is again small. In this report this transition zone will be considered very cur- 

sorily. The complexity arises from the rapidly changing magnitude of 9". 

In a preliminary report of this work [10], the form 

Ri/ Rag = 1.7 ay x? SG] > ay.) x2N 

had been used, a two-parameter form, consistent with the same proposal by Pai 

[11]. The form is not satisfactory at the wall. It cannot satisfy all the » bound- 
ary conditions. A basic conclusion drawn from [10] was that trapping limit 
cycle in parallel-plate flow was sensitive both to the mean flow in the core and 

its form in the boundary layer. Thus, a more suitable form for the mean flow 
must be selected. 

In order to avoid the mass of algebraic detail that arises when the problem 
is not treated as an eigenvalue problem, the suggestion of a mathematical col- 

league was accepted of breaking the field into two parts, a core and a layer near 

the wall. The simplest form to take for 9 is then 
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over the core region: 

Ite po elt nmasxtve 710] xfer .x2-<(1 

o' 20, 

a“ 

On OF 

in the boundary layer 

1 25 20 = (1- x?) for x2 % 1 
2R 

oo 

at oe Sey 
R 
oo 

iy 

TY Sok 

WORKING EQUATIONS FOR BOUNDARY LAYER AND CORE 

Let 

p=wt dR, 

= @+6R,,(1- 9) : 

M, = #@+ dR, - 

The working form of the fluctuating equations may be represented by 

[D2 -A- jWJU + qD [DU+jaV+j5W] - DP=0, 

[D?-A-j¥] V + jaq[DU+ jaV+j5W] - jaP = 0, 

[D?-A-j¥]W+ j8q [DU+ jaV+ jdW] + R,,o'U-j8P= 0, (6) 

0 ’ 
ol [(D2-d- joy] JS - 2€j5R,0'U - [2eR,,9' D + (y>=1) eg] W+ (y-1) jvP 

[DU+ jaV+j5W) - y62gW+ y62jy¥P - B2j~T = 0, 

where 

N= a? + 52 and rng ee 
dx 

The variables U, V, W, P, and J represent the fluctuating amplitudes, indexed 
by the harmonic w, They are as yet undetermined functions of x and w. (The 

subscripts oo have been dropped from the constants.) 
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It is convenient to utilize one component X of the vorticity (vorticity may 
be identified by variables X, Y, Z appropriate to each coordinate): 

aX = aW-6V. 

Eliminating W, 

[D2-A- jy] U + qD (DU + (jA/a) V+ j8X]-DP=0, 

[D2-A-jw] V+ jaq [DU+(jA/a) Vt j8X] - joP= 0, 

[D2-A-j~] X=-R,,9'U, 

pelosi oe (7) 
o 1 [D2-r- jow]T - 2€yoR, 9 U= [2eR,,9 D+ (y= TD yretex 

es a [ZeRo Daty— 1) elV > Osta =o, 

[DU + (jA/a) V+ joX] - yB2eX - (yi/a) B2eV + Ye7Wwe — 62s, = 0: 

This set may be decomposed 

over the core: 

[D2 -A- jM)] U + qD [DU+ (jA/a) V+ jSX)- DP=0 , 

[D?-A- jMo] V+ jaq (DU+ (jA/a) ¥+j5X])- jaP=0, 

[D4 A= JM] X= "0 , (8) 

oP (p*=h— OMe) ST PCy — 1) MAP =O 1 eX 2) Oese) VY = 0r 

[DU+ (jA/a) V+ j5X] + yB2jM,P - B2jM)J- yB7eX - (v5 A2e/a) V=0 . 

for the region near the wall (x = +1): 

[D?-A - jw] U + qD [DU+ (jA/a) V+ j5X] - DP = 0, 

[D2?-A- jo] Y + jaq[DU+ (jA/a) Vt joXl = jaP = 07, 

[D2 -A- jo] X= FgU, (9) 

o71 [D2-X- jow TF 2ej5gu- gl+2eD+y- 1] X- (d¢/a) [+2eD+ y- 1] V+ (y- 1) joP=0, 

[DU + (jA/a) V+ j8X] + yB2joP - B2jwoT - yB2gx - (y3/a) eV = 0. 

CHARACTERISTIC FUNCTIONS 

These equations may be independently solved in terms of four independent 
modalities (characteristic functions) within each region. Because of the assump- 

tion of small compressibility, results will only be sought to first order in /?. 
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Core Solutions 

Modes I and II (available at a glance from the core equations as independent 

solutions xX # 0, and X = 0). ma b, = vV-jM, - A (a repeated root): 

: {boxe ; : é jb 
= j07b Ge * = 5M, [(1 =o) At 5-7) qQAB°M, + 1-7) 8876) Bae art 

x 
b 

jb V = -jab2@,e°}* + jaM,b,[(1-0) + j (y¥-7) 46°M,) Be? 
Ate jb,x 

X= jdb/?@,e ! 

x jb 
S =o(y- 1) Seb, Be $ 

; . jb P = j(y-0) q38?M,eb,8, 6 1” 

These modes represent viscous diffusion. 

Mode III (The mode is in the vicinity of D? = -joM,- \ from the J equation. 
It is the thermal diffusive mode. If 4? = 0, the solutions would be "'exact." 
The solutions presented are valid to first order in £2.) 

Fy Dox = : z B83 b= V-joM, At BRIG 1) C= = cq) M7 (y= 1) 0: 

_ :,R2 jb,x U=36"b,€.e ; 

ib V= jaf?C,e 3” 

= 0). 

x ae 
= oGe 3 

x jb 
P ~j(1-o-0q) 6?M,C,e° 3 

Mode IV (This is the elastic mode of propagation of pressure.) 

ed, = Ji - BM2 + 55672 + jl(y- er 1s a) BAM : 

U==jd, oN, =3 (4-d2))9 2° 

d 
V= clo =j Cd? 1D ye * 

Xi= 0 

x 

SJ = -0(y- 1) IM Pri gaA- 2M = j5g]D,e°4 ; 

x 

P= pleM = j¢A=d2)) (iM, + (1+ a)(A-d2))9, 4 
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Wall Solutions 

Mode I 

tja,x : a » : r 1 ee 22g) : = fe ee ee wists : e a =e OG a 5 (1 x) j (1 ‘t *)| é 

V = -aw[(1-o) §-2ecf2ga,JA,e! 
a X= w[(1-c)h-2ecdh2ga,JA,e 2, 

a -joa2g[2eja,+y-1JA,e ; 

= de 6" oe Qeca, =| (y-o)JA eo 

x == 1 

Urs Ore 

V = -aw[(1-c) 6- 2ec 82 ga,] eg 
; 

X= [l= o) N= 2ec) 62a) A; ep ie 

Sie ajo072 (Deja. y= 1] A,e 771" 

-ja,x 
P= jo? 67 op [Jecat—3\(/—o)A,e 4 

Mode II (Neglected terms are of the order of (2) 

Xia 

eo B2p2 ae 
e( 58/24 )x Eco . S = Vjo 1 + ste 3 FORE gs aa (32) 

2jo (l-c) jw 2j)® \ ow 

v= et joc-2) + “8 via] [via + 38 ]/-
 bg vio + 3 (*8 

(a3) 

x 
202 

geass) B, e( 58/20)x @°2 f 
l-o 

fd ee ) : 
ve et[ioa-ey + 8 via]io[- 8 via (8) 

v ) C 

Qe0 B2—2 

, Zech 8" 
1-o 

’ | B, (86/20) 9°” 

x= [ioct- oy + 5B via] [via + 28] B, ef Fa/20 9% 082% 
(d0) Aw 

A og [tei + ioe lee =) vi] Bete? 2e)* ea ae ; 

(22) 

T17 



A. S. Iberall 

Ih > Yer a) 
Pp 2%gr1 [ie (1-e) + tye | aa = ele jw 

pre? 

(y-o7)q+ 2ecq + dot 2+ qyi 22 

Fg (onan Wk POReRENOIET Dy Os Oh Meare 
l-o 

w 

si 
é [ef 2] soemmen 

x i=.—h 

en (8e/2a)x go 2™ , 

et [iea-oy «8 a]
 vin 8]] am §

 (2) 
U 

_ 2e0 62 g? Ba en) 2/20)x ao” 
1G . 

: $ 
X= five) + °8 vi ||- vi = mal: e7 (88/20) x, °2* 

Ww Ww 3 ’ 

5 = og |- 2250 - (y- 1+ 2e =) 7a |B, e-(5 8/26) x 982% 

w 

P = gt[jeci-e) + “8 yi] - eee c =) a 
l-o (3) 

Oia a) te 2eo-q) +" 2e0°( 2+ q) og 

S| Ey 
l-o 

5 3 

+ Pe Vjo |B, 7 (F8/20)x @ ©2™ | 
w 
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xf=—s—a 

a] UI 
)\— Cy Me ( 4e ) 2e\eece 

—=—('qi- c.+.>———— 
(43) 

| . (al 
sonia |iea(E- 1 

ws w 2 

- 9 Ss 
jerc eae -c _ aa [o, « 4% 

NK - c,? jqdge Z 
4 Die fc P = -ja? Lease ie 2 w 

Note: Building these solutions requires some a priori estimate of relative 

magnitudes of various parameters, typically the following: 

parameters large compared to unity — «, g,R 

likely that ~ is less than 100.), 
M,» v@ (It is not 

00? 

parameters small compared to unity-- 6, (», (6g, 6?R,,, 

parameters that are quite bounded— \, 5, a, 5R/w, Ge, bw (It is 
not likely that 4 is greater than 100.]. 

However, there are some parameters, such as «/g, whose bounded magni- 
tude is uncertain. Also, in developing coefficients in series, while use can be 
made of the small magnitude of 6, 62, 62g to permit rapid cutoff of such se- 
oe this may not be done with regard to the square root of such magnitudes, 

aes V 82a, 1//. Thus, sequences must be carried forward at least to such 
(bees Ve., all series must ‘be imagined in terms of such half-power expansions. ] 

SECULAR EQUATION — SELF-GENERATED PROPAGATION 

The vanishing of the secular determinant emerges from satisfying boundary 

conditions U = V = W = X = § = 0, at x = +1 with these primitives. 

A preliminary result can illustrate how limit cycles are generated. A secu- 
lar determinant may be obtained first from the core solutions, which assesses 

the nonlinear contribution of a substantial mean velocity (Reynolds number) over 
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the central region of the tube. It does not assess the contribution of curvature 
of the mean velocity field near the wall. Letting the dual set of even and odd 
core solutions vanish at x = +1 leads to the following conditions: 

from which 

N= peu? x B2 w2 : 

and 582g is small. 

The eigenvalues hereby obtained for self-generated propagation are instruc- 

tive but not necessarily complete or correct. Instead of the vorticity actually 

vanishing, a weak generation of vorticity may develop. Most interesting is the 
expectation that the ''mean" propagation is likely to be an elastic wave (a? + 
82 = B2w2), 

Returning to satisfying boundary conditions with the wall solutions, it can 

be shown that the leading-order terms for these solutions are the following: 

2 C 

U = a(1-0) [ peciaet oe a8 
( 

Cy x Cn xX tic if 

peace 2 «i (l= o)e-waCe } 3“ +ac,De 4 
1-o) Vjw 

+j = V = -aw[(1-0)8-2ec62ga,} Ae 3 + jawDe 4 

fe 
tjc,x 

X= w[(1-07)A-2ec05 B2 ga,] Ae 

+ jw(1-c)Vjo Bet (8 8/o)x ge 
re 

o (1-0) wCe **3” 4 uN 

-j (y- 1)e™Det Sa” 

Invoking the conditions for a nonzero set of coefficients A, B, C, D, the 
vanishing of the determinant 

9 2 

(0) Ben). |e _2ec Pree £ji\(1 +c) 62wa, twc, 

(1-¢) yjo 

-aw[(l-o)é- 2echga,] 0 (6) jaw =") 

w [(1-c)A- 2205 Bg] tjw(1-0c) Vjw 0 0 

0 0) a(1-c)w -j(V-1)o? 

leads to the following secular equation: 
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275 

[jaw] Jw(l-o) [6 - SEPP Ee [ar @h se) i= 2ecdB2gwa,] 

(1-0) Vje 

[aw3(1-c) - 2ecB2gawa,] [jo (1-0) Vio] 
[wc] = 

(pO. = 1) a7 i o) B2wa,] 

[c(i-—o)@] 

(The brackets preserve the source of each factor.) Thence 

ILS y y= il 
Cy = Css) A + {me B2w?2 : 

2w Vo 

which when coupled with the quadratic equation for c,, leads to two equalities 

from the real and imaginary parts. 

From the real part: 

5 202 logos § _ PrP eee ee 
wWV2w wv 2h Vo wo V2 Vo wv 2w 

From the imaginary part: 

a ree 2 S : 

= oe fae evs + fe : - B2w?2 eh ae + Vas 1 - ae - 1+ q + van 1 IN 
‘a 2 B2w2 Vo B2w2 @ o 

ta 2 
on 

The secular equation thus finally leads to the pair (to the order of 1/Va 
terms) 

N= a2 + 62 = B2w2 

a 
2 2 ‘ 1 + 

(=) a ao ee ve ee 
og 2 Vo V 20 
— = -$2g2 See es. EEE eee 
(20) (62) 

ah aed ated eh 2 

Vo ig 

One may note that of the two roots possible for the fourth mode, only one 
could satisfy the boundary conditions (namely, that it should nearly vanish 
along a particular complex path). This root leads to a propagative system, the 

elastic wave given by 

A= a2 + 82 = B%w2 . 
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While the same result might have been suspected from the core equations just 

by assuming a mean velocity in the core, it now appears intrinsically excited. 

Beyond this, the mean velocity characteristics near the wall determine the 

dispersion of the wave system. 

| The following comments may help to "explain" the process of satisfying 
the boundary conditions that lead to the final secular equation. Corresponding 
to the primitive e/(*¥+>z*#7) (5 negative), expressing a temporarily coherent 

traveling wave system traveling downstream, there is really a dual set, ap- 

proaching and reflecting from the walls. This dual set must satisfy the bound- 

ary conditions. The viscous and thermal diffusive modes have leading terms 
et jx, et¥ie%x, over the entire cross section. The outgoing system of waves 
grows large in the face of the local pressure gradient, while the incoming wave 
is highly damped. This suggests that the boundary condition need be satisfied 
by only one of the two wave systems, namely, the outgoing one which has re- 

sulted from the excited pressure mode moving also in the downstream direction. 
Near the wall, the mean gradient is sufficient, by perturbation, to split the two 
viscous diffusive modes into two with slightly different propagative velocities. 
(In the laminar — small velocity amplitude -- case one clearly can see the source 

of the two viscous diffusive modes, which Kovasznay [12] refers to as vorticity 
modes. They are eigenvalues for two components of the vector velocity 

potential — the solenoidal components that give rise to vorticity. The two un- 
split repeated roots are seen clearly in the core solutions, associated with 

X = 0, and x # 0.) It is their interaction with the pressure gradient in the 
boundary layer that turns the waves over into an eddy, and thus provides a 

source of radiated acoustic eddies that emerge from the wall region. Further, 
only one of the two propagation constants — say, c, ,— can satisfy the boundary 

conditions. What emerges is that neither an upstream propagated system (5 

positive), nor c, ,, the second possible "elastic mode can satisfy the bound- 
ary conditions. It is rapidly attenuated or absorbed. 

Actually, it is the inability of the second mode c, , to provide a trapped 

self-generated vortical filament that is crucial. (It could very well have been 
that the first mode might not have been able to, also, or that some other mode — 
given other boundary conditions — might have been the source.) There then 

emerges linear combinations of the other diffusive modes which provide trapped 

limit cycle structures. Here the outward radiated ''acoustic'' components are 

exhibited. 

While some added nonlinear distortion may visually deform the local field 

even further, the intrinsic modal interaction should essentially persist as shown 

in this elementary derivation.| 

More globally, these results may be interpreted as follows: There may be 

many waves that can be excited. For any e*®, say, there will be a possible 
e*2, The nondenumerable class of all such waves forms a complex stochastic 

system that fits Kraichnan's allusions to the inordinately complex picture of a 

turbulent field. (This was a salient point in Kraichnan's keynote address at the 

10th Annual Meeting of the Fluid Mechanics Division of the American Physical 
Society, Lehigh U., November, 1967.) With the existence of such a complex 

picture, we would concur. However, practically all of the waves are dissipated. 
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Among all the possible waves, we have selected those systems that may persist 
(not indefinitely, but as a sample of these waves that are not dissipated). They 

do not represent all the waves, but they represent a potential wave system which 

deterministically can provide ever-present fluctuations and which perhaps can 

account for the mean dissipative losses. Namely, it is this system that the 

pressure gradient generates and which also represents the source of drag. The 
others are evanescent. Thus what we propose is that there is an extensive dis- 

tribution of systems that may satisfy the equation set. We chose as representa- 
tive of this distribution, the one in which nondecaying modes exist and all decay- 
ing modes are zero. This is one feasible set, and in our view a "typical" one 

which should give good "'typical'' measures, i.e., measures near the mean. 

Others scatter around in a suitable phase space. These waves represent a dis- 
persive ''plane'' system that is self-excited. Actually, they are not really plane, 
but curve with changing curvature in the mean field. Here we are locating the 

asymptotic system within the boundary layer. 

SPECTRAL RANGE ASSOCIATED WITH PROPAGATION 

As the first step, we can examine these first propagation results for con- 

sistency with the spectrum of turbulence. 

(i) The coupled results for 5 and \ lead to a finite cutoff for . Let this 
be represented by ,. Since, by inspection, 6 grows with ~, let it take on its 
maximum value 5?= 87. a? = 0. Then 

pean | i! 
2 Bras (1s se) tl Lire =) 

om a 2 ara ’ 

2 irpite we 
Vo 

whence 

2/3 

an (1 a = (s\" I) 

We can make use of Laufer's data [8], in particular his R,, = 30,800 data, 
because of its completeness. We may adapt for his experiments air flow, 
nominally normal (20°C) temperature. 

0.150 cm?2/sec Vv 

ae) ll 1.206 x 10°* gr/cm? 

1.81 x 1074 poise e 
ll 
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h’ = 6,55 em 

C = 3.43 x 10* cm/sec 

W, = 728 cm/sec (maximum mean velocity, from ie) 

h Ap 
0.00295 (from [8], Fig. 19) 

1/2 (pw2 Az 

5 A 00 P ey decay - Bj 2 T/2(pN2)DGarn)  W, ax 45.5 (from [8], Fig. 19; Fig. 8). 

y = 1.400 

ao = 0.709 

rapa 149 3} 

Derived dimensionless parameters: 

R,, = 30,800 

8 = v/Ch = 0.69 x 107° 

g/R,,, = 45.5 

q:= 1.40: x 10° 

wo = —— 1120 f (this relates » tofrequency f - Hz) 

Laufer (Fig. 27 [8]) shows the frequency spectrum reproduced as Fig. 2. 

We would estimate a high-frequency cutoff at 

65 x 10° S ll 

ta) | » = 58,000 Hz 

As indicated in Fig. 2 (dotted lines), this is not inconsistent with Laufer's 

data. 

An added "validation" for the high-frequency cutoff is the question of the 

smallest size ''eddies"' that might be associated with the turbulent field. 

Let us consider the "wavelength" ? associated with the high-frequency 
cutoff. Because of the vector magnitude of \ = a? + 5?, one would expect 
appr oximately 
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FRACTION OF TURBULENT ENERGY 

PER FREQUENCY BANDWIDTH - SECONDS 

FREQUENCY - HZ 

Fig. 2 - Frequency spectrum 
for velocity fluctuations par- 
allel to mean flow 

= 
is 

= 0.14 cm (= 0.06 in.). 

_ ae 
Bo, 

A query by private communication to Laufer ("In your 1951-2 parallel plate 
work, your spectral data (at R = 30,800) show significant observations at f = 
3,000 Hz. In terms of the plate separation of 5 in., what is the size or scale of 
‘instantaneous’ waves or eddies associated with this frequency level ?"') elicited 
the response that the eddy size corresponding to 300 Hz was about 0.1 in. We 
cannot help but feel that this minimal propagative ''wavelength" (which appears 

in all field components including its vorticity) and the minimal eddy size that 
Laufer identifies by instrument inspection, are related, i.e., the field has a 
limited graininess. We propose that it has a corollary limiting frequency 

response, 

(ii) We may also attempt an approximate estimate of the low-frequency cut- 

off for this experiment. 

One may note that downstream propagation may vanish (e.g., § = 0, » = »,) 
when 
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2 2 
Wy yah eles Vo 

(2) |e) bras +) Via 
i.e., when the numerator in 5 vanishes. 

(This may be checked independently by letting 6 = O in the solutions. 
The result is the same.) 

Thence, 

1 2S 
oY ee 

( vo )e 
(73) = BS 4/5 

1 2 

v2 fp  2 + rsa? | 
Vo 

=5 4287s 10") | 

f= 43. Hz. 

It is impossible, at the present state of development, to assign a precise 

meaning to this estimate. It marks the end at which a mechanism for the self- 
generated formation of eddies can be found. In magnitude, their size is of the 
order of the characteristic dimension. One suggestive connection may be pro- 

posed between the low-frequency cutoff and the onset of nonlinear phenomena 

found in the von Karman vortex street. 

Goldstein [13], (Fig. 149, Vol. Il) represents the von Karman vortex fre- 
quency for a circular cylinder in a wind tunnel by its Strouhal number, as a 

function of increasing Reynolds number. It is clear that a ''noise'' spectrum, 

associated with turbulence, appears ''suddenly" at a critical Reynolds number 

(near "the" critical Reynolds number). As an approximation, it then appears 

that the Strouhal number is essentially constant. For the cylinder in a wind 
tunnel, it is experimentally shown that 

S=—=0.16, 

D ll cylinder diameter . 

If the two walls in parallel plate flow were similarly viewed as alternating 

sources of vorticity then a Strouhal number of nominal magnitude 

——= 0316 

0 

might be correspondingly assigned. This leads to 

f= 92Hz. 
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We suggest these as two related estimates of a limit cycle fluctuation which 
represents a near ''maximum" for low-frequency noise as a relaxation process 

by which a system of fluctuation is maintained from wall to wall. 

We will attempt a more compelling estimate, namely, we will attempt to 

estimate a "critical'' Reynolds number. The following crude scheme is used. 

From the small-amplitude linear theory [5,7], we found that the transition 
from an overdamped (Rayleigh damping) wave for the tube to an underdamped 

(organ pipe) wave for the tube took place over the range » = 1-100. 

We will obtain a result in two ways: 

First, from , = 100, 
1 

For turbulent flow, approximately 

gS ‘a RLetl Ss 

Fitted with Laufer's point, g/R,, = 45.5 at R,, = 30,800, the experi- 
mentally fitted result is 

g =/0.0196:Re >: 

For g = 625, R,, = 370. 

Second, we propose that ''all of a sudden,"' as Reynolds number increases, 
the underdamped frequency can become entrained. Thus, as before, from the 

Strouhal number 

2 Dp) h2 oo 

@, = 100 = 1120 f 

f = 0.089 Hz. 

Re 300k. 

These values 370 and 300 (based on the half separation), may be compared 
with the standard value of 400 - 700 for the critical Reynolds number for parallel 
plates (on the basis of mean velocity and half-plate separation — see, for example, 

Sec. 146 [11]). The estimate is not bad. 
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SUGGESTIONS FOR FURTHER DEVELOPMENT 

In this paper the problem is not completed. Instead, this section offers 

some ideas for further development. 

Solutions Near The Wall 

Returning now to the solutions within the boundary layer, we can evaluate 

the constants of integration to obtain the following primitives that satisfy wall 

boundary conditions. 

es ae) | 

: +(5 om BE (elo, 

U =F Chi) [lacy o = Zea pea) eer 
Cc 

2w 
ed 8/24 © D 

< ul 
ja (e 

e 1 e 4 

tja,x eax 

HCl tee) ona er 82 ey] oA ae 

jay, 

1% +(8¢g/2w)x +tc,x 
e e 

c 

e eb 8/24 2 

Xn?) etutals oo 

en in 

tja,x ECS O.< 

-(y-1) #A [(1-c) 8 - 2e0f? ga] E eee ) 

Gx 

P = w[(1-c) 5 - 2ecf2ga\] |! = | : 
4 

e 

a? + §2 = B2w2 , § = -B2g V2 

While 6 is restricted to its nonpositive domain, there are the conjugate 

sets et i(taytdztor) 

What we have derived is a primitive system of self-generated traveling 

wavelets in the boundary layer that act as a source of ''acoustically'' derived 
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vorticity for the main stream whose frequency components are coexistent with 

the frequency spectrum of turbulence. Whether we can proceed into the main 
stream may be regarded as conjecture (it is main-stream energy that has been 
captured to develop and sustain these piece-wise ''coherent" elements; the net 
effect of the capture is that the layer radiates a structure of acoustic eddies 
back into the main stream. This is suggested as the energy budget at the wall). 

We continue with a tentative scheme along the following crude path: 

In the core, the main terms are likely to be 

jb jb d 
Lie ja2b, Ge’ ae ieainG lsc) Ab, Be’ ce =jd, De - 

jb jb 
V = -aM,@e’ . +a(1-c)M,Be° - +aDe 

jb 
X= 8M, @e° 7 

jb jb d 
se -~jo(y-1) 8gBe ' +0Ce’ 3" -(y-1)M De Le 

P = =U De 

jb d 
Wie 8(1-c)M,Be ?- 5 Des S| 

where 

on 

M oM 

PS Spy eran bys sGind) Yes 

Strictly speaking, it is necessary that the form of 9 be developed over a 
series of layers so as to match solutions, particularly the rapidly changing 
velocity solutions, through the transition zone layer by layer. However, we pro- 

pose to only deal with the very crude two-zone approximation. We can only per- 

form a very crude match. 

(i) We will assume that the pressure fluctuations are continuous across the 

transition layer. In particular at small Mach number (so that d , is definitely 

quite small), 

+ od 
P=-wDe *% -w) =-E 

so that the core is flooded by a small excitation E. 
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(ii) We will assume that the temperature fluctuations are continuous across 

the transition layer. Thus, 

jb jb 
0 =-jo(y-1) 5gBe’ aCe stay be 

from which @ can be evaluated. Thus, the set remaining in the core is 

d : jb jb 
U = ja2b,@e’ t* - j(1-c)Ab, Be’ 1 - j +E 

jb jb 
Vstqude '* Awoti-c) Be <5 

=e 
W = Sw(1-o) Be ss tee 

jb,x 

Mean-Flow Equations 

Except for eliminating two more constants of integration, we are up toa 

critical point — how to satisfy the mean-flow equations, say, by determination 

of a spectral density function. 

While there are five equations, two involve terms of lower order of magni- 
tude than the others, and so may be dropped in a first-order approximation. 

Instead they are replaced by the following lemmas. 

(iii) The mean flow at low Mach number essentially behaves as if it were 

an incompressible, in the present instant, one-dimensional flow. 

In the fifth mean-flow equation, the left-hand side can contribute only 

negligible residue, so that 

C1: R, = 0 

itself represents the fifth mean-flow equation. 

(iv) The isothermal injection of fluid with isothermal boundaries at the 
same temperature, at low Mach number, creates a mean flow field which be- 
haves essentially as if it were isothermal. 

Similarly in the fourth mean-flow equation, other terms contribute negli- 

gibly, so that 
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Des oe Ee? TipssOn 

and in fact 

Be =a.0ee 

(v) We are left with the three momentum equations 

fe} fs) re) 

(engi site tt Mason Gay = xX momentum 

t) t) 3 
(Dea 24 Meine Mery | ¥eay =: y momentum 

7 fe) y fe) fe) 7 
Go Cina Wy 5 Way = B> zZ momentum 

to satisfy throughout the core. At present we do not have a satisfactory program 

for this end game. (The end game probably requires determination of a spectral 

density function by means of an integral equation, summed over states w, < w < 
®), +a, Odd and even, of Fourier or Laplace form.) However, we can illustrate 

very crudely that our amplitude functions do possess a valid order of magnitude. 

Laufer shows that the rms fluctuations in the cross-channel and lateral di- 
rection are essentially equal and not greatly different (by about a factor of 2 or 
3) from the axial rms fluctuation. We will disregard this fact and imagine that 
the first two momentum equations are satisfied identically by each traveling 

wave system, namely, by letting both U and V approach zero. Specifically, we 

will consider that both 

a2@ = (1-c)AB , 

C=" Gey ti 

are true and that the excitation E is small. Thus there only remains the z 

momentum 

(what is essential is that both W and X not vanish, i.e., that neither @ nor 8 

vanish. The lesser magnitude of X compared to g momentum suggests that the 

better condition may be @ = (1 -c )8.) 

Further we will imagine that there is only one frequency component , 

corresponding to the high-frequency eddy size. 

Imagine now the standing wave system given by 

+j(b,xtay-$, ztwoT ) 
Woy =sale , (a=0) 
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then 

2 DWi4) . 6a 

nn) 

Bw, a? 
a 9 == | | 

a 50) 

Since the velocity 

W= W, + W 

and in the core this is given by 

W=R + W 

a fluctuating amplitude of 250 compared to the Reynolds number of 20,800 is of the 
proper order of magnitude for the rms fluctuation found in the core. Illustrated 
in an average sense, such acoustic fluctuations, thus, can account for the momen- 

tum discrepancy in turbulent channel flow. 

We can demonstrate further that this is no accident by the following: The 

"complete" z momentum equation is 

= ?) 2 o/doy + Wey 9/92] Wey = (ap Gl R ,/dx 

SEs Ro? . 

Drop U,,, and V,,, as before. Now consider this equation at the "end" of the 
boundary layer, i.e., where 9'' has its peak. In particular, apply this to Laufer's 
R,. = 30,800 data. Whereas |¢/R,,| has the value of about 45.5, |o"| hasa 
value of about 6000, at least a hundred times larger. Thus, 

Baw a?/2 = |g - R | oo? 

or 

a = 250 VR,,9'/f 

= 2800 . 

This represents a peak amplitude of about 10% of the mean flow in the center. 
This is the magnitude of the peak rms fluctuation that Laufer shows at about the 
same location in his Fig. 11. This stresses the need for considerable attention 

to a theory for d?R,/dx? (= -R,,9"), or o". 
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NOTATION 

Operators, Indices, Coordinates 

xX,yY,Z 

tole) 

(1) 

Cartesian coordinates. In any particular context they 
may have dimensions or be dimensionless (normalized 
by half separation of the parallel plate channel), When 
specialized for channel flow, x = the cross-channel 
coordinate, y = the lateral coordinate, z = the axial 

coordinate parallel to the mean flow. 

time 

Subscript representing the Cartesian coordinates. When 
an index is repeated in a term, it is summed by tensor 

convention, 

Covariant derivative (= 0/9x,) 

Alternatively, boldface is used to denote a vector V. 

Unit vectors 

Derivative with respect to x (= d/dx) 

d a : . 

a | 1+ V;l J,; = total derivative 

i-th component of velocity 

y-1 

Time average of the expression spanned by the symbol. 

A subscript that denotes parameters which are constant 

throughout the field. 

A subscript that denotes time averaged terms. 

A subscript that denotes fluctuating terms. 

Dimensionless del operator (= hV). 

734 



Theory of Turbulent Flow Between Parallel Plates 

Symbols (some with dimensions, some dimensionless) — in order of first use 

p 

p 

pL, 

density 

pressure 

shear viscosity, dilatational viscosity 

temperature 

entropy 

thermal conductivity 

ratio of specific heats (dimensionless) 

Laplacian velocity of sound 

thermal coefficient of volume expansion 

specific heat at constant pressure 

half separation of the parallel-plate channel 

kinematic viscosity 

any harmonic frequency in the field (e.g., rad/sec) 

frequency (Hz) 

spatial continuum parameter — ratio of mean free path 

to dimensions (= » /Ch — dimensionless) 

dimensionless frequency (= h22/v) 

temporal continuum parameter — ratio of molecular re- 

laxation time to the period of a fluctuation (= v/C? = 

82 -- dimensionless) 

dimensionless velocity components (= hV, 10.) 

dimensionless time (= v,,t /h?) 

dimensionless pressure (= h2p/u,.”,,) 

dimensionless thermal parameter (= «C2/Cp) 

dimensionless temperature (= epaheC 60 Te, ) 

Prandtl number (= ».Cp/k) 
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R, = dimensionless vector velocity, time averaged 

R, = the z component of the time-averaged velocity (the only 

component in one-dimensional channel flow), dimensionless 

R._ = the magnitude of the time-averaged velocity in the center 
of the channel (dimensionless, and thus the Reynolds num- 
ber of the flow field, based on half-plate separation and 

maximum velocity) 

P_ +P. = the time-averaged dimensionless pressure 

P._- gz = its form for one dimensional flow in a long channel 

P_. = the level of mean pressure in the field 

g = the constant dimensionless pressure gradient in the field 

[= -(4P, /dz)] 

5 + 9, = the time-averaged dimensionless temperature 

g = the level of temperature (assumed for the source, as an 
infinite reservoir, and for the long channel walls, as so 
ther mostatted) 

J = mean temperature deviations in the channel (assumed 

negligible) 

p(x) = the form of the time-averaged z velocity in channel flow, 
expressed as a deviation from its value in the center of 

the channel (i.e., R, = R,,(1 - 0)) 

R aoe dimensionless vector velocity, instantaneous fluctuating 

component 

Wo, = dimensionless fluctuating velocity components 

wr + ay + 5z = the dimensionless propagation phase for a fluctuation 

indexed by » as a harmonic. 

a = the dimensionless y propagation constant 

5 = the dimensionless z propagation constant 

= ee. 52 

R, = the dimensionless vector amplitude for a particular 

fluctuation indexed by ~. 

3h = dimensionless fluctuating temperature 
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dimensionless fluctuating pressure 

dimensionless temperature amplitude indexed by « 
(when written in fluctuation equation sets, the 1 sub- 

script may be omitted but is understood) 

P, = dimensionless pressure amplitude indexed by (when 

written in fluctuation equation sets, the 1 subscript may 

be omitted but is understood) 

U,V,W = the dimensionless x,y,z velocity amplitudes for a par- 

ticular fluctuation indexed by ~. 

q = 1/3 + rAQo/Ho0 

ut,y*t = dimensionless variables based on the friction velocity 

w = a functional form (= + 6R,) 

M. = a constant indexed by © (= w + 5R,,) 

a = indifferently used to represent a constant 

X,Y,Z = dimensionless amplitudes representing the fluctuating 

components of vorticity, indexed by ~. 

Daebibg.d = ees ibaa functions in the core (dimensionless — 
aie x glia: ed 4x) 

) 

@,8,C,) = amplitudes for core solutions 

a,,C,,a,,c, = characteristic functions in the boundary layer 

(dimensionless = e)71*, e°2*, e173", e°4*) 

A,B,C,D = amplitudes for boundary-layer solutions 

@ = wavelength 

S = Strouhal number 

APPENDIX -- SOME FINAL COMMENTS 

Since a number of readers were satisfied with the results obtained in the 

secular equation, but did not consider the argument by which boundary conditions 
were satisfied only for a single set at each wall (namely, for the incoming wave 

system, and not the dual incoming and outgoing system) fully transparent, it 
seems desirable to suggest how the result may be obtained by functions which 
are continuous across the entire section. This requires a suitable open form 
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for the mean flow. A simple form has finally been found. While not perfect, it 
may be considered one further element in a sequence of open forms. Expand 
the mean velocity distribution 

Ry = R,, [1-9] 

as 

R x 2M+2] py 2 = 2M 0 Reale a,x Ao 4.1 ApMso 

a four parameter family (except for R which is given) with boundary 
00? 

conditions 

w= al fon ex = 41 CRo/Ros =70)) 

g = 0 LOT x 3) (Ro/Re, = 1) 

1 1 dR, zx 
@ = fg/Ri¥ =4N for x= £1 Ge 

oo 

1 dR, 
Orne R. =-+N Or Xr eee ee = =-N e7R. R,. dx? 

It can be shown that the solution is 

Me 1 Ne 
I ae IR v= tne BN SEN NE 2 so oe ure 
as rat M- 1 M- 1 2 2 

(The earlier form used in [10] led to an erroneous value for the propagation 
constant 56 —not for \ — since the result is sensitive to the velocity distribution 

in the boundary layer.) 

This equation is a three-parameter representation of the mean flow, con- 
taining R,, the Reynolds number, g the pressure gradient, and an arbitrary but 
large constant M. 

We know is large (i.e., the boundary layer is thin) because we found a 

high peak in R,'' near the wall. 

By setting R,""' = 0, we can note where this peak occurs. It is found at 

he bam at po ge at 
2M + 1 M 

i.e., near the wall, if M is large. 
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However, we also know that the coefficient of the x? term is small com- 

pared to unity in turbulent flow. (As may be found in Laufer's data, it is an ap- 

preciable fraction, such as 0.2, 0.3. Thus for more precise perturbations, it 

may not be neglected. However, at the present stage of theory, we may disre- 

gard it.) Thus as an approximation, we may let the coefficient vanish 

N-2=M-1, 

so that a simpler two-parameter result may be obtained. 

- 3 

Re oRA. E pO Fasc sama *)x™ 
2 D) a 

Ne 

R 
oo 

At the present, this is the simplest relation that has been found that satis- 
fies the boundary conditions and yet is capable of fairly reasonable representa- 

tion of the mean flow. Thus it is a good starting perturbation for a self- 

consistent field study. 

Note that this relation contains only two constants, the "given'' Reynolds 

number R,,, of the field, and an as-yet-undetermined parameter g, which is to 
be determined finally as a function of R,,. As such, this relation has the very 
minimum number of constants. More complicated self-consistent expressions 

will have to determine additional constants. What is specifically involved at 
this point, is how much detail a priori can be involved in describing the bound- 

ary layer. 

For example, the form is ''wrong"' when compared with experimental data. 

It suggests that the "end" of the boundary layer, as marked by 9"', occurs at 

1-x=—. 

Laufer's three points suggest, more nearly, 

1 
Wim Si = 

4N 

Also, it suggests that the maximum value of 9" is about 0,8 N?; Laufer's data 
suggest 2.5 N?. However, what seems quite satisfactory in this form is the 
proper dependence on the power of N (= ¢/R,,) and the emergence of a correct 

order-or-magnitude estimate of boundary-layer parameters. 

Obtaining results from such self-consistent field theories (i.e., assume 

an n-parameter open form for the time-independent solutions, then use them in 

the inhomogeneous time-dependent equations to get the w indexed fluctuating 

components, and then compute the undetermined parameters of the time- 
independent solutions) is sensitive to the form of the time-independent solution 

assumed — here, the mean velocity distribution. Even the slightly extended form 
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1- 9 = 1 -. ax2™ + bx2P 

is not satisfactory. It can satisfy the » boundary conditions, but it is nota 

completely accurate enough description of the 9 function. 

The salient characteristics of the » function beyond its boundary conditions — 
to be noted experimentally — are the magnitude, location, and width of the very 

high impulse in 9'', and possibly even its slope at x = +1. For this there is no 

theory, none at least in a self-consistent sense. This is no trivial observation. 

Kraichnan, in private criticism of this work, called attention to the possible 
pertinence of the work of Landahl. Landahl pointed out the differences in our 

motivation and purpose, and kindly supplied material that he considered relevant 
from his work [14]. He makes therein an important point. He points up, validly, 

that the Orr-Sommerfeld theory, essentially obtained by eliminating pressure 
between the incompressible set of the Navier-Stokes equation and continuity, 

leading (in his terminology) to a result like 

(U-C) (9"-K?9) - Uo + i/aR (9"" - 2K20"+K2o)=0 [his Eq. (30] 

cannot or has not been correctly applied to turbulent fields. The essence of the 

matter, he states, is that in stability theory U" (our R'J) is assumed to be of 
order unity. This is fine for the laminar flow field, but far from true in turbu- 
lence. He points up that the results depend on U", and that values of U'' run up 

to the thousands, (on the basis of boundary-layer thickness). Thus, Orr- 
Sommerfeld stability theory is only valid for the transition from laminar flow. 
In the turbulent field, it is not correct. In order to be applicable, it must deal 
with the form and boundary conditions for U'' as well as U. However, this diffi- 

culty is intensified in Orr-Sommerfeld theory. Actually the Orr-Sommerfeld 

theory is embedded in the theory herein developed as part of the equation set. 
However, we do not "eliminate'' any variables, such as pressure. It is this 
elimination, by differential operations, that introduced U" (or our 9"). The 
original inhomogeneous linear equation set does not contain terms higher than 

first order in 9'. It is here that the theory of linear equations is not complete. 
A mathematical colleague pointed out that the results in Poole and other books 
on linear differential equations are not complete for inhomogeneous linear sets; 
that it is moot whether derivatives higher than the coefficients that appear in 

the original equation set appear in the solution. The standard theoretical course 

is the discussion of the transformed set of first order equations. To avoid re- 
lated difficulties, the earlier treatment [10] stumbled on a valid path, purely by 
necessity. 

The elimination of all of the variables but one (i.e., the reduction to one 
higher-order equation), in addition to possible ambiguities, leads to thousands 

of coefficients for the much higher ordered equation set for compressible flow. 
It was only in desperation that Frobinius-type series solutions were elected for 
exploration. It was quickly realized that the solution of the five-equation set is 

arrived at by a relaxation" of terms in the power series one at a time, by 

cycling through the equation set, with quite a few being developed before a cycle 
of repetition could be obtained. The second method, having then found these 
series summable essentially into modalities, was to then derive solutions by 
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"relaxations," equation by equation. (Find a solution that relaxes each equation 

at least one order in §?, and then continue to find higher-order relaxations. It 
was realized that it was essential to expand the perturbations in half powers, 

say of 1, 1/Vo, 1/o, ...; 1, V6, ...; 1, VB, ... since otherwise compensat- 
ing zeros might arise.) This mathematically was satisfactory. It avoids the 

very difficult question of straining one's detailed knowledge of o9'' other than its 

boundary condition. 

It is certain that the rigorous iterative task is best left to mathematicians. 
Thus, only crude but suggestive ideas have been thrown into our developments. 

The minimal requirement is to satisfy the »' and 9" boundary conditions on 
o. The second is to avoid stirring up too much trouble over the 9'' impulse. 
One perhaps may achieve this by a selected sequence of open forms ordered by 

a single parameter, i.e., the maximum value of 9". Let this be 9,'', and assume 
this to be large, located at x,, nearly 1. One might regard this as a fifth bound- 
ary condition on » (with the requirement that it be estimated self-consistently). 

Proceeding now to the task of building solutions, we may then take for the 
form of ¥, the following 

W =" (0) Ge oR, 

2CE7RE SS 1) 2e(R 
= wt SR, o[1- g/2R,, x ee Tee ae ok a 

ee 2G Rat) Z 2¢/R 
= My OND eX 2° + O(ea 2h yy 2 x ee 

= My - ORG, : 

(Note: Since ¢g * 0.02 R};75 is the required result, g/R,, = 0.02/R°-75 
has a value of approximately 2 and 4 for R,, = 500 and 1000. Thus, it is not 

sufficiently larger than 1 or 2 to permit disregarding 2R,,/g in the last term.) 

The working equation set [from Eqs. (6)] becomes, letting W = X + 5/a V, 

[D?-A-jY]U + qD [DU+j\/a V+j5X] -DP=0, 

[D2 --jw~] V + jaq [DU+jd\/a V+j5X] - joP=0, 

[IDA=A=j%) X= -KR og Us 

WU A/a SOX | “yO eX yobt efor ype jp — Bear 10 , 

Wo (D2 x= jou) T =2ejyokKyo U = (2eR oo D+O—1) el] X— 07a [22k oo D 

oo ag 20 aN a Oo) a) ea 

: N= 2 
yp = My - dR (ol M, = gay) ae ORs, : oy = roche) - x 2N 

wv |Z 'e) 

N= g/R ; 
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We lose very little —for the present purposes — to neglect the difference 

between [D2 - \ - jw] and [D2 - \ --jM,] and [D2 - \ - jM, + j5R,,0]. Thus, we 
will assume (a? = - jo-2). (The difference is first order in (low) Mach number.) 

[D2 + a2] U + qD [DU+ jA/a V+j8X] -DP=0. 

[D? + a2] V + jaq [DU+ jA/a V+ j5X] - jaP=0 , 

D2 as) X= oR. og Ue, 

[DU + jA/a V+j8X]- yB2gX - y882g/a V + yB2joP - B2joT= 0, 

i7o(D* + a2 tj (1-o) al T — 2ej)5R. 0 U=_[2eR, 0 Dt (yd elx 

=O/0, 12 20. Dt.) adi CIV tal iO R= 30., 

i.e., we will consider that the only salient perturbation comes from 9'. 
Examine this. 

In the Core (9' ~ 0) 

[D2 + a2]U + qD [DU+jA/a V+jSX] - DP=0, 

[D2 + a2] V+ jaq [DU+ jA/a V+ jSX] - jaP=0, 

[D?+a2]X=0, 

[DU + jA/a V+ 5X] - yB2 2X - ybf2g/a V+ y62joP - B2joT = 0, 

1fo [D2 + a?24+j (1-¢c) oT - (y-1) eX - 8/a(ys 1).8.V 4+ (y-1), ick Oy 

Except for the indifferent replacement of M, by , this is the same as Eqs. (8). 

Thus (to first order — anticipating the final results) two independent sym- 
metry solutions emerge: 

Usoys G7 A. Sim ax taAGla.c) OB, | sin.ax - 7d C, sin. dx 

+ jbD, sinh bx , 

No 2 -aaA, cos ax + j(1-0) aawB, cos ax + jaB2C, cos dx 

-aD, cosh bx , 

Xig = daA, COS axes, 

Tio = Gig) Ay) dagBy cos ax + oC, cos dx 

+ (y-1) #D, cosh bx 

Pag = JE Vee ic) Sag B7.B, GOS ax =) ji(@1—"o org) B?0C, cos dx 

+ wD, cosh bx 
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Us = ion, cos ax - A(1*o)'w 8; cos. ax + BdC, cos dx 

+ jbD, cosh bx 

Vio = 7aaA, sin ax + j(1-0) aawB, sin ax f jo82C 5. sun dx 

- aD, sinh bx 

X,9 = oaA, sin ax 

fee = o(y-1) dagB, sin ax + oC, sin dx 

+ (y-1) oD, sinh bx 

n= ja(y-c) dagh?0B, sin ax- jClk=o Gq) 670C, sin dx 

7 oD, sinh bx 

a2 X%-jw-A, d2 ®-jow-), baw A= Atot + 156% 4 j(1+2—4 + q) Arar. 
o 

These solutions are essentially the same as the previous core solutions. 

In the boundary layer (9' = +N, x = +1) 

[D2 + a2]U + qD[DU+jA/aV+j5X] - DP = 0 

[D?2+ a2] V + jaq [DU+jA/4V+ j5X] - jaP=0 

[D2 Fa7) xX =F eU 

I oO 

2 

[DU + jA/a V+ j5X] - yB2gX - yd Brey 4 yB2 jwP - B2jwT 
a 

2 [D2 + a2+ j(1-0)w]T F 2ejdgU - g [+2eD+y -1]X-<—g[+2eD+ y-1]V+ (y=1)j0P = 0) 

This is the same as Eqs. (9). The solutions were previously written in 

terms of exponentials as independent boundary-layer solutions. 

The first solution set should be transformable into the second solution set 
by perturbation. The present purpose would be to relate the constants for the 
core solution to the boundary-layer solutions, and second to derive, if possible, 
an explicit perturbation theory. 

In accord with [10], we can surmise that a convergent perturbation is of 
the form 

Ves V, cos Big Vi.fsin F' + vi, cos F', etc. 

an in-phase perturbation (v, cos— where V, is even when V, is even) and an out 

of phase perturbation (V, sin—where V, is odd when V, is even). The functions 
V,, V,, F' will depend on 9 and its derivatives, to first order in a first-order 
theory. (While the decomposition into F', V, and V, is not unique F’ is chosen 

for convenience, e.g., if 
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[D?+a?+ jdR,,9] V=0 

V= A [1+C,p+C,o" + ..*] “eos leeetyere fo 

+A [Do Dg" + ae sin aes fo] 

3 

+B [1+E.9+E,o sin ax+ 45 228 > fo| 

+B [Po Heo os et fs L 

It will be found, as in [10], that the solutions separate into odd and even 
solutions, and that both cannot satisfy the boundary conditions because of the 
irreducibility of cosh c,x. (Only sinh c,x can relax the secular determinant 
to zero.) 

1» and a, make Further, the large magnitude of a 

Sin a, 4 = 7j,c0S ay , 

because of the large complex magnitude of the arguments. Thus, the independent 
even and odd solutions are proportional to each other, except for the fourth mode. 
It is this relation which ultimately results in each of the two families of waves 
incoming to the wall vanishing independently. 

The program has not yet been carried through completely, so that the con- 

stants of integration for the core have not been fully related to the boundary- 

layer constants. However, the independence of the two solutions of different 
symmetry is clarified. 

Another task that had been neglected was the demonstration of a second 
"stable" branch for turbulence, namely, a law of mean flow other than the g = 
R,, law of laminar flow. 

This can be obtained crudely as follows. 

Roughly, the boundary-layer thickness is of the order of the limiting eddy 
size. Our theory says 

— h/ Bw, 

If we use the new expression for 1 - » this had a peak in RY at R}' = 0. 
Whence x? = 2N- 3/2N-1 or 1- |x| = 1/2N. (Laufer's data show 1-x = 
1/4N instead.) 

b/h. = 1/Bw, = 1- |x|, = 1/2N 

so that 

Ba, = 2Ni 
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but 

pi GRP). 245 «3 

thus 

B 
ERS 

g 8 oo 

or 

~ 7) és) 
g fav) 10 ee . 

This is not g = 0.02 R?/*, but it shows that the deviation from ¢g proportional 
to Re, the laminar flow branch (1) can come from a limiting frequency, and 

(2) can come from an elastic parameter 6 # 0. 

One may note that the estimate of critical Reynolds number 

g~ aaa 

did not explicitly depend on compressibility, whereas now the turbulent branch 
does. This is consistent with the concept that it is not impossible for a critical 

transition to take place over a range rather than at one critical Reynolds number. 

Finally, with regard to intermittency: The essential matter is the fourth 
mode. It has two independent forms -- sinh (c,x) or cosh (c,x). The two inde- 
pendent secular determinants of differing symmetries must be made to vanish for 
a continuous range of ~. This was accomplished by letting c, approach zero, 
leading to the specific secular result used, Another possibility has suggested 

itself. 

The inquiry in this paper dealt with the question: Does there exist a set 

for the fluctuating components of the field that represents stationary limit cy- 

cles? These were probed at by a describing function technique in the form 
ei(aytéztor) gy §, w real. An affirmative answer was supplied, and a set. 

was demonstrated. The equation set cannot support any other stationary fluc- 

tuating systems. 

But turbulence is not made up of stationary fluctuations — it is locally epi- 

sodic. It is only in the mean that the field is a stationary stochastic one. How 
are the episodic fluctuations to be found? (So far we have a family whose phase 
are stochastic, not the frequencies or amplitudes.) We propose a new answer. 

It is related to the discarded solution set of opposite symmetry. 

It is true that the second set cannot exist as a stationary set. It cannot 

satisfy the boundary conditions except by null amplitudes, basically because 

cosh c,x # 0. 

@ 2IS) AK= B2w2 + [an imaginary part] . 
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However, another possibility exists. The first family has produced a stationary 

fluctuating set marked by a, 5, ». These wavelets — radiating from each wall in 
a certain "regular" manner (actually stochastic in phase, which really makes 

each subsequent chunk stochastic) — then can act as coupled sources for the 

second set. However, for this set a, 5, » are not unchanged. 

We may assume that a and § are unchanged (the size of the radiating ele- 
ment has been fixed by a scale) but that a complex «, 

w,.= wt Kj 

is developed. Thus, the second family becomes e/(«¥**2+#7)*K7 | with the previ- 
ous amplitudes (via reflection). This new instantaneously nonstationary field 

(since it has attenuating and growing components) represents a stochastic field 

that ''fluctuates'' around the mean fluctuations. Namely, this is a clue to the 
theory of the fluctuation band width associated with each ''stationary" limit cycle 
system that crosses through the field. This family instantaneously can create 

the horribly complex picture of the turbulent field. 

Note this field cannot come into existence except as it is created by the 
stable limit cycle field. Thus our inquiry is 'justified."' By this verbal "picture," 
however, we have shown how the three components of the turbulent field can be 
arrived at by a decomposition: namely a mean field; stationary limit cycles; and 

a fluctuating band width for each spectral line. I believe that many other non- 

linear field quantizations arise by related mechanisms. 

In conclusion: Thus we have shown 

(1) Frequency limits to the spectrum of turbulence. 

(2) A better than order of magnitude estimate of the fluctuating amplitude. 

(3) Rough estimable form for the mean velocity distribution. 

(4) Estimate of the critical Reynolds number. 

All consistent with this self-generated standing and wave system, I have sug- 

gested a "reason" for the apparent random nature for the fluctuating field, rather 
than this estimated "stationary" field (albeit with the "same" spectral 

characteristics). 

In this crude but suggestive fashion, a deterministic nonlinear theory for 

turbulence has thereby been proposed. 

SUMMARY 

The compressible equations of hydrodynamics are investigated for condi- 

tions under which self-sustained propagative primitives would persist for the 
particular boundary value problem of turbulent flow between parallel plates 
under a constant pressure gradient. This requires assuming a form for the 

mean velocity distribution that satisfies the boundary condition. It is shown 
that an extra condition other than the equality of pressure gradient and viscous 
shear (proportional to the velocity gradient) at the wall is required. As in 
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laminar flow, the gradient and the second derivative must be related. This dual 

defines a region near the wall that can be identified as a boundary layer. (Ap- 
proximately out to y* = 2 in the von Karman logarithmic presentation.) It is 

in this region that vorticity is developed in the form of "acoustic" eddies that 

radiate into the core region. The frequency range for these eddies can be esti- 

mated by both a low frequency cut-off and a high frequency cut-off. The fre- 

quency range seems to fit Laufer's measured spectrum of turbulence for paral- 

lel plates. The high-frequency end seems compatible with his limiting eddy 
size, and the low-frequency seems to fit what might be considered loosely to be 
von Karman vortices, namely, an alternative relaxation, shedding, or intermit- 

tency measure for the flow field. Turned around to estimate the critical Reyn- 

olds number, a value of about 750 is computed, based on the plate separation 
and center mean velocity. A magnitude of fluctuation velocity amplitude in the 

range 1-10 percent is crudely computed. It is believed that some preliminary 

modelling of processes pertinent to turbulence in such a field has been achieved. 

Further, it would appear that the method of attack could be extended to other 

turbulent fields. 
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DISCUSSION 

K. Wieghardt 
Institut fiir Schiffbau der Universitat Hamburg 

Hamburg, Germany 

Experimentally the same critical Reynolds number has been found for water 

and air. Are you sure that your theory would also give critical Reynolds num- 
bers independent of the speed of sound if no experimental data were used? 

* * * 

REPLY TO DISCUSSION 

A. S. Iberall 

Yes. In fact one of the self-consistent and thereby validating facets of this 

theory is that the compressibility relation involving water leads to the same re- 

sults for air. In other words, we are predicting something about how frequency 
results for air and water are transformed for comparable Reynolds number de- 
termined turbulent states. 

In the paper, two estimates are made of the critical Reynolds number. One 

uses no experimental data for the estimate, the other does. 
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(1) Estimate from «, = 100: 

g(% 772) =625 

This result, based on the low-frequency cutoff, emerges as a pressure 

gradient condition (g = fRe? where f = the friction factor). Since the friction 

factor is the same function of Reynolds number in incompressible and com- 

pressible flow, in nonsupersonic flow, then the gradient similarly is the same 

function of Reynolds number. Thus, by this argument there is no difference 

between the results for compressible and incompressible flow. The result did 
not depend on experimental data. 

More fundamentally, where does the «, = 100 criterion come from? The 
parameter « itself made its appearance in the small-amplitude theory as a 

damping parameter, even though proportional to frequency. As one attempts 
to push the fluid back and forth at increasing frequency (or rate), one finds a 

propagation parameter that is at first attenuative. It depends on viscosity. At 

sufficiently high rate, an elastic "resonance" can come into existence. This 
is true whether for gas or liquid. There is a critical value of » (= 100, where 
«w = h20/v depends on geometry -h-, viscosity -v-, and frequency -{-, but 
not on the velocity of propagation) at which the propagation is elastic. It does 

not matter how high the propagation velocity is, as long as it is finite. 

(2) Crude estimate from the Strouhal number s. As an approximation, 

we wrote 

where the number 2 depends on the method of modelling equivalence among 

fields of different geometries. We assume that the sudden appearance of a sus- 

tained Strouhal number as Reynolds number is increased is associated with the 
appearance of a von Karman-like vortex street shedding patchily from wall to 
wall into the core. By assigning a numerical value (from wind tunnel data ~ 
assuming that the same Strouhal number would be found for water tunnels) 
then the critical Reynolds number at which », = 100 would occur simultane- 
ously gives the critical Reynolds number. 

The assumption here is that the critical Strouhal number does not depend 

on the velocity of propagation. 
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NUMERICAL EXPERIMENTS ON CONVECTIVE 

FLOWS IN GEOPHYSICAL FLUID SYSTEMS 

Steve A. Piacsek 
University of Notre Dame 

Notre Dame, Indiana 

INTRODUC TION 

In the last two decades meteorologists, oceanographers, and astrophysicists 

have been turning increasingly to the use of model experiments, both theoretical 
and in the laboratory. In analogy with the wind tunnel modeling of aerodynamicists, 
they hope to simulate the complicated motions exhibited by planetary and stellar 
fluid systems by studying flows on a reduced scale, but being governed by the 

same nondimensional parameters. These parameters depend on the properties 

of the fluid, the imposed density contrasts, rotation of the container correspond- 
ing to that of a planet or star, dimensions and shape of the container, and, in the 

case of electrically conducting fluids, imposed magnetic fields corresponding to 

planetary and stellar fields. 

The advantages of model experiments are the strict control that can be exer- 
cised over the parameters determining the flow, and the possibility of isolating 

the several concurring processes in order to study each separately. The disad- 

vantages include working with fluids that do not approximate well some of the 
natural systems, rigid boundaries that exert considerable control over the flow 
but often have no counterpart in the geophysical processes, and the inability to 

produce a spherical gravitational field in the laboratory. Furthermore, experi- 

mental observations on flow details can be obtained only with difficulty, particu- 
larly in the boundary layers. Visual studies using injected dyes and dye crystals, 

and the use of interferometers and hot-wire probes give in many instances only 
a qualitative or semiquantitative information on the velocity fields, particularly 

in the case of liquids. Though reasonably accurate temperature measurements 
have been obtained using thin thermocouples, even in the boundary layers, the 
flow is known to be disturbed to various degrees by such probes or array of 
probes. And because of the highly nonlinear nature of the governing equations, 
purely analytical approaches have been made only with great difficulty, and only 
for a limited range of the relevant nondimensional parameters. To overcome 

these disadvantages, geophysicists have begun to rely more and more on numeri- 
cal experiments, made possible by the advent of large and extremely fast digital 

computers. 

Initial efforts in modeling fluid motions in geophysics were discussed at a 
symposium at the Johns Hopkins University in 1953 (proceedings edited by R. 
Long); at this meeting, no numerical experiments were discussed as yet. Ata 
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recent colloquium at the National Center for Atmospheric Research in Boulder, 

Colorado, several numerical experiments modeling some aspect of geophysical 
fluid dynamics were presented [proceedings edited by G. M. Hidy (1966)]. In 

addition, in the last few years many articles have been published on numerical 
experiments concerned with specific model problems, or with specific numeri- 
cal methods appropriate to such flow problems. 

The model experiments that numerical experiments have so far been 

mostly concerned with may be divided into four groups: 

1. Convection between parallel vertical surfaces that are maintained at 

different temperatures, in the absence or presence of rotation; 

2. Convection between parallel horizontal surfaces that are maintained at 

different temperatures; 

3. Convection inside cumulus clouds; 

4. Wind-driven ocean circulations. 

The results of previous studies on these problems will be discussed in the . 

section below, where recent numerical results for a few specific problems are 

also presented. A review of studies on numerical methods, mostly centered 

on two-dimensional incompressible flows, will be given in the concluding 
section. 

RESULTS FOR SPECIFIC MODEL EXPERIMENTS 

A. Thermal Convection in a Rotating Cylindrical Annulus 

This problem considers the convective flow of a liquid contained in a verti- 

cal cylindrical annulus, and undergoing rotation about the cylinder's axis and 
having differential heating in the horizontal. The temperature contrast is ap- 
plied by maintaining the vertical cylindrical walls, assumed to be perfect con- 
ductors, at different but uniform temperatures. The bottom surface of the 
container and the free top surface of the liquid are considered to be thermal 

insulators. 

The annulus experiments were introduced by Hide (1952, 1953) in the hope 
- of leading to a better understanding of convection in the earth's liquid core and 
the related generation of the earth's magnetic field. The resultant flow phe- 
nomena resembled those obtained in a rotating dishpan by Fultz (1953), whose 
experiments were designed to simulate atmospheric motions. In both cases 
the observed flow patterns appeared to have their counterparts in the general 
atmospheric circulation, and to have similar physical processes among their 
causes. Thus, the axisymmetric flow seemed to resemble a Hadley cell, pro- 
posed by Hadley (1735) to explain the general trade winds, and to be due to 
deflection by Coriolis forces of the north-south convection currents into zonal 

(east-west) motion. The nonaxisymmetric flow regime seemed to resemble a 
Rossby (1949) wave pattern in which finite amplitude waves propagated about 
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the axis, similar to the Rossby waves found superposed on the zonal atmos- 

pheric circulation. The causes for both the laboratory and atmospheric waves 

are the growing perturbations due to baroclinic instability, as discussed by 

Lorenz (1955), Eady (1949), and Charney (1947). Recently, similar phenomena 

have been observed in the circulation of the solar atmosphere by Ward (1965), 

adding astrophysical significance to these modelling experiments. 

Hide (1958), Fultz (1959), and Fowlis and Hide (1965) have studied the transi- 
tion between the symmetric and wave regimes, and found that below a certain ro- 
tation rate no waves can occur. Above this critical rotation rate the flow is sym- 

metric for very small or very high temperature contrasts, with waves forming 

for intermediate values. The value of the critical rotation rate and the range of 

temperature contrasts for which waves occur depends on the geometry of the 

container and the properties of the fluid; the latter also depend on the actual ro- 

tation rate. They also found that the number of lobes forming the wave increased 
with increasing rotation, but decreased with increasing heat contrast. Theoreti- 
cal studies to predict the stability curve in parameter space has been performed 

by Brindley (1960), Lorenz (1962), Barcilon (1964), and Merilees (1967). Although 
they obtained a general qualitative agreement with the experimental curve, a 

quantitative agreement left much to be desired. 

A detailed laboratory study of the temperature field and heat transfer, along 
with qualitative velocity measurements, has been performed by Smith (1958), 
Bowden and Eden (1965), and Eden and Piacsek (1968), for the upper symmetric 
regime of flow (large heat contrast). These studies showed that the flow set up 

strong boundary layers and a strong, stabilizing, vertical temperature gradient. 
The isotherms were found to be horizontal in the interior for the case of small 
or vanishing rotation rate, and to slope upward to the cold wall for high rotation 
rate. There was a noticeable transition from stratification-controlled flow to 
rotation-controlled above a critical rotation rate. A reversal occurred in the 

radial temperature gradient near the cylindrical walls, and this effect disap- 
peared gradually for increasing rotation rates. At any given radial distance 
from the walls, the temperature deviation from the respective wall temperature 

was found to be an exponential function of height over a major portion of the 
flow, including the boundary layers. This variation with depth was different for 
the high and low rotation cases, indicating the transition between flow regimes, 
and also in the upper and lower regions of the fluid, indicating the possible ex- 
istence of two convective cells. The experiments also revealed the strong effect 
that the cylindrical geometry has on the flow: the height at which the mean iso- 
therm traversed the gap was found to occur close to the bottom, and the heat 

transfer varied with rotation as log (1/3/2), 

To obtain a quantitative picture of the velocity field and the extent to which 

the different transport processes contribute in the various regions of the flow, 
Piacsek (1966, 1968), Quon (1967), and Williams (1967) independently have car- 
ried out a series of numerical experiments in the axisymmetric regime of flow. 

All of Quon's results and all but two of Williams' applied to flows with a rigid 

lid in contact with the top surface of the liquid. Since the above laboratory ex- 

periments were performed with a free top surface, only the relevant cases of 

Piacsek and Williams will be discussed. 
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The relevant equations of momentum and heat transport are formulated in 

accordance with the following assumptions: 

1, The z axis of the cylindrical coordinate system coincides with the axis 

of the cylindrical walls. 

2. The rotation vector 2 is assumed to point in the positive z direction, 

and the gravitational acceleration g in the negative z direction. 

3. The boundaries of the annulus are defined by the cylindrical surfaces 
r = a and r = b, and by the horizontal surfaces z = 0 and z= d, respectively. 

4, The motion is described in a rotating system, so that all velocities 

represent motion with respect to the cylinders. 

5. Only small rotation rates are considered, so that centrifugal body forces 

may be neglected. 

6. Only small temperature contrasts are considered, so that the variation 

of the coefficients of viscosity and heat conductivity with temperature may be 
neglected, and the usual Boussinesq approximation concerning the density of an 
incompressible fluid in natural convection may be applied, i.e., density varia- 

tions are neglected everywhere except in the gravitational body force term, 

giving rise to buoyancy effects. 

Taking the cylindrical coordinates (r, 9, z) with the corresponding unit 
vectors t, 9, z, anda velocity vector u = (u, v,w), we may write the equa- 
tions of state, continuity and momentum, and heat transport as: 

p= py{1- a(T-T))] = P9(1- aT, ) (1) 

Ve ues 0 (2) 

3 3 3 
Et Bey ee Wee Wee ee ees Ve le OO) (3a) 
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where T, is defined by Eq. (1), T, is the ''mean" temperature (Ty, + T,)/2 and 
p, the corresponding density, and p is the dynamic pressure (total minus 

hydrostatic). 
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Since the experiments were performed on axisymmetric types of flow only, 

3/doq of all quantities vanishes. Then the equation of continuity, Eq. (2), re- 

duces to 

1 x 
a ara (5a) 

Oe po al eS (5b) 

Cross-differentiating the first and third component of Eqs. (3) to eliminate 
p, and introducing the azimuthal component of the vorticity 

 3u ow 

oe (6) 

we obtain 

0€& 0 3 Oat ou 
— +— (u + — (w&) = va(&) + —[(— + 20v) - ag— , 
Te a ae So ai ( r an (7) 

where we used the equation of continuity to obtain the left-hand side, and a is 
a cylindrical diffusion operator defined by 

HEAR ye oe See 
OG Septet ag” (8) 

Furthermore, we may note that 

E= ac) . (9) 

We may introduce the following scaling now: 

r="(b="a)'r’ 

A= (ea 

(10) 
tie Cpa ta 1 SATA 

Civ) = [ae Td /20¢b-— a) = (ur ov) s 

Then, from (5a), 

a d si ea peat 
oi (b- a) “ W : (11) 

Equations (4), (8), and the second component of Eqs. (3) may then be written 
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AT:-d 
ale se v ee (15) 
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and the operator a includes the geometric aspect ratio 

Ci 32 d 
CS = N26 = y iN = 16 

or! Or oz? b-a ( ) 

The boundary conditions on the system are taken as follows: 

1. At the rigid walls of the container all velocities vanish; hence both the 
normal and tangential derivatives of » vanish, as does v. 

2, At the top free surface the normal velocity w and all stresses vanish. 

This is equivalent to a "frictionless lid" approximation, and is designed to 

eliminate external gravity waves and centrifugal effects on the surface. 

3. On the conducting cylindrical surfaces, the temperature is assumed to 
be uniform; on the horizontal surfaces no heat flow is assumed, 

4, Since there is no in- or outflow into the annular cavity, the stream func- 
tion ¥ may be set equal to zero on all surfaces. 

Before we write down the final set of equations that was programmed for the 
computer, we must note that the advective term involving ¢ is written as V-ué, 

whereas those involving v and T are written as (u-V)v and (u-V)T, respec- 

tively. The former is referred to in numerical weather forecasting as a ''con- 

servative" or ''divergent" form, because its integral over r and z will reduce 
to integrations on the boundaries only; furthermore, its finite difference ana- 
logue preserves this property with respect to summation over the lattice of 
gridpoints. In order to throw the remaining advective terms into a ''conserva- 

tive'' form, we multiply through Eq. (13) by r?, and Eq. (14) by r, respectively, 
and obtain 

om 
ae + @ V- um = €P(m) - ur? (17a) 

oT te ier 1S fs 
Sete Ne oC) (17b) 
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where m/r = vr is the angular momentum about the cylinder's axis and T = Tr. 
P and S are cylindrical diffusion operators defined by 

3 as a 
P=— r3 — —+ \? — 

or or r3 oz2 (18a) 

3 1 32 S orca Gh ee 
ae ‘ Spies Ae (18b) 

Finite difference versions of Eqs. (9), (13), and (17a,b) were programmed 
for a digital computer; the appropriate numerical schemes for differencing the 

individual terms and for iterating the resulting system of nonlinear algebraic 
equations are discussed in the concluding section. 

The results are displayed in Figs. 1, 2, and 3, and are for the case of © = 
75,6 —91.0 < 1077, = 2, ¢ = 7, and a'“=a/(b-a) = .67. Figure 1 shows 
a cross section of the annulus, Fig. 2 the streamlines, isotherms, and isolines 
of the zonal velocity, and Fig. 3 the behavior of the temperature deviation from 

the hot-wall temperature, as a function of height at the radial midpoint. 

Fig. 1 - Cross section of 

the annulus 

In general, the results agree with the experimental results. Figure 3 
clearly shows the exponential behavior of the quantity 5T = T,, - T(r,z) in the 

upper region of the flow, and a comparison with the isotherms in Fig. 2(b) 

shows that this region coincides with the large isothermal region above the 
T = .6 line, approximately. The curved portion plots to a straight line on 
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DEPT 

Fig), 3i- Plot.of log (T},-T) 
vs. Z at the radial mid- 
point of the annular gap 

ordinary graph paper, and corresponds to the central "bundle" of isotherms 

between 0 < T < .6. For lower rotation the central "bundle" occupies a con- 
siderably larger portion of the interior region, confining the exponential region 
to a smaller region near the top; for higher rotation, the bundle becomes nar- 
rower and steeper. Both the cylindrical geometry and rotation contribute to 

this behavior of the temperature field, the former being responsible for the 
strong asymmetry and the latter for the bundle formation. The isotherms and 

streamlines are parallel only in certain regions of the flow, indicating that 

thermal conduction is important throughout the gap. The isotherms display 

clearly the "humps" found in the laboratory experiments, and even bigger humps 
are found in the streamlines, indicating a weak reverse flow outside the bound- 
ary layers. If we denote by d, and d, the distances from the top and bottom, 
respectively, at which the mean isotherm T = 0 crosses the radial midpoint, 
we find that their ratio has the value duvide = 3.3. This is considerably higher 

than the ratio b/a = 2.5 that may be shown from simple geometrical arguments 

to be the required value of di ae For larger rotation rates this value is indeed 

approached, but for lower rotation rates it becomes much higher. An inspection 

of Fig. 2(c) shows that the zonal velocity reverses at some depth in order to 
conserve torques about the axis. Furthermore, most of the shear in the v field 
is concentrated at the upper part of the inner cylinder and the rigid bottom, in- 

fluencing strongly the entrainment into the sidewall layers. 

The theory of stratification-controlled flow in a nonrotating cavity has been 

worked out by Gill (1966), and for a rotating annulus by McIntyre (1967). A 
simple theory for the existence of the humps in the isotherms, their variation 
with rotation, and the large value of the ratio d,/d, has been put forward by 
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Eden and Piacsek (1968) for the case of small rotation rates. It may be shown 

that the reversals in the boundary layer temperature gradient are related to 

the curvature of the vertical velocity profile, such that its points of inflection 

occur where the temperature equals the horizontally averaged temperature at 
that height, i.e., where the "relative buoyancy" vanishes. For increasing rota- 

tion, the Coriolis force deflects any radial motion into zonal motion and sets 
up a vertical pressure gradient opposing the buoyancy force, so that the con- 

vective flux decreases in the boundary layer and fluid particles eject sooner, 
The net result is greater warming and cooling by conduction near the cylindri- 
cal walls, and a shrinking of the isotherms to a "bundle."' So far, no satisfactory 
explanation has been found for the exponential behavior of the temperature with 

height, nor for the peculiar dependence of the convective heat transfer on rota- 

tion; for .1 < 2 < .9rad/sec the quantity N - 1 is found to be ~log(1/3/?), 
N being the Nusselt number (Eden and Piacsek, 1968, Piacsek, 1968), whereas 
for 1.3 < 9 < 2.1 rad/sec it is found to be ~1/0 (Williams, 1967). The large 
ratio of d,/d, is attributed to the different entrainment rates into the cold 
and hot boundary layers. 

The strong boundary layer seen on the bottom surface is due to the squeez- 

ing of the radial motion out of the core region by the rotation to boundaries 
where friction enables the fluid to convert zonal into radial motion again. This 
layer is similar to the Ekman layer found near the top of wind-driven ocean 
currents, and to those found during spin-up time near a rotation disc. Fora 

discussion of these layers, the reader is referred to Barcilon (1964) and 

McIntyre (1967). 

B. Convection in a Semi-Infinite Fluid Cooled from Above: 

Penetrative Convection 

This problem considers the convection currents that arise in unstable fluid 

layers that are bounded below by either positively or neutrally stable layers. 
In the former case, the stable layers are penetrated to a certain extent by the 
rising or descending thermal columns in the unstable regions, but they them- 

selves remain stable, on the whole. In the latter case, the convection currents 
will sooner or later involve all of the accessible fluid volume. 

Many phenomena in nature exhibit a similar process — atmospheric thermals 
and cumulus towers impinging on stably stratified layers above, including inver- 

sions and the tropopause; evaporation-driven ocean currents penetrating into 
lower regions stably stratified by solar radiation, or seasonal cooling effects 

reaching down to the thermocline; convection in the sun and stars in layers 
where radiation causes a superadiabatic temperature gradient, bounded both 
below and above by stable layers. Often the penetration currents are coupled 

to larger-scale general circulations, and their mutual interaction is of great 

interest to geo- and astrophysicists. 

Ball (1954) and Ewing (1960) have studied the difference between the radia- 
tion temperature of the ocean's surface and the temperature of the water below 
the surface. Ball has found a difference of ~.25°C in the top cm or so of the 

surface layer; Ewing and McAlister found ~.60°C in about 15 cm. In addition, 
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the latter have observed that when the surface was disturbed the radiation tem- 
perature rose to that of the lowered thermistor, but it returned to its normal 
value in about 5 seconds. From this cooling rate they estimated that the cold 
layer must be ~1 mm thick. 

Since observations on such a small-scale phenomenon are difficult to carry 

out at sea (because of waves, instrumentation, etc.), several workers have at- 
tempted to isolate the phenomenon in the laboratory. Spangenberg and Rowland 
(1961) studied evaporative cooling by taking schlieren photographs simultaneously 
from the top and side of a tank of water. They found that the cooled surface 
layer collects along lines, producing thickened regions which become unstable 
and plunge in vertical sheets. These lines appeared to have no fixed dimensions 

or geometric pattern, and their number per unit area appeared to depend on the 
cooling rate rather than on the depth of the container, From the experimentally 

observed nonlinear temperature profiles with depth, they have deduced a local 
Rayleigh number of 1193 when convective circulation was started, and a Rayleigh 
number (see the next subsection in this paper) of 102 for maintaining an estab- 
lished circulation. The cells were always changing their shape and size, with 

some drifting about, some fading away, and others replacing them, suggesting 
some kind of turbulent behavior. The circulation in the cells was primarily 

two-dimensional and appeared to be independent of the depth of the water layer 

for depths greater than 1 cm. However, some temperature deviations were 
measured as low as 4 cm below the surface. Foster (1965a) performed similar 
experiments in which he measured the top surface temperature by an infrared 

radiometer, and the onset of convective behavior by visual observations of a 
thin layer of ink at the bottom of the water. He found that at large Rayleigh 
numbers the time needed for the commencement of convection and the horizontal 

wave number of the disturbances amplified most are independent of the depth of 

the fluid layer. The convection cells appeared as roughly circular or polygonal 
white spots in the ink layer, underneath descending columns of water. Berg, 
Boudart, and Acrivos (1966) performed an elaborate study on natural convection 
in pools of evaporating liquids. They found certain patterns to be due to surface- 
tension-driven instability, and others due to buoyancy-driven motion. Water be- 

haved differently from all the other fluids investigated; no convection at all was 
observed until the depth of the layer reached 1 cm, and then it occurred in 
sheets only. This anomalous behavior was attributed mostly to surface contami- 
nation by surface-active agents which always seem to be present in water. Fos- 
ter (1965b) has performed a theoretical analysis of the stability of an initially 

homogeneous layer of fluid which is cooled uniformly from above, and found that 
the onset time of the convection and the horizontal wave-number amplified most 

are independent of the depth, but depend on the Prandtl number and the cooling 

rate, thereby agreeing with the experimental results. 

Whitehead and Chen (1967) have studied the stability and finite amplitude 

motion of a thin, thermally unstable fluid layer, bounded above by a rigid sur- 
face and below by a stably stratified body of fluid. Observations made by top 
and side shadowgraph views showed that the flow consists of intermittent jets 
and sheets plunging downward. For stronger cooling rates, more sheets were 

seen, similar to Spangenberg and Rowland's results. Gribov and Gurevich 
(1957) have made a theoretical investigation of instabilities in a fluid layer that 

is bounded above and below by stable fluid regions, but into which the 
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disturbances were free to propagate. They have found that the value of the criti- 

cal Rayleigh number in this case is 6.5 times smaller than the value obtained in 
the usual case. Veronis (1963) has also studied penetrative convection in a case 

where an unstable layer of liquid was bounded above by a stable region. He 
found that a finite amplitude instability sets in at values of the Rayleigh number 

below critical (given by the linear theory). He argued that any finite amplitude 
motion which mixes liquid above and below the upper boundary of the unstable 
layer would create a deeper layer that would be gravitationally more unstable 

than if it were in a conduction state only. 

In view of the two-dimensional nature of the penetrating sheets, the numeri- 
cal experiments were confined to two-dimensional flows only. The relevant 
system of equations were left in dimensional form. They may be obtained from 

Eqs. (7), (4), (9), and (5a) by neglecting curvature and putting ! = v = 0: 

0€ ie) fe) * ae. oT 

Bt xoSOT i fide Codi al natios em me 
OL eine g i 
BH, ada noida GAT an Meh 

; ow ow eo = V2 - ee al E€=Vw~, us= ia Sy (21) 

ou z Ow | 0 

Axe Seon a3) 
where we used Eqs. (22) to put the left-hand side of Eqs. (20) into conservative 
form. The volume of the fluid is assumed to be contained between the surfaces 
x = 0 and L, and z = O and D. The results presented here were designed for 
the following cases: 

1. An initially homogeneous rectangular volume of fluid is subject to con- 
stant heat loss at its top surface. The dimensions of the volume are so chosen 
that a semi-infinite region is simulated: the lateral dimensions are such as to 

allow two to four cells to develop, and the vertical dimensions are anywhere 

from 10 to 50 times the boundary layer thickness at the cooling surface. All 
the boundaries are assumed to be "frictionless lids" (i.e., at which only the 

normal velocity vanishes), and all except the top surface are assumed to be 

thermal insulators. Based on the results of laboratory experiments, cooling 

rates are so chosen that the thickness of the thermal boundary layer at the top 

is small compared to the total depth of the fluid. 

2. A situation similar to that described above, but with the bottom surface 
cooled at the same rate as the top, to set up a stable layer near the bottom. 

The procedure was to solve the equation of thermal conduction until the 
cooling effect penetrated to a depth judged to be sufficient to support convection. 
Then the temperature field had a perturbation added to it of the form 
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De, 2) SA coset 2mx7by Cl = 67 27H) (23) 

to start the convection. The scale height H is so chosen that the perturbation 

is strongest where the fluid is most unstable. The relations between the time 
elapsed in cooling and the amplitude of the perturbations on the one hand, and 

the growth rate and the final form of the convection cells on the other, have not 
yet been worked out. 

The results for Case 1 are displayed in Fig. 4(a) and 4(b) and Fig. 5, for 
L = 3cm, D = 1.5cm, 90T/0Z|,-p = 1.5°C/cm, and water as the working fluid 
(v = 1.0 x 10-2 cm?/sec and « = 1.4 x 1073 cm?/sec). A time of 16 seconds 
elapsed before a perturbation of n = 1, A = .001, and H = 1.5 cm was applied. 
It was found that the isotherms are a much more sensitive indicator of the con- 
vective motions than the streamlines; this is not surprising if we consider that 
the diffusion coefficient of friction is ~7 times that of heat, so that it will take 
~7 times longer for all thermal fluctuations to die out than for the velocities. 
Similarly, the temperature field is concentrated into narrower regions, for the 
small thermal diffusion is ineffective in smearing it out. 

Figures 4(a) and 4(b) represent the time development of the temperature 
pattern when conduction gives way to convection. The times elapsed between 

frames are listed in the figure captions. The last two frames for temperature 

and streamline in Fig. 4(b) are taken at t = 454 seconds. All six frames of 
isotherm development in this figure had the same (visible) streamline pattern 

associated with them (shown in the bottom frame). At the onset, a heavy blob 
of cold fluid forms which penetrates to the bottom and is reflected by the rigid 

surface. When the reflected upward-moving thermals join the top layer again, 

a strong "finger" of cold fluid forms which again descends to the bottom and is 
reflected; however, at this time, two weaker fingers develop also at the side- 
walls, and the streamline pattern shows that at this time the two-cell pattern 
breaks into a four-cell pattern. After this time there are three descending and 

two ascending columns. The foregoing pattern is repeated many times, with the 
"finger'' growing weaker after each cycle until the pattern shown in the final 
frame eventually emerges. It was also observed that the period of the oscilla- 

tions increased steadily; this can be understood if we assume the oscillations 

to be some form of internal gravity waves whose frequency depends on the 

average vertical temperature gradient. The total kinetic energy and absolute 
vorticity have converged to four significant figures, yet small but nevertheless 
visible changes occurred in the isotherms. Though a truly steady state in this 
problem can never be achieved as the mean temperature of the system decreases 

linearly, the location of this temperature becomes a constant and the horizontally 

averaged temperature as a function of depth also becomes a constant. Thus a 

"quasi-steady" state is possible in the system, but one has to iterate a very 

long time to damp out the thermal fluctuations. 

Figure 5 shows the vertical variation of the horizontally averaged tempera- 

ture. In a significant portion of the flow the temperature gradient is reversed: 

this can be traced to the impinging cold stream on the bottom and its consequent 
spreading. Because of the relatively weak nature of the upward-moving com- 
pared to the descending columns, a fluid particle spends a greater time in the 

former regions and achieves its highest temperature only on the upward 

passage, 
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Spee 

Fig. 5 - Variation of horizontally 
averaged temperature with depthfor 
experiment B 

The results for Case 2 are presented in Figs. 6 and 7, for L = 3cm, D = 
4.5cm, 3T/9z|,-) = 3.0°C/cm, and water as the working fluid. The perturba- 
tion was applied only after 2 seconds, and had n = 1, A = .001°C, and H = 
1.5 cm. Since this is a much deeper system and has a stable layer forming 
on the bottom, the transient convection pattern is very different, although the 
final state is not that much. Only one noticeable period of oscillation was car- 
ried out by the fluid, and the latter again came to a steady state after ~180 
seconds. The downward-moving initial blobs had weakened long before they 
reached the stable layer: they seemed to consist of wide but weak "tongues" 
with a "finger" growing inside them. Eventually the tongues retracted and 
formed fingers in the steady state. The maximum depression of the top of the 
stable layer came when the tongues were already in the retracting stage, indi- 

cating that the temperature profiles are a poor indicator of the actual fluid mo- 
tion, for the reasons mentioned in discussing Case 1. A further evidence of 
this was the almost symmetrical pattern in the streamlines (not shown), indi- 
cating that the strength of the up- and downward-moving columns is not greatly 

different. One must bear in mind that the fluid particles continue to gain heat 
from the time they leave the top until they return to it, so that in this type of 
convection the temperature field is not at all reliable to assess local circula- 
tion strengths, though it may be used to study the geometry of cell patterns, as 

the schlieren photographs have shown. 

Figure 7 shows the vertical variation of the horizontally averaged tempera- 
ture field, which again shows that in a substantial portion of the flow the tem- 
perature gradient is reversed, for the same reasons as in Case 1. 
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Fig. 7 - Variation of horizon- 
tally averaged temperature 
with depth for experiment C 

C. Wave-Number Selection in Finite Amplitude 
Benard Convection 

This problem considers the convection flow that arises in a thin horizontal 

layer of fluid when a steady and uniform temperature contrast is maintained 

across it. In particular, a determination of the horizontal cell dimensions is 
sought when the motions may be considered to be two-dimensional. Both the 
experimental results of Rossby (1966), Koschmieder (1966), and Chen and White- 
head (1968), and the theoretical results of Schluter, Lortz, and Busse (1965), 
have indicated that in the case of rigid-rigid boundaries almost all the laminar 
flow range exhibits two-dimensional behavior in the form of "rolls."" The object 

of the present study was to determine the preferred horizontal length of such 

rolls and the mechanisms or principles that are responsible for the selection. 

Equations (19) through (22) are also applicable here. They may be put in 
nondimensional form, by choosing 

Zi=dZe *, wetcw', he eee Be ni/AN EC Be Xi =1ca asx os (24) 

to obtain (dropping the primes) 

Bi ai In 7 a eg 
i E : Ox oy Oz Gis) ee Ox (25) 

oT tc) fe) 
ee =a (uT) + 55 wd y=" 1: (26) 
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E = y2V2y ; y2 = fl G22, 4 O%K (27) 
y2 ox? = 0z? 

. agATd3 Diy wea 

Reeve! OE v Vi FIs (28) 

where d is the depth of the fluid, a the coefficient of thermal expansion, and 

AT the applied temperature contrast. The boundary conditions are u= w = 0 

at z=, 0:and.1,..and T = 1,,at, z= 0, and .T.=;-1_at,-z, =.1;,,The. lateralex- 
tension of the system, though infinite in principle, must be restricted for com- 

putational purposes. Since this dimension influences the horizontal wavelengths 

admitted by the system, we will discuss below the special conditions assumed 

in connection with the instability problem. 

The final dominant mode is expected to depend on the Rayleigh number Ra, 
the Prandtl number c, and the geometry of the container. Furthermore, because 

in finite amplitude flows the various horizontal wave numbers interact in a non- 

linear fashion, the final mode will also depend on the amplitude of the total initial 

perturbation, the relative amplitudes of the various constituent harmonics, and 

the initial state of the system. The complete examination of this problem is a 

long and tedious task; in this paper only token results are presented that, in the 

author's opinion, serve to illustrate some of the interesting and difficult aspects 

of this problem. 

An excellent review of most analytical studies on Benard convection appears 

in a recent article by Brindley (1967). Rayleigh (1916) has shown that in the 

case of rigid-rigid boundaries convection will only occur if the value of Ra ex- 

ceeds 1708; below this, friction is able to overrule the weak destabilizing tem- 

perature gradient. The preferred horizontal wavelength at the onset of convec- 
tion was predicted by Pellew and Southwell (1940), based on linearized theory. 

A summary of all linearized work appears in Chandrasekhar (1961). For two- 

dimensional rolls, the nondimensional wavelength is \' = \o/d =725016, Later 

workers included nonlinear effects in several ways. Malkus and Veronis (1958), 

Palm and Giann (1960), Segel and Stuart (1962), Segel (1965a,b), Schluter, Lortz, 

and Busse (1965), and Busse (1967), have included the nonlinear interaction of 

many harmonics by working with finite amplitude flows; many workers have in- 

cluded the variation of viscosity with temperature. Most of the studies have 

been based on expansion in a small parameter «, being ~Ra - Ra,, so that the 

results are valid only for Ra not too much larger than the critical value. Near 

Ra, hexagonal shapes were predicted, and for higher Ra two-dimensional rolls. 

Roberts (1965) has used a different approach: he assumed a simple sinus- 
oidal variation in time, e‘’t, and in the horizontal direction, sin n7x, and 

searched for the eigenvalues of the resulting system of nonlinear ordinary dif- 

ferential equations in z. The criterion in determining the critical wave number 

used was to find the value of \' for which do/dd' = 0. In this manner, he found 

the optimum wavelengths for Ra up to 5000; at Ra = 4000 a value of \' = 2.004 

was found, slightly smaller than the critical value. The behavior of \' with 

increasing Ra showed a monotonic decrease. 
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Recently, Chen and Whitehead (1968) have performed a careful laboratory 
study of Benard convection by introducing small controlled perturbations prior 

to the onset of motion, producing two-dimensional rolls of arbitrary width-to- 

depth ratio. The conditions employed corresponded to the finite-amplitude 

stability problem for a constant viscosity, large Prandtl number, Boussinesq 
fluid with rigid, conducting boundaries. They found that two-dimensional cells 
with width-to-depth ratios close to unity are stable at all Ra investigated 

(Ra. < Ra < 2.5 Ra.), whereas for moderately too large or too small values 

they tend to undergo size adjustments toward a preferred value of 1.1. Snyder 

(1967) has performed experimental studies on wave-number selection of finite 

amplitude between differentially rotating cylinders (the ''Taylor'' problem). He 

showed that a finite-amplitude secondary flow may have any wavelength within 

a range which depends on the amplitude. The reason is that the problem is in- 
herently time-dependent, and that the actual wavelength selected is determined 
by the initial conditions of the problem. He has experimentally found hysteresis 
effects similar to the ones reported here. Meyer (1967) has performed a some- 
what similar numerical experiment on preferred wavelengths in the nonlinear 
region of Taylor flow. He made a big box of two complete cells and determined 

the preferred length by varying the box length until the ratio of energy con- 
tained in the even harmonics to that of the odd harmonics was a maximum. 

Numerical experiments have been performed on Benard convection by 
Deardorff (1964, 1965) and Fromm (1965), but only for perturbations of \' = 2 
and horizontal (nondimensional) width y = 2, 4, 8, and 20. 

The present investigation consists of two approaches. One purpose is to 

determine the wavelength that transports the maximum heat, and then find if 
that is the preferred wavelength. To this end, a single roll was considered, for 
Ra = 20000 and y = \'/2 = 1.00. The latter value was chosen because it lies 
very near the analytically predicted value of 1.002 by Roberts (1965), for Ra = 
4000. The circulation in each roll in two-dimensional convection is in the op- 

posite sense from that of its neighbors, and such that within each unidirectional 
vortex there is symmetry about a diagonal. Furthermore, each is symmetrical 

with respect to its neighbors; hence the cell boundaries can be defined as 
"surfaces of symmetry.'’ Such a definition was used by Chandrasekhar (1961) 
and Stuart (1964) in their treatment of the Benard problem. It is sufficient, 
therefore, to find the flow fields in only a half cell or single vortex, and from 
that one may construct the whole circulation (see Fig. 8). The boundary condi- 

tions on these surfaces become the following: no mass or heat flow may cross 
the cell wall, and no stress may act upon it, i.e., they become frictionless, in- 

sulating lids. It is of interest to note that heretofore these boundary conditions 
have not been used in numerical work on Benard convection. Both Fromm (1965) 

and Deardorff (1964) have assumed either rigid lateral boundaries or periodic 
conditions on them. The present conditions enable us to deal with half-cells 
only. 

The flow was started by assuming a linear temperature profile due to con- 
duction only, with the temperature contrast already at its final value, and apply- 

ing a temperature perturbation of the form A-cos 7x-sin7z. The finite- 

difference versions of Eqs. (24) to (27) were iterated in time until a fully developed 

steady-state convective flow was obtained. The aspect ratio y was then incre- 
mented (or decremented) in steps of Ay = .2, always using the previous steady 
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Streamlines 

Sy >, 

Vertical Velocity Temperature 

Ge) ru 
Fig. 8 - Symmetry sketch of Benard cells 

state as input for the next case, to see how far a single cell could be ''stretched" 
without breaking up into multiple vortices of opposite circulation. So fara 

value of 2.8 has been reached with no real sign of a breakup; a lower limit to y 
has not been reached as yet. The heat transfer variation with y is tabulated 
below (N = Nusselt number): 

0A N 

.80 3.084 
1.00 3.028 
1.20 2.941 
1.68 (a) 2.736 
1.68 (b) 2.808 
1.68 (c) 2.978 
2.10 2.534 
2.80 2.208 

According to the above results, the » of maximum heat transfer must be <.8. 
Work is under way to find its value as closely as possible. 

The runs denoted by (a), (b), and (c) for ¥ = 1.68 (illustrated in Fig. 9) 
comprise the second approach in this investigation. Here it was sought to find 
the largest and smallest value of y' for which a perturbation of given amplitude 

and containing only the y' harmonic can come to steady state in a fluid volume 

773 



Piacsek 

nthe aie 

TTOT TIMP oe 5 4 

+? 

> ! 
; 4 
is ¢ 

+ a 
, 
+ 
+ 
* 
+ 
+ 
+ 

TEMPERQT UP: 

Fig. 9 - Steady-state streamlines (left) and isotherms (right) for 
Benard convection with vy =1.68: (a) stretching of a y =1.00cell; 
(b) initial perturbationcos 27x; and (c) initial perturbation sin 27x 

of aspect ratio y. The curious result found was that a perturbation of form 
cos 27x (run (b))will lead to a 2-roll steady state, whereas a sin 27x (run (c)) 
will lead to a 3-roll behavior. Run (c) corresponds to the y = 1.00 cell adia- 
batically "stretched" toa y = 1.68 cell. The answer appears to lie in the fact 
that the sin 27x mode does not naturally satisfy the temperature boundary con- 

ditions, but is forced to do so at the gridpoints adjacent to the boundary, by the 
numerical procedure. This causes the temperature profile to have a point of 
inflection near the boundary and to develop regions of buoyancy opposite to that 
of the interior region adjacent to it. These appear to be the cause of the forma- 

tion of the smaller cells on the sides. The highest heat transfer is associated 
with mode (c), i.e., the one exhibiting the largest number of upward-moving 
columns per unit area. This agrees with the Nusselt number's dependence on 

y, where the largest heat transfer occurs for the smallest width-to-depth ratio. 
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REVIEW OF NUMERICAL METHODS IN CONVECTIVE FLOWS 

The systems of partial differential equations governing two-dimensional or 
three-dimensional axisymmetric flows in natural convection divide into two 

groups: those involving the time-derivative called 'forecast"’ equations, de- 
scribing the transport of vorticity, temperature, and angular momentum; and a 

Poisson equation relating the stream function to vorticity. The first group con- 

tains equations that are of mixed parabolic-hyperbolic type, although, due to the 

nonlinearities, these terms must be used in a loose sense only. It is possible 

for the system to be parabolic in one region of the flow and not in another, or at 

one time during its evolution and not at another. The Poisson equation is, of 
course, elliptic. An extensive review of numerical methods used in geophysical 
fluid dynamics up to 1962 was given by Miyakoda (1962), and a more recent sur- 
vey was made by Lilly (1965). Since then, still more progress has been made in 
this field, some in adapting existing methods to the Navier-Stokes equations and 

some in developing new ones. 

We will first discuss the methods used to solve the Poisson equation Vv?) = 

&, The most common and easily programmed technique is the optimum over- 
relaxation [Frankel (1950); Forsythe and Wasow (1960), p. 242; Varga (1962), 
p. 105; Miyakoda (1962), p. 98]. The scheme for rectangular coordinates x = 
ieA and z = j°A with centered space differencing is given by 

n+l] n n+] Nite n r n 
Wig = Wi; t ve Ve hetero ia +e gaa t Ya, j-1 7 443 a Bas.) hee (29) 

where the superscript n denotes the iteration cycle, and r is the relaxation 
coefficient or acceleration parameter. The mesh is swept in the order j = 1, 
i=1,2,...1; j = 2,.i = 1, 2;:..iIp etc. so that the.scheme is-explicit. .The 
constant r depends on the mesh size, and its variation with grid size is given 

by the authors cited above. Experience shows that, to decrease an initial error 

by a factor of 102, the matrix must be swept ~3/4 VId times. The total number 
of arithmetic operations would then be ~9 x 3/4 x Td. The fastest iterative 
technique for the solution of Poisson's equation in a rectangular region is a 
variant of the Peaceman-Rachford (1953) method, in which there is relaxation 
alternatively on rows and columns of the mesh and changes in the acceleration 

parameter from cycle to cycle. These methods are also known as the 

alternating-direction implicit or simply ADI methods. If the number of itera- 
tion cycles is chosen as a power of 2, say 2*, then the acceleration parameters 
may be predetermined in advance and will obtain maximum convergence 

[Varga (1962), p. 226; Gary (1967)|. The scheme may be written 

EC HaD UNE HER AE el Se Lite 5 n 2 (Ty + 2) 45; Visio Javishda = Chea CO wis iterate ieee ied (308) 

n+1 n+1 nt+1 5 neal 2 172 #172 

Ce a ad ye enn Nee te as, + bier 5 + Hy-165 » (30b) 

where the sequence of parameters r, is given by 

POPNEIV CL eh Tan nea Pec nT b=» (2) s = (4) . (31) 



Piacsek 

and . is adjusted to obtain most rapid convergence. The remaining values of 
r, are defined modulo 8, i.e., ©, ="r,, ro = 113, etc. Each row iteration, Eq. 
(30a), or column iteration, Eq. (30b), is implicit, in that all the values on the 
respective row or column must be found simultaneously. Since there are only 
three unknowns in each equation, the resulting coefficient matrix becomes tri- 
diagonal: the only nonzero elements are on the diagonal and two adjacent lines. 
For this type of matrix there is a special inversion algorithm that is very ef- 

ficient; a detailed formulation is given by Varga (1962), p. 195, and Richtmeyer 
and Morton (1967), p. 200. 

The ratio of the asymptotic rate of convergence for the overrelaxation to 
that of the ADI method decreases as the number of gridpoints increases, so that 
for large meshes the ADI method is far superior. This is particularly so in the 
case of Neumann boundary conditions for which the overrelaxation is extremely 
slow in converging. A detailed comparison of the two methods for Dirichlet and 
Neumann boundary conditions and for various ratios of the grid spacings AX/AZ 

may be found in Gary's (1967) article. 

When the boundaries in one or both of the directions are "frictionless lids," 
where y = € = Q, the Fourier inversion method becomes very suitable particu- 

larly when the respective dimension is much shorter than the other. In this 

method, ¥;; and ¢;; are both expanded in discrete Fourier series in the respec- 
tive direction, say z: 

ct 
Vij ¥ s ae “sin (amp) 5 oi; = a b> “sin (n77jA)i % (32) 

n= 1 

and the resulting J ordinary difference equations 

ted + ai Qa) /A2 tnta ia Stee (33) 

are solved by the tri-diagonal algorithm mentioned above. Here practically all 

the computation is spent in finding the b," from decomposing ¢;;, and the ¥; ; 

from superposing the a;", which is ~5IJ? calculations. If J << 1, the ratio of 

computational work in this method to that of overrelaxation is ~20/27° yJ/1. 

Recently, two ingenious simplifications were introduced by Hockney (1965) 
into this method. He noted that if a suitable number is chosen for J (such as 

12, 24, 48), the symmetry in the sine functions may be used to reduce the com- 
puting time to about a tenth of the above estimate. Furthermore, the two- 
cyclic nature of the difference Eqs. (33) allows one to replace the original 

equations involving all the points in the net to a set of IJ/2 slightly more com- 

plex equations involving only the points on the even lines of the mesh. The set 
of revised equations could also be solved by the Fourier method. The final pro- 

gram led to a solution time 1/10 that of the ADI and 1/60 that of the overrelaxa- 
tion method, on a mesh size 48 x 48, 

On noting that the values of the vorticity on the boundary are actually not 

needed to solve the finite-difference version of the Poisson equation, the 
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Fourier inversion method was used for all three experiments. In experiment A, 
the expansion was made in the z-direction, and the resulting ordinary differ- 
ence equations had variable coefficients in the radius r. In experiments B and 

C expansion was made in the horizontal x-direction. 

We must turn now to solutions of the ''forecast'' equations, where one 
marches forward in time and finds the new values of €, T, and m at a latertime 
step from their values at earlier time steps. Each transport equation may be 

put in the general form 

30; ; 99, 2, 

Pie ee! ee aad Sie QyoVon aes 7 aT eats _ Sg Sires aes ; (34) 

In cases Band C, F, = -Ra’° oT/oX and F, = 0; incase A, F, = (1/r?). 
(20m/r3 + 1)+ om/dz - dT/or, F, = -r2*u, F; = 0, and V? is replaced by 
the more complicated diffusion operators a, P and S (see Eqs. (16-18)). Sup- 
pose the time coordinate has been discretized as t = n* At and the iteration 

has progressed through step n; we would like to compute the next values at 

t = (n+ 1)At. In general, the time iteration methods may be divided into two 
classes: explicit methods, in which all terms on the right-hand side of Eq. (34) 
are evaluated at previous time steps n, n-1, etc.; and implicit methods, in 
which some terms may be evaluated at the step n+1 to be computed. In the 
latter case an iterative procedure is required to find the values at all grid- 
points; for, in general, these become coupled in Eq. (34). In all the numerical 

experiments the author has seen, the terms F; are evaluated at the step n, 

and the time derivatives as d9/ot = (p?*! - pt 1)/dt or (oft? - o7)/At. 

Lilly (1965) has given a summary of the more widely used time iteration 
methods in geophysical fluid dynamics. Both he and Henrici (1962) have shown 

that weak instabilities are associated with some of the multistep methods (i.e., 
involving more than two time levels), due to the fact that the difference equation 
admits spurious solutions that are not present in the original equation. In fact, 

the solution may become decoupled on odd and even time levels. In addition, 

strong instabilities may arise if care is not taken in differencing the advective 

formas, or if too large a time step is used in the explicit schemes. 

The existence of ''aliasing errors,'' due to misrepresentation of the shorter 

waves because of the inability of the finite grid to properly resolve them, may 
lead to computational instability. It may occur due to the nonlinear advective 
terms; but it may also occur in linear equations with nonconstant coefficients. 

Arakawa (1966) has shown that by a proper form of space-differencing the ad- 
vective terms the nonlinear instability may be overcome. He presented several 
schemes which simulate several important properties of continuous fluids, such 
as conservation of vorticity, kinetic energy, mean-square vorticity, and con- 

straint on the spectral distribution of energy. 

In two-dimensional incompressible flow, the expression V+ ug = (u°V) 9 

may be written as 

op op OW BQ 8(Y,9) 
= A(W,0) . (35) 
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Since the contributions from the advection terms in vorticity equations were 

generally small, and in the case of rotation completely negligible, the finite dif- 
ference form of the Jacobian was used that conserves only kinetic energy and 
vorticity. In all cases the total absolute value of the vorticity converged to four 
or more significant figures, so there was no need to use a scheme which also 
conserves mean-square vorticity; such a scheme is the superposition of two 

differently differenced Jacobians and represents twice the computer time. The 

scheme used is given by 

a(Yy,@) = CHS soa Wied od Sa 4 CP rs ene eee) e414, 5 

f : 1 
PACES UL ck Au Foe KER TOL OMS Gees Mane o> er Cea eo een st) 

Three schemes were used in evaluating the advective and diffusive terms 

during the model experiments: 

gpntl i gil a 

1. TS age eS c(V29)". + F(Y,9)2 + FM (37) 

n n n+] nai 
nt {ene (ores. j tof, 5-08) - 085) aes pera yn j j j j A ap peeee + F2., (38) 

2At (Ax) 2 (Az)? 

The combination of the time-derivative evaluated at levels n+1 and n-1 with 
the advective terms evaluated at level n is called the ''leap-frog" procedure. 

The particular way of differencing the diffusive terms in Scheme IJ is the well- 

known DuFort-Frankel method (for a detailed description of this and other 

schemes for the diffusion terms, the reader is referred to Richtmeyer and 
Morton (1967), p. 189). Scheme III is described below and is given essentially 
by Eqs. (41). Based on linearized stability analysis (see Richtmeyer and 
Morton (1967)), Scheme I has a limit on the time step for the case Ax = Az 

given by 

At s S t —_ ee ’ 

8c + (jul + |wl)-A (39) 

while the stability of Scheme II is not affected by the diffusion terms, but is 

pete elt . (40 

ful + [wl 
The truncation errors of the two schemes are 0(At + Ax?) and 0(At/Ax)?, so 

that the gain in computer time is slightly offset by the poorer accuracy of 

Scheme II. Nevertheless, in the cases considered, the truncation error could 

be kept the same and still gain a factor of 10 in the allowable time step. 

After noting that a cycle of iteration for elliptic partial differential equa- 
tions is analogous to a time step in parabolic equations such as the diffusion 

equation, Douglas and Rachford (1956) devised an ADI method for the diffusion 
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equation that was applicable to three-dimensional problems. In this case, 

however, no set of acceleration parameters was found. Later, Douglas (1961, 
1962) has extended the method to nonlinear parabolic equations of the type 

ap/dt = V29 + F(~, x,z). The scheme is as follows: 

329 n+1/4 o2y ” o2u 

(pees 109) (AT /2) = +(— 4 )s + Fn 
ox2 ox2 0z2 

ntl 72 n 
D 2 

(pnti/2— onth/4) (a 72), = a= & eid if 
2 oz2 Oz? 

(41) 
n+3/4 n 

029 020 eo) 
(p0*3/4— @") (AT/2) : ane ——— ). — + FNti/2, 

2 ee One ere 

note n 
2 ae 1 Q Q espe cor Af = 2) ‘ 2 \ 322 Bre 

It consists of two pairs of row-column iterations with a correction for the non- 

linear term sandwiched in between, and has a truncation error of O(At? + Ax?). 
Subject to the condition that |3F/99| is bounded for all times, the scheme has 
unconditional stability regarding the time steps. In view of the high order of 
truncation error and the unlimited stability, it is most promising for applica- 

tion to the Navier-Stokes equations, at least for flows in which the nonlinear 
terms are not larger by orders of magnitude than the diffusive terms. It must 
be noted that the column iteration involves only the second derivative in the 
z-direction, so that the additional arithmetic due to row-column iteration is 
minimal, Although the advective terms in the Navier-Stokes equations are not 
exactly of the form F(x, z,~), they can be taken care of in several ways. One 
way is to iterate more frequently in the predictor-corrector fashion of Eq. (41) 

for the advective terms, and with each of such iterations solve the Poisson equa- 

tion for the stream function. The other method, as introduced by Wilkes and 
Churchill, is to include the u-d/dx and w-d/dz terms into joint operators 
d2/dx2 + ued/dx and d?/dz2 + w+d/dz, respectively, and then proceed as in 
Eq. (41), with F" now including only the buoyancy and Coriolis terms. 

A sure way of extending the Douglas method to the Navier-Stokes equations 

is to regard the nonlinear terms as the only ones giving rise to limitations on 
the time step. Thus, instead of unlimited stability we recover that of Scheme 
II, given by Eq. (40). This is justified, because with respect to the nonlinear 
term the scheme is a simple explicit one, and because unconditional stability 

holds for the pure diffusion terms. It is to overcome even this limitation on 

the time step that Wilkes and Churchill (1966) have evaluated the nonlinear 
terms implicitly. Aziz and Hellums (1967) have successfully used this method 

in a three-dimensional convection problem. 

The general scheme for the whole numerical procedure, therefore, is as 

follows: 
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1, Forecast new values of the vorticity on interior gridpoints. 

2. Solve the Poisson equation for the stream function, and if there are any 

rigid boundaries, find the values of the vorticity on them. On the frictionless 
lid surfaces, both € and y vanish. 

3. Forecast new values of T and m, using the newly found stream function 
in the Jacobians. Start all over in 1. 

Since the Poisson equation for the stream function must be solved at every 
time step and is a relatively lengthy procedure compared to the evaluation of 
the right-hand side of the transport equations, the use of implicit methods and 

fewer time steps almost always resulted in a large saving of computer time. 
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DISCUSSION 

A. S. Iberall 
General Technical Services, Inc. 

Upper Darby, Pennsylvania 

The Bowen ratio (the hydrometric constant) approaches equilibrium for 

larger bodies of water in about 3 weeks. Thus, what systems in stability is 

Mr. Piacsek investigating ? 

REPLY TO DISCUSSION 

Steve A. Piacsek 

The Bowen ratio is the ratio between the amount of heat given off to the 

atmosphere as sensible heat and that used for evaporation. (Sverdrup, H.U., 
Johnson, M.W., and Fleming, R.H., ''The Oceans," p, 117, Prentice-Hall.) 
For large bodies of water this indeed takes a long time to reach a steady 
value. However, the numerical experiments were concerned only with the 
stability of the top few centimeters near the ocean's surface, with a charac- 

teristic overturning time in the convection cells of a few minutes. During this 

time the mean air and water temperatures change very little, and the Bowen 

ratio may be considered to be a constant. 

* * * 
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SOME PROGRESS IN TURBULENCE THEORY 

Robert H. Kraichnan 

Dublin, New Hampshire 

ABSTRACT 

A review is made of efforts to deduce the quantitative properties of 
turbulence from the Navier-Stokes equation, without the introduction of 

mixing lengths or other arbitrary parameters, by means of the direct- 
interaction family of statistical approximations. The direct-interaction 
results for turbulent dispersion, isotropic turbulence, and Boussinesq 
turbulent convection are compared with laboratory and computer ex- 
periments. The nature of expansions for statistical functions is dis- 
cussed, together with techniques for the estimation of errors and the 
systematic refinement of the direct-interaction predictions. Finally, 
the numerical methods appropriate to the direct-interaction equations 

are discussed. 

INTRODUCTION 

Turbulence is a contradictory phenomenon which simultaneously exhibits 

both order and disorder. The combination has proved hard to analyze and pre- 

dict successfully. The random aspect of turbulence arises from the rich va- 
riety of instabilities accessible to high-Reynolds-number flows. When a laminar 
flow breaks down into turbulence, so many different degrees of freedom can be 
excited that the detailed, point-to-point, causal dependence of the resulting tur- 

bulent velocity field on the initial disturbance field is impossible to unravel. 
The turbulent velocity field is intricate and irregular in appearance. 

Measurements on a variety of sustained turbulent flows show that the proba- 

bility distribution of the velocity measured as a function of time at any point 

within the fully turbulent region is close to a normal distribution. However, the 

joint probability distribution of the velocity at two or more points is significantly 

nonnormal. A snapshot of the velocity field at any instant would show an abun- 
dance of well-defined local features: filaments and streets of high vorticity 

separated by relatively quiescent regions. 

The intricacy, irregularity, and nonreproducibility of individual turbulent 
flows make it natural to use a statistical description in which averages over 

space, time, or an ensemble of realizations of the flow are sought. In contrast 
to the instability of an individual turbulent flow, laboratory results suggest that 
appropriate statistical averages are relatively stable and reproducible. The 

transport properties of turbulent flows are naturally described by averages. 
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There are two general ways in which predictions of turbulence averages 
may be attempted with the Navier-Stokes equation as a starting point. The 

more straightforward is direct computer simulation of a turbulent flow, or 
ensemble of flows, followed by averaging. This involves numerical integration 
of the Navier-Stokes equation forward in time for each flow, individually. The 
second way is to seek dynamical equations for the statistical averages them- 
selves. These latter equations then are solved numerically. There are ad- 

vantages and disadvantages to each approach, and the two methods should be 
regarded as complements rather than competitors. Direct integration of the 

Navier-Stokes equation offers pictures of individual flow structures which are 
impossible to recover from statistical equations. On the other hand, statistical 

theory can exhibit more clearly some of the physics of the transport processes 
that characterize turbulence, and, equally important, can result in less demand- 
ing numerical computations. Direct computer simulation of turbulent flows has 

been limited, in the past, to two-dimensional flows, because of computer limi- 
tations. However, continuing advances in the speed and capacity of computers, 

together with numerical techniques like the Cooley- Tukey fast Fourier trans- 

form, appear to be changing this situation rapidly. As we shall discuss later 
in it ile useful three-dimensional calculations already seem to be fea- 

sible |1}. 

The present paper reports on a family of statistical approximations, the 

"direct-interaction" approximation and its relatives, which the author and his 

colleagues have explored during the past ten years. The unique feature of the 

direct-interaction approximation is that it is an exact description of a model 

dynamical system, in addition to being an approximation to turbulence dynamics. 
The model system has the same expression for energy as the Navier-Stokes 
system, together with other common properties. This assures important in- 

ternal consistency properties of the approximation. 

The direct-interaction approximation and its variants have been applied 
to isotropic turbulence decay, turbulent dispersion, convection of scalar con- 
taminants by turbulence, random solutions of Burgers' equation, hydromagnetic 
turbulence, turbulence in a Vlasov plasma, and buoyant turbulent convection. In 
the sections which follow, the nature of the approximation is reviewed, and 
brief reports are given on some of these applications, including comparisons 
of the results with laboratory and computer experiments. The paper concludes 
with discussions of error estimates, higher approximations which reduce errors 
systematically, and, finally, the numerical techniques called for by the direct- 

interaction equations. 

THE NATURE OF DYNAMICAL EQUATIONS 
FOR STATISTICAL QUANTITIES 

The simplest statistical field variables are the mean velocity vi (x,t) = 

<v, (x, t)> and the velocity covariance tensor Uj; (x, t; x', t') =<u; (x,t Juj(x', t')>, 
where vy, (x,t) is the velocity field in an individual realization of the flow, < > 
denotes the average over an ensemble of realizations, and u, (x,t) = v, (x,t) - 
v; (x,t) is the departure of the velocity field, in a realization, from the ensemble 
mean. We use ensemble averages here and in what follows because they are 
always applicable, while space or time averages are appropriate only if the flow 

exhibits statistical homogeneity or stationarity. 
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The dynamical equations obeyed by v and U differ fundamentally from the 

underlying Navier Stokes equation for v (x,t). The latter is a vector differential 

equation which can be integrated forward in time once the initial values v(x, 0) 
and the boundary conditions are specified. In contrast, there is no closed-form 

dynamical equation which can be integrated to generate v and U from their 

initial values. The equations for v and U can be formulated in several ways 

[2,3], but, always, an infinite sequence or series of some sort arises. In one 
formulation, there is an infinite set of coupled equations which determines 

simultaneously V,U , and the infinite set of higher moments<u, (x, t )u;(x', t')u, x 
(x'', t'')>, ... . In a second formulation, v and U are expanded in an infinite 
perturbation series, with a characteristic Reynolds number of the flow serving 
as the expansion parameter. A third formulation yields integrodifferential 

equations for v and U which contain, within them, infinite series in v and U 
themselves. Finally, the infinite set of equations for v, U, and higher-order 
moments can be replaced by an equivalent, single, functional equation for the 
pr obability-distribution characteristic functional (4,5). All these ways of formu- 
lating the statistical equations require as input information the initial values of 

all moments of all orders. This infinite set of initial values replaces, in the 
statistical description, the initial values of the velocity field in all the individual 

members of the ensemble. The dynamical coupling of moments of different 

order comes from the nonlinearity of the Navier-Stokes equation; that is, from 

the advection term (y°V)v. 

In order to compute v and U from the statistical equations, it is necessary 

to find an approximating algorithm which replaces the infinite dynamical equa- 
tions by something integrable in a finite number of operations. Grave difficul- 
ties have been encountered here, because in all the formulations the infinite 
sequences or series are divergent [2]. At the time of writing (December 1968), 
no known scheme guarantees converging approximations to the correct values 

of v and U. Here is a sharp contrast to the original Navier-Stokes equation, 

which, with reasonable assurance, can be integrated with any desired accuracy, 

in any given realization, by taking a sufficiently fine grid in space and time. 

In view of the preceding paragraph, what valid motivation is there for pur- 

suing statistical turbulence theory instead of simply integrating the Navier- 
Stokes equation for representative turbulent flows? There are two principal 

reasons. First, equations for the statistical quantities themselves, even if 
approximate and mathematically difficult in their final usable form, can exhibit 
the important physics of turbulence more clearly than the Navier Stokes equa- 
tion. Statistical equations can provide a bridge to intuitive ideas about turbu- 
lence, such as eddy viscosity and mixing lengths. Second, approximate statisti- 

cal equations, required as an end result of moderately accurate numerical 
predictions for averages of interest, demand, in some cases at least, enor- 
mously less computation time than integration of the Navier-Stokes equation 

for representative flows. This is because the statistical functions v and U are 

smooth functions of their arguments and can be specified adequately by fewer 

numbers than the jaggedly varying velocity field of a typical realization. This 
is particularly true when there are statistical symmetries, such as isotropy or 
stationarity. Statistical equations can also be much more stable for machine 

computation than the Navier-Stokes equation. 
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DIRECT-INTERACTION APPROXIMATION 
FOR TURBULENT DIFFUSION 

Turbulent diffusion by a random velocity field provides an example, simpler 

than Navier-Stokes turbulence, for introducing the direct-interaction statistical 
equations. We shall suppose that the mean velocity v vanishes, and that u, (x, t) 

is incompressible and has a multivariate-normal statistical distribution over the 
ensemble of realizations of the flow. Suppose that a scalar quantity, e.g., tem- 

perature T(x, t), is passively convected according to 

oT(x, t) 

Ox. , 
1 

(1) 3 VAT = hh 7) «,t) my Gxt) 

where 7 is the molecular diffusivity. If the initial temperature field T(x, 0) is 
the same in all realizations [T(x, 0) = T(x, 0)|, then the mean temperature field 
T(x,t) = (T(x, t)) at later times is 

Tigest yz [ Gcx,tsy,0) Tg.0) ay (2) 

where G(x, t; x', t') is the mean Green's function for the temperature field; i.e., 

G(x, t; x’, t') = T(x, t) for the special initial condition T(x, t') = 303 (x - x’). 

From Eq. (1) and the assumption of normality of u, an infinite-series in- 

tegrodifferential equation for G(x, t; x’, t') can be developed in the following 

form: 

c V7) Ga,t;x',t’) = iiaeeolenee t; ) Sr 1 «Xx, >X oy a Ox, J S yi «, »y¥»S 

OG (y,s;x',t’ LER yy A aul Chey 
oy, 

Giles ter xee att =| Cenk Lat: 

The higher terms in Eq. (3), indicated by the dots, are an infinite series of in- 

creasingly complicated multiple integrals with G and U in the integrands. For 

the derivation and detailed analysis of Eq. (3), the reader is referred to the 
original papers [3,6,7]. In brief, the starting point for Eq. (3) is an iteration 
expansion in which the right-hand side of Eq. (1) is treated as a perturbation on 

the left-hand side. The iteration expansion is then reworked by partial summa- 

tion to all orders, to yield Eq. (8). 

Equation (3) is a formally exact equation for G. The direct-interaction ap- 
proximation consists of dropping all the terms indicated by the dots. Equations 

(2) and (3) yield 

3 o\ = re) i 3 
metic T@,t) + a55 il ds [ dy G@,tiy,s) U;; & trys) 

4 0 
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oT (y,s) : 

oy; (4) 

and, again, the direct-interaction approximation is obtained by dropping the 

higher terms. 

The most striking difference between Eqs. (1) and (4) is that the former is 

a differential equation, local in space and time, while the latter involves inte- 
grals over space and time and cannot be reduced to a differential equation. The 
nonlocalness of Eq. (4) is an analytical embodiment of some simple and widely 
held intuitive ideas about eddy transport phenomena. The effective range of 

the space integral in Eq. (4) is the correlation length of U;;, or the character- 
istic eddy size, and the effective range of the time integral is the correlation 
time of U;;, OF the typical eddy circulation time, whichever is shorter. Thus, 

the nonlocalness of Eq. (4) is that which is intrinsic to the description of a mix- 

ing process on space and time scales, i.e., the order of the effective mean free 
path and intercollision time. 

In the appropriate limit, Eq. (4) reduces to a local form in which an effec- 
tive eddy-diffusivity tensor appears. Suppose that T(x, t) varies so gradually 

with its arguments that 

oT Yy,s) OT «,t) 
oy; Ox; 

for y and s, where G(x, t;y,s yu, Gx t;y,s) is large enough to contribute ap- 
preciably to the integral. Then Eq. (4) reduces to 

3 P 3 oT x, t) . 2 = 

(= - mo?) Fost) aoa ae ee 7 j 

where 

t 

Ki, &t) = { ds | ay Ga@,tiy,s) U;; &,tiy,s) (6) 

is the eddy-diffusivity tensor. It can be shown (as confirmed by the numerical 
results to follow) that the elements of «,. have the typical order of magnitude 

vo» where ¢ is the correlation length and vy is the root-mean-square turbu- — 

lent velocity component. If, instead of making the direct-interaction approxima- 

tion, the full series Eqs. (3) and (4) are retained, the eddy-diffusivity limit of 
Eq. (5) still emerges, but with an infinite series of higher-order integrals over 

G and U added to Eq. (6). 

To provide a clean numerical test of the direct-interaction approximation, 

the prediction for eddy diffusivity was compared with the results of computer 

realizations of turbulent dispersion in statistically homogeneous and isotropic 
velocity fields. Homogeneity and isotropy imply that Kj (x, t) has the form 

K, jx, t) a 85K (t). 
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In the limits where 7 is very large or the correlation time of U;,; is very 

small compared to the typical eddy circulation time, Eq. (6) can be shown to be 

asymptotically exact [8]. Therefore, the most critical test is provided by taking 
7 = 0 and making u(x, t) a random time-independent field in each realization. 
The choice 7 = 0 also makes the computer realization easier, because instead 
of solving the field Eq. (1), we can equivalently [9] trace the motion of fluid 
particles in a Monte Carlo calculation. The eddy diffusivity then is expressed 

by 

1 
Kt). = > Gy (ty (CE): (7) 

where, in each realization, x(t) and v(t) are the position and velocity of the 
fluid element which starts at x = 0 at time t = 0. 

To perform the numerical experiment economically, the velocity field in 
each realization was constructed only along the particle trajectory, by synthesis 
from stored Fourier amplitudes. A set of N-complex, vector Fourier coeffi- 

cients was chosen, by use of pseudorandom numbers, from a normal probability 

distribution such that the synthesized velocity field was incompressible and, 

for N » », the spectrum function [10] 

fee) 

E (k) ae U, x(x, tix! »t)okr, sin, (kro dr (8) 

0 

where r= |x-x'| 

took an assigned functional form. For the two forms of E(k) which were investi- 

gated, N = 100 was found to give good statistics: 

2 k4 le 
E (k) = 164] vot exp - 2 a | ’ (9a) 

E(k) = : vo 8 (k-k,) . (9b) 

Here, k,. denotes the peak k and 3v,7/2 is the kinetic energy per unit mass. In 
each realization, the fluid element was started off at x = 0, its initial velocity 
synthesized, then the successive positions of the particle were found, and the ve- 
locity synthesized all along the trajectory. A simple predictor-corrector 

scheme was used for the integration. The average of Eq. (7) was taken over en- 

sembles of approximately 20,000 realizations. 

The direct-interaction equations were also Fourier-transformed before in- 

tegration. The transforms of Eqs. (3) and (6) when the velocity field is time- 
independent, homogeneous, and isotropic are 
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kt+p 

oe - a ds [ fap” | E (q)’.sin® (q,k) 
[k~pl 

(10) 
dq 

G (p,t-s) G (k,s) —+ ... , G (k,0) =.1 
q 

peea ia . 
ee a dq i‘ E (q) G (q,s) ds , (11) 

3 0 fe) 

where sin (q, k) is the sine of the interior angle between q and k ina triangle 
with sides k, p, q, andG(k, t-t"') is the Fourier transform of G(x, t; x', t') 
with respect to x - x’. Equation (10) was discretized and truncated in k, dis- 

cretized in time, and integrated forward by a simple predictor-corrector 
scheme. Finally, x (t) was computed from Eq. (11). Variation of step sizes 
and truncated limits, interpreted by extrapolation techniques, was used to 

verify that numerical-integration errors were negligible. 

Figure 1 compares « (t) as found [11] from the numerical experiment and 
from the direct-interaction approximation for the spectrum choice in Eq. 
(9b), wherein the accuracy of the direct-interaction approximation was found 

to be poorer. In the present case of dispersion by a statistically stationary 

velocity field, the Lagrangian velocity correlation (correlation of a fluid parti- 

cle's current velocity with its initial velocity) is easily shown to be U'(t) = 
1/3 (v;(0) v;(t)) = d«(t)/dt. Figure 2 compares the curves of U (t) obtained 

from the numerical experiment and from the direct-interaction results. 

ISOTROPIC TURBULENCE DECAY 

The direct-interaction equations for the decay of isotropic turbulence are 
similar in general appearance to those for turbulent dispersion; but they are 

also more complicated because the Navier-Stokes equation is a vector equation, 

nonlinear in the unknown dynamical variables, in contrast to the linear scalar 
equation for T (x,t). The final equations of the approximation comprise an 

energy balance equation which determines the spectrum function E(k, t), an 
equation for the time correlation U(k; t, t') of the Fourier amplitude at wave- 
number k, and an equation for the mean response G(k; t, t') of Fourier ampli- 
tude k to infinitesimal perturbations. These equations are (G and T are 

unrelated to previous G and T) [12]: 

3 
& aD, xe) Bo (kyt)=] T Chet). T Oc.t) = 4 aie S Ceet,t) (12) 

r) 
ea v2) U (itt) = S (kt. ) (13) 

3 
e f ve) G (k:t,t’) = H (kit,t’), G (k;t',t’) = 1 (14) 
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Fig. 1 - Eddy diffusivity found from numerical experiment (dots) 
and the direct-interaction approximation (solid curve) for the energy 
spectrum of Eq. (9b) 

uct (4 ave 

Fig. 2 - Lagrangian velocity correlation found from numeri- 
cal experiment (dots) and the direct-interaction approxima- 
tion (solid curve) for the energy spectrum of Eq. (9b) 
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‘ 

t 

S (k;t,t') = 7k JJ pqdpdq | Ap G Cert aso UN Cpr tis) Ucar ts sy ds 

A 0 

(15) 
t 

Bs | Bee! (kt: .s),G-(prt,s) UlCq:t, s) ss 

t 

Hi ket ¢ ) = mk | | padpdq by og f Gi(ks,t eG (pst. s) ita) ts) ds. (16) 
A t 

Here 

Ang = = (1-xyz-2y? z?), bid = = (xyt+z?) , 

where x, y, z are the cosines of the interior angles opposite k, p, q, respec- 
tively, in a triangle with the latter numbers as sides. The integration JJ, ex- 
tends over all regions of the (p,q) plane where this triangle can be formed. 
Kinematic viscosity is». These equations are a complete set which determines 

E(k, t), U(k; t, t'), and G(k; t, t') for t > 0, t' > O, if the initial spectrum 
E(k, 0) is given. The spectrum and correlation functions are related by E(k, t) 
27k? U(k; t, t). The kinetic energy per unit mass at time t is 

fee) 

[ E(k, t) dk. 

0 

Also, U(k; t, t') = U(k; t', t), while G(k; t, t') vanishes for t < t'. 

The equations above share, with the direct-interaction equations for dis- 

persion, the property of nonlocalness, both in the present Fourier representa- 

tion and if they are transformed back into physical space. As before, this 

expresses the finite length and time scales of the eddy-transport process. 

The direct-interaction equations preserve some important properties of 

the exact turbulence dynamics. Equations (12) and (15) yield 

@ 

f Tikit) dk 2-0, (17) 
10) 

which expresses conservation of kinetic energy by the nonlinear processes. 
Moreover, and equally important, the equations guarantee the realizability of 

U(k; t, t'). This means that a vector random process can be constructed for 
which U(k; t, t'), as found from the direct-interaction equations, actually is 

the covariance scalar. This implies an infinite set of realizability inequalities, 

the simplest and most important of which is 

E(k, ty > 0; |UCk t/t") |7°S Uc tt) Uke”) ~. (18) 
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Whereas energy conservation follows identically from the expressions for a, 
and bkpq, realizability is deduced from a remarkable property of the direct- 

interaction equations which is not obvious from their final form. Although these 

equations are only an approximation for actual turbulence, they are exact for a 

model dynamical system that has the same energy integral as the Navier-Stokes 
system, but different dynamical equations for the Fourier amplitudes. The 
model system, which has been discussed in detail [3,7,13], is obtained by com- 
bining, with random phase factors, the elementary conservative interactions of 
triads of Fourier modes which characterize the Navier-Stokes system. 

The representation by a conservative model system also implies that the 
direct-interaction equations yield a tendency toward absolute statistical equi- 

librium. It can be verified directly from Eqs. (12) - (16) that, if » = 0, the 
equipartition relation U(k; t, t') «G(k; t, t')(t > t') is consistent with the equa- 
tions [12]. Although the direction of energy transfer in Eq. (12) is toward es- 
tablishing the equipartition solution, the latter is never actually achieved from 
physically admissible initial conditions. The tendency toward equipartition has 

been verified by numerical integrations for v = 0[12]. 

So far, there have been no computer experiments on isotropic turbulence 
decay which would give a clean test of the direct-interaction equations, similar 

to the test for turbulent dispersion described in the previous section. Such ex- 
periments now appear to be imminent [1]. Meanwhile, it is possible to compare, 
behind grids, direct-interaction predictions with laboratory results on decay. 
This comparison is not so clean for several reasons, the most important of 
which are the difficulty of matching laboratory initial conditions, and the un- 
certainties about the degree of anisotropy and instrumental error present in the 
measurements. The most reasonable comparisons would appear to be those of 

properties associated with the high-wave-number end of the energy spectrum, 
where short intrinsic dynamical times should lead relatively rapidly to a state 

that is insensitive to initial conditions. 

Numerical integrations of Eqs (12) - (16) have been carried out for a variety 
of initial conditions [12]. Figures 3 through 8 show some typical results. Fig- 
ures 3 through 5 show the evolution of the energy spectrum, viscous dissipation 

(or mean-square-vorticity) spectrum, and transfer spectrum T(k, t) for the 
initial condition 

2 k4 2k? 
E(k,0) = 16 2 ws ze vol a) (19) 

L(0) is the initial value of the integral scale, a length characteristic of the size 

of the energy-containing eddies, while u(0) = vo is the initial root-mean-square 
value of the velocity along any axis. The Reynolds number R(t) =A (t)u(t)/v, 
where u(t) is the root-mean-square velocity component at time t and A(t) is 
the Taylor microscale [10], decreased from 35 to 17 over the time interval 

shown. 

Figures 6 and 7 depict the evolution from a less peaked initial spectrum, 
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RUN 4 

I t=0 

2 t= .46 L(0)/u(0) 

3 

E(k, t)/(u(O)FL(O) 

ie) 4 8  kKL(O) 12 

Fig. 3 - Evolution of the energy spectrum 
from the initial values of Eq. (19) (initial 

Ry = 35) 

3 k k 
E(k,0) = 7d ze( 5): (20) 

0 0 

In contrast to the previous case, the energy spectrum here is nearly self- 
preserving, particularly at the higher wave numbers, with very little change of 

R, during decay. Figure 7 shows the dissipation, energy transfer, and vorticity- 
production spectra near the end of the time interval covered in Fig. 6. 

The normalizing parameter k, used in Fig. 7 is a characteristic dissipation- 

range wave number of the direct-interaction solutions [12,14]. It is related to » 
by k, = (15 R,)!/3/A.. The numerical integrations for a number of different 
shapes of initial spectra have been found to lead to evolved dissipation-range 

spectra which are nearly independent of initial conditions, and only weakly de- 

pendent on R,. This is true whether \ or k, is used for normalization, in the 
range R, < 50 covered by the integrations. 

Figure 8 shows the evolution of the skewness factor [10| 
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foe) 
46 L(0)/u(0) 

99 

162 

2 k2E(k,t)L(0)/(u(O))? 

£ 

k L(O) 

Fig. 4 - Evolution of the dissipation 
spectrum for the run shown in Fig. 3 

(Pee) Gs 2| > 

SGt) = ne Quy (x,t) (n t) “ PRN el POLE: 

(21) 
2 2 pup 7 kip bCksit sdk ., 

obtained from a variety of initial spectra, ranging in form from a very concen- 

trated spectrum (all initial excitation confined to a single 1/4 octave ,-band, 
Run 11) to the nearly self-preserving spectrum of Eq. (20), Run 10. The initial 
values of R, range from 16 to 47. Note that, after a transient behavior which is 
strongly dependent on initial conditions S(t) settles down to a value ~0.4 which is 

insensitive to initial conditions. This value agrees well with laboratory measure- 
ments of S(t) in the same range of R, [10], subject to some uncertainty because 
only crude estimates of wire-length corrections to the measurements can be 
made. The insensitivity of S(t) to initial conditions makes this a comparatively 
well-posed comparison with experiment. Equation (21) shows that s(t) is 
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-08 L(O)/u(0) 

46 " 
99 uw 

eS ile 

4 8 12 
kL(O) 

Fig. 5 - Evolution of the transfer spectrum 
for the run shown in Fig. 3 

RUN IO 

tu(O)/L(O) 

-80 

1.09 

1.40 

ad 

Fig. 6 - Evolution of the energy spectrum 
from the initial values of Eq. (20) (initial 

R, = 19) 
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RUN 10 Ry Gb) Sait 

tu(O)/L(O) = 1.62 

T (k)/k2 uy? 

2k? T(k)/kg* uv? 
2 vk? E(k)/kg? uv? 

T(k)/kg@uv? 

2k? T(k)/kg* uv? 2vk2E(k)/ky2uv2 , 

8 
k/kg 

Fig. 7 - Comparison of the dissipation spectrum 
(1), transfer spectrum (2), and vorticity-production 

spectrum (3) for the run shown in Fig. 6 

proportional to the instantaneous rate of vorticity production, normalized by the 
instantaneous dissipation rate, and thereby is an important measure of the non- 

linear transfer processes. 

Figures 9 and 10 compare the one-dimensional dissipation spectrum from 

the nearly self-preserving run depicted in Figs. 6 and 7 with spectra obtained by 
Stewart and Townsend [15| from measurements of decay behind grids. Again, 
there appears to be semiquantitative agreement, which is actually within the 

limits of experimental uncertainties. 

The apparently satisfactory performance of the direct-interaction appr oxi- 

mation at the moderate Reynolds numbers discussed above deteriorates at 
higher Reynolds numbers, At very high Reynolds numbers, the direct- 
interaction equations yield an inertial range spectrum E(k) « k~%/? instead of 

the k~5/3 spectrum predicted by Kolmogorov [10] and supported by experiment 
[16]. The reasons for this deficiency, and the modifications of the approxima- 

tion which correct it, are discussed in the Lagrangian Direct-Interaction Ap- 
proximation section of this paper. 
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O rs leva 
: t u(O)/L(O) 

Fig. 8 - Evolution of skewness for avariety of initial con- 
ditions. Curve 4 is for the run shown in Figs. 3-5; curve 

10, for the run shown in Figs. 6 and 7. (See Ref. 12 for 
full details.) 

More definitive and detailed tests of the direct-interaction solutions for 
isotropic turbulence decay at moderate Reynolds numbers probably must come 

from computer simulation of the flows. Such computer experiments now seem 

feasible at the R, values cited above, and it is to be hoped that they will be 

carried out in the near future. 

In the absence of these computer experiments at the present time, it is of 
interest to report a test of direct-interaction results against computer simula- 

tion for a simpler dynamical problem with the same kind of nonlinearity, viz., 
the interaction of a small, discrete set of shear waves [17]. The equations of 
motion here are obtained by writing the Navier-Stokes equation in Fourier form 

and then deleting all terms that refer to wave numbers outside a small set. The 
computer experiment is performed by integrating the equations of motion for an 

ensemble of initial conditions, and then averaging. Figure 11 shows a typical 
result for the interaction of a set of three shear waves confined to two dimen- 

sions. In this run, all of the energy was initially contained in two of the waves. 
Curves 1, 3, and 5 show the evolution of the energy in the three waves accord- 
ing to the computer experiment. Curves 2, 4, and 6 show the corresponding 

evolution according to the direct-interaction equations. 
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STEWART & TOWNSEND 

| Dl Ry = 17.7 

2 CHDI— Ry eI7%2 

ie) .2 4 k/kg 6 -8 1.0 

Fig. 9 - Comparison of direct-interaction re- 
sults from the run of Figs. 6 and 7 (curve 1) 
with experimental dissipation spectra (Ref. 
15). The quantity ¢; (k)is the one-dimensional 
spectrum. Curve 2 shows the result from the 
abridged LHDI equations (see the Lagrangian 
Direct-Interaction Approximation section of 
this paper) for the same initial spectrum. 

ADDITIONAL APPLICATIONS OF THE DIRECT- 
INTERACTION APPROXIMATION 

The direct-interaction equations have also been formulated for the evolu- 

tion of the spectrum of scalar contaminants convected by turbulence [18,19], 
stochastic solutions of Burgers’ equation [20], hydromagnetic turbulence [21,22], 
turbulence in a Vlasov plasma [23], buoyant convection in a Boussinesq fluid 
[24], and second-order chemical reactions in a turbulent fluid [25-27]. Further 
applications, for example to visco-elastic turbulence, are feasible. We shall 

give here only a brief report on the application to Boussinesq convection, which 

is the only one in which quantitative comparisons with experiment (computer 

experiment in this case) are available at the time of writing. 

The equations for turbulent Boussinesq convection are substantially more 

complicated than those for isotropic turbulence, although they present the same 

general appearance, because there is reduced spatial symmetry and an addi- 

tional field variable, the temperature field. We refer the reader to Ref. 24 for a 
full description. Numerical results so far have only been obtained for the case 

800 



Some Progress in Turbulence Theory 

.008 

(e) (e) Oo 

k 4, (k)/kg* uv 
004 

002 

k/kg 

Fig. 10 - The direct-interaction and LHDI re- 
sults of Fig. 9 compared with Stewart and 
Townsend measurements of «*¢, (k) (Ref. 15) 

of infinite Prandtl number, a rather inhospitable limit in which to test a turbu- 
lence theory because laboratory experiments have found strong evidence of a 

tendency toward ordered motion in this limit. Extension of this work to lower 

Prandtl numbers is in progress. 

Figures 12 and 13 illustrate the results for convection in a horizontally in- 
finite layer of fluid contained between slippery, infinitely conducting boundaries, 

at a Rayleigh number of 3000. In both the computer experiment and the direct- 

interaction equations, only the gravest three Fourier modes of temperature 
fluctuation in the vertical z-direction were retained in combination with all 

horizontal wave vectors whose x and y components fell within a chosen octave. 
Cyclic boundaries were taken in the horizontal such that the numerical experi- 

ment involved usually 76 distinct wave-vector projections in the horizontal, and 
averages were performed over an ensemble of ten realizations. The initial con- 

ditions were zero velocity everywhere, with Gaussian-distributed temperature 

fluctuation. The direct-interaction equations were integrated with an initial tem- 
perature fluctuation spectrum corresponding to the distribution used in the nu- 
merical experiment. 

Figure 12 shows the evolution of Nusselt number (the ratio of mean heat 

transfer across the layer to what the transfer would be without convection) ac- 

cording to the numerical experiment and the direct-interaction equations. Also 

shown are the results of two other statistical approximations, the quasilinear 

801 



Kraichnan 

Fig. 11 - Comparison of direct-interaction and 
computer-experiment results for evolution of the 
energy in three interacting shear waves (Ref. 17). 
Curves 1, 3, and 5 show the energy in the three 
waves according to the computer experiment, while 
curves 2, 4, and 6 show the respective direct- 

interaction results. 

and quasinormal approximations [24]. Herring estimates that statistical uncer- 

tainties in the numerical experiment curve, due to the finite density of modes 
in the horizontal and finite ensemble size, amount to about 3% where they are 
maximum, while the numerical error in the integration of the direct-interaction 
equations is smaller. The graph therefore suggests the excellent performance 
of the direct-interaction approximation. 

The truncation in wave-number space to three vertical modes and a single 

octave in the horizontal is physically artificial (although not seriously so at the 
Rayleigh number taken), but this does not weaken the test of the direct- 

interaction equations, since the same truncation is used in both the numerical 

experiment and the statistical approximation. 

Figure 13 shows the evolution of the spectrum of temperature fluctuations 

in the gravest vertical mode as a function of horizontal wave number. Again 

the direct-interaction results seem to agree excellently with the numerical 
experiment. Here, however, the comparison is less sharp, because the statisti- 
cal fluctuations in the numerical experiment show up more prominently in the 

spectrum results than in the Nusselt number curve. 

Numerical results from the work at lower Prandtl numbers and higher 

Rayleigh numbers and also for non-slip boundary conditions are expected in 
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t 

Fig. 12 - Comparison of direct-interaction and computer- 

experiment results for the evolution of Nusselt number at infi- 
nite Prandtl number, Rayleigh number = 3000. The solid curve 
is the numerical experiment; the dashed curve, the direct- 

interaction approximation; the triangles are the quasilinear 
approximation; and the dot-dash curve is the quasinormal ap- 
proximation. The squares show points from another numerical 
experiment, with 124 horizontal wave vectors, and give a meas- 
ure of the statistical error at the time of evolution, when that 

error was found to be maximum. (See Ref. 24 for further de- 

tail and for normalization.) 

the near future. This should permit meaningful comparison with laboratory as 
well as computer experiment. 

LAGRANGIAN-HISTORY DIRECT-INTERACTION APPROXIMATION 

We noted in the section on Isotropic Turbulence Decay that the direct- 
interaction equations for isotropic turbulence failed to give the Kolmogorov 75/3 
inertial-range spectrum, yielding instead a «~3/2 spectrum. The trouble here can 
be traced back to a deep-lying cause: the use of Eulerian description. The princi- 
pal idea behind Kolmogorov's theory is that eddies of large size convect eddies of 
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Fig. 13 - Comparison ofdirect- 
interaction and computer-experiment 
results for spectrum as a function of 
horizontal wave number for the case 
shown in Fig. 12. The dots are the 
numerical experiment; the crosses in 
circles, the direct-interaction ap- 

proximation. The horizontal wave 
number plotted horizontally is the 
spectrum level vertically. 

small size in a random fashion, but do not distort the small eddies appreciably. 
In the Fourier representation, this means that the excitation at wave numbers in 

the energy-containing range does not affect the dynamics of energy transfer at 
high wave numbers, 

The direct-interaction approximation for energy transfer, as given by Eqs. 
(12) and (16), expresses the transfer as an integral over the past history of the 

fluid. The function U(k; t',s) in Eq. (15) is an Eulerian time-correlation for 

wave number k. If the equations are Fourier-transformed back to physical 

space, the time integrals may be interpreted as tracing the velocity correlations 

back in time at fixed points in space. However, the Eulerian time correlations 

at high wave numbers (small spatial separations) are strongly affected by the 
distortionless random convection of small eddies by large eddies. U(k; t,s) does 

not convey sufficient information to tell whether or not the decorrelation at high 

wave numbers is due to convection without energy transfer, or to the internal 
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distortion of the small eddies associated with energy transfer. This is why the 

direct-interaction approximation is inadequate in the inertial range. It confuses 

the two processes and makes the convection decorrelation time the effective de- 
correlation time for energy-transferring triple correlations built up by inter- 

actions among the inertial-range wave numbers [28]. 

In order to correct this situation, the direct-interaction equations have been 

modified so that the integral over the past history is taken along particle trajec- 

tories, instead of at fixed points in space. This transforms away the spurious 
effects of convection on energy transfer. The change requires an initial re- 
formulation in terms of generalized Lagrangian velocities. The resulting equa- 

tions, called the Lagrangian-History Direct-Interaction (LHDI) approximation, 

yield Kolmogorov's form of the inertial-range spectrum, and provide a unified 

dynamical description of both Eulerian and Lagrangian flow statistics [29]. 

A simplified formulation, called the abridged LHDI approximation, has been 

integrated numerically in considerable detail, yielding numerical predictions for 

Kolmogorov's constant, for the dissipation range spectrum of isotropic turbu- 

lence at high Reynolds numbers, and for a number of Lagrangian statistics [30]. 
At moderate Reynolds numbers, the abridged LHDI equations yield an isotropic 
turbulence decay which is similar to that obtained from the original direct- 
interaction approximation. Figures 9 and 10 illustrate the moderate-Reynolds- 

number comparison in the dissipation range, where the differences are largest. 

Figures 14 and 15 compare the abridged LHDI predictions for inertial range 
and dissipation range at high Reynolds numbers with the measurements in sea 

water by Grant, Stewart, and Moilliet [16]. Here < is the rate of dissipation by 

viscosity per unit mass, k_ = (e/v3)1/4 is the Kolmogorov dissipation wave 

number, and ¢, (k) is the one-dimensional energy spectrum. It should be noted 

that these comparisons are absolute in the sense that there are no adjustable 

scaling parameters in the abridged LHDI equations. 

The LHDI and abridged LHDI approximations have also been applied to sev- 
eral other problems: relative dispersion of two particles by turbulence [31], 

spectrum of scalar fluctuations convected by turbulence [31,32], spectrum evolu- 
tion of random solutions of Burgers' equation [20]|, turbulence in a Vlasov plasma 

[33], and second-order chemical reactions in a turbulent fluid [34]. In these 
varied applications, the LHDI equations have had substantial success in differen- 

tiating among qualitatively different kinds of dynamical behavior. Thus the same 

approximation which yields the Kolmogorov «75/3 law in isotropic incompressi- 

ble turbulence, yields Richardson's law in two-particle dispersion [31], a 75/3 
law for the inertial-convective spectrum range of a passive scalar [31], a k~? 
inertial range for Burgers’ equation [20], the k~! viscous-convective-range law 
of Batchelor for the spectrum of a passive scalar at very high wave numbers 
[32], anda & 3’? inertial-range law for hydromagnetic turbulence [22,35]. How- 
ever, where quantitative accuracy has been assessable in these applications, it 

appears mostly to be poorer than in the case of the Kolmogorov inertial and 

dissipation range for isotropic Navier-Stokes turbulence. 
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Fig. 14 - Logarithmic plot of the inertial and 
dissipation range spectrum from abridged 
LHDI approximation, compared with the data 
of Grant, Stewart, and Moilliet (Ref. 16) 
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Fig. 15 - Linear plot of the data in Fig. 14 

HIGHER APPROXIMATIONS AND ESTIMATION OF ERRORS 

The comparisons with laboratory and computer experiments outlined above 

suggest that the direct-interaction family of statistical equations provide 
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reasonably satisfactory first approximations to a wide variety of turbulence 

phenomena, yielding qualitatively correct behavior, with quantitative errors of 
the order of 10% in favorable cases (e.g., the eddy diffusivity found in the section 
on Approximation for Turbulent Diffusion). Two questions arise at this point. 
Can the errors be bounded, or estimated, analytically, without recourse to ex- 
perimental comparisons? Can a convergent sequence of higher approximations 

to desired statistical functions be constructed, with the direct-interaction as a 
base? Incomplete investigations, which we report briefly below, suggest that 
the answer to both questions is yes, with the qualification that the estimates and 

higher corrections may be difficult to extract and evaluate numerically. 

In the section on Dynamical Equations for Statistical Quantities, it was stated 
that all known techniques for forming dynamical equations for the statistical 
functions lead to divergent, infinite series or sequences of some kind. In particu- 
lar, there is a divergent series of integrals on the right-hand side of Eq. (3), the 
dynamical equation whose truncation yields the direct-interaction approximation 

for turbulent dispersion by a random velocity field. As an aid to understanding 
the nature of the divergence, its significance, and how to cope with it, we shall 
consider a simpler case of a divergent series. Suppose that f(A) is defined by 

the integral 

fie 2d 

Oe loam. ae 

If the integrand is expanded in a power series in), and the integration is per- 
formed, the result is 

FON) Erk aah? £22! AP = SION ao (23) 

a strongly divergent series. 

Although Eq, (23) is divergent, it is not meaningless. A power-series ex- 
pansion of a function may be considered a kind of encoding. In the case of a 

convergent series, the decoding process can be simple summation. This no 

longer is possible for divergent series, but the code may nevertheless be un- 
ambiguously soluble, given some qualitative information about the function. In 

the case of Eq. (23), rapidly converging approximants to f(\) are yielded by the 
Pade table [36]. This is an array of functions, each the ratio of two polynomials, 
chosen so that, for polynomials of given orders in numerator and denominator, 
the power-series expansion of the approximating function reproduces as many 

coefficients of Eq. (23) as possible. 

The Pade technique may be stated in a more intuitive form, which brings 

out better its broad significance. Suppose we know, or have reason to believe, 

that an unknown function f(\) has a representation of the form 

d 

ray: [Sar Gm) 
0 
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The coefficients of the power-series expansion of f(\) are then the moments 

@ 

{ Pp Gayva? da 
0 

The Padé table approximates the unknown p(a) by a weighted sum of 5-functions, 
>, p, (a- a;), such that, as we go higher in the table, more and more moments 

are reproduced correctly [36]. Expansion of a function in 6-functions is a spe- 
cial case of expansion in a complete set of orthogonal functions, and Eq. (24) is- 

a special case of an integral representation of the form 

foo) 

rays |p (a) @ Cad?) da, 
0 

where g (ad? ) has a power-series expansion. Thus a number of generalizations 

of the Pade approximants are possible. 

If p in Eq. (24) is nonnegative, a case which includes Eq. (22), then the ap- 

proximants on the diagonal of the Padé table yield successively improving upper 

bounds on f(A), while a set of approximants off the diagonal yield successively 

improving lower bounds. It should be noted that the approximation to f(A), ob- 
tained by substituting a sum of s-functions for p(a), is a smooth function. 

The technique of Padé approximation, and its generalizations, can be applied 

formally to the infinite expansions of turbulence theory by regarding the latter 
as a power series in a parameter. In the case of perturbation expansion of tur- 

bulence functions about purely viscous decay values, the ordering parameter is 

the Reynolds number. In the case of Eq. (3), we can form the power series by 
multiplying the successively higher terms on the right-hand side by powers of )?, 
and, at the end, taking \ = 1. Here is a formal ordering parameter without 

immediate significance. 

To justify such manipulations, we must establish that appropriate forms of 
integral representation exist for the functions of interest. Only a start at this 

has been made at the time of writing. The plausibility of representations like 

Eq. (24) perhaps is enhanced by the nature of turbulence functions as averages 
over an ensemble of realizations, with » playing the role of probability distribu- 

tion for an actual or effective parameter. Then large values of ''a’’ would cor- 
respond to contributions from the fringes of the probability distribution, which 
have little effect on the final values of the functions of interest but which affect 

strongly the higher terms in the divergent power series. 

The Pade technique, and some generalizations, has been tried out with ap- 
parent success on several turbulence problems, including a detailed application to 
Eq. (10) [37]. The theory of successive approximations for the Laplace transform 
of G(k, t) has been worked out fully in the limit of high k, and the Pade appr oxi- 
mants have been shown to yield bounds on errors, as weul as improving approxi- 

mations in this limit. The theory is in less complete shape for general k, but 

comparison with the computer experiments show that improvement over the 

direct-interaction results is obtained at all k, with a reduction of about 50% in 
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the error of the prediction for the long-time eddy- diffusivity x() coming in the 
first diagonal Pade approximation. Extension of the Padé technique to isotropic 
turbulence dynamics and turbulent flow in pipes and channels is underway. The 

outlook is favorable, but with insufficient work done to make any definite 

statements. 

NUMERICAL INTEGRATION OF THE 
DIRECT-INTERACTION EQUATIONS 

We noted earlier that although statistical equations like the direct-interaction 
equations are much more complicated than the original Navier-Stokes equation, 

they can be less troublesome to solve numerically, because the solutions of the 
statistical equations, being averages, are smoother and more stable than the ve- 

locity fields of individual flow realizations. 

To illustrate, consider the isotropic turbulence decay discussed in the sec- 
tion on Isotropic Turbulence Decay. Recent numerical techniques, using the 

Cooley- Tukey fast Fourier transform, make it possible to integrate a flow repre- 
sented by 32 x 32 x 32 Fourier modes (i.e., 32 values for each component of wave 
vector), by direct solution of the Navier- Stokes equation in a computation time of 

about one minute per time step on an IBM 390/95 computer [1]. This is suffi- 
cient Fourier resolution to describe fairly well the energy-containing and 
dissipation-range wave numbers in isotropic turbulence decay at R, ~ 20. In 
order to follow the evolution for a time equivalent to the evolution times of the 

direct-interaction solutions of section of this paper just mentioned, the order of 

100 time steps would be needed, giving a total computation time per realization 
of the order of an hour. An ensemble of perhaps 10 members would probably 
give acceptable statistics at the higher wave numbers where the number of 

Similar modes is large. 

In contrast, the direct-interaction solutions illustrated in the above- 
mentioned section require less than a minute per run on the same computer. 
This time is based on a numerical scheme for the direct-interaction equations 

which involves logarithmic steps in wave number and linear steps in time [12]. 
The favorable properties of the statistical functions are exploited several ways 

in this scheme. First, the spatial symmetries, homogeneity and isotropy, have 

already been used in writing Eqs. (12) - (16), since the unknown functions are 
scalar functions of scalar wave number. The use of logarithmic steps in wave 

number (about 20 to cover the entire , range) is possible because of the smooth 
dependence of U(k; t, t') and G(k; t, t') on k. Finally, a time step about five 
times larger than permissible for the straight computer simulation is permissi- 

ble because of the high stability of the direct-interaction equations. 

It should be noted that the isotropy and homogeneity properties are no help 

in the computer experiment, except possibly in reducing the number of realiza- 

tions needed to get good statistics. It still is necessary to follow the complex 
vector amplitude of each of the 32 . 32 x 32 Fourier modes. On the other hand, 

if no use of symmetry and smoothness had been made in integrating the direct- 
interaction equations, the machine time for the latter would have been stagger- 

ing. In this case, a tensor function of two vector arguments, of the form 
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U; ,(k, k', t, t') would replace U(k; t, t'). If the direct-interaction equations 
were then integrated using point-to-point integration on the 32 x 32 x 32 grid, 
and the same time step as for the computer experiment, the number of multipli- 
cations required would be billions of times greater than for integration of the 
Navier-Stokes equation for a realization. 

The saving in computation time over direct simulation offered by the direct- 
interaction equations rises with Reynolds number. Consider a steady-state 
turbulent flow. Here logarithmic steps in both wave number and frequency can 
be used with the direct-interaction equations, with the result that computation 
time rises only as the logarithm of Reynolds number. With direct simulation, 
on the other hand, the number of Fourier modes must go up as the cube of ratio- 

of-dissipation wave number to energy-containing wave number, while the per- 
missible time step gets smaller. 

Further marked reductions in the integration time for the direct-interaction 

equations can be achieved through the use of more economical representations 
of the statistical functions than by (linear or nonlinear) grids ink. The integra- 
tions illustrated in the section on Isotropic Turbulence Decay used about twenty 
logarithmic steps in k. However, the resulting functions are so smooth that 
they could be represented adequately by two or three coefficients in an aptly 

chosen representation by orthogonal functions (e.g., Laguerre functions). Sav- 
ings of this kind become of increasing value in nonisotropic problems, such as 

turbulent flow in a pipe, where the loss of symmetry raises the dimensionality 

of the final statistical equations. 

Increased dimensionality also makes the Monte-Carlo evaluation of multiple 
integrals attractive for reducing computation time. The use of Monte-Carlo 

methods was what made feasible the evaluation of the higher-order corrections 
to the direct-interaction dispersion equations, discussed in the previous section. 

The use of representation by well-chosen orthogonal functions, coupled with 
Monte-Carlo evaluation of integrals, makes integration of the direct-interaction 
equations for simple shear flows [38], such as a flow in an infinite pipe or chan- 
nel, appear practicable with presently available computers. Work toward this 

end is in progress. 

The use of Monte-Carlo methods for evaluating the statistical equations is 
of theoretical as well as of practical interest, and leads to a point of view in 

which direct simulation and representation by statistical approximation appear 

as intimately related complements. Let us again take isotropic turbulence as 
an example. Suppose an initial spectrum is prescribed, with initial, multivari- 

ate, Gaussian statistical distribution. Suppose first that the initial R) is low 
enough that only a few modes need be retained in the computer simulation. Inte- 
gration time per realization is then small, and solution for a sizable ensemble 
of realizations is feasible. For R, ~ 40, however, the order of 10° to 10° 
Fourier modes must be retained, and the computation task becomes onerous. 
Apart from the cost of computer time, the direct simulation seems fundamentally 

inefficient at this stage. Most of the effort goes into handling the large number 
of high k modes, whose behavior is statistically redundant. We would like to 
handle only a few of these modes, which then would typify the others. This is not 
possible with direct simulation. If a sizable fraction of the high k modes are 
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simply omitted from the dynamical equations, statistical weights are altered, 
and the faithfulness of the solution destroyed. Moreover, there is no way to 

interpolate between selected high k modes, because of the jagged variation of 
amplitude from mode to mode, which, although unpredictable, incorporates 

elaborate dynamically created statistical correlations. 

Suppose, on the other hand, we deal with statistical equations: the direct- 
interaction approximation and a sequence of (presumed valid) higher approxi- 
mations built upon it after the fashion of that described in the previous section. 
Here the smoothness of the statistical functions does permit interpolation at 
high wave numbers. If these equations are solved by Monte-Carlo evaluation of 

multiple k-space integrals, we are, in effect, sampling just a few of the high k 

modes, and interpolating — which is what we wanted to do and could not with the 

computer simulation. If only the direct-interaction equations, without higher 
corrections, are solved, a semiquantitative solution (errors in spectrum on the 

order of 10% - 20%) emerges with great computational economy. As higher cor- 
rections are admitted, a more accurate solution is obtained (if the proposals of 

the previous section are valid), at the expense of evaluating more elaborate 

multiple k-space integrals. This means that the Monte-Carlo sampling involves 

longer sample chains of interacting Fourier modes. 

If a prediction of only the energy spectrum is desired, the sequence of sta- 
tistical approximations appears to offer greater economy at moderate Reynolds 

numbers, Suppose, however, that a more elaborate statistical function were 
desired —- say, the joint-probability distribution of the velocity at three points, 

or the flatness factor of some probability distribution. A formulation of the 
statistical equations to yield such functions with acceptable accuracy could be 

expected to be very elaborate and to require, ultimately, the sampling of very 

long chains of interacting Fourier modes in very complicated equations. Here 

it would likely be more economical to work with direct simulation, where all 

sets of Fourier-mode interactions are explicitly calculated from the outset. 
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FOREWORD 

In this paper, research is described which was carried out by means of a 

large electronic computer with the aim of detecting which parameters affect the 
wave bending moment of a ship and thereafter to evaluate their quantitative 

influence. 

The present research may have some importance especially for ships as 

bulk-carriers and tankers for which there is actually a trend to larger and larger 
sizes and for which the influence of certain parameters, weight distribution, for 
instance, may be of paramount importance from the point of view of the longitudi- 
nal strength in confused sea. For this reason the choice of the types of hulls 

and weight distributions adopted for this study was oriented to such kinds of 

ships. 

The work is based upon the theory of Korvin-Kroukovsky (KK) and the abso- 

lute values obtained for bending moment are obviously comprised between the 
accuracy limits of the above theory, which can be deemed sufficient in most of 
practical cases. However, at least from a qualitative point of view, the param- 
eter identification remains valid, as well as the exclusion of the influence of 
other parameters, that have also been taken into consideration. 
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The results of the work are reported in the first part, while in the second the 
procedure adopted and the justification of the assumptions made are given in 

detail. 

In the third part the formulas are given in the form used for the calculation, 
slightly modified in respect to the original ones of KK with the purpose of simpli- 
fying the numerical evaluation of certain quantities. 

The complete program is also reported, worked out in FORTRAN 2, together 

with the input data formats and the output tables. 

Note that the application of a known hydrodynamic theory has permitted find- 
ing a solution of practical utility of one of the most serious problems related to 

the study of ship's strength, leading to results given in general form, which it 
otherwise, given the present state of knowledge, would not have been possible to 
achieve. 

1. DETERMINATION OF WAVE BENDING MOMENT 

1.1 Parameters Affecting the Phenomenon 

As is known, the wave bending moment is essentially due to: 

(a) local hydrostatic pressure variations produced by: 

(1) height of wave profile in way of each hull transverse section; 

(2) vertical shift of each section owing to pitching and heaving 
motions; 

(b) inertial forces variable from time to time and from section to section; 

(c) hydrodynamic forces variable as well during the time and along the 

hull and which can be divided as follows: 

(1) exciting forces due to the vertical velocity of water particles; 

(2) forces due to the vertical velocity of hull sections; 

(3) exciting forces due to modifications induced by the hull presence 
on the velocity potential. 

In the static method of wave bending moment calculation, according to which 
the hull is considered in balance on a wave, only the factors listed under (a) are 

taken into consideration, and therefore the calculation is referred to a position 
where the rotation due to pitching is zero. 

Methods deriving from Froude-Krilov hypotheses lead one to neglect the fac- 
tors listed in (2) and (3) of (c) above and therefore not to take properly into account 
the hydrodynamic influence. 
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According to the KK method instead (as well as those of Haskind and Wata- 
nabe) all listed factors are taken into account, and therefore such a method may 
be considered adequate for practical purpose. 

Many authors have compared theoretical results based on KK theory with 

the experimental data and have achieved in every case an acceptable agreement. 
For this reason, it has been deemed acceptable to adopt the KK method as a 
basis for this study, assuming that the results obtained from its application be 

satisfactorily in accordance with the real behavior, and the influence of the dif- 
ferent parameters has been investigated, systematically applying this method. 

As is known, the KK method allows one to know at any time, and for what- 
ever station along the hull, the value of the wave bending moment when the ship 
is sailing at constant speed in regular waves. Therefore solving the equation 

that provides the bending moment values in regular waves corresponding to dif- 
ferent stations along the hull at different times, the envelope of the peak values 

along the hull could be determined and the peak value of the envelope curve 
then selected. 

The bending moment value that would be obtained in this way, however, is 
not the most dangerous obtainable, even though, as a basis for the calculation, 
the regular wave of the highest value that the ship may encounter during its life 
is assumed with an acceptable probability. It can easily be demonstrated, in fact, 

with energetic considerations, that the most probable peak value of the bending 
moment that can be obtained as a response to a confused sea spectrum is, as 

absolute value, greater than the peak value that can be obtained in regular waves. 

Therefore in this study the most probable peak value of the bending moment 
over 104 cycles has been taken into account, when the ship is sailing against a 

long-crested confused sea induced by a 60-knot wind, choosing for any ship the 
transverse section where the bending moment also reaches its peak value along 

the hull. 

The main parameters that may affect the bending moment are: length, 
breadth, draft, speed, weight distribution along the hull, hull volumes distribu- 

tion along the hull, waterline shape, and sea spectrum. 

While the first four parameters are uniquely determined, for the rest it 

was necessary to carry out preliminary investigation with the aim of detecting 

which quantities are suitable for providing a quantitative as well as qualitative 

definition of the exposed concepts. 

To the purpose of characterizing the weight distribution, different param- 

eters have been considered (for instance, area, moment of inertia, and ab- 
scissa of the center of gravity of the weight curve, adequately reduced to cer- 

tain formulas). 

After some investigation, (see Sec. 2.4), a strict correlation was discovered 
between the wave bending moment and the quantity 
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Day Xay + Dap Xap 

DL 

where 

D = displacement, 

D,y = displacement portion lying forward of ship's center of gravity, 

Dap = displacement portion lying aft of ship's center of gravity, 

X,y = distance between ship's center of gravity and Day 8 center of 
gravity, 

XO} = distance between ship's center of gravity and D,,'s center of 
gravity, 

L = waterline length. 

Thereafter, the quantity » has been assumed as representing the weight distri- 
bution along the hull. 

When considering the hull volume distribution and the waterline shape , 
the following factors were to be assessed: 

(a) the independent effect of the two parameters, each separately 

considered, and 

(b) the reciprocal influence of the two parameters. 

Some systematic calculations have been carried out, assuming the same hull 
volume, first maintaining the same waterline shape and systematically modifying 
the area curve, then maintaining the same area curve and modifying the water- 
line shape. It has been found that the wave bending moment is much more af- 
fected by waterline shape modifications than by area curve, in agreement with 

what had been clearly stated by Swaan (see Sec. 2.2). 

Therefore, the waterline coefficient has been kept as only significant param- 

eter and as a matter of fact the consequent errors are even more negligible than 

could be expected at first, owing to the fact that generally a certain correspond- 
ence exists between block coefficient and waterline fineness coefficient, it being 
extremely unlikely that full ships have low-fineness waterlines or that fine ships 

have full waterlines. 

When considering sea spectrum it was decided to adopt Scott's formula, 
which allows one to write the equation as a function of frequency, when wind 

speed is known. In Table 1 the above formula is reported, together with the ex- 
pressions for significant height, peak frequency, and mean wave period. Figure 

1 shows spectra corresponding to wind speeds of 20, 40, and 60 knots, while in 
Fig, 2 diagrams are drawn of significant height, peak frequency, and mean wave 
period, as a function of wind speed. 
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Table 1 

Scott's Formula (See text) 

1/2 

(@,-o,)? 

0.065 (w,-a, + 0.26) 

F (w,) = 0.214H%e GoM ant ao cy Es) 

F (o@) = 0 otherwise 

F = Power spectral density g = Gravity acceleration 

function (m?/sec) (m/sec2) 

®, = Frequency (1/sec) H = 0.25W - 1.77 

H = Significant wave height (m) a 3.15 8.98 1 
— = 

a T, T2 = 0.0984H + 1.35 
wo, = Peak frequency (1/sec) 

\* = Maximum energy wave- Spain. Gap 20 
length (m) 

One Ost 1.65 

T. = Mean wave period (sec) 

= Wind speed (knots) 
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1.2 Parameters Selected as Characteristic 

As a result of what has been stated in the preceding paragraphs, the follow- 

ing nondimensional parameters were selected as fundamental for describing the 

phenomenon under investigation: 

M 
peBL3 

Wave bending moment c, = 

Ship's breadth & 

Draft + 

Ship's speed Fr =v/VLg (Froude number) . 

9 Day Xav +Dap Xap 
Weights distribution p = DL 

Hull volumes distribution and waterline shape C, = 

Ship's length R= = 

where, in addition to symbols already defined in Sec. 1.1, 

M = wave bending moment (t x m), 

B = ship's breadth (m), 

i = mean draft (m), 

A = waterline surface (m2), 

o = seawater density (t « sec?/m‘4). 

To the purpose of systematically analyzing the influence on wave bending 
moment of all these parameters, first the response operators were obtained for 

1008 combinations of the following values: 

4 values of L/B 7.00 7.29 7.50 7.75 

7 values of t/j 16.00 17.50 19.00 23.79 28.50 30.00 31.50 

3 values of Fr 0.0 0.05 0.10 

4 values of C, 0.804 0.836 0.872 0.900 

3 values of p 0.345 0.404 0.448 

A first investigation was carried out calculating the response corresponding 

to a sea spectrum relevant to a wind speed of 60 knots for a ship 200 meters in 

length (see tables in Appendix). 

Subsequently, the result analysis allowed one to reduce the operators 

number: 
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(a) reducing to one the number of L/B values, because this parameter 
does not practically affect the phenomenon; 

(b) reducing to three the number of L/i values, the influence of which 

can be notwithstanding easily studied; and 

(c) reducing to two the number of p values, which affects the phenome- 

non according to an approximately linear law (see Sec. 2.4). 

As a consequence, the combination of the following parameters values have 

been finally investigated: 

1 value of LB 7.00 

3 values of L/i 17.50 23.75 30.00 

3 values of Fr 0.00 0.05 0.10 

4 values of C, 0.804 0.836 0.872 0.900 

2 values of p 0.345 0,448 

Finally, the response spectra were calculated corresponding to spectra rele- 

vant to wind speeds of 45, 50, 55, and 60 knots for ship's lengths of 180, 200, 220, 
240, 260, 280, 300, 320, and 340 m. Each of these 36 cases can be identified by 
means of a value of the ratio L/\* given in Table 2. 

Table 2 

L/\* Values 

180 
- 200 0.462 
= 220 0.508 
ted 240 0.554 
’ 260 0.600 
S 280 0.646 

a 300 0.692 
w 320 0.738 

340 

In short: In the first investigation 1008 cases were examined, studying the 

influence of the different parameters on a ship of 200 m in length, assuming a 

spectrum corresponding to 60 kn; in the subsequent investigation the influence 
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was studied of the same parameters, assuming however several sea spectra and 
several ship's lengths, so considering altogether 2592 cases (72 of which already 
considered during the preceding investigation). 

Obviously the response operators have been calculated only once, and the 

influence of sea spectrum and ship's length have been obtained by means of a 

simple integration (see Sec. 2.5). 

1.3 Results of Systematic Calculations 

Results of systematic calculations are partially reported in tables contained 

in the attached appendix and in Figs. 3 through 6. 

The result analysis leads to the following general conclusions for the types 

of ships and conditions investigated: 

(a) bending moment coefficient c, does not depend appreciably upon 

ship's breadth; i.e., the wave bending moment is a linear function 
of ship's breadth; 

(b) C,, L/i and Fr being the same, c,, is a linear function of p ; 

(c) the slope of the straight line c, = f(p) is mainly and substantially 
affected by L/i and Fr, while variations of the parameter C, only 
produce parallel shifting of the same straight line; 

(d) although c,, is not a linear function of c, , for values 0.80 < C, < 
0.90 it may be approximately assumed that the variation remains 
linear, provided that p , L/i, and Fr are kept constant. This may 
be accepted owing to the flex point corresponding to C, = 0.85 

shown by all curves; 

(e) the function =f (C,) is therefore practically a straight line, the 

slope of which depends only upon L/i , while variations of Fr and p 

produce parallel shiftings of the same line; 

(f) c, increases for increasing values of L/i , according to a law very 

close to a hyperbole, so that c_ is substantially a linear function 

of the ratio i/L ; 

(g) when increasing Fr, keeping Cc, constant, c, increases for low p 
values and decreases for high p values. 

As far as sea spectrum and ship's length influence is concerned, it was dis- 
covered that the bending moment coefficient depends only upon the ratio R = 

L/\* and not separately and independently upon sea spectrum and ship's length 
(see Sec. 2.5). 
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1.4 Formula for Determining the Wave Bending Moment 

From the analysis of the total set of results, a formula was produced which 

seems to cover all possible cases: 

Gna105> (3.38 + 11,20 d) C, + (1.94- 71.63 X- 21.38 Fr) p - (1.91- 12.452 

1 ="0).30R 
-8.15 2) ees merase ’ 

where » = L/ poe 

Hence, the wave bending moment can be immediately deduced as 

Mere pe Bie” 

By a comparison between the values given by the above formula and those 

calculated, it can be noted that the differences distribution follows with sufficient 
accuracy the Gauss law, with a mean value equal to zero and variance o? ~ 1.5, 
The error probability is given by Table 3. 

Table 3 
Error Probability 

Consequently, it would seem entirely justified to use, in any actual case of 

maximum wave bending moment calculations, the values provided by the above 
formula in lieu of those obtained according to the KK method; it is not, in fact, 
expected that the difference between the values obtained according to the KK 
method and the real values on the actual ship may be restricted within limits 
more narrow than those above. It is however, to be well kept in mind that the 
validity limits of the formula lie within the field of the values selected for the 

systematic calculation, particularly as far as Froude number and sea state are 

concerned, 

The preceding formula can be written in the form: 

c, = K, K, x 10%, 

where 

FOC iiFry p) 
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and 

Kosaonf aOR ac 

Figures 7 and 8 show the curves having K, = constant, while in Fig. 9 

the curve K, = f (R) is drawn. 

These diagrams may be utilized for determining c,, by means of simple 

linear interpolations, avoiding the numerical evaluation of the above formula, 

and we hope they may be of some help to the ship designer. 

1.5 Examples of Formula Application to Existing Ships 

As an example the comparison between the results from the above formula 

and from a direct calculation according to the KK method is given in Table 4 
for nine ships having typical characteristics of oil tankers and bulk carriers. 

The differences found for these ships are representative of a large set of 

ships calculated to check the validity of the formula. 

Table 4 
Comparison of Formula and KK Method (w = 60 knots; Fr = 0.05) 

Case L(m) B(m) | i(m) C. Difference 

(%) 

1 

2 

3 

4 

) 

6 

7 

8 

9 

2. THE RESEARCH METHOD 

2.1 General 

In the first part of this paper, the results have been exposed of an investiga- 

tion on the wave bending moment in confused sea. The aim of the second part is to 
explain the procedure followed during the investigation, so that the readers have 
the possibility of appraising the reliability of the obtained results. To this pur- 

pose it is necessary that some considerations be premised about selected hulls 

and weight distribution diagrams adopted for calculation. 
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2.2 Selected Hulls 

Some Todd's hulls have been selected, which may be considered typical for 
tankers and bulk carriers. The principal parameters characterizing these hulls 

are reported in Tables 5 and 6, where the following symbols are used (It is to be 

noted that in Table 6 values of B,/B and A,/A correspond to equally spaced 

transverse cross sections of body plan, so that section 0 corresponds to aft per- 

pendicular and section 20 to fore perpendicular.): 

L = waterline length 

L.p = length between perpendiculars 

B = maximum waterline breadth 

i = draft (from base line) 

A = maximum surface of immersed transverse cross section (up to 
waterline) 

B, = breadth (at waterline level) of actual transverse cross section x 

A. = surface of actual immersed transverse cross section x 

C, = block coefficient 

C, = waterplane area coefficient 

Ca midship section area coefficient 

OP center of buoyancy, from aft perpendicular 

Table 5 
Selected Hulls 

0.728 0.766 0.806 0.842 

0.804 0.836 0.872 0.900 

0.988 0.991 0.994 0.996 

7.00 7.29 7.90 he 0 

16.00 17.50 19.00 23.75 28.50 30.00 31.50 

0.525 

The choice of the hull parameters appearing in the tables has been sug- 

gested by the following partial results, obtained from a preliminary calculation 

worked out before planning the systematic calculation, which does not appear 
necessary to expose here in complete detail: 
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Table 6 

Selected Hulls 

0 

1 

2 

3 

4 

4) 

6 

tf 

8 

9 

Pe wm kK Oo 

ee e oO 

— ol 

ee eS oOo co I Dm 

i) (=) 

(1) Being c, equal, the shape of the transverse section area diagram has an 
almost negligible influence on wave bending moment in confused sea; the 
same may be said, being C, equal, for the shape of the waterline. There- 

fore the location of the center of buoyancy has a scarce influence, so that 

it may be assumed as a constant for the systematic calculation. 

(2) In tanker or bulk-carrier-type hulls, a nearly constant relationship has 
been found among all fineness coefficients, so that it has been decided 
not to investigate any longer, for instance, the influence of C, , being C, 

equal, because these variations are very slight in practice. 

In the systematic calculation, all values of C, (i.e., Cg and C,) have been 
associated to each couple of values L/, andL/,; , totaling 112 combinations of 

nondimensional parameters. 
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Note that the selected values of L/i are not uniformly spread, but are con- 
centrated around the mean values relevant to "full load" and "ballast" condi- 

tions; only one intermediate value (L/i = 23.75) grants a sufficient linkage be- 
tween the two aforesaid conditions. 

2.3 Weight Diagrams 

The criterion adopted in choosing the weights distributions is appreciably in 

accordance with weights diagrams of tankers and bulk-carriers. In fact these 
types of ships are often characterized by weight distributions very different from 
those relevant to evenly distributed load along all holds; loading conditions with 
empty holds are met and even more complex cases, especially when high-density 

cargos are carried. Besides, the weight distributions in ballast conditions are 
not to be forgotten, which may cause very different situations to arise from ship 

to ship and even for the same ship. 

The actual weight diagram has here been considered as the sum of three 
separate diagrams (see Fig. 10): 

(A) weight of ship's section aft of the forward bulkhead of engine room 
and forward of the collision bulkhead; 

(B) evenly distributed load between the above bulkheads; 

(C) weights and loads unevenly distributed between the above bulkheads. 

As far as portion (A) is concerned, three distributions have been selected, shown 
in Table 7, named, respectively, types A,;, A, and A; (the meaning of the sym- 
bols of Table 7 is clearly stated in Fig. 10). 

Table 7 
Distributions Selected for Portion A in Fig. 10 

0.1487D/L, | 0.2897 D/L, | 0.4307D/L, 
0.6800 D/L, | 0.8210 DL, | 0.9621 DL, 
0.3050 D/L, | 0.6609 D/L, | 1.0168 D1, 
0.0753 D/L, | 0.4311 D/L, | 0.7868 D/L, 
0.0816 p 0.1094 p 0.1372 p 
0.0168 p 0.0848 p 0.0799 D 

Configuration A, is considered to be in good agreement with standard full- 
load conditions of tankers and bulk carriers, while configurations A, and A, are 
more suitable for representing ballast conditions. 
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As far as portion (B) is concerned, the three configurations reported in Table 

8 have been selected, named, respectively, type B,, B,, and B,. Configuration 
B, may properly represent the standard hull weight distribution between engine- 

room bulkhead and collision bulkhead. 

Table 8 
Configurations Selected for Portion B in Fig. 10 

0.1661 D/L, | 0.0830 D/L, 
0.1187 D 0.0593 D 

As far as portion (C) is concerned, that obviously represents hold cargo, it 

consists of three parts, C,, C., and C,, respectively; these parts correspond 

to noncontinuous distribution along holds length L, divided into 3, 5, or 7 holds, 
having the following characteristics: 

even holds of equal length; 

odd holds of equal length; 

equal loading heights in even holds; 

equal loading heights in odd holds. 

The definition of distribution type C is given in Tables 9 and 10, where 
reference is made to symbols of Table 11. In case that in particular r; = 1 
(i= 3,5, 7), values of h; and k, will become as simplified, as in Table 12. 

The final distribution is given by relationships reported in Table 13, where, 
it is proper to underline, C3, C,, and C, are distributions characterized by 

the same equatorial moment of inertia J._, previously assumed. 

In conclusion, to the aim of defining a weights distribution it is necessary 

to fix the following values 

(A) Hap+ Kap» Hay» Kay 

(B) Hg 

CO) ll PR add etl ae a 

For instance, in the case of Fig. 10, the following values were assumed: 

(A) type A, 

(B);,:;type-B, 

(GC) rg a9; Te ecars; Fy Seaseh = 7/3) Bt=i.1/3; Y= 173; 5 = 0.73 
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Table 9 
Distribution Type Cc, 

(Continued in Tables 10 through 13) 

hy D/L, Ch, = 0) 

ke Dedig-t  Ce15*0) 

D- (Dan + Dy + Day 

Table 10 

Continuation of Table 9 

, Me nCle ad. 
eer al (CRS) TREN ES 5 r+ ae | 

Table 11 

Continuation of Tables 9 and 10 

Ship's displacement 

Ship's length 

Moment of inertia of ''c'’ distribution 

Odd holds length 

Even holds length 

Number of holds 
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Table 12 
Values for r, = 1(i= 3, 5, 7) 

1 

Table 13 

Final Distribution 

Weight distribution = A +B+aC, +fC, +7 C, 

2.4 Weight Parameter 

A first systematic calculation, results of which have not been reported in 
the first part of this paper, has been carried out to the aim of determining which 
and how many parameters are necessary to characterize a weight distribution in 

respect with their influence on wave bending moment in confused sea (highest 
value along the hull). 

To this purpose, weight distributions 1 to 36 of Table 14 have been chosen 
in association with a hull having: length 200 m, L/B = 7, L/i = 17.50,Cy = 
0.804 and ship's speeds corresponding to Fr = 0, 0.05, 0.10. 

It was found that, being Fr equal, values of coefficient c, are uniquely cor- 

related to values of p (as defined in part 1 of this paper) reported in the last 

column of Table 14, although loading conditions were different. The unique re- 
lationship between p and c, is shown as an example in Fig. 11, for one value 
only of Fr. From this figure it can easily be seen that the interdependence be- 
tween the two variables may be assumed as linear. 

It is to be noted, in order to establish the limits of accuracy of the assump- 
tion, that this relationship remains linear and unique up to Fr values not much 
higher than 0.10. There are instead no limitations for hull dimensional 
parameters. 
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Table 14 
Weight Distributions 

*Same distribution, 

The linear relationship between c, and p allowed to plan a second systema- 
tic calculation aiming to determine the influence of hull parameters taking into 

account only three loading conditions (exactly, Nos. 26, 27, and 28) and therefore 
only three p values, as may be seen in result tables reported in the Appendix. 
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2.5 Influence of Ship's Length and Sea Spectrum 

After having systematically investigated the influence of parameters L/B , 
L/i,c. , and Fr on the moment coefficient <, for a ship of 200 m length cross- 
ing a confused sea generated by a 60-knot wind, it was decided to study the in- 

fluence of ship's length and sea state. That was achieved without using the cal- 
culation program shown in the last section of the present paper, because the 

calculation had already furnished the response operators in regular waves for 
certain \/L values. Considering that these response operators, when in non- 
dimensional form, are not functions of L, but only of the ratio \/L, it was 
possible to use such response operators in order to carry out the investigation, 

simply by applying the superposition principle, on different ship's lengths and 

different conditions of sea state (expressed by means of wind speed). 

In so doing the following very important fact was detected; the variation law 

of bending moment coefficient c, as a function of ship's length and of sea state 
is in practice not affected by selected weights distribution, hull type, and ship's 

speed and can be represented as a function of the only parameter L/\* , where 
\* is the maximum energy wavelength for each given sea state (therefore \* is 
a function of only the parameter w). 

This fact is emphasized in Fig. 12, which is self-explanatory, where also 
a curve is drawn, having the simple algebraic expression written at the end of 

Section 1.4. 

The discovered characteristic allowed one to easily extend the investigation 
to other W and L values; the results given above were found to be fully accept- 

able, for w not much lower than 45 kn. 

3. CALCULATION PROGRAM 

3.1 Summary of the KK Theory 

The KK theory for the investigation of ship's motions and of loads acting on 
a ship in a regular sea formulates and solves the differential equations of mo- 
tion taking into account the phase relationship between ship's and wave motions 
and the coupling effect of heaving and pitching. As this theory is well-known, it 
seems here advisable to recall only formulas that are used in the calculation 
program; reference is made to symbols collected in Table 15, where the num- 

bers are shown of the formulas in Table 16 defining the relevant quantities. 
The coordinate-system choice is shown in Fig. 13, which is self-explanatory. 

3.2 Description of the Calculation Program 

The program ''Ship motions, shear, and bending moment in regular waves 
and a confused sea" is written in FORTRAN 2 and processed on an IBM 7090 

computer. It evaluates, for each hull and for each loading condition, shear and 
still-water bending moment along the hull and besides heaving and pitching 

motions in regular waves in head sea, for eight wave lengths and eight ship's 
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WHERE Cm= BENDING MOMENT COEFFICIENT WHEN 

L=200m,; W=60 knots 
; 3s 

09 Ne 0,3 z 

08 

O7 _s 

W= 45+60 knots Ne 
L =180+340m ~~ 

Fig. 12 - Relation between c, and L/\* 
m 
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Table 15 
Definitions and Dimensions of Symbols in the Formulas 

Used in the Calculation Program 

Coefficient of differential equation of 
ship's motions 

Coefficient of differential equation of 

ship's motions 

Coefficient of differential equation of 
ship's motions 

Coefficient of differential equation of 
ship's motions 

Coefficient of differential equation of 
ship's motions 

Sectional area coefficient at x:c,=s,/(2y,i,) 

Coefficient of differential equation of 

ship's motions 

Coefficient of differential equation of 
ship's motions 

Coefficient of differential equation of 

ship's motions 

Mass loading on a unit length at x 

Coefficient of differential equation of 
ship's motions 

2,7182818... 

Coefficient of differential equation of 
ship's motions 

Cosine amplitude of total exciting force 

Sine amplitude of total exciting force 

Total force: 

Total exciting force 

Hydrodynamic force 

(Table continues) 
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Table 15 (Continued) 

(15) Hydrostatic force 

(44) Total force, including inertial force 

(46) Cosine amplitude of f 

(47) Sine amplitude of f 

(34) Coefficient of differential equation of 
ship's motions 

_ Acceleration of gravity 

(28) Coefficient of differential equation of 
ship's motions 

(4 and 5) Surface elevation of waves 

Wave amplitude 

Section mean draft at x:i, = c,i 

Section draft at x 

Moment of inertia of the ship 

x 

K = 27/d 

Ship's length 

Cosine amplitude of total exciting moment 

Sine amplitude of total exciting moment 

Total moment: 

dF, dF, | 
— + — + ——] x dx 
dx dx dx 

Wave bending moment amplitude at x 

Ship's weight: p,- [{ dm dx 

Sectional added mass at x 

Sectional damping coefficient at x 

Sectional hydrostatic coefficient at x 

Sectional area at x 

Wave shear amplitude at x 

Time 

Ship's speed 

(Table continues) 
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Table 15 (Continued) 

Longitudinal coordinate fixed to the space 

Longitudinal coordinate fixed to the ship 

Transverse coordinate fixed to the space 

Transverse coordinate fixed to the ship 

Half of waterline breadth at x 

Vertical coordinate fixed to the space 

Vertical elevation of ship's center 
of gravity 

Vertical coordinate fixed to the ship 

Heaving phase angle 

Pitching phase angle 

Heaving 

Cosine heaving amplitude 

Sine heaving amplitude 

Heaving amplitude 

Vertical motion at x 

Wave length 

3,1415... 

Sea water density 

Pitching 

Cosine pitching amplitude 

Sine pitching amplitude 

Pitching amplitude 

First hydrodynamic coefficient: 

X= £ (Cy 9e2y./2% 2y,/12) 

Second hydrodynamic coefficient: 

Xq = £" (Cy 2 ¥ 6/8 1 2%y/i x) 

Frequency of encounter: w 
e 

Wave frequency: «, = (27g/A)1/? 
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Table 16 

Formulas 

Coordinate system transformation 

Surface elevation of waves 

Heaving and pitching motions 

) ) 

Differential equations of ship's 

motion 

Sectional added mass 

Sectional damping coefficient 

Sectional hydrostatic coefficient 

dP,\. -Ki,, rae Apr ee eeer dx jh + P3hje Exciting force distribution 

mya Hydrodynamic force distribution 
x 

Hydrostatic force distribution 

Vertical displacement, velocity, and 
acceleration of a ship's transverse 

section at a distance x from LCG 

(Table continues) 
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Table 16 (Continued) 

-h i c ( 2 2 ; ero nC Rey get) Vertical velocity and acceleration of 
water in wave = ~h,w? cos (kx+,t) 

aé + BE + cé + do + eD + B® 

Ecos. t= F, sin ot ; . . . ; 

a, : 5 - . Differential equations of ship's motion 
Ag + Bo + Co + DE + E€+ GE 

M. cosw_t - M, sin at 

je) 
0 oe + f», dx 

ib, 

dx 

Coefficients of differential 

equations of ship's motions 

x2 dx - v [Pp xax-v? fp, dx 

it Te 

(Table continues) 
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Table 16 (Continued) 

“ki 

| oes (P; - @)@,P,) coskx dx 

i 

-ki, 
aay. e F, sin kx dx 

L 

I 
36 ~kig : 

- FL = hy e (P, - @) ® P,) sin kx dx 

ib 

-ki 

: ay | ee a Total exciting forces 
L and moments acting on 

the ship 

-ki 
31. Me = vols oii xa, Gat) x cos kx dx 

L 

-ki 
2a), | =x 97) sin xcs] 

L 

-ki 

"™ (P, - w,@,P,) x sin kx dx 

-ki 

*m (P, x + vP,) cos kx al 

Linear system 
wb f- w24 we E- w2d E. F. of 4 equations 

39 to solve the 
: s differential 

Gs 7D? N=" EPS. AA =e B % M. equations of 
motion 

(Table continues) 
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Table 16 (Continued) 

ap = (Ge + a og 

= (92+9.2)3/? Heave and pitch amplitudes and phase angles 
eS Ss 

arctan ee) 

arctan (9./9,) 

-dm (E+ x9) = P (e+ xo- 2v0) 

dF dP, : . 1 
= Looe (EF xD- vO)" P (Ctx) seers 

ip ~df. cel 
—_ ———— COS) Ola aia SCO & 
dX dX © © dx 

df 
ic 

dP, Longitudinal 

dx ) 
bs [(am #P,) a2 - Ps] (Go x0. 324 (», ava distribution 

of total 
-ki, forces 

acting on 

the ship 

x [(Es + x9.) @, + vo] = 2V0.P 0. hye 

x 

dP, 
x (2,02 PS) cos kx = |. Po =v ae sin kx 

dP 
is 1 

[(dm+P,) ow? = P,| CS + xP.) = (>, = ai 

“ki 
[(é + x9.) i v9. | + 2vo,P,9. + hye ot 

dP, 
x (Feo) Costkx 4°0.i( Poo Via cos kx 

Xx 

Shear amplitude and 

bending moment 

amplitude at a 
2 distance x from LCG 

f 
S dx dx 

X sell Sono (If ipa 
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Strip Theory 

speed. Moreover, shear and bending moment amplitude are calculated in way 
of 19 transverse sections (spaced L /20 from each other). 

Besides in the above specified sections shear and wave bending moment 
maximum most probable amplitudes are evaluated, which ship under considera- 

tion will undergo in case she encounters, during 104+ cycles, one-dimension 
head sea generated by a 60-kn wind. 

In Fig. 14 the block diagram is shown, together with the input-output flow 
chart, while input data are shown in Table 16, with respective formats and 

directions for data collection. 

Hydrodynamic coefficients ,, and y, are gathered, in their input format, in 

Tables 18 and 19. Table 18 contains coefficient y,, and Table 19 contains coeffi- 
cient x,. 

In each line there are, after an order number, 16 values corresponding to 
values of w2y,/g 0- 1.5, spaced 0.1. Each block of 11 lines (6 blocks refer to 

x,, 6 blocks to y,) corresponds to c, values 0.5- 1.0, spaced 0.1. 

Each line of each 11 lines block corresponds to values 2y,,/i, 0.4 - 4.4, 
spaced 0.4. 

Output forms are shown in Figs. 15 and 16. The program list follows 
Fig. 16. 

Table 17 
Input Data for the Program 

Card Speci- Data Unit Format 
type fication 

Hull code 

Length between 
perpendiculars 

Ship's breadth 

Aft draft (at Aft. Pp.) 
Forward draft (at 
Fwd. Pp.) 

Wave amplitude 
Sea water density 

Transverse section 

number (*) 

General ar 13, 6F8.3, 13 

m 

m 
m? 3F8.3, 13 

(Table continues) 

Section abscissa from 

Aft Pp (f) Transverse 

sections Waterline breadth 

data (1 Transverse section 
card each area (up to water 

plan) 
Section order number 

section) 
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Marsich and Merega 

Table 17 (Continued) 

Card Speci- f 

Ship's speed number (¢) 
lst ship's speed 

2nd ship's speed 13, 8F8, 3 

8th ship's speed 

Wavelength number (8) 
1st wavelength 
2nd wavelength 13, 8F8.3 

8th wavelength 

Weight per length unit 
in 1st section (1st 
card), in 9th section 
(2nd card), ... 

Weights Weight per length unit 

in 2nd section (1st 
card), in 10th sec- 8F10.0 

tion (2nd card),... 
section) ore 

Weight per length unit 

in 8th section (1st 
card), in 16th sec- 
tion (2nd card),... 

Weight codes 
NSTR 1 (**) 313 
NSTR 2 (**) 

(*) The maximum allowable transverse section number is 80 

({) Sections are not generally equally spaced 
(t) The maximum allowable speed number is 8 
($) The maximum allowable wavelength number is 8 
({) Two transverse sections shall be always located in way of each weights 

diagram lack of continuity, spaced not more than 5 cm 

= 0 in case actual card deck is the last one for ship 

CNS ER 1} under examination 
= 1 otherwise 

= 0 in case preceding card deck refers to a calculation at the 
same displacement, moment of inertia and gravity center 

NSTR 2: location 
= 1 otherwise or in case actual card deck is the first one for 

the ship under examination 
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START 

READ 
YDRODYNAMI 
COEFFICIENTS, 

TABLES 

READ HULL 
CHARACTERISTICS 

SHIP SPEEDS & 
WAVE LENGTHS 

BUOYANCY 
INTEGRATION 

READ WEIGHT 
DISTRIBUTION 
& INDEXES 

(NSTRI,NSTR2) 

STILL WATER 
SHEAR & BENDING 

MOMENT 

WEIGHT DISTRIBUTION 
CHARACTERISTICS 

WRITE STILL 
WATER SHEAR 
& BENDING 
MOMENT 

Strip Theory 

HYDRODYNAMIC 
CHARACTERISTICS 
IN SHIP TRANSVERSE 

SECTIONS 

MOTION 
DIFFERENTIAL 
EQUATION 

COEFFICIENTS 

MOTION 
DIFFERENTIAL 

EQUATION 
SOLUTION 

READ FROM WRITE ON 
AUXILIARY AUXILIARY 
TAPE 2 TAPE 2 

(PARTIAL RESULTS) (PARTIAL RESULTS) 

SHEAR 8 BENDING 
MOMENT IN 

REGULAR WAVES 

SHEAR & 
BENDING MOMENT 
INTERPOLATION 

SHEAR & 
BENDING MOMENT 
IN CONFUSED SEA 

WRITE RESULTS 
(MOTIONS, 
SHEAR & 
BENDING 
MOMENT) 

LAST SHIP 
SPEED? 

YES 

REWIND 
TAPE 

2 

DATA CARDS 

CARD-TAPE 
CONVERSION 

(1401) 

COMPUTER 
(7090) 

AUXILIARY 
TAPE 2 

TAPE- 
PRINTER 

CONVERSION 

RESULTS 

INPUT - OUTPUT 

FLOW CHART 

Fig. 14 - Block diagram of the program (ship motions, shear, and 

bending moment in regular waves and a confused sea) 
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(Ci a ace Sp 

eon Sti water Shear Still water Bending Moment 

—_> 

Fig. 15 - First-output form 
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Fig. 16 - Second-output form 



1 042 

2 O42 

3 042 

k 042 

5 042 

6 042 

7 O42 

€ 042 

9 042 

10 042 

11 042 

12 O40 

13 O40 

14 O40 

15 O40 

16 O40 

17 040 

18 O40 

19 O40 

20 O40 

21 O40 

22 O40 

285 

152 

115 

099 

090 

086 

082 

078 

076 

074 

072 

323 

172 

125 

106 

096 

090 

086 

082 

079 

076 

074 

333 

201 

147 

333 

233 

163 

135 

119 

111 

104 

099 

095 

092 

0e9 

Marsich and Merega 

Table 18 
Hydrodynamic Coefficient x, 

324 286 256 

244 270 280 

175 

143 

127 

119 

111 

107 

270 

193 

160 

139 

127 

118 

113 

108 

104 

101 

198 

162 

142 

132 

123 

118 

217 

177 

155 

142 

132 

127 

122 

11& 

115 

234 218 

280 277 

858 

in the Input Form 

205 

270 

241 

208 

181 

164 

154 

146 

139 

135 

130 

183 

239 

238 

213 

191 

173 

160 

152 

146 

141 

137 

194 

261 

2h 3 

212 

186 

169 

159 

150 

143 

139 

134 

174 

227 

233 

214 

194 

17¢ 

164 

156 

150 

145 

141 

185 

250 

24 3 

215 

190 

173 

163 

154 

147 

143 

138 

16e 

215 

227 

214 

196 

1g0 

167 

160 

154 

149 

14h 

178 

238 

242 

217 

192 

177 

166 

158 

151 

146 

141 

162 

208 

221 

212 

196 

121 

170 

162 

156 

151 

147 

172 

207 

19§ 

12@2 

172 

165 

158 

154 

151 

165 

204 

154 

182 

172 

166 

159 

155 

152 

(Table continues) 



23 O45 227 

24 O45 119 

25 Ob 093 

26 O45 083 

27 045 078 

28 O45 O74 

29 O45 071 

30 O45 O69 

31 O45 067 

32 O45 065 

33 O45 063 

34 080 170 

35 063 105 

36 058 097 

37 056 086 

38 055 080 

39 054 075 

40 053 071 

k1 052 069 

42 051 067 

h3 O89 065 081 097 

hh 047 063 079 094 

Strip Theory 

Table 18 (Continued) 

192 174 162 

237 223 

217 

191 

171 

157 

147 

139 

133 

12€ 

124 

124 

160 

175 

169 

162 

152 

146 

140 

135 

130 

125 

208 

216 

195 

L7e 

164, 

154 

146 

140 

1:35 

131 

11€ 

149 

166 

169 

165 

158 

151 

146 

141 

136 

132 

859 

153 

196 

212 

147 

1¢4 

205 

195 

184 

173 

154 

156 

132 

142 

174 

196 

194 

127 

160 

160 

158 

154 

151 

149 

146 

143 

139 136 

167 162 

190 183 

128 

124 123 

175° 175 

167 16€ 

150 161 

2 15h 156 

149 151 

1h4h 146 

106 

119 

134 

145 

153 

153 

152 

151 

150 

147 

145 145 

133 

156 

170 

179 

179 

175 

170 

153 

Ise 

153 

Ihe 

105 

15 

130 

142 

150 

152 

152 

151 

150 

147 

145 

132 

155 

164 

174 

177 

175 

170 

164 

159 

154 

149 

105 

115 

128 

140 

150 

152 

152 

151 

150 

147 

145 

(Table continues) 



039 

037 

137 

108 

093 

083 

O7& 

074 

072 

070 

068 

066 

064 

094 

088 

080 

076 

073 

070 

067 

065 

063 

061 

059 

08k 

09e 

106 

110 

110 

110 

109 

107 

105 

104 

Marsich and Merega 

Table 18 (Continued) 

091 087 085 083 0&2 

119 

136 

139 

137 

134 

130 

126 

079 

102 

110 

113 

114 

114 

114 

113 

113 

111 

128 

13€ 

13€ 

138 

135 

132 

129 

125 

124 

062 

075 

087 

097 

108 

113 

115 

116 

117 

117 

118 

104 

121 

132 

137 

13@ 

137 

135 

132 

130 

Ae 

061 

071 

0&3 

093 

103 

111 

114 

116 

118 

119 

120 

860 

099 

116 

127 

133 

137 

137 

138 

133 

132 

131 

060 

095 

111 

122 

130 

135 

135 

133 

132 

132 

131 

060 

067 

077 

0e5 

096 

105 

109 

114 

117 

120 

121 

081 

093 

107 

11¢ 

126 

132 

132 

132 

131 

131 

131 



Hydrodynamic Coefficient x, 

67 000 016 025 

68 000 017 027 

69 000 017 029 

70 000 019 032 

71 000 

72 000 

73 000 

74% 000 

75 000 

76 000 

77 000 

78 000 

79 000 

80 000 

81 000 

82 000 

83 000 

8h 000 

85 000 

86 000 

87 000 

88 000 

019 032 

019 032 

019 032 

019 032 

019 032 

019 032 

019 032 

031 035 

037 O45 

O40 051 

O42 052 

043 053 

043 054 

043 054 

O45 056 

O45 056 

O45 056 

O45 056 

036 037 036 035 

052 

059 

062 

063 

065 

065 

066 

066 

066 

066 

016 022 026 027 028 

016 029 037 043 Oh8 

017 030 O40 O48 056 

017 030 O41 052 060 

017 031 043 053 063 

018 031 043 053 063 

018 032 043 O54 064 

018 032 O45 055 065 

018 032 O45 055 065 

018 032 O45 056 066 

018 032 O45 056 066 076 

Strip Theory 

Table 19 

058 

066 

070 

076 

061 

073 

078 

080 

083 

083 

085 

0g5 

085 

0e5 

026 

054 

067 

075 

079 

080 

082 

083 

osh 

085 

on6 

861 

064 066 

073 083 

0g5 091 

024 023 

056 057 

072 076 

080 085 

085 091 

088 095 

090 098 

091 099 

092 100 

093 101 

094% 102 

068 

087 

097 

103 

106 

10€ 

109 

110 

11 

112 

03% 033 032 

070 

091 

101 

107 

110 

113 

115 

116 

117 

030 

071 

095 

108 

115 

119 

123 

125 

126 

127 

128 

020 

058 

082 

097 

106 

112 

116 

119 

121 

123 

124 

in the Input Form 

028 

072 

099 

113 

120 

125 

129 

131 

133 

134 

135 

019 

058 

0gh 

100 

111 

117 

122 

125 

127 

129 

130 

026 02% 

073 073 

101 10% 

117 121 

125 129 

131 136 

135 140 

137 142 

139 143 

140 145 

141 147 

018 017 

057 057 

0g5 086 

103 106 

115 118 

122 126 

128 133 

131 136 

133 138 

135 140 

136 141 

(Table continues) 
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Table 19 (Continued) 

89 000 015 020 022 023 022 021 

90 000 016 026 034 038 O42 O44 

91 000 016 028 039 O46 052 056 

92 000 017 030 O40 049 057 063 

93 000 017 030 042 051 060 068 

94 000 018 031 042 052 061 070 

95 000 018 031 O42 052 062 072 

96 000 018 031 043 O54 065 O74 

97 000 018 031 043 054 065 074 

98 000 019 032 O44 055 066 075 

99 000 019 032 Obk 055 056 075 

100 000 O14 017 019 O1€ Q17 O16 

101 000 017 026 032 034 036 037 

102 000 017 028 037 043 047 050 

103 000 018 030 O40 047 054 059 

104 000 018 030 O41 050 058 064 

105 000 019 031 O41 051 060 067 

106 000 019 031 042 052 062 065 

107 000 020 032 043 053 063 071 

108 000 020 032 O44 054 064 072 

109 000 020 033 O45 055 065 073 

110 000 020 033 O85 055 065 074 

019 017 

O45 O46 

060 062 

069 073 

074 079 

077 Og 

080 026 

081 088 

082 090 

0&3 091 

Ook 092 

O14 012 

037 036 

052 053 

062 065 

068 072 

072 077 

076 062 

078 Ock 

Of0 086 

081 O88 

0g2 090 

862 

016 O14 

O45 Ob 

064 066 

077 080 

08k of9 

092 097 

095 100 

097 103 

105 

108 

110 

113 

069 

083 

093 

101 

106 

111 

115 

118 

008 

O41 

068 

087 

100 

110 

116 

121 

125 

128 

131 

002 

026 

050 

069 

083 

095 

103 

109 

115 

119 

122 

112 

119 

123 

126 

(Table continues) 



012 016 015 013 

015 024 028 030 

016 026 033 038 

017 027 036 O42 

018 028 03e O46 

019 030 O40 O48 

020 032 042 050 

020 032 O42 051 

020 032 O42 051 

020 032 O42 052 

020 032 O42 053 

010 012 011 007 

014 020 022 022 

014 025 030 032 

015 025 032 037 

015 026 036 042 

015 026 037 O45 

016 030 039 047 

016 030 039 Oks 

016 030 040 050 

016 030 O40 050 

016 030 O41 051 

Table 19 (Continued) 

O11 

030 

040 

047 

051 

054 

057 

059 

060 

061 

062 

005 

021 

033 

040 

O46 

050 

054 

056 

058 

059 

Strip Theory 

009 

066 

007 

027 

O41 

053 

060 

065 

070 

073 

» O75 

077 

079 

072 

863 

005 

025 

041 

054 

063 

070 

075 

07€ 

080 

08 3 

085 

069 

073 

003 

022 

040 

054 

065 

073 

079 

082 

085 

0&8 

091 

002 

010 

025 

038 

050 

059 

066 

071 

076 

002 

020 

040 

053 

066 

075 

081 

oe6 

090 

093 

096 

003 

007 

022 

035 

049 

058 

067 

073 

079 

004 

004 

019 

032 

047 

057 

067 

O74 

080 

076 080 083 085 

060 068 074 079 O8k 087 090 092 094 095 

005 006 

002 001 

016 013 

029 026 

O45 042 

055 053 

066 064 

074 073 

081 081 

087 088 

006 

002 

010 

023 

039 

051 

062 

072 

ost 

088 

003 

010 

027 

046 

062 

074 

085 

092 

101 

107 

112 
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KKM 

SHIP MCTICNS, SHEAR AND BENDING MOMENT 
It REGULAR WAVES AND IN CONFUSED SEA 

tick ictcick 

DIMENSISN KZ(2112),CG(10,80), VE(8) ,oN(8),A(80) B(80),CC( 3,4) DIST ( 
180) AA(2,2).2Z(2,2),XA(2,2),%B(2, 2), 8B( 2,2), TS(6,80).C{ 80) ,cRD(80) 
2.5512, 195, Sfi(8, 19)  BM(8, 19), E(B) SPC(2°8) SPETT(2 t9) Tab (8) VM 
34 _8)’cA($,.80),GG(80),E$P(8),0FT(86), Pr1$ (8b), SECS(80), PRIP(80), TR 
BANt2, 80) ,UIL(2,19) 

REWIND 2 

READ HYDRODYNAMIC CCEFFICIENTS TABLES 

INDX=0 
DS 2 tle1,2112,16 
I= 1L415 
READ INPUT TAPE 5,201, !1ID,(KZ(J),JeIL, It!) 
INDXe INDX+1 
IF (INOX=1ND)1,2,1 
PRINT 202 
PAUSE 
CONTINUE 

READ HULL CHARACTERISTICS,SHIP SPEEDS AND WAVE LENGTHS 

READ INPUT TAPE 5,203, KODC,UVE,AVE,DFTAD,DFTAV, CAMP,RO,K 
DF TAM=0.5* (DF TAD+OF TAY ) 
DoS) Jak 
READ INPUT TAPE 5,204. (CA(I,J), l=1,3) KSK 
DFT(J)=DFTAD+(DF TAV-DFTAD )*CA(f ,J)7UVE 
IF (J-KSK)455,4 
PRINT 205 
PAUSE 
CONTINUE 
READ INPUT TAPE 5, 206,NVEL, (VE(I}, let ,NVEL 
READ INPUT TAPE 5,206, NCND, (ON(1), l=1,NOND 

BUCSYANCY INTEGRATION 

Do 81 Je1,K 
A(J)=CA(1,J) 
B(J }=0.00881*RS*CA( 3, J) 
KDEFeK 
INDEF=10 
Go TS 301 

82 Do 83 J=1,K 
PRIS(J)=ctJ) 

83 B(J)=C(J) 
INDEF=11 
Go TO 301 
Do 85 Jm1.K 
SECS(J)=CtJ) 

READ WEIGHT DISTRIBUTISN AND INDEXES 

READ INPUT TAPE 5,207, (CG(6,J),J=1,K) 

864 
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WRITE SUTPUT TAPE 6,210,KoDC, KOOP 
WRITE SUTPUT TAPE 6,211,UVE,O1S 
WRITE SUTPUT TAPE 6,212,AVE (FG 
WRITE SUTPUT TAPE 6,213,DFTAM,RG| 
WRITE SUTPUT TAPE 6,209 
Do 9h 1=1,19 
WRITE SUTBUT TAPE 6,224,1,UIL(1,1),UIL(2,1) 

SHIP SPEED AND WAVE LENGTH VARIATION 
Aa 

aAAN 

(oho ke) 

14 

16 

21 

22 

DS Sh IV=],NVEL 
VeVe (IV) 
DS 47 15=1,NOND 
SLUN@ON( 1S 
IF (NSTR2) 33, 33, 16 

HYDRODYNAMIC CHARACTERISTICS IN SHIP TRANSVERSE SECTICNS 

FS=7.849/SQRTF (CLUN) 
Pi=FC+6, de 
Do 19 Je] 

Eeecach DCA) 
yeGG(J)/DF T(J) 
Y=CA(2 
Z=CA(2° 
11Z=0" 
Kre1 

Go itis: 

J 

401 

cee) 

rat eee 3927ERS 
INIZ=6 
KPe2 
Go To 
ENE char race a LE {EES 
CONTIN 
DS 20 

4O1 

UE 
J=1_K 

*FI**2 /19.62 

CXCA(2,J)#*2 /F 

CG(3,J )@EXPF(-6. 2g*aG(J)/CLUN) 
CG (27 J)=9.81*RO*CA(2, J) 

MOTICN DIFFERE|VTIAL EQUATION COEFFICIENTS 

DS 21 JI, 
A(J)=c 
KDEF=K 

G(1, ry) 

INDE Fed 
Do 2h 
LL=( 
DS 2 
DS 22 

L=1 
Lati-2)/2 
re Fe 

BC iecc(Lt, 1)*CG(1, 1)**(J=-1) 
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25 male! 1)*(AA(1,L)*(CG(2, | )-FO*F 1*CG(h, 1) )+FOWAA(2,L)*#CG (5 ath Se 
1.1 
&c(L+6. 1 )=8(1) 

males 2 rake ) 

25 CG(L+2, | = —CAMPV*F S#CG (3,1) *CG(4, | )*AA(2,L) 

G 301 
26 ZZ(1 L )=DEF 

> z aQ ip) ~~ Ave fe B * g a i) _— eal = % 5 ~~ = Tr —— 

28 772 Rh 
29 ColT 

MSTici DIFFESE TIAL EOUAT TCH SSLUT hor 

Plena 
Pl=e2—| 
PJ= 2* 1-3 
ee I =F 2 *(CC(K1A)+CC(K1, 2) )—CC(i1, 1 )+PI*VE(CC(2, 3)4V*CC(1, 2 

1 
XA(2; Ler 1*CC(K1, 3) 
x21? | er 1**2 *cb(2, 2)=Cc(2 LsPravecc(1 3) 

30 X82" 1 =F I*(CC(2, 3) +PI*V*CCET, 2) 
Dots. wet 2 

31 (J yaa J)*ZZ (JS, | )—PI*XA(2, 5 )*ZZ(S,K1)-XS(1, J )*ZZ (KM, 1) +P LXE 
1(2, J$*ZZ (KK f1) 
PI=XA(2, etal, 2)-XA(1 pL )*KA(1, 2)4X2 (1,1)*XB(1, 2)—-x38(2,1)*X3(2, 2) 
PJaXxA( *1)*XA(2, 2)+XA(2) 1)*XA(1,2)=xXE(1, 1)*x3(2° 2)=x3( 2° 1)*X8(1, 2) 
DLT=PI*P14+PJ*PJ” 
DS 32 Jm1,2 
DS 32 I=] ©) 
Sa 
Di=3-2*! 
ZZ(J Hm ( PIB (d, | )+D1*PJ*BB(JK1))/DLT 
DS 56 IMe1 & 
KMm( pee 
Khe (1M=1)/2 
KP |M=2*KN 

56 VOM(IM, 1S)m=ZZ(KM,KP) 

WRITE (READ) ON (FROM) AUXILIARY TAPE 2 (PARTIAL RESULTS) 

WRITE TAPE 2,((CG(J3, rede J¥1, Bye Jhm 1K), ((CG(J5,J6), J5=7,10) , J6=1 
1 4K),22 FO FI > (VSM(J7, | ro J7=1, i)’ 

33 READ TAPE 2,((CG(J3, Je) 91,5) Shed K), ((C6(I5,6),J5#7, 10) Jot 
1,K),2Z,FS,FI 5 (VOM(J7, 15), J 71,4) 

i) 3 
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READ INPUT TAPE 5, 208,KCOP,NSTRI,NSTR2 

STILL WATER SHEAR AND SENDING MOMENT 

DS 86 J=1,K 
A(J)=CA(1.J) 
B(J)=0.004*CG(6, J) 
KDEF=EY 
I!DEF=12 
Ge 1S BOT 
Do eo Jet k 
Prip(y)=cty) 
—(S)ec(J) 

DO 57 Jel.” 
(6. J)=C6(6.5)/9.01 
(552755. 55-7 

WEIGHT DISTRISUTI cil CHARACTERISTICS 

I'DEF=1 
GS To 301 
CC(1,4)=DEF 
Do 16 Jet kK 
B(J)=B(J)*A(J) 
INDEFE2 
Go TS 301 
FG=DEF/CC(1,4) 
Do 12 Jel K 
CG(1,J)@CA(1,J)-FG 
At jecs ae) 
B(J)=CG(6,5)*A(J)**2 
INDEF= 3 
Go is 301 
CC(3,4)=DEF 
D1s=6 00981*cC (1,4) 
RG 1=100.*SQ2TF(CE(3,4)/CC (1,4) ) /UVE 

WRITE STILL WATER SHEAR AND BENDING MOMENT 
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SHEAR AND BENDING MCMENT IN REGULAR WAVES 

Do i= K 

35 cg Heristz #*(CG(6,1)+CG(4,1))-CG(2, !) 

DS 36 I=1.K 
PJ i*(ZZ01.K1)4CG (1, 1 )#ZZ(2,K1) )+PI*V*ZZ(2, J) 
TS(J. 1 )eGG(1)#(2Z (1,5) 4G (1, 1)#ZZ(2,5) +P I*EG (5, 1) *PI-PI*VEFI*CG (4 

1,1)#22(2,K1)4CG(J+6, | 
36 Eo (u+8, HSecG (J+8, | )=PI*V*CG (4, 1 )*PJ 

DS 41 2 
Ki=L+8 
Do 37 I=1,K 
att cect, 

37 Bll y=TS(Le! 
KDEFak 
INDEF=7 
GS Te 301 

38 DS 39 I=1,K 
C(1)=c(1)4CG(K1,1) 
BlL}j=c(!) | 

39 TS(L+2, 1 eC(1)*C(1) 
INDEF=& 
GS TS. 301 

hO DS AL t=1,k 
ht TS(L+e. | )ec(1)*C(1) 

Do 42 Jef,2 
Kl=2*J5+1 
Do 42 l=1,K 

h2 TS(J, Ue (SORTF(TS(X1, 1 )+TS(K141,1)))/1000. 

SHEAP. AND BENDING MOMENT HITERPSLATI CI! 

IMPCL=1 
Do AS J=1,2 
Do 43 I=1,K 

3 cRD(1)=TStJ, 1) 
DS hs 1=1,15 

UV=0 ,05*F*UVE 
Gore 50! 

by SS(J_ 1 )mUSC 
&S CONTINUE 

Do 46 t=1,19 
SH(1S, 1 }=Ss(1,1) 

h6 BM(IS> I =SS(2) 1) 

SHEAR AND BENDING MCMENT IN CONFUSED SEA 

h7 SME(IS)=FS 
DS KG I=} _NOND 
A(1 }msme (1) 

he ESP( 1 e-SORTF((A(1)-0.377)*#2 /(0.065*(A(1)-0.117))) 
KDEFeNCND 
DS 52 KSEZ=1,19 
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Ds 49 int NOND 
sPc(i, fae KSEZ )*#2 eeiL Petal Chay ? 

Rs) sPC(2, 1 J=BM(1°KSEZ)**2 *37. 45*EXPF (ESP( | 
2 52° Jmt.2 

Do 50 let Huo 
50 8(1)=SPC(J, 
esse 

zs spert(3 FO RSEZ = 3.0h4*SORTF (DEF) 

WOITE RESULTS (MOTICHS SHEAR AND BENDING MOMENT) 

WRITE SUTPUT TAPE 6,214 
WRITE SUTPUT TAPE 6,215,KS0C KCDP_V 
WRITE SUTPUT TAPE 6,216, fENEy) inf NOND) 
WRITE SUTPUT TAPE 6,217, (CME(I), lef MOND) 
WRITE SUTPUT TAPE 6,218, (VOM(1, \. l=1 SND) 
WRITE SUTPUT TAPE 6,219, (VoN( 2,1). leds iichiD) 
WRITE SUTPUT TAPE 6,220, (VoM( 3, 1)? tet sea 

ITE SUTPUT tare SeggbeCVHEs Hs tot 
Do 53 I=1,19 

ahr as TAPE 6,223.1 (SPETT(JS_1) Je. 2). (SH(J1) BMC 1). Je 

54 CANTINUE 
REWIID 2 
IF(NSTR1) 3, 3,6 

INTEGRATICN SUBPROGRA" 

301 pe ee 

DS 306 INT=2,KDEF 
ales 
Q=u—1 
IF (KDEF-INT) 304 eee 

302 O=A( INT+1)-A( INT) 
IF (P-0. 05 30+, 30%, 30 

303 IF(Q-0 S008 
304 c(t yet tart} ROLENeE (CIT COIS 1)) 

Mas ) 307, 307, 

=: Piel scr tL i 

, BT CG CINEUTECE Ce Cine Aoso-r aa NT Ia Greer peces Onna, 

306 CONTINUE 
307 DEF=C(INT) 

GS TS (9,11,13, 23, 26, 28, 38,40,51,82, 84,87, 89), INDEF 

HYDRODYNAMIC COEFFICIENTS TABLES INTERPCLATISN SUBPROGRAM 

sila eree tray ara X~0.5)402.403.403 
4O2 |=] bes 

os ia10.0%-5. 
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Oh IF (Y-O.4)hO5 406,406 
hOS JJ= 

K 
IF (6-1 )408, 408, HOS 

8 I= 

9 1F(11-JJ)410,410, 411 
0 JJ=10 
1 1F(16-KK)41 2,412,613 
2 KKmd 
3 NBLI=11*( lt )4JJ+INIZ—19 
eee, 
DS 417 MUm1 4 
IF (U2) Aa »415 

hi SOTA=16* (MU=1 ) 
Go To 416 

h15 JoTAm16* (MU+8 ) 
416 KAPPASKK+JSTA 

TAS (MU )=KZ (KAPPA) 
KAPPAsKK+JSTA +1 

17 TAS Mee BAEPA) 
DS 418 J 

L18 Paetiejeoe Greens 
VM let 
VMJeJJ 
VMKaK } 
DX=X—-(0 a0. 1*VM1) 
DYa#Y—0 .4*V 
DZ=Z-0 Fut) 
F11=10. UL etl ) 
F22=2.5*(TAB(2)-TAB(1) ) 
F 33=10.*(TAB(5 )—TAB(1) ) 
F 1225 .*(TAB(1 )—-TAB(2)—TAB( 3)+TAB (4) ) 
F1 3100 .*(TAB(1)—-TAB( akties )) 
F23=25 .*(TAB(1)=TAB (2 =-TAS(5)+TAB(6) ) 
F123=250.*(=TAB(1 )+TAB(2)+TAB( 3)—-TAB (4 )+7AP (5 )—-TAD (6)—TAB(7)+TAB (8 

Bee )4F 11*DX4F 22*DY+F 33*DZ4F 1 2*DX*DY4F 1 S*DX*DZ4F 23*DV*DZ4F 1.2 3*D 
1X*DY*DZ 
Go TS (17,18),KR 

SHEAR AND BENDING MOMENT INTERPOLATION SUSPROGRAM 

501 Do 502 IL=1.K 
DFR=DIST(ILS=UV 
IF (DFR)502,503,50% 

502 CONTINUE 
503 eta es 

GS TO(bb.92).1 
504 USCHDERStERDE IL) SADC 1L=1))/(DIST(IL)-DIST(IL=1)) 

USC=CRD(IL)-USC 
GS TO(44,92), IMPOL 

INPUT/SUTPUT FORMAT 

20] FORMAT(13, 1X, 1614) 

AAO 

AAO 
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202 FORMAT( 32HSCHEDE TABELLE FUCRI SRDINAMENTS) 
203 saree ET ae 6r8- 3 13) 

FORMAT 
205 Far MHCheo CARENA FUSRI SRDINAMENTS) 
206 FORMAT( 13, 8F8.3) 
207 FORMAT (8F 10.0) 
208 FORMAT ( 31 3) 
210 FORMAT(1H1 46X, 1THCODICE NAVE. 1h, 9X 11HCSDICE PES!, Ih) 
211 FERMAT(1X/7 37X, TGHLUNGHEZZA {M)? F822, 6X “TBH ISLECAMEUTS (T), FI 

1 
212 FORMAT (1X/37X, 1HHLARGHEZZA (M),F8.2,6X, 1GHASC BARICENTRS (M) FIT. 

ate cua (NIX, TAHINM, MEDIA (M),F8.2,6X,1SHRAGGIS GIRAZ. ($),FI%. 

209 FORMAT(1X////48X,1JHTAGLIC = (T),13X,13HMCMENTS (T#M)) 
22 FSRNAT(1X/37X, 12° 7X F10.0,16X F100) 
214 FORMAT(1H1 90K, 36HC 8d JNAVE bap’ PESI VELCCITA) 
215 FORMAT (1X/$3x, 13 8X, 13 Pipes 
216 FoRAT(1X/73X.1 ZALUNGHEZZA CIDA a( 3 7s 2 ua) 
217 FSRIAT (1 (/3X, 1JHFREQUENZA CHDA 8 2,74 rf 
218 FORMAT(IX/3X;17HSUSSULTS COS 78 (3X°F 724 
219 FORMAT(1X/3X°17HSUSSULTS SEN 98 (3X°F 7h, i 
220 ORT 1X/3X? 1JHBECCHEGGIS CoS »8(3X,E7- ihe 
221 FORMAT(1X/3X?17HBECCHEGGIS SEN 78 ( 3X°F 7.4 4X 
222 FoR eos 1X/7 34 HS. 3X THT 6X, THN, 6X.8( 3X- THT, OX, 1HM, 3X) ) 

X/13,F6.0,F9.0, 9x, 8(F721,F7.0)) 223 FORMAT(1 
END 
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APPENDIX. Tables of c,, <x 10° values for L = 200 mand W = 60 kn. 

Table Ala 

ee se cm X 10° for L = 200m, W = 60 knots, 

0.345, Cc, = 0. 804, and Fr = 0.00 

16.00 si) 0) 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

564 573 583 606 621 627 632 
067 076 586 608 623 629 634 
369 578 988 610 625 631 636 
572 581 990 613 628 634 639 

Table Alb 
Values of c, x 10° for L = 200 m, W = 60 knots, 

= 0.345, c, = 0.804, and Fr = 0.05 

31.50 

Table Alc 

Es Of yc. 106 for L = 200m, W = 60 knots, 

= f6: 345, C, = 0.804, and Fr = 0.10 

16.00 17.50 19.00 23.75 28.50 30.00 31.50 

611 614 619 629 633 636 639 
613 616 621 632 635 638 641 
615 619 623 634 638 641 643 

621 625 640 643 646 

Table A2a 
Values of c,, x 10° for L = 200m, W = 60 knots, 

= 0.404, c, = 0.804, and Fr = 0.00 

16.00 17.50 19.00 | 23.75 | 28.50 30.00 | 31.50 

514 530 543 5075 597 604 610 
517 533 546 79 600 607 613 
520 536 049 582 603 610 616 
523 539 552 585 606 613 619 
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Table A2b 
Values of c, x 10° for L = 200 m, W= 60 knots, 

P = 0.404, C, = 0.804, and Fr = 0.05 

De 16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

489 207 522 998 584 691 098 
492 d11 029 062 587 594 601 
496 514 029 065 590 O97 604 
499 O17 532 569 593 600 607 

Table A2c 
Values of c, X 10° for L = 200m, W = 60 knots, 

P = 0.404, C, = 0.804, and Fr = 0.10 

474 486 001 540 067 574 
477 490 304 043 970 O77 
480 493 007 547 O74 080 
483 496 d11 950 O77 583 

Table A3a 
Values of c,, x 10° for L = 200m, W= 60 knots, 

P = 0.448, C, = 0.804, and Fr = 0.00 

475 496 514 004 580 587 594 
479 300 517 07 583 990 D097 
483 304 020 560 086 593 600 
486 908 523 364 089 596 603 

Table A3b 
Values of c,, X 10° for L = 200m, W = 60 knots, 

P = 0.448, Cc, = 0.804, and Fr = 0.05 

413 440 463 018 553 562 O71 
416 443 467 522 596 566 574 
420 447 470 026 559 069 578 
423 450 474 530 563 573 582 
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Table A3c 
Values of c,, xX 10° for L = 200m, W = 60 knots, 

P = 0.448, c, = 0.804, and Fr = 0.10 

ee 16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

385 403 422 478 018 028 538 
388 406 426 482 d21 d31 542 
391 409 429 485 025 534 045 
394 412 432 488 528 538 549 

Table A4a 
Values of c, X 10° for L = 200 m, W = 60 knots, 

P = 0.345, C, = 0.836, and Fr = 0.00 

Table A4b 
Values of c,, X 10° for L = 200m, W = 60 knots, 

P = 0.345, C, = 0.836, and Fr = 0.05 

649 650 650 657 671 675 680 
652 653 653 660 674 678 683 
654 655 655 663 677 681 686 
657 658 658 665 679 683 689 

Table A4c 
Values of c, xX 10° for L = 200 m, W = 60 knots, 

P= 0.345, c, = 0.836, and Fr..= 0,10 

670 671 673 679 683 684 686 
673 674 676 682 686 687 689 
675 676 678 684 689 690 691 
678 678 681 687 691 692 694 
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Table Ada 
Values of c, X 10® for L = 200m, W = 60 knots, 

P= 0.404, C, = 0.836, and Fr = 0.00 

Table ASb 
Values of c,, xX 10° for L = 200 m, W = 60 knots, 

P = 0.404, C, = 0.836, and Fr = 0.05 

16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

542 558 O71 605 631 638 644 
546 562 O75 609 634 641 647 
549 565 o79 612 637 644 651 
553 569 582 616 641 648 654 

Table Adc 
Values of c,, X 10° for L = 200 m, W = 60 knots, 

P = 0.404, c, = 0.836, and Fr = 0.10 

537 047 092 617 623 629 
541 551 595 620 626 632 
044 554 098 623 630 636 
548 098 602 627 633 639 

Table A6a 
Values of c,, X 10° for L = 600 m, W = 60 knots, 

P. = 0.448, ¢c, =.0,836, and Fr = 0,00 

520 041 559 599 626 634 641 
024 045 562 603 628 637 644 
028 049 566 607 631 640 647 
032 053 570 610 634 643 650 
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Table A6b 
Values of c,, X 10° for L = 600 m, W = 60 knots, 

P = 0.448, C, = 0.836, and Fr = 0.05 

Be 16.00 17.50 19.00 | 23.75 | 28.50 30.00 | 31.50 

491 513 565 600 609 617 
495 517 569 604 613 621 
498 521 573 608 617 625 
502 524 O77 612 621 629 

Table A6c 
Values of c, X 10° for L = 600 m, W = 60 knots, 

Pp = 0.448, C, = 0.836, and Fr = 0.10 

28.50 | 30.00 | 31.50 

444 462 480 530 568 578 587 
448 466 484 034 571 581 590 
451 469 488 938 575 585 594 

491 541 079 090 598 

Table Ava 
Values of c,, <x 10° for L = 200m, W = 60 knots, 

P= 0,345,°C, = 0.872, and‘ Fr-.= 0.00 

687 711 
690 714 
693 718 
696 721 

Table A7b 
Values of c, x 10° for L = 200 m, W = 60 knots, 

P = 0,345, C, = 0.872, and Fr = 0.05 

16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

es 

719 732 737 742 720 (ali 714 
720 717 722 735 740 745 
723 720 725 738 743 748 
726 723 728 741 746 751 
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Table A7c 

Values of c,, x 10° for L = 200 m, W = 60 knots, 
P = 0.345, C, = 0,872, and Fr = 0.10 

[sea 16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 31.50 

745 746 746 746 748 749 751 
748 749 749 749 751 752 754 
751 752 752 752 754 755 757 
754 755 755 756 757 758 760 

Table A8a 
Values of c,, X 10© for L = 200 m, W = 60 knots, 

P = 0.404, C, = 0.872, and Fr = 0.00 

619 634 649 682 706 713 720 
623 638 653 686 709 716 723 
627 642 656 690 712 119 726 
630 645 660 694 715 722 730 

Table A8b 
Values of c,, X 10° for L = 200m, W = 60 knots, 

P = 0.404, C, = 0.872, and Fr = 0.05 

Table A8c 
Values of c, X 10° for L = 200 m, W = 60 knots, 

P = 0.404, Cc, = 0.872, and Fr = 0.10 

ae 16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

621 630 638 664 685 691 698 
625 634 642 668 688 694 701 
628 638 646 672 691 697 704 
632 641 649 675 695 701 709 
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Table A9a 
Values of c,, X 10°© for L = 200m, W = 60 knots, 

P = 0.448, C, = 0.872, and Fr = 0.00 

ie 16.00 17.50 | 19.00 | 23.75 28.50, 30.00 | 31.50 

583 603 621 661 689 697 705 
588 608 624 665 692 700 708 
592 612 629 669 695 703 TA 
596 616 633 673 698 707 714 

Table A9b 
Values of c,, X 10° for L = 200 m, W = 60 knots, 

P = 0.448, C, = 0.872, and Fr = 0.05 

044 965 584 632 666 675 684 
548 569 088 636 670 679 688 
002 573 592 640 674 683 692 
556 577 096 644 678 687 696 

Table A9c 
Values of c, <x 10° for L = 200m, W = 60 knots, 

P = 0.448, C, = 0.872, and Fr = 0.10 

526 045 562 602 639 649 
530 549 566 606 643 653 
534 052 970 610 647 657 
037 356 074 614 651 661 

Table Al0a 
Values of c,, X 106 for L = 200m, W = 60 knots, 

P = 0,345, C, = 0.900, and Fr = 0.00 

718 728 778 783 
721 731 781 786 
724 734 784 789 
727 737 788 793 

878 



Strip Theory 

Table A10b 
Values of c, X 10° for L = 200m, W = 60 knots, 

P = 0.345, C, = 0.900, and Fr = 0.05 

iS 16.00 17.50 19.00 | 23.75 | 28.50 | 30.00 | 31.50 

764 763 760 764 776 780 785 
768 767 763 767 779 783 788 
772 OL 767 770 783 787 792 
775 774 770 773 787 791 796 

Table Al0c 
Values of c,, x 10° for L = 200 m, W = 60 knots, 

P= 03845, C,; = 0.900, and Fr-='0.10 

794 793 793 793 794 795 
798 197 197 SM 798 199 
801 801 801 801 801 803 
805 804 804 804 805 806 

Table Alla 
Values of c, X 10° for L = 200 m, W = 60 knots, 

P = 0.404, C, = 0.900, and Fr = 0.00 

659 674 689 725 749 756 762 
662 678 692 729 752 759 765 
666 682 696 732 756 763 769 
669 685 699 736 759 766 773 

Table Alib 
Values of c, X 10° for L = 200 m, W = 60 knots, 

P = 0.404, C, = 0.900, and Fr = 0.05 

661 673 683 712 737 744 751 
665 677 687 716 741 748 755 
669 681 691 720 745 752 759 
673 685 694 724 749 756 763 
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670 
674 
678 
682 

621 
625 
629 
633 

Values of c, X 10° for L = 200m, W = 60 knots, 

586 
290 
594 
598 

572 
076 
980 
584 

Marsich and Merega 

Table Allc 
Values of c, x 10° for L = 200m, W = 60 knots, 

P = 0.404, c, = 0.900, and Fr = 0.10 

RSG 16.00 | 17.50 | 19.00 | 23.75 ES 30.00 | 31.50 

685 677 
681 
685 
689 

642 
647 
651 
655 

689 
692 
696 

710 
714 
718 
722 

Table Al2a 
Values of c,, xX 10° for L = 200m, W = 

P = 0.448, C, = 0.900, and Fr = 0.00 

659 
663 
667 
670 

704 
708 
712 
715 

Table A12b 

729 
733 
737 
741 

732 
735 
739 
743 

734 
738 
742 
746 

60 knots, 

739 
743 
747 
751 

P = 0.448, C, = 0.900, and Fr = 0.05 

608 
612 
616 
620 

590 
594 
598 
602 

626 
630 
634 
638 

674 
679 
683 
687 

Table 12c 
Values of c, x 10° for L = 200 m, W = 60 knots, 

P = 0.448, C, = 0.900, and Fr = 0.10 

606 
610 
614 
618 

649 
654 
658 
662 

708 
712 
LT 
721 

682 
686 
691 
695 

TAT 
721 
726 
730 

691 
695 
700 
704 

740 
744 
748 
752 

747 
751 
755 
759 

726 
730 
734 
739 

700 
704 
708 
713 



Strip Theory 

DISCUSSION 

G. Aertssen 

University of Ghent 
Ghent, Belgium 

This work of Prof. Marsich and Dr. Merega on bending moments is un- 

doubtedly one of the investigations which should be made. I have, however, 

two remarks, both related to the sea aspect the authors have selected for their 

calculations. In their Table 1, they refer to wind speeds of 60, 65, and 70 knots 

and corresponding wave heights of 13, 14, and 16 m, but nevertheless the calcu- 

lations are made for a 60-knot wind and the corresponding wave height of 13.23 
m. However, significant wave heights of 16 m have in fact been reported. I 
confess that this wave height of 16 m was recorded near Iceland and that the 

usual track of a 200-m ship is not in this area. 

My second remark concerns energy distribution in waves. The authors 
assumed what they in Sec. 1.1 called a long-crested confused sea. There was 
a contradiction in this sea description. If the sea is long-crested the super- 

position principle fully applies. For a confused sea you have to assume a di- 

rectional energy spread, and this, according to experiment, gives you a longi- 

tudinal moment which is 10 to 20% less. Actually, in these extreme seas energy 
is spread, and so it happens that the 20% loss in bending moments because of a 
significant wave height taken too low is counterbalanced by the 20% gain made 
by the authors where they ignored directional spread. There is also the ques- 

tion of Froude number. For a ship 200 m in length a Froude number 0.1 cor- 
responds to a speed of 9 knots. I hardly imagine a ship, even one so large as 
200 m, sailing at a speed of 9 knots ahead in waves Beaufort 11. I would also 

raise the point of wave frequency, but here again the authors are on the pessi- 
mistic side. Altogether, it is a satisfactory approach to the problem. 

* * * 

DISCUSSION 

H. Volpich 

Brown Bros. & Co. Lid. 

Edinburg, Scotland 

The authors have selected for their important and valuable investigation 
the Series-60 Todd hull forms and given for them the appropriate parameters 

in the paper. Since the modern trend for large bulk-carriers and tankers con- 

sists of hull forms having large ram bulbs, it is suggested they include in any 
future study at least one form with a heavy ram bulb, because this may show up 

in the resulting bending moments and would give some idea of any possible devi- 
ations from the Todd Series 60, when the calculations are applied to bulbous hull 

forms. 
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It is stated in the paper that the investigation was carried out in a confused 

sea generated by a 60-knot wind and with given wavelengths. For comparative 
purposes it would have been advisable for the authors to have used a standard, 
internationally accepted spectrum, say, the Moskowitz one, which is nowadays 

available for confused seas at various wave slopes and Beaufort numbers. 

* * * 

REPLY TO THE DISCUSSION 

S. Marsich and F, Merega 

We thank Prof. Aertssen and Mr. Volpich for the favorable comments for- 

warded. As regards the remarks by Prof. Aertssen, we reply that our assump- 
tions are justified by the aim to which our study was intended, not to furnish 
results valid as absolute values but to furnish only figures suitable for present- 
ing evidence on the dependence of wave bending moment on different parameters 

characterizing hull form and weight distribution. 

As regards the comments by Mr. Volpich, we want to assure him that we 
intend to extend our research both by considering bulbous hulls and examining 

the influence of different sea spectra. 

* * * 
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PROSPECTS FOR UNCONVENTIONAL MARINE 

PROPULSION DEVICES 
A. Silverleaf 

National Physical Laboratory 
Teddington, England 

ABSTRACT 

This paper is intended as a general review of some of the factors which 

influence the development of propulsion devices for ships and other 
marine craft. 

First, some general points are examined, and an attempt made to de- 
fine criteria which help the designer to choose the propulsion system. 

Although there arefew rules which apply to all classes or types of ship, 
the simplest useful parameter is the speed-displacement ratio; as this 
increases, so does the specific power (or power per ton-knot), and thus 
the power-weight characteristic of the propelling machinery becomes 
more important. Generally, at low and at high values of the speed- 
displacement ratio, the choice of main machinery and propulsion device 
is fairly clear; difficulties occur at intermediate values. However, 
high absolute power requirements also make choice more difficult. 

Next, the principal features of the main types of propulsion device are 
outlined, and their potentialities and limitations considered. The long- 
established, orthodox open marine propeller is still a most efficient 
device for converting rotational energy into propulsive thrust, but its 
range of application is not unlimited. To extend the range of efficient 
operation, other types of screw propeller have been developed; these 
include ducted, controllable pitch, contrarotating, and fully cavitating 
propellers. Paddle wheels and vertical axis propellers, waterjets, and 
airscrews have also been used for marine purposes, while air-blown 
ramjets and magnetohydrodynamic devices have also been proposed. 

Finally, some of the hydrodynamic, engineering, and operational fac- 
tors affecting particular ship types are considered in more detail. 
Tankers and bulk carriers, high-speed container ships and other cargo 

liners, passenger liners and ferries, and very-high-speed foilcraft and 
hovercraft—all these have different needs and raise distinctive prob- 
lems. Throughout it is stressed that the choice and design of a propul- 
sion system for a ship must not be considered as a series of separate 
units, but as an integral whole in which the characteristics of main 
machinery, propulsion device, shafting or other connections, and needs 

for auxiliary power must be closely related. 

INTRODUCTION 

This paper is intended as a general review of some of the factors which in- 

fluence the development of propulsion devices for ships and other marine craft. 

During the past twenty years there have been many remarkable changes in the 
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merchant and naval fleets of the world; major changes in the dimensions, 

speeds, and powers of conventional merchant ships have been accompanied by 
equally significant changes in naval vessels, and by other spectacular, and per- 
haps technically more challenging, innovations in high-speed marine craft, of 
which the most dramatic has been the birth of the hovercraft or waterborne air- 
cushion vehicle. Largely because of these striking and somewhat unexpected 

developments, there has been growing activity in exploring the value of propul- 

sion devices which could supplement the long-established conventional marine 

screw propeller. These devices cover a very wide range of types and possible 
applications; some, like ducted, controllable-pitch, and contrarotating propel- 
lers, have been in regular, if limited, use for many years; others, like fully- 
cavitating propellers and waterjet systems, have undergone considerable engi- 
neering development in prototype installations; a third group, which includes 
air-blown ramjets and magnetohydrodynamic devices, are still in the early 
stages of laboratory investigation and are, in some cases, little more than 

"ideas in principle." 

Faced with this diversity of possible propulsion devices, and by a barrage 

of technical and other literature extolling the virtues of each one, the designer 
of even a relatively conventional ship is faced with a difficult choice; for the de- 
signer of an unorthodox, advanced marine craft, the choice is often bewildering, 
and is not made easier by the apparently different standards and criteria used 

by the advocates of many of these propulsion devices. The principal aim of this 
paper is to suggest some general criteria, not all of which can readily be quan- 

tified, which can help in making the best choice of propulsion devices for ships 

and marine craft of many different types. 

There are several recent papers which ably summarize and compare tech- 

nical features of different marine propulsion devices (Refs. (1, 2, and 3) are 
examples), and many papers, including those at the present Symposium to follow 
this review, which discuss individual devices in considerable detail. For this 
reason, among others, this review will not contain new information about de- 
vices which are used for marine propulsion, or are proposed for such purposes. 
However, many papers about marine propulsion devices tend to emphasize se- 
lected aspects of their performance, generally concentrating on hydrodynamic 

efficiency, sometimes including cavitation susceptibility and associated noise 
generation, but frequently say little or nothing about engineering and operational 

features, which are often more decisive in the choice both of power plant and 

propulsion device. While such hydrodynamic studies are necessary, they are 
far from sufficient; indeed, high efficiency is but one factor among many, and 
reliability, liability to cause vibration, compactness, simplicity, low first cost 
and low direct and indirect maintenance costs, are generally of more impor- 
tance in arriving at the techno-economic balance which determines the final 
choice. 

Thus, in assessing the prospects for the widespread use of any unconven- 
tional marine propulsion device, it is essential to recognize that the choice and 

design of a propulsion system for a ship must not be considered as a series of 

separate and isolated units, each selected to have maximum component effi- 
ciency, but as an integrated whole in which the characteristics of main machin- 

ery, propulsion device, shafting or other connections, and needs for auxiliary 

power must be closely related. Finally, it is also desirable to recognize that 
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while unconventional devices are the only practical means of propelling some 

marine vehicles, for the overwhelming majority of conventional ships and for 

most marine craft—even some relatively unorthodox vessels—the conventional 

open marine screw propeller is both practical and highly efficient; it is not easy 

to beat. 

GENERAL CONSIDERATIONS 

Basis of Comparison 

Efficiency and other criteria which can be expressed in direct numerical 
terms are Seldom decisive in determining the choice of propulsive device for a 

particular ship or other marine craft. This choice should be made as part of an 

overall system design, in which the real target is minimum total operating cost 

to carry a Specified payload over a stated range at optimum speed. The payload 

may be either a deadweight cargo such as oil, a light-weight load of passengers, 
or a weapons system or other mixed weight and volume load. The range is gen- 
erally an independent operational variable, but optimum speed, though often 
treated as another independent factor, should more properly be regarded as a 

derived variable, depending on payload and range. Since total operating costs 
include both direct costs for fuel, crew, and maintenance, and also indirect 

costs which reflect initial capital expenditure, any attempt to minimize total 

costs will ensure that the most efficient ship has the most suitable propulsion 
system. The power plant and the propulsion device themselves affect the prin- 

cipal characteristics of the ship; dimensions, shape and displacement to carry a 

fixed payload will vary with the required power output and with the power-weight 

ratio and specific fuel consumption of the primary mover. For these reasons 

realistic comparisons of different propulsion devices should, in principle, form 
part of complete design studies for particular vessels, but clearly this is not 

practicable here. 

A more limited, but reasonably realistic, basis of comparing different types 

of propulsion device is to consider their application to ships with total displace- 
ment, speed, and range all fixed. The emphasis is then placed on the propulsive 
efficiency of the device and the corresponding engine power required; the over- 

all weight of the propulsion system and of the necessary fuel will then depend 

primarily on the primary mover selected, and this will in turn affect the avail- 

able payload, which can be expressed, if desired, as a transport efficiency cri- 

terion. Although far from entirely satisfactory, such an approach is better than 

comparisons which consider different propulsion devices in isolation, without 

taking any serious account of their interaction with the ship which is to be pro- 

pelled. On this basis of comparison, some efficiency criteria can be used to 
give general guidance about the likely prospects for unconventional marine pro- 

pulsion devices. 

Propulsive Efficiency 

In the past, many accounts of novel propulsion devices have claimed advan- 

tages based on inadequate or even incorrect efficiency criteria. Fortunately, 

recent papers comparing different devices have adopted more realistic and cor- 
rect criteria, but it is still important to stress that the definition and usage of 
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propulsive efficiency must be uniform, comprehensive, and unambiguous if it is 

to have value in comparisons between different systems. 

The hydrodynamic performance of a marine propulsion device operating in 
isolation can be defined by its thrust efficiency, which is the ratio of the power 
output based on the effective thrust from the device, to the power input to the 
device. If the inflow velocity is taken as the mean velocity in the nonuniform 
flow conditions in which the device operates when propelling the ship, then this 

thrust efficiency is equal to the "behind" efficiency used in conventional ship- 

powering analyses, as defined in Ref. (4) and elsewhere. 

When the device is part of the propulsion system of a ship, it has to be 
physically linked to the hull; this generally requires some external appendages, 

such as shaft supports or water inlets, and their net drag may increase the total 
resistance of the ship above that of the bare or naked hull. The flow induced by 
the propulsion device generally further increases the resistance of the hull, and 

the propulsive thrust must overcome this augmented resistance; there is a fur- 
ther interaction effect because in these conditions the mean inflow velocity to the 

device is less than the speed of the ship. The flow interaction effects between 
hull and propulsion device can be expressed as a single factor linking the thrust 
efficiency of the device alone to its propulsive efficiency when part of the pro- 
pulsion system; this hull interaction factor is identical to the hull efficiency cus- 
tomarily used in ship powering analyses and cannot be ignored in assessing the 

relative merits of different types of propulsion device in real operating conditions. 

The overall efficiency of the complete propulsion system, including prime 
mover, is the ratio of the useful power to the power output of the engine. In 

conventional ship powering analyses it is customary to consider that this useful 
power is the effective or tow-rope horsepower of the hull including any external 
propulsion appendages. However, the ship designer is primarily interested in 

the power required to propel the bare hull, and the power absorbed in overcom- 

ing the drag or resistance of external appendages directly associated with the 

propulsion device should not be regarded as useful output; consequently in com- 
paring the efficiencies of different propulsion devices, the useful power should 

be related to the resistance of the naked hull alone. This gives a useful propul- 

sive efficiency defined by the ratio of the effective horsepower for the naked hull 

to the power output of the prime mover. 

Thrust Efficiency and Its Components 

Although the thrust efficiency 7, alone is not a sound index for comparing 

the performance of different propulsion devices, it is a useful part of such an 
index, and it can also be resolved into components which have some value. Al- 
most all practicable marine propulsion devices are of the reaction-screw-type, 
in which thrust is developed by a rotating pump or rotor, which imparts energy 
to accelerate a jet of water. The ideal or maximum efficiency 7, of such ana 

accelerated jet system can be readily derived by simple axial momentum or 

actuator disk theory which ignores viscous effects and other losses such as 
those due to flow rotation. The realizable thrust efficiency 7, is then obtained 
by applying a pump or hydraulic efficiency factor 7, to take account of these 

losses in the rotor. Some propulsion devices, such as water-jet systems, 
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enclose the rotor in a long duct which does not develop thrust; it is then conven- 

ient to introduce a further factor 7s to allow for the ducting and other losses in 

the system apart from those at the rotor itself. The factor for the system losses 

can be combined with the ideal jet efficiency to give a "'real'' jet propulsive effi- 

ciency 7, , and these different factors are by definition directly related thus: 

Nr = TpNyNgs and ny = TyNs 

Although the real jet propulsive efficiency ”; has been much used, particularly 

in analyses of waterjet systems, it is a convenience which does not have physi- 

cal coherence, since it combines an ideal fluid jet efficiency with a factor domi- 

nated by viscous losses in ducting, while the corresponding losses in the rotor 

are included in the pump factor ™. 

The ideal jet efficiency », depends only on the ratio of the mean jet inlet 

velocity to the velocity at the nozzle or jet exit, decreasing sharply as this jet 

velocity ratio k increases. The real jet efficiency 7; depends on the head loss 

in the system (excluding pump losses) as well as on the jet velocity ratio; as 

this loss tends to zero 7, ~ 7,. Two further coefficients are useful in compara- 

tive analyses; these are the thrust and power loading coefficients C; and CG, re- 

spectively, in which the thrust and the power are related to the disk area at the 

rotor and the speed of advance. The thrust loading coefficient C, is directly re- 

lated to the jet velocity ratio, so that the ideal jet efficiency »; can be ex- 

pressed either in terms of thrust loading C; or jet velocity ratio k. Further, 

when consistent units are used throughout, these loading coefficients are re- 

lated to the thrust efficiency 7, thus: 

Tp = Cy/Cp . 

It is often convenient to separate the power losses in the transmission be- 

tween engine and propulsion device from the other losses in the system; this 

leads to a quasi-propulsive coefficient which conventionally is related to the ef- 

fective horsepower of the hull with appendages, but which should more properly 

be related to the useful propulsion power based on the resistance of the naked 

hull alone. However, the overall efficiency is a more comprehensive index of 

relative performance than the quasi-propulsive coefficient; since alternative 

propulsion devices may necessarily have different transmission systems, such 

as geared or direct drives, it can be misleading to ignore the transmission 

losses in comparing the real efficiencies of different propulsion devices. 

Table 1 summarizes these factors which affect the assessment of propul- 
sive efficiency, and emphasizes the differences between the conventional effi- 

ciency factors and those proposed here. 

The principal conclusions of this analysis are: 

(a) The thrust efficiency 1; of a propulsion device defines its per- 
formance only in unreal isolated conditions. Hence, comparisons 
of the hydrodynamic efficiency based on thrust efficiency are in- 

adequate and can be misleading. 

889 



Unconventional Propulsion—Silverleaf 

Table 1 
Propulsive Efficiency and its Assessment 

Overall propulsive efficiency Pee 

Quasi propulsive coefficient = Ten ten ee 

Transmission efficiency ei poiP. 

Thrust efficiency Ny = Pz/Py 

Hull interaction effect "pn = Ka 77H 

(b) Comparisons based on the conventional quasi-propulsive coeffi- 

cient », take account of most interaction effects between the hull 
and the propulsion device, and thus give a far better indication 
than thrust efficiency 7, of relative hydrodynamic efficiencies. 
However, the quasi-propulsive coefficient does not penalize losses 
due to the drag of appendages associated with the propulsion de- 

vice, and these can vary significantly for different devices. 

(c) The most satisfactory basis for comparing hydrodynamic efficien- 

cies is a qualified propulsive efficiency 7, based on the useful 

propulsion power P, related to the resistance of the naked hull. 

Although it may not always be easy to identify unambiguously and 
acceptably the resistance of the appendages defining the factor k, 
in the relation 7), = k,a7p, this should always be attempted. 

(d) The thrust and propulsive efficiencies of a propulsion device are 

linked by a hull interaction factor 7, , and the relation np = nny 
provides a useful way of separately comparing the direct and the 

interaction effects of different propulsion devices. 

(e) Transmission efficiency should be included in any complete per- 

formance comparison of propulsion devices; the overall factor 7 

or 7, iS a more comprehensive index of relative propulsive effi- 
ciency than any hydrodynamic efficiency criterion alone. 

These relations between the thrust efficiency 7, and its components are 

summarized in Table 2, and Fig. 1 gives values of real jet efficiency 7, for the 
wide ranges of thrust loading. C, and head loss coefficient K, over which marine 
propulsion devices are now required to operate. 

Specific Power and its Implications 

All the propulsive efficiencies considered here are based on a useful power 
output directly related to the resistance overcome. While this can be logically 

justified, it is irrelevant to the ship designer for whom hydrodynamic efficiency 

is more usefully defined by the power required to propel a specified displace- 
ment at a stated speed. This can be simply demonstrated by the not-infrequent 

890 



Prospects for Unconventional Marine Propulsion Devices 

Table 2 

Thrust Efficiency and its Components 

Thrust efficiency Np = ™pNNg = C/G 

oie es Gal 
* (-1)@ Ky Cy t+ Ky Real jet efficiency Ny = 1 Ns 

Ideal jet efficiency 

System head loss coefficient 

Thrust loading coefficient 

Power loading coefficient 

situation in which, at constant displacement, a change in propulsion device leads 
to an increase in ship resistance (R orR, ) and a proportionately smaller in- 
crease in propulsion power Pp; then, though propulsive efficiency as measured 
by 7p OY 7p, Will increase, the designer will not consider it an advantage that a 

higher power is required. 

Specific power is a parameter which can give guidance in such circum- 
stances. Defined in engineering units as horsepower per ton-knot, it is related 
to an equivalent nondimensional parameter thus: 

gs P 6.88 R/A 
Specific Power = Me? ae 

in which power Pp is in hp, speed V in knots, and displacement A and resistance 

R are in tons; if desired, the resistance-displacement ratio R/A can be replaced 

by the reciprocal of the familiar lift-drag ratio L/D. When the power P is taken 
as engine output Pg , then the overall efficiency 7 should be used if R is taken 
as total ship resistance, and 7, if the naked resistance R, is the basis. Simi- 
larly, if the power is taken as the dhp Pp, then either 7, or 7, should be used, 

as appropriate, in calculating the specific power. 

It has been found useful to relate specific power P/AV to a speed coefficient 

such as V/A!’/© which does not involve more than ship speed and displacement. 

Figure 2 is a plot of specific power in terms of such a speed coefficient; the 

data, partly derived from published information which may not be precisely de- 

fined and partly from other sources, are for a very wide range of types of ships 

and other marine craft, including large tankers, passenger liners, high-speed 

patrol craft, hydrofoil ships, and amphibious and nonamphibious hovercraft. 
Plots such as this show that in general, as expected, specific power increases 
with speed coefficient, and also suggest that, for each speed coefficient, there is 
a minimum specific power corresponding to the "best" performance yet achieved. 
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The resulting "minimum" curve indicates that, for a given speed-displacement 

ratio, there is often one type of marine craft with a significantly better hydro- 
dynamic performance than others and gives an estimate of the minimum power 
required by such acraft. It also demonstrates the penalties in power incurred 
by design constraints or by a decision not to adopt the most favorable type of 

craft. Some simple diagrams illustrate the general guidance which can be di- 
rectly derived in this way. Thus, Fig. 3 shows that the minimum values of P/A 
(hp per ton displacement or all-up weight) rise steeply with speed but fall stead- 

ily as displacement increases, while Fig. 4 shows the rapid rise in minimum 

power needed as either speed or displacement are increased; since Fig. 2 shows 

that for many high-speed displacement craft the power requirements are be- 

tween two and three times the minimum, it is clear that there are serious limi- 
tations on speed-displacement values which are likely to be achieved in prac- 

tice, and that even significant improvements in propulsive efficiency, however 

obtained, can have little effect in raising the practical speed-displacement 

boundaries. 

The concept of specific power is also useful in assessing the prospects of 

different types of propulsion plant and propulsion device. Figure 5 illustrates 
the dependence of the ratio M/A on specific power and on speed; here M is the 

total weight of the propulsion system, and typical, reasonably representative 
values of 15 hp/ton and 20 hp/ton have been taken for diesel and steam turbine 
installations respectively (Ref. (5)), and 300 hp/ton taken for gas turbine instal- 
lations based on mean values for known installations. Figure 6 shows the mini- 
mum values of the machinery weight ratio M/A for a range of speeds and dis- 
placements, corresponding to the minimum specific power values in Figs. 2 

and 4. 

It is also useful to examine fuel requirements in a similar general way. 

Figure 7 demonstrates the dependence of fuel weight ratio (F/A) on specific 

power and on range, while Fig. 8 is a guide to the minimum values of F/A needed 
for any given displacement and speed for a fixed range of operation. 

Cavitation and Vibration 

Almost all marine propulsion devices, particularly those dependent on screw 
propellers or pumps to impart energy to the fluid, are affected by cavitation or 

similar fluid-flow phenomena. Almost invariably, cavitation has two undesirable 

effects: It produces radiated noise, and it causes erosion of rotor blades and 
other parts of the propulsion device. Further, extensive cavitation may ad- 

versely affect the hydrodynamic performance of a propulsion device unless posi- 

tive steps are taken to prevent this. 

Many different criteria have been proposed and used to define the likelihood 
of cavitation occurrence and its extent; in general these can be divided into those 
which take account only of the ahead speed of the device, and those which also 
take some account of the rotational speed of the rotor or pump blade. The sim- 
ple forms of cavitation index such as o, , Which involve only ahead speed and 

depth of immersion, can be misleading and are almost always more inadequate 
than those, such as o,, which attempt to take account of blade resultant velocity. 
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— WEIGHT OF FUEL 

DISPLACEMENT 

— INSTALLED POWER 

— SPEED IN CALM WATER <= Uv baa 

! 

FAST 
PATROL 

0:2 CRAFT 

FOILCRAFT 

HOVERCRAFT 

oy HIGH SPEED 
ala} LAUNCHES, 
J DESTROYERS 

©: 08 CARGO LINERS. 
TANKERS 

ce) 1000 2000 3 000 

RANGE MILES 

Fig. 7 - Fuel-displacement ratio: general (for fuel 
consumption of 0.5 lb/hp-hr) 

(tons) 

(tons) 

(hp) 
(knots) 

4000 

Since most ship propulsion devices operate in a nonuniform inflow, the like- 

lihood of propeller -excited vibration, or its equivalent, is an important factor in 

choosing the most appropriate device. As the thrust or power loading coefficient 

increases, so the likelihood of blade-excited vibration also increases, while 
growing nonuniformity of inflow naturally aggravates the situation even more. 

Typical Values of Propulsion Parameters 

Table 3 gives typical values of loading factors and other propulsion param - 

eters for different types of ship and marine craft; these values show that: 

(i) The thrust loading coefficient C; is generally less than 1.5 for all 
types of vessel except large full-form tankers and bulk carriers 
for which much higher values are now common; in consequence, 
the ideal jet efficiency », is also generally greater than 0.8 except 
for these large low-speed ships, for which much lower values are 

the best that can now be achieved. 
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Table 3 

Propulsion Parameters: Typical Values 

Svecifi 

Loading Factors Hi a 

Ship Type z /N1/ 6 A 

Tanker or Bulk Carrier: 

Mammoth (4 600,000: TS). . 

Large (A 250,000: SS).. 
Medium (A 30,000: SS).. 

Trawler 

Cargo Liner: 
Single Screw 
Twin Screw 

Vehicle Ferry 

Passenger Liner 

Destroyer 

Patrol Craft 

Foilcraft 

Sidewall Hovercraft 

Amphibious Hovercraft 

(ii) Similarly, the power loading coefficient C, is less than 2 except 
for such extreme ship types, although foilcraft in the take-off con- 
dition also have high values of both C; andC.. 

(iii) The quasi-propulsive coefficient 7, generally has lower values 

for high-speed craft than for larger ships of all types, although its 

value is not directly associated with either C; orG . 

(iv) The speed-displacement ratio v/A!/° is a parameter of major im- 

portance for almost all conventional ships it rarely exceeds 4, but 
for unconventional high-speed craft in calm water it may havea 

value as high as 50. As this speed coefficient increases, the spe- 
cific power P/AV increases sharply and thus the power-weight char- 
acteristic of the propelling machinery becomes more important. 

Further, as the speed-displacement ratio increases the cavitation 
index o, decreases significantly, indicating the much greater im- 
portance of cavitation effects on propulsion devices for high-speed 

craft. 
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For these reasons the speed-displacement ratio may be regarded as the 

simplest single parameter which is of use in defining the desirable overall 
characteristics of the propulsion system. Some useful guidance affecting the 
development of marine propulsion devices can be obtained from Table 3 and 

Figs. 2-8. Thus: 

(i) At low speed-displacement values, corresponding to those for most 

merchant ships, power-displacement ratios are low, and machinery 

and fuel weight ratios are not high enough to justify expensive 

light-weight propulsion systems. Equally, even where propulsive 

efficiency and low power requirements are important, they are 
seldom dominant factors in determining the type of propulsion 

system. 

(ii) At high speed-displacement values, corresponding to those for 
high-speed marine craft, it is essential to minimize machinery 

power and weight if reasonable range and payload are to be ob- 
tained. 

(iii) At intermediate speed-displacement values, corresponding to those 
for destroyers and similar craft, it is difficult to choose the power 
plant unequivocally. Improvements in propeller efficiency are de- 

sirable but unlikely to have a major effect on design criteria. 

TYPES OF MARINE PROPULSION DEVICES 

General Classification 

In addition to the marine propulsion devices which already exist, there are 
many other possible types. These can be classified in several ways and, as 
suggested in Table 4, it is perhaps most convenient to divide them into the two 
main classes of reaction-screw-type devices and pure jet devices. 

Reaction-screw-type devices may have many variants. Indeed, it is possi- 

ble in principle to specify well over two hundred apparently different types of 

device since: 

(a) The blade section shapes of rotating or fixed parts may be either 
fully wetted, fully cavitating, base vented, or airscrews may be 
used. 

(b) The axis of rotation of the propeller or pump may be either longi- 
tudinal, vertical, or transverse. 

(c) Single- or multi-stage pumps or propellers may be used. 

(d) The pitch of the blades may be either fixed or controllable. 

(e) The rotor may be either open (unshrouded), or enclosed in a duct 
or shroud which may be either long or short. 
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({) For ducted or shrouded propellers the duct may have an accelerat- 

ing or a diffusing nozzle, and may either be clear of vanes or have 
stationary or rotating inlet or exit guide vanes. 

(g) Finally, the duct may be fixed in position, or be steerable so that it 

can be used as a rudder or control surface as part of the propul- 

sion device. 

Most commonly used screw-type propulsion devices have a fore-and-aft 

axis of rotation; conventional open marine propellers, ducted propellers, con- 

trollable pitch, contrarotating, tandem, and most waterjet systems are of this 
type. However, vertical-axis propellers are not uncommon; the well-known 

Voith-Schneider propeller, and the Flettner rotor, are examples of this type. 
Paddle wheels are the most common form of device with a transverse axis, but 
in principle the centrifugal pump in a waterjet system should be included in this 

group. 

Pure jet types of propulsion device may be subdivided thus: 

(a) Air jets: these may be like those used for aircraft (as in the 
"Lucy Ashton" experiments), or water-augmented to increase the 

density of the fluid at jet exit and thus increase the thrust. 

(b) Underwater jets: in principle these may be of three types: 

(i) Water as a working medium with water-reactive fuels 
(ii) Air-blown ramjet or other hydropneumatic device 

(iii) Magnetohydrodynamic devices. 

Pure jet types have not yet been used for marine craft except in a very lim- 

ited experimental way. 

Need For Unconventional Devices 

The conventional open unshrouded marine screw with fully wetted sections 

is a Simple, efficient, reliable, cheap, and well-proven propulsion device, and 
considerable research effort has been expended in its development, particularly 
during the past twenty years. Why then should it be necessary to develop uncon- 

ventional propulsion devices for ships ? 

Research on propulsion devices has shown that this cannot be isolated from 

research on hull forms and, in fact, the stern form, propulsion device, trans- 
mission, and steering system must be regarded as a whole. If there are no re- 
strictions on the size and weight of the propulsion device, and on its operating 

rate of rotation, then in general the best performance will be achieved by a 
slow-running screw propeller of large diameter. Restrictions on diameter are 
always likely to be imposed by draught limitations, but restrictions due to diffi- 

culty of manufacture are likely to be overcome. Restrictions on revolutions are 
imposed by an insistence on using diesel engines as a primary mover with a di- 

rect drive to the propeller, but the wider adoption of geared drives, either with 
diesel engines or steam turbines, allows greater freedom of choice in propeller 
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revolutions. These points are important in considering the development of pro- 
pulsion devices, other than conventional open propellers, because such devices 
often only have advantages where restrictions exist, and selection of the most 
profitable research topics therefore involves prediction of the likely trend in 
removing these restrictions. 

The principal reasons for investigating the possible usefulness of uncon- 

ventional marine propulsion devices can thus be summarized as: 

(i) An attempt to maintain, at higher thrust and power loading coeffi- 

cients (C,,C,) and lower cavitation values (c,), the high efficien- 
cies which can be achieved with conventional open marine screws 

under less onerous operating conditions. 

(ii) At lighter loadings to improve still further the efficiency obtain- 

able and to reduce liability to cavitation damage. 

(iii) To minimize vibration due to propeller excitation resulting from 

operation in a nonuniform inflow or through the free-space oscil- 

lating pressure field. 

Comparative Features of Some Unconventional Devices: 

Table 5 attempts to summarize some of the principal features which are 

important in any realistic comparison of practicable marine propulsion devices. 
Some comments on these comparisons may be helpful: 

1. Open (unshrouded) propellers: 

(a) Controllable pitch — These are so well established that it is doubtful 

whether they should be considered as unconventional devices. How- 
ever, although they have advantages from the point of view of the engine 
builder in providing a better match between powerplant characteristics 

and changing thrust requirements, there is still considerable reluctance 
to adopt controllable-pitch propellers, even though they are now avail- 
able for fairly high power outputs. In a recent paper (Ref. (6)) this re- 
luctance has been primarily ascribed to the much higher capital cost of 

C, propellers, which may be as much as 33% of the main engine cost 
compared with 8% for a fixed pitch propeller; a secondary reason is 
doubt about the realiability of any propulsion device which involves a 
special actuating mechanism. 

(b) Fully cavitating propellers — Intensive efforts have been made, particu- 
larly in the past decade, to develop fully cavitating propellers primar- 
ily for high-speed craft. The emphasis has been on high efficiency 
under extreme cavitation conditions, and in consequence the present 
use of fully cavitating propellers has been limited to operating condi- 

tions in which both high speed and high rate of rotation are either nec- 

essary or desirable, as implied in Fig. 9, which is derived from Ref. 
(7). However, there is some indication that fully cavitating propellers 
give a much better propeller-hull interaction than conventional fully 
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ZONE 3 

— BEST FOR CONVENTIONAL 

PROPELLERS 

0-4 

CAVITATION INDEX Ga 

oO nN 

TYPICAL INLET VELOCITY Va, (KNOTS) 

0-08 

0:06 

0-04 
0-2 0-4 0-6 0-8 10 1-2 14 16 

SPEED COEFFICIENT J = 10L-SVA NO 

Va — KNOTS — INLET VELOCITY TO PROPELLER 

N — REV/MIN - PROPELLER RATE OF ROTATION 

D — FEET — PROPELLER DIAMETER 

Fig. 9 - Useful range for fully 
cavitating propellers 

wetted propellers, and this, coupled with the possible elimination of 
some transmission gearing, may open the way to the wider use of FC 
propellers for ships of lower speed than those for which they have been 

used until now, although there are still numerous practical difficulties 
to overcome before this becomes accepted practice. 

Contrarotating propellers — These offer a way of increasing the power 
which can be handled in cases of restricted diameter while retaining 
the basic single ''line of shaft'' configuration, and under some condi- 
tions these propellers can show considerable benefits. Full-scale ap- 
plication is at present limited by the mechanical engineering problems 
involved in producing a completely reliable transmission system, and 
by the very considerable increase in initial cost compared with the 

conventional single propeller. 

Tandem propellers — The use of two screws fixed to a single shaft is 

strangely reminiscent of very early attempts to make effective use of 
the output characteristics of steam turbines. Tandem propellers do not 

seem to have any marked disadvantages and they may well find unex- 

pected applications. 
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Ducted propellers: 

For ship propellers operating at high loading conditions, as in tugs when 
towing or fishing vessels when trawling, the advantages of enclosing the 

propeller in a duct which accelerates the inflow have been appreciated for 
many years. However, the operating conditions of some large tankers and 

bulk carriers are now in the range where propellers in such nozzles may 
be useful. More recently it has appeared that there might be advantages in 

enclosing a rotating impeller external to the hull in a duct or long shroud 
ring in which the inlet flow is decelerated before reaching the impeller 

blades. Operating conditions in which these two types of ducted propeller 

are of advantage are indicated in Fig. 10, while a comparison between effi- 
ciencies of an open unducted propeller, are one in an accelerating duct, is 
shown in Fig. 11; this also indicates how unloading part of the total thrust 

onto the duct makes it possible to reduce the diameter of the rotor com- 

pared with that of an open screw. The performance and efficiency of ducted 

propellers are sensitive to the clearance between the rotor tip and the 

shroud ring, as indicated in Fig. 12, and the need for a small clearance 
ratio can impose quite Severe engineering and operational difficulties. Figs. 
10-12 are taken from Ref. 8. 

re 
_—— 

_—— 

—_ 

—™™ 

1:0 

Ss REGION OF DUCT THRUST 
so - DUCTED > 4, UNDUCTED 

0-8 ek (EQUAL ROTOR AREA) 
= — 

ee ee 

ACCELERATING Ce SS 
6 DuCcTS ? 

REGION OF DUCT DRAG 
Wp DUCTED < 7, UNDUCTED 

—— = (EQUAL ROTOR AREA) 

O04 

DECELERATING 

DUCTS 

02 

DUCT EXIT AREA ROTOR DISK AREA 

TOTAL THRUST COEFFICIENT Cr 

Fig. 10 - Ducted propellers: conditions for 
accelerating and decelerating ducts 
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1-4 

13 
» DIAMETER UNDUCTED PROPELLER 
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Fig. 11 - Ducted and unducted propellers: 
comparison of efficiencies and diameters 

Cr ROTOR 

fe} 0-01 0:02 0:03 0:04 0-05 
TIP CLEARANCE 

TIP CLEARANCE RATIO = INTERNAL DUCT DIA. AT ROTOR TIP 

Fig. 12 - Effect of tip clearance on ducted 
propeller efficiency (calculated for a con- 

stant power coefficient Cp 12) 

3. Vertical-axis propellers: 

The much lower propulsive efficiency of vertical axis propellers makes it 

clear that the main reason for using such propellers is the very consider- 
able advantage they give in providing a large steering power at low ship 
speeds. However, engineering developments have so far limited the total 
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power of such devices to about 2,000 hp, and even so for craft requiring less 

than 1,000 hp the use of vertical axis propellers has recently been severely 

challenged by other propulsion devices, such as the steerable open propeller 

and the Pleuger activated rudder, which also have good maneuvering quali- 

ties. 

Paddle wheels: 

These again scarcely rank as unconventional propulsion devices, but recent 

intensive studies of their performance suggest that they may not yet be en- 

tirely dead. Their value in remote areas in less developed countries indi- 

cates the importance of engineering simplicity and reliability in the overall 

choice of propulsion system. 

Airscrews: 

While airscrews have often been proposed as propulsion devices for marine 

craft they have only been used for this purpose since the advent of the am- 

phibious hovercraft, for which they are obviously well suited. However, ex- 

perience has shown that the performance of an open unducted airscrew is 

much more strongly affected by wind, wave, and power variations than a 

marine propeller. Further, limitations in propeller size may well limit 

their application to fairly small craft, quite apart from other factors such 

as noise. 

Pure jet devices: 

Most pure jet devices have very low propulsive efficiencies in any operating 

conditions resembling those for present or projected marine craft. How- 

ever, theoretical studies of an air-blown ramjet (Ref. 9) have suggested that 
reasonable propulsive efficiencies, perhaps exceeding 40%, might be ob- 

tained, though these values have so far not been confirmed by experiment. 

If further work shows that reasonable propulsive efficiencies can be 

achieved then the simple air-blown ramjet might be employed as a booster 

unit, if not as the main propulsion device, for some high speed craft. It 
should be added that the effective thrust loading coefficient C; for which 

reasonable efficiencies might be achieved is low, probably not much exceed- 

ing 0.15. 

SHIP TYPES AND THEIR PROPULSION REQUIREMENTS 

General Criteria 

For ship propulsion systems, of which the propulsion device forms a critical 
part, the order of priority for design criteria is different for merchant ships and 
for naval ships; Table 6 shows these priorities as summarized in Ref. (5). It will 
be seen that reliability rates highly in all applications, but that low capital cost 
disappears from the naval list as a primary aim, while low weight and compact- 
ness become more important. Further, fuel consumption is judged on a weight 

basis for naval applications and on a cost basis for the Merchant Navy. 
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Table 6 
Ship Propulsion Systems: 

Order of Priority for Design Criteria 

Low capital cost Reliability 

Reliability Rapid maneuverability and 

ease of operation 

Low fuel cost Compactness 

Ease of operation Low weight 

Ease of maintenance Low fuel consumption 

Compactness Ease of maintenance 

Low weight Silence and shock resist- 
ance 

Several important conclusions are implicit in this statement of priorities. 
For example, for most merchant ships it strongly suggests that, unless an un- 

conventional propulsion device gives such an increase in propulsive efficiency 
that the consequent reduction in required power can be reflected in the capital 

cost of the machinery installation (including the propulsion device itself), then it 

is very unlikely to be regarded favorably, since the simple open marine propel- 
ler is clearly superior so far as all the other criteria are concerned. On this 
basis it is not unreasonable to suggest that the minimum reduction in required 
power due to adopting an unconventional marine propulsion device must be not 

much less than 10% to justify its widespread adoption; further, the attainable 
power reduction should increase with the complexity of the device, so that the 
improvement in performance needed to justify a mechanically complex contra- 

rotating system must be greater than that to justify the relatively simple single 

propeller in a short duct or nozzle, although even this may well have significant 
disadvantages in maintenance and total weight. For naval ships the emphasis on 

rapid maneuverability and ease of operation creates a more favourable climate 
for the adoption of propulsion devices which may not show any significant gain in 
propulsive efficiency or in overall power required; thus, waterjet systems may 
have advantages from this point of view, particularly if they can be designed to 
operate more quietly than unshrouded open marine screws. Because of the wide 

differences in the requirements for differnet classes of ship it is necessary to 

consider each main type separately. 

Low-Speed Merchant Ships 

Tankers and bulk carriers now dominate the world merchant fleet and so 

clearly their propulsion needs should be paramount in any civil research and 

development programs. The typical values of propulsion parameters in Table 3 
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show that large low-speed tankers and bulk carriers operate at thrust and power 

loadings much higher than those for all other merchant ships, except tugs. This 

means that only those devices which operate well at high loadings need be con- 

sidered as alternatives to the conventional open propeller. Indeed, only devices 

which offer significant advantages in propulsive efficiency, without any accom- 

panying disadvantage of complexity or liability to damage, can be seriously con- 

sidered, and merchant-ship studies have already shown that a substantial gain in 

a thorough techno-economic assessment is an essential prerequisite to a depart- 

ture from the conventional open marine propeller; indeed, there is even a reluct- 

ance to move away from single-screw systems. The ducted propeller is clearly 

the most obvious alternative for large, low-speed ships, but the need for a small 

tip clearance to obtain the best performance may be an inhibiting factor. 

High-Speed Merchant Ships 

There has been a great deal of discussion about high-speed cargo liners and 
similar apparently novel merchant ships. However, even though the diameter of 

propellers for such ships may be severely restricted by draft limitations, the 

thrust and power loadings at which they operate are not high; thus, conventional 

open propellers can still serve very efficiently. The main problem may well be 

that the higher absolute powers for such vessels may lead to more Severe pro- 

peller excited vibration. Thus, while devices such as contrarotating propellers 

may show appreciable gains in propulsive efficiency, their increased mechanical 

complexity and much higher capital cost suggests that their adoption, except on 

an experimental basis, is unlikely unless they also appreciably reduce propeller - 

excited vibration. 

Very-High-Speed Marine Craft 

Foilcraft, hovercraft, and very-high-speed displacement craft clearly need 

unconventional propulsion devices, since the conventional open marine screw 

cannot be developed to perform efficiently under the extreme speed and cavita- 

tion conditions at which these vessels operate. For such craft it is particularly 
important not to consider the propulsion device in isolation but as part of the 

overall propulsion system. When this is done it would seem from information 

presently available that the overall efficiencies of fully cavitating propellers, 
and of current waterjet installations, are not sufficiently different to be deci- 

sive. Further, almost all present and projected very-high-speed merchant 
ships of this kind are not intended for long-range operation, and thus fuel con- 
sumption and cost are less important in the overall assessment of priorities. 
Equally, it must be recognized that such craft represent only a very small part 

of the whole world merchant and naval fleets, and this is most unlikely to change 
for many years. Development of propulsion devices for high-speed marine craft 

can easily absorb a disproportionate part of the total effort available for such 

activities. 
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Underwater Bodies 

Marine propulsion devices are required for bodies other than ships. For 

torpedoes and other underwater bodies, including weapons, quite different con- 
siderations apply. Propulsive efficiency may not be at all significant and the 

sheer ability to reach a high speed at whatever cost may be decisive. 

Future Possibilities 

The significant progress made during the past decade in developing fully 

cavitating, contrarotating, and ducted propellers, and waterjet propulsion sys- 

tems, show that much can be achieved if the effort and the will are there. Con- 
sequently, it would be wise to assume that the only limits to the further devel- 
opment of unconventional propulsion devices are those imposed by basic physical 

factors. However, for those of us who live in restricted economies in which the 
principle of "either/or'' must be recognized, it is essential to make the right 
choice and not to dissipate research and development effort too widely. For 

those who are apparently fortunate enough to live in "as well'' economies such a 
hard choice is, superficially at least, less necessary. However, it is a valuable 
discipline in itself. Some of the factors which must inevitably determine the 
emphasis in future research and development effort on marine propulsion de- 

vices are: 

(a) The economic importance of the ships to which they might be 
applied. 

(b) The engineering and operational difficulties associated with their 

use. 

(c) The likely gains compared with those which can be achieved in 
other ways, particularly by improving other parts of the propul- 

sion system. 

(d) The relative importance of improvements in propulsion compared 

with improvements which may be obtained in quite different ways, 

such as by reducing crew costs and turn-around times or by in- 

creasing the useful payload. 

It is a bold man who would venture a clear forecast in such circumstances. 

NOMENCLATURE 

A Area of jet nozzle, pump disk, or equivalent 

Cate 5 AV,° Power loading coefficient 

Car f anys? Thrust loading coefficient 
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D Drag 

F Weight of fuel 

Hy Total head loss in system excluding pump 

k = Vy Va Jet velocity ratio 

kp Appendage resistance factor 

Vino ae: 
K, = i, 2e System head loss coefficient 

L Lift 

M Weight of machinery installation 

N Propeller or rotor rate of rotation 

p Static pressure at axis of propulsion device 

Pe Static pressure in cavity 

P Power in general 

Ps Power output of propulsion machinery 

ie Power delivered to propulsion device 

P, © RV Useful or effective power based on ship resistance in- 
cluding appendages 

Py © RyV Useful or effective power based on ship resistance with- 
out appendages 

Dee Ea Thrust power from propulsion device 

R Resistance of ship including propulsion appendages 

Ry = kaR Resistance of ship without propulsion appendages 

t Thrust deduction fraction 

T ='R/(1-t) Effective thrust from propulsion device 

V Speed of ship 

Va =V(1-w) Inlet velocity to propulsion device 

vy Nozzle or exit velocity 
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Resultant velocity of propeller or rotor blade from 

ahead and rotational components 

(V-V,)/V Wake fraction (Taylor) 

Displacement 

P;/Pp Overall propulsive efficiency 

= Pe. Quasi-propulsive efficiency or coefficient 

=P. /P, Qualified quasi-propulsive efficiency or coefficient 

= (1-t)/(1-w) Hull interaction factor 

Ideal jet efficiency 

Real jet efficiency 

P./P, Qualified overall propulsive efficiency 

Hydraulic efficiency of propeller or pump 

Ducting loss factor 

P)/P, Transmission efficiency 

Pi/ ep Thrust efficiency of propulsion device 

Mass density of fluid 

(p-p. 5 Vie Cavitation index based on ahead velocity of propulsion 

device : 

(P-P.) mae Cavitation index based on resultant velocity of rotor 
blade 
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PRINCIPLES OF CAVITATING PROPELLER DESIGN 

AND DEVELOPMENT ON THIS BASIS OF 

SCREW PROPELLERS WITH BETTER 

RESISTANCE TO EROSION FOR HYDROFOIL 

VESSELS “RAKETA” AND “METEOR” 

I.A. Titoff, A.A. Russetsky, and E.P. Georgiyevskaya 

Kryloff Ship Research Institute 
Leningrad, U.S.S.R. 

It has been found that appreciable erosion develops when cavities collapse 

on screw propeller blades, the area of collapse shifting in the course of revolu- 
tion along the blade chord because of the nonuniformity of the velocity field. At 
high flow velocities characteristic for screw propellers, the intensity of the 
erosion process is so great that it is useless to attempt prevention of failure of 
the material by improving its mechanical properties. Accordingly, to decrease 
or fully eliminate erosion damage it is necessary to provide for a suitable form 

of cavity development, i.e., collapse outside the blade. 

In principle, cavitation may occur on both the suction and pressure sides of 
the blade. The latter form of cavitation, however, is observed only when the 
adopted curvature of the blade section is excessive or the edge pitch is too 
small. Thus, the conditions required for the design of a propeller may be stated 

as (a) the absence of cavitation on the pressure side, and (b) the collapse of 
cavities beyond the trailing edge of the blades. The first of these conditions is 
mainly provided for by choosing reasonable blade sections, and the second by 

choosing the blade area ratio. 

The collapse of cavities beyond the blades cannot be obtained for all speeds. 

There inevitably exists some range of speeds within which the cavities will col- 

lapse directly on the blades. 

It is well known, however, that the intensity of erosion is proportional to ap- 

proximately the sixth power of the flow velocity. Consequently, the erosion in 
this range of speeds will develop much slower than at full speed, should a simi- 

lar form of cavitation exist under the latter condition. Moreover, fast ships, 
especially hydrofoil vessels, are for the most part operated at speeds approxi- 

mating full speed, and hence the amount of intermediate speeds in the total pe- 

riod of operation is insignificant. Accordingly, it is more advantageous in at- 
tempting to decrease erosion damages that the conditions under which partial 

cavitation of the blades may occur should be observed at the lowest possible 
speeds, and hence the value of the blade area ratio should be as small as 

possible. 
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It is known, however, that the maximum value of the thrust coefficient, given 
the cavitation number and the advance coefficient of a cavitating propeller, is 
primarily a function of the blade area ratio and depends to a lesser extent on the 
pitch. Hence the lowest permissible value of the blade area ratio should be such 

as to secure the prescribed value of the thrust coefficient. For this purpose one 

may use the diagram in Fig. 1 on which the value C_n of the conventional lift 
factor is plotted as a function of the local cavitation number at the conven- 
tional radius r = r/R = 0.7, which factor corresponds to the maximum value of 
the thrust coefficient kr with a given blade area ratio. The value Gy can be 

determined from the following relation 

8K, 
Cee ee 

TK (Ch? + a? t?) cos sp 
Ad 

Solving this equation for A/Ad , the needed value of blade area ratio can be calcu- 
lated from the values of K, and c, given in Fig. 1. For hydrofoil vessels, the 
needed value is usually defined not on a full-speed basis, but so as to ensure the 
defeat of drag hump. 

Ch max 

of 

Fig. 1 - Conventional lift factor 
C,, as a function of the local cavi- 
tation number for the maximum 

value of the thrust coefficient x 
with a given blade area ratio 

As noted above, the absence of cavitation on the pressure side of the blade 
is provided for by choosing the proper blade sections. For this purpose it is 
necessary first to calculate the induced velocity field of a cavitating propeller. 

The propeller-induced velocities may be considered as the sum total of the 

velocities generated by the vortices of a propeller with infinitely thin blades and 
the velocities which are due to the thickness effect of the blades. For a subcavi- 
tating propeller, the former component prevails, which makes it possible in most 
cases to neglect the velocities associated with the thickness effect of the blades. 
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Such an assumption will lead to considerable errors, if applied to cavitating 

propellers whose hydraulic sections are blocked up by blade cavities rather 

than by the blades themselves. 

We now turn to the methods of calculating the components of the velocities 
induced by the cavitating propeller. Theoretical principles for calculating the 

vortex component of the induced velocity were presented in 1948 by N.N. 
Polyakhov, who demonstrated, for the case of a developed cavitation, the rela- 
tions existing between the lift and the circulation on a subcavitating section. 
This made it possible to apply the basic relations of the vortex theory to the 

design of the vortex component of the cavitating propeller velocity. The differ- 

ence in the design formulas is that the lift coefficient proves to be the function 

of one more parameter, viz., the cavitation number, and the incident angle dCy/da 
is taken to be less than that for a subcavitating section. In the case of propeller 
design, the propeller is also considered as being optimum, according to Betz; 
such an assumption in the case of the finite length of cavities can be made to an 
accuracy of the magnitude of cavity drag. This approach is widely used both in 

the USSR and in other countries. 

Practical calculations in which account is taken only for the vortex compo- 

nent of the velocity are, however, in bad agreement with the experiment, i.e., 
the pitch ratios and blade section curvatures prove to be underestimated. 

This circumstance gave impetus to a number of investigations aimed at 
solving the problem of blade flow for a cavitating propeller, taking into account 
the finiteness of cavities which develop on the blades. Such a solution, based on 
using the acceleration potential, has been obtained by V.M. Lavrentiev. Accord- 

ing to this solution, given the distribution of pressures over the suction side and 

the load, the distribution of singularities (sources) defining the configuration of 
the blade and cavity is due to the solution of Fredholm's integral equation of the 

first kind. A similar problem was later solved by G. Cox (1). 

Unfortunately, the design diagrams based on these methods have found no 
practical application as yet, and accordingly consideration is given below to ap- 
proximate methods of making allowance for cavities in the design of a screw 

propeller. 

If we now turn to the performance of the cavitating propeller as shown in 

Fig. 2, we can see that the blocking up of the hydraulic section by cavities brings 

about (a) a decrease in the mean velocity of fluid inflow to the propeller disk, 
and (b) an increase in the flow velocity in between the cavities (blades). 

The first of these circumstances can be taken into account for solving a 

three-dimensional problem of cavitating propeller performance, and the second 
for the flat-plate theory, considering the blade cascade at various relative radii. 

In the practical design of decelerating the flow before the propeller, a solu- 
tion found by V.F. Bavin (2) for an ideal cavitating propeller is used, by assum- 
ing that the cavity sizes are predetermined. To define the induced velocities in 
the way of the blades, it is assumed that cavities are responsible only for addi- 
tional axial velocities which can be calculated by the equation for the uniformity 
of flow through the hydraulic section of the cascade. Hence, the local velocity 
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Fig. 2 - Cavitating propeller performance 

characterizing the streamline shape in the way of the blades will be defined as 
the sum total of the velocities W,, and Wp induced by the vortices and the ve- 
locity W., which is due to the thickness effect of cavities (Fig. 3). Since the 
velocity W,x. increases from the leading edge in the direction of flow, an addi- 
tional bending of the streamline takes place. On the basis of the assumptions 
made above, the calculation of the streamline shape enables us to obtain initial 
data for the deflection of the blade element section. 

Fig. 3 - Local velocity of a blade streamline 

The above method can be applied, if we know the thickness and the increase 

of thickness law for cavities developing on the blades. 

It has been shown by analysis and checking the calculation that using data on | 
the thicknesses of cavities for separate sections does not yield satisfactory re- 
sults, and this apparently is attributable to the effect of the blades. That is why 
theoretical calculation was subsequently made only for the law of cavity increase, 
while the value of thickness was taken from the results of measurements con- 
ducted on propeller models. 

Systematic measurements carried out by E.A. Fisher have made it possible 

to obtain the thickness of a cavity on the trailing edge versus the nominal angle 
of attack at infinity for various geometrical elements of the blade (e.g., curva- 
ture, shape of blade section, etc.). A diagram of such a measurement is given 
in Fig. 4, When using experimental diagrams, the use of the method of succes- 
Sive approximations is considered necessary; however, this does not involve 
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Fig. 4 - Thickness of a cavity on the trailing 
edge of a blade versus nominal angle of attack 
at infinity for various geometrical elements 
of the blade 

much difficulty, because the convergence of process is rapid enough, provided 

the first approximation is reasonably chosen. 

Following the determination of the flow parameters in way of the blades, 

one could proceed directly to choosing blade-section elements. It is clear that 
the curvature and the nominal angle of attack should be chosen so as to provide 
a prescribed value of the lift coefficient C, for the element in two-dimensional 
parallel flow; subsequently, these values should be corrected, with allowance for 
the curvature of flow. Generally, the solution is not unequivocal, since one and 

the same value of c, can be obtained with various relations between the blade 

curvature on the pressure face and the nominal angle of attack. 

It is easily shown that the deceleration of flow before the propeller due to 

the presence of cavities involves a decrease in propeller inductive efficiency 

which is the greater, the greater the thickness of the cavities. The design 
losses will also increase with the increase of cavity thickness, and the latter 
will result in the deterioration of the hydrodynamic quality of the sections. 

Thus, to ensure the maximum efficiency of a cavitating propeller, it is es- 

sential that the relation between the curvature and the angle of attack should be 

such as to reduce the cavity thickness to a minimum. An additional requirement 

restricting the greatest value of the pressure-face curvature is the absence of 

cavitation on this side of the blade. 

Accordingly, the section elements are defined from two equations: 

On = f (65, Ca Ci )ins 

aK = f£ (55, 9, '°O), 
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where 

Q I local cavitation number, 

nm ll thickness of the section, 

Lo“) I >» = pressure-face curvature, 

Il ae nominal angle of attack. 

The form of these equations and hence the absolute values of curvature and pitch 

will vary according to the initial shape of the sections to be used for the con- 

struction of the blade. 

Wedge-shaped sections with the pressure-face deflection shifted to the trail- 

ing edge make it possible to realize large absolute values of curvature and pro- 
vide for high propeller efficiency in the design conditions. In a number of cases, 
however, the necessity of providing high efficiency values under transient condi- 
tions, when cavitation is underdeveloped, makes it necessary to use ordinary 

segmental or compromise sections. 

It should be noted that, in spite of grave assumptions, the calculation method 

enables us to obtain fairly reliable data. Figure 5 shows performance curves 
for a propeller so designed; the small circle in the diagram characterizes the 

initial design conditions. 

8 7 wal o - Design ta 
condition 

g7 

Kr; 06 

A) 

6 07 08 09 40 Wf 42 43 «44 45 46 tp 

Fig. 5 - Performance curves of a pro- 
peller in relation to the initial design 
condition 

The above procedure for determining the pressure-face curvature and the 
blade-element pitch suggests that the propeller will operate in the uniform ve- 
locity field. This is essentially true in the case of a propeller operating behind 

the strut, where the radial nonuniformity of the velocity field is the determining 
factor and the circumferential nonuniformity insignificant. When the propeller 
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operates in oblique flow, however, the circumferential nonuniformity, especially 
in the way of the root sections, is so substantial that it will inevitably give rise 
to outbreaks of cavitation on the pressure face, should the propeller be designed 
in the manner mentioned above. These outbreaks of cavitation may cause cavi- 
tation erosion. To avoid this phenomenon, the design of a propeller suitable for 

operation in oblique flow is carried out as follows. The propeller is first de- 

signed as described above, with the design speed range determined by the value 
of the mean pitch, and the coefficient kK, is made larger to allow for its subse- 
quent decrease in the oblique flow. Then, using the known relation 

. 4 Ap cosp 

max - ; 3 

i, £2 sing 
Tits 

the maximum instantaneous advance is calculated for the sections at different 

relative radii. After this the curvature is determined by assuming that pres- 

sure-face cavitation does not occur with this value of advance. 

For the curvature so adopted the element pitch is defined so that with the 

mean advance of the propeller a prescribed thrust coefficient should be pro- 

vided. As an illustration, Fig. 6 shows a comparison of curvature and pitch dis- 
tributions for two propellers with equivalent thrust, one being designed for axial 

flow and the other for oblique flow inclined by 12°. From this comparison it can 
be seen that the greatest difference in the elements is observed in the way of the 
root sections. The reduced curvature and increased pitch will obviously result 
in the deterioration of propeller efficiency. Performance tests show that with 
the inclination of flow by 10 to 12° the loss of efficiency due to nonoptimal pro- 

peller elements ranges from 6 to 8%. 

p 

eee el —-—-— Axial flow | 

Oblique flow 

Fig. 6 - Comparison of curvature and 
pitch distributions for two propellers, 
one designed for axial flow and the other 
for oblique flow inclined by 12° 
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For vessels whose speed is not very high (35-40 knots), use is often made 
of the propeller design method that is based on drawing an analogy between the 
elements of cavitating and subcavitating propellers. According to this method, 

developed by O.V. Rozhdestvensky (3), the elements of the optimal subcavitating 
propeller designed for the prescribed K, and \» (Fig. 7) are close to the ele- 
ments of the cavitating propeller designed for K, and do. 

GE G7 G8 G9 40 44 42 43 44 45 Rp 

Fig. 7 - Analogy between the de- 
sign elements of a subcavitating 
(K,) andcavitating (Kj) propeller 

With the value k..* being given, the first stage of calculation consists in the 
determination of the value Ky. This is effected by means of diagrams based on 
systematic model tests. Subsequent calculation is the same as for the ordinary 
cavitating propeller. The comparison made between the elements of propellers 
designed for cavitation and those based on the above analogy shows that the 
method mentioned above gives somewhat lower values of curvature, the differ- 

ence being the greater, the smaller the assumed cavitation number. 

The efficiency of the above design methods has been proven in the develop- 
ment of propellers for the hydrofoil vessels 'Raketa"' and "Meteor." The origi- 
nal variants of propellers for these vessels were subject to intensive erosion, 
as a result of which 10-to-12mm-deep cavities developed on the pressure side 

of the blade by the end of the navigation season. 

Figure 8 illustrates a propeller after 500 hours of operation. The analysis 
of operating conditions and assumed propeller elements has shown that the cavi- 
tation erosion was caused by excessive curvature of the pressure face. The 
distribution of curvature over the radius of the propeller blades of ''Raketa," as 
adopted in the original variant of the propeller, is correlated in Fig. 9 with that 

calculated with allowance for the inclination of the flow (4). 

On the basis of the above calculations, new variants of propellers were de- 
signed for these vessels. Their blades are fully free from cavitation erosion 

after 6000 hours of operation, i.e., after three navigation seasons. 

926 



Cavitating Prop Design and Screw Prop Development 

Fig. 8 - Cavitation erosion on a pro- 
peller after 500 hours of operation 

Fig. 9 - Comparison of the curva- 
ture distribution over the radius 
of the propeller of ''Raketa,'' in 
the original variant and with al- 
lowance for the inclination of flow 
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DISCUSSION 

C.G. Cox 

The authors have earned the appreciation of those concerned with the design 
of propellers for high-speed applications. They do not neglect to indicate where 
the state of the art lies today, and describe logically-derived, empirical ap- 
proaches to allow for those aspects of design procedure which cannot, as yet, be 

mathematically determined with precision. They draw attention to the design 
problem caused by high shaft inclinations—a common feature of many high- 
speed craft. Anyone who has observed the severe root erosion that can be 

caused by large flow inclinations has no doubt as to the severity of the problem. 
If possible, such propellers should always be designed and tested to allow for 
this effect. 
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SUPERCAVITATING PROPELLER THEORY— 

THE DERIVATION OF INDUCED VELOCITY 

Geoffrey G. Cox 

Naval Ship Research and Development Center 

Washington, D.C. 

ABSTRACT 

The determination of induced velocity components is the central prob- 
lem of propeller design theory. Induced velocity equations -- together 
with a pressure equation -- are derivedfor a lifting-surface representa- 
tion of a supercavitating propeller, where blade loading is represented 
by bound and free vorticity, and blade cavities by pressure-source dis- 
tributions. Particular attention is paid to a tentative lifting-line model 
analogous to previous development of subcavitating propeller design 

theory. 

1. INTRODUCTION 

The increasing availability of digital computers during recent years has 

provided the necessary stimulus to improve propeller design methods. It is 
now relatively straightforward to perform the extensive numerical calculations 
based upon adequate mathematical models, to represent the complicated hydro- 

dynamic action of subcavitating propellers. Although further efforts continue 
to be necessary with regard to refinement and improved accuracy of numerical 

calculation procedures, contemporary design theories for the propulsion per- 

formance of light to moderately loaded subcavitating propellers in inviscid flow 
can be considered satisfactory. The same situation however, does not apply to 

the case of supercavitating propeller design theory. Tulin, in an excellent 

paper presented at the Fourth ONR Symposium on Naval Hydrodynamics [1] 
drew attention to the work carried out in several countries, which led to an 

understanding of the operating characteristics and mechanism of operation for 

supercavitating propellers. He emphasized that the effects of the blade cavities 
must be recognized at all stages of the design process. Prior to this time, pub- 
lished design methods [2,3] had -- paraphrasing Tulin — "essentially grafted two- 
dimensional supercavitating section theory or experimental data onto subcavi- 

tating design theory." 

Recently, English formulated a supercavitating propeller theory [4], based 
on an extension of Goldstein's work for a subcavitating finite-bladed propeller 
[5], and modified the boundary conditions to allow for the effect of the cavities. 
Also Malavard and Sulmont devised a rheoelectric analogy method for perform- 

ing supercavitating propeller design calculations [6]. 
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Basically, there are five separate phases to the design of any propeller, 

namely: 

(a) preliminary powering analysis to determine the design parameters 

for which the propeller is to be designed, i.e., thrust loading coefficient Cy, 
advance ratio \, number of blades Q, etc., such that the propeller is compati- 
ble with the craft, installed propulsion machinery and transmission; 

(b) determination of the relationship between propeller performance 

and design parameters in viscous and inviscid flow. This procedure is neces - 
sary since, essentially, the basic design process is concerned with behavior in 

inviscid flow; 

(c) determination of desired blade radial lift distribution together with 

radial induced hydrodynamic pitch angle (hence thrust and torque distribution), 

for operation in inviscid flow; 

(d) determination of blade shape and area; camber, pitch, and thick- 
ness distribution to actually achieve the desired requirements of (c); 

(e) a strength check. 

For a subcavitating propeller it is necessary to augment (d) with the require- 

ment for freedom from cavitation erosion and thrust breakdown at the design 
condition. For a supercavitating propeller it is necessary to augment (a), (b), 
and (d) by the following: 

for (a) -- ensure that the design parameters are chosen to permit 

the blades to operate effectively in a supercavitating regime; 

for (b) -—- although blade cavity-pressure drag is an inviscid flow pa- 
rameter, it is best to consider it in association with blade 
viscous drag. Hence for design purposes inviscid flow per- 

formance is defined to omit blade cavity-pressure drag; 

for (d) — ensure freedom from blade pressure-side (face) cavitation, 

and that the blade thickness lies within the upper cavity 
boundary. If necessary, due to blade thickness requirements 
or circumferential wake variations, an operating angle of 

attack is selected for the blade at the design condition. 

The importance of preliminary design analysis cannot be overstressed, but 
will not be considered here, since it involves many aspects of naval architec- 
ture not concerned with detailed propeller design theory. It is, of course, inti- 

mately concerned with the theoretically predicted [7], or experimentally meas- 
ured [8], performance for systematic series of propellers. Likewise, the subject 

of propeller blade strength can be considered independently of a particular theo- 
retical design procedure, although use is made of intermediate results deter- 
mined in the basic design process. Hence, the main emphasis of theoretical 

propeller design is usually considered to be concerned with phases (b), (c), and 

(d). It is important to realize that phases (b) and (c) are concerned with 
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forecasting required radial characteristics to meet prescribed design condi- 
tions, whereas phase (d) is concerned with the practical achievement of these 

characteristics, recognizing that the blades possess finite chord length. For 
inviscid flow calculations, the blade can be represented mathematically by a 

lifting line for phase (c), whereas a lifting-surface representation is required 

for phase (d). As already intimated for the supercavitating propeller phases 

(c) and (d) should adequately recognize the self and mutual interference effects 

of the blade cavities. 

The purpose of this paper is to derive and assemble the necessary equa- 

tions for supercavitating propeller design theory, such that cavity interference 

effects can be adequately accounted for at all stages of the design process. 

The major task is to derive the necessary equations for the induced velocity 

components, since they are directly or indirectly involved in every aspect of 
propeller design calculations. The problem is formulated in Appendix A, and 

the approach used is somewhat similar to that of Widnall [9| for the three- 
dimensional supercavitating hydrofoil, but considers the more complicated case 

of the screw propeller. Linearized equations of motion are used to define the 

existence of a perturbation velocity potential and perturbation pressure, i.e., 
acceleration potential, which satisfy the Laplace equation. Green's theorem 

and linearized boundary conditions for the blades and cavities are used to de- 
fine a mathematical model, which consists of a distribution of pressure doublets 
over the linearized blade surfaces to represent loading, and a distribution of 

pressure sources over the linearized blades and cavity surfaces to represent 

the cavities. Lifting-surface equations are obtained for the induced velocity 

components and pressure at any point relative to axes rotating with the propeller. 

Section 2 presents the lifting-surface equations for pressure and induced 
velocity components at any point on the blade surface. The pressure doublets 

are transposed into the more usual and convenient bound and free vorticity dis- 

tribution. In conformity with normal practice for subcavitating propeller 
theory, the radial component of induced velocity is ignored and a nonlinear re- 
finement is incorporated into the pitch of the lifting surface, so as to extend 
consideration to the case of moderate propeller loading. The solution of the 
lifting-surface equations is discussed briefly, and it is pointed out that effec- 
tive computation to determine axial and tangential induced velocities, as for 
the subcavitating propeller case, requires a knowledge of lifting-surface pitch 
and loading, i.e., induced advance ratio and bound vorticity distribution, respec- 
tively. Finally it is hypothesized that for uniform propeller inflow, there ap- 

pears to be little advantage in not assuming a constant-pitch lifting surface. 

Section 3 discusses the necessity of specifying a simplified mathematical 
model, i.e., lifting line, for a propeller blade. Such a model is required for 

two purposes, first for prediction of supercavitating propeller performance, 

and secondly to provide necessary information for lifting-surface calculations. 
Induced velocity and pressure equations are defined for such a model and de- 

tailed consideration given to the case of uniform inflow and constant induced 
advance ratio. The simplification of the definite integrals which arise in the 

solution of the lifting-line equations is discussed in Appendix B. 
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Section 4 gives a brief outline of initial design procedure together with 
the necessary equations. As already mentioned, it is considered justifiable to 
account for section pressure drag along with viscous drag when determining 

thrust loading and power coefficients. 

2. LIFTING SURFACE —INDUCED VELOCITIES 

Lifting surface equations for pressure and induced velocity components at 

any position (x*, r*, 6*) relative to the propeller, are derived in Appendix A, 

i.e., Eqs. (A9), (A10), (A11), and (A12), respectively. They are obtained by use 
of the inviscid linearized equations of motion for which the acceleration poten- 

tial (or pressure) is a solution of the Laplace equation. In addition, by use of 

Green's theorem and linearized boundary conditions, the blade loading and 
cavity are represented by pressure doublet and source distributions, 

respectively. 

In propeller theory it is usual and convenient to replace the pressure 
doublet strength Ap(r,¢) by a bound vortex strength y (r, ¢) per unit length, 
where y(r,@) is nondimensionalized by 27U. By use of the Kutta-Joukowski 

theorem it is possible to obtain the linearized relationship 

hs (242) 7 : (1) Ape eo) fa 32) 

It should also be noted that the radial distribution of advance ratios \(r) are 
usually replaced by induced advance ratios \,(r) in the equations referred to 

above. Strictly speaking this is a nonlinear refinement to the pitch of the lift- 
ing surface which allows consideration to be extended from light to moderate 
propeller loading. In addition, it is usual to neglect the effect of the radial 

component of induced velocity u,(x*, r*, 9*) for moderately loaded propellers. 
Thus, it is only necessary to consider axial and tangential components, i.e., 
u,(x*, r*, 6*) and u,(x*, r*, 6*), respectively. By the same token, it is then 

sufficient to put 

Mean ot eee (rOr; )? 2 hh a be eed 

Hence, by applying the transformation 

(v- x*) 
== + OF 

dr. 
1 

the axial and tangential velocity Eqs. (A10) and (A12)! become 

INote a change in definition: Nondimensional axial and tangential induced veloc- 
itle’s, (1.e;, ans and uy, respectively, in Appendix A, are henceforth defined as 

Us, and Urge 
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and 6,(r), 6,(r), and 9,(r) define the blade leading edge, trailing edge, and 

cavity, respectively. 

In Eqs. (2) and (3) the three contributions to the induced velocity compo- 
nents can be recognized as due to pressure sources, bound and free vorticity, 

respectively, i.e., 

o) = U5s + Upy + Ugy - 

933 



Cox 

The free vorticity contribution can be expressed in the more convenient form 
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In order to obtain the induced velocity at various positions (x*, r*, 6*) on 
the reference blade, i.e., q= 1, it will be necessary to take x* = 6*\* + © on 
that blade initially and consider the limit as «—0. For q # 1 it will be ade- 
quate to take x* = 6* \* immediately. 

For the pressure equation (A9), see Fig. A2, 
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and consideration of « is similar to that already discussed. Considerable 
care has to be exercised when Eqs. (2), (3), and (7) are evaluated numerically 
for the reference blade, since the integrands become singular for r = r*, 6 = 

e* [9,10,11]. 

In order to use the lifting-surface equations (2), (3), and (7) for the purpose 
of design, i.e., to determine the blade face shape, it is assumed that A,(r) and 
y(r,¢) are known. After solving Eq. (7) for S(r,@), the axial and tangential in- 
duced velocity components can be computed at desired positions (r*, 6*) on the 

blade, using Eqs. (2) and (3). Hence, the normal induced velocity components 
u,(r*, 6*) can be obtained using 

Gere oN Gr unGr sGr.) 
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a 

Integration of the normal induced velocity components in a chordwise direction 
will give the blade face shape at any desired radial position r* relative to the 

helical line pitched at angle 6,(r*) = tan™!(A*/r*). 

In the solution of Eq. (7), S(r,@) should be represented by suitable modes 
possessing unknown coefficients, so that the problem reduces to the determina- 

tion of these unknown coefficients. Attention is directed to the work of Widnall 
which includes a useful discussion of the problem [9], including the influence 
of various cavity closure conditions. As regards the prediction of lift force on 
a supercavitating hydrofoil, Widnall concludes that an approximate representa- 

tion is adequate for S(r,¢@) and that the cavity closure condition and closure 

location is not important, provided that the cavity is sufficiently long. Parkin's 

work [13] on linearized two-dimensional supercavitating hydrofoils operating at 
nonzero cavitation number indicates exact chordwise modes for S(r,¢@) and 

y(r,@), where the designer has the choice of either designing for an angle of 

attack or shock-free entry with a prescribed cavity thickness at the trailing 

edge. 
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Finally, if the propeller is assumed to operate in homogeneous inflow, 

there appears to be little advantage in not assuming a constant induced advance 

ratio A;. This will permit some simplifications of the lifting-surface equations. 

3. PROPOSED LIFTING LINE —INDUCED VELOCITIES 
, 

Prior to the use of lifting-surface theory, it is necessary to determine the 

induced advance ratio \;(r) and bound vorticity y(r,¢). The determination of 

y(r,¢@) is dependent on the total radial circulation distribution I(r), where 

Or (4) 

ror) =f y(r,@) dé 5 

A, (r) 

since the chordwise spreading of y(r,¢) is a matter of choice. For a finite- 
bladed subcavitating propeller this information, including the lift distribution 
C,(r)[c(r)/D], is obtained using the lifting-line concept for a propeller blade. 
This is a simplification which ignores chordwise effects. Its major purpose is 

to adjust radial circulation for the effect of a finite number of blades. Like- 
wise, the use of this concept is required for supercavitating propeller design, 
but recognizing the effect of the blade cavities. 

In order to assist the design problem, and in analogy with the lifting-line 
concept for subcavitating propellers [14], the blades will be represented by 
lifting lines to account for loading. In other words, as a tentative first step, 
an initial procedure will be formulated where the mathematical model for each 

blade is considered to be a lifting line with associated free trailing vortices, 
together with a pressure source distribution on the trailing vortex sheet to 
represent the cavity. 

By the use of the Dirac delta function, y(r,¢ )(r? + 4,2) '’? is replaced by 
C(r)8(@) in Eqs. (2), (3), (4), and (7). In addition, 9* is equated to zero in all 
but Eq. (7), since the induced velocity components are only required at the lift- 
ing line. For an unskewed blade, it should also be noted that 6,(r) = 0 for the 

pressure source integrals, Hence, 
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4 
WY 

ow 
E> Fy 

dr R3 Tr 

[self ee 
Th 

where 

Ree [(e-A,7)? — 2rr® cos yt £2 + p¥2)/? , 

w= tr oy oq 

O, = Or) - 

Here it should be noted that u,, = 0 for the induced velocity components due to 
bound vorticity, i.e., 

op (ry & sin o, dr 

ND |= 
iad SS 

ro) : * = limunCe,r”, 0). == 
€>0 

Q tel (rjecos co, 7dr 

trope > Ww w 
I ° : * = lim u,(e,1 Onn == 

630 
q=1 a a 

where 1/2 

je le? - 2rr* cos o, + r? + rv 
q 

For the pressure equation (7), 

Q 1 Ap S(r,0)(r24+42) > dédr 
ete Drs fia 7 7 

q=l rie XU ice +A, - oA)? - 2rr* cos ® + r? + i] 

(11) 
; P(r) [reCO*rz—ié).- r*X. sin (geo) dr 

r r; * 2 * * 2 gales h i (Ore) ert cos (Geo erat t<r>4 

where 0 < 6 < 6,(r). 
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If the propeller is assumed to operate in uniform inflow, there appears to 
be little advantage in not assuming \, independent of r. Therefore, the theory 

will be developed for uniform inflow and constant hydrodynamic pitch, i.e., U 

and 7\; independent of radius r. 

A major difference between subcavitating and supercavitating lifting-line 
theory for constant induced advance ratio is that while the normality condition 

holds for the subcavitating case provided that ['(r,) = 0, i.e., 

a i * 
uC) a3 arc ) A 

this condition no longer holds for the supercavitating case, see Fig. 1. 

Fig. 1 - Velocity and force diagram 

The mathematical model used to represent each supercavitating blade con- 

sists of: 

(i) a lifting line at 6 = o,, r, < + < 1 with associated trailing vor- 
ticity laid out on a helicoidal surface of pitch ratio 7\;, downstream of the 
lifting line to represent loading; 

(ii) a pressure source distribution laid out on the trailing vortex 

sheet at o, < 9 < o, + 6, to represent the cavity. 
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If « —0, then the induced velocity and pressure equations (9) - (11) can be 

expressed: 

MeO ,0) = WG = ur) + Ua oso (12) 

ng¢0, 0) Ur) =r rr Co Eas (13) 

and 

Goo (tr go" eh OC Gs ) ners (14) 

It should be noted that the normality condition still applies for the loading 

contribution to induced velocity. This can be shown easily, since 

r- r* cos p O74 

nse 7 cee) 
and 

(r*-r cos w) - r7 sin 11 3 1 ey a 
a 6 SSS er ee i 

Re apes OT te or & 

with 

ie il 7 if dr 1 a dr 
1 = | || che = || == || = — = —— = = 

J ar ie a | deat: Coe gis eee 
0 

Thus, 

tp 2dr Safa 
u r* = = d! (+) 24h a d , 

caer 2 Th 7 dr L, OF 5) ok, ‘ (15) 

and 

* ie MgC R= Foe Va Re (16) 

Considerable simplification is also possible for the induced velocity components 

due to the cavities since 

ech (AE) Fa eg 
OT r* 

Thus, 
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rd: 

OC pea Geer Vadinead 2 el p 

where 

Nee 1 OE iis (oe) 
i. i 2 2 Sbeagolye 

UGE ate = = 5 i | SiCra@)( rs + A.5) oF i} aS dédr 

q=i T nH 
Zs 

iS} 

and 

1/2 wii Se) Cre ee) ded: 
1(r* pats De 

q=1 7, 0 Reger - 2rr* cos (+o) + r2 + shall 

The components of pressure Eq. (14) are 

P¢r) [r@* - r* sin-(0* 0 )). dr banter ee OB ieee ee eee 
3/2 = * * *2 B22 qed -or, [r2 - 2rr cos (0 oy meee: + 6 dee? 

ae oe S(r,O)(r2+A2)" d6édr 

Aen 2h il 
where 0 < 6* <'@,,(r). 

Hence, it can be seen that 

Ges) == a a(r.0 Ce in re a ne. 

where o = o(r*, 0),,, since o(r*, 0), = 0; thus 

LG ey ai 

Wee *\2 _ * 2 #2 q=1 +, “0 [A7(@= 6") 2tt cos Oars ot rt] 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

It is interesting to observe from Eqs. (16), (17), and (22) that normality applies 
for a = "0, 

Referring to Fig. 1, it can be seen that 

r: le ur) 

# r 
— + a, (1*) 
r 

Hence, using Eqs. (16), (17), (22), and (23), 
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2 
fa - 1+ Mig ro oe (24) 

Gr 102) 

A; oO 
(= -1- s) Bake 
Eee ey ee (25) 

D3 Geka) 

aCr) = 

i U(r) 

The problem for numerical solution is to solve Eqs. (12) or (13) and (14) 
simultaneously for [(r), assuming a known \;. This involves suitable repre- 
sentation of [(r) and S(r,¢@) in terms of unknown coefficients, so that the equa- 
tions can be expressed as a Set of linear algebraic equations to be solved for the 

unknown coefficients. The terms associated with the unknown coefficients are 
definite integrals, which have to be suitably arranged or simplified to enable 

their evaluation, see Appendix B. According to Widnall's supercavitating hydro- 
foil calculations [9], foil force prediction is not very sensitive to precise 6,(r) 

values or a particular cavity closure condition. In addition, a reasonably sim- 
ple representation of S(r,¢) appeared to suffice. Hence, 6; can be assumed 
independent of radius and determined by use of a convenient closure condition 
at one representative radius. It may even suffice to use an estimate of cavity 

length based on Parkin's two-dimensional supercavitating foil theory [13], or 
some such similar reference. 

A suitable representation of radial circulation I(r) is 

M 

BiG deel as oe oy jp cil : (26) 

m=1 

where 

Se = 
<= i % a . (27) 

The pressure source distribution S(r,¢@) can be represented by 

M 

S(r,€)(r2+A,2)7/? = >. BoC rates 5) O47) 

m=1 

(28) 
M oN 

+(r24h2)77? Ds » CAhi¢ssrr ses rep CORO, cy), Gaia 

m= 10 ints 

where 
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(l=1,) = MAr Eos, fh A cee per 3 t= 1 

Oy = NA@ Goa o OF = Os, tke Oy = OF 

LO Gs comers wea) at Sage Coen cas 

= il F ee gaSee 5 Sap 7 

h(¢,0,_,,6,) = 0 CK, Gaus C2 0. 

= 1 Ge Ga G. 

Or, following Widnall, 

M 

SR O72 4N 2) Aho gh! CB pC r TUG, PE) 88) 
m= 

M N (29) 

+ (r2+),2)77? de ‘i Ce inCr, oo ten 

where aan 

e] 
Eo “hae Oreos G., 

7] 
ce ye G24 50 So, 

ny = le ee een ila) (30) 

Soe ae ted) ORS SO 

7] 
ENG a Me ’ Oy-1 £9 < Oy 

The use of Widnall's modes in Eq. (30), i.e., ¢,, provides piecewise continuity 

in the chordwise direction and Eq. (29) could be preferable to Eq. (28) asa 

representation of S(r,¢). However, Eq. (29) necessitates the evaluation of 
more definite integrals than (28) for the terms associated with the unknown 

coefficients. 

4, OUTLINE OF APPLICATION TO PROPELLER DESIGN THEORY 

Analogous to an initial design theory for subcavitating propellers [14], it is 
necessary to obtain an estimate for the induced advance ratio A,, and the radial 

bound circulation I(r), to meet prescribed design conditions. 

It has to be assumed that: 
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(a) Thrust loading coefficient Cy; (or power coefficient Cp), advance 

ratio \, free-stream cavitation number o, and number of blades Q are known. 

(b) The design conditions for the propeller are such that it can operate 

effectively as a supercavitating propeller. 

In an actual theoretical design procedure, it is necessary to solve the Eqs. 

(12) or (13) and (14) of Sec. 3 for prescribed values of induced advance ratio \; 

to determine the bound circulation I (r*) and hence lift coefficient C,(r*), using 

e(r*) Qn (r™) cos 8.1") 

ey) yee gee (31) 
cc + WyeCE) 

where cos 8,(r*) = r*/(r*? +,2)'/? and c(r*)/D are assumed known. Once 
drag-to-lift ratios «(r*) have been assessed, it is possible to calculate the 

thrust loading coefficient C,;, or power coefficient Cp, from 

1 - d, 

Cu 40 | aC ae E : u(r | ; very cco) dr* , (32) 
Th 

4o 0 oe nal r*P(r*) [1+ u,(r*)] [3 + - xoa) ar*: : (33) 

see Fig. 1. 

An iteration or interpolation process is necessary to meet the desired de- 
sign value of C; or Cp. Once this has been achieved, it is possible to estimate 

propeller efficiency 7 from 

(cee (34) 

For the purposes of design it appears easier to account for section cavity 

pressure-drag coefficient Cp(r*), along with viscous drag coefficient Enc) 25 

163, 

Co(r*) = Cy(r*), + Co(r*)¢ (35) 

when considering section drag-to-lift ratios «(r*) = Cp(r*)/c,(**). Hence, both 

drag contributions are accounted for on a strip-theory basis when determining 

thrust loading coefficient C, and power coefficient Cp. Hence, Cp(r*) is ob- 

tained from experimental or theoretical two-dimensional data. This data, 

especially for cavity pressure drag, should conform as closely as possible to 

the propeller-blade-section design details such as chordwise loading, lift 
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coefficient C,(r*), local cavitation number o,, and operating angle of attack 
(if any). If theoretical estimates are used, the work of Parkin [13] may prove 
especially convenient for estimation of Cp(lr*)s,- 

Finally, having decided the chordwise distribution of bound circulation 
y(r,¢@), the lifting-surface induced velocity components can be obtained from 
Eqs. (4), (5), and (7) of Sec. 2 (thus permitting determination of blade pressure 

side shape). 

CONCLUSIONS 

1. Lifting-surface and lifting-line equations have been derived which 
properly account for cavity interference effects. It should be noted that for 
S(r,@) = 0, i.e., no cavities, the equations revert to those for the subcavitating 

case, where blade thickness effects are neglected. 

2. Although the derived equations have been nondimensionalized on the 
basis of uniform inflow to the propeller, only straightforward modifications 

are necessary to account for radially varying inflow. 

3. The proposed lifting-line model is regarded as tentative and subject to 
modification, until exploratory calculations have been carried out. In particu- 
lar, it will be necessary to ascertain the sensitivity of the induced velocity com- 

ponents to assumed cavity lengths, in order to formulate adequate cavity length 

criteria. These criteria will obviously be dependent on the design choice made 
about the nature of the blade section cavity, i.e., shock-free entry, with pre- 

scribed cavity thickness condition, or prescribed angle of attack. 

4, Supercavitating lifting-line theory for the case of constant hydrodynamic 

pitch 7\;, indicates dependency between axial and tangential induced velocity 
components, When the free-stream cavitation number is zero, this dependency 
is equivalent to that for the subcavitating case, i.e., the so-called normality 
condition. 
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NOTATION 

A asBu ic Unknown coefficients 
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Cp(r) ¢ 

Ch Eo 

Ch ( r) 
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Section total drag coefficient, i.e., = 

os Cc ( rt) v2 

Section viscous drag coefficient 

Section cavity pressure drag coefficient 

Section lift coefficient, i.e., a 

to | 
c(r)V? 

= ; E 
Power coefficient, i.e., 

— 7R?2U3 
2 

Thrust loading coefficient, i.e., 

ss m7R2U2 

Section chord 

Propeller diameter 

Cavity pressure 

Induction factor 

Normal to linearization surface 

Freestream pressure 

Perturbation pressure 

p 

Perturbation acceleration potential, i.e., x 

Pressure doublet strength per unit area, i.e. 

Pressure source strength per unit area, i.e., 

2p iW Op: 

on on 

Power 

Number of blades, (also torque) 

Propeller radius 
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Linear distance between (x*, r*, 6*) and 

(3, mm, oO + oa)s i.e., [(x* - i oro ob 

pi- —2rr* cos @| 1/2 

Radial cylindrical coordinate 

Surface consisting of cavity surface and propeller 
blade surface 

. 1 /op 
Pressure source strength, i.e., rae 

TRE n 

Thrust 

Freestream velocity 

Perturbation flow velocity 

Normal induced velocity 

Resultant velocity 

Flow velocity 

Axial cylindrical coordinate 

d,R 
Induced flow angle, i.e., tana r ) 

Bound vorticity strength per unit length 

Bound circulation 

Dirac delta function 

Small increment 

Drag to lift ratio 

Propeller efficiency 

Angular cylindrical coordinate 

a: U 
Advance ratio, i.e., oe 

@ 

Induced advance ratio 

Dummy variable 
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p Fluid mass density 

—m 7 & 

o Freestream cavitation number, i.e., 
Le U2 

eo 
Ge Local section cavitation number, i.e., ro 

eh a} 5 V 

257 
cae ms q= 1, 2 Q 

We xy) 
1B - - 9 

AG 

® O- OX + oq 

P Perturbation velocity potential, i.e., u = V¢ 

Ww Tite 

a Propeller angular velocity 

Superscripts 

7 Refers to reference point 

+ Refers to face side of linearized blade and 

cavity surface 

- Refers to back side of linearized blade and 

cavity surface 

Subscripts 

a Refers to axial direction, i.e., x direction 

t Refers to tangential direction, i.e., ¢ direction 

xi or, 0 Refer to x, r, 6 directions 

0 Refers to fixed-axes system 

b Refers to blade 

c Refers to cavity 
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h Refers to hub 

L Refers to blade leading edge 

r Differentiation with respect to r 

T Refers to blade trailing edge 

E Refers to cavity trailing edge 

ps Refers to pressure source contribution 

fv Refers to free vorticity contribution 

bv Refers to bound vorticity contribution 

if Refers to lifting-line contribution 

Nondimensionalizing 
Parameters 

> i ae SN ae RM Nondimensionalized by R 

p Nondimensionalized by U? 

op ; Ue 
= Nondimensionalized by 3 

g Nondimensionalized by RU 

u Nondimensionalized by U 

y(r,@) Nondimensionalized by 27U 

D(r) Nondimensionalized by 27RU 
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APPENDIX A 

FORMULATION OF THE PROBLEM ([15| 

Consider a propeller blade with no 
translation velocity, rotating with angu- 
lar velocity « in a fluid whose free- 

stream velocity is U(r), see Fig. Al. 
Perturbation velocities u*, u*, us 
are defined such that i 

ve = UNtut, ve Se, ve eS sue 
Tr UES c} 9’ 

while for upstream, i.e., x* — -o, 
1 ai Sal 

B73) ee Kis * = Ve Vg <= O. 

The linearized equations of motion 
Fig. Al - The co- with respect to fixed axes are 
ordinate system 

* ou* * 
oy # Gj ee aee -yeP_,,,; (A1) 
ot Bs Pp 

where u(u%, u*, uf >). is the perturbation velocity vector and p* the perturba- 
tion pressure [9,10,11]. A perturbation velocity potential ¢* exists such that 

ut -  d* , 

hence, taking the divergence for both sides of Eq. (A1), it can be shown that an 
acceleration potential p* = p*/o exists. Provided that dU/dr is a second- 

order term, Eq. (Al) can be written as 

ECan lite, GR aU — +U ——= -p* , oe. (A2) 

which possesses a solution 
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baleen 2 ee 

beat et05.4) = = 4 | B (ve xetoge 2) ay, (A3) 

=O making use of the boundary condition that p* = 0 at x* = 

Green's theorem for the case of a propeller with Q equally spaced 

blades gives 

(A4) 
1 OQ: ina 

a ee Sa 
| Rg on, | 

where 

Ree Gm a ey oh 0 ers cos Dale : 

The control point, considered fixed in space, is (x*, r*, 0%) and (x, r, 6, + oq) 
is a point on the moving surface S,. S, is the enclosed surface which, for the 
supercavitating propeller, consists of the face and cavity boundaries of a blade. 

In Eq. (A4) the direction of the normal is into the fluid. 

In accordance with linearization procedure S, is assumed to be a surface 
composed of helical lines possessing a continuously varying pitch angle 

tan-1 (R\(r)/r) in the r direction, see Fig. A2. 

PRESSURE a 

LE. st Es Se 

maa ea ee 
SUCTION 

SIDE 

fe $$$ cavity. ——_________+| 

Fig. A2 - The linearization surface 
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ee OP + (55.ORs (A5) 

Snyias Peyirodsaan 

where n = n-, Eq. (A4) becomes 

Q 
F : 25.2 
B(x* toe, t)= LD iN (2) Has, = tl ap — _- ds,b . (A6) 

ae SptS. n Gy Se No oF ql 

From Eq. (A6) it is seen that (0p/an) and Ap are pressure source and doublet 
strengths per unit area, respectively. Furthermore it is clear that the pressure 

doublet strength is only nonzero on the blade surface S,. 

If the surface of a blade is considered to be composed of helical lines with 

varying pitch in the r direction, the surface can be defined as 

x - ORA(r) = 0. 

Hence, 

dS, = [r2+R2A2 +(r9,._)2]1/? dé.dr 
0 OF Tr 0 U 

where 

A(r) a re Sto a ’ 

R dr 

and 

fe) fe) atare 
E maim Boks aoe pop rbeahe Macs 

Ox toh ¢ i e] 

12 AR pe 
fe) 1/2 
=o [ee Re Cae RN?) 

since the normal is defined in the n™ direction. Thus, 

on 1/2 ; (A7) 
[oes RA Cro RAZ] RS 

5 2 \., r(x" =") + -RAr* sin"®@, + rO,RX (r=1" cos ®,) 

) R ® 
2 0 

Now 6, = 6 - wt, where 4, refers to axes fixed in space and @ refers toa 
rotating axes system fixed with respect to the propeller. Hence if Eq. (A3) is 
applied to Eq. (A6) and time t is subsequently equated to zero, i.e., the time 

at which the two axes systems are assumed to instantaneously coincide, 
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Q x*-OX d j 

OC Gren) = _— [ S (es) f a M!/2 d6édr 
D mare 

ara SptS-. 

+ JJ Ap(r,@) ie a | dédr} 
, (A8) 

b 
where x, x*, r, r*, v are nondimensionalized by propeller radius R, ¢ by RU, 

5 by U2 and written p, As by 27U? and written Ap, (6p/on) by 27u?/R and 
written S(r,@). 

-o 

Also, 

= 2 Ma re + A COR AG 

N, = rv + r*\ sin wy - = ae Ga cos. yy, 

1 
or oe cae ; aS ul 

R= [y? +92 -rt* = 2rr? cos pyre ns 

Likewise, Eq. (A6) becomes 

2 172 
p (x*, r*,6*) = : > ff S(r,@) - d@dr + ic * dédr\ , (AQ) 

= R q=l ® ® 
Spts, Sp 

where 

Ne Ge ON) tr sin Or £0A +(e = 2" <cos.®) !, 

Rz = [(x*-@\)2 + r2 + r¥2 - 2rr* cos q}2/? ; 

P= 0 = OF +o 
q 

Now u,(x*, ce) 3g/dx*, uz(a*, r*; o*) = 3¢/ar*, and ug(x*, r*, 6*) = 

(1/r*)(0¢/26*), hence the induced velocities nondimensionalized by U are 

Q x x*-6 
uC 17,07) = — » - || S Ciao ) J us M!/2 d@dr 

= R 3 
=a q Sitse Vv 

ae : 3UN, 
+f Api(r2@) if =r ae dv| d@dr> , 

ne v v Sy a 

(A10) 
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Q xi ON * (r° -r cos W) dv 
Un(xs a = a te = ill S(1,@) Lil Sa eae as M!/2 dédr 

2 qt il -o R 
S, +S, 

x*-O0% [dr sin we — (v- x*)X_ cos wp 
oN dG 

+ {| Ap(r,@) [ 7 5S Sune ocak a, Weniaw (A11) 
Si 7 ¥ 

3N5(r? - r cos > | 
- ———_——_ | dv | dédr 

R5 

Q x*-O% ¢ sin wdv 
Smee Solera tal yo 0 HAG anki 5 Di ff Si(5,2) bi RS | 2 -dédx 

oe SptsS, os yi 

x*-O [-r cos pW + — (v- x*) AL sin w 

+ if Ap(r,@) h Se ao gat oa R3 (A12) 

= 

Ww Fa 
= 

Fo} | 
Sin n 

my 1) _— 

ee 

Q <= 

LS) 

Qu. D Qu. Lot 

APPENDIX B 

SIMPLIFICATION OF DEFINITE INTEGRALS 

Simplification of u,(r*) p 

From Lerbs [14], Moriya [16], and others, Eq. (34) can be expressed as 

1 : * Cree ee Cro (B1) 
Oh 

r ¢r*® Sr) 

by defining an induction factor i,(r*, r), where 

Q edt 
ier? nye m¢rhn) >» = ih 5 ae (B2) 

0 Ts 
qual 
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The induction factor integral, summed over all blades, can be expressed as an 
infinite series of products of modified Bessel functions of the first and second 

kind. By the use of Nicholson's asymptotic formulas for the modified Bessel 
functions, the numerical computation of the induction factor is rendered straight- 
forward. A very full description of the process is given by Morgan and Wrench 

who offer refinements to Nicholson's approximation [17]. 

By applying Eq. (26) to Eq. (B1) and using the transformation (27) 

M 1 rae 1 I/D ae 

Gas eas yy A. {ce 1) | ae NS EE) tae? dx 
Mi (Sx) 

(B3) 
1 m+1 ; * 7 ai x L(x 1%) ale 

De Pee) 6 ee oe) 

The integrals of (B3) can be made suitable for straightforward numerical com- 
putation by subtracting out the singularity at x = x*, and eliminating the square- 

root singularity at x = 1 by applying the transformation w = (1 - x)!/?. 

Hence , 

M 1 

1 m u,(r*)p = 1-1) » i {per | x™ 1- x)!/2G¢x,x*) dx 

(B4) 

1 f x™1G(x,x*) ; mt 
+ = || “ice + [ (1- w?) G(w,x*) dw+J(x*) cos aco} 

0 0 

where 

iG) a Ok) 
Ce a 

(x- x*) 

Lei x” = cos PaCt™ 5 

ae a cio x ye 
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Simplification of u,(r*),, and o(r*, o* 
Ps pt 

By applying Eq. (28) to Eq. (18) 

Q M Eo (o) 

u(t") 53 = Me ev 2a "| | fCrir 3c. . 1) or dr 

Tm-1 g=1 0 

(B5) 
M N ro nS ee rea 

+ a ms cra (re? +A +) [ f 5 em serge dr |d@dr} , 

m=1 n=1 r= Cae 8 

where 

Heh Sen my = u oe 

leer? - 2rr* cos P+ r2 + r*?] 

and 

Win" eects oq 

The integral associated with B,, can be integrated with respect to r to give 

i _ (i, ir eos) 

J (07724 2*2 sin?) [\272 - 2rr* cos p+ 12 + pee]? 

(B6) 
(Ts 1 cOsty) 

ts 172 a 
[2 a4 = ie sh r* cos wy t+ oa + r¥2] 

For the integral associated with C_., 

6, ee) co 

il PCtyr G57) | dg = A0 f Gr gro, 2) dé 

Oe 0 a, 

(B7) 
(7) 

+ J (= 0 f(r, 1*,0,,0) dé 

n-1 

after integration by parts. Although the integrations with respect to r can be 

solved ane hago as elliptic integrals, it may be more straightforward to 
simplify f(r, r*, o,,@) such that integrations with respect to 6 can be per- 
formed anaieticalic (18). For the integral with finite limits, this can be achieved 
by replacing 6 with 9,.,; + a and substituting cos a =~ 1 - («2/2), sin a~a. 
Hence, 
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20? —- 2rr” cos (@+0,) + Paice Sica Oar aan Weer ee Cer (B8) 

where 

ELL evs sors cos (Gs y & Og Diss 

Foo = MizOU Ss + rr* sin (F244 OG) , 

Hess r2 + r*¥*2 - Qrr* cos (Grint Ga) + Ne? Os 

The integral with an infinite upper limit can be dealt with in a similar manner 

after transposing it into an infinite sum of integrals, each with limits 0 and Aoé. 
This is reasonable because the terms involved soon become negligible as 6 

increases. 

By applying Eq. (28) to Eq. (21), 

Q M 
= dr 

SAC Se) ae Ds me By | hae 
q=1 | m-1 Tata haseeere GOS Ch Ce) Pat son ous 

6 
n 

1/2 
«| 

6 
n 

The integral associated with B,, can be integrated to give 

1/2 
tease et COS (eas) ire reel oli COS Co.) | 

hehe ast SNE NPR SS ES SE OT ea Bei eee 

a COO") 22— 2er* cos (@=OF ol) + r2 + r*¥2] 

jes ri 2 = * eh * 2 29%*2 PF) atk Ss ee Oi eah COs) (Us Oe telat A *0 port COs Ce cap 

(B9) 

The simplification of the integral associated with C,,, is similar to that already 

discussed for Or bs) a 

DISCUSSION 

V. F. Bavin 

Kryloff Ship Research Institute 
Leningrad, U.S.S.R. 

The author has indeed done a most valuable job by deriving equations for 

supercavitating propeller design theory which take into account the cavity thick- 
ness effect. It is fully recognized now that this is the only possible way to get 

the correct solution of the problem. I hope we will have the first numerical 

results in the near future. 
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I would like to note that the same approach to the problem was made in the 

U.S.S.R. by Dr. V. M. Lavrentjev and later by V. M. Ivchenko. The outline of 
Ivchenko's theory is given in the book titled ''Problems and Methods of Hydro- 

dynamics of Hydrofoils and Propellers," published in Kiev in 1966. 

When making numerical computations at the Kiev Institute of Hydrodynam- 
ics, they came to the conclusion that for thin cavities, which are typical for the 
design conditions, the effect of cavity thickness can be estimated approximately 
by making use of two-dimensional theory. It would be most interesting to know 

the author's opinion on this subject. 

* * * 

DISCUSSION 

J. W. English 

National Physical Laboratory 
Felthan, England 

I would like to endorse the importance that is attached to obtaining numeri- 
cal results from the work of Dr. Cox. The problem he had in attacking it is 
truly the heart of the fully cavitating propeller problem. 

Could I ask the author if he has any ideas as to how he might allow for the 
known nonlinear effects that occur with the growth of the cavities that arise 
with increasing loading and reduced cavitation number. Does he consider, for 
example, that it might be necessary to resort to some empiricism, or might it 

be possible to allow for this growth by establishing an approximate mathemati- 

cal technique to be used after his initial linear theory calculations. 

* * * 

DISCUSSION 

C. Kruppa 

Technische Universitat, Berlin 

I stated in a lecture series held at Michigan University last year that, in 
my opinion, all fully cavitating propellers, designed so far, have to be regarded 
as designed on an empirical or at least semiempirical basis. This statement 
does not, of course, deny that fully cavitating propellers have been designed in 
the past which have met certain design specifications and performed more or 
less satisfactorily in service. It simply means that, for fully cavitating pro- 
pellers, no design method exists which can be compared with the lifting-surface 
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theory for moderately loaded noncavitating propellers and as such would make 

use of adequate singularity distributions, to represent not only blade loading 

but also cavity thickness. 

The author's paper must therefore be regarded as a most welcome step 

towards producing the basis for a more rational approach to the design prob- 
lem of propellers which are to operate under fully cavitating conditions. Iam 

particularly looking forward to the numerical results that eventually will be 
obtained by this method. With the fairly comprehensive model-test data, that 
nowadays exist for fully cavitating propellers, one should easily be in a position 

to judge the relative merits of the various assumptions that have been made by 

the author in the process of deriving the expressions for the induced velocities. 

It is in this context that I would like to put a question to the author: Having 

carried out cavitation-tunnel tests for a number of fully cavitating propellers, 
which were based on the so-called Newton-Rader series, I feel that the assump- 
tion of a basically cylindrical propeller race may well be justified under operat- 
ing conditions when the angle of attack of the propeller blade sections is just 

high enough to ensure absence of face cavitation. However, at low advance 
ratios the expansion of the cavity-filled propeller race and the retarded inflow 

to the propeller disc are well-known features. Does the author expect that his 

theoretical work can also be used for analyzing the off-design performance of 
fully cavitating propellers, as encountered at the take-off point in hydrofoils 

or at the shallow-water hump in surface-effect ships? In asking this question 

it is, of course, realized that propeller lifting surface theory for fully wetted 

propellers can nowadays be regarded as an adequate method for analyzing the 

off-design performance of noncavitating propellers. 

* * * 

REPLY TO DISCUSSION 

Geoffrey G. Cox 

The author is grateful for the encouraging remarks of Mr. Bavin, Dr. 
English and Professor Kruppa. Their common desire to see numerical design 

data, based on the presented theory, is shared by the author. Work is presently 

being carried out at NSRDC to achieve this goal. 

It is interesting to hear from Mr. Bavin that a similar approach to the 

supercavitating propeller design problem is being developed in the U.S.S.R. 
His suggestion regarding the use of two-dimensional supercavitating hydrofoil 

thickness data, as an approximation, appears to be plausible for the design 

condition. For this condition, the cavities will be relatively long and thin, and 
precision regarding cavity shape, especially for the trailing portion of the cavi- 

ties, is not necessary. In any event strip-theory methods are necessary when 

allowing for friction and cavity pressure drag effects. 
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Dr. English and Professor Kruppa both draw attention to the important 
question of need for "off-design" prediction, such as applies to the "take-off" 
condition for craft which possess a resistance hump. For such "off-design" 

conditions, there will be high blade loading with large section angle of attack 
and cavity thickness. Under such conditions the propeller possesses relatively 
poor efficiency, but the major concern is to ensure an adequate reserve of 
power to "take-off" for a propeller designed for a cruise or top-speed condi- 
tion. No really satisfactory subcavitating propeller theoretical performance 
analysis method exists, as yet, for such extreme "off-design" conditions. In 
the case of a supercavitating propeller, the problem is even more difficult, due 
to the influence and behavior of thick cavities. As such, the theoretical method 
proposed in the paper for the design problem is highly unlikely to prove a suit- 
able basis for the "off-design" prediction purposes, without the incorporation 

of empirical information based on prior experimental test data. 

* * * 
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THE EVOLUTION OF A 
FULLY CAVITATING PROPELLER FOR A 

HIGH-SPEED HYDROFOIL SHIP 

B.V. Davis 
The De Havilland Aircraft of Canada Limited 

Ontario, Canada 

and 

J.W. English 
Ship Division, National Physical Laboratory 

Feltham, England 

SUMMARY 

A description is given of the work that has been conducted in producing the 
main, foilborne, fully cavitating propellers for the 200-ton Canadian Armed 
Forces hydrofoil ship HMCS Bras d'Or. 

Designed for an all-weather antisubmarine role in the Atlantic, severe 
thrust loadings are experienced by the screws in both the takeoff and flying con- 
ditions, and model testing was essential to aid in design and confirm the pre- 
dicted performance. The high thrust loadings produce difficult structural prob- 

lems, and some testing was conducted to clarify this aspect of design. 

The joint programme of work was sponsored by the De Havilland Aircraft 

of Canada, the prime contractors in designing and building the vessel. Broadly, 
the hydrodynamic design and water-tunnel testing were conducted at Ship Divi- 
sion NPL, while the structural analysis and testing were conducted at De Havil- 
land, Canada. The programme has evolved a fully-cavitating propeller design 
with good hydrodynamic and structural characteristics over a wide range of 

speeds and thrusts. Water-tunnel testing is continuing for the purpose of fur- 
ther developing the design. 

A brief review of some future alternative methods of propulsion is included 

in the paper, together with a résumé of future development prospects for fully 

cavitating and ventilated propellers. 

INTRODUCTION 

The HMCS Bras d'Or hydrofoil ship, designated FHE 400 by the Canadian 
Armed Forces, represents the fruition of a long Canadian Navy interest in such 
craft, an interest dating back as far as 1911. It was in 1960, however, following 
a review of the Naval Research Establishment's (now DREA) proposals, that the 
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decision was made to conduct a feasibility and engineering study based on the 
NRE proposals. This study was conducted by the De Havilland Aircraft of Can- 
ada, and later, in 1963, the same company was Selected as the prime contractor 
for the design and construction of the vessel—a 200-ton ship intended for an all- 
weather antisubmarine role in the Atlantic. 

The vessel has already been described on several occasions (Refs. 1, 2, 

and 3), and therefore the brief description given here relates mainly to the pro- 

pulsion system that has been employed. 

Figure 1 is an artist's impression of the vessel operating at high speed. 

The foil arrangement used is of the canard type, in which about 90 percent of the 
weight is carried by the after surface-piercing, noncavitating, main foil assem- 
bly, the remaining 10 percent being carried by the forward foil system which is 
designed to operate in the fully-cavitating condition. The power trains are con- 
tained within the main foil assembly. Figure 2 shows the propulsion system 
configuration that has been adopted, while Table 1 and Fig. 3 give the principal 

characteristics of the ship. 

Fig. 1 - Artist's impression of HMCS Bras d'Or 

The drive to the controllable pitch propellers is through the anhedral foils 

as shown in Fig. 2, while the shafting for the fully cavitating propellers passes 
down through the main struts to the propulsion pods situated at the intersection 

of the main foil and dihedral foils. 
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Fig. 2 - Layout of propulsion system 

Table 1 
Principal Specifications of the Bras d'Or 

150 ft-9 in, Hull Beam: 21 ft-6 in, Foil Span: 66 ft 

: 200-250 tons (according to fuel carried) 

Foilborne - 60 knots, calm water 
50 knots, sea state 5 

Several hundred miles foilborne. 

More than 2000 miles at 12 knots hullborne. 

Foilborne - P & W FT 4 gas turbine, 25,000 shp continuous. 
Driving two fully cavitating propellers. 

Hullborne - Davy Paxman 16 YJCM diesel, 2000 bhp continuous. 
Driving two controllable pitch propellers of KMW 

design. 

The power transmission system for the fully cavitating propellers has been 
developed by the General Electric Company of the USA, the pioneer of hydrofoil 
'Z' drives. The power output from the turbine passes into an inboard gearbox 

where the speed is increased from 4000 rpm maximum to 8000 rpm, to reduce 
the torque and hence shaft diameters to fit within the struts. The main drive is 
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Fig. 3 - Main particulars of the FHE 400 

split between two shafts in each strut, for the Same purpose. Within the propul- 

sion pods the drives are regrouped and reduced to the propeller shaft speed by 
means of compound star gears. It will be appreciated that this gearing system 

is very sophisticated, and yet it is only one of the many new developments that 

_ have been necessary in the production of this ship. 

Early experience obtained with fully cavitating propellers of similar power- 
ing on the hydrofoil ship Denison were disappointing (Ref. 3). Fatigue'failures 

occurred until thicker screws were used, and eventually titanium was employed 
as a material to avoid this difficulty. With this foreknowledge, De Havilland de- 
cided upon an extensive hydrodynamic and structural test programme, in an ef- 
fort to develop efficient screws that would have adequate structural integrity. 

SCOPE OF HYDRODYNAMIC DESIGN AND TESTING 

Hydrofoil ships, like other types of high-speed craft, usually exhibit resist- 
ance characteristics, with a maximum occurring at the transition from the dis- 
placement mode to the flying mode. Once the speed at which the maximum re- 

sistance occurs has been passed, the resistance decreases before beginning to 

rise again at the high-flying speeds. Any propulsive device must, therefore, be 

capable of producing the required thrust over a widely varying range of operat- 
ing conditions. Fixed-pitch noncavitating propellers, such as those used on 
trawlers, have a remarkable capacity for accommodating a large range of 
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loading, although minor compromises, largely due to engine characteristics at 
the extreme thrust and rpm conditions, are necessary for this. Fortunately, 

fully cavitating propellers behave reasonably well in this respect, when com- 
pared with other propulsion devices such as present-day water jets. This re- 

quirement is essential for hydrofoil ships when, in addition to the calm-water 
resistance variation, extra loads may be imposed because of high sea states and 
variable depth sonar (VDS) towing requirements. 

Much has been done in recent years towards producing a design method for 
fully cavitating propellers, and the work at NSRDC (Refs. 4 and 5) may be cited, 
together with the interesting qualitative observations of Tulin in Ref. 6. Much 
still remains to be done, however, in the field of fully cavitating propeller theory 

to put it on an equal footing with noncavitating propeller theory. Steps in this di- 

rection are being taken, and numerical results from the work by Cox (Ref. 7) 
are awaited with interest, while at NPL evaluation of the proposals made in Ref. 

8 are continuing. At NPL, considerable emphasis is given to obtaining a de- 
tailed quantitative physical insight into the flows created by fully cavitating and 

ventilated propellers, and partly for this purpose the instrumentation described 

in Ref. 9 has been built. 

The design situation with highly loaded, fully cavitating propellers, as may 
occur in the hydrofoil ship takeoff condition, is more difficult than for the mod- 
erately loaded case, since there is a dearth of empirical information at off- 
design advance ratios. Consequently, model testing is even more essential for 

an actual fully cavitating propeller design. With this in mind, therefore, the ap- 
proach used in designing the Bvas d'Or screws has been to consider the flying 
condition first, following this with tests on propeller models over a wide range 
of loading and cavitation number to determine if the other critical conditions 

were Satisfied. 

In parallel with the specific design work for the Bras d'Or screws, a num- 

ber of additional experiments were conducted at NPL on a model screw made to 

the T95 design described in Ref. 8. This screw was used mainly for convenience 
and because information was required before the design for the Bras d'Or was 

finalised. These tests were undertakento determine the importance of some de- 

sign features on performance, and included the observation of the cavity heights 

above the backs of the blade surfaces in the vicinity of the leading edges over a 
range of operating conditions, the effect of leading edge thickness on perform- 
ance, and the determination of stress levels in a region near the leading edges. 
Attention was given to these aspects of design, since it was recognised from the 
experience of others that leading edge geometry is a crucial factor in the pro- 
duction of a reliable, full-scale, fully cavitating propeller. 

MEASUREMENT OF WAKE CONDITIONS AND 
SIMULATION IN THE WATER TUNNEL 

The Bras d'Or screws are of the pusher type and are mounted at the stern 
of the propulsion pods. Considerable care was taken in designing the propulsion 

pods and the junctions with the struts, the main foil, and dihedral foils, in order 
to minimise the irregular wakes created by these components. The method of 
streamline contouring was used for this purpose. Nevertheless, it was considered 
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necessary to measure these wakes on a 1/8th-scale mainfoil model in the towing 

tank. This was done to determine the flow irregularity and also to obtain infor- 

mation with which to design a wake simulator for the water-tunnel tests. As 
will be seen later, it was found essential to conduct the water-tunnel tests in the 
presence of the wake simulator. 

The rig for measuring the wakes is shown in Fig. 4, where it is seen that a 
five-hole probe was mounted at the aft end of the port pod with a crank arm for 

altering the angular setting. The experiments were conducted at a speed of 30 

ft/sec, the probe having been calibrated at this speed previously. In the tests, 
the attitude of the foil assembly was varied over a considerable range of pitch 
and yaw to cover the ranges likely to be encountered by the ship in service con- 
ditions. However, in order to conduct the tests within a reasonable time, the 
wakes were measured at the 0.7 propeller radius only. 

Fig. 4 - Rig for wake measurement 

The wake measurements showed variations with pod attitude, but on the 
whole these variations were not large and the results obtained at the zero yaw 
and pitch setting, which are shown in Fig. 5, can be considered representative 
of the complete tests. From these results the wake shadows cast by the pod at- 

tachments are evident, the main foil wake being the greatest. The results are 
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all given in terms of wake factors which are the local axial, tangential, and ra- 
dial velocities divided by the ship speed, or 

V,, Vee Ve 
Tt tee — oye and fay 

When considering the fluctuating forces and moments that might be pro- 

duced by the screw operating in a nonuniform flow, the inflow angle ¢ is highly 
significant, since this angle incorporates both variations in axial and tangential 
velocities. This angle is defined as, 

Tc. f 
a a 

tan 8). ———$— 

Or + fe, Vo ox ‘ fie 

J 

for an anticlockwise-turning propeller looking forward, and using the sign con- 
vention for f,, shown in Fig. 5. The variation of 6 at the zero-pitch zero yaw 
attitude of the pod is shown in Fig. 6, while Fig. 7 shows the results of harmoni- 
cally analysing this 6 variation. Clearly, the amplitude of the third harmonic, 
which could be of significance in producing undesirable vibration at blade pas- 
sage frequency with a three-blader, is relatively low, lower in fact than the 
sixth harmonic and only slightly larger than the ninth harmonic. Thus the at- 

tempt at minimising the harmonic content of the wake corresponding to multi- 
ples of the blade number has been quite successful and should ensure freedom 

from serious thrust and torque fluctuations. The second and fourth harmonics, 
which are important in relation to the production of fluctuating shaft bending 
moments and which must be withstood by the shaft bearings, are higher than the 
third harmonic. However, from the magnitude of the wake distribution there is 
no reason to suspect serious excitation from this source. 

The wake simulator used in the No. 1 water tunnel was of simple construc- 

tion and is shown mounted upstream of a fully cavitating screw in Fig. 8. Due 
to limitations imposed by the size of the tunnel, the simulator had to be con- 
tracted in the length dimension; but nevertheless a reasonable simulation of the 
axial flow was found possible, as may be seen from Fig. 9. Adjustments to the 
intensities and widths of the wakes shed by the arms of the simulator were made 
by adding wire gauze to the arms. The intensity of the main foil wake could not 

be reproduced before the arm of the simulator began to cavitate, and therefore 
this particular wake shadow was not sufficiently intense. 

DESIGN STAGES AND PERFORMANCE CHARACTERISTICS 

The initial diameter chosen for the Bras d'Or screws was 3.67 ft. This was 
based mainly on satisfying the requirements in the full-power high-speed condi- 
tion, and on the desire to keep the screws as small as possible in order to obtain 
high rpm and hence a moderate gear cartridge and pod diameter. Little propel- 
ler data were available in the early stages from which the estimates of full- 
power low-speed operation could be made, but as the project progressed and 

more models were tested it became clear that it would be necessary to increase 

the diameter to 4.0 ft to meet the low-speed high-thrust requirement at takeoff 

and the VDS body towing requirement at foilborne speeds. 
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ie 

Fig. 8 - Screw and wake simulator in tunnel 

For reasons of brevity it is not proposed to discuss the details of all the 

screws that have been tested in the course of this project, but since the final 

design has been built on the results of the earlier testing it is informative to 

summarise the conclusions drawn from this work. A summary of the various 

models that have been tested is given in Table 2. 

In the early design procedures the most important hydrodynamic features 

of the screws, apart from diameter, i.e., the pitch and camber of the wetted 

faces of the cylindrical sections, were designed using a mixture of momentum 

theory, in which an appropriate allowance was made for the presence of the 

cavities in the wake, and noncavitating propeller theory. The camber shape 

adopted for the wetted faces of the sections was of circular-arc form, mainly 

because of the availability of Wu's nonlinear theory for calculating the flow 

around isolated fully cavitating foils at nonzero cavitation numbers (Ref. 10). 

Also, it is possible to calculate accurately the position of the back cavity rela- 

tive to the wetted faces—a factor that was considered highly important in the 

early design stages for minimising section cavitation drag, i.e., ensuring that 

the cavity runs clear of the back of the section. 

In retrospect, it would now appear that while the above approach gave a 

satisfactory pitch distribution, the section cambers predicted by the method 

were underestimated. This led to a propeller which, although highly efficient, 

would not absorb the full engine power and hence did not produce sufficient 

thrust at the high-speed design point or the takeoff condition. Modifications 

were then made to the propeller geometry in order to increase the load-carrying 

capacity. These consisted of increasing the amount of circular-arc cambers 
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installed in the sections and, because isolated two-dimensional hydrofoil theory 
indicates that a positive incidence of the chord of the wetted face is necessary 
with this type of section in order that cavitation shall not occur on the face, an 

incidence or pitch increase was also incorporated. 

The model screw employing circular-arc cambered faces that came nearest 
to satisfying all the design requirements is designated model No. W257, and Fig. 
10 is a drawing of the 4-ft diameter ship screw. The features of this screw that 
are worthy of comment are the relatively large root chord lengths and the 
amount of leading edge sweepback. In addition, it will be seen that the large- 
diameter hub has a significant amount of taper which is necessary to fair in with 

the pod shape. These features are common to all the screws that have been con- 

sidered for propelling the Bras d'Or, the particular chordal distribution and the 
sweepback being incorporated for structural reasons in an attempt to keep the 
leading edge stresses within reasonable limits in accordance with the results of 
the De Havilland's structural testing and analysis. The amount of skew or 
sweepback is specifically calculated to minimise torsional deflections of the 

blades. 

The operating characteristics of this screw, as determined from the NPL 
No. 1 water tunnel with the wake simulator, are given in Figs. 11, 12, and 13, 
where it will be seen that the peak efficiency at the low cavitation numbers typi- 

cal of high-speed operation is about 55 percent. This value of efficiency was 

considered to be lower than might be achieved, and it was therefore decided to 
continue the development programme in an attempt to improve the performance. 

Before describing the remainder of this test programme, however, it is perti- 
nent to digress and explain the reasons for the relatively low efficiency, and de- 
scribe some relevant work that has been conducted at NPL on a screw not di- 

rectly intended for the Bras d'Or. 

Johnson has shown in Ref. 11 that practical, fully cavitating, two-dimensional 
circular-arc sections, in which an allowance for the structural thickness of the 
foil is made, are, in terms of the lift-to-drag ratio, almost as efficient as the 
best alternative section, viz., the 5-term section. This is sufficient justification 
for using a circular-arc section, provided other factors such as structural 
strength are not impaired. Clearly, in the propeller design process the simple 
relationships between\C, and camber, and C, and incidence, that hold in two di- 
mensions require adjustment when propeller sections are being considered. This 
adjustment is analogous to the lifting surface corrections required in noncavitat- 
ing propellers, but it also includes the effect due to the presence of the cavities. 
In the absence of any numerical information on the magnitude of the corrections 
that should be applied to the two-dimensional data, it has been necessary to em- 
ploy a purely empirical correction obtained from a simple analysis of previous 
test results. This correction was then applied as a factor to both the basic two- 
dimensional camber and to the incidence values. This led to propeller sections 
with a moderate amount of circular-arc face camber, viz., about 2 percent of 
the chord at 70 percent radius, together with a relatively large incidence, giving 
a pitch-diameter ratio of about 1.26 at the same radius. Limited evidence from 

the operating characteristics of a number of fully cavitating screws now sug- 
gests that this method of applying the correction equally to the basic camber 
and incidence has led to screw W257 having a deficiency of camber and possibly 
an excess of incidence, and that it would have been more appropriate to apply 
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the correction to the camber only. This reasoning is endorsed by the work of 

Oba in Ref. 12, where he has shown that in the case of a two-dimensional cas- 
cade of fully cavitating foils, the minimum incidence required to ensure clear - 

ance between the back cavity and the face of the section is less than that re- 
quired in the case of the isolated hydrofoil. Tulin's description of the advantage 
to be gained by using high camber in fully cavitating propellers, given in Ref. 6, 

reinforces this conclusion. 

A further factor that was instrumental in producing large angles of attack 
in these circular-arc face screws was the manner in which allowance was made 
for the structural thickness of the sections themselves. This was done by speci- 

fying a control thickness at 20 percent of the chord from the leading edge of each 

section, and then installing the initial incidence (and camber), before applying 
the aforementioned corrections, so that the back cavity would clear this point. 
This procedure led to relatively large values of incidence being installed. The 
cavity height calculations used in this approach were made using Wu's theory, 

and are given in Ref. 13. 

Up to the time of the W257 experiments, the extreme leading edges of the 
fully cavitating screws designed at NPL were made relatively sharp, the struc- 
tural thickness being controlled at the 20 percent chord position as previously 

described. Because this region of these propellers is so critical from the 
strength and vibration standpoints, it was decided to conduct a few simple exper- 
iments to determine the effect of increasing the extreme leading edge thickness. 
The screw used for these experiments was T95, as described in Ref. 8. The 
leading edges were initially sharp and were thickened for these experiments by 

adding soft solder to the backs of the blades in the leading edge vicinity. The 
leading edge roundings had a diameter of one-half percent of the local chords 

and the solder was then faired in to zero thickness at a postion 20 percent of the 
chord length from the leading edges. The modified screw was then rerun and 
the results compared with those obtained earlier. This comparison is shown in 

Figs. 14, 15, and 16, where it is seen that in the normal operating range the ef- 

fect of the thickened leading edges is mainly manifested as a reduction in thrust. 
The effect on efficiency is small—the efficiency with the thickened leading edges 

being about 97-1/2 percent of that with sharp edges. Clearly, the small loss in 
efficiency and thrust arising from this modification is worth incurring for the 

added strength that will result. 

A further experiment was conducted on the modified T95 screw with the ob- 

ject of gauging the heights of the cavities above the backs of the blades. For 
this purpose three pins, each of different length, were attached to the blades, 
one to each blade at 70 percent radius and 20 percent of the chord length from 
the leading edge. The arrangement is similar to the method used by Johnson in 

Ref. 11 on a three-dimensional hydrofoil in a tank. The relative positions of the 
back cavities on the propeller were then observed under stroboscopic lighting, 

leading to the results given in Table 3. 

A reasonable J value for the high-speed operating condition of this screw 
would be in the range 0.9 to just over 1.0, i.e., at o = 0.3, J = 1.0, then » = 
0.59 and k, = 0.09. In this case the height of the cavity above the blade surface 
is about one and one-half percent of the chord and, therefore, the thickness of 
the blade at this position could be increased by this amount without adversely 
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SHARP LEADING EDGE 

SS SS SS I STHICKENED <LEADING] EDGE 

I NORMAL OPERATING { 

RANGE 

Fig. 14 - Thrust comparison--effect of thickened 
leading edges--screw T95 

affecting the performance. These results suggest that for screws with circular- 
arc faces, at least, there should be no difficulty in installing sufficient material 
in the leading edges to secure structural integrity without seriously impairing 

the efficiency. 

Since screw T95 is untypical of the Bras d'Or requirements with respect to 
blade sweepback and hub size and shape, it was considered desirable and expe- 
dient to confirm the effect of increasing camber and leading edge thickness on a 
typical screw before proceeding to the final screw design. This was done by 
simply modifying an existing screw. The blade faces were recut to provide the 
increased camber and the backs were thickened over the leading edge region 

with solder, giving a leading edge thickness of one-half percent chord. The ad- 
ditional camber was provided in the form of a Johnson 3-term camber as given 

980 



Fully Cavitating Propeller for a Hydrofoil Ship 

0-05 Sen ee 

OP 

J=0-80 
SHARP LEADING EDGE 

— ——— THICKENED LEADING EDGE 

— wot 
5 a 

Wa Co — 

£0 J=0-95 
og 

0-04 2 ie 

NORMAL OPERATING 
ta RANGE 

Ka T | | 

=~ ae 

(-J 4 
FP Or ob T=41-:10 0:03 — Or = S a == 

D ‘Sa | 6 ee S a anes 

(1 Zz 
eB aT 
= —s \y cS G 

) 
ea al. =| . 
|) ‘d) 

Se ie 
@* 

Y 
Oy 

GF 

0:02 
0-2 0-4 0-6 0-8 1-0 1-2 1-4 1-6 

Fig. 15 - Torque comparison--effect of thickened 
leading edges--screw T95 

in Ref. 11, such that the section cambers comprised about one-third circular- 
arc camber and two-thirds 3-term camber. Since the geometric incidence of 
the chord of the two-dimensional 3-term section is close to zero, no pitch ad- 
justment was made when installing this camber. The modified screw was desig- 
nated W264 and is shown in Fig. 17, while the results obtained with it are given 
in Figs. 18, 19, and 20. The improvements obtained with the W264 as compared 
with the W257 are quite large, giving approximately 17 percent more thrust at a 
considerably higher efficiency in the flying condition, with attendant improve- 

ments in the takeoff condition. 

The ship will be fully operational in the 200-ton load condition with screws 
made to the W257 design. A speed of 60 knots will be attainable in the calm 
water condition, while adequate thrusts are also available in the higher resist- 
ance conditions when operating in high sea states at speeds up to 50 knots, and 
with a towing load at lower speeds. The improvements offered by screws ac- 
cording to the W264 design are mainly in additional thrust margins at the higher 

loads and increased range through the higher efficiency. 

A typical fully cavitating propeller model of the type fitted to the Bras d'Or 
is shown in Fig. 21 operating at simulated high speed in the No. 2 water tunnel 

at NPL. 
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BRONZE MODEL 

——— EPOXY RESIN MODEL 

BRONZE MODEL 

——— EPOXY RESIN MODEL 

BRONZE MODEL 

——— EPOXY RESIN MODEL 

Fig. 16 - Comparison of efficiencies between bronze and 
epoxy resin models--screw T95 

Table 3 
Screw T95 (Leading Edge Thickness—1/2% Chord), 

Height of Cavity Above Back of Blade Surface, 
Measurement Position: 70% Radius, 20% Chord from Leading Edge 

Dee OP cae ie mi ec eme ener 
Greater than 2-1/2% chord 

Nearly 2-1/2% chord 

Less than 1-1/2% Results uncertain 
due to striations 

Greater than 1/2% from leading edge 

x«—____—\—Not fully cavitating—all pins visible ——————————~ 
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Fig. 20 - 7 performance curves of propeller W264 
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Fig. 21 - Moderately loaded, fully cavitating propeller 

The development of fully cavitating propellers is being continued, and pro- 
posals for additional design studies and tunnel testing have been made. An im- 

mediate objective is to produce a propeller with an efficiency comparable to that 
of screw W264 mentioned earlier, but in which the structural integrity is in- 
creased by thickening the blades. For this purpose an additional model with 
thickened blades has been made and partially tested. However, these results 
indicate that wetting of the back surfaces occurs, and therefore a modification 

is necessary. 

Further testing is required to establish the optimum camber and the opti- 
mum relationship between camber and incidence or pitch, and to this end it is 
hoped that a further test series of a family of fully cavitating propellers can be 

initiated in the near future. 

STRUCTURAL CONSIDERATIONS 

The hydrodynamic requirement for relatively thin leading edges in fully 

cavitating screws, together with the high powers that are transmitted and the 
difficult operating environment, give rise to severe structural problems which 
must be considered in the design stage. The blades must be made sufficiently 
strong to withstand the maximum steady stresses likely to be experienced, in 
addition to the fluctuating stresses that will occur when operating in the wakes 
of the pod attachments. Further, the deflections of the blades under load should 

be as small as possible. 

In order to combat these onerous operating conditions it is necessary to 
employ a strong propeller material possessing high resistance to erosion and 

cavitation damage, combined with high values of fatigue strength and elastic 
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modulus. Several materials were considered for the Bras d'Or application, in- 

cluding titanium, beryllium nickel, and various steels. The eventual choice, 
however, was for forged billets of a high nickel chromium alloy known as Inconel 
718. This material possesses excellent physical properties; its main disadvan- 
tage is that it is difficult to fabricate, since it is an extremely tough alloy. Its 
main advantages over titanium are its higher elastic modulus which is nearly 
double that of titanium and its superior fatigue life characteristics, particularly 
in sea water. A screw made from Inconel 718 would therefore deflect about half 
as much as a Similar screw in titanium and would presumably last longer. 

In line with the choice of an exotic material for the propeller construction, 

the blades have been made Separate from the hub and are retained by bolts, thus 

enabling a blade to be changed without a complete screw replacement in the 
event of damage. 

It was essential that the propeller blades were forged separately, as it 

would be impossible to forge a single propeller of this size in this alloy, i.e., 
4-ft. diameter and weighing 1000 lbf finished. Thus the blades are bolted to the 
hub using special Inco 718 bolts. This method of construction therefore has 
some merit from both the manufacturing and blade replacement points of view. 

Structural Testing on Static Models 

Structural testing has been conducted at De Havilland by Mr. S. Morita 
(Refs. 14 and 15), to explore the effects of blade geometry and external blade 
loading on the stresses and deflections induced in the blades. The experiments 

were performed in two stages, the first of which employed simple plane models 
without pitch, while the second used a more representative model in which pitch 

was included. In both cases static models of single blades were used and hence 

centrifugal effects were not included. Only a brief survey of the experiments 
and the results is given here. 

The simple models were used to aid in the rapid production of results and 

to permit a large coverage of parameters to be made relatively easily. These 
models consisted of cantilevered, trapezium-shaped aluminum specimens rep- 
resenting the blade under test. Pitch was not incorporated in these specimens. 

The specimens had a common radial distribution of chord widths, but three val- 

ues of leading edge sweepback were covered, while two variations in section 

shape were used. The sections were either or triangular shape with blunt trail- 

ing edges or triangular apart from a trailing edge chamfer on the back. Camber 
was not included in the sections. The radial blade loading was the same in all 
the tests, but two chordwise loading distributions were used in which the centre 
of pressure position was at 39 percent and 25 percent of the chord from the 
leading edges. 

In all the experiments the external load was applied using rubber pads 
bonded to the specimen and loaded in tension through a system of cables, pul- 
leys, and "whiffle trees" by a single hydraulic jack. Such a system is commonly 
used in the aircraft industry, and Fig. 22 shows the test setup employed. Strain 

measurements were made using strain gauges attached to the ''wetted" side of 
the blades, while blade deflections were made with dial gauges. 
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BLADE N91. CMF DT.E.. 

lOOOIL LOAD. C.P.25% 
aoe rg 

Fig. 22 - Test setup used in structural tests 

The principal conclusions resulting from the work on the simple blade 
shapes were as follows: 

1. Blade sweepback has a significant effect on the stress levels in the 
blades, and a judicious choice of sweepback can be made to minimise the stress 
levels in critical areas of the blade or, alternatively, the sweepback can be 
chosen to produce a reasonable stress distribution across the entire chord. Too 
much sweepback is undesirable, however, since this can lead to an increase in 
stresses in parts of the blade. The choice of sweepback is affected by the chord- 

wise pressure distribution. 

2. Blade sweepback reduces blade deflections appreciably when compared 

with unswept blades. However, introducing large sweepback for this purpose 

can have an adverse effect on the blade stresses. 

3. Blade stress distribution and deflections are influenced by the chordwise 

pressure distribution, as might be expected. The closer the section centre of 
pressure is to the leading edge the higher are the stresses and deflections. 

4. Reasonable correlation exists between measured and calculated stress 

distributions when simple bending theory is used. 
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The tests on the simple blade shapes at De Havilland were followed by a 
similar test on a more realistic blade in which the pitch of the sections was in- 

corporated. At about the same time, some further tests were being conducted 
at NPL on hydroelastically sealed model propellers in the water tunnel. Ideally 
it would have been desirable for the same blade geometry to have been tested in 
both establishments, but this was not possible due to the tight time schedule. As 
a consequence, while the two sets of test results can be compared, too close a 
correlation of the results cannot be expected since the blade shapes and thick- 
nesses were different. The two sets of tests are described separately there- 
fore, commencing with the static tests conducted at De Havilland. 

The blade used for the static tests had sections with circular-arc wetted 
face cambers, as shown in Fig. 23, and an appreciable amount of leading edge 
sweepback or skew. The test setup was Similar to the one uSed earlier, apart 
from the extra complication introduced because of the pitch of the blade, and is 
shown in Fig. 24. The test blade was made from aluminum to limit the external 
load necessary to produce easily measurable surface strains and deflections. 
For the purposes of simulating and distributing the external hydrodynamic load 
this load was split into 28 discrete elements and applied through rubber pads 
bonded to the back of the blade and loaded in tension. Deflections and surface 
strains were measured on the blade face. In the absence of any measured blade 
pressure distributions which could be used as a basis for distributing the exter- 
nal load, reliance had to be placed on an estimated distribution. From these 
estimates the radial distribution of lift coefficient was almost inversely propor- 
tional to radius, while the chordwise loading was taken as similar to that pro- 
duced by a fully cavitating flat plate hydrofoil at incidence where the pressure 
is concentrated towards the leading edge and the centre of pressure occurs at 
the 25 percent chord position. In this respect, fully cavitating propeller theory 

is not considered sufficiently refined to justify attempts at producing a more 
realistic load distribution. It is probable, however, that the particular load dis- 
tribution used produced larger stresses in the critical regions of the leading 

edge and blade root than would be experienced in an actual propeller, since a 
substantial part of the total load was situated towards the tip and leading edge 
regions. 

The blade strains were measured with strain gauge rosettes at sixteen po- 
sitions, thus enabling principal stresses and directions to be derived. The 

maximum principal stresses deduced from this work have been scaled to corre- 

spond to a 44-inch diameter propeller developing 40,000 lbf thrust. These 
stresses are shown in Fig. 25, where it will be seenthat they always fall well 
below a value of 40,000 lbf/in? which is the stipulated maximum steady stress 

level allowable for Inconel 718 when fatigue is a factor to be considered. It will 
be observed from these stresses that despite the incorporation of a considerable 

amount of sweepback the stress level in the leading edge vicinity at the 70 per- 
cent radius is higher than anywhere else in the blade. The directions of these 
principal stresses are given in Fig. 26 and show how significant the chordwise 
loading can become, since at the 90 percent radius the maximum principal 

stress direction approaches the chordwise direction. 

From the above discussion it might be expected that the simple Engineer's 
Beam Theory, \commonly|used for estimating stresses in propellers, could not 

predict reliable stresses throughout the blade. This has been found to be the 
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Fig. 24 - Test setup used in structural tests 

case by Morita in Ref. 15. For example, Fig. 27 shows a comparison of the 
stresses calculated using the Beam Theory with the measured stresses, vividly 
illustrating this point. 

Two further points should be mentioned in connection with these stress 
measurements. First, centrifugal effects have not been considered, but the di- 
rect stresses from this cause will increase the tensile stresses given in Fig. 
25. This increase is expected to be small (less than 10 percent of the maximum 
plotted value) at 70 percent radius, becoming a maximum at the root section. In 
neither case is it expected to increase the stress level to 40,000 lbf/in2 how- 

ever. Centrifugal stresses were, of course, considered in the final screw de- 
sign, as they are of considerable magnitude towards the blade root. The second 
factor to be considered is the screw diameter, since in the Bras d'Or applica- 
tion the screw diameter was increased to 48 inches. This effect would then re- 
duce the stresses in Fig. 25 by about 19 percent assuming the thrust remained 
at 40,000 lbf. 

The measurements of the blade deflections indicated that the largest deflec- 
tions occurred at the outer radii and leading edge positions, as might be ex- 
pected. The deflection of the sections was such as to reduce the installed face 
cambers and slightly increase the section incidences. This would be expected 
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Fig. 25 - Chordwise distribution of 
maximum principal tensile stresses 

to lead to a reduced thrust and an increased torque as a consequence of the 

higher section drag and lower propeller efficiency. 

Hydroelastic Model Tests 

The NPL tests on hydroelastically scaled models were performed simply 
for the purpose of obtaining general background information on the effect of 
blade deflection on fully cavitating propeller performance and to obtain steady- 
strain measurements on an operating propeller. It was not intended that the 
models should be used to predict the dynamic behaviour of the blades from the 
vibration standpoint. Again, since this work was planned early in the experi- 

ment programme and before the Bras d'Or screws were finalised, the tests 
were conducted on the T95 design. 

The conditions that must be satisfied when testing hydroelastically scaled 

model propellers, based on the assumption that the blades behave as thin plates 
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30,000 = 

ALCULATED STRESS BASED ON 
ENGINEER'S BEAM THEORY 

EXPERIMENTAL 
STRESS 

20,000 
2 

stress Levelt Ibf/in 
10,000 

RADIUS FRACTION 

Fig. 27 - Comparison of calculated and measured stresses 

subject to bending, has been fully described by Acum in Ref. 16. When referred 
to fully cavitating propellers tested in a water tunnel, one of the two additional 
structural similarity parameters that must be the same for the model and pro- 
totype is 

1 - o2 ie n2D2 ( = ) , 

where E is the elastic modulus and o is Poisson's ratio for the propeller mate- 

rial. This ensures the equivalence of blade stresses and deflections between 
model and prototype when they are caused by steadily applied hydrodynamic 

loads. Then, with this similarity, the stresses vary as p n7D? and deflections 
vary directly as the scale. 

When it is necessary to scale stresses and deflections due to inertia forces 

suchas derivedfrom rotation (centrifugal force) and nonsteady hydrodynamic 

loads, the further requirement of equal densities in model and prototype is also 

necessary. It is usually impossible to satisfy these two similarity conditions 

simultaneously, due to restrictions arising from the tunnel operating conditions, 
model scale, and the limited choice of materials from which models can be 
made. A means of complying with these conditions is sometimes adopted in 
structural experiments where the model material and density are kept the same 
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as that of the prototype, but the model is weakened by cuts to reduce effectively 
its elastic modulus. Very complicated model construction can result from using 

this technique, however, and in the experiments described here it was decided to 
ignore the condition for the equivalence of stresses and deflections induced by 
inertia forces. This neglect is probably not very important, since the tests were 

conducted in uniform flow in which the hydrodynamic loads were nominally 

steady. Further, the direct centrifugal stresses are usually small when com- 
pared with the bending stresses due to the hydrodynamic loading, and the cen- 

trifugal bending stresses depend mainly on the rake of the blades which in the 
case of the T95 design was only five degrees aft. Blade skew and the unsym- 
metrical distribution of material about a radial generator line will also influ- 
ence the centrifugal stresses, but since there is no skew in T95 the effects due 
to these features will also be small. 

Two hydroelastic model propellers were made from epoxy resin loaded 

with fibre glass. These 10-inch diameter screws were initially formed at De 
Havilland, Canada and then cut to the T95 design at NPL. This particular mate- 
rial was chosen mainly because of its elastic modulus (1.8 x 10° lbf/in?), as 
this together with the screw scale and tunnel conditions enabled model tests to 
be conducted at values of n*D? (1 - o?)/E applicable to the prototype screw. 

The first hydroelastic model was run in a similar manner to the bronze 
screw, but at particular values of rotational speed to obtain the desired values 
of the parameter n2D? (1 - o?)/E. If it is assumed that the deflection of the 
bronze screw was negligible, a reasonable assumption according to Ref. 17, then 
the difference between the results from the hydroelastic screw and the bronze 
screw are due to the deflection of the former, apart from small differences that 
arise from experimental scatter in the results. The results obtained from the 

two screws are compared in Figs. 28, 29, and 30, where it is clear that both the 
thrust and torque of the hydroelastic screw have increased above the values for 
the bronze screw. Also, since the torque increase is greater than that of the 
thrust, the efficiency of the hydroelastic model is less than that of the bronze 
screw, and further this reduction in efficiency is fairly significant in this case. 
As an example, in a typical high-speed operating condition the efficiency of the 

screw with deflected blades is about 95 percent of the undeflected value. Simi- 
lar results to these were also found in the takeoff conditions. It may be noted 
however, that because the T95 blades are thinner than those used in the Bras 

d'Or application the T95 results exaggerate the effects of deflection on these 
screws. 

The second hydroelastic model of the T95 design was used for measuring 
blade surface strains under fully cavitating conditions and then deducing stress 
levels. For this purpose small foil strain gauges were attached to the wetted 
surface of each blade at a number of positions. The leads for energising the 

gauges and conducting the output signals passed down the blades and through the 

hollow shaft to slip-rings outside the tunnel where they were transferred to the 
external instrumentation. The gauges were attached to the wetted surface in 
order to ensure temperature stability which might have been difficult with 

gauges attached to the backs of the blades and within the cavities. Temperature- 

compensating gauges were attached to a piece of epoxy resin and situated in the 

reservoir of the working section. The gauges and leads on the blades were 
coated with a thin covering of epoxy resin for insulation purposes. This coating 
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BRONZE MODEL 

————_— EPOXY RESIN MODEL 

NORMAL OPERATING 
RANGE 

Fig. 28 - Comparison of thrust between bronze and 
epoxy resin models--screw T95 

had to be thin to avoid changing the blade shape and increasing the structural 

stiffness. At the same time the leads could not be let into the blades, as this 
would also have altered the local structural stiffness. 

Considerable difficulty was experienced in maintaining a high resistance 
between the gauges the blade wiring and the tunnel water, and after a relatively 
short period of immersion this resistance began to fall. It became necessary 

therefore to halt the experiments after the earth resistance had fallen appreci- 
ably and allow time for the equipment to dry out before proceeding. This diffi- 
culty, on top of the initial waterproofing problems, made these experiments very 

time-consuming and it became necessary to restrict the scope of the measure- 

ments to the gauges situated at the 20 percent chord position only. 
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BRONZE MODEL 

EPOXY RESIN MODEL 

0-04 

pHOBMAL OPERATING 

RANGE 

0-03 

Fig. 29 - Comparison of torque between bronze and 
epoxy resin Models--screw T95 

The gauge rosettes were mainly of the star type with 120-degree separation 
between the arms, and were orientated with an arm of each rosette on a cylin- 
drical section and pointing towards the leading edge. Rosettes were positioned 

at 0.5, 0.65, 0.8, and 0.9 of the propeller radius and 20 percent of the local chord 
from the leading edge on the blade in question. Some of the rosettes and blade 

wiring can be Seen in Fig. 31 before the waterproofing was applied. 

The recorded strain levels were reduced to principal stress values for a 
full size screw assumed to be 44 inches in diameter and rotating at a speed of 
1700 rpm. The elastic modulus of the prototype was taken as 30 x 106 lbf/in? 
and Poisson's ratio was assumed to be the same for model and prototype with a 

value of 0.3. Graphs showing the results of these experiments are given in Figs. 
32, 33, 34, and 35 where the maximum and minimum tensile principal stresses 
and the maximum shear stresses are plotted against the radius fraction for the 
20 percent chord position. Stress directions are given in Figs. 36 and 37. The 
results are plotted for a range of advance coefficients and two cavitation num- 
bers which can be considered typical of the takeoff and flying conditions for a 

craft employing 44-inch diameter propellers. 

In both conditions the maximum principal stress at the 20 percent chord 
position occurs around the 60 to 65 percent radius. The stress increases with 
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SHARP LEADING EDGES 

——— THICKENED LEADING 

i ae 

SHARP LEADING EDGES 

——-— THICKENED LEADING EDGES 

SD, 
I NORMAL OPERATING { 

RANGE 

SHARP LEADING EDGES 

——— THICKENED LEADING EDGES 

Fig. 30 - Efficiency comparison--effect of thickened 
leading edges--screw T95 

thrust and torque, as might be expected, since thrust increases with decreasing 

advance coefficient in the flying conditions, Fig. 32, and reduces with decreasing 
advance coefficient in the takeoff conditions, Fig. 33. Although the structural 
design of screw T95 differs appreciably from the screw blade tested at De Havil- 
land it seems worthwhile attempting to correlate the results at the 20 percent 
chord position as far as possible. For example, if in Fig. 32 an advance coeffi- 
cient of 0.95 is taken as the flying condition, then the thrust developed by a 44- 
inch diameter propeller is 29,200 lbf and the peak maximum principal stress is 
19,800 lbf/in2. If we now assume that the thrust of screw T95 can be increased 
to 40,000 lbf by increasing the camber, say, without appreciably affecting the 
structural properties, then we can scale the stress directly as thrust. This then 

produces a stress of 27,100 lbf/in? for a 40,000 lbf thrust as compared with 
about 22,000 lbf/in2? from De Havilland's tests. Further, if we assume the 
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RESULTS FOR TYPICAL FLYING 
CONDITIONS 

Oo = 0-35; D=44 in. 

SPEED OF ROTATION 4,700 Fpm. 
20% CHORD FROM LEADING EDGE 

VALUES OF MAXIMUM 
Se STRESS 

0-4 O-5 0-6 0-7 0-8 0-9 
RADIUS FRACTION 

Fig. 32 - Values of maximum and minimum tensile 
principal stresses, typical flying conditions--screw T95 
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40,000 
RESULTS FOR TYPICAL TAKE-OFF 
CONDITIONS 

Oo = 2°70; 0-44 in. 

SPEED OF ROTATION 4,700 F.p.m. 
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Fig. 33 - Values of maximum and minimum tensile prin- 
cipal stresses, typical takeoff conditions--screw T95 

stress at the 20 percent chord position and that the 65 to 70 percent propeller 
radius arises primarily because of the local bending of the leading edge, then in 
accordance with the simple beam theory the stress may be taken as inversely 

proportional to the blade thickness squared. A correction to account for the 
difference in the thickness of the two blades can then be made by multiplying the 

T95 stresses by a value of 0.7. This then approximates to the stresses that 
would be experienced in the T95 blades if the thickness at 20 percent chord 

were made the same as that used in the De Havilland test. Applying this cor- 

rection reduces the T95 stress to about 19,000 lbf/in? compared with 22,000 

lbf/in? from the static loading tests. 

In a similar manner, if the takeoff condition is taken as that occurring at an 
advance coefficient of 0.4 in Fig. 33, then a stress of 33,000 lbf/in? results when 
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Fig. 34 - Values of maximum shear stress, typical 
flying conditions--screw T95 
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Fig. 35 - Values of maximum shear stress, typical 
takeoff conditions--screw T95 

1002 



Fully Cavitating Propeller for a Hydrofoil Ship 

TRAILING 

LEADING 
EDGE 

Fig. 36 - Principal stress vectors on expanded blade, 
typical flying condition--screw T95 
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Fig. 37 - Principal stress vectors on expanded blade, 
typical takeoff condition--screw T95 
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developing 45,100 lbf thrust. Scaling this stress directly with thrust then gives 
29,200 lbf/in? for 40,000 lbf thrust as compared with 22,000 lbf/in? from the De 
Havilland static tests. Again applying the thickness correction reduces the T95 

stress to 24,400 lbf/in* as compared with 22,000 lbf/in?. This comparison is 
slightly closer than that in the flying condition, as might be expected, since the 
static load distribution used was more appropriate to the takeoff condition. The 

closeness of this T95 result and the static test result then tends to confirm the 
view that leading edge sweepback is not as highly effective in reducing the steady 
stress level in the leading edge vicinity as predicted in the earlier simple static 
tests on the plane blades. It is noticeable from the NPL tests that the stresses 

in the takeoff condition are higher than those in the flying conditions by nearly 

30 percent. 

In concluding this section on structural considerations, it would appear that 

blades with relatively thick leading edges are essential not only for ensuring 
structural integrity but also for reducing the leading edge deflection and the at- 
tendant efficiency loss. High values of the elastic modulus of the propeller ma- 

terial are also desirable for this purpose. Blade-root stresses can also be 
high, but it is relatively easier to control these by thickening the blades. With 
a fixed diameter the additional factors that influence the leading edge deflection 

and stress levels are the blade pressure distribution and to some extent the 

geometrical blade shape, although it appears that a large improvement due to 
sweepback is not evident. In the calm-water flying condition when the sections 
should be operating at relatively low values of incidence, the advantage of the 
rearward centre of pressure position of the Johnson 3-term section, say, over 
the circular-arc section is desirable. However, in the takeoff and more heavily 
loaded flying conditions when the incidences are relatively large, this advantage 
will diminish in value. 

In the Bras d'Or application when 4-ft diameter screws developing thrusts 
of about 40,000 lbf are used, it is expected that steady maximum principal 
stresses no greater than 25,000 to 30,000 lbf/in?, including centrifugal effects, 
will be experienced. It is also anticipated that due to the relatively moderate 
wake caused by the strut/foil assembly, the fluctuating stresses liable to cause 
fatigue will also be well within the capabilities of the material being used. Fluc- 
tuating propeller loading assumptions as used for design purposes are shown in 

Table 4. 

CONSIDERATION OF FUTURE METHODS OF PROPULSION 

In 1963, at the time when it was decided to proceed with the design and con- 
struction of the Bras d'Or, the only practical means of propelling the vehicle in 
the foilborne mode was by means of fully cavitating propellers. Despite the ad- 
vances that have been made with alternative means of propulsion in the inter- 

vening period, it is doubtful if a different decision would be made today, since 

the system that has been adopted has required the least development effort in 
return for a relatively high propulsive efficiency. 

The propulsion system may be divided into the three components—the en- 
gine, the Zed drive transmission, and the propeller. Considerable operational 
experience has been obtained with marinised gas turbines, but the requirement 
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to transmit 25,000 hp through two Zed drives in the struts has required consid- 
erable development effort by the General Electric Company of the USA. Rather 
similar drive systems of comparable complexity have been used in the US on the 

hydrofoil ships Denison and Plainview (AGEH-1) (Refs. 3 and 18), and no doubt 
the complexity expense, and vulnerability of this particular component, more 

than any other factor, has motivated the search for alternative means of propul- 
sion. However, in the authors’ opinion it is extremely unlikely that a more effi- 

cient means of propulsion will be found. 

The point is frequently made (Refs. 19 and 20, for example) that the effi- 
ciency of the propulsion device is not the only factor to be considered when se- 

lecting a method of propulsion for a hydrofoil ship, and that when all the relevant 
factors are considered, preference for an alternative device with a lower pro- 
pulsive efficiency may result. It might be expected that the overall system effi- 
ciency obtainable with the alternative device will be higher, but even this is not 
an essential prerequisite if the alternative is more reliable and requires less 

maintenance. At the present time, however, and in relation to the Bras d'Or 
power requirement, no alternative propulsion system can be said to provide a 

satisfactory alternative to gas-turbine-driven fully cavitating propellers. Never- 

theless, it might be of interest to make a brief assessment of the possible future 
means of propulsion. 

In basic terms, hydrofoil ship propulsion, as with all ships, requires the 
rearward acceleration of fluid, whether it be water or air, or a mixture of both. 
This requires the generation of energy onboard, the transmission of this energy, 
and finally the transference of the energy to the fluid used for propulsion. Some 
methods of propulsion such as rockets, both above and below water, do not re- 

quire the transmission and transference stages, but these fall outside the scope 
of devices that accelerate the ambient mass of fluid to obtain propulsion. Other 
devices such as jet engines without additional equipment only utilise the first 

and last stages, omitting the energy transmission stage. They lead to a me- 
chanically simple system, but unfortunately, due to the high jet velocities, the 
efficiencies are much too low. In fact, all forms of air propulsion, including air 
propellers, can be excluded on the grounds that the efficiency will be too low or 

. the device will be too large. 

The possibility of extending air propulsion by mixing water with airjets 

after the compression stages as described in Ref. 21 appears very attractive. 
This would increase the density of the fluid being accelerated and reduce its jet 
velocity, leading to an increase in efficiency over that of the plain airjet. The 
performance of such a device depends largely on the effectiveness with which 
the water particles can be accelerated and the air decelerated in the energy 

transference stage, and also on the efficiency of this transference. It seems to 
the authors that this method of propulsion will fail in the context of the Bras 
d'Or requirements precisely on these grounds, although this statement is based 
on the performance of the airblown ramjet and airlift pumps, and not on hard 

facts obtained from a water-augmented airjet. The airblown ramjet itself (Refs. 
22, 23 and 24), appears doomed to failure on the grounds that the efficiency is 
too low or the device will be too large. Also, auxiliary starting is required and 

acceleration is poor. 
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In connection with devices employing air/water mixtures, it appears that 

the efficiency and effectiveness with which energy can be transferred from gas 
to water, using the natural mixing process, is considerably less than that 
achieved when energy is transferred to water with the blades of propellers or 

pumps, where, for example efficiencies in the range of 80 to 90 percent are 
commonplace. If in the mixing process the efficiency of energy transference is 
only in the range of 20 to 40 percent, then this is too large a deficiency to make 
up by factors which have a second-order influence on the overall efficiency. 

Water propulsion is the only alternative method and this must be accom- 

plished by means of rotodynamic machines such as propeller-type devices or 
pumps. The principal difference in the application of these two types of device 

is that the propeller type, i.e., fully cavitating screws or ducted propellers of 

the so-called pump-jet type (Ref. 25), must be submerged beneath the surface, 

whereas those employing pumps, e.g., waterjets, may be installed within the 
hull. When mechanical power transmission is used, then pumps installed within 

the hull possess the obvious practical engineering advantage of a simpler me- 

chanical drive system, and this weighs heavily in their favour. Also the ques- 
tion of the vulnerability of complicated underwater equipment such as screws, 

ducts, gears, etc., must be considered, and while this is of secondary impor- 
tance in the case of oceangoing vehicles such as the Bras d'Or, it may be of pri- 
mary importance in vehicles employed on coastal and inland routes. 

Clearly then, the future choice of a propulsion device will depend largely on 

the role of the vehicle and on any developments that occur in pawer transmission 

systems. In the authors' opinion, any advances in geared or possibly hydraulic 
transmissions will strengthen the case for the fully cavitating propeller, on ac- 
count of its relatively high efficiency and ability to accommodate a wide range 
of loading without additional complications. 

Ducted propellers, similar to the type described in Ref. 25, in which the 

noncavitating screw or impeller is situated within a decelerating duct that is 

either base-ventilated or surface-ventilated on the external surface, could be 
contenders in the future. Mounted on the aft end of propulsion pods similar to 

those of the Bras d'Or, the device would employ a mechanical shaft drive, and 
the overall complication would be slightly greater than that with fully cavitating 
propellers. However, the presence of the duct and a support strut may enable 

more flexible alternative drives to be considered, e.g., hydraulic or pneumatic 
drives, in which the strut and duct are utilised for the power transmission, pos- 

sibly to the tips of the rotor instead of the axis. With a device of this type it is 

conceivable that the duct could replace the propulsion pod and the strut and foils 

could then be attached to it. 

Finally, the waterjet is another alternative, although in many respects it 

can be considered as a particular type of ducted propeller. Intense interest has 

been shown in these devices over the past few years, and the work mainly spon- 

sored by the US Navy Department, Bureau of Ships, has given fresh impetus to 

this subject. The current position and thoughts in relation to waterjet propul- 

sion are contained in the numerous papers that have been published recently, for 

example, Refs. 19, 26, 27, 28, 29 and 30. While some advanced proposals have 
been made, most of the component testing appears to have been conducted on 

pumps of established and proven design. A number of troublesome design areas 

1007 



Davis and English 

in the overall system have been highlighted. These are associated with the 
avoidance of cavitation erosion of the pump impeller, particularly in the takeoff 

condition, avoidance of inlet cavitation with fixed inlets and cavitation in the 
bends, ducting and elevation losses, and the weight of the system, including the © 
water in the ducting. Suggestions for alleviating these difficulties include in-: 
stalling variable geometry intakes and nozzles and using inducers to enable the 
pumps to operate at lower suction specific speeds. However, the engineering 

development required with variable geometry intakes and their installation are 
added complications; also, the efficiency of present-day inducers is too low for 
the large hydrofoil ship application. As regards the future, therefore, the intro- 
duction of these items can only be viewed with uncertainty. In the meantime, the 
progress of the US Navy's Tucumcari, Ref. 18, fitted with a gas-turbine-driven 
waterjet system is observed with great interest, although it will be appreciated 

that the Bras d'Or power requirement is about six times that of the Tucumcavi. 

Perhaps the only firm prophecy that can be made regarding future hydrofoil 
ship propulsion systems is that they will employ gas turbine power units. Their 

high power-to-weight ratio, the flexibility of the free-power turbine, and the 
large amounts of power that can be developed make them invincible for this ap- 
plication. The aeronautical requirement will also ensure a high level of devel- 
opment in the future. Developments in the marinised versions will possibly take 

place, and the interesting suggestion mentioned by Waldo in Ref. 31 of separat- 
ing the free-power turbine from the gas generator and considering the ducted 
gases as a replacement for the mechanical drive arouse interesting speculations. 
For example, possibly alternative engine arrangements could be devised to en- 
able simpler geared drives to be used for propellers, even including the possi- 
bility of inclined shaft drives. The relative simplicity of the inclined drive 
makes it an attractive proposition for use with fully cavitating and ventilated 

propellers, both of which offer good prospects for reliable, efficient propulsion. 

While fully cavitating propellers have received considerable attention in the 
past, ventilated propellers have been virtually ignored up to now, although con- 

siderable benefits are envisaged with this type of propeller since the problems 
of cavity collapse, cavitation erosion, and particularly underwater noise propa- 

gation should be greatly reduced. Further this type of propulsion, in which the 
venting air or gas is delivered through support struts which may be of the base- 
vented type, will also have application to high-speed displacement ships such as 
destroyers or frigates and hovercraft of both the sidewall and peripheral-skirted 
types, in addition to hydrofoils employing either noncavitating or fully cavitating 

foil systems. 

The structural problems associated with these propellers, such as provid- 

ing adequate strength and resistance to fatigue and cavitation erosion, may be 
relieved with the new materials that are emerging from the laboratory; for ex- 

ample, the boron or carbon-filament reinforced composite materials employing 

metallic or polymeric matrices may provide a better solution than either Inconel 
718 or titanium. Also, these materials may be more easily fabricated than In- 
conel and titanium, thereby eliminating the very costly forging and machining 

procedures currently employed. 
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NOMENCLATURE 

C Lift coefficient 
L 

D Screw diameter 

E Elastic Modulus 

V 
f Axial wake factor = xz 

f,_ Tangential wake factor = —®& 

V 
f Radial wake factor = 7 

J. Screw advance ratio = -. 
Mr 

Ky Screw thrust coefficient = —! 
pn?Dt 

K, Screw torque coefficient = o 
Q 2n5 

pn*D 

n Screw Speed of rotation 

p Static pressure 

Vapour pressure 

Q Screw torque 
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r Radius 

R Screw radius 

2 

S Structural similarity parameter = n7D’ See) 

T Screw thrust 

Vv Ship speed 

Vv. Axial wake velocity 

Vv, Tangential wake velocity 

V._. Radial wake velocity 

x Radius fraction = = 

f 
B ,, Inflow angle tan 6. = ——=—— 

th. “ fy 

s ffici Libel g Bi n crew efficiency = >—- Ko 

Q Angular rate of rotation 

pe Mass density 

Py 

Yov 
o Cavitation number or Poisson's ratio 
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APPENDIX 

WATER TUNNEL TESTING TECHNIQUES 

All the hydrodynamic testing for this project has been conducted in the No. 1 

water tunnel in the Ship Division, NPL, and in the course of testing a number of 

factors have come to light which are considered worthy of comment. These 
mainly refer to the corrections that have been applied to the raw measured data 

in order to determine the predicted ship values. Because it is not customary to 

use water tunnel results when predicting conventional displacement ship propul- 
sion from models, these corrections assume a greater importance in the model 

testing of fully cavitating propellers where tunnel testing is necessary. 

WATER SPEED MEASUREMENT 

The largest single factor affecting the results has arisen through the use of 
the upstream wake simulator. In order to set the water speed in the tunnel 

working section, the flow downstream of the wake simulator was first measured 
with a pitot rake and then this volumetric mean flow was plotted against the 

pressure drop occurring in the upstream contraction. Subsequently, when the 

screws were being tested the tunnel water speeds were Set by using this cali- 

bration. 

At any early stage in the test programme one of the fully cavitating propel- 
lers was tested both with and without the wake simulator. When tested without 
the simulator, the upstream bluff end of the screw hub was shielded from the 
oncoming flow by attaching a fairing cone to the hub which rotated with the 

screw. This procedure is customary when testing propellers with a downstream 
drive shaft. However, in this case, due to the large amount of hub taper which 
is necessary to fair in with the pod shape, the upstream fairing cone was neces- 
sarily ill-shaped in order to keep it of reasonable length. Testing the screw in 
this manner gave quite large differences compared with the results of testing 
behind the wake simulator, the thrust without the simulator being less than when 
it was tested with it. This was considered to be due to the large pre-swirl in 
the direction of the screw rotation caused by the rotating fairing cone, a view 
that was supported by the nature of the slight amount of cavitation that occurred 

on the upstream cone. Subsequently, no further tests were conducted without the 

presence of the wake simulator. 

SHAFT PULL CORRECTION 

A correction to the measured values of thrust has been necessary due to the 
differential pressures acting on the ends of the downstream drive shaft. One 
end of the shaft is in atmospheric air, while the other end is in the low pressure 

of the working section. Normally, without a wake simulator, the pressure acting 
on the propeller end of the shaft is taken to be the water tunnel working section 

pressure. However, with the wake simulator that was used, it was necessary to 
measure the actual pressure between the upstream end of the rotating screw and 

the stationary downstream end of the wake simulator. The arrangement tested 
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‘KERAMITE’ 
FAIRING 

PROPELLER 

NUT 

DOWNSTREAM e 

ORIVE SHAFT FAIRING CONE |SCREW WAKE SIMULATOR 

GAP 

Fig. A-1 - Diagrammatic arrangement of fully 
Cavitating screw with wake simulator 

is sketched in Fig. A-1, and two sample sets of pressure measurements are 
given below. 

(i). J =:0.80;, ¢: =-0.35 Tunnel water speed = 27.0 ft/sec 
Screw rate of rotation = 40.5 rps 

Vapour pressure = 44 lbf/ft? 

Pressure tap A B C D E F 
position > 

(Atmospheric) (Upstream) 
(static) 

Absolute pressure 

lbf/ft? — 2120 314 129 151 178 169 

(ii) 6 J) 0.3834) 228 Tunnel water speed = 10.5 ft/sec 
Screw rate of rotation = 42.0 rps 
Vapour pressure = 47 lbf/ft? 

Pressure tap A B Cc D E F 
position ra 

(Atmospheric) (Upstream) 
(static ) 

Absolute pressure 

bf /ft? Pri 2120 339 48 AON TA99SITR5 

In the first case the pressure at F, which was used in the pull correction, 
was considerably different from the upstream static pressure at B which would 
have been used in making the pull correction in uniform flow. For these results 
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the pull correction would amount to 13.5 lbf for a 1.1/8-inch diameter shaft, 
which is highly significant when compared with the total force measured on the 

dynamometer, which in this case was just over 100 lbf. Since the pressure at 

the tunnel end of the shaft is always low with low cavitation numbers, the pull 
correction does not vary too much; but it becomes a relatively large proportion 

of the total force at the higher J values when the thrust approaches zero. 

It can be inferred from the above pressure measurements at C and B, and 
from the fact that the difference between them is greater than the pressure drop 

across the simulator, that the inflow velocity to the screw at point C is greater 
than the upstream velocity, i.e., the inflow at this point zs accelerated. While 

this may not be the case at the outer radii, it does not confirm the statement 
that it is possible for decelerated inflows to accompany fully cavitating propel- 

ler operations. 

Referring again to Fig. A-1, it can be seen that the axial forces P, and P 
on the surfaces of the hub and downstream fairing cone X, and the annular area 
of the upstream hub surface Y, have also been included in the measured shaft 
force or thrust, and the net propulsive force arising from these pressure forces 
is given by (P, - Poy: In considering this force, it may be noted that whereas 
the flow, and hence the pressure forces over the hub, downstream fairing, and 

outer surfaces of the simulator near the propeller, are correctly produced on 
the model in relation to the ship, there exists a little doubt as to the relative 
magnitude of the force Pool the model tests. This arises because the condi- 

tions in the gap between the propeller hub and wake simulator could not be cor- 

rectly produced in the model arrangement when using a downstream shaft. 

A few tests were made on a model screw in which the gap between the 
screw and the simulator was varied from about 0.6 to 3 percent of the screw di- 

ameter, and it was found that the shaft axial force was unaffected while the gap 
was small but began to fall off when the gap reached 3 percent of the screw di- 
ameter. Subsequently, all tests were conducted with a gap varying from about 
0.6 percent to 1.5 percent of the diameter, and in this range the thrust did not 

vary with gap size. 

Finally, in connection with the measured tunnel thrust, the pull correction, 
and the pressure forces acting over the hub, it should be pointed out that the re- 
sistance of the craft should include the flow over the pods as far downstream as 

the propellers, plus the pressure forces acting over the pod surfaces in the 
propeller-pod gaps, both, of course, being determined with the propellers 

operating. 

TUNNEL WALL EFFECT 

No corrections have been made to the results to account for the constraint 
imposed on the flow by the presence of the tunnel walls. The tunnel used in 
these experiments had a slotted-wall working section and, like an open jet tun- 
nel, this is expected to reduce the corrections from this source to small values 

as it does with noncavitating propellers. Reference 32 summarises the existing 
data on fully cavitating propellers in relation to wall effects, but the results are 

obscure and could not be used for making corrections. 
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It may be noted that in these experiments the lowest cavitation numbers at- 
tainable were limited to some extent by the tunnel circuit cavitating in addition 
to the cavitation produced by the propeller itself. It was also necessary to per- 
form the tests at relatively low values of air content in order to prevent free air 

from recirculating around the tunnel circuit, and to enable the lowest working 
section pressures to be obtained. Throughout the tests the air content was kept 
approximately within the range of 3.5 to 7.0 parts per million by weight. 

REYNOLD'S NUMBER OF TESTS 

To achieve the low cavitation numbers required, the experiments had to be 
run at high speeds, and this led to high values of Reynold's number. Based on 
the relative flow and the blade chord lengths at the 70 percent radius, the Reyn- 
old's number of the tests was about 2 x 10° compared with 30 x 10° for the ship. 

* * * 

DISCUSSION 

W.B. Morgan 

Naval Ship Research and Development Center 

Washington, D. C. 

This extensive paper shows the amount of work necessary to develop a 

high-speed propeller for a particular application. An accounting of the details 

gone through in such a development is most welcomed. 

I have two questions which involve the strength analysis. The first question 

concerns the use of the simple beam theory for making the stress analysis. The 
stresses obtained by the authors experimentally indicate that the direction of the 
principal stresses toward the blade tip deviate considerably from that normally 

assumed for airfoil-shaped sections, i.e., normal to the nose-tail line. I would 
like to know, in the use of the simple beam theory, whether or not the principal 
stresses were considered as normal to the nose-tail line. It should be possible 

to calculate the location of the principal axis and take into account its true 
position. 

My second question is whether or not a section with a large annex was con- 
sidered for strength purposes. 
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REPLY TO DISCUSSION 

B.V. Davis 

I am indebted to Mr. S. Morita, who has provided the following answers to 

Mr. W.B. Morgan's questions: 

1. The methods applied to analyse the hydrofoil propeller blades included 

the simple beam theory for determining spanwise bending stresses, and tor- 
sional stress analysis of the noncircular blade sections. The combination of 

bending and shear stresses can give principal stresses in directions which are 

not normal to the section nose-to-tail line. This feature was clearly demon- 
strated during extensive structural testing of a full-scale aluminum blade model. 

2. With regard to the need for a large annex to the blade section, this was 
considered for early versions of the design. It was found that when applying the 

simple beam theory, the section modulus at the leading edge was reduced in 

spite of the increase in the moment of inertia. This is due to rotation of the 
principal axes, giving rise to increased fibre distance at the leading edge. The 
conclusion was that an annex at the trailing edge does not always provide a re- 
duction in the peak stress levels, and has the disadvantage of additional weight 

and hence higher centrifugal stresses. 

(Author's Note) — For the final design it was found necessary to trim off the 

upper rear section surfaces, to obtain small tension stresses in the thin blade 

leading edges, i.e., by rotating the section principal axis slightly above the sec- 
tion leading edge. A computer programme was used to obtain section properties 

at various blade stations, and a trial and error method used by removing trail- 
ing edge upper surface material until the desired principal axis orientation was 

obtained. 
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THEORETICAL AND EXPERIMENTAL STUDY 

ON THE DYNAMICS OF HYDROFOILS AS 

APPLIED TO NAVAL PROPELLERS 

E. Castagneto 
Istituto Architettura Navale 

Naples, Italy 

and 

P. G. Maioli 
Centro Esperienze Idrodinamiche 

Rome, Italy 

ABSTRACT 

The transformation of a hydrodynamic field into an actual propulsive 
device follows a method which, although being derived from theory, is 
based upon simplifications and approximations. Up till now no univocal 
procedure has been proved by experience. 

The main reasons for this unsatisfactory situation seem to be: (a) dif- 

ferences between hydrofoils' theoretical and actual performances; 
(b) the effect of flow curvature in wide-bladed propellers. 

Since the hydrofoil's performance is one of the basic elements for the 
majority of naval propulsive systems, conventional or not, it is intended 
in this report to present some theoretical analyses and experimental 
results dealing with the dynamics of hydrofoils. At the same time some 
practical consequences of the effect of flow curvature are pointed out. 

INTRODUCTION 

In the design of a naval propeller based onthe vortex theory two main phases 

may be considered: the evaluation of the hydrodynamic field for a limited num- 

ber of radial stations, that is, the computation of both the velocity diagrams and 
the products, lift coefficient x chord length (C, - c) ; and the shaping of the re- . 
lated cylindrical blade sections in such a manner as to be able to produce the 

desired lift without cavitation. 

The first phase follows a theoretical formulation, by now universally 
adopted, which does not require any further comment; on the contrary, the sec- 
ond one, in which the hydrodynamic field turns into an actual propulsive device, 

This work has been supported by the ''Consiglio Nazionale delle Ricerche." 

1019 



Castagneto and Maioli 

is derived from theory but contains unavoidable approximations, simplifications 
and empirical evaluations which do not yet lead to a univocal procedure well 
proved by experience (1, 2). 

The basic reasons for such discrepancies seem to be: 

(a) the considerable differences between the true performance in real 

fluid of the hydrofoils normally used in the design of a naval pro- 
peller, and their theoretical performance, as deduced by conformal 
mapping, in ideal flow; and 

(b) the effects due to the blade width; because the blade, in naval pro- 
pellers, is better represented by a vortex lifting surface rather 
than by a lifting line. 

The aim of this report is to present some theoretical analyses and to refer 
to some experimental results dealing with the above-mentioned topics. 

Studies on the dynamics of lifting foils are considered to be a topical ques- 

tion, because the hydrofoil is the basic element for the majority of naval propul- 

Sive systems, conventional or not. 

2. THE HYDROFOIL'S ACTUAL PERFORMANCE 

2.1 Lift Coefficient in Ideal Flow 

In designing the blades of a naval propeller, extensive use is made nowadays 

of foils with thickness distribution NASA 16 or NASA 66 mod. (the NASA 66 is 

less often used because of its thinness at the trailing edge), cambered according 
to the mean lines NASA a=1, NASA a=0.8, and NASA 65, and operating at an 
angle of attack q, measured between the chord and the direction of the undis- 
turbed flow. 

Tables 1 and 2 show the geometry of the above-mentioned section foils and 
mean lines, taken from the NASA Report 824. Theoretical values of the velocity 
increments for the basic thickness forms and mean lines considered and for a 
wide range of thickness ratios are tabulated in that report for each particular 

station along the chord, namely: 

(a) AV Fee AE AN function of the thickness ratio of a particular hy- 

drofoil, and proportional to the velocity of the undisturbed 
flow v; 

f 
(b) av py Va function of a particular mean line, and propor- 

tional both to the velocity v and to the camber ratio f /c; and 

(c) AV, = A'V,VC,q = function of the thickness ratio +,/c , of a partic- 
ular thickness form, and directly proportional, for each thick- 
ness ratio, to the velocity vy and to the lift coefficient C La? 
depending on the angle of attack. 
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Table 1 

Half Ordinates—NASA 16-66-66 Mod 

%C ei ae E/Qte t/2t 
9 NASA 16 NASA 66 NASA 66 mod 

0.4035 

0.3110 

0.1877 

If direction is disregarded, the velocity increments are the same both on 
the face and on the back, at each particular station along the chord. By applying 

Bernoulli's equation between any couple of symmetrical points 7 and wy’ onthe 

foil surface, at which the pressure is assumed to be P, and p,, the following 
relation is obtained: 

f 
2 a1 a'V (av, — + A'V,C (1) (e a~La 

1021 



Castagneto and Maioli 

Table 2 
Mean Lines a=1-a=0.8-NASA 65 

ftp 
NASA 65 

0.360 

0.190 

0.000 

and by integrating along the whole chord: 

lat 

c 

; ({ A'V, A'V, a : 
4 ; 0 ; 4 i 6 
t{ ary, de 1-2 f Sc ayy ar, ae (2) 

0 0 ([ Any, ac 

According to relation (2), the lift coefficient consists of two main parts: the 

first one, C,,, produced by curvature, depends upon the camber ratio f,/c of a 
particular mean line and upon the thickness ratio te of a particular thickness 

m 

i a 
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form; the Second, C,, , produced by the angle of attack, depends upon the inci- 
dence and upon the thickness ratio of a particular thickness distribution. See 

Bigs, 

(4 + Ay, + dy, fy + AvgCi«)-V 

« . 

N 

Fig. 1 - Velocity increments 

Assuming 

(3) |= 

— 

io) 

> = Q. io) | tas) 
a 

and 

it follows that 

f ' 
Che = Kp = (1+K,)- (5) 

If the structure of the two formulas (3) and (4) is considered, it is easily 
recognized that the coefficient x, depends only upon the mean line, and that xk’ ‘ 
in practice, even though not in theory, depends almost only upon the thickness 

distribution and the thickness ratio. 

In Figs. 2-7, values of C,, versus ¢ /c and f,/c are given for several 
combinations of thickness forms and mean lines. The values shown have been 
calculated by A. Silvestro (3), integrating numerically the velocity increments 

tabulated in NASA Report 824. 

1023 



Castagneto and Maioli 
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bt HE rs 
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1.0 

fm/c = 0.045 
0.9 i ae Te 

f m/c = 0.040 
0.8 (eee ee a 

f ~/c =0.035 
0.7 er. 

f-/¢ = 0,030 
CL, Si Oo eae aa | 

f ,/c = 0.025 
0:5 | rel 

f m/c = 0.020 
04 ee 2 ee eral 

£-,/¢, = 0.015 
0.3 p_. aenpmeter vitesse! 

ae eee f m/c = 0.010 

fin/e = on m/c = 0.005 

ol 1 | ! | =] 

0.03 0.06 0.09 0.12 OS 0.18 0.21 

tm /c 

Fig.2 - Lift coefficient at shock-free entry 
conditions versus f /c and t./¢: 

The same results can be very closely approximated (the error is no more 
than 0.5% for the ratios of t /c normally used) by 

f t 
epepsite ater, 84), (6) 

K, and K, being as shown in Table 3. 

In the practical design of naval propellers, an average value of kK, = 0.75 
may be assumed for all cases, if preferred, thanks to the very low values of the 
thickness ratio used. 

From a former work (4), a value of K, = 1.55 for Karman-Treffts profiles 
with NASA-65 mean line has been derived. This value is very far from those 
listed above, which refer, in general, to the foils by now normally used in naval 
construction, and, in particular, to those employed in the design of the blade 
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0.03 0.06 0.09 0.12 O35: 0.18 0.21 

tm /c 

Fig.3 - Liftcoefficient at shock-free entry 
conditions versus f /c and t,/c. 

Table 3 

Values of Ky and K; 

Values of K ; 

NASA 16 

Values of K, NASA 66 

NASA 66 mod. 
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fm/c= 0.060 4 

OB fm/c= 0.055 

fm/c= 0.050 
0.7 

fm/c= 0.045 

0.6 fm/c= 0.040 

fimn/ c= 0.035 
0.5 RO Neh eee ee | 

CL, fm/ c= 0.030 

0.4 hO 4 e\ghict eee oe 

f 2 eee ee 
fm/c= 0.015 

—_—_—_4 

Or = 

fr / c= 0.010 

OF f m/ c= 0.005 

0 ifs L ! 1 = 
0.03 0.06 0:09 0.12 0.15 0.18 0.21 

tim /C 

Fig. 4 - Lift coefficient at shock-free entry 
conditions versus f/é and f/x 

sections of naval propellers. In the case of an ideal foil of zero thickness, op- 

erating at shock-free entry conditions, relation (6) becomes 

f 
sae (7) Crp = Ke = 

and as such is commonly used in drawing the so-called "incipient cavitation dia- 

grams'' (5), (6), (7). 

It must be noted, however, that the approximation involved in formula (7) is 

too wide (errors made in evaluating C,, may reach 15% or more), and the au- 
thors who use it themselves suggest a consequent pitch correction. On the other 

hand, the reading of such cavitation charts does not appear easier than the nu- 

merical calculation involved in the relation suggested above, (6). 

The last term in Eq. (2) clearly leads to the conclusion 

i a (1+ Atv) AV, dee 1. (8) 
0 

In the NASA Report 824 a definite dependence of the velocity increments upon 
the angle of attack has not been shown; this means that the relation 
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fm/c = 0.05515 

f m/c =0,.050 

Lob 

fm/c =0.045 

0.9 ee eee el 

fm/c =0.040 
0.8 ee ee 

O.7b 

f m/c = 0.030 
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fm/c=0.025 

0.54 

fm/¢ = 0.020 
0.4 cee ee 

fm/c= 0.015 
Ch cs a eA ee es La 

fm/C = 0.010 
0.2 n 

fm/C= 0.005 
On m 

fe) i 1 ! i ut 

0.03 0.06 0.09 0.12 0.15 0.18 0.21 

tm /c 

Fig.5 - Lift coefficient at shock-free entry 
conditions versus f /c and t /c. 

cannot be put into an explicit form. In other words, it is not possible to isolate 
the individual influence exerted upon the lift coefficient c,, by the angle of at- 

tack and by the thickness ratio, respectively. 

There is consequently no possibility of building up an expression of the 
same form as relation (6) 

ut 
Cla = er, si) 

in which both the values of k, and K, may be evaluated. Theoretically, the fol- 
lowing relation holds good: 

Cy = Waieks - (9) 
a 

1027 



Castagneto and Maioli 

|.0)}-.$— 

fm/c = 0.055 

OSE 
fm/c = 0.050 

0.8 F fm/c = 0.045 

O 7K fim/c = 0.040 

fm/c = 0.035 

f m/c = 0.030 

cies 0.5 pe ee 

f m/c = 0.025 
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Fig.6 - Lift coefficient at shock-free entry 
conditions versus fete and Gace 

but in this simple equation the lift coefficient, caused by incidence, does not de- 
pend on thickness ratio. 

However, the values of ‘vy, do depend on thickness, as is shown by relation 
(8), which, taken as a whole, always has to be equal to one; but this does not 
mean that 

| AtVe, dota do and / BEV ASV das On 
0 0 

The dependence of A’V, and of A’v, on thickness is not linear, especially in the 
proximity of the leading edge. Most authors realize the required lift coefficient 

only by camber, that is, at shock-free entry condition; therefore there is no 
question, whatever expression be used for Cr,» but, as will be shown later on, it 
is advantageous to operate both with camber and with a little amount of inci- 
dence as well. 
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f,/c= 0.060 + 

0.8 fm/c= 0.055 

fm/c= 0.050 
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0.5 m 
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fm/c= 0.015 
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O.1F - fm/c= 0.005 

fe) =e ! L a) iL 
0.03 0.06 0.09 0.12 0.15 0.18 0.21 

Fig.7 - Lift coefficient at shock-free entry 
conditions versus f //c and t//c. 

Suction-Side Maximum Depression in Ideal Flow 

In operating conditions, the maximum value of the depression at a typical 

point # on the suction side of a foil (See Fig. 1) may be easily obtained by means 

of Bernoulli's equation, 

Ap Ap ’ ’ Li r) ; ; SES (Pena, Avac,, | el (10) 
2 ov 

q 

and substituting the value of f /c obtained by the relation (6): 

NV poe : 
AP (14A'V, 4+ —*-+0'v, C4) - 1. (11) 

es Oe 

For the basic thickness forms and mean lines considered in this report, 
when lift coefficients and thickness ratios fall in the range of those normally in- 
volved in the design of a naval propeller (generally Cic/t, <6), the point of 
maximum depression on the suction side occurs at 60% of the chord from the 

leading edge, whenever the required lift coefficient is obtained completely by 

camber or 90% by camber and 10% by the angle of attack. From the basic data 
tabulated in the NASA Report 824, the values of the various coefficients in rela- 
tion (11), shown in Table 4 are easily obtained for that point. Substituting the 
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Table 4 

Values of A'V,, A'V,, A'V,/K, 

NASA 16 NASA 66 NASA 66 mod 

aes aes Ee 

Cc 

' a e . . 

NASA 65 

0.31 

foregoing values in Eq. (11), the pressure coefficient at 60% of the chord, for 
various combinations of thickness forms and mean lines, becomes those shown 
in Table 5. 

Table 5 

Pressure Coefficient at 60% Chord Length on the Suction Side, 
for Some Combinations of Basic Thickness Forms and Mean Lines 

Formulas 

Cre 
P1132 Le 250 peg 131 c..) 

1+ ip 

L 

mise —+ 0.278 

t 

. 270 >t 0.250 

t 

A 1.270 + 0.278 

t 

sO H0) + 0.310 

1 Kipee 
(64 

t Cr 
NASA 65 | 22 ie Paley. = 03010 

(a C 

i: 
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These simple relations represent the cavitation index, which appears in the 

"incipient cavitation diagrams" referred to before, in a precise, analytical way. 
At the same time, this analytical solution amplifies and corrects the meaning of 
the cavitation charts both in that it includes the possibility of realizing lift par- 
tially by camber and partially by incidence, and in that the evaluation of the lift 

coefficient produced by camber takes into adequate account the influence of the 
thickness. 

The same relations show the convenience of realizing a certain amount of 

lift, that is, 10%, as suggested previously, by incidence, and the remaining 
amount by camber. Introducing these percentages into the above relations, and 
also eventually neglecting the term K, t,,/c which causes small differences to 
arise for thicknesses less than 0.05, the same relations can be further simpli- 
fied; the first, for instance, becomes: 

Ap oe \? Te (141.132 ret 0.238 Cp) +1. 

The analytical layout also offers the advantage of a direct determination of 
the minimum chord length required to avoid cavitation, without iterative proc- 

esses and without further readings of the "charts." If it is desired, the strength 
requirements may also be introduced directly by means of a specified series of 

the products ¢,2c for each section, or by means of the appropriate values for 
the root section. 

All this clearly facilitates the preparation of electronic computer programs. 

2.3 Chordwise Load and Pressure Distribution 

An ideal foil, such as that shown in Fig. 8, without thickness and incidence . 
and cambered according to the mean line a=1, has a uniform load distribution 
all along the chord, a constant negative pressure coefficient on the suction side 

Ap a = 27065 Grete (OL oSGnae 

and a constant positive pressure coefficient on the face 

Ap ¢ ; 
3 = 0.5 Cpe - (0.25 C; ¢) 

However, when the foil considered is no longer ideal, but thick, the chord- - 
wise load distribution still remains more or less constant, but the pressure dis- 
tribution changes considerably. 

Figure 9 shows the pressure distribution on both sides of a section foil at 

shock free entry conditions, with mean line a=1, thickness ratio 0.18, and cam- 
ber ratio 0.05515. This figure clearly reveals that at least from a theoretical 
point of view and as far as cavitation is concerned it is advisable to load the ex- 

tremities of an actual section foil more heavily, when hydrodynamically possi- 
ble. In the inlet area this loading is achieved precisely by realizing a given part 
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2 
- 2 = 050C, - + 028 Cie 

Fig. 8 - Chordwise pressure distribution 
upon the pressure and suction sides of 
and ideal foil with a NASA a=1 meanline 

Fig. 9 - Chordwise pressure distribution for a 
section foil: EVENS Ons alah Crate 1 
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of the lift coefficient by incidence, as is shown in Fig. 10, which refers to a pro- 

file NASA 16, a=1, t /c= 0.06, C, = 0.314, C,, = 0.9C,,C,, = 0.1 C,. 

Fig. 10 - Depression distribution on the suction side of a section foil NASA 
l6a.= lit /e = 0.06, €, = 0.314, c= 0.1 €,, Ci 250-9 C, . 

2.4 Performance in Actual Flow 

In actual flow the hydrodynamic characteristics of hydrofoils change quite 
considerably. The experimental data available are rather scarce, doubtful, and 
poorly correlated. As far as the foils considered in the present study are con- 
cerned, these data refer only to experiments in air at a Reynold's number (re- 
ferring to the chord) between 3 and 9 x 10%, and with thickness ratio t,,/c > 0.06, 
notably larger than the smallest ones used in the design of naval propellers (and 

which are usually of more interest with regard to cavitation effects). 

For this reason, systematic, experimental research in water would be very 
welcome. Such research should include the two thickness forms NASA 16 and 
66 mod, the three mean lines a=1, a=0.8, and NASA 65, and should cover a 
range of thickness ratios from 0.03 to 0.2, while the angle of attack should vary 

between 0° and 5°. 

In the following paragraphs several average values are reported as they re- 
sulted out of an examination and interpretation of the experimental data of NASA 
Report 824. For want of something more precise, these data may be employed 

in naval propeller design. 
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(a) Lift coefficient due to incidence. 

Mean line NASA 65 C,, = 6.10 (1-0.15 t,/c)a 

. a=l 
Mean lines 5 0:8 Ce = 5.80 (1+0.25 t,,/c)a 

As can be seen, the thickness effect on the mean line NASA 65 leads in the 
opposite direction to that on the mean lines a=1 and a=0.8. 

When the thickness ratio ranges between 3% and 10% of the chord, it can be 
more easily assumed in both cases that 

Cr = 6.00'a 107105 "a, 

where a and a°, expressed respectively in radians and degrees, represent the 

angle of attack with reference to the chord. 

(b) Lift coefficient due to camber. Designating the lift produced by cam- 
ber by the symbol |Cz,¢|; [as can be deduced from relation (6) for operation in 
ideal flow], the same coefficient |C, Ales for operation in actual flow, can be cal- 

culated as follows: 

. a=0.8 
ICrr|, = 0.75 |Crr|; for mean lines fren 65 

ll ICrrl, 0.675 |c,,|, for meanline a=1. 

(c) Zero lift angle of attack. It can be assumed with sufficient accuracy 
that 

in radians. 

(d) Pressure distribution along the surfaces of the foils. An experimental 
result obtained with a NASA-16 section foil, a=1, t,/c = 0.06, and £,/c = 0.011, 
at shock-free entry, is shown in Fig. 11. The values of the pressure distribution 
on the surface, as they resulted from experiments, are compared with the theo- 

retical values which were calculated on the basis of the methodology previously 

discussed, by employing the velocity increments tabulated in NASA Report 824 

for several stations along the chord. 

The experimental data were measured in a cavitation tunnel, with a test 
section of 60cm x 60cm, by means of thirty pressure holes drilled at appropri- 

ate intervals on the surface of a profile (with a chord of 20cm and a span of 
60cm), connected with the same number of mercury manometers. In order to 
avoid difficulties arising from the effect of finite span and correction for sup- 

port interference, the span of the foil was made equal to the width of the test 
section. 
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The theoretical lift coefficient for this 
foil, as calculated by integrating the velocity 

increments along the chord, results at the 
value of 0.2076, that is, very close to the value 024 
0.208 obtainable by means of relation (6). The 
experimental value of the lift coefficient, as 
given by the integration of the measured pres- 
sures diagram, closely approaches 0.151. 

/ 

/ 
1 
! 
I 
1 

he 

= — THEORETICAL 

~-- EXPERIMENTAL \ 

The loss in lift seems to be largely at- 

tributable to the positive pressure fall which 

occurs all along the face of the foil, but espe- 

cially in the vicinities of the leading and trail- 
ing edges. On the contrary, the depression on 

the back, for the entire width of the foil, prac- = 
tically matches that calculated theoretically; 
a fact which could lead to the conclusion that 
viscosity has little or no influence on this 

particular aspect of the phenomenon. 

The verification of such a result is of 
obvious importance from the cavitation point 

of view. In any case the subject needs to be 
gone into more thoroughly, and this empha- 
sizes the usefulness mentioned earlier of ap- ol Lt 

propriate, systematic research. Bie ee ee eee 
% CHORD 

It should be noted, though, that during the Fig. 11 - NASA 16-206: 
tests the onset of cavitation always took place, experimental and theo- 
as far as could be seen, at values of the cavi- retical results 
tation index 20-25% higher than those evalu- 
ated by theory. This could explain the usual 
practice of reducing the cavitation index by the same percentage both when de- 

signing a naval propeller, and when evaluating the results of water tunnel ex- 

periments. 

However, one should remember the difficulties of establishing the exact 
moment in which cavitation takes place, either by natural observation or by us- 
ing stroboscopic light, and one should also remember the error involved in sub- 
stituting the critical value of the pressure by the vapour pressure at test tem- 

perature. 

3. EFFECTIVE PERFORMANCE OF THE PROPELLER 

3.1 Propeller Models 

The difference between the performance of a hydrofoil in ideal fluid and its 
performance in actual fluid has already been mentioned, and the reduction coef- 
ficients 0.675, 0.75, and 0.75 have been suggested for the mean lines a=1, a=0.8, 
and NASA 65, respectively. 
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In order to evaluate the accuracy of these coefficients in propeller design 
and at the same time to measure as far as possible the effect of the blade width 
(the second cause of difference given in the introduction) an experimental test 

was carried out using the following models: 

case A: A propeller for fast, military craft, with a high value of expanded blade 
area ratio and a low value of thrust coefficient (Table 6), constructed in 

three models with identical design data and identical radial thickness dis- 
tribution, but according to three different geometrical solutions: 

E.973 mean line a=1l lift 90% by camber and 10% by incidence, 

E.1065 mean line a=0.8 lift by camber and by angle of attack associ- 
ated with the mean line, and 

E.1030 mean line NASA 65 _ lift by camber alone. 

Table 6 
Design Data of Real Propeller 

6500 Kg 146,000 Kg 

16.28 g/sec 1.83 g/sec. 

1.10 m 7m 

0.204 m 

4 

12.063 m H,O 

20.56 m/sec 5,684 m/sec 

0.3654 0.14101 

0.3097 2.24736 

0.3337 2.28274 

0.8521 0.621 

0.1603 0.17318 

1,148 0.443 

0.546 9.93 
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case B: A propeller for cargo boats, with a low value of expanded blade area 
ratio and a high value of thrust coefficient (Table 6), constructed, as case 
A, with identical design data and identical radial thickness distribution, but 
according to the three solutions: 

E.1031 mean line a=1 lift by camber alone, 

E.1066 mean line a=0.8 lift by camber and by angle of attack associ- 

ated with the mean line, 

E.997 mean line NASA 65 _ lift by camber alone. 

case C: 

E.997 as above (basic model) 

E.998 camber reduced by 50% with reference to the basic model, 

E.999 camber increased by 50% with reference to the basic model. 

The mean line NASA 65 was adopted for each of the three models, and the thick- 
ness distribution and chord length were identical in each case. 

The aim of investigations A and B was to check the effect of the mean line 
and of the blade width; the aim of C was to emphasize the effect of the camber. 

The hydrodynamic calculation for cases A and B was carried out on the basis of 
the vortex theory, involving, in particular: 

optimum circulation distribution; 

ideal efficiency as illustrated by Shultz in the DTMB Report 1148; 

Goldstein factors reported by Tachmindji in the DTMB Report 1141; 

theoretical lift coefficients and pressure coefficients on the suction 

side as for the numerical expressions and coefficients referred to in 
Secs, 2.1 and 2.2; 

real fluid reduction coefficient 0.75 for all mean lines; 

lift coefficient for angel of attack C,, = 0.1a°; 

corrections for camber and angle of attack according to Ludwieg- 
Ginzel. 

The thickness distribution NASA 16 was adopted for all the models. Theo- 
retical performances for models E.998 and E.999 were determined by means of 
a "reverse calculation"; this allows an evaluation of the hydrodynamic charac- 

teristics to be made for any desired advance coefficient (in this case that of the 
basic model E.997) when the geometry of the propeller is given in its entirety. 
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Such a "reverse procedure" is based upon the equality of the conditions im- 

posed by the hydrodynamic calculation, which can be expressed, section by sec- 
tion, by the well-known relation 

Ce ex X sin (B;) tan (6£;-8) 

and upon the equality of the conditions imposed by the geometry of each single 
section, which, according to the notations and relations presented in the preced- 

ing paragraphs, are expressed by 

ee te 
C, = 0.75 K; fn (4K, fn), 6.000, 

where 0.75 is the coefficient of reduction from perfect to viscous fluid. 

The equation of equality is an implicit function only of the hydrodynamic 

angle of advance 6;, which can be evaluated for each separate section together 
with the ideal efficiency 7,. In this way it is possible to deduce the values of 
the thrust T,, of the ideal moment Q,, and of the corresponding quantities in 
actual fluid; the latter with the introduction of an appropriate value of the drag- 
lift ratio « (in this case equal to 0.035). Table 6 gives the design and the cal- 
culated hydrodynamic data for cases 4 and B; Table 7 for the three models in 
case C. 

Table 7 

Camber and Pitch Ratios of Models 

E.997 (Basic)-E.998-E.999 

ide 

E. | E.997 | E.998 soe | E999 
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The tolerances of the models resulted as follows: 

mean pitch + 0.3% 

thickness on inner radii + 1.8% 

thickness on outer radii + 0.9% 

3.2 Experimental Results 

The final results of the tests carried out in a cavitation tunnel, at constant 

velocity and variable revolutions, are reported in Table 8. Experimental data 

have been corrected for wall effect according to the formula 

+= 1 eye ees | 
13; 

in which 

V ll velocity of the water in the tunnel, measured by a venturimeter; 

V advance velocity of the propeller in open water at the same thrust 

constant C, ; 
E 

propeller disk area/tunnel test section area. ie) ll 

3.3 Comments and Conclusions 

An examination of the results presented in Table 8 gives rise to the follow- 

ing comments and conclusions: 

(a) The actual performance of propellers with a low expanded blade 
area ratio (equal to or less than 0.45) matches the expected data very well 
when the mean lines a=0.8 and NASA 65 are adopted (propeller models 
E.1066, E.997, E.998 and E.999), and when the hydrofoil coefficients sug- 

gested in Sec. 2. are used. 

When the mean line a=1 is employed, performance is about 10% 
lower. This reconfirms the advisability, already mentioned in previous 
pages, of adopting a reduction coefficient equal to 0.675 for viscous flow 
(instead of 0.75 as used in designing the models in question) when employ- 

ing the mean line a=1. 

(b) Propellers with a high expanded blade area ratio are subject to a 
further drop in performance (valuable at 10% when Ap/Ay > 1.00). Such a 

conclusion has been reached by other authors, and the problem has given 
rise to many thorough, theoretical and experimental investigations (8), (9), 

(10), (11). 
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1. 

Dynamics of Hydrofoils as Applied to Naval Propellers 

Rough approximations and the inadequacy of the Ludwieg-Ginzel 

method of correcting flow curvature (based only on the induced velocity at 
one point half way along the chord) account for the differences encountered. 

(c) The preceding deductions and in general the reliability of the pro- 

cedure followed are supported by the reverse calculation, even though the 
experimental results contain unavoidable inaccuracies of measurement and 

the reverse calculation was used only in connection with nonoptimum free- 

running propellers. 
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DISCUSSION 

Wm. B. Morgan 
Naval Ship Research and Development Center 

Washington, D.C. 

I would like to emphasize the authors' remarks concerning the NACA a=1.0 

and the NACA a=0.8 mean lines. It is our experience at NSRDC that the theory 
for design of moderately loaded propellers is adequate provided that certain 

important steps are made. 

(1) The NACA a=0.8 load distribution is used and not the constant load 
distribution, because due to viscosity the a=1.0 distribution cannot be realized 
in practice. 

(2) Lifting-surface corrections from modern computer programs are 

used. These correction factors must include a camber correction, an ideal 
angle of attack correction, an angle correction for skew (if used), and an angle 
of attack correction for thickness. 

A paper presenting extensive tables of correction factors will be presented 

at the 1968 Annual Meeting of the Society of Naval Architects and Marine Engi- 
neers. 

DISCUSSION 

C. Kruppa 
Technische Universitat 

Berlin, Germany 

I would like to supplement the data on foil section characteristics presented 
by the authors, and refer to some hitherto unpublished work which I carried out 
in the Vosper cavitation tunnel (Portsmouth, England), some years ago. The 
main scope of this work was to assess the cavitation-free angle of attack (or lift 
coefficient) ranges of two-dimensional foil sections, consisting of elliptic- 

parabolic thickness distributions, cambered with the NACA a=1.0 mean line. In 
total, eight different foil sections were tested, covering thickness-chord ratios 

0.03 < t/c < 0,12 and design lift coefficients 0 < C,, < 0.56. The work was 
sponsored by the British Admiralty. Copies of the report should be obtainable 
through AEW-Haslar by referring to Vosper Report No. 115 (''Methodical Cavita- 
tion Tests on Blade Sections—Three Component Factors and Cavitation Pat- 
terns"). 
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The experimental results obtained in the cavitation tunnel were compared 
with theoretical results, using the superposition method referred to by the au- 
thors as well as the rigorous method of conformal mapping. 

The experimental data showed indeed that for the NACA a=1.0 mean line, 
viscous flow effects resulted in an 25% shift in zero lift angle of attack, towards 
smaller values. If satisfactory agreement between theoretical predictions of 
cavitation-free angle of attack ranges and experimental data was to be obtained, 
the viscous flow corrections had to be incorporated both in camber and angle of 
attack. 

At present, an experimental program has been started in the cavitation- 
tunnel laboratory of Berlin Technical University where the cavitation-free angle 

of attack ranges are to be assessed for oscillating foil sections. The latter con- 

sist of NACA 16 thickness distributions cambered with the a=0.8 mean line. In 
total, 25 different foil sections will be tested in a two-dimensional test section, 
over a wide range of cavitation numbers and reduced frequencies, covering 
thickness-chord ratios 0.03 < t/c < 0.18 and design lift coefficients 0 < CLi < 
Osd% 

DISCUSSION 

C.-A. Johnsson 

Swedish State Shipbuilding Experimental Tank 
Goteborg, Sweden 

I should like to support Dr. Morgan when he claims that the lifting-surface 

theory in its present stage is adequate for design purposes for conventional pro- 

pellers in most cases. In his answer to Dr. Morgan, Dr. Castagneto refers to 
some comparisons between calculations and experiments, reported recently by 

me, where he has found, in some cases, very large differences between the cal- 
culated number of revolutions and those obtained in open-water tests. Regard- 
ing those two cases, where such discrepancies could be noticed, it can be clearly 
seen in the report that they are characterized by very small values of the ad- 
vance ratio 7. Thus, the reason for the discrepancies is most likely that these 
cases are outside the range within which the theory of moderately loaded propel- 

lers can be applied. As this range is difficult to determine accurately enough, . 

low j values have to be considered with care, which, of course, is a limitation 
of the applicability of the theory. Bearing this in mind, however, the lifting- 
surface theory seems to be adequate for design purposes as long as the NACA 
a=0.8 mean line is used. Very good agreement between calculated and measured 
number of revolutions can be expected without adding any empirical corrections, 
provided the thickness effect is included. 
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REPLY TO DISCUSSION 

E. Castagneto and P.G. Maioli 

The authors would like to thank all those who took part in the discussion for 

their precious contributions. 

The main aim of our paper was to present simple and practical mathemati- 

cal relations [formula (6) and Table 5], which would permit the evaluation of 
some dynamic characteristics of hydrofoils as applied to naval propellers in 

ideal flow. At the same time the paper emphasized the necessity of using suit- 

able coefficients to take the effect of viscous flow into account. 

With regard to the hydrodynamic characteristics of hydrofoils in actual 
flow, we are very glad to learn from Dr. Kruppa's communication that some- 
thing has already been done (at the Vosper cavitation tunnel), and is being done 

at present (at the Berlin Technical University), to fill in the gap of which we 
complained in our paper and which interests not only propellers but also other 

design particulars such as rudders, stabilizers, etc. 

Dr. Morgan and Dr. Johnnson have emphasized that the design theory of 

moderately loaded propellers operating under incipient cavitation conditions can 

nowadays be considered as adequate, provided that NACA = 0.8 load distribution 
and lifting-surface corrections are used. The authors take note of this with much 

satisfaction. Undoubtedly it represents an important achievement, even if the 
problem still remains open for other types of load distribution, and certainly it 
justifies the further research which is being done on the dynamics of hydrofoils 
in viscous flow, the results of which, once obtained, we hope can be presented in 
such a plain and simple way as to be easily utilizable by all naval designers, 
whether of propellers or not. 
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WATERJET PROPULSION 
Virgil E. Johnson, Jr. 

Hydronautics, Inc. 
Laurel, Maryland 

INTRODUCTION 

Although waterjet propulsion is certainly not a new type of propulsion, it 

has become of increasing interest in the past decade. In the late 1950's, water- 
jet propulsion received considerable publicity as the method of propulsion for 
sports craft of the future—probably because the glamour of jet-propelled air- 
craft appealed to the small sports craft owner. Most of this type of appeal has 

worn off now, and the rush to waterjet-propelled small sports craft has not yet 

materialized. The facts are that at the present speed of most small craft (35 
knots or less), the efficiency of the conventional screw propeller is considerably 

higher than that achievable by waterjet systems. Consequently, except in those 

cases where very shallow craft or a completely protected impeller is required 
(regardless of efficiency), waterjet propulsion is not likely to take over in the 

small sports craft field. 

At higher speeds, say, greater than 45 knots, the conventional screw pro- 
peller suffers because of cavitation. The substitute for the conventional screw 

propeller at these higher speeds is the "Supercavitating" propeller. Such pro- 

pellers have been successfully designed and built for numbers of planing and 

hydrofoil craft in the speed range less than 60 knots. Much higher speeds are 

achieved in racing craft using supercavitating propellers. 

The great increase in interest in waterjet propulsion in the past five years 
has been brought about because of the need to propel high-speed craft (45-100 
knots) such as hydrofoils and surface-effect ships. Although the supercavitating 

propeller is a logical candidate for propulsion of these higher-speed craft, the 
supercavitating propeller does experience serious performance degradation at 

low advance ratios and thus has difficulty producing the large thrust required at 
hump speed. In those configurations using a 'Z" drive, the bevel gears required 

in the pod to supply power to the supercavitating propeller tax the state of the 

gear design art. 

Waterjet propulsion offers a substitute for supercavitating propellers at 

high speeds. Waterjet propulsion systems eliminate the gearbox problem, and it 

should be possible to design waterjet systems with "hump" thrust characteris- 
tics superior to those of supercavitating propellers. Of course, it is generally 

nature's way that solutions to existing problems introduce new problems—so it 
is with waterjet propulsion. This paper presents no new information related to 

waterjet propulsion, but rather highlights the present state of the art. Fora 
more comprehensive state-of-the-art report, including an extensive and up to 

date bibliography, see Ref. (1). 
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EFFICIENCY 

In Ref. (2), expressions are derived for the efficiency of waterjet propulsion 

systems strictly on the basis of momentum theory. No account is taken of (1) the 

wake inflow to the inlet (inflow is assumed to be uniform at the velocity of the 

craft), (2) the effect of the inlet on the resistance of the craft, and (3) the addi- 
tional drag of the craft that may be attributed to the additional weight require- 
ments of a waterjet system. Typical waterjet systems are schematically shown 

in Fig. 1. 

Fig. 1 - Geometric configuration 
of waterjets 

As derived in Ref. (2), the ratio of propulsive efficiency 7 to pump effi- 
ciency 7 is presented in Fig. 2 as a function of the parameter y* - 2gH/V,? ; 

where y is the head added by the pump and y, is the forward speed of the craft. 

The various curves shown in Fig. 2 are for different values of the parameter kK , 
where the internal losses h, (inlet, internal diffusion, ducting and nozzle) are 
defined as h, = KV,?/2g. The important point to note from Fig. 2 is that an 
optimum value for H* exists for each value of kK. 

Physically, Fig. 2, points out that for a given value of k, the efficiency is 
less than optimum for H* < Ht, , because excess energy is used in overcoming 
the internal losses; whereas operation at values of H* > He, results in de- 
creased efficiency because of excess kinetic energy expended in the jet. It is 
important to recognize that operation at increasing values of H* means in- 
creased jet velocity and consequently, for a given thrust requirement, decreased 
discharge. Thus, operation at higher values of H* means smaller inlets, ducts, 
pumps, and nozzles, and thus less weight for a given thrust. This fact, as is 
pointed out in several Refs. (1-4), generally leads the designer to select 
H* > He in order to achieve a system which requires less power to propel a 
given payload, even though the "momentum" efficiency as presented in Fig. 2 is 
less than optimum. 
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Fig. 2 -Hydrodynamic characteristics 
of waterjet propulsion systems 

In fact, the final or "best" design of a waterjet propulsion system is 

achieved only after a very sophisticated examination of all the factors which in- 

fluence achieving maximum payload/unit horsepower as payload/unit cost for a 

prescribed mission. This inability to compare waterjet systems with conven- 
tional or supercavitating propellers on the simple basis of 7 or even P.C. isa 

serious difficulty that has not yet been universally resolved. It is important that 
the lack of a simple comparitive "figure of merit"' does not exist; however, those 
who design systems for a specific requirement do recognize that it is indeed 
"cost effectiveness" that selects the superior system. The problem is discussed 

in some detail in Refs. (1) and (3), and the general problem is treated further in 
the following paragraphs. 

Figure 3 illustrates the important factors the designer must treat in estab- 
lishing an optimum design. TheSe factors are: (1) the influence of the wake ap- 

proaching the inlet, (2) the effect of the inlet and fairing on the "bare hull" re- 
sistance of the craft, and (3) the machinery, structure, fuel, and propulsor 
weight are all dependent on the actual power required for the ship's mission, 

and this power in turn depends on minimizing these weights. Clearly many en- 

gineering compromises are required to achieve a final "optimum" design. An 

example of the results of a study (Ref. (4)), which attempts to compare various 
propulsion systems over the speed range up to 100 knots, is presented in Fig. 4. 
The value of P.C. presented as the ordinate does take into account most of the 

factors previously discussed. Although the results presented in Fig. 4 are gen- 
erally comprehensive, and the results of such a study are extremely valuable in 
pointing out possibilities not previously appreciated, much more detailed studies 

are required for a specific mission to definitely establish the superiority of one 

propulsion system over another. 
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a (SHP) FIXED b (GROSS) c (SHP) d (SHP) 

FUEL PAYLOAD STRUCTURE MACHINERY PROPULSOR 

gece ae Gee == THRUST 

INLET 

LARGE SHIP G.T. WATERJETS 
DESTROYER B.L. INGESTION 

PROPELLERS 
L 

A a 
f —— HYDROFOIL WATERJETS 

] SMALL CRAFT SUPERCAVITATING 
WATERJETS PROPELLERS 

—SUBCAVITATING| PROPELLERS ea 

0 20 40 60 80 100 

VELOCITY - KNOTS 

Fig. 4 - Design propulsor 
comparisons (Ref. 4) 

INLETS 

The two most important problem areas in the design of water-jet propulsion 

systems are the inlet and the pump. 

The inlet must be designed to operate cavitation-free at cruise speed. Such 

cavitation-free operation in uniform, zero-incidence operation should be straight- 
forward, but the inflow is generally nonuniform and there is always some inci- 
dence as the craft moves through rough water or maneuvers even in smooth 
water. Furthermore, the optimum flow rate through the system varies with the 
speed and thrust requirements of the boat, so that the inlet must be capable of 
operating over a wide range of inlet velocity/forward speed ratios or must be 
designed with special features, such as variable area. There is, at present, a 
great lack of experimental data concerned with the cavitation characteristics 

and efficiency of head recovery of inlets suitable for waterjet propulsion sys- 
tems. Reference (5) does present a procedure for the design of two-dimensional, 

base-vented inlets for various inlet velocity ratios. 
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PUMPS 

The principal requirements of pumps for waterjet propulsion systems are 

that they be cavitation-free and light-weight. As usual, these requirements are 

not compatible. 

The most severe conditions for cavitation-free operation exist at the low- 
speed "hump" situation. At this condition large thrusts are demanded at low 
suction heads. If the pump is designed to operate nearly cavitation-free at the 
hump condition, the additional suction head obtained from ram recovery is more 

than adequate to prevent pump cavitation at cruise. 

A detailed discussion of the pump selection problem is given in Ref. (2). 
Figure 5 (taken from Ref. (2)) illustrates the type of pump required for a typical 
hydrofoil craft as a function of speed and size of craft (as indicated by the static 

lift parameter h ). This figure assumes that the pump is single-stage and is 
noncavitating at the hump speed (taken as one-half the cruise speed). The ordi- 
nate of Fig. 5 is the specific speed n, = rpm(gpm)'’* (ft)*/*. This parameter is 
indicative of the type of pump required. For example, Fig. 5 illustrates that, at 

high speeds, the pumps should be centrifugal. 

\|___ bh = STATIC LIFT 

n_ - THOUSANDS 

PROPELLER 

MIXED FLOW 

CENTRIFUGAL 
0 20 40 60 80 100 

CRUISE SPEED - KNOTS 

Fig. 5 - Single-stage non- 
cavitating pump types for 
waterjet propulsion systems 

It is also explained in Ref. (2) that pump sizes can be reduced for a given 
requirement by dividing the total discharge required into a number of parallel 
units. Double-suction centrifugal pumps are examples of a simple division of 
the total flow into two equal parts. Figure 6 (taken from Ref. (2)) illustrates the 
use of multiple, parallel, double-suction, centrifugal pumps. The Boeing Com- 

pany has utilized this scheme in the design of the pumps for the U.S. Navy Pa- 

trol Craft "Tucumcari" (Fig. 7), shown in Fig. 8 prior to installation in the craft. 
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DOUBLE SUCTION IMPELLER 

al INFLOW 

Fig. 6 - Multiple impeller 
double-suction pump 

Fig. 7 - The waterjet-propelled hydrofoil craft 
Tucumcari (designed and constructed by the 
Boeing Company for the U.S. Navy) 

Another approach to achieving light-weight pumps has been described in 
Ref. (3). In this approach, very-high-solidity axial or mixed flow pumps are 
proposed and, in fact, have been tested and operated. The pumps generally op- 
erate with rather severe cavitation at the hump condition, but Ref. (4) suggests 
that, by properly designing the rotor, cavitation damage can be alleviated. An 
example of the high-solidity rotor is shown in Fig. 9. Figure 10 is a photograph 
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Fig. 8 - Parallel double suction pumps used 
in the Tucumcari 

4 = 

oat 

ee 

Fig. 9 - High-solidity rotor used in the Pratt 
and Whitney waterjet system Sea Jet-6 
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Fig. 10 - The planing craft Thunderbird pro- 
pelled by the Pratt and Whitney Sea Jet-6 
waterjet system 

of the Pratt and Whitney planing craft "Thunderbird," propelled with a waterjet 
system using the high solidity-rotor. 

TEST APPARATUS FOR WATERJET SYSTEMS 

The "physics" of waterjet propulsion are well understood. No new theoreti- 
cal analyses other than those of an engineering nature are required. Further 
development of optimum systems must be made through model and full-scale 
experimentation. An example of such a model test and the experimental appa- 
ratus used is given in Ref. (6). The tests described in Ref. (6) were carried out 
in the Hydronautics, Inc. High-Speed Channel. The test rig is shown schemati- 
cally in Fig. 11. The entire inlet-diffuser-pump-nozzle combination was sup- 
ported as an isolated section of the tunnel roof. This section was supported on 
linear bearings, so as to be free in the direction of flow. Power was supplied to 
the pump through a thrust-torque dynamometer so that thrust on the entire sys- 
tem could be measured along with the power supplied. The characteristics of 
the waterjet system were obtained for a variety of forward speeds, pump rpm, 

jet velocities, and discharges. Since the facility has a variable pressure capa- 
bility, the effect of cavitation number may also be readily studied. Experiments 
with the inlet closed provided tares for the thrust produced and velocity surveys 
forward of the inlet and within the jet, provided deduced measurements of the 
thrust breakdown; that is, drag added by the inlet. Complete details of the stud- 
ies Carried out are presented in Ref. (5). 
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CHANNEL BOTTOM 

Fig. 1l - Experimental apparatus for test- 
ing waterjet systems in the hydronautics 

high-speed channel 

CONCLUDING REMARKS 

In conclusion, it may be stated that, particularly at high speeds, waterjet 
propulsion promises to be competitive with the supercavitating propeller. How- 

ever, before the promise is fulfilled, considerable work remains to be done. 
This work is principally engineering design and experimental development. The 
most urgent research needs are: 

(1) Light-weight cavitation-free pumps, including the influence of non- 
uniform inflow. 

(2) Inlet hydrodynamics, including nonzero incidence: 

a. boundary-layer ingestion 

b. ram recovery 

c. external drag 

d. cavitation characteristics 

e. air ingestion 

{. off-design performance—variable area. 
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DISCUSSION 

Pier Giacomo Maioli and Giovanni Venturini 
Ministero Difesa Marina 

Rome, Italy 

In a recent paper we have prepared with Cdr. Maioli, we have tried to work 
out an expression of what we called "total propulsive efficiency," defined as the 

ratio of the effective horsepower of a ''basic" hull and the brake power of the 
primary mover. The basic hull is an ideal hull, complete in every part with the 

exception of its propulsive devices and those parts which are connected to the 

propulsive devices. 

If the missing parts are added, though the value of design speed is kept the 
same, hull resistance increases, both because of the increase in weight and be- 
cause of the presence of additional elements in the water. 

In this way external efficiency may be defined as the ratio between the re- 

sistance of the basic hull and the resistance of the complete hull. 
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Moreover, if we define as internal efficiency the ratio between the ideal and 
the real head of the pump, the total propulsive efficiency assumes the following 
general expression: 

vee Nideal ~ Tinternal ~ Npump j Nexternal 

where, for the free jet, 

ati 71): SS 

Dr CK yk ti Ss aa 
0 

= tant Np constan 

Tz 
Next = ar 

while for the jet on wake, 

2Gr > xX.) 
7). = 

1 : v) _ X5 

r?2 - xX, 
nN: = = 7) = 7) 

BE) EBC PRE ye Ee Re Soh Bes BP 442 a P meet 
0 

In the above equations we have assumed 

Dor= BR: = OtandeTi--T, = A we? N= et pr Ay VR 

and we use the following symbols: 

Vy = design speed 

Vv. = Speed at the inlet 

V, = Speed at the nozzle. rel. V, 

r = VN 

K, = free-stream head loss coefficient, rel. V, 

K, = outlet head loss coefficient, rel. V, 

=K = sum of suction duct head loss coefficient, rel. V, 

B, = Vi/Mo 
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h = elevation of the nozzle 

T = total thrust at design speed 

Tire basic thrust at design speed 

Anne inlet area 

C= resistance coefficient 

Q = flow rate 

B = constant for the weight of the pump 

R = range 

F_ = Specific fuel consumption 

L. = duct length 

w, = correlation factor 

A_ = weight of the pump 

A, = weight of propulsion device (wet) and its installation 

« = any parameter able to express resistance per unit displacement 
weight, as D/A or D/L 

A = Weight at disposal for optimization 

A! = A ar A 
n n u 

As you can See, two cases are considered above: the free jet, that is, the jet 
the inlet of which does not lie in the boundary layer, and the jet on wake, that is, 
the jet the inlet of which does lie in the boundary layer. 

The effect of mounting the propulsion device on board is expressed by the 
term T-T;,, which may be divided into three parts, the first of which considers 
the effect of weight increase, the second the effect of additional elements in the 
water, and the third the effect borne on resistance by a particular weight, that 

is, the pump. 

For the subsequent elaboration of the basic formulas we have considered 
the weight of the pump as a linear function of the flow rate. This, of course, is 
not really the case, as the weight of the pump depends on several different ele- 

ments, as it is well known. But if we calculate the value of the constant B, hav- 
ing in mind a particular type of pump the flow rate of which lies at some point 
between 70% and 140% of the flow rate of the actual design, the above-said as- 
sumption may hold good with sufficient accuracy. 
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In the optimization process two methods may be uSed, for we can either (see 

Table A1): 

(i) choose a value of the inlet area and so accept an established amount 

of external losses, thereby minimizing the sum of E + U + J; or 

(ii) choose a value of the inlet velocity ratio and so accept an estab- 
lished amount of internal losses. In this case we minimize the 

sum of E + U+P. 

Table Al 

Optimization Procedures 

residual jet energy 

energy due to the internal losses in suction duct 

energy due to the internal losses in discharge duct 

energy due to the parasitic drag 

constant P~ = constant B. constant I~ = constant 

variable £8,’ = ( T 
a ae variable 
p A; Vio Gus X1) 

The sum E + U + I iS minimized The sum E + U + P is minized 

How the value of the optimum velocity ratio may be found 

(a) Prefixed displacement (a) Prefixed displacement 

Minimum Power directly Minimum Power directly 

Maximum Payload directly Maximum Payload directly 
Maximum Range iterative process Maximum Range directly 
Fuel Economy iterative process Fuel Economy directly 

(b) No prefixed displacement (b) No prefixed displacement 

Minimum Power iterative process Minimum Power directly 

Maximum Payload iterative process ' Maximum Payload directly 
Maximum Range iterative process Maximum Range iterative process 

Fuel Economy iterative process Fuel Economy iterative process 

The optimization procedures can be carried out with different objectives in 

mind, that is, either the minimum power, the maximum payload with a fixed 
range, the maximum range with a fixed payload, or the best utilization of fuel 
per mile. 

1057 



Johnson, Jr. 

If the above-mentioned assumptions are made, the value of the optimum ve- 

locity ratio can be found either directly or by means of an iterative process. 
We have been able to derive it directly in the cases illustrated in Table Al (see 

Table A2). 

The formulas are valid for all cases of free jets. In the case of the jet on 
wake they are valid only if x, and x,are considered, as an approximation, as 

independent of the inlet area or the inlet velocity ratio. 

Table A2 
Direct Evaluation of the Optimum Velocity Ratio 

Formulas Value of the Constants 

A. Total thrust method — prefixed displacement 

Minimum power 

2 
x2(1+K,) + C, [x21 + Ky) + C] + 12C,(1+K,) 

2G + Ky) 

a 
Maximum payload 2K G A, 7) 

NM BOLEKS) + C+ C, 2 2 1 hx, (1+K,) + CG, +C,| FA2C Cres (PeA,L.04) € + 5 PCDAN? 

2(1+K,) 

271)B 

B. Basic thrust method — Prefixed displacement 
pV RE. 

Minimum power 2 PL.%€ Be c 
repel! 

2 
BV PV, 2 B; 

Maximum payload 

Maximum range 

Fuel economy 

Minimum power 

ASSAD ANd Aaa AE Maximum payload 
1 Kain CoC Kt) 
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ON THE THEORY OF ONE TYPE 

OF AIR-WATER JET (MIST-JET) 

FOR SHIP PROPULSION 

Earl R. Quandt 

Naval Ship Research and Development Center 
Annapolis, Maryland 

ABSTRACT 

Vehicles which operate on an air-water interface may use as the thrust 
medium either phase separately or any mixture of phases. One inher- 
ently amphibious combination which utilizes a water-augmented air-jet 
(Mist-Jet) principle has been studied. To analyze this concept, one- 
dimensional conservation equations for mass, momentum, and energy 
have been written and solved to define overall propulsive coefficient as 
well as two-phase nozzle shape and size. It is concluded that the con- 
cept is practical, provided that reasonably efficient scoops, injectors, 
and two-phase nozzles can be developed. 

INTRODUCTION 

Among transportation vehicles, ships occupy a unique position in the Sense 

that they operate at the interface between a liquid and a gas of greatly different 

densities. Because of the availability of either phase for the generation of 
thrust, it becomes of interest to examine which phase is most suitable for pro- 
pulsion, and whether some advantages might not also be possible using mixtures 

of air and water. Certainly, one conceptual advantage of an air-water mixture 
is the potential for having a thrust medium of widely and continuously variable 
density. Also, in principle, it should be possible to apply the propulsive power 
to either fluid or to any mixture, depending upon convenience or the engineering 

advantages of alternate arrangements. 

Although these considerations are not original, past attempts to apply two- 

phase propulsion systems to ships have not been notably successful. In 1947, 

Anderson et al. (1) reported on a study of a hydro-ramjet system powered by 
compressed air. Although the arrangement was simple in design, propulsive 
efficiency was too low for practical utilization. Similar conclusions have been 
reached more recently by Mottard and Shoemaker (2) and by Pierson (3), al- 
though improved engineering techniques have raised efficiency considerably. 
Shuster et al. (4) describes comparable German investigations as well as men- 
tioning work on a pulsating air-water ramjet using expanding combustion air to 

accelerate the water. Such a scheme is attractive because it permits the fuel 

energy to work directly on the thrust medium without any intervening machinery. 

Unfortunately, however, if the hot gas and cold water phases are allowed to mix, 
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considerable heat transfer and poor combustion result, thus giving low ther- 
modynamic efficiency. 

In the past several years interest has developed in continuous air-water jets 

for ship propulsion. Muench and Keith (5) describe the results of an analysis of 
propulsive efficiencies possible with augmentation of a basic air jet and con- 
clude that reasonable efficiencies are predictable at higher speeds. Davidson 

and Sadowski (6) discuss similar computations directed toward modification of a 

particular aircraft turbofan engine for ship propulsion. These detailed analyses 

have been made possible through the development of a large body of data and 
analytical techniques suitable for predicting the behavior of enclosed two-phase 
systems. For example, Quandt (7) has developed a rational method of predicting 
natural flow patterns which control the heat, mass, and momentum-transfer 
characteristics of these mixtures. Levy (8) has provided a basis for computing 

friction losses and mean density in dispersed flows, while Elliott (9) has re- 

ported a satisfactory analytical description for predicting liquid droplet accel- 

eration in an expanding gas stream. 

The purpose of this paper is to assemble some of the more recent theoreti- 

cal and experimental techniques required to understand the gas-phase-continuous 

two-phase jet system. The development will be that needed to predict thrust 

performance for a water-droplet-air-jet system, and is similar to that of 
Muench and Keith (8). It is intended that this paper will serve to illustrate a 

formal basis for the analysis of air-water jets and to suggest the potential of 

these variable density fluids as ship propulsion media. 

THEORY 

In order to satisfactorily construct a two-phase thrust device, it is neces- 
sary to ingest each phase, add energy to one or both phases, form the mixture, 
and eject it in the rearward direction. Significant differences arise in the anal- 
ysis techniques used for the nozzle description in a single- and two-phase sys- 

tems because in the latter the separate phases do not generally flow with the 
same velocity. This velocity difference or ''slip"’ between the phases has a sig- 

nificant effect upon mixture density, momentum flux, energy transfer efficiency, 
and consequently the size of apparatus needed to produce a given thrust. This 

section will follow a development based upon separate ingestion and energy ad- 
dition to each phase, since this may be accomplished with existing components 

and analysis techniques. A two-phase analysis will be developed for the mixing 
and ejection nozzle stages to predict thrust augmentation, thrust intensity, and 
propulsive efficiency. Certain simplifying assumptions will be made to facili- 
tate a first-order solution, so that the essential features of the two-phase jet 

may be illustrated. 

Figure 1 presents a schematic of the air-water thrust system to be ana- 

lyzed. Here, the water-handling component is characterized by a simple scoop, 

duct, and injection nozzle station capable of delivering dispersed liquid to the 
two-phase nozzle area at a velocity slightly less than the forward speed of the 
ship. Air is taken in through a compressor, which, in this example, adds the 
energy required to accelerate both the air and water phases. This air is ducted 

to the vicinity of the water injection nozzles and mixed with the water, and the 
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AIR 
COMPRESSOR 

THRUSTER 
AIR INLET 

WATER SCOOP INLET 

Fig. 1 - Schematic drawing of Mist-Jet installation 
in high-speed ship 

mixture is allowed to expand to the atmosphere. At the mixing zone the air ve- 
locity, pressure, and quantity may be varied to give a range of mixture veloci- 

ties at the nozzle exit and consequently to make a larger or smaller unit. 

In order to compute the gas and liquid velocities at the nozzle exit from the 

inlet conditions and nozzle shape it is necessary to couple the mass, momentum, 

and energy conservation equations for each phase. To accomplish this analysis 

the one-dimensional gas-liquid dynamic equations will be written for a differen- 
tial length control volume as shown in Fig. 2. It will be assumed that the gas 
properties are transversely uniform and that this phase obeys the ideal gas 

equation of state. 

° ° ° 

Arh 0° 2 —spedp Ada 
Fig. 2 - Control vol- et 6? ae i Vq* dVg 
ume for two-phase ° en eetice 
nozzle analysis ? ary aoe Vira 

° ° ° 
ov) tome 5 ° o 

Conservation Equations 

Mass Conservation: 

Gas W i ee EG Constant 

Liquid Wo =" *09 Vo Ap = Constant 

= Weer We 
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Axial Momentum Conservation: 

8 = _— _ Gas Tr dv, = A, dP dF Ty 7D, dx 

W 
Liquid « AVE ichyadb ena 

The frictional drag force dF from the gas to the liquid droplets may be ana- 
lyzed using Fig. 3. At this point, and in further 
analysis, the axial pressure gradient force on the 

Tos. © Oboes Vg droplets will be neglected, since it is small in 
ip itirar ie F comparison to the frictional drag. It will further 

D be assumed in this analysis that the gas phase has 

V| - ahigher velocity than the liquid droplets. Hence, 
for a single droplet, 

kp 4 By aoGnie ag 

(V.- Vp)? 

Cc 

Ripe owl: Droplet The number of droplets in a differential length is 

drag force model i 
6Ap dx 6 ? dx 

7D3 m™D3 
dN = 

hence the differential drag force between the phases is 

Pe(Ve- Vp)? Ap 
dF = F, dN = 3C, ———————_- d§x 

2 p 4g. D 

W, dVy 
Total: a. ite + Wp z. = -A dP - Teo D, dx... 

Energy Conservation: 

i avg\ as w_ (Cp. dT + 25 46'¢ 
g g g 26] | 

dV? 
Liquid W, |Cpp dTy + dP/pp + = dQ 

2e8J 

The heat transfer between the phases may be analyzed similarly to the drag 
force to yield 

6Ap 
dQ = hye Cl sale) Ds dxi; 

Again a tacit assumption here is that evaporation of the liquid phase is negligi- 
ble. Consideration of the temperature distribution between phases shows that 
the gas will be hotter than the liquid at the point of mixing due to the work of 
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compression. The rate of temperature decay is given by combining the gas 
energy equation with the particle heat-transfer equation 

dT, he col, = Te) Nett 

dx DCp, pe Vo W 
g 

For many cases of interest, the initial decrease in gas temperature is so rapid 

that the gas quickly approaches the liquid temperature. Expansion will there- 

fore occur at almost constant temperature as the liquid resupplies energy to the 
gas during the drop in pressure along the nozzle. Hence, it will be assumed, 
conservatively, that the nozzle expansion is isothermal at the liquid tempera- 

ture. This results in a certain loss in available compressor work, and may be 
thought of as an inherent loss in gas-liquid systems where the energy is added 

primarily to the gas phase. Figure 4 shows the fraction of isentropic work that 
may be recovered from a gas which expands isothermally at ambient tempera- 

ture for a range of pressure ratios. This approximation to the energy efficiency 

may be written in general as 

On) y= J In v 

qs oA y- 1 
v - l 

ey 

1.0 

= 
ro) 
7) 

aw 
ao 0.8 
> a 

woe 
Co 

Sais 
aq2z 

sO 
cn 

rw 06 
Ea 
oa 
ns 
=) 

e) 

5 e) 
ra 0.4 
© 
a 
ow 
za 
Ww 

oO 0:2 oS 

° 
- 
<q 
ira 

0 

1.0 2.0 310 4.0 5:0 6.0 

PRESSURE RATIO, v 

Fig. 4 - Fraction of isentropic work that 
may be recovered from a gas which expands 
isothermally at ambient temperature fora 
range of pressure ratios 
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Approximate Solution to Nozzle Equations 

Examination of the energy equations revealed that over the range of air- 
water mixtures of interest it is permissible to approximate the expansion as 

isothermal at the liquid temperature. Additionally it will be assumed that noz- 
zle friction is associated with the gas phase and will depend upon the total mo- 

momentum flux. With these assumptions the total momentum equation becomes 

Wr 
ally = -AdP - ites ap DP dx 7 

where a momentum average velocity is defined as 

Seay We We 
ve Sv Vp 5 

Ww, Wy 

v ay Ey, = + 
1l+r 8 ler & 

~ 1+ ro 

Mig. pt 

where the slip ratio is defined as 

o = Vp 7N 5 , 

Using the mass continuity equation allows definition of a liquid-gas area ratio as 

A= Aj(1 + Ap/A,) = A,(1+ @) , 

where 

a = Ap/A Sse Hew 
8 W_ Pe Vp 

or, more simply, 

from which it may be seen that « is very small for o near one and r less than 
ten. 

Now, the gas area may be related to pressure through the ideal gas equation 

We WRT 
AS r= = 

i Va Pe 
Mi, PM 

Substituting a, r, and o into the total momentum equation yields 
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dv RT dP Mi TL dx 
= - — (1+ a) — - ——— 

M iP Oe A, 

(1+ r)? 

Gi sc) ee 
<i 

as the differential equation relating momentum velocity to pressure and distance 

in a two-phase expansion nozzle. 

Looking next at the particle momentum equation, and rearranging gives 

a = F (ee gD Ap dx 

dVp 3 Cp Pe (1-c)? 

Wy 4D etn 
But 

avy OV eagae 

Me yes 
and 

Ve _ AVS to ide 
ve Vv 1 seer 

so that the particle equation can be rewritten as 

dv Pe do 2 am, eto )e 
dx 

Gy. ltrao ® 4D oP 

There are now two equations for momentum mean velocity for the two-phase 

nozzle which give V in terms of pressure, distance, and slip ratio. For the 
purposes of this analysis it will be assumed that the slip ratio is constant along 

the nozzle length. This is not meant to be a requirement for such nozzles, but it 
does permit straightforward integration of the momentum equations. 

Taking first the total momentum equation, it may be reasonably assumed 

that « << 1 for a Mist-Jet type nozzle, thus 

A= A P Ne = ; ol AP at g an a 8E. 

so that, upon integration, 

~ ~ 2(1+ ro) f(r. oe 3 °L 
V.2 - V2 = - ———— (C,)? 1 P_/P, ) - ———~ vV?— , 

e i CLE)? (Cy) n (P./P; ) 2 e D. 

or 

n~ 2 
(Wess ol V2 Cl xray 7 € 

i ge ee eo = inmi(PP,) 
2 D,/ V2 (+r)? \V, 
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Integrating the particle equation at constant o, p,, Cp, and D yields 

~ ~ Cc Be 1- 2 

In (V,/V,) fsisDreeaiha L 
4 D Pe a2 

or 

we a ee 
M5 

where 

Gp 1- 2 D oO 

i) tse oe TD 
4D Pe o? 

Combining these equations to eliminate nozzle length allows calculation of 
momentum mean velocity increase for given r, o, and v. Results of this calcu- 
lation are shown in Fig. 5. Figure 6 illustrates the variation of pressure and 
velocity with distance along the nozzle for a pressure ratio of 1.4 with o = 0.85. 
Figure 7 shows the axial variation of nozzle area ratio with length for v = 1.4; 
o = 0.85; and r = 5, 10, and 20. Here it can be seen that the proper nozzle 
shpae may be converging, converging-diverging, or diverging, depending upon 

the water-to-air mixture ratio. 

Nozzle Thrust 

Using the law of conservation of axial momentum it is possible to compute 
an ideal propulsion system thrust by taking a control volume around the entire 
ship. In that case, neglecting free-stream diffusion for the moment, 

We We 
Giz, ==) (Vui3- a = : ga! Mig eVghutg_o(VEi y= V5) 

The major losses in this system are those associated with the water scoop, duct, 

and nozzles. Internal flow losses such as friction drag, area, or form losses 
and discharge losses will be lumped into one loss coefficient based on craft 
speed. Therefore, the liquid static pressure after injection into the air stream 

is given by 

Po. 

2¢ 

Pe 
Pte Pot We eK 

c ic 

When the nozzle pressure ratio is specified this equation is used to compute an 

effective injection velocity for use in the thrust analysis: 

Lge 

Pe 
v,2 = V.2(1-K) - P)(v-1) 

It is of interest to note here that the scoop system being analyzed will always 

operate with a free-stream compression because of internal losses. 
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ISOFT/SEC 

0.01 

PRESSURE RATIO, v 

Fig. 5 - Results of calculation of momentum mean velocity 
increase for given r, o, and v 

The other significant scoop loss to be considered is that of profile drag, 

which may be defined in terms of a drag coefficient, Cp.. The thrust deduction 

from the propulsion system may be written as 

V2 
0, = Cp, A. Pe 

28. 

and rearranged to a more convenient form by accounting for the free-stream 

compression, 

Cp 
8. = 

Ss 
~ Wp Vo: 

2g. A 

Subtracting water scoop drag from the total thrust equation provides an expres- 

sion for net thrust from the two-phase system: 

We ~ 1 A 

ON sree (1+ DU Nee) aa 0), ra 
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a 

10 20 
NOZZLE COORDINATE, X [FT] 

Fig. 6 - Variation of pressure and velocity with distance 

Here, the total thrust is reduced directly by effective appendage drag and indi- 
rectly by the lower V,. resulting from internal losses. For illustration, Fig. 8 

shows predicted thrust per unit mass flow of air as a function of water-to-air 
mass flow ratio for several nozzle pressure ratios. Alternatively, Fig. 9 shows 
the variation of specific thrust with ship speed for several pressure and mass 
augmentation ratios. Another important characteristic of two-phase jets is pre- 

sented in Fig. 10, which shows thrust intensity (thrust per unit exit area) versus 
nozzle pressure ratio for various augmentation ratios. Also shown on this plot 

is overall propulsion efficiency defined as 

ple 
ie ie) le] 

| > wn < 

piety 

ae arn avy yy 
N's oA 

ip = ll 
CpT, fe : -1) 

For the performance shown in Figs. 8-10, the following loss coefficients and 
system constants have been assumed: 

7) = CU 

° Compressor Work 

0.20 wz I 

Cave earls 
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K =0.20 
THRUST PER UNIT MASS FLOW OF AIR, 6/w, 

MASS FLOW RATIO, r 

Fig. 8 - Predicted thrust per unit mass flow of air 
as a function of water-to-air mass ratio for several 
nozzle pressure ratios 

n. = 0.90 

f = 0.01 

o = 0.85 

De 107? iit 

T = 60°F 

It is felt that these are representative of achievable values, but may be improved 

somewhat depending upon a particular design requirement. 
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Fig. 9 - Variation of specific thrust with ship speed 

DISCUSSION 

The preceding two-phase nozzle analysis has established a basis for the 
evaluation of the propulsion effectiveness of one class of air-water systems, 

i.e., the water-augmented air-jet (Mist-Jet). It appears from this and many 

previous studies that the derived equations are satisfactory for an initial under- 
standing of the major properties needed to evaluate a propulsion device. Of 
course, more detailed analyses and experiments are required to refine these 

calculations with regard to: 

(i) water scoop inlet losses and cavitation behavior, 

(ii) water injection nozzle size, droplet size and spray distribution, 
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3000 
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/*—— contours 

THRUST PER UNIT EXIT AREA, O/Ag ( 
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‘Ne = 0.90 

K =0.20 

; CpAr/Ag=0.15 

&=0.85 

(0) 2.0 3.0 

PRESSURE RATIO, ¥ 

Fig. 10 - Thrust intensity versus 
nozzle pressure ratio 

(iii) optimization of two-phase nozzle shape based upon computed par- 
ticle slip, and 

(iv) refinement of heat and mass transfer rates, duct friction and axial 

pressure distribution. 

However, since the results to date of the more detailed analyses differ only 
slightly from those of the present study, it is considered that the essential char- 

acteristics of Mist-Jet-type systems may be seen from the present work. 

One of the first considerations for any propulsive device is that of fuel 

economy or more particularly propulsive efficiency. In this study propulsive 
efficiency has been defined as total thrust less appendage drag times ship 
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velocity divided by shaft power into the air compressor for the given total thrust. 
Figures 11-13 show typical computed levels of propulsion efficiency versus 

pressure ratio, ship speed, and water-to-air mass flow ratio, respectively. It 
can be Seen that for the range of loss coefficients assumed herein the propulsive 

efficiency tends to peak slightly below a value of 0.50. Furthermore, it is ap- 
parent that air system pressure ratios less than 1.5 atm are desirable and would 

require water-to-air mass flow ratios from 5 to 20 depending upon ship speed. 
It may be recalled that the large difference in density between air and water re- 
sults in a very disperse mixture even at the higher mass flow ratios. Figure 13 

shows that overall efficiency is quite sensitive to average phase slip, so that a 
considerable effort is required to assure a satisfactory slip ratio o in practical 

cases. In summary, it appears that propulsion efficiencies up to 50% may be 
achieved for Mist-Jet systems at pressure ratios from 1.2 to 1.5 and water 
mass augmentation ratios near 10. It should be noted that at these high mass 
augmentation ratios virtually all the system thrust is developed by rearward 

acceleration of the liquid phase. Hence, the air phase is acting much as a pump 

or propeller would. Of course, one conceptual difference between the air sys- 
tem and a water pump is that the air system will deliver about half thrust in the 

absence of any water, thus making the propulsion system inherently amphibious. 

50 

40 

EFFICIENCY, No 

w [o) 

20 

PRESSURE RATIO, v 

Fig. 11 - Propulsion efficiency versus pressure ratio 
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EFFICIENCY, 1 0.20 

MIXTURE RATIO, rf 

Fig. 13 - Propulsion efficiency versus 
water-to-air mass flow ratio 

Another characteristic of a propulsion device is system volume, which is 
directly related to thrust density. Figures 8 and 9 show thrust per unit mass of 
air versus mass augmentation ratio and ship speed, respectively. It can be seen 

that for any ship speed and pressure ratio there is an optimum water-to-air 

augmentation ratio. The thrust used here is net thrust, which accounts for 

losses, both internal and external, arising from adding the liquid phase. These 
figures show the normal decrease in thrust per unit energy added with increase 

in speed and also indicate that net thrust increases of more than a factor of two 

may result from water-augmentation of an air jet. Figure 10 illustrates the 
variation of thrust intensity, i.e., thrust per unit exit area versus nozzle pres- 
sure ratio. Here it can be seen that for a given thrust intensity there is an op- 
timum pressure ratio and mass augmentation ratio combination resulting in 

highest overall efficiency. It is this information that can be used in vehicle de- 
sign where size and weight are balanced against system efficiency. Generally it 
can be seen that a nozzle thrust intensity of 1000 lb/ft? is a reasonable upper 

value for the practical range of propulsive efficiencies. 
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Although the water augmented air jet may be somewhat less efficient than 
the all-water systems, this is not of great significance for smaller ships be- 
cause these tend to be more Sensitive to machinery weight than fuel weight (10). 
Perhaps one of the more critical application problems for any of the ship pro- 
pulsion systems appears to be satisfactory passage through the low speed hump 

condition. For a Mist-Jet design, this consideration is made more or less sig- 
nificant depending upon desired top speed capability because of the availability 

of the air-only thrust at all speeds. Additionally, as mentioned earlier, water 
augmented air jets have the inherent amphibious capability and furthermore may 

also have sufficient air flow to augment lift fans at the hump condition so that 
not as great a horizontal thrust need be supplied. 

CONC LUSIONS 

The significant conclusions of this analytical and experimental investigation 

of two-phase air-water ship propulsion systems are: 

(i) There exist analytical techniques for predicting performance of the 

two-phase components with first-order confidence. 

(ii) These analyses are being improved through more detailed descrip- 

tions as well as by comparison with selected experimental data. 

(iii) Overall propulsion coefficients of 50% are predictable for high- 

speed ship applications of water-augmented air-jets. 

(iv) This efficiency is achievable with a bulky but light propulsion 

plant. 

(v) Air-water jets are inherently amphibious, and also offer certain 

design flexibilities for craft using air-support concepts. 
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NOMENCLATURE 

Symbol Description Units 

A Flow area in nozzle fia 

A, Flow area in water scoop ot 

A, Flow area in free stream ft? 
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Description 

Droplet drag coefficient 

Water scoop drag coefficient 

Isothermal acoustic velocity 

Droplet diameter 

Nozzle equivalent diameter 

Drag force on droplet 

Drag force between phases 

Friction factor 

Mass-to-force conversion 

Gas -to-liquid heat-transfer coefficient 

Mechanical equivalent of heat 

Water scoop internal loss coefficient 

Nozzle length 

Molecular weight 

Number of droplets 

Pressure 

Inlet pressure 

Nozzle exit pressure 

Free-stream static pressure 

Heat flow 

Energy for isothermal compression 

Energy for isentropic compression 

Gas constant 

Water -to-air mass flow ratio 

1077 

Units 

ft/sec 

poundal 

poundal 

lb ft/poundal sec ? 

BTU 

sec ft? °F 

BTU /ft poundal 

ft 

lb 

lb mole 

poundal /ft ? 

poundal/ft 2 

poundal/ft 2 

poundal/ft 2 

BTU/sec 

BTU/lb 

BTU/lb 

ft poundal 

Ib mole R 



Symbol 

Subscripts 

e 

Quandt 

Description 

Absolute temperature 

Ambient temperature 

Velocity 

Ship velocity 

Momentum mean velocity 

Mass flow rate 

Distance along nozzle 

Liquid-to-gas volume ratio 

Ratio of specific heats 

Compressor efficiency 

Propulsive efficiency 

Characteristic length for droplet acceleration 

Pressure ratio 

Density 

Liquid-to-gas velocity ratio 

Wall frictional shear stress 

Net propulsion system thrust 

Water scoop drag 

Thrust 

Liquid 

Gas 

inlet 

exit | 
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Units 

°R 

pals 

ft/sec 

ft/sec 

ft/sec 

lb/sec 

ft 

bie 

lb/ft? 

poundal/ft 2 

poundal 

poundal 

poundal 
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DISCUSSION 

V. Kostilainen 
Finland Institute of Technology 

Otaniemi, Finland 

First of all I must thank Dr. Quandt for this interesting paper. Some five 

years ago there existed very few papers which dealt with two-phase propulsion. 

Now the research in this area is largely increased. 
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One point of view I would like to emphasize here, is the effect of gravity. I 
see that Dr. Quandt has excluded gravity effects and considers the flow in this 
propeller steady and homogeneous. Iam afraid that, at least with lower speeds 
and higher water-to-air mass flow ratios, the flow will be unsteady. 

For the past two years we have been studying a two-phase propeller which 
is based on the effect of gravity and which possibly can be used for the propul- 
sion of slow and medium-speed ships. A model having a WL-length of 1.6 m 
was made and tested. It was observed among other things that at least in this 
case the two-phase flow was very unsteady. Results of these first tests will be 
reported in ISP September issue. 

To study the scale effect of this propulsion we have built this spring another 
geometrically similar model which has a WL-length of 6.4 m and total length of 
10m. This larger model was tested in open sea. It can be seen from Fig. D-1 
that unsteadiness of this two-phase propeller even dominates the stern wave 
system. 

Fig. Dl - Test boat equipped with two-phase 
propulsion; waterline length 6.4m, displace- 
ment 6 tons 

Wartsila shipyard in Helsinki has also started research of this propulsion 
and they have concentrated on the application of this propulsion to the lateral 
thrust units. As a result of this research, a car ferry now under construction 
in Finland will be equipped with two-phase bow-propeller. 

* * * 
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DISCUSSION 

R. Pallabazzer 
Istituto di Fisica Tecnica e Macchine, Politecnico 

Milan, Italy 

I have a few remarks to make about this paper. The first question is about 

the values for the drag coefficient Cp and the heat transfer h. for the droplet 

motion. I would like to know whether, as it appears, the Stokes flow hypothesis 
was assumed. If this was the case, I would like to point out that the real motion 
of the particle is probably not in the Stokes range, because of the high local tur- 
bulant speed, which especially affects the heat transfer. It is obvious, in fact, 
that the very low value of the components of the relative speed in the axial di- 

rection (V,-V,) is not an index for the heat transfer, when a Brownian motion 

is present. 

A second remark relates to the analysis of the mixing phase. The inlet 

conditions in the nozzle have been assumed as reference or as a datum; in the 
propulsor, actually, they are not known, because we know the flow conditions 
just at the inlet of the propulsor. It seems to me that the mixing phase, which 

occurs in the chamber, is highly unpredictable but it strongly affects the flow 
parameters at the nozzle inlet. Therefore, I think that the exactness of the 
particle-flow analysis developed here instead of an homogeneous two-phase 
flow analysis can be useless when the initial flow conditions are not well known. 

Finally, I would like to observe that it is the hypothesis of a constant slip 

ratio which determines the Shape of the nozzle. This fact was clearly observed 

by Kliegel in some papers he presented, I think, about ten or fifteen years ago, 

on gas-solid particle flow. In his works, the only one of which I can now re- 
member was entitled ''Two-Phase Gas-Particle Flow,'' Kliegel developed a par- 

ticle flow analysis which is quite the same as that developed by Dr. Quandt, but 

for application to rocket exhaust gases. 

* * * 

REPLY TO DISCUSSION 

E. R. Quandt 

Both discussers have raised some interesting questions concerning the fun- 

damental nature of the homogeneity and internal transport characteristics of 
two-phase flows. Taking first Dr. Kostilainen's question, I would like to recom- 
mend Ref. (7) of my paper as one approach to determining whether or not grav- 

ity effects are important. In low-velocity flow, such as encountered in natural 
circulation, gravity does prove controlling. However, in the applications I have 
considered, i.e., thrust devices for high-speed ships, the axial acceleration 
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forces are Severe enough so that the phases will be rather uniformly mixed and 
performance independent of gravitational orientation. 

Professor Pallabazzer, on the other hand, assumes that the flow pattern 

will be more or less homogeneous, but questions the best approach to describ- 

ing the internal transport properties of turbulent air-water mixtures. With re- 

gard to the heat transfer and particle drag coefficient values used in the paper, 
I wish to say that I believe them to be consistent and conservative for the pur- 
poses of this analysis. In my opinion only experimental data will be able to re- 
solve the proper magnitude. Concerning the initial conditions for the particle- 

gas flow analysis, it is possible to create a spectrum of initial velocity and 

pressure conditions by varying water spray nozzle and air duct areas. It is also 
possible to control the homogeneity of the initial mixture by variations in design 
of the injection station. Although it may seem desirable to design for an initially 
homogeneous air-water mixture, cases may be conceived where some controlled 

maldistribution of air and water would actually improve thrust augmentation, 
Finally, I appreciate the information concerning the earlier work by Kliegel on a 
particle-gas flow analysis. 
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PERFORMANCE CRITERIA OF 

PULSE-JET PROPELLERS 

Michael Schmiechen 

Versuchsanstalt fiir Wasserbau und Schiffbau 

Berlin, Germany 

ABSTRACT 

Starting from the fundamental concepts and principles of hydrodynamics 
component efficiencies of pulse-jet propellers are defined, which may 
be directly compared for various propulsion devices. Some of the 
problems encountered in the evaluation of the criteria defined are dis- 
cussed and the problem of propeller-hull-interaction is treated as far 

as possible. 

1. INTRODUCTION 

With the recent interest in jet propulsion of ships, the lack of clear-cut 

concepts and generally adopted procedures to define and evaluate performance 

criteria of propulsion devices has often been felt; Brandau, 1967. The concep- 

tual and experimental difficulties to overcome this situation are considerable 

not only in the field of conventional and pump-jet propulsion, but even more in 

the field of pulse-jet propulsion. 

Due to his engagement in various projects concerning pulse-jet propellers 

at the Berlin Towing Tank, the author had the opportunity to tackle the problems 

encountered in performance evaluation from different points of view. Some of 

the ideas and procedures that have evolved from this work and may be useful in 

a wider range of applications will be presented here in a systematic account. 

In fact, the aim of the present paper is to reconstruct some well-known 

concepts of the theory of propulsion, to the effect that they may be applied to any 

type of propulsion device. For this reason the model considered and the con- 

cept formulation will be as general as necessary right from the beginning. 
Starting with the extremely specialized model of the actuator disk would, in this 
context, not be adequate. Although periodically acting propellers will be consid- 

ered in general the case of steadily acting propellers will be included as a limit- 

ing case. 

The method of presentation adopted will be axiomatic, but the exposition 

will not be formalized. The main interest rests on the logical consequences of 
the principles and the link-up of the various concepts introduced, the knowledge 

of which should be the basis of any discussion and work in the field. Though 
there is a strong demand for orientation towards easily measurable integral 
magnitudes as far asthe evaluation is concerned, this cannot be the only guideline 

> 
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in developing the conceptual framework for the definition of the performance 
criteria looked for. 

Propulsion devices considered as subsystems of complex systems, i.e., ve- 
hicles, may be described by their representative points in multidimensional 
spaces of performance criteria, the definition of the appropriate criteria de- 

pending on the contexts of the particular types of vehicles. In cases where all 
relevant definitions are established and a best-practice envelope may be deter- 
mined accordingly, it is easy to judge on the merits of any propulsion device, 
especially those newly proposed as compared with the state-of-the-art. 

In this paper only few aspects of propeller performance will be considered. 
In view of the multidimensionality of the parameter space, it should be kept in 
mind that optimizing with respect to the aspects considered will in general not 

result in an optimum overall system. It is this point that is often rightly 
stressed by inventors claiming simplified power plants, etc., for their devices 
as compared with conventional propulsion. 

2. PRINCIPLES OF PROPULSION 

Although the basic principles have been stated over and over again, a short 

review is presented here for ready reference. 

Any propulsion device of the type to be considered may be defined as a me- 

chanical system, parts of which consist of the surrounding fluid; see Fig. 1. The 
latter will be considered as incompressible here, having the mass density p. 
The construction of the boundary of the system is in general undoubtedly one of 
the basic problems, to which many other problems may be reduced; see Sec. 5.2. 

BOUNDARY OF THE SYSTEM 

(INVARIANT) 

PROPELLER 
PROPER 

INLET 
SECTION 

OUTLET S, 
SECTION 
So 

Fig. 1 - Propeller: a 
mechanical system 

In any case, there exists in the system a dividing surface S between the 
propeller proper and the surrounding fluid. While the relative velocities v, of 

the elements dS, of this surface with respect to the invariant boundaries of the 
system characterize the kinematics of the propeller, the stresses Sem at these 
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elements characterize its dynamics. For many purposes a rather detailed 

knowledge of both distributions spatial as well as temporal will be necessary. 

In the present context however we may introduce the mean thrust 

ae ‘| ile Spa. aoaeat (1) 
W/ fa S 

and the mean power 

P= f J Jo, Sdcerdt (2) 
t/t _s 

of the propeller acting as the frequency f as the basic measures of its overall 

performance. 

Introducing further the propeller translation advance speed Vp in the 
fluid, we may immediately establish the principle 

Ty Veo P (3) 

for the reaction power of the propeller due to the velocity field induced by the 
propeller at its own location. Once again we are facing a serious problem, since 

it is in general apparently difficult to define the advance speed in question. 

The part of the system's boundary passing through the fluid may now be 
divided into two parts S, and S,, the inlet and the outlet section, respectively, 
the definition of the dividing line being another problem to be solved in any par- 
ticular case. With the appropriate choice of normals the mean volume flows 

Qj of | if v, dS, dt (4) 
l/f 8; 

through the sections are both positive and, according to the principle of conser- 

vation of matter, equal: 

Op 0; =O (5) 

The general conservation principle for any quantity included in the boundary of 
the system may be put in the form 

FL, - FL, = FL + PR (6) 

expressing the fact that the mean net outflow of the quantity over the fluid bound- 

aries equals its mean inflow FL over the other part of the boundary and its mean 

production PR in the boundary of the system, the mean storage in the boundary 
being zero due to the periodicity, see Fig. 2. 

Application of this prinicple to the momentum flows 

Mig Se if | (p fae vin + Sem) asin, dt (7) 

1/f S; 

results in the momentum principle 

Mog ~ My = T, (8) 
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INFLOW OTHER THEN WITH THE FLUID 

PRODUCTION INFLOW 

FL, 
OUTFLOW 

Flo 

Fig. 2 - General conservation principal 

while the energy principle reads 

Ej, i, < © (9) 

due to the dissipation of mechanical energy in the system, the energy flows be- 

ing defined as 

E. =, f J J [eCeni ny + oe) ho + ty ] ds, dt 

Wai Si (10) 

Cine pot» and t, denoting the mass-specific kinetic and potential energies and 

the diffusive energy transport, respectively. 

Further on only integral magnitudes will be dealt with and, as we are mainly 

interested in the principles, the tensor notation will be dropped. 

3. DEFINITIONS OF EFFICIENCIES 

3.1 Propeller Efficiency 

From the basic concepts introduced, various performance parameters may 

be derived, in particular if a reference length L and cross section A of the pro- 
peller are introduced. The definitions of the advance number 

I HNAGEL ai (11) 

the thrust number 

ee (ok ALA Aye; (12) 

and the power number 

Ko neb/ (et aL? Ay: (13) 

according to the rules of dimensional analysis are very similar to those known 
for screw propellers; Schmiechen, 1960. If one set of parameters is STS it 

may be transformed into any other suitable set. 
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Due to the ambiguity in the choice of the reference magnitudes the parame- 
ters so defined are in general not comparable for various propulsion devices, 

except for those parameters not containing geometrical reference magnitudes at 

all. Examples of comparable parameters, i.e., criteria proper, are efficiencies, 
provided the boundaries of the systems are correctly chosen in any case. 

From the principle of reaction power we may directly define the overall 

propeller efficiency 

Pa hd ae (14) 

Taking into account the momentum and the energy principles we may write this 

as the product 

"PROP = EXT “INT (15) 

of the external efficiency 

Text = (M, ~ M,) VW/(E, - E,) (16) 

and the internal efficiency 

Tint = (E, - E,)/P .- (17) 

Introducing the mean mass-specific momenta 

m; = M,/(pQ) , (18) 

energies 

e; = E,/(pQ) . (19) 

and energy jump 

e = P/(eQ) ; (20) 

we have the external efficiency 

Next = (M, - m,) V/(e, - &4) (21) 

and the internal efficiency 

Tiny =) (ey tey)/e (22) 

in terms of these magnitudes. 

It should be noted here that the mean mass-specific quantities m; and 

rj =y¥ 2e;, (23) 

the momentum and energy velocities, respectively, are clearly distinct from the 
ordinary mean mass or volume velocity 
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Vii= .O/ARG (24) 
1 

A, denoting some cross section. The situation is very similar to that encoun- 
tered in boundary-layer theory, where displacement, momentum and energy 

thicknesses have to be distinguished. In this case the definition of the different 

velocities, rather than cross-sections, has proved to be more promising. 

3.2 External Efficiency 

The external efficiency itself may be considered as the product 

ExT = IDEAL JET (25) 

of the ideal and jet efficiencies 

TIDEAL = 2m,/(m2 + ™m,) (26) 

and 

nyet = (m3 - m})/2(e, - e,) (27) 

respectively. The ambiguity in the definition of the ideal efficiency, i.e., the ef- 
ficiency of dynamically equivalent ideal propellers, due to the propeller advance 
speed (undefined up to now), has been removed by the convention 

V=m, (28) 

so that the efficiency is exactly the same as that of an actuator disk,,with the 

important qualification, that all relevant velocities are momentum velocities. 
Later on it will be seen that this choice is actually not the only and best one; see 

Sec. 5.2. 

With the momentum ratio 

= (M,/Mo. = my/M>. 3 (29) 

the ideal efficiency becomes 

IDEAL = 2/(1 + I/u) . (30) 

Either the momentum ratio or the ideal efficiency itself may serve as universal 

propeller advance criteria. Actually, any function rising with increasing values 
of these criteria may serve the same purpose, while functions falling may be 

considered as loading criteria, e.g., the load factor 

Cro = 4/"ypeat (1/"qpear - 1) (31) 

based on the maximum propeller cross-section. 
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In the following, the ideal efficiency will be chosen as advance criterion, 
while the hydraulic efficiency 

Tyyp = 7pROP / “IDEAL _ (32) 

will be considered as performance criterion proper, i.e., the propeller perform- 

ance will be characterized by the function 

Nyyp = (irpeaL) } (33) 

see Fig. 3. 

The advantage of this presentation of per- Tayo IDEAL 
formance data, as compared with the older one 

Tiprop = £ (Cro) (34) ACTUAL 

(Gutsche, 1937), is due to the facts that, on the 
one hand the ideal efficiency, contrary to the 
load factor, is restricted to values between 
zero, for the towing condition, and unity, for the Con 1 7 
idling condition, and on the other hand the hy- 

IDEAL 

, eae : y TOWING IDLING CONDITION 
draulic efficiency, i.e., the degree of approxi- 

mation towards the ideal is, contrary to the Fig. 3 - Performance 
propeller efficiency, a reasonable performance characteristic 
criterion over the whole range of working con- 
ditions including the towing condition. 

Concerning the detailed analysis of the hydraulic efficiency, we may write 

"HYD = JET TINT » (35) 

the jet efficiency accounting for the nonuniformities of the inflow and outflow in 
Space and time. Introducing the inflow and outflow efficiencies 

TINF/OUTF = ™1/2/2€1,2 » (36) 

we have for the jet efficiency 

nyer = (1 - 2?)/(1/noyrr - #?/7 NE) > (37) 

or, in terms of the energy ratio, 

e = E/E, = €,/€) = Toute H?/"INF > (38) 

"yet = (Nourr ~ Tine ©)/(1- €) - (39) 

This efficiency may apparently not be split up into factors accounting for the in- 

flow and outflow separately. 
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3.3 Internal Efficiency 

The second factor of the hydraulic efficiency, the internal efficiency may 
either be considered at a pump efficiency or, in the presence of a ducting sys- 
tem, as the product 

Tint = ™pucT "PUMP (40) 

of the duct efficiency and the pump efficiency proper. 

Introducing the energy flows E,, and E,, across some appropriately chosen 

internal fluid surfaces S,, and S,,, respectively, we may define the mean mass- 
Specific energies 

Gig = EapeO.: (41) 

the inlet efficiency (see Sec. 4.2) 

Dan Hho see Wee” Caen (42) 

and the outlet efficiency 

Toutt = E2/E2 = &2/&20 ° (43) 

In terms of these magnitudes, the duct efficiency 

Npuct = (&2 - &1)/(&20 - &10) (44) 

becomes 

"puct = (1 - €)/C/noutt - Tint ©) » (45) 

and the pump efficiency is defined as 

TpuMP = (€20 ~ &10)/€ - (46) 

After all our basic performance criterion may be rendered in the form 

THyD = TlpROP/7IDEAL = “JET "DUCT "PUMP (47) 

with the flow efficiency 

TFLOW ~ JET DUCT (48) 
8 

(1 - 4?)/(V/noytr Toute ~ Tint #?/7INF) » 

showing the link-up of the various component efficiencies introduced. Once 
again, neither the duct nor the flow efficiency may be split into factors account- 
ing for the inflow and outflow separately. 
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All the component efficiencies will in general be functions of the ideal effi- 
ciency. The problem in any particular case is to evaluate the mean mass- 
specific quantities displayed in the energy diagram (Fig. 4) as far as possible 

and determine the various ratios and efficiencies according to their appropriate 

definitions. 

y) i] 

qi 
&30 | 

€o 

m2/2 —4 1e 
2 1 

e 
m?/2 

ta hale) 
os 

= oO 
STATION 2 20 10 ] 

Fig. 4 - Specific energy diagram 

4, FREE-RUNNING PROPELLERS 

4.1 Conventional Procedures 

The first case to be considered is a free-running propulsion device advanc- 

ing in an otherwise undisturbed fluid with constant speed Vv. The volume, mo- 
mentum, and energy velocities at the inlet section of the boundary of the system 

in this case are by convention 

oreo hee (49) 

Migr e (50) 

and 

Say ts (51) 

respectively, and the inflow efficiency is therefore 

TINF — 1. (52) 

The inflow section of the fluid boundary may be imagined as a large surface 

around the propeller leaving an appropriate hole for its jet to pass. Due to the 

convention adopted, no further details have to be specified. 

Provided now that the mean thrust and power of the propeller are meas- 
ured, how far may we proceed in the evaluation of the performance criteria 
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introduced? Apparently only the overall propeller efficiency may be determined 
as a function of an arbitrary advance ratio, of some reference length is intro- 
duced. This situation changes when either the maximum cross section A, or 
the outlet cross section A, of the propeller is introduced, which ever may be: 

typical for the dynamically equivalent ideal propeller. Now, the load factor 

Cry = 2T/(pV7A;) (53) 

may be defined and consequently the universal advance ratio 

MypgaL = 2/(1 +-y 1+ Cp.) (54) 

or 

IDEAL = 4/(3 + V¥ 1+ 2Cr,) : (55) 

This again is a conventional procedure circumventing the difficult measurement 
of the mass flow. In the case of unducted propellers it appears to be the only 

possible procedure. 

From the propeller efficiency and the ideal efficiency so determined, the 

basic performance characteristic, the hydraulic efficiency, may be derived, i.e., 
actually from the data usually at hand; Schmiechen, 1966.2. In case these are 
provided in terms of the nondimensional parameters (11)-(13) the load factor 
may be determined according to the formula 

Cr, = Ky /J? . (56) 

Although the whole procedure appears to be rather straightforward its ap- 
plication is often hampered by the ambiguity in the choice of the appropriate 

cross Section. While the selection of the maximum cross section may (e.g., for 
shrouded propellers) at least for the larger area ratios 

a= A,/A, (57) 

result in hydraulic efficiencies exceeding unity this difficulty does not arise, if 

the outlet cross section is selected as reference. 

The reason for this effect is simply, that in the first case the geometrically 
equivalent ideal propeller is referred to, while in the second case the dynami- 

cally equivalent reference propeller is chosen. Unless no appropriate criterion 
for the space requirement of a propeller has been defined the usual, over- 
simplified comparison of shrouded and unshrouded propellers does not make 

much sense; Saunders, 1957, and predecessors. 

4.2 Further Analysis 

The analysis may be carried on following the lines indicated, if further in- 
formation is provided, e.g., the mass flow through a ducted system. From the 

momentum principle, the momentum outflow 
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M, = pPW+T 

may be determined and accordingly the corresponding momentum velocity 

Mm, = Var t/p0*, (58) 

the ideal efficiency, and the basic performance characteristic. 

Further on the volume velocity 

V, = OA, (59) 

may be determined, which will in general differ from the momentum velocity, 
while the conventional procedure implies the equality 

Vo = ™ ; (60) 

due to the lack of relevant information. 

From the definitions of the various velocities, which may be rendered in the 
forms 

Vi = Q/Aj = £/A; f if v dA dt , (61) 
1/-f A; 

m, = M;/(eQ) = ro f { uw? dA dt. (62) 
l/ £ Aj 

or 

Pcey D1 z 3 dA-dt , 2e; = 2E;/pQ = £/Q ie J u . (63) 

the approximate relation 

e, ~ 3/2 mv, - v? (64) 

may be derived. 

This relation however crude the approximation provides at least a first es- 

timate of the specific energy at the outlet and consequently of the outflow effi- 
ciency and the jet efficiency from measured integral values. Theoretical values 
may be obtained according to the same rule; Schiele, 1967. 

For propellers discharging above the free fluid surface the analysis may be 
even more refined due to the fact, that the momentum outflow may be deter- 
mined directly by means of a balance struck by the jet; Fig. 5. In this case it 

appears reasonable to treat the resistance 

RicaMee=. COI aT (65) 

separately, as the ducting system will in general serve as strut. 
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ul 

S; 

Fig. 5 - Free-discharge device 

The other possibility would be to determine the inflow momentum velocity 

m, = (M, - T)/pQ (66) 

differing from the advance speed, i.e., the propeller would have to be consid- 

ered acting in its own wake. Although nothing would be wrong with that concept, 
it would not fit into our picture of a free-running propeller. 

As far as the intake efficiency is concerned performance data are conveni- 

ently presented in terms of the nondimensional pressure drop 

6 =) Geqk.€40)/V fo 

as a function of the velocity ratio 

v= WVvig - 

According to the former definitions, the inlet efficiency is now 

Mn = 1 - Dia Uae 

As it may assume very large negative values, the modified inlet efficiency 

"ine = 1/(2 - nyyx) 

avoiding this inconvenience may be used as inlet performance criterion. 

0. PROPELLER-HULL INTFRACTION 

5.1 Uniform Inflow 

(67) 

(68) 

(69) 

(70) 

In order to reconstruct the basic ideas concerning the interaction between a 
propeller and the vehicle to be propelled, let us first consider the case of 
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uniform inflow to the propeller, although this is not likely to occur in practice. 
As basic model we may imagine a propulsion device of advance speed V with 

respect to a large body of fluid but the propeller acting in a wide stream of ve- 
locity wV in that fluid, no matter how this stream may be generated. Actually 
this model excludes interaction phenomena proper. We are still considering 
free-running propellers changing only the reference conditions; the propeller 

does not change the stream it is acting in. 

To account for this change we have to distinguish between the propulsive 

efficiency and the propeller efficiency as defined earlier. As the case of a fluid 
stream generated by a ship hull, i.e., a wake, w denoting the wake fraction, is 

of particular interest, the propulsive efficiency 

"erp = RV/P , (71) 

i.e., the effective efficiency of the propeller, R denoting the resistance of the 

vehicle equal to the net thrustof the propeller delivered under service condi- 

tions, whatever the definitions of both magnitudes may be. 

With the thrust deduction 

i= t= R/T (72) 
and the hull efficiency 

HULL = Cis atiGies Wu. (73) 

the effective or propulsive efficiency is obtained in the conventional form 

TEFF ~— “HULL PROP ° (74) 

For specified uniform wakes the thrust deduction, and therefore the hull and the 
effective efficiencies, may be determined theoretically, if the thrust deduction 
due to friction is neglected in a first approximation, when practical application 

is concerned. 

While for wakes w, of the same pressure, i.e., the same potential energy, 

as the surrounding fluid, the hull efficiency is simply 

Miu et? GA > Wo ds} (75) 

in any other case a thrust deduction has to be taken into account. It may be de- 
termined from a comparison of the actual propeller with a dynamically equiva- 

lent propeller outside the regime of modified pressure, i.e., outside the near- 

field of the ship, both producing the same race far downstream, supposing that 

such a propeller may be constructed. The conditions of equivalence are the 

equalities of mass flows encountered and power transmitted to the wake at the 

one and the other pressure level, explicitly, 

Q = 2 (76) 

and 

(E, - E,))o = E,- £, - (77) 
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As a consequence, the general relation 

proteqottod 2 (78) 
9(1/p-'1) 

for the thrust deduction may be derived, where 

1-w 

a ee (79) 
0 

denotes the wake ratio. The additional condition for the determination of the 

momentum ratio of the equivalent propeller may be rendered in the simplified 
form 

V/ug = 07(1/u? - nour) - Tourr (80) 

if the condition 

(NInF)o = TinF = 1 (81) 

and the approximation 

(NouTF)0 = TOUTF (82) 

are introduced. 

In terms of the load factor, the inverse momentum ratio of the propeller it- 
self is either 

iV AS Netecee Ne Cr, (83) 

or 

Wu? = 1+ Cyr + V 1+ 2p, , (84) 

which ever applies. Accordingly, the thrust deduction may be determined as a 
function of the wake ratio, the load factor, and the outflow efficiency. Apart 
from the generalization the basic concepts as well as the details of the present 
reasoning differ considerably from those proposed by Dickmann, 1939. 

The notion that the thrust deduction does not affect the power balance may 

be illustrated by the consideration of a ducted system, only the intake of the duct 
taking part in the interaction; Fig. 6. The suction at the hull and the thrust of 
the duct, being effected by the same pressure, vary in the Same way for various 
configurations without any overall effect. The higher nozzle thrust results ap- 
parently only in higher frictional losses and the necessity of a stronger support. 

9.2 Nonuniform Inflow 

We have dealt so far with essentially free-running propulsion devices, the 
evaluation of performance criteria being based on measured integral values, no 
problems arising in the appropriate choice of the boundaries of the propulsion 
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HIGH SUCTION 
AND THRUST 

NO DIFFERENCE 

IN EFFECT LOW SUCTION 
AND THRUST 

Fig. 6 - Propeller-hull interaction 

system. The situation changes completely, when devices in nonuniform wake and 

built-in devices are under consideration. 

The standard procedure of performance evaluation based on measured inte- 

gral values as practiced in conventional propulsion where ever possible has 

often been felt inadequate; Prohaska et al., 1966. Attempts to resolve the in- 
herent logical difficulties of the procedure, e.g., concerning the determination 
of the "'correct'' wake fraction, are neither satisfactory nor generally applica- 
ble; Horn, 1964. In many cases, neither resistance nor free-running tests, if 

feasible at all, furnish meaningful results. 

The evaluation according to the general definitions established does not suf- 
fer from the drawbacks mentioned, but depends on the choice of the propeller 
boundary and the measurement of local values, which as a standard procedure 

is apparently not very convenient. When the wake fraction 

wee == m/V (85) 

and anything else has been determined, the thrust deduction may be estimated 
according to the same relations as before, when the outflow efficiency is re- 

placed by the ratio of the out and inflow efficiencies. 

In view of the final aim, the whole procedure is actually not very straight- 

forward. Due to various reasons, not the least of which is the ambiguity in the 
choice of the propeller boundary, the concept of thrust as a propulsive force and 

a measure of performance turns out to be rather meaningless, however useful 
and necessary it may be for design and model-test purposes, etc. For the eval- 
uation of the propulsive efficiency, only the net thrust under service conditions 
is of interest. 

In the present context, this magnitude may be defined as 

R= M, - pW- F (86) 
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in terms of magnitudes to be determined in propulsion tests alone, M, denoting 
the momentum outflow from the propeller outside the near field of ship and pro- 

peller, and F denoting a towing force, if any. For propellers discharging above 
the free surface, the measuring procedure is particularly simple; see Sec. 4.2. 

In order to avoid the difficulties encountered in the determination of the 

propeller inflow details depending on the choice of the propeller boundary the 

following procedure is suggested. Instead of the hull, ideal, and jet efficiencies 
as defined before in terms of the inflow momentum velocity, we may introduce 
the effective efficiencies 

_ (m,- VV) V 
"HULL ~ (m,- F,) 7, (87) 

S 20 
IDEAL ~ ar (88) 

and 

= me 2i=Se 
Tere = = = ae (89) 

in terms of the inflow energy velocity. 

This description of the propulsive performance in terms of energy rather 

than momentum has particular advantages. It avoids not only explicit, but even 

implicit references to the interaction forces between propeller and hull, however 
they may be defined. Further on the value of the mass-specific energy, e.g., is 

only weakly dependent on the location of the propeller boundaries and conse- 
quently the same holds for the effective efficiencies (87)-(89) and the effective 
performance characteristic 

* = /( * be) ) 
HYD IEFF IHULL IDEAL 

I 
* * 

h” ("pga - 

6. CONCLUSIONS 

This outline of ideas and procedures concerning the definition and evalua- 
tion of performance criteria of pulse-jet propellers will not be complete without 

due reference to further extensions and generalizations. 

As the basic principles are not restricted to propulsion systems, the deduc- 

tions are euqally valid for reaction motors and brakes, if the quantities intro- 
duced are considered as algebraic. Two major disadvantages of a unified expo- 
sition, which has been envisaged, are that the efficiencies defined would assume 
any positive and negative value and that the word-language would be extremely 
clumsy. 

While in a completely formalized presentation, making use of some sort of 
operational notation, these drawbacks may be fully compensated for by the ad- 
vantages gained, they are prohibitive in the present context. The disadvantage 

of the suggestive language chosen is certainly that it may suggest exactly the 
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wrong thing. But as in any case a complete definition is provided, no difficulties 

should arise. 

In order to render this presentation as systematic as necessary in view of 

the various concepts involved, the corresponding symbols and terms are not in 

any case in accordance with the ITTC Standard Symbols (1965), which as a col- 
lection of signs and words rather than a language proper, do not lend themselves 

readily for systematic work; Schmiechen, 1966.1. 

The aim of this paper, the reconstruction of some concepts of the theory of 

propulsion in view of a wider application, has been achieved by deduction from 

the basic principles of hydrodynamics, resulting in consistent sets of perform- 

ance parameters and criteria for any type of propulsion device, and thus, it is 

hoped, throwing new light on various problems, even in conventional propulsion. 

The paper does not provide a review of the state-of-the-art concerning 

pulse-jet propellers and their possible applications elsewhere, but rather some 

concepts and procedures currently under consideration or applied at the Berlin 

Towing Tank. 

This work is dedicated to Professor F. Horn. The partial support by the 

Deutsche Forschungsgemeinschaft, the Fraunhofer Gesellschaft fuer angewandte 
Forschung, the Max Kade Foundation, and the Massachusetts Institute of Tech- 

nology is gratefully acknowledged. 

NOTATION 

The numbers after the definitions are those of the sections wherein the 

quantity is first mentioned or defined. 

Magnitudes 

A cross Sections, 3.1 

Cr load factors, 3.2 

e mass-specific energies, 2., 3.1 

E energy flows, 2. 

f frequency, 2. 

F towing forces, 5.2 

FL flows in general, 2. 

J advance number, 3.1 

K performance parameter, 3.1 
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L length, 3.1 

m mass-specific momenta, 3.1 

M momentum flows, 2. 

P power, 2. 

PR production in general, 2. 

Q volume flow, 2. 

r energy velocities, 3.1 

R resistance, net thrust, 5.1 

s stresses, 2. 

Ss surfaces, 2. 

t time, 2., thrust deduction, 5.1 

T thrust, 2. 

u local velocities, 2. 

v volume velocities, 3.1 

V speed, 2. 

Ww wake fraction, 5.1 

a area ratio, 4.1 

€ energy ratios, 3.2 

C nondimensional pressure drop, 4.2 

7 efficiencies, 3. 

n* effective efficiencies, 5.2 

a momentum ratios, 3.2 

v velocity ratio, 4.2 

p density, 2. 

1102 



Performance Criteria of Pulse-Jet Propellers 

Indices 

o maximum, 4.1., reference, 5.1 

1 propeller inlet, 2. 

2 propeller outlet, 2. 

10 pump inlet, 3.3 

20 pump outlet, 3.3 

0m operational indices, 2. 

DUCT duct, 3.3 

EFF effective, propulsive, 5.1 

EXT external, 3.1 

FLOW flow, 3.3 

HYD hydraulic, 3.2 

IDEAL ideal, 3.2 

INF inflow, 3.2 

INL inlet, 3.3 

INT internal, 3.1 

JET jet, 3.2 

OUTF outflow, 3.2 

OUTL outlet, 3.3 

PROP propeller, 3.1 

PUMP pump, 3.3 
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DESIGN ANALYSIS 

OF GAS-TURBINE POWERPLANTS 

FOR TWO-PHASE HYDROPROPULSION 

Rodolfo Pallabazzer 

Politecnico di Milano 
Milan, Italy 

INTRODUCTION 

Marine propulsion is probably one of the most contradictory fields of engi- 
neering research. Many propulsive systems and problems are in fact developed 

in detail, but we do not have an exact idea of what kind of system would be the 
optimum beyond the speed range in which we now operate. There are no uncer- 

tainties about hydrodynamic problems, because the hydrodynamic phenomena 

are uniquely determined by the motion itself; besides, the solutions until now 
proposed to delay hydrodynamic problems are hydrodynamically corrected and 

can be easily shared; therefore, hydrodynamic problems are in a refinement 

and improving phase for some time to come. 

This cannot come true for propulsive problems; any new speed field or en- 

vironment yields special exigencies, related to the achievement of high propul- 

sive performances, such as low fuel consumption, low weight, large range, 
mechanical simplicity, reliability, governing, control stability, and low addi- 

tional drag induced by the propulsor on the base vehicle. 

Such a collection of disparate and often contradictory problems needs not 

only lengthy and specialized research but also a wide-ranging tentative activity, 

by means of which one could evaluate the availability of new solutions and achieve 

exact ideas about the real exigencies of the operative field one wants to penetrate. 

One must admit that this kind of lengthy research is very poor, in marine 
propulsion, especially when compared to aerospace propulsion. Few solutions 

have been proposed and developed as advanced propulsors, apart from the well- 

known supercavitating propeller and the water jet, and no solution has been pro- 

posed for the powerplant but the classical mechanical connection between a gas 

turbine and the propulsor. [Since the only jet propulsor sufficiently developed 
for marine propulsion is the water-jet (or pump-jet) system, in the following it 
will be also the fundamental term of comparison for other jet devices.| 

A new kind of propulsor has been proposed by Foa [1,2,3,4] based on non- 
steady (cryptosteady) energy exchange between two fluids; this idea has been not 
sufficiently developed for underwater propulsion to approach the expected 
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performances. A turbofan whose thrust can be augmented by water injection 
has been recently presented [5,6|, but the results were too concise to achieve 

an exact idea of the characteristics. 

A propulsive ejector driven by compressed air was projected some years 

ago [7,8], without later being developed. Apparently the interruption of the 
project was due to the actual performances of the propulsor. 

As will be outlined later, while the energetic efficiency of the ejector can 

be sufficiently high, being increased by the velocity, the thrust performances 
can be very poor, showing strong collapse at increasing speed. It will appear 

that cold air expressly compressed for powering an ejector is not the best 
generator for this purpose; besides, new ejector designs can raise the thrust 

performances. 

The reasons for studying the ejector as a means of propelling a body in 

or on water, in spite of the aforementioned limitations, depend on the funda- 
mental simplicity of such a propulsive device whose merits are weight, main- 

tenance, failure and noise, no mechanical transmission, no water deadweight 
on board, no inlet clog risk, brief internal duct length and reduction of internal 
losses with regard to water-jet ducts, and availability of underwater instead of 
surface jet. The gain of weight by itself is a sufficient merit of a two-phase 

propulsor compared to a water-jet system. 

For example, if we figure substituting the propulsor of the Boeing water- 
jet hydrofoil PG-H(2) with an ejective device, the gain of weight is of 1.78 tons, 
which means 53% of the power apparatus (turbine + pumps + water) and 3.5% of 
the net displacement (50 tons). 

These reasons are sufficiently valid to require an exhaustive analysis of 
the ejector as a device for two-phase propulsion. This analysis has to be de- 
veloped in two directions: (a) powerplant investigation of the gas generator 

and its connection with the ejector, with the purpose of identifying the configu- 

rations which allow the best propulsive performances; this analysis can be 

initially developed by means of some idealizations about the two-phase exchange 

phenomena; (b) a theoretical-experimental investigation of propulsive ejectors, 

which allows identification of the most correct analytical idealization of the ex- 
change and the optimum geometrical configurations of the ejector with regard 

to propulsive performances. 

At the Istituto di Macchine, Politecnico di Milano, the first investigation 
has been widely developed, and its results are presented here, while the second 
investigation is just beginning at a two-phase tunnel which has been recently 

realized. 

TWO-PHASE JET PROPULSION: STATUS OF ART 
AND BASES OF THE PRESENT STUDY 

The working principle of an ejector is well known: In a propulsive device 
(Fig. 1), a secondary water stream, which arrives at the propulsor chamber 
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water 

Achill aaa noses ‘soe ees OLIIEe 

Fig. 1 - The Hydrojector: schematic cutway 

owing to the free-stream velocity, is accelerated by a high-energy low-rate pri- 
mary gas jet (supposed in the figure as injected from the chamber walls). The 

chamber can present a rectangular [8] or a circular [7] cross section. In an 
ideal propulsor there is no dissipation, since the water enters the chamber at 

same (high) pressure and (low) velocity of the gas. The basic effect consists 

in the production of a high-density two-phase compressible fluid, which can be 
accelerated in the nozzle to high speed. The drag effect is important just be- 

cause it avoids slip, not because it accelerates water. In the hypothesis of no 

slip effect there will be no momentum exchange between water and gas, and the 
only phenomena in which we will be interested are the total amount of energy 

and the direct energy exchange. The slip effect can be very low in a two-phase 

mixture when operating at high-flow-rate ratios of water to gas (that is, in 
"bubble" flow). However, the slip effect can be differently strong, depending 

on the jet shattering into the water and on the bubble diameter, that is, on in- 
jection technique and on chamber design. An injection coaxial with the water 

stream (see, e.g., Ref. [9]) will provide a gas axial momentum recovery but 
also a strong slip effect with large bubbles mean diameter, while a radial in- 

jection [7| will destroy the axial momentum, producing small bubbles mean 
diameter and lower slip effect. 

It is beyond the purpose of this work to investigate the methods of opti- 

mizing the ejector performances, and later an idealization will be done about 

its behavior. 
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As previously outlined, such an optimization can result only from a 

theoretical-experimental analysis restricted to the propulsive ejector. On 

the other hand, no extensive works appear to have been developed on this sub- 

ject, and no exact indications are available about the validity of the hypotheses 

that can be done. 

Besides, one must have in mind that the most delicate and uncertain phase 
of the two-phase flow is the first mixing phase, which takes place soon after 

the gas injection; it is generally a very turbulent phenomenon on a macro- 

scopic scale, where the bubbles' path is random and analytically unforseeable. 

In this phase, only statistical, experimental data are available, reducing the 
overall merit of more exact analysis of the successive quasi-homogeneous 

nozzle flow. 

Generally speaking, a wide bibliography on two-phase flow was published 

recently by Gouse [10]. 

More pertinent works on propulsive-type ejectors are listed in Refs. 
['7,9,11,12], while the theoretical bases of the most logical hypotheses are 
available in Refs. [7,9,13,14]. The only actual projects of two-phase propulsor 
appear to be those reported in Refs. [8,15,16,17|. In Ref. [18], a preliminary 
analysis of two-phase powerplant with a turbine as gas generator was devel- 

oped, while in Ref. [19] a liquid-metal-water reactor was studied as a gas 

generator for two-phase underwater propulsion. 

From another point of view, a propulsor based on cryptosteady energy ex- 
change [1,2] can be ideally considered as a combination of a pump with an ejec- 
tor, because of the mixing energy exchange phase which follows the pressure 
exchange phase. This means that, as compared with a shrouded propeller, the 

propulsor offers the ideal advantages of no cavitation, no mechanical connec- 

tion or mixing contribution, while as compared with an ejector it offers the 
advantage of a highly efficient pressure energy exchange preceding the mixing 

phase. From a power-plant point of view, it will be immaterial how any per- 

formances can be actually obtained by a propulsor, when the propulsor be- 
havior is idealized and when there are experimental confirmations of these 

performances, 

On the basis of the previous considerations, several power plant-propulsor 

configurations have been analyzed by a simplified model of ejector behavior. 
Such an analysis allows a comparison either among configurations which have 

been studied under the same hypotheses or among configurations which require 

different kinds of hypotheses, when experimental data can confirm their validity 
under the same order of approximation. Some of these hypotheses can be 
considered as rather questionable because insufficiently confirmed by experi- 

mental data available at present. However, they represent a compromise be- 

tween the exigencies of trustworthiness and simplification. While in fact a 
particle analysis of the two-phase exchange can be, and really was, already 

developed under a lower manifold of hypotheses [9,12] for studies regarding 
the propulsor alone, this kind of analysis would be absolutely impossible when 

evaluating the powerplant performances, because of the exceedingly high num- 

ber of variables one should have to consider for an exhaustive investigation. 
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Therefore, as already outlined, two kinds of analysis must be developed: 
With the first one, the general powerplant has to be considered with a simpli- 
fied analytical model of ejector to evaluate the most efficient configuration 
and its absolute performance with sufficient approximation; the second kind of 

investigation requires a particle-exchange analysis of the pure ejector, from 

both the theoretical and the experimental points of view, to identify the best 

propulsor design and mixing technique. 

3 PROPULSOR ANALYSIS 

3.1 Description 

Actual hydrojet (IG) configurations are represented in Fig. 2. Cases (a) 
and (b) refer to surface vehicles (pump jets) and case (c) refers to an under- 
water vehicle (ducted propeller). No detailed configurations of propulsive ejec- 
tors are available in the literature, but appropriate configurations can be 

easily represented (Figs. 1 and 3). Figure 3 is deduced from the Marjet [8], 
where the chamber is obtained between two separated parallel foils, while Fig. 
1 considers a circular chamber. This propulsor, where the water stream is 

accelerated just by the gas (which has been sometimes called "water ramjet") 

will be designated here as hydrojector (IR). No example exists of hybrid sys- 
tems (that is, a pump associated with an ejector) apart from the Foa propulsor 

(Fig. 4a), where a gas pseudoblade takes the place of the conventional pump, 

being followed by a mixing phase. However, new types of hybrid propulsor with 

mechanical pump can be easily imagined (Fig. 4b, 4c). This kind of propulsor will 
be designated as pump-jector (IB). The most general fluid-dynamic model of 
the propulsor is presented in Figs. 5 and 6. In Fig. 5 the propulsor is axially 
symmetric and rectilinear. This model can be applied to underwater propul- 

sors. In Fig. 6 an S-propulsor model is shown which can be applied to surface 

(water-air) propulsion. 

The water stream velocity Vv, is slowed down partially outside and partially 
inside the diverging inlet to the chamber value V;. Here the water is first com- 

pressed by the pump at constant velocity, then accelerated by the mixing at 
quasi-constant pressure to the value V, at the nozzle inlet, where a two-phase 
homogeneous compressible flow enters, expanding to the external pressure at 

the exit. [The cylindrical shape of the chamber is not a statement; the experi- 
mental analysis must recommend the best shape. Therefore section (0) can be 

considered just as a reference.| 

In underwater models, this pressure is equal to the free-stream one, while 
in S-models the exit pressure is the atmospheric one. In underexpanded noz- 

zles, the pressure depends on the internal flow. 

In the following, a simplified analysis of the propulsor is developed under 

the hypotheses of one-dimensional, homogeneous, ideal flow. 
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Water inlet 
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Fig. 2- Water-jet propulsive systems: 
(a) motorboat installation; (b) hydrofoil in- 
stallation; (c) underwater ducted propeller 

3.2 Fundamental Hypotheses 

We will outline the hypotheses necessary for the analysis. All these hy- 
potheses have been generally adopted in the literature (Refs. [7,8,9,11,12,13, 

14,17]), but they will be briefly justified here too. 
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Fig. 3 - Planar hydrojector (Marjet) 

(a) The motion is treated as one dimensional. 

(b) The analysis will concern design performances. 

(c) Water and gas enter the chamber at the same pressure p;; 

(d) The velocity v; will be expressed by the diffusion coefficient , 

v.\ 
Yh Fock (=) (1) 

the significance of which is clearly discussed in Ref. [20]. Here y is a design 

coefficient which is fixed on the ground of several exigencies (external and in- 

ternal cavitation, losses, and flow rate). 

(e) The internal pressure drag losses AH, will be expressed by an 

overall losses coefficient 

AH, 

ve /2¢ 
(2) 

This is also a design coefficient, meaning that € can be considered as a con- 

stant only when the analysis refers to design performances, 

(f) The two-phase flow is homogeneous, There will be no slip effects 

between water and gas, that is, water and gas move at same speed. The gas 
density po, is negligible in comparison with the water density »,, and the same 

thing happens for the mass flow rates, that is, the mixing mass yatio. ‘« << 1; 

(g) The gas momentum will at the chamber inlet be neglected; this 

corresponds to the hypothesis of a complete viscous dissipation. The gas en- 

ergy amount will be taken into account in the form of total enthalpy. 

(h) The gas is perfect and ideal, but its nature will be taken into ac- 

count by means of different thermodynamic coefficients. 
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Fig. 4 - Pumpjector devices: 
(a) cryptosteady. system; (b) 
underwater hybrid system; 
(c) hydrofoil hybrid system 

(i) The gas expansion is adiabatic. This hypothesis is the most 

critical one, because it is surely not true. As a matter of fact, in one- 

dimensional homogeneous analysis one must assign the gas-expansion law, 
and the only other hypothesis which has also often been made (Ref. [8]), that is, 
an isothermal (at the water temperature) expansion, seems to be less valid 
than an adiabatic expansion, when the gas is at high temperature. It is obvi- 
ous that the actual law will depend on the gas permanence time and contact 
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aligned propulsor 
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Fig. 6 - Fluid flow for 

S-propulsor (S.p.) 

surface, that is, on the mixing technique, on the bubble dimensions, and on the 
propulsor length. Therefore, at present only experimental observations can 

suggest more exact ideas about the expansion law. 

(j) No water evaporation is considered. 

3.3 Basic Equations 

With reference to Figs. (5) and (6), when the Bernoulli equation is applied 

between sections (~) and (i) there results 

PH 
jy = fad an (fp an ae & Py, + > (V2 ="V;?) - gpyAH, . (3) 

Symbols are listed at the end of the paper; the z-coordinate is positive down- 

wards. By means of dimensionless parameters, Eq. (3) can be written as: 
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Pi 
Be = Pea BoB) = 1-+ Bri ct By + Bo- €) ’ 

(4) 

Pi 
Bi, = P. BG Beis: 

The total energy balance between section (i) and the current section, which 

are aligned, can be written as 

2 
af Pe %3 pee Bey a So aes v? 
7 Vee Stee tim Onl oe A. + mo [jg eral 

This equation can be developed, by means of definitions and of thermodynami- 

cal relations, as 

2 V. 1 
1 
i}, EPs coe) UEP (co) 

2 eet ma) 2 pb Pe Py (5) 

where « = m,/m, is the mixing mass ratio. The isentropic law furnishes 

p,(1 4 Fae) B. 

p Pei 
gj (h,;-h) = (l= 6"): (6) 

Therefore, by means of Eqs. (4), Eq. (5) becomes 

Be Py V2 PH 

1+ Any + By +-ByCseeen CE BRD aps raat © cg (E+ Bas) 

(7) 

= = Bey 0 * PR (his Bis tea 

Thus, 

e PH v2 1 fe) 

og ate TAs =) Sa aN ee ies aay Sie) = , 

n~ Pn BF Patl st Bias t Boas: Pp BAL Be o> 0% (7) 

which gives 

1/2 

2 p,(1+ 8.3) B i en 

= a ae ae 
Bec i “HH _ wd 

V Pa (1+ Eh toe Pes Bibs ls bs) : (8) 

Now let us define the mixing volume ratio X: 

2 Me/Pg _ PH 
= ity” Pu = pa (3 

(9) 
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Different from «, A is not a constant but depends on local conditions. Denoting 

by A; = €¢y/¢; the volume ratio in the chamber, the previous equations 

become 

Be V ; By ie 

i) Pe (By Spay Nootie N LCs Fe =a0 (7") 
B. Bp us 172 

Mane Pan eiigeteiey, tse Fa? (8") 

It will be useful to apply Eq. (8') at the nozzle exit for evaluating the exit ve- 

locity V,, in two particular cases: 

(i) aligned propulsor (Figs. 1, 3, 4a, 4b, 5): 
It results z; = z,, Bui = nos Sn = 1. The external pressure is p,, and 
therefore £;,, = pi/p. = £.. Therefore, 

1/2 

a V, (60+ 5 MB 9] (10) 

(ii) S-propulsor (Figs. 2a, 2b, 4c, 6): 
It is B,, > o and £,; < o, while the external pressure is now p,, and there- 

' fore £;, = P;/Pa = Be: 

1 Py ie Y=, [ Pe ater aaah a bac 6%) , (10") 

and, for the waterjet (A, = 0), 

ree ee [ER ee ele al (10") 
uu” (1+ B12 

It appears from the previous equations that the flow inside the ejector de- 

pends just on the volume ratio instead of on the actual conditions of the gas 
injected. Besides, the solution will not depend on the compressibility of the 

two-phase mixture. On the other hand, it will be useful to introduce the com- 
pressibility into the flow equations, by the two-phase pseudo-Mach number. 

In the following an analysis will be outlined which was already developed par- 
tially in Refs. [7,14,21]. Let us define a mean density of the mixture (this is 
valid owing to the hypothesis of no slip) as 

Py Ay + Pe A, A Ay H 
Pe Pig hPa Pg) 5= Pet 

A A fH? 

where A is the local cross section, and A, and A, are the fraction of A oc- 
cupied respectively by water and gas (A = Ay + A,). On the other hand, we 

have \ = A,/Ay. Therefore 
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Py Pu + \Pg Py 1 
= + a SS Eee 

ty a8 1+A 1+A + & (4) 
+ 

€ 1 

Ps PH 

By means of the water continuity between sections (i) and (o) Hoy ene A, =A,), 
we obtain the water acceleration as 

VA Ay °° (12) 

Therefore (1 +) measures the water acceleration just due to the mixing at 
constant section. Let us now define the pseudosonic velocity of the mixture as 

a 2 2 

he) Set Sen sae) (<=) 
dpe Py d € \ PH CH 1 odazoe p 1 pr? 

oe dp 5 .aaoqarSilre 
. € 1 Cg Pe PH 2 

——— — eee € Ds + 7 

A comparison between the orders of magnitude of the terms in the numerator 
allows us to neglect the second one, provided that 

e:>><107% - 

In this case, we have 

p. 

23%, 2 id 
& x Py (13) 

which can be accepted as valid in the range 

10°" <4e27 10°75 (14) 

which is a practical operating range of our propulsor. By using the isentropic 

expansion law of the gas, and the definition 

Pp 

—=1+ A, . 
a 

Eq. (13) furnishes the following expression of the local pseudosonic velocity: 

Byi(itr, BPY’ 
c?2 = K, —_—_ 

Bi Aj 

where (15) 

k ps Gist 
K. = SOP She? Po) : 

1 Py 
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At the exit, Eq. (15) becomes 

(a) aligned propulsor (p, = p,3 4; = B,): 

rey) 

oe Se (16) 
u 1 e dj 

(b) S-propulsor (p, = pai 8; = Ag): 

tmy\2 

Fol aa Saag gee a a (16") 
i (GE y ee os hs 

The local pseudo-Mach number M is defined as 

Mea" Vic". (17) 

It will be useful to identify the pseudosonic conditions, which can be obtained 
by equalizing Eq. (8') to Eq. (15). The corresponding value of 6, = 8, is the 
critical expansion ratio 

Ci4.d, BEY" 
ar Se By 38 : B Vent omere ee ee 

c 

(18) 
i 

By numerical procedure it will be possible to deduce 6. from Eq. (18). The 
exit pseudo- Mach number can be obtained from Eqs. (10) [or (10')], (16) [or 
(16')|, and (17). The equations cannot show any useful solutions for the water- 
jet in terms of M, because of the limits (14). The previous equations define all 
the parameters necessary to the flow solutions when \,; or « are fixed. 

In the present work we will, on the contrary, assign an exit value (M,,), 
and the values of \; or « which are consistent with such exit value will be 
determined. By matching Eqs. (10) [or (10')], (16) [or (16')], and (17), one ob- 
tains the following equation: 

Byt'= B= iB, = 0°; (19) 

where 

Bae + [2(B2= 1) = M2k= 1)] (aligned propulsor) 

, (19") 

= cn 2 e ee) Che od) ee 1) (S-propul sor) 
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By + Bo(1-&) 
B, = kM? = Teas (aligned propulsor) 

= kM? sit Bye) Be + By + B,(1-€)]-. (S-propulsor) (19') 

k -m 
B, = > Mr Be . 

Equation (9) furnishes two values of 4,, both of which have physical meaning: 

B, + VB + 4B.B B, + Al/2 
Jy Os A (20) 

2B 2B 
1 i 

An analysis of the solutions allows us to observe that \j is positive every- 
where; \{(M,) is a monotonic function (Fig. 7), the asymptote of which corre- 
sponds to the condition B, = 0, that is, to (The following relationships are de- 

duced for aligned propulsor.) 

1 A2 

care a) e-1)] 21 ramets (21) (B,=0) Mi = ( 

only up to a speed V., where it happens simultaneously B, = B, = 0, that is, 

2k 

eal 
Br = Cla); (22) 

for which V, can be obtained numerically. Up to the same speed j is always 
negative. Above V,, \; is positive above M'! and both solutions merge ina 

al 

maximum at the condition where A = 0, that is, at 

Bn 

pee? (21") mo 
In this range, \j shows the same asymptote at M, = M(!. Therefore, there is 

a range of M, where two values of A, are possible at V, > V,, and M, shows 
a maximum, but this does not represent an indetermination because 4; is the 
physical datum, while M,, which has been selected as a datum in the numerical 
procedure, is actually a physical effect. In any case, that is, at any speed, there 
is a maximum M,, which cannot be exceeded (it will be M{’ at V, < V, and Mj 
at V, > V,). It can be interesting to observe that in any case for \;— © M,— Mj, 
which is the Mach number of the gas, as it would have to be. Another significant 
pseudo- Mach number is the one corresponding to B, = 0, that is, 

Mi = 

fie (SAS sae (21") 

since the speed V,, is obtained at mM!’ = M'!', All these conditions differently 

represent physical limits. 
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Seen. k 

1* 

8,0 
3 BSB cSte SSS soe Ses eo dl SSR GOS Aa Sa Sea sec asec e Ss 

= see 
~ . . 

cs. . 

(-) 0 (+) » 

Fig. 7 - Qualitative variation of the discharge pseudo- 
Mach number M,, with chamber volumic flow ratio 4, 

In Fig. (8), V,, is represented for the aligned 
propulsor as a function of £,, noe ne with the 

corresponding pseudo- Mach number M,; in Fig. 
(9), the limit pseudo- Mach numbers M', wt", Mi"! 
are shown as a function of V,, for some "values of 

Bp, While in Fig. (10) the same has been done for 
A} (corresponding to A= 0). All these functions 
have been calculated for k = 1.35 (exhaust gas) 
Z =~2; >. 1m, €°=.0,2, and=tiee 0.9 (these val- 

ues will be discussed later), while in Fig. (9) the 

effect of changing y to y = 0.6 is shown. 
Fig. 8 - Variation of 
the transition velocity 
and discharge pseudo- 
Mach number V,, and 

From Eq. (11) one can deduce the cross sec- 

tion ratio A/A,: 

M, with 6, 

A Py 
ener res ok he oes 

A p 
BL ps ee ee 
Ho Pi Pei 

and therefore 

1119 



Pallabazzer 

Fig. 9 - Variation of the limit Zee L 
pseudo-Mach number Mj’, M’, Y 

Mi’ with v, and £,, for y = as dl Z| 
0.9 and for y = 0.6 pe 

8 0 30 40 
Ves (m/s) 

° 3 \ 
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2,8 

24 | = 

4 

Veo (m/s) 

Fig. 10 - Variation of the 
transition volumic ratio At 

By means of the water continuity and by Eq. (12) one obtains 

V V A p 
Ae | Beh 
A V re Vv Vv Jen ee 

which can be written as 

Ae, 
A V 

(23) 
eee eee Grea ae ay each 

By means of Eq. (23) it will be possible to calculate the local cross section, 
particularly the throat and discharge sections. In Fig. (11) the discharge ra- 

tios A,/A, are represented for a few values of 6,; for £, = 0 the critical 
_ ratio A,/A, is represented too. 

It is useful to remark that from Eq. (23) the continuity equation for the two- 
phase flow can be written as 

AV i ae 
erat a SETS Ala = const. (23') 
1+A 1+ A,B; 1+d, 
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15 

12 25 

: | Bit 

' 

16 Fhy.10 (m/s) 

\ \ yar \ Se 
0 

20 

04 

06 

Fig. 11 - Variation of the exit (A,/A,) and of the 
critical (A,/A,) cross-section ratios with M, for 
some values of 6, (y = 0.9, a.p.) 
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20 
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x 
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< cd i) i 
> 30 ae = 

<x 35 | a a eee 

08 T r i 45 
50 

———— oa 0% | 1 -pecietioce | 

Box? 

, | 

(c) 

20 

WW 13 15 17 19 2) 23 25 

Fig. 11 - Variation of the exit (A,/A,) and of 

the critical (A,/A,) cross-section ratios with 
M, for some values of A, (y = 0.9, a.p.) 
(Continued) 
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It appears also that A/A,— © when \A;—™, meaning that during the expansion 
the gas dilates more than the two-phase mixture. In Fig. (12), o is plotted 
against A,/A,, and in Fig. (13), A; is represented as a function of V,, M 
and £,. 

10 j gts Sosy v Pp=0l 
6 1, L 5 

i ) 
é = : 
3 tod 

2 

u? 

N 

—a 

w —— == a 

8 + a 
: es aN 
b 4 20} t=--, se = 

3 10 -— = == = 

es im 
pies meet = 
oe =20 

dl! Uscssess = 25 

20 30 
v..(m/s) 

Fig. 12 - Variation of i, 
as a function of V, for 
some values of M, and 
BoCy = 0.95.24, Ds.) 

To sum up, the following remarks can be made: 

(a) There is a typical velocity v,, below which any positive value of 
A; is obtained asymptotically; the pseudo- Mach number at the exit has a limit 
at M, = M'!, where A; becomes infinite. There are no physical but just sonic 
limits. At a velocity above y,, a maximum in the pseudo- Mach number is 
reached at A; = A}, but d, still increases asymptotically as M, decreases 

to M", ; 
u 

(b) V,, corresponds to 30m/s for £, = 0 (that is for the hydrojector), 
while it decreases strongly at increasing £, and becomes zero for £, = 4.3. 
‘This means that the hydrojector at a speed above 30 m/s will tend to be un- 
suitable for reaching the highest performances; at increasing 4, the physical 
threshold advances but the value of \}; decreases at increasing £, and at in- 
creasing speed (Fig. 10), becoming insensitive to the speed at the highest £,. 
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Fig. 13 - Variation of the specific thrust o 
and its value o, corresponding to throat 
truncation (y = 0.9, a.p.) 
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ee ae 

Fig. 13 - Variation of the specific thrust o 
and its value o, corresponding to throat 
truncation (y = 0.9, a.p.) (Continued) 
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It already appears from these remarks that the hydrojector at moderately low 
speed seems to promise higher efficiency than the pumpjector and, by extrapo- 

lation, than the water jet. 

(c) The functions* x; Mi j.M", M't"5 Ves Mus Vas. Bey Ay/Acy and 
A./A, are independent of the actual conditions of the gas, which are expressed 
by the chamber density »,;; they depend just on the parameters V.,, 6,, and 

M,, besides on the gas thermodynamical nature. On the contrary, the mass 
ratio « will depend on »,;, that is, on the engine powerplant configuration. 

(d) The area ratios A/A, present a strong increase in proximity of 

the discharge limits M'. It can often be A/A, > 1, depending on the "dilata- 

tion" of the gas during the expansion, as was noted. 

4 DEFINITION OF THE PERFORMANCE PARAMETERS 

4.1 Thrust 

For an adapted nozzle, the net thrust S will be 

V 
S = thy(V,-V,) + meV, = mpV,, (= - ) (24) 

Let us define a specific thrust as 

S Ss Ni 
Oo = — = a Sa So al (25 

Vo pyA, V2 (1- p)'/? Yo 

This is a fundamental figure of merit for comparison among propulsors of same 
design and advance velocity. On the other hand, the thrust coefficient c, 

ig ie ee Io0(1=y)/? 
= PyA, V2 (26) 

depends on the frontal diameter of the propulsor instead of the overall design 

coefficient A,(1 - ¥)!/?; it will be especially useful in comparisons among pro- 

pulsors of different shapes. 

If the nozzle is truncated during supersonic flow (underexpanded nozzle), 

the thrust S, will be 

Soom ey pena Pa) = (24') 

In the present work we will take into consideration the case of nozzles which 

have been truncated at throat, that is, at the critical pressure p,. The corre- 
sponding thrust is 

Sale MaGvale Ve. te hela = Pad (24"') 

1127 



Pallabazzer 

which can be written in dimensionless form as 

Ve Ae B./B, rail 
o.= —- 1 + —(1+4,,) ————— ' 

Vio A, an ae (25') 

and accordingly 

Cee 2c) ae 

In Ref. [22] the feasibility of truncated nozzles for underwater propulsion was 
presented, showing that practically ideal performances can be actually obtained. 

4.2 Efficiency 

As can be seen from the literature, the efficiency of a propulsor in marine 

environment is the most discussed parameter, because of the difficulty of taking 

into account so many variables. In this work, two efficiencies have been intro- 
duced, that is, (a) the conventional propulsive efficiency ee 

SV, 
i) i) 

(yay) ie (27) 
pig Gone aan V. 

where the gas contribution has been neglected. Its value for a truncated nozzle 
is 

cae = . (27') 

(b) an overall efficiency Nz, defined as the ratio between the propulsive power 
SV. and the chemical energy inflow AE. = jgm,(a'+ a+ a,5) H;(a', a" and 

e 

a,6 are the fuel rate fractions) 

SV. ave 
1 i ee 28 

or SAK jey(a'+a"+a,5)H; ey 

Since for underexpanded nozzles all the quantities at denominator cannot 

change because of the supersonic flow, the value of 1, for truncated nozzles is 

ep 
SS = 7) 

(Of. 

7) = gc : ! u £0 jey(a +a°+a,6)H; (28') 

This efficiency is the only one which could permit a comparison among com- 
pletely different propulsive devices, such as the water jet and the hydrojector, 

since any mechanical power is excluded from the performances. 
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It is obviously impossible in such an analysis to take into account the ef- 
fect of the external drag on the net thrust and on the efficiencies, and only quali- 

tative considerations can be made about the additional drag induced by the pro- 
pulsor and its appendages. Typical behavior of o is showed in Figs. 14 and 13 
for a few values of £,, while in Fig. 14 o is plotted against A/A,. All these 
functions have been calculated for exhaust gas and for y¥ = 0.9, as already men- 
tioned. In Figs. 13 and 15, the values of co. for an underexpanded nozzle are 
reported for £, = 0 (hydrojector). 

hydrojector ( Bp= 0) 

waterjet 

22 

Fig. 14 - Variation of o as a function of Bo Are 
for: (a) hydrojector (8,= 0) and water jet; 
(b) pumpjector (gp, = 2) (y = = 029, apr) 

By means of the condition \; = 0 the previous equations get solved for the 
pure water jet. A plot of diagrams have been reported on Figs. 14, 16, 17, and 
18 for the following data: y = 0.9, € = 0.38, z, = 1m, z,; = -3m. In Fig. 19, Oo 
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2h 
K=20 (m/s) 
fe 
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Se 

12 | — 

08 + 

os | 

‘SS | es 
O6 192 r(Pp=2) 

iN (6) 

0 al al bie 
0 04 a8 12 16 20 26 

Fig. 15 - Variation of o, with A,/A, for: (a) hydrojector; 
(b) pumpjector (6, = 2) compared with the water jet's o 

0 0 20 30 40 50 20 30 
Vv. (m/s) Va (m/s) 

Fig. 16 - Variation of o for a Fig. 17 - Variation of the 
water jet with V, and 6, (y= thrust coefficient c, for 
0.9, S.p.), compared with the water jet (y = 0.9, S.p.) 

hydrojector (6, = 0)and pump- 
jector (8, = 2) values of o and 

o,. correspondingto A,/A, = l 
(y = 0.9, a.p.) 
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0 10 20 30 40 50 
V,, (m/s) 

Fig. 18 - Variation of the 
propulsive efficiency 1, 
for water jet (y = 0.9, S.p.) 

io’ 2 

Fig. 19 - Variation of o 
with 4,, for a hydrojec- 

tor (yw = 0.9, a. p.) 

20, and 21, o, c, and 7, as functions of \,; have been diagrammed for an 

exhaust-gas ejector and for = 0.9. 

Finally, to evaluate the overall efficiency 7,, the solution of the power- 
plant equations will be necessary. It is possible to make the following remarks 

about the pure propulsive performances: 
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Fig. 20 - Variation ofc, 
with a,;, for a hydrojec- 
ton (wv = 0.95 a.p;) 

Fig. 21 - Variation of 7, 
with ,, for a hydrojec- 
tor~(wi="0.9, a. p.) 

(a) Ina range of \; of practical interest (this corresponds to a range 
of 10°* < « < 10-2, which is both a valid solution of the equations and of prac- 
tical interest), the hydrojector can provide higher specific thrust than the 

water jet at the same speed. While the increase of 4, becomes less and less 
efficient at higher values (Fig. 16), the effect of increasing A; is more and 
more efficient (Fig. 19); values of o higher than 1 can be obtained at A, > 2. 

From the equation of state and from Eq. (9) it can be seen that at 
given pressure and given «, \; is proportional to the gas temperature. This 

means, for example, that the substitution of cold air at T = 288°K with hot gas 
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at T = 1150°K about quadruples \, and, from Fig. (19), triples or quadruples 
o at same speed V,, and same flow rate ratio «. Such comparison will appear 

clearly in the following part, where o will be calculated. It is also noteworthy 

that 7, decreases while o increases with ),;. 

This behavior, which is well known, will be pointed out later in 

comparison with the behavior of the overall coefficient, to stress the fact that 

the analysis of the propulsive efficiency can suggest completely wrong 

conclusions. 

(b) A propulsive comparison among hydrojectors, pumpjectors, and 

water jets can be made only in terms of actual propulsive feasibility. Since the 

hydrojector and the pumpjectors can provide any thrust and any propulsive ef- 

ficiency, two other design parameters must be examined, that is, the inflow 
ratio y = m,/my and the cross-section ratio A,/A,. However, the parameter y 
depends on the actual powerplant, and it will be discussed in the following para- 

graphs; here only a discussion on the cross-section ratio can be developed. As 

has been pointed out, the specific thrust of the water jet is really limited, but 

there are no problems about the exit cross section, because it will always be 

A,/A, < 1 (Fig. 14); that is, the chamber cross section is actually the signifi- 

cant propulsor cross section. It will be not so for two-phase propulsors, as 

can be seen from Figs. (11) and (14), because A,/A, often becomes >1; nay, the 
highest thrust is always obtained at A,/A, > 1. If one decides to function at 
A,/A, not higher than 1, a design limit on o immediately descends. At A,/A, = 
1 and v,, = 50 m/s, the hydrojector is poorer than water jets at 8, > 11, at 
V,, = 30 m/s this happens for water jets at Bp > 9. This means, for example, 

that the PG-H(2)-type water jet, which provides an advance speed of 26 m/s 
with 4, = 17 (see Ref. [23]) shows a thrust of o = 1.4, while the hydrojector 
which has been limited by A,/A, = 1 offers oc = 0.62 at the same speed. 

In Fig. (14) the behavior of > (hydrojector) corresponding to 
A,/A, = 1 has been represented. 

(c) In Figs. (13) and (15) the graph of o,, the thrust obtained by trun- 
cation of a supersonic nozzle at the throat, is also plotted. It is remarkable 

that a very faint decrease of thrust is associated with a strong decrease of the 
discharge cross section, which is now A,. This behavior is emphasized in Fig. 

(16), where the curve of co, for A,/A, = 1 is plotted. It appears that now the 
thrust available for A,,/A, = 1 is increased especially at high speed, where the 
thrust produced by hydrojector can be higher than that produced by water jet. 
It is also noteworthy (Fig. 15) that «. becomes practically insensitive to the 

velocity V.,, for any given value of A,/A,. 

(d) The presence of a pump strongly improves performance [Figs. (14) 

and (15)|. A pumpjector at by = 2 and A,/A, = 1 provides a specific thrust 
comparable with the one produced by a 4, = 18 water jet. If the nozzle is 
truncated at A./A, = 1, the thrust can be more than double that for a 6, = 21 

water jet (Fig. 16). On the other hand, a 4, = 2 water jet moving at V, = 15 
m/s (Fig. 14) shows o = 0.47 with A,/A, = 0.22. If the same nozzle (that is 
the same A,,/A,) is adopted in such a way that the exit cross section could 
represent a critical section for two-phase flow (Fig. 15b) a thrust of 0.64 can 
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be obtained. Therefore the pumpjector provides thrust improvement with 

regard to both water jet and hydrojector. 

5 POWERPLANT ANALYSIS 

5.1 Description 

As already mentioned, three different kinds of connection between propul- 

sor and powerplant have been studied: 

(a) the hydrojector (Figs. 22 and 23), where a purely gas-dynamical 
connection is realized; 

(b) the water jet (Fig. 24), with a purely mechanical connection; 

(c) the pumpjector (Figs. 25 and 26) which can be realized either 
with both mechanical and gas-dynamical connections (Figs. 4b and 4c) or with 
a purely gas-dynamical connection which acts by both pressure and mixing ex- 

change (Fig. 4a). This propulsor can be considered as either a change of 
previous propulsors or a completely new design; it can be seen as a device 

similar to the afterburner of a turbojet engine, both on thermodynamical and 

on performance point of view. 

For all the powerplants a gas turbine was considered as the basic engine, 
whose behavior was suitably idealized. The gas turbine therefore will supply 
high-temperature high-pressure gas or mechanical power, or both, to the pro- 

pulsor, as shown in the diagrams. 

The fundamental powerplant configurations which have been analyzed are: 

(i) a gas-turbine cycle provided by single or double combustion; 

(ii) a turbine with three possible points for gas extraction: just be- 

fore the turbine, at a suitable point during the turbine expansion, and just after 
the afterburner. The powerplant shown in Fig. (22d) or (25d) is the most gen- 
eral one, because cases (a), (b), and (c) can be obtained by regulation of 
scheme (d). 

(iii) The gas for the ejector can be supplied by the secondary cycle 

of a bypass turbine or of a driven compressor (Figs. 23 and 26), with or with- 

out secondary combustion. 

The thermodynamical cycles are represented in Figs. (27a and 27b). The con- 

straints the powerplant must satisfy are: 

(a) hydromechanical constraint, represented by the equality of the 

turbine net power and the pump or propeller power; 

(b) gas-dynamical constraints, represented by the equality of the gas- 

extraction pressure, the chamber pressure, and the overall gas flow-rate 

continuity. 
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Fig. 22 - Hydrojector conventional powerplants 
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Fig. 23 - Hydrojector bypass powerplants 

A pressure loss 5 is taken into account at the valves V; of the powerplant. 

In the aforementioned figures, the abbreviations of the configurations which 
have been studied are given too. 

4,2 Criticism 

Here we will expound the reasons which led us to conceive and to analyze 
the previous configurations. As mentioned, the pure hydrojector was fairly well 
studied and designed in the literature, and its general advantages have been al- 
ready emphasized, but what we would investigate was the overall effect on the 
propulsive performance of using hot, high-pressure, partially exhaust gas, in- 
stead of a cold gas (compressed air). The partially exhaust gas can provide 
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b) 

Fig. 24 - Water-jet powerplants 

two kinds of advantages: (a) higher effect of the volume ratio \; at same 
mass ratio <«|as shown, the propulsive performances (c, £,, A/A,, etc.) 
are increasing functions of 4; ; therefore an improvement of the performances 

could be expected when hot instead of cold gas is used], and (b) an improve- 
ment of the overall efficiency could also be expected when the gas was ex- 
tracted from the turbine after partial expansion, because of the net work con- 
tribution given to the mechanical balance, 

Therefore it seemed reasonable to analyze: (a) a conventional turbine 
with several possible points of gas extraction, and (b) a bypass turbine (or 
turbocompressor) to yield either cold compressed air or hot compressed gas 

(this being produced by secondary or auxiliary gas burner). The analysis of a 
cold-air ejector was introduced for sake of comparison, since this scheme 

Reue en? to the Marjet propulsor, which has already been mentioned (Refs. 

§.15,16]). 

1137 



Pallabazzer 

a) 

r ee 

oom 

b) 

c) 

Ginnie @saiGo®! 6S LE een be sel 

d) 

Fig. 25 - Pumpjector conventional powerplants 
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a) 

b) 

Fig. 26 - Pumpjector bypass powerplants 

The foreseeable profit of hybrid propulsors, which could be imagined as 
either a conventional power system or a schematisation of a cryptosteady ex- 

changer or an emergency auxiliary system for thrust augmentation was also 
noted. It was expected that its performances were a compromise between the 

water jet and the hydrojector. 

The analysis of a water jet was also introduced to allow an internal means 

of comparison. Finally, afterburner systems were considered as conventional 

systems of thrust augmentation. 

4.3 Powerplant Equations 

It would be exceedingly time consuming to expound in detail the systems of 

equations which solve the fourteen powerplant configurations studied, even 
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(a) Conventional powerplants 

Fig. 27 - Thermodynamical cycles 
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Fig. 27 - Thermodynamical cycles (Continued) 
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though no new hypothesis is involved with the equations. We will just recall the 
expression of the single terms which appear in the equations, so that the degree 

of idealization made will also be clear. All the quantities are defined for unit 
air flow rate entering the turbine. 

(a) Work of compression: 

Coa 

L. = A Chee) , (turbine compressor) 
mc 

(29) 
Cod 

Lye = a,(T,-T,) , (bypass compressor) 
In £ 

(b) Work of expansion: 

Li = (14 Oi 0) Coe Datwey we)» Cone’ tupbine) 

Lig = (lee ce, Mecha EE.) , (one bypass turbine) 

Lin = (l+a'-a,)c,, Teeig 7 1,) > _ (high-pressure turbine) (30) 

Li = 4, Gok TAL mL) , (low-pressure turbine) 

Lei = Oi Coy Mint Tg = 15) , (low-pressure reburning turbine) . 

(c) Pumping work: 

reel (31) Pp = ’ 

ee 

where Y¥ = m,/m, is the inflow mass ratio 

By equating separately the previous work, one obtains the mechanical equi- 

librium at the compressor axle (mechanical constraint) and at the pump axle 
(hydromechanical constraint). The other balances are: 

(d) Energy balance at the burners: 

(eae. (1-2) =a’ 1,0). , “Cfinst burner Bd) 

(lia’+a"- a, - aoe (la .) = a"7,H; , (afterburner B2) (32) 

(1+ 6) A, Com(T g- Tg) = o0,7,H; , (auxiliary burning B3) . 
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(e) Mass balance: 

Pika’ + a" = (a, +a,+40,) “a, = 0, “(conventional turbine) 

PHCao RNa" cays 6.4 (33) 
u 

(bypass turbine) . 

CCL) =". = 0; 

(f) Pressure balance (first gas-dynamical constraint): 

Borel = 14 Gels oe ea Cisen 

Bi + 6B = 8 (one-extraction turbine) 

= B, (multiple-extraction turbine) (34) 

= 8, (bypass turbine) . 

(g) Definitions: 

€= (d,+4,+4,) ¥; (second gas-dynamical constraint) 

B= BB, - (35) 

The previous balance equations, which have been written in thermal form, 

can be more usefully written in baric form, that is, in terms of the pressure 

ratios, by making use of the isentropic laws and of the equation of state, for 

perfect gases; the one real parameter introduced is the c,, to which different 

constant values have been given in different ranges. For the matching of the 

powerplant and propulsor solutions, which are independent, it will be necessary 

to evaluate the density »,; of the gas injected at the chamber pressure p,. By 

means of the hypotheses previously made, one obtains 

i 

P3(4%, +43) + P4%, : 
Coch ee me (conventional turbine) 

(4, +a, + a5) 

, (36) 
aK, 2 (bypass turbine) 

1+ — (B,?-1 wi) 

where: 

: Pi 
Pg Pg Bois Kha > 

5} 

pi P3 Ba BB, 

(Ped Pome Bi ba ae p u 

a3 YM Byes AP By (37) 

Pa Pa 

a R.T 3° RT en Roe, g) RT; 
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The previous equations allow the complete solution when some of the param- 

eters are given. V,, 4,, M, have generally been chosen as fundamental pa- 
rameters (the choice of M,,, which appeared very useful from the point of view 
of the numerical procedure, turned out to be very ineffective from the point of 
view of the physical meaning) and £,4,, 7, as auxiliary parameters for the 

powerplant solution. 

6 NUMERICAL DATA AND SOLUTIONS 

The parametric range chosen was 

Vv, = 0to50 m/s, (0 to 97 knots) 

£, = Oto 21, (0 to 210 m water) 

M, = 0.4 to 3, 

£ = 1 to 20, 

a. = Otol, 

Moreover, the dimensionless valve pressure loss of 68 was 

op =) 04 51": 

All the hydrojectors and pumpjectors have been studied in the aligned con- 

figuration (z; = z, = 1m), while the water jet was analyzed in the S config- 
uration (z, = 1m, z; = -3m). To the loss coefficient ¢ there was assigned 
a mean value of 0.2 for all the aligned propulsors and of 0.3 for the S propul- 
sors; these values were deduced from similar cases (Refs. [7,8,20,23]). The 
coefficient 1 was everywhere assumed equal to 0.9, but some attempts were 

made with different values. All other fundamental numerical coefficients are 

listed in Table 1. 

On the basis of the previously examined equations and of the numerical co- 

efficients which have been listed, the fourteen powerplants represented in Figs. 
23 - 26 were analyzed; the most significant results are plotted in Figs. 28 - 40 
for the power-plants which proved to be the most interesting. The fundamental 

functions which have been mostly represented are the overall efficiency 7, 
and the inflow mass ratio y; the last one is, in fact, the ratio between air and 
water flow rates; it represents the air flow rate which can involve the unit 
water flow rate and therefore it is an important figure of merit among power- 
plants, because it represents the water driving availability of the turbine. 

Since the specific thrust o indicates the thrust which can be obtained at a 

fixed speed by the unit water flow rate, this information is completed by the 

necessary knowledge of how large an air flow rate can drive the unit water 
flow rate, that is by y. In other words, y provides information about the tur- 
bine potentiality which is needed to provide the thrust c. (In such powerplants 

the turbine potentiality can never be represented by the net power but by the 

air inflow rate.) 
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Table 1 

Numerical Coefficient Adopted 

0.88 thermodynamical turbine efficiency 

0.84 thermodynamical compressor 
efficiency 

0.98 mechanical efficiencies 

0.8 hydrodynamical pump efficiency 

0.95 mechanical pump efficiency 

0.96 combustion efficiency 

0.24 specific heat at constant pressure — 
air(kcal/kg °K) 

0.275 
0.26 idem, exhaust gas 

0.27 

1.4 

1.35 

6.854 x 107 gas constant — air(kcal/kg°K) 

6.86 x10 gas constant — exhaust gas 

17033: x 107 atmospheric pressure (kg/m) 

288 atmospheric temperature (°K) 

1150 maximum turbine temperature (°K) 

water density (kg s?/m‘*) 

water inlet depth (m) 

water-jet chamber depth (m) 

overall losses coefficient 

speed diffusion coefficient 

specific heat ratios, for air and for 

0.26 . ; 
idem, mean values air-gas 

1 | see 
2 

2 

p 
k 
k 
R 
R 

ome (Seni }y BAS) 

In Figs. 28 - 34, the results for the hydrojector configurations have been 
plotted, while in Figs. 35-38 some of the results for the pumpjectors are 
shown. Finally, in Fig. 39 the water-jet results are represented, while in 
Figs. 40 - 42 some auxiliary diagrams are reported. (It can be observed that 
sometimes it was necessary to change the references as abscissas and as pa- 

rameters, because of plotting difficulties.) 

7 ANALYSIS OF THE RESULTS FOR THE POWERPLANT 

We briefly examine the implications of the numerical results which have 
been presented. The purpose of this discussion is to compare the four funda- 

mental kinds of powerplants which have been examined: the hot-gas hydrojector, 
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Fig. 28 - IR-(1) powerplant performances 
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(c) the same, as a function of o (y = 

O29 6 — MZ.) 

Fig. 28 - IR-(1) powerplant performances 
(Continued) 

the hot-gas pumpjector, the cold-air hydrojector, and the water jet. The last 

two systems have been introduced just with the aim of comparison, because 

actually realized (see Sec. 2). 

In Sec. 4, the pure propulsive performances (c, 7,, A,/A,, etc.) were dis- 
cussed, while here the powerplant performances (n> vy, €) will be considered; 

however, some of the results of Sec. 4 will be reviewed here. 

(a) On the whole, all the hot-gas powerplants showed very close peak 
performances. It was already shown that the thrust o and all the other propul- 

sive parameters do not depend on the powerplant configuration; it can be seen 

now that both hydrojector and pumpjector powerplants are able to provide a 

peak over-all efficiency of about 22%, and the only difference consists in the 

advance speed range, where that efficiency is available, or in the discharge 
pseudo- Mach number and consequently in the thrust and in the discharge cross 

section which need it. 

IR-(2) provides overall efficiency above 0.21 at a speed comprised 
between 25 m/s and 40 m/s, by regulating «,, between 0.2 and 0.6, but no solu- 
tions are available above 40 m/s. However, since IR-(1) and IR-(2) actually 
are the same powerplant (the IR-(2) chamber pressure has been imposed equal 
to the H.P. turbine discharge pressure (also when «, = 0), while the IR-(1) 
chamber pressure is equal to the highest powerplant pressure; this configura- 

tion can be obtained by cutting out the mean-pressure extraction), operating 

ranges up to 50 m/s can be obtained by IR-(1) configuration at same efficiency. 
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performances 
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Fig. 29 - IR-(2) powerplant performances (Continued) 

This efficiency appears to be surprisingly high when compared 
with the water jet's, which does not reach 0.16. An improvement of 35% is 
sufficiently large to include a margin for the inaccuracy due to the higher un- 
foreseeability of two-phase flow with respect to water flow; that is, a hot-gas 
hydrojector can be expected as actually competitive with water jets as for ef- 
ficiency. On the other hand, the observation of the propulsive performances 
allows control if the efficiency peaks are reached at values of discharge cross 
sections not higher than 1, especially when truncated nozzles are adopted. 

Another advantage as regards to water jets is obtained in terms 
of y (that is, in terms of turbine flow rate for given water flow rate), since 
the values of y which correspond to the efficiency peaks for the hydrojector 

are considerably lower than for the water jet. For example, at a, = 0.6, 
V, = 35 m/s, M, = 1.72 for the IR-(2) system we find 7, = 0.18, y = 5.7x 
10°3, and o = 0.96; the water jet which could provide the same value of o at 
the same speed has £, = 19, where it is y = 1.3 x 10°? and », = 0.15. The 
advantages in terms of y are higher when the operating range is very close 
to the limits at A = 0; also, however, far from this condition lower advantages 
can be always obtained. 

Figures (29), (30) and (33) show the effect of changing the flow 
rate fractions: An increase of a,, causes an increase of efficiency peak speed. 
Since a; are independent of M,, a change of their distribution does not change 
o, but (Fig. 30) it changes the inflow ratio y; therefore, as was obvious, a 
change in the turbine air flow rate m, as well in the flow rate fractions «; will 
be required to change the advance speed. 
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Fig. 30 - IR-(2) y performances: (a) y = 
0.9; (b) y = 0.7 (g = 12, a.p.) 

It is also remarkable that the effect of the valve losses 56 is very 
small on the performances, but it is large on the operating limits, because at 
increasing 68 the maximum speed which can be operated decreases. Besides, 
in terms of efficiency, the decrease of » from 0.9 to 0.7 which has been tried 
is quite unfavorable. 

(b) The cold-air bypass powerplant (Figs. (31), (42)] appeared to be 
very ineffective from any point of view: The specific thrust can be two or 
three times less than for a hot-gas hydrojector, the efficiency about two times 
less, and the inflow ratio also about two times higher. These parameters are 

very poor also when compared with the water jet's ones. 

The overall efficiency is too low to permit economically convenient 
running, and the thrust could propel just a proportionately light vehicle. It is 
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Fig. 31 - IR-F powerplant performances: (a) 1,3 
(b) (y='029, 6B: = 12, a.ip.) 

only apparently surprising how the combustion of fuel into the compressed air 
(that can be realized without any mechanical complexity) could raise strongly 

the performances, since a qualitative argument in this way was the base of the 

present work. 

(c) The increase of the turbine compression ratio 8 moderately im- 

proves the efficiency in the range of interest (Fig. 34), and this improvement is 

magnified at higher speed. The values plotted in all the other diagrams corre- 

spond to £ = 12, which can be considered a good compromise between per- 

formances and simplicity, but it is easy to ensure that values to 6 = 8 donot 

change the performances sensibly. 

(d) The pumpjector is operatively poor in the configuration IB- (1) 

(Fig. 37), since the operative speed field is very restricted, because the chamber 
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Fig. 32 - IR-FC powerplant 
performances--Cont'd. 

pressures that can be reached by the turbine mean pressure are somewhat low. 

On the contrary, good performance can be obtained by the configuration IB-(2) 

(Fig. 35); the efficiency is very high (up to 0.2) and no speed limits were found 
up to 50 m/s. Higher exit pseudo- Mach numbers are required at higher 4,, 

because of the shifting in the maxima. No solutions at the highest speed can 

be obtained at f, > 3, because of the exceedingly high chamber pressure com- 

patibility with the turbine pressure ratio £ = 12, 

In Fig. (41) the maximum speed V.,, ,,,, which can be obtained at 
variable £4, and at fixed 6 is shown. This diagram indicates the operative 

fall of a turbine-fed system; it can be used for any powerplant, and £ must 
represent the lowest pressure (that is, 8, in IR-(2) and IB-(2) plants). 

It appears that, with a (6 = 12)-turbine, a speed not higher than 

54 m/s at 6, = 2 and not higher than 37.5 m/s at 6, = 4 can be achieved. 
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Fig. 35 - IB-(1) powerplant: variation of 7, for some 
values of 6, (y = 0.9, 6 = 12, a. p.) (Continued) 
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Fig. 36 - IB-(1) powerplant: variation of y for 
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Fig. 36 - IB-(1) powerplant: variation of y for some values 
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Fig. 37 - IB-(2) powerplant: 1, for a few values of £, (no 
solution is available above) (y =0.9, B= 12, a. p.) 
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This limit is imposed if the gas injection must be made possible. On the other 
hand, a pure water jet can offer higher limits, imposed by the condition of no 
thrust (see Figs 17 and 41, dashed line) or by the condition of maximum effi- 
ciency (Fig. 41). The last condition is actually comparable with the pumpjec- 

tor's, since the limit of this corresponds roughly to maximum efficiency. 
Therefore, it appears that a (6 = 12)-pumpjector allows higher advance speeds 

than the water jet up to 6, = 7, while above this £, the water jet allows higher 

speeds of maximum efficiency than the pumpjector. The inflow ratio y required 

by a pumpjector is increased by , and it approaches the water jet values. 

The previous considerations confirm the idea that a system of gas 

injection as modification of the water jet either design or operation is possible, 

and it accomplishes a large improvement of the performances. 

(e) For the hydrojector the condition of maximum efficiency does not 

allow high thrust (Fig. 41); the o corresponding to 7,,,,, is about 0.45, that is, 
a somewhat low value. Higher thrust can be obtained at lower efficiency, but 
the actual problem in the hydrojector design is the discharge cross section. In 

Fig. 41 a line at A,/A, = 1 for a conventional nozzle is shown; the zone at its 
right is not practicable if a discharge cross section higher than the chamber 
one must be avoided. This limitation practically does not affect the efficiency 

range, but it is very restrictive for the thrust, especially at high speed. 

Better results can be obtained with a truncated nozzle. In this 
case, the condition A,/A, = 1 provides a specific thrust which can be 0.64 at 
V, = 50 m/s. (It must be observed that the condition A,/A, = 1 for a nozzle 

truncated at throat means that the chamber mixture speed coincides with its 
critical speed. Therefore, conditions at A,/A, > 1 are physically not available, 

because it would correspond to choking in the chamber.) 
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Fig. 39 - Waterjet (IG) performances 

Finally, one can observe (Fig. 41) that the values of «, which pro- 
vide good performances, are very close (between 0.001 and 0.03). They are re- 

markably lower than the values of a cold-air hydrojector (Fig. 42 and Refs. [7] 
and [8]), which reach and exceed 0.01. 

(f) No remarkable results derived from the analysis of powerplants 

where aftercombustion was realized. On the contrary, however, no numerical 
analysis was developed about it. It is noteworthy to consider the possibility that 
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Fig. 39 - Water-jet (IG) performance 
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Fig. 41 - Variation of o and n, with « for 
IR-(1) powerplant (y = 0.9, 6 = 12, a.p.) 

the heating of the gas in the IR FC powerplant (but the same thing can be 

realized for any hot-gas powerplant) could be partially supplied by the turbine 
exhaust in a heat recuperator. This practice would not provide any thrust im- 
provement, but it would surely improve the efficiency. 
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Fig. 42 - Variation of o and ", with € for 
IR-F powerplant (y = 0.9, B = 12, a.p.) 

8 CONCLUSIONS 

The analysis of four basic powerplants for marine propulsion, that is, 
hot-gas hydrojector, hot-gas pumpjector, cold-air hydrojector, and water jet, 

allows the fundamental conclusion that a propulsive jet device powered by com- 

pressed hot gas can be actually competitive with water jets, both in the pure 
ejector configuration (hydrojector) and in the hybrid pump-ejector configuration 

(pumpjector). 

When powered by cold air, the same device provides very poor and non- 

competitive performance, its performance being strongly improved by the gas 
temperature or specific volume. 

The pumpjector can be seen as a useful change of the water jet, the thrust 

of which can be so improved without efficiency decrease. Essentially, the com- 

parison between water jets and hydrojectors is favorable to the latter for the 
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low weight of the propulsive system (about 50% less than a water jet's propul- 

sive weight), simplicity, easy maintenance, higher efficiency, and less powerful 
turbine. Its disadvantage is the lower thrust obtainable which in turn needs 

larger propulsors and therefore higher external drag. However the efficiency 

advantage can allow an operating range where the thrust ineffectiveness could 
be minimized and the lower propulsive weight allows a moderate increase in 
drag. On the other hand, until now the hydrojector appears to be the only pro- 
pulsive device which does not fall at the highest speed as the water jet does both 

for propulsive and for cavitation reasons. 

NOMENCLATURE 

A local cross section (m7?) 

A, part of A occupied by gas 

Ay part of A occupied by water 

A. nozzle critical (throat) cross section (m2) 

BGS). B. functions defined by Eq. (19') 

Cc velocity of sound, for the two-phase mixture (m/s) 

cy the same, for gas 

Cy the same, for water 

oe specific heat at constant pressure, for air (kcal/kg °K) 

co c,, for gas, (mean in the H.P. turbine) 

cae c,, gas (L.P. turbine) 

Ge c,, mean air-gas at the principal burner Bl 

ois c,, mean air-gas at the afterburner B2 

Cy thrust coefficient [Eq. (26) | 

g gravity acceleration (m/s?) 

H; fuel heat of combustion (kcal/kg) 

h gas total enthalpy (kcal/kg) 

H pump head (m) 

j mechanical equivalent of heat (=426.9 kcal/kg m) 
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k 

Ky 

K,, K, 

ma» mos My 

specific heat ratio 

coefficient [Eq. (15)| 

coefficients [Eq. (37)| 

mass flow rate, air, gas, water (kg s/m) 

1/k 

pseudo- Mach number of the two-phase mixture 

pressure (kg/m2) 

atmospheric pressure 

thrust (net of internal losses) (kg) 

temperature (°K) 

velocity (m/s) 

reference velocity [=(2p,.8,/p4)\’ ”| 

advance velocity of the vehicle 

depth (positive downwards) (m) 

turbine flow rate drawing fractions (referred to m,) 

turbine flow rate discharge fraction (referred to m,) 

turbine flow rate fuel fractions (referred to m.) 

overall turbine compression ratio 

H.P. turbine pressure ratio 

L.P. turbine pressure ratio 

bypass compression ratio 

stream dimensionless dynamic pressure (= », V,,?/2 ep, ) 

dimensionless chamber depth (=, z; /p,) 

dimensionless water inlet depth (=,,z, /p,) 

dimensionless pump head (= 4H, /p,) 

local expansion ratio (=p; /p) 
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overall expansion ratio for underwater nozzle (=p; /p,) 

overall expansion ratio for surface nozzle (=p, /p.) 

critical expansion ratio (=p, /p.) 

ratio of chamber pressure to atmospheric pressure 

= Ba /P, = B2) 

(1+ 6,.)/0 + Bi) 

B+ Boal €)/L + 85) 

Bore ey Se )/G 8) 

inflow mass ratio (=m,/m,) 

water specific weight (kg/m?) 

turbine flow rate fuel fraction at the bypass burner 
(referred to a, m,) 

discriminant [Eq. (20)] 

internal losses (m) 

dimensionless pressure loss at the valves (= A, /p,) 

mixing mass ratio (=m, /my) 

thermodynamical efficiencies (turbine, compressor, and 
bypass compressor) 

mechanical efficiencies, for the above 

combustion efficiency 

propulsive efficiency |Eq. (27)| 

the same, for truncated nozzle 

overall powerplant efficiency |Eq. (28)| 

cross-section augmentation coefficient [Eq. (23)| 

mixing volume ratio (Eq. (9) | 

chamber value of » 

overall internal losses coefficient [Eq. (2)] 
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0 mixture density (kg s?/m‘*) 

ee gas density 

Py water density 

o specific thrust [Eq. (25)| 

oe the same, for truncated nozzle [Eq. (25')] 

T (k + 1)/k 

¢  (k-1)/k 

wy diffusion coefficient [Eq. (1)] 

When not otherwise specified, the subscripts (),, ();, ()., and(), refer to 
the corresponding stream cross sections [Figs. (5) and (6)|, while ( hey (), and 
() refer to gas, water, and two-phase mixture properties. 
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DISCUSSION 

W.van Gent 

Netherlands Ship Model Basin 

Wageningen, Netherlands 

Our main comments on this interesting paper are referred to the analysis 

of the propulsor, presented in Sec, 3. In this section, first an adiabatic gas 

expansion in the nozzle is assumed. This causes an overestimation of the effi- 

ciency of hot gas injection and, in addition, an underestimation of the efficiency 
of gas injection at water temperature. Whereas this assumption is physically 

more or less acceptable, next, another assumption on the mixing process is 

made, which, however, is physically unacceptable, because it violates the en- 
ergy balance. 

It is stated in Sec. 3.1 that during the mixing process the water is acceler- 
ated at quasi-constant pressure and stated following Eq. (12) that the mixing 

section has a constant cross-sectional area. The increase in velocity of the 

water phase is derived from the equation of continuity, but there is no check on 

the energy equation. The energy balance given above Eq. (5) shows that, at con- 

stant pressure, the increase in kinetic energy can only be supplied by a decrease 
in enthalpy of the gas, but there is no mechanism by which energy transfer can 
take place. The gas will not expand, but will even contract in consequence of heat 

losses. Thus, especially at high bulk gas-water ratios, this assumption gives a 

very unrealistic picture of the mixing process. 

Fortunately, it seems that this assumption has not influenced the calculations 
of efficiency and specific thrust, defined in Sec. 4. In calculating the efficiency 

and the thrust, the correct energy balance is used and the specific thrust is the 
thrust per unit area of the undisturbed water flow cross section. However, the 
thrust coefficient, defined in Sec. 4 as the thrust per unit area of the largest 
cross section of the propulsor, is much too high, because the cross-sectional 
area of the mixing section cannot be constant. 

In our opinion this area must increase in such a way that the water is not 

accelerated during gas injection. Energy transfer can only take place after com- 

plete mixing. Our own experiments have shown that a higher efficiency is 
achieved when the cross-sectional area of the mixing chamber is enlarged after 
gas injection. 
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DISCUSSION 

Earl Quandt 

Naval Ship Research and Development Center 
Annapolis, Maryland 

Professor Pallabazzer has, in my opinion, presented commendable ideal 
component and system analysis of several liquid-phase, continuous air-water 
jet-propulsion arrangements. However, because of the assumptions concerning 

(a) Isentropic gas expansion in the presence of large amounts of 

cold liquid, and 

(b) No relative slip between the gas and liquid phases, 

I would caution those who might interpret these results with too much 

optimism. 

REPLY TO THE DISCUSSION 

Rodolfo Pallabazzer 

I wish very much to thank Mr. Van Gent because his intervention allows me 
to clear up a passage which appears to be questionable. The question arises 
from the expressions mentioned by Mr. Van Gent about a quasi-constant pres- 

sure mixing and a constant-section chamber, which obviously are inconsistent. 
As a matter of fact, the first expression was never an assumption, that is, the 
pressure was never set as a constant in the chamber; the expression about a 
quasi-constant pressure mixing is purely qualitative and arises from the fact 
that some quick checks showed only small pressure decreases. Therefore, the 

equations appear not to be influenced by the constant-pressure assumption, be- 

cause this assumption was never made. 

As regards the constant-cross-section chamber, this also has not the 
meaning of a statement but just of a reference; indeed, as Mr. Van Gent kindly 

emphasizes, only an experimental analysis can suggest the shape of the cham- 

ber. In a purely theoretical analysis like the present one, there is no effect of 
the shape of the chamber; therefore, it can be supposed cylindrical without any 
difference in the discharge results. A difference appears if the discharge data 
are referred to the chamber cross section, which happens here for the thrust 
coefficient only. Since its expression [Eq. (26)| depends on the diffusion coeffi- 
cient /, the reference cross section is that where the flow velocity is V,, 

(1 - J)!/?; this can be not the largest cross section if the chamber is actually 
divergent. In practice one must pay for this inaccuracy until the shape of the 

chamber cannot be specified. For this reason in this paper a large emphasis 
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has not been given to the thrust coefficient, in opposition to the current methods, 

and an analysis based on the specific thrust has been preferred. 

Finally, as regards the hypothesis of an adiabatic gas expansion and its 
consequences of overestimation of the efficiency of hot-gas injection and under- 

estimation of the efficiency of cold-gas injection, I think the best one could ex- 
pect from a theoretical provisional analysis is just to provide a couple of limit 

conditions between which all practical cases take place. As I emphasized in 

this paper, its aim is not to furnish exact solutions of the problem but just a 
provisional comparative evaluation from which one could estimate the competi- 

tive availability of a two-phase propulsor. 

The same reply can be addressed to the first remark of Dr. Quandt; one 

must add also that the energy exchange between hot gas and water is not a 
standard phenomenon, since it can be strongly influenced and shifted by a 
geometry which must be studied purposely to reduce heat transfer. 

As regards the slip in a bubble flow, its effect is very feeble, in opposition 

to the droplet flow, which has been considered by Dr. Quandt in his paper, 

where the slip effect can be very strong. 

* * * 

1171 



adie lomiorh vil cei nowt +o T elagigs awed snidaasT a Bae 

2bodism inetivo sdi of notiacnge or gpetiides tauradt of} oF nevig 193d 3 
sboursisiy asod asd ject) oillosye oi no boasd steylen 

ati bas nofensuxs ese Ssdsibs ws ‘Panedtoned adit abregot as awilent’ 
-tebnu bas sotiooteimesasdatl ky yornsiol Be oti ia homtmmieoree Io eeoneupy 
-x9 bipoo suo tasd ad? Anil) hye fil ner iiog to yonslsitte off} to 
tiegil Yo siguoo s ebivorg of tay]. eiayisus lencivivorqg Issijotood) s ator 

ai bestastiasia leA seni ofa! aseao Leoiloeis Us doidw asewied anol: 
Heewejud aieliompeds kwenohviva timo demir orion wan eh pee 

vetoes ali ahsrirttasibipe one dsiriot mgd adnevlave quibkvsqgacd aia 

jet-pretlslon uvroceen.! ite, Aeve 0 cea luge ty Saeiy-owe Bis WRF GREETS Ss ar 

om ) shkae, Mf diy Hrstuspiert-sdi dh bsswysibs od HEY wqenantdecbaet® oA = 
cold ligstésverisisw has easy jor toowisd agnatoxe vetans ors tat oaks obs Jeiim : 

& yd beltide bas baoneulini yiguouie ed eo NM oofte .ue one SON8I8 
(>) Sxeteaswcitie davbus of ziosctine beipowe Se Jelen doidw yHedioss 

i motitierqn ai Jsicioobaprey\aiiton hs air walt elddod amr dite ey mee 
palin “taosg efd ni dbasvQ oF vd bovenianoo aged esd doidw .woll Jslg 

-ynotis Yiev ad 189 199TIs qile 8 

# » e - 

Fe UY $2 THE TEACUSSIG) 

' He Wak Ri 2 

ay « -y dato} theelt Mr. Van Den! pecduse his ailer ventional 
te Glogs Up. AuSshage elites Ape To le wmuceinne tie. The bene i 

Thay Ge Scr ee 4a Tmenicie ify. Von dent chet & oudtel-fongt i 

ie Eye, Oe Ye otiatant-: 4 “haniier shickh voip are incaiis 

Ab & Aeadtet oS tart, thot Cis eerie Sree ree eer an ASsuTA pide, Og 

try eh tea ceaent Ret 6 6 Gul sieit be # ident: ee eonre selon , 

Mra-oonatew? oPeGsuss wnt oc. wae y Galnal de onG H¥iges oe act, 

that “surie tpoitkh @RO0be Bri Hily Sito.) Po toeive ie Pees Therelores 

equagtiuges Boyes fil, | ) tee art ete oad i COs CeeSToN Poe ese a5 Gray + ; 

PEUG4 OLS MASUR Lie) Wes Neve? + ate et % 
. Ne Ania 

As regurde Ue ponstinl<tross Section tintmber, 28 alge has he 
“ 

méeniny ofa slafement iit just 2. refevence, Lidess, .é Vie. Van ent} 

Sinphasizes, only a exper imental atialgsis can sigvest Min ahape of the 

ler. Is 4 purely theoretical. anaiysia like Che presoul-one, Here 14 no ‘ 

the sha ape of (he chamber: tiecefore, i carn be gupposes cd ovlingvical without & 

(ilecente in ie dischuvee reaulte, A difierence appears if the dig¢hargs 

ure oderrod ta the chamber dress section, which hiposas here for oe ; 

=ustiieieat only., Since its .c “Rpress ton lia. (26){ Copends on the diffusion Goa 

=jiut 4. the reidrence eroges Bection is¢ that whers the flew velocity is. Vy 

{t+} 7; Wht tan be nol the Inegest Cross scation If the chamber is% act 
Jiworvent. la practice une oust bay for this inaccuracy until the shape ¢ 

Sunder cout be Bpecified, For tila ressos in this paper 4 large mph 

rete 



FLUID MECHANICS OF SWIMMING 

PROPULSION 

T. Yao-tsu Wu 

California Institute of Technology 
Pasadena, California 

ABSTRACT 

In this paper the fluid mechanics of swimming propulsion of objects of 
various sizes is discussed for the cases of both large and small values 
of the Reynolds number. Several problems of current interest will be 
examined. The content is partly a review of the literature and partly 
presentation of some new results. 

INTRODUCTION 

Swimming objects propelling themselves in water or in other liquid media 

span a wide range in their sizes and speeds. Large cetaceans, such as whales 
and porpoises, have lengths from 6 to 90 ft, and can swim with cruising speeds 

from 14 to 20 knots. Microscopic organisms as small as turbatrix (vinegar 

worm) and spermatozoa — ranging from 0.2 to 0.005 cm in length with length- 
diameter ratio from 20 to 100 — swim with speeds from 0.05 to 0.002 cm/sec. 
In between these two extremes there are many species of fish of various sizes. 
If 2 is some characteristic length of a body moving with velocity U in a liquid 
of kinematic viscosity », the Reynolds number R = U//v measures the rela- 

tive magnitude of inertial stress to viscous stress. The value of R is of order 
108 for the most rapid cetaceans, 10° for migrating fishes, 10*-10° fora 
great variety of fishes, about 10% for tadpoles, down to about 10°? for turbatrix 
and 10-3 or less for spermatozoa. Thus, the Reynolds number R covers prac- 

tically the entire range of interest known to hydrodynamicists, Although R may 

vary greatly from case to case, the swimming motions of these different bio- 

logical objects have been observed to differ very little from a vibrating motion 

of the body, in a wave form propagating along the body. In this kind of body 
motion, the stresses arise from the reaction between the waving surface and 
the surrounding fluid, and the propulsive thrust is derived from the resultant 

of these surface forces. 

The hydrodynamics of swimming motion has been recently investigated for 

both large and small values of the Reynolds number. For the case of large 

Reynolds number, the swimming propulsion depends primarily on the inertial 
effect, since the flow outside a thin boundary layer next to the body surface is 
irrotational. The viscous effect is relevant only in its role of determining the 
vorticity shed into the wake, and of producing a skin friction at the body sur- 
face. Although in principle the latter problem can be evaluated separately, it 
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involves the difficult problem of unsteady boundary-layer and hydrodynamic 
stability theory. This general subject remains as an important and crucial 
problem. The mechanism of swimming motion has been elucidated based on 
the potential flow theory by von Karman and Burgers (1943) for the simple case 
of a rigid plate in transverse oscillation and rotation. Swimming of slender 
fish has been treated by Lighthill (1960); and the swimming of a two-dimensional 

waving plate has been calculated by Wu (1961). 

In the other extreme, movements of microscopic bodies always correspond 

to small Reynolds numbers. The propulsion in this range depends almost en- 

tirely on the viscous stresses, since the inertial forces are then extremely 
small, except possibly for motions at very high frequencies. Oscillatory mo- 

tion in a viscous fluid was discussed as early as 1851 by Stokes. Various stud- 
ies of the swimming of microscopic organisms have been led by Taylor (1951, 
1952a,b), who discussed the propulsion of a propagating, monochromatic, trans- 
verse wave along a sheet immersed in a very viscous fluid, and later evaluated 
the action of waving cylindrical tails of microscopic organisms. Further stud- 
ies in this field have been contributed by Hancock (1954), Gray and Hancock 

(1955), Reynolds (1965), and by Tuck (1968). 

Apart from the mode of propagating transverse waves, which a great ma- 

jority of swimming creatures adopt as the principal means of propulsion, there 

are still other kinds of body motions, such as (a) actually ejecting a liquid, as 
employed by squids, shrimps, and lobsters, (b) propagating waves along fringe 
belts as used by some flat fishes, and waving motion produced by bending a 
large number of dense tassels underneath a starfish, and (c) squirming motion 
by changing the body shape of a tailless object in slow motion through a viscous 
fluid. Problem (a) has been discussed by Siekmann (1963), and (c) has been 
analyzed by Lighthill (1952). The problem of self-propulsion of a deformable 

body in a perfect fluid has been treated by Saffman (1967). 

Hydrodynamics of swimming is only a part of the whole problem. From 

the viewpoint of bioengineering, the entire process begins with the biochemical 
energy stored in the swimming being, which can be converted, with efficiency 

7,, into mechanical energy for maintaining the body motion, the latter is in 

turn transformed, with efficiency 7,, into hydrodynamic energy for swimming, 

A part (fraction 7,, say) of the hydrodynamic energy is spent as the useful 
work done by the thrust, which balances the work done by frictional drag, and 
the remaining part becomes the energy lost, or dissipated, in the flow wake. 

work done by thrust 

mechanical 
ener ; 

bY energy lost in wake 

It is in the effort of making a self-contained balance of energy that some ap- 
parently astonishing observations have been reported. For example, Johan- 
nessen and Harder (1960) reported several impressively high speeds (about 20 
to 22 knots) attained by porpoises, killer whales, and black whales. The 

hydro- 
dynamic 
energy (1-7 3 

biochemical 

energy 
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boundary layer over a rigid, smooth surface of a similar body in this Reynolds- 
number range is definitely turbulent. If the skin friction is evaluated on this 
basis, then the power required to maintain such high speeds would violate sev- 

eralfold the rule of thumb in biology that a pound of strong muscle can deliver 

only up to 0.01 horsepower. More recently, the speed of porpoises has been 

investigated carefully, under well-controlled conditions, by Lang (1962, 1963). 
Another interesting study is that of migratory salmon by Osborne (1960). Ac- 
cording to this careful investigation, a detailed estimate again led to one of the 
two conclusions: either (1) these creatures have a much smaller drag than 

could be achieved with similar, rigid bodies, or (2) the power output per gram 
of muscle is much larger than observed from physiological experiments on 

warm-blooded animals — these being known as the paradox of Gray (1948, 1949). 
These puzzling conclusions have stimulated fluid dynamicists to explore various 
other possibilities, such as the effect of compliant skin and the effects of mu- 

cous surface and additives on frictional drag, the studies of the former being 
so far inconclusive. 

The purpose of this paper is to discuss some of the hydrodynamic aspects 

of swimming propulsion. No attempt is made here to venture beyond this scope. 
It may well be that only after some extensive efforts are made in basic research 

can the final chapter be written of this most interesting story. 

I, SWIMMING MOTION AT LARGE REYNOLDS NUMBERS 

When the Reynolds number R is large, the swimming motion depends pri- 
marily on the inertial effects which can be evaluated based on the potential 

theory. Viscosity of the fluid is unimportant, except in its role of determining 

the vorticity shed into the wake, and of producing a thin boundary layer, and 
hence a skin friction at the body surface. A large number of swimming objects 
employ in propelling themselves the commonly observed mode of body motion 

which can be characterized by a wave of lateral displacement moving down the 

body from head to tail. As the body attains a forward momentum, the propul- 

sive force pushes the fluid backward with a net total momentum equal and op- 

posite to that of the action, while the frictional resistance of the body gives 
rise to a forward momentum of the fluid by entraining some of the fluid sur- 
rounding the body. The momentum of reaction to the inertia forces is concen- 

trated in the vortex wake due to the small thickness and amplitude of the un- 

dulatory trailing vortex sheet; this backward jet of fluid expelled from the body 
can however be counterbalanced by the momentum in response to the viscous 

drag. When a self-propelled body is cruising at a constant speed, the forward 

and backward momenta exactly balance; they can nevertheless be evaluated 

separately. 

THRUST; ENERGY BALANCE 

In order to visualize why a waving form of the body motion is desirable 
for swimming propulsion, we consider the energy balance for the typical case 

of a planar flexible body of negligible thickness, performing a general unsteady 

motion of small amplitude, achieving a forward velocity u(t), which may 
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depend on the time t, through a fluid which is otherwise at rest. We choose a 

Cartesian coordinate system (x,y,z) fixed at the body, with the stretched plan 
form of the body lying in the y = 0 plane and with the free-stream velocity 

U(t) pointing in the positive x direction. The body motion can be written 

generally as 

yis eh (xyz, t VSI) GY, z8e/)S). (1) 

where S is the stretched plan form of the body (when h vanishes identically), 
h is an arbitrary function of x, z, and t, with |0h/et| and swimming velocity 
U assumed to be small (compared with the speed of sound in the fluid) so that 

the flow may be regarded as incompressible, and with |9h/2x| and | 9dh/2z| 
assumed also small enough to justify the linear theory. 

The Reynolds number R = Ul /v, based on the velocity U and body length ¢ 
(in the streamwise direction), is taken to be so large that the boundary layer 

is thin and the inertial effects can be evaluated with the inviscid flow assump- 

tion. Then the boundary condition requiring the normal component of velocity 

relative to the solid surface to vanish provides the y component of the flow 

velocity at the planar surface 

oh oh 
VEX EO, Ziouty n= V(X 2 te ae UC er Se (2) 

ot Ox 

The planar body may admit of sharp leading edges and sharp trailing edges. 
When the latter kind is present, we shall impose, as usual, at such edges the 
Kutta condition that the velocity is required to be finite, and hence the pressure 
continuous at a sharp trailing edge. The following discussion can also be ap- 
plied to plane flows, say, in the xy plane, in which case the dependence on z 
simply drops out, and all the quantities will then refer to a unit span in the z 

direction. 

The thrust (positive when directed in the negative x direction) acting on 

the body, based on the inviscid linear theory, results from the integration of 
the pressure component in the forward direction, 

T = T - | A ah J 3 -leioe solpety|pC8i pec Ro zt) dz (3) 
S | Oh oF 

where (Ap) denotes the pressure difference across the flexible plate, Ap = 

p(x,-0,z,t) - p(x,+0,z,t), F, is the singular force per unit arc length along 
the leading edge due to the leading edge suction, and the last integral is evalu- 
ated along the leading edge z = b(x). The power required to maintain the mo- 

tion is equal to the time rate of work done against the reaction of the fluid in 
the direction of the lift, 

oh 
p=-[ (4p) = dS (4) 

Ss 
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In this inviscid flow the mechanical energy imparted to the fluid per unit time 

is equal to the time rate of work done by the pressure over the body surface, or 

W - -| (Ap) VGa 2, t)odS —-T.U-. (5) 
Ss 

These quantities, of course, satisfy the principle of conservation of energy, 

which asserts that the power input P is equal to the rate of work done by the 

thrust TU, plus the kinetic energy W lost to the fluid in unit time, that is, 

PSU ww. (6) 

If the viscous effects are further taken into account, then the thrust T must 

include the viscous drag due to skin friction and the energy loss must contain 

the viscous dissipation. 

On physical grounds, it can be inferred that wW is non-negative in several 
cases of broad interest. One of such cases is the periodic body movement with 

constant forward velocity, 

U= const.*, . hGgzst) = Re fh (x, z) el@t]., (xiz,e S) (7) 

where j = /-1 is the imaginary unit for the periodic time motion, h,(x,z) may 

generally be complex with respect to j, and Re denotes the real part. After the 

transient stage is over, it is clear that the kinetic energy imparted to the fluid 
is largely confined in the wake which contains the trailing vortex sheet and is 

lengthening at the rate U. Therefore, W cannot be negative. [A mathematical 
proof of this statement has been given for the case of plane flows, see Eq. (39).] 
Another example is when the body starts to swim from a state of rest, 

WreetUiCties ne=aniCka2, ©) ae 0) (8) 

while U, h, and (u,v,w) are all zerofor t < 0, where u, v, and w are the com- 
ponents of the perturbation velocity. In this case any disturbance generated in 
the flow must correspond to a gain of kinetic energy of the fluid. 

The following discussion will be based on the presumption W 2 0. Under 

this condition we have, by (6), 

PZTU? Gif Ws 0°: (9) 

P , however, may not be positive definite. When P is negative, energy is trans- 
ferred out of the fluid (such as by a turbine). In such case T < 0, indicating that 
there must be an inertial drag acting on the body. Forward swimming is possible 
only when the thrust T > 0, large enough to overcome the viscous drag; then 
P > 0, and hence a power is required to maintain the motion. Now, from (3) it 
is seen that a positive thrust is assured if Ap and oh/ox are everywhere of the 

same sign, since the suction force F, depends only on the instantaneous local 
condition and is never negative. In view of the inequality (9) and the expression 
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(4), Ap and oh/ot cannot be also of the same sign everywhere. Suppose, as 

a qualitative picture, that oh/ox and oh/ot are everywhere opposite in sign, 

then a propagating wave toward the tail is clearly indicated (see Fig. 1). 

> Be) A oO 

| 

| 

. 
| 
| 

! 
Fig. 1 - Wave propagating toward the tail 

To investigate further the qualitative features of such periodic waving mo- 
tions, it suffices to consider the case of simple harmonic form (7), since for 
arbitrary time dependence all linear effects, such as the pressure, lift, and 

moment, can be obtained by the Fourier synthesis and as for the quadratic ef- 
fects such as T, P, and W, it can be seen that in their time averages, the com- 
ponents with different multiple frequencies are not coupled. In fact, consider 

two functions: 

g (x,t) = Re p £y(X) ots yo  hi(xs at): =1 Re z h(x) ott ; (10) 

The time average of gh is 

T 
— . dk 1 * 
gh = bas x | eCx, t nix, ta = 5 Re B £58) BC] , (11) 

0 n 
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where h* is the complex conjugate of h (with respect to j). This result is 

readily extended to the integral form when g, h are expressed by integrals 

over a continuous spectrum. 

Returning to the waving motion, we consider the fundamental form 

y = Re (hg(e zee a] 5 (Gg GSD (12) 

which represents a simple wave propagating along the planar body in the 

streamwise direction with phase velocity c = w/k and amplitude h,(x,z). Sub- 

stituting (12) in (3) and (4), and taking the time average, we obtain 

Lae " | Re | (Ap,) (in ge —) eikx dS (13a) 
P 2 z “ k ox i 

Ul Mm | ; Re Apia ces = “disc, (13b) 
S) 

where (Ap,) is the time-independent part of (Ap), Ap = (Ap,) exp (jet) as a re- 

sult of the linearized theory. Since the thrust T, due to the leading-edge suc- 

tion is always non-negative, it follows from the inequality (9) that 

PUT 2307) (14) 

provided W 2 0. Consequently, if oh,/ox = 0 (the amplitude h, is independent 

of x), or when | 0h,/ex| << |kh,|, then from (13) and (14) we immediately have 

c= afk > U%. (15) 

This result shows that not only is a progressive wave desirable, but also its 

phase velocity must be greater than U (under the stated conditions) in order to 

achieve a given swimming velocity U. This qualitative feature remains true for 

a wide class of amplitude function h,(x,z), particularly when additional thrust 

is required to overcome the viscous drag. 

SWIMMING OF A TWO-DIMENSIONAL WAVING PLATE 

Although the flow around swimming fish is certainly three-dimensional, the 

theory of two-dimensional swimming motion has received more attention, partly 

because the analysis is relatively less complicated. We review in the following 

the main features of swimming in plane flows. 

Here we consider the incompressible plane flow of an inviscid fluid past a 

flexible plate of zero thickness, spanning from x = -1to x = 1, and perform- 

ing a waving motion of the general form 
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¥ Spdess tweed Mex Sly, 2-0) (1') 

h again being arbitrary and assumed to be always small. The motion starts at 
t = 0 from a uniform state; the free-stream velocity U(t) may depend on t. 

Let u and v again denote, respectively, the x and y components of the per- 
turbation velocity. We introduce the Prandtl acceleration potential 

P(%y,t) = (Po- PVP» (16) 

where p, is the pressure at infinity, and , is the fluid density. An harmonic 
function (x, y,t) conjugate to ¢ may be defined by ¢, = wy, dy = -~,, where 
the subscripts x and y denote differentiations. By virtue of the incompressi- 

bility and irrotationality, the complex acceleration potential f = ¢ + iy and 
the complex velocity w = u - iv are analytic functions of the complex variable 
z = x + iy for all real t. (We borrow the notation w and z for this different 

purpose in this section.) By neglecting the nonlinear terms of all the small 
quantities, Euler's equation of motion is linearized to give 

of Ow Ow 

The linearized boundary conditions are: 

v Gx OS SIV xp e) = th SaCURL 90! Ga x. SUB) (18) 

oy 9 a \, Depa Seem gesii ea = 19 : Gane so OH = Oe oe eles 1) (19) 

$(x,0,t) = 0 = yGbal)> 4) (20) 

[f (1,t)]: <.%,.. .for all, t (21) 

f Ze tress Ow OS. 5 b2) oO dary Weert re On eSadzace Oe (22) 

Here, condition (19) is obtained by applying (18) to the imaginary part of (17); 
condition (20) follows from that y~ is even, and hence ¢ is odd in y; (21) is the 
Kutta condition for the flow at the trailing edge z = 1. Condition (22) for w 
may also be specified as |z|—~, |arg z| > 0,i.e.,as z-—o in the region ex- 
cluding the trailing vortex sheet. 

Integration of (17) to obtain the boundary value of y on the plate can be 
done by using the method of characteristics. However, with variable u(t), it 
is more convenient to make use of the Laplace-transform method. We first 
introduce the variable 

ti 

T Otis { U(t) dt (23) 
0 
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and assume that its inverse function t = t(7) is unique, so that U = U(t(7)) is 
a one-valued function of +. Regarding w and f as functions of z and 7, (17) 
becomes 

OF _ aw ow 
(Ome ae (24) 

where 

F(z,7).= £¢2,7)/U.( ty) =.9¢x,y,7) + iV (x, y4T7)4 (25) 

Application of the Laplace transform 

GZS) J e- 87: F¢z,7)\d7- ¢Re's > 0) (26) 

0 

to (24), under zero initial conditions, yields 

dF ( d = 
—=({(—+s})w. 
dz dz 

Integrating this equation from z = -~, using conditions (22), and expressing F 
in terms of w, and vice versa, we obtain its imaginary part at y = 0 as 

x 

W(x,0,,s) = -¥(x,0,,s) - s Ih SO1G-29 UG) Eccl me (27) 

or 

x 

-¥(x,0,,s) - al e 
Sg 

V. (x:04:, Ss) (x,,0,,8),dx, (28) 

for all x. On the plate, ¥(x,0,,s) = V(x,s), which is the Laplace transform of 
(18), we have 

W(x,0,,s) ~ W(x, 8) + A,(s) eels) (29a) 

where 

W (x,s) = -(<+ )f V(x s) dx, (|x|:<1) (29b) 1 ag ue 1’ 1 

and 
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5 fats 

Ay(s) = -s{ WC wy. ,s )idox = sf e8(*+1) W(x, 0,8) dx . (29c) 
= —- © 

Thus, ¥ is known except for an additive constant term A,(s). Furthermore, 
from (20) it follows that 

$(x,0,,8) = ReF(x+i0,s)=0, (|x| >1). (30) 

This Riemann-Hilbert problem, specified by (29), (30) and conditions (21) and 
(22) can be readily solved, giving 

72 1 1/2 . 1 thet 1+é W(Z,0,s) _. 

Foa.s) = a (254) (ee Feat ait ah 

in which the function (z-1)1/?(z+1)'/?_ is defined with a branch cut from 
z = -1 to z = 1 so that this function tends tol as |z|—. The leading-edge 
singularity can be separated out in the above solution by suitable integrations 

while using (29a), giving 

1/2 1 1/2 wW 
ee Gee ij Zi 1 1 zac Fale >S) 
Per 8) ok de pants fs F ] ‘i b E : =) zie gi 1 earG8ta) 

where 

ieee 
pes = 1 Wi (e,8) 
5 B08) = Ac(s) + if aS ar dé. (31b) 

ae, aie ec?) 

Now, substituting the value of ¥(x,0,s) [for x < -1, which can be readily deduced 
from (31a)| into the second-integral representation of (29c), then after some ap- 
propriate integrations by parts, using the identity 

1/2 1/ 

-1/29 (1 €f) -1/2 0 (i252) ‘ 
Ga- AD) See be) oe areas 

0€ €- x Ox Eé- x 
’ 

~ 

we determine the coefficient 4,(s) as 

V(Es) ag | 
lve ($2a) 

Ql ¢“) 

1 

a(s)= 2] te - &(sya+e 
~1 

where 

1182 



Fluid Mechanics of Swimming Propulsion 

a K,(s) Suey See (32b) 
Ky(s) + K,(s) 

and K, and K, are modified Bessel functions of the second kind. 

Finally, we note that after the inverse transform the solution of ¢ on the 
body surface is ¢*(x,t) =¢(x,0+,t) = -¢(x,0-,t) = -¢ (x,t), 

1/2 1 fe 22 2 

¥ 1 1 - | w(é,0,¢) 
ee ee ao ) brea ee es Sok de 5 (|) (33) 

T 

ay(T) : | Pesca) tek) Gir =a idm sA (rc, (34) 

V(x, cy 
coe ay 5) — dx, (x —COS 6G pour = Oto 2) (35) 

=e Cl x) 

i btio % 

G(r) = =e e87.Gs) ds_. (36) 

The coefficient a,(t) gives the strength of the leading edge singularity, which 
is the first term on the right-hand side of (33); the integral term is regular 
wherever y is continuous. The pressure difference (Ap) defined previously is, 

by (16), 

Ap = 2ppt(x,t)..9 G)x}-<1) . (37) 

The following cases have been developed earlier: 

Simple Harmonic Time Motion; Constant Swimming Speed 

The motion is prescribed by Eq. (7) (with the third coordinate z omitted, 
and S given by |x| < 1). It has been shown by Wu (1961) that 

ag = (Org t xp Cha) iA {0G8 2 (e a@/U) (38a) 

C(c) = K,(ie)/[K (ie) + Ky(jo)]- = F(c) + jG(e) , (38b) 

in which \, and X, are still given by (35), now having the time factor exp(jot). 
C(c) is the Theodorsen Function, ¥ and § being its real and imaginary parts, 

and o is the reduced frequency based on half-chord (which is taken to be unity). 
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The time average of the quadratic quantities T, P, and W, can be readily 
obtained by substituting the solution (33), (37) into (13) giving 

HZ puldg + Al? - 249%) | (39) 

P = 7 pute Re {(Ag +A) LIC (7) BE + §C1-C(o)) ATT} (40) 

where 

; 1 h(x) cos nd 

p, = Zeiet [ 2 ax, a teas Oe (41) 
“1 (lex*) 

Finally, the average thrust T follows from (6), T = (P- W)/U. The result (39) 
shows that W 2 0, since it is known from @(c) = ¥ + jG that $ 2 (F?+ 97) for 
o 2 O and the equality holds only if > = 0. Thus, W 2 O in general, w = 0 
only when o = 0 or A, + A, = 0. The first special case o = 0 is the trivial 
steady motion, whereas the second case corresponds to the condition that the 
circulation around the plate remains zero for all t and hence no trailing vor- 
tex sheet is shed from the body, since the strength of the vortex sheet at the 
trailing edge is 

ro + Ay KC : ) 

if. = - ——————————— Ogee (Gl ®)) 7 Re KG Ke e (42) 

When no vortex is shed, \, + A, = 0, it is seen from (39) and (40) that W, P, 
and hence T all vanish, even though the plate may still be waving. For any 
other unsteady motion (c > 0) we must therefore have the inequality (14). 
When T is positive, we may define the hydrodynamic efficiency as 

7 = UT/P=1- WP. (43) 

The principal features of the solution may be seen from the following spe- 
cific example: 

1 
nis, ty = ret) cos (kx— at) ~Cix<1)>. (44) 

The thrust coefficient C; = T/[(1/4)7pU?] is plotted versus the reduced fre- 
quency o = wf/2U (¢ being the chord) for « = (1/2) kf = 7 in Fig. 2, in which 
the experimental results of Kelly (1961) are also shown for comparison (these 

data include the skin-friction drag). The theoretical result shows that Cy is 
positive for o > «x, or when the wave velocity 

c = o/k = (0/K)U (45) 

is greater than the swimming speed U, and Cy, is negative for 0 < c <U, or 
o < x. This qualitative feature has already been predicted earlier. 
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Fig. 2°- Thrust coefficient C; versus re- 
duced frequency o for x = 1/2 k2= 7 

Another approach towards analyzing the mechanism of swimming is based 
on the principle of action and reaction. Considering the inertial forces alone in 

this inviscid approximation (i.e., leaving out the viscous effects of the boundary 

layer and the viscous wake for a separate account), we find that the flow mo- 
mentum at large distances is concentrated in the vortex wake, as should be ex- 
pected in view of the trailing vortex sheet shed to the rear being thin, resulting 
in a jet of fluid which is expelled from the plate. This mechanism can be seen 

as follows. In the motion prescribed by (44), the tail (at x = 1) reaches the 
uppermost position at t = x/w+2n7 (n = 0,1,...), and the lowest position at 

t = x/w + (2n+1)7. After some calculation, it can be found from (42) that if 
c > U (or o > x), vorticity shed from the plate is negative (or in counterclock- 

wise sense) when the tail is at the highest position, and increases monotonically, 
. 
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as the tail moves downward, to a positive maximum (in clockwise sense) when 
the tail is at the lowest position. The velocity field due to this vortex system 
is clearly in the form of a jet moving in the positive x direction, as depicted 

in Fig. 3, By the principle of action and reaction, the plate therefore experi- 
ences a positive thrust. For the same reason, the thrust is negative if c < U, 
since the shed vorticity is reversed in sense. In the case of a self-propelling 
body, however, the backward momentum due to inertial forces and the forward 
momentum due to the skin friction exactly balance in steady swimming. 

Fig. 3 - Jet moving in the positive x direction 

The effect of body thickness in sinusoidal motion has been discussed by 

Uldrick and Siekmann (1964). 

Starting Stage of a Forward Swim 

A typical starting motion has been considered by Wu (1962), with the plate 
starting with a constant acceleration from at rest, 

Wit) =tsat at tical 2710) 

and with h(x,t) assuming a polynomial of degree 3 in x. The small time be- 

havior of the solution has been evaluated with the assumption of small lift and 

moment, in order to minimize the body recoil in lateral and spinning motions. 
The result shows that the thrust is generated at the time of order t?, whereas 
the power is already required at the time of O(t), the initial power being posi- 
tive definite for arbitrary transverse motion h(x,t). When a high efficiency is 

required in addition, the body profile appears in an S shape, with a maximum 

and minimum of h at x = -0.564 and x = 0.295 approximately. 

SWIMMING OF SLENDER FISH 

Lighthill (1960) treated the problem of swimming of slender fish, at suf- 
ficiently large Reynolds number, by applying an inviscid slender-body 
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approximation. The body, when stretched straight, lies in between x = 0 and 
x =; its cross section is small in dimension compared to ?. The free stream 
has a constant velocity U in the x direction. The motion of the curve passing 

through the centroids of the cross section of the body remains in the xz plane, 

and is prescribed as 

Zo= it ety. (Oo xe ) (47) 

with the same qualification for h as before. 

The flow has two components: One is the steady flow around the stretched 

straight body, which gives no resultant force or moment for symmetric bodies, 
and the other is the cross flow due to the displacement h(x,t), which has, in 
the cross-flow plane, the velocity v(x,t) as given by (18). This latter compo- 

nent alone determines the lift, moment, thrust, and other relevant quantities. 
The cross-flow momentum is pA(x)V(x,t), where A(x) is the virtual mass 
corresponding to the transverse unsteady flow and A(x) can be readily deter- 
mined for given cross sections. The instantaneous lift acting on a section of 

length dx at x is equal and opposite to the rate of change of momentum in 
cross flow (or equivalently, it can be obtained by integrating p over the bound- 

ary of the body cross-section), that is, 

e) 3 
L(x, t) dx = =o = + U =a [ACGx) V.Cx, t)]- dx (48) 

The rate of work done by the body in making the displacement h in the direction 

of lift is therefore 

Q a Q 

P= [ h,L(x,t) dx = well (av, - 
at % 

ave) dx + oU [Ah,V] ; (49) 
0 x ble 

Alternatively, this expression is obtained by replacing (Ap) ds in (4) by L (x, t) dx 

over 0 <x < ¢?,. The kinetic energy imparted to the fluid due to the lateral mo- 

tion in unit time is 

Q Q 

0 ot Ox 2 2 ot % D x=R 

The time average of P and W are clearly 

P= pUA(t)[hV] | = PUACE) fh, +Uh,)] (51) 

w= + puaceyv? = 4+ puA(e).(h,+Ub,)? are (e) ese Tote Cf) (hy + x eeeae (52) 

The physical significance of these results is clear. P is equal to the average 

of the product of the lateral velocity h, and the rate of shedding lateral 
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momentum (,VA)U at the tail; W is equal to the shedding of the average kinetic 
energy (AVv?2/2) at the rate U. Finally, from (6) it follows that the average 
thrust is 

=& 1 r.2 . 122) aa 2 —~ Ij2h 2 Tu tee Gy [nyt soll Thal thet (53) 

Obviously, W 2 0, as should be expected from the general argument stated 
before. When T is positive, the hydrodynamic efficiency of swimming is de- 

fined, as before, by (43). 

Lighthill reasoned that high efficiency can be achieved if V << h,, but V 
and h, must be positively correlated, i.e., h,V > 0 (for otherwise, P < 0, 
hence T is also negative). Furthermore, there are two side conditions that 

the inertial lift and moment of the body (with known mass distribution) must 

balance, respectively, the hydrodynamic lift and moment in order to free the 
body from any recoil. 

Two specific examples have been given by Lighthill. When the body mo- 
tion is a standing wave, the efficiency is always <0.5. If the body motion is a 
progressive wave, 

h (x; &)! =" bx) os, of t— x/e)y); (54) 

then 

oes -~U2p! 2 T= 3 eacey [a2 (1 U2b'(0) ) (55) 

eo | 
P= 5 est eee) ‘ (56) 

An estimate shows that 7 can be as high as 0.9 at c = 1.25U provided that the 

slope of the amplitude profile is negligible at the tail. We observe that T can- 

not be positive unless c > U, which is a general feature as expected. 

It should be noted that for this category of slender-body motion, it is es- 
sential that the fish must have a tail edge structure so that A(t) > 0, since T, 
P, and W are all proportional to A(?). In reality, however, typical body shapes 

of fishes, aside from being slender, usually are rather planar and have side 
edges that may be regarded as sharp. In such cases, the vortex sheet shed 
from the sharp trailing edges will considerably modify the flow field, so that 
the thrust and energy balance will no longer depend only on the flow at the tail 

section x =, 

OPTIMUM SHAPE OF WAVING PLATE 

An interesting problem concerning swimming propulsion is to find the 
optimum shape of the body motion. The special case of the two-dimensional 
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waving plate has been treated by Wang (1966), who adopted a discretized Fourier 
representation of the body motion. For the simple harmonic motion given by 

hiGest yes Rei! le oC |e) (57) 

let h, be represented by an (N+1)-term Fourier series 

h(x) = 
dO je 

N 

Bees DP B,cosn@, (x= cos @) (58) 

n=l 

where £8, is given by (41) with the time factor deleted. Then the coefficients 
A) and A, can be expressed in terms of 67s. Let 6. = 6f+ 38"',° 6, and 

8," being both real, and we define the vector 

= 

B= (6B 6 eae, Pate, (59) 

in which £}' may always be set equal to zero as the reference phase. Then the 

thrust and power coefficient can be written as 

Cas Oe Ce cap (60) 

where ft is the transpose of 8, and 2 and # are (2N+1) x (2N +1) symmetric 
real matrices. 2 is nonsingular and has real eigenvalues of both signs for 

N > 1 and for all © > O, implying that the origin £ = 0 is a saddle point of C;. 

Also, ? has eigenvalues of both signs for all o > 0. 

We consider the problem of maximizing C;, which is required to be posi- 

tive, under one of the two constraints 

(C“1ys C <P (61a) 
p 0 

or 

(65,2) ti5n€(t)oS Pan, Ostet | (61b) 

where P, and P, are specified positive constants. This constrained optimiza- 
tion problem is equivalent to that of maximizing a new function 

ChisoCpl= A (eB PBs Psy) (62) 

where \ is a Lagrange multiplier. Setting the derivatives C} with respect to 

all components of 8 to zero yields 

9c) B = oP (o) B ; (63) 

Let Be denote the optimum solution; then, since 2 is nonsingular, B° satisfies 

aD l(c) P(c) Bo = A7t Bo . (64) 
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The corresponding optimum value of C, is 

Gere Aa (By Rts) Pe (65) 

Upon using the constraints 

age oy’ hay se = Bm (66) 

(65) reduces to 

Ce =A Py, (67) 

which signifies this \ as the maximum hydrodynamic efficiency under these 
conditions. Consequently, C, is maximized when 

Arta At. [6.95 ho) nla): (68) 
min 

the minimal element of the set of all positive eigenvalues of [2719] for a given 

o > 0, whose corresponding eigenvector £* satisfy (2*)'?2+ > 0. The optimum 

solution #° is an eigenvector corresponding to At, lo 219] satisfying condition 
(67). 

Numerical calculation of the result has been carried out by Wang (1966) for 
the simplest case of a flat plate with average power limitation constraint (61a) 
for the motion having B= (23, 61, f{'), which corresponds to a rigid plate in 
plunging and pitching oscillations. The numerical results of the optimum effi- 

ciency for the subspaces: 

(M-1)S, = {8:81 = B" = 0} and (M-2)S = {B:8! = 0} 

are shown in Fig. 4. 

SKIN-FRICTION DRAG OF CETACEAN 

Recently a series of hydrodynamic experiments with several specimens of 

different species of porpoises (Tursiops gilli, Stenella attenuata) have been per- 

formed by Lang and co-workers (1963, 1966a,b,c) under more carefully con- 
trolled conditions. The test results with a Pacific bottlenose porpoise (Tursiops 

gilli) compare closely with highest predictions based upon rigid-body drag cal- 
culations, the same power output per unit body weight as for athletes, and a pro- 
pulsive efficiency of 85%. The maximum power output of Stenella attenuata, per 
unit body weight, was, however, 50% greater than for human athletes; and the 
measured drag coefficient was approximately the same as that of an equivalent 
rigid body with a near-turbulent boundary layer. Thus, in general, no unusual 
hydrodynamic or physiological performance was observed. Also, it has been 
pointed out that Gray's paradox can be largely resolved by consideration of 
duration; Gray's analysis was based on the power output of humans for a 15 
minute period and this figure can be raised several times if based on a shorter 
period, such as a few seconds. 
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While these results have put the whole picture in a much improved aspect, a 
closer examination of the experimental data as shown in Fig. 5 indicates that 
there are still cases in which the laminar flow was maintained over a consider- 

ably greater percent point of the porpoise skin than for an equivalent rigid body. 
A number of hypotheses have been proposed in an effort to explain the observed 

low drag. One of the likely effects is attributed to a favorable pressure gradient 
over a well-shaped streamline body, as indicated by van Driest and Blumer 

(1963) for laminar flows up to R = 108. Another possibility is by means of 
boundary-layer control, such as the compliant skin discovered by Kramer (1960). 

Subsequent theoretical studies of this effect by Betchov (1959), Benjamin (1960), 
and Landahl (1961) have indicated that the increases in critical Reynolds num- 
ber obtainable with passive flexible surfaces are too modest to support this ef- 

fect on the basis of simple stability theory alone. Even though the possibility of 
activated flexible surfaces have been proposed, the structural complexity of 

such skin seems to be biologically infeasible. 

A fairly certain explanation for low drag on fish is the effeet on the boundary 
layer produced by the addition of long-chain molecules, as reported by Fabula, 

Hoyt, and Crawford (1963). The mucous exuded by fish is composed of a similar 
type of long-chain molecules and has been found by Hoyt (private communication) 
to bear significantly the same effect. Still another possible explanation, which 

seems to be really the principal one to this author, is the unsteady flow effects, 

due to body undulations, on the hydrodynamic stability. 

SELF-PROPULSION IN A PERFECT FLUID 

The previous theories are concerned with the swimming of bodies in fluids 
of small, but not zero viscosity. Recently, Saffman (1967) raised the interesting 
question: can a fish swim in a perfect fluid whose viscosity is identically zero 

(as in a superfluid)? It has been shown that the classical paradox of D'Alembert 

for steady flows of a perfect fluid does not apply to the general unsteady flows 

past a deformable body and that a fish could indeed swim in a perfect fluid. 

The momentum equation for the rectilinear motion of a deformable body in 

a perfect fluid can be written 

[M+ m(t)] W= -MU(t) - I(t) , (69) 

where M is the mass and m(t) the virtual mass of the body, w(t) is the velocity 
of the geometric centroid, U(t) the velocity of the center of mass of the body, 
and Ip is the component of the fluid impulse due to the change in body shape 

relative to an instantaneously identical rigid body moving with velocity W. The 
quantities m, U, and Ip are functions only of the shape and structure of the 
deformable body and are independent of W. It is clear that an arbitrary displace- 
ment can be effected without a permanent or net deformation of the body if m, U, 
and Ip can be made to vary periodically with t in such a way that W has a non- 

zero time average 
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t 

f wee dt‘—> Wt as t—o(WZ0). (70) 

0 

Saffman described two different ways in which this can be accomplished, one for 
heterogeneous and the other for a homogeneous body. 

For a heterogeneous body, we can have U = QO, and it is simplest to sup- 

pose that the surface deformation has fore and aft symmetry so that Ip = 0. 
Then W is positive if U(t) and m(t) - m(0) oscillate periodically in phase or 
with an in-phase component. The physical explanation of the propulsion mecha- 
nism in this case is clear. There is a hydrodynamic force on a body whenever 
the body accelerates, which is described by the virtual mass. Now, if the center 
of mass is moved backwards, the recoil will send the shell forward. If then the 
resistance or virtual mass is less when the shell goes forward than it is when 

the reverse recoil is moving the shell backwards, the distance covered during 
the forward motion exceeds that covered during the backwards motion and 
there is a net forward displacement during each cycle. Note that there is no 
continuing transfer of momentum between the body and the fluid; the momentum 
of the body oscillates about a nonzero mean while the oscillating deformation 
continues, There is of course a transfer of energy between body and fluid, but 

this is loss-free. 

II. SWIMMING MOTION AT SMALL REYNOLDS NUMBERS 

Propulsion of microscopic organisms always corresponds to a small Reyn- 

olds number and depends almost entirely on the viscous stresses. Although the 
body motions of some minute biological creatures bear a close resemblance to 
those of fish, in that they also send waves of lateral displacement from its head 
down a thin, long tail (or flagellum), the mechanics of the fluid is however 
greatly different from the case of large R. The effect of viscous stresses in 
steady flows at small R extends over a wide range, such that the body tends to 
drag along a very large volume of the surrounding fluid. The vorticity in steady 
flows is well diffused, leaving practically no wake near the body. Oscillation of 
the body reduces the amount of fluid moving with the body with increasing fre- 
quency, as was discussed by Stokes (1851). The mechanics of swimming in this 
case obeys, nevertheless, the basic principle of action and reaction, so that the 
total time rate of production of momentum is zero for a self-propelling body 

at a constant forward speed. 

IMPORTANT FLOW PARAMETERS 

A wide class of unsteady flows of an incompressible, viscous fluid past an 
oscillating body of arbitrary shape can be adequately described by the linearized 
Navier-Stokes equations, or Oseen's equations, 

ou ou 1 
— +U—=- =Vpt+ V7u+ F, 
ot Ox P : (71) 

1194 



Fluid Mechanics of Swimming Propulsion 

div u= 0, (72) 

where u is the perturbation flow velocity, U is the free-stream velocity di- 

rected along the x axis, and F stands for the external force and may include 
surface force acting on the fluid by the moving body. The conditions necessary 
for this linearization to be valid have been well understood for the case of recti- 
linear and steady motions. The corresponding conditions for oscillatory mo- 

tions can be examined as follows. 

When a body, either rigid or flexible, of a characteristic length ? , under- 
goes an oscillation with frequency «w and amplitude a, the flow motion is charac- 

terized by the following dimensionless parameters: 

R= Uy s=(<| = (20/v: r= aff . (73) 

The rectilinear Reynolds number R measures the relative importance of the 

translational inertial force and the viscous stresses; the oscillatory Reynolds 

number S gives the ratio of the body length ? to the depth of penetration of the 
vorticity, 5 = (v/w)1/2.. The relative magnitudes of these parameters give rise 
to the following principal regimes of interest: 

(i) R << 1, S << 1, A arbitrary. This is the case of low-frequency 

oscillation with the amplitude not necessarily small. Consequently, the 
flow field varies only slowly with time, and the problem may be treated 
as quasisteady, such that the terms on the left-hand side of (71) can be 

neglected, 

(ii) S >> 1, A << 1, R arbitrary. This is the case of rapid oscilla- 

tion with amplitude small compared with the body dimension, and 
hence the unsteady and viscous effects are of equal importance. The 
depth of penetration of the vorticity is now small compared with the 
body length; consequently, there exists an unsteady boundary layer, 

outside of which the flow is inviscid and irrotational. The nonlinear 
effect is still unimportant in this case, since the amplitude a is small. 
The Reynolds number R, however, need not be small. 

(iii) S >> 1, \ = 0(1). This case represents rapid oscillations 
with amplitude comparable to, or larger than the body dimension. The 
effects of unsteadiness, viscosity, and nonlinearity are now of equal 

importance, consequently the nonlinear terms of the Navier-Stokes 
equations must be restored, which will give rise to the phenomenon of 
nonlinear streaming. Two boundary layers are therefore anticipated 

in the motion, one due to the unsteady effect and the other due to the 

nonlinearity. 

SWIMMING OF A WAVING PLATE IN A VISCOUS FLUID 

In order to investigate the mechanism of swimming of microorganisms, 
Sir Geoffrey Taylor (1951) took as his first model a doubly-infinite sheet, 
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flexible but inextensible, which is propelling itself by small transverse progres- 
sive waves. Taylor considered a wave of displacement y = b sin (kx - wt) 

propagating in the +x direction with phase velocity c = w/k, and found that this 
motion induces a velocity in the fluid at infinity of 

Un = E Cb yo o(kb)*| c , (74) 
2 

also in the +x direction. A limitation of Taylor's analysis is that the Reynolds 
number R = w/vk? must be small enough for the application of Stokes's equa- 
tions. This limitation was removed by A. J. Reynolds (1965), but his result is 
incorrect. This has been pointed out by Tuck (1968), who provided the correct 

result as 

UW. = ¢ E (kb)? 4 BC) + 0 (Kb) | 

g 2 2F (R) : (75) 

where 
yD 

14 (1 + Rey 
Le (76) 

a function which increases monotonically from unity at R = 0, tending to infinity 
like R!’/2 as Ro, Thus, the effect of inertia appears to be to decrease (rather 

than to increase, according to Reynolds) the propulsion velocity above that found 
by Taylor at R = 0. 

The analysis has been somewhat simplified by Tuck. We use a stream func- 
tion ¥ satisfying u = },, v = -¥x, ¢ = -V7~, and the Navier-Stokes equation 

2 Q C o: Dee aera bho ate (77) 

The boundary conditions (Taylor, 1951) are 

i s.b7k a, cos \( 2kx'= 2ot) +/0( 62), 

v = -wb cos (kx-wt) + O(b3) , ” 

on the moving surface 

y=) busin (kxsiot)o« 

We now make the expansion 

POS CROC) eee IEW Cy ar eG Gy,) Co wanes elt, ODS) (79) 

where the first term of (79) is O(b) and satisfies a linearized version of the 
Navier-Stokes equation (77), while the remaining second-order terms are 
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divided into a "D.C." part (y) =0(b?) independent of t and x, and a "'second- 
harmonic" part which varies sinusoidally in t and x, and with which we shall 

not be concerned. 

The solution for the linearized flow is obtained by inspection, with the result 

L7 2 

= G + ~ (80) 
e &Y 7 | ? 

k 
Ww, = cybl(l +k) 

The equation satisfied by the ''D.C.'' second approximation is 

4 
ale 

dy* 
= shu 6 

Cin Vy ly)? (81) 

where a =k+0l, ¥ =? +f = 2R(¢). The solution for ¥, which corresponds to 
a velocity U, at y = ~ is 

= 1 Fie 20 SOY pare oh f Vio = Uny + hag Ja|“R E E —= e ; (82) 

The boundary condition to be satisfied on y = O is obtained by substitution of 

the expansion (79) into the boundary conditions (78), resulting in (75) and (76). 

HIGH-FREQUENCY MOTION OF MICROSCOPIC ORGANISMS 

The asymptotic limit of large S has been evaluated by Wu (1966) for the 
Swimming of a slender microscopic body, of length ? and a circular cross sec- 

tion of radius a (a <<’). The body motion is again given by 

y = b(xyet(@t-k*) , (0<x<2k) . (83) 

We shall assume w to be sufficiently large, and kb(b = max |b(x)|) sufficiently 
small, that 

a2 oo. tkibeo alr: (84) 

The first condition implies that 5 =0(a), which is small compared to body 

length ¢ for slender bodies; the second condition means that the flow field does 

not vary rapidly with respect to x. As the first approximation, we may there- 

fore regard the flow as consisting of two components: One is the cross flow due 

to the lateral oscillations, and the other is the longitudinal flow along the mean 
(stretched straight) position of the body. The transverse component gives rise 

to lateral force, thrust, etc., and the longitudinal component produces the friction 

drag. 

We first evaluate the cross flow by using a slender-body approximation. At 

a station x(0 <x < ?) the cross section of the body is taken to be fixed at the 
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origin of the yz plane. (The acceleration associated with such a moving origin 

is small, since (q-V)q has been assumed to be negligible under the present 
condition.) The free-stream velocity of the cross flow is 

fe) fe) ‘ 
V¢x;'t) = -(2 +1 = none) = Va) elet | (85) 

pointing in the direction of y increasing. The cross-flow velocity in the yz 

plane will be denoted by v = (0, v,,v,), which is required to tend to (0, v(x,t), 
0) as y?2 + z2-+0. The vorticity of the cross flow, ¢ = 9v,/dy - dv,/3z, satis- 

fies the equation 

Cea UAL = (Ce Gee (86) 

In terms of the stream function y of the cross flow, defined by v, = 5//0z, 

v, = -0y/oy, © may be written as 

C = =A,W . (87) 

Noting that y has a time factor exp(iwt), we obtain for y the equation 

(A,- B27) Ay =0, (B= (io/v)*/?) . (88) 

The solution satisfying the condition at infinity and no-slip conditions at the 

cylinder is found to be 

Wh. NM CXpubp bad ie Sails O sr. ( ber yer) (89) 

with 

a2 
PCryy 5 FAR Br) “Bisa 9 (90) 

2 Se 2 K,(fa) 
= —_—_—_—_, = + See "D 

Ba K,(fa) Ba K,(Ba) (91) 

where (r,@) are the polar coordinates defined by y = r cos 6, z = r Sin 6, 
and K,(Gr) denote the modified Bessel functions of the second kind. The instan- 
taneous lift acting on a section of length dx at x, L(x,t)dx, positive in the direc- 
tion of y increasing, due to the forces of the cross flow, is 

L (x,t) = muVo2W(c) , (92) 

where 

W eee hoes eee 2 (02)\ = - = — = Crs ai ea! iE Ba K,(Ba) F(o) + iG(o) , (93) 

epe= (a2w/v)'/? = | al|* (94) 
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Here, F and G are, respectively, the real and imaginary parts of the function 

W(c). F(c) is always >0. For o <<1, or as w—0, the asymptotic value of 

L is 
fea | 

1 4v The 
L 4n7uV E log Goal Saat 4 J , (95) 

where Y = 0.5772; and for o >> 1 

Wee) dv 
~ ype Loa pa a + TapV(2wv) (96) 

The first term in this expression is due to the apparent mass in potential flow 

past a cylinder, while the second gives the limit of the dissipative force. 

It can be shown that favorable values of thrust can be achieved if 

c= a/k > Us- bb =oconst. (97) 

Under this condition we obtain 

T = mpto?F(c) (c-U) (kb)? , (98) 

W=(c-U)T, (99) 

so that 

n= U/ce, (for c>U) (100) 

which is simply the ratio of the swimming speed to wave speed. 
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DISCUSSION 

J. D. van Manen 

Netherlands Ship Model Basin 
Wageningen, Netherlands 

At the request of Professor Wu, I give in this discussion some results of 
tests which were performed at the Netherlands Ship Model Basin with Dutch 

swimmers. 

With a resistance dynamometer on the towing carriage, we have determined 

the resistance of the towed body of swimmers. During the tests the swimmer 

kept his hands on a bar of the resistance dynamometer just above the water. 
The resistance curve of a swimmer is given in Fig. D1. 

The circumstances for the second type of tests were identical to those for 

the resistance tests; however, the swimmer was now swimming with his legs 

only. With the resistance dynamometer, the total force developed by the swim- 
mer (that is resistance and the leg thrust) corresponding with a certain type of 

stroke (breast, dolphine, or crawl stroke) was measured over a large speed 

range. The results of these tests are also presented in Fig. Dl. 

Finally, the free-running speed of the swimmer with arms and legs moving 

was determined for the different types of strokes. An intersection between 

these speeds and the resistance- and leg-thrust curves is made in Fig. D1. 

For the breast stroke, it was amazing to conclude that the legs were practi- 
cally doing nothing. For dolphine and crawl strokes, the contribution by the 
legs to propel the body is much more favorable. Up till now, these tests have 

been carried out with only two persons, so the results of these tests must be 
considered with caution. More tests must be carried out before final conclu- 

sions can be drawn. 
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{ thrust by arms 

resistance curve,R 
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Adolp ine stroke 

thrust curve, crawl stroke 
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legs moving only 

T, thrust 

Fig. Dl - Results of tests on swimmers 

DISCUSSION 

H. Schwanecke 

Versuchanstalt fiir Schiffbau 
Hamburg, Germany 

The paper presented by Professor Wu is excellent, as we could expect. May 
I refer to the problem of fish propulsion. It has been discussed many times if 
there is any mechanical propulsion device by which an arbitrary sea vehicle can 

be driven at a relatively high speed and at a high propulsive efficiency as it is 
with certain kinds of fishes. Moreover, this device should not be too compli- 

cated in order to obtain a high mechanical efficiency. 

Some years ago, a propulsive device named "well-propeller" was proposed 

by Schmidt. Schmidt has also performed some experiments in air on this de- 
vice. Unfortunately, I received the experimental results too late to refer to 
them. The well-propeller is a combination of two foils. One performs a trans- 
latory motion in such a way that every point of it describes a circle with the 
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radius R (see Fig. D2), while the second foil is fixed in the downwash of the 
oscillating foil. By this arrangement the vorticity in the unsteady downwash 
is reduced and the efficiency of the system is enlarged. 

Applying the results obtained by Schiele for alternating vortex streets, the 

axial efficiency in ideal flow foil can be estimated. In Fig. D2, the efficiency 
is plotted against the induced axial velocity nondimensionalized by the speed of 
the undisturbed flow. The nondimensionalized angular velocity of the oscillat- 
ing foil is taken as a parameter, and represents a reduced freeway. As can be 

seen from the figure, the free-running efficiency is unfavorable even for light 

loading. 

When the propeller is placed behind a vehicle of similar configuration as 

the propeller, for example, a vehicle as shown in Fig. D3, the total efficiency 
in ideal flow can be considerably enlarged. The curves in Fig. D3 are obtained 

by applying Weinig's interaction theory, and are valid for a total ideal efficiency 
equal to unity. As can be seen from the diagram also at medium loadings a 
high total efficiency can be obtained supposing the frequency of oscillation is 
favorably chosen and the flow interaction resistance is of sufficient value. 

Fig. D2 - The well-propeller in 
the free-running condition 
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R, :FLOW INTERACTION RESISTANCE 

R,: TOTAL RESISTANCE 

Fig. D3 - The well-propeller 
in the optimum behind condi- 
tion (R,, the flow interaction 

resistance, equals the resist- 

ance caused by those fluid 

particles which will be used 
for propelling afterward) 

* * * 

REPLY TO DISCUSSION 

T. Y. Wu 

I wish to thank Professor van Manen and Dr. Schwanecke for their interest- 
ing comments. Dr. Schwanecke pointed out several promising propulsive de- 

vices that have been innovated with ingeneous applications of the underlying 
fluid dynamical principles. In this respect, I may also mention the theoretical 

studies of A. A. Fejer, of H. R. Kelley, and some full-scale experiments of 
Glen Bowles. Their studies are concerned with the swimming motion of three 
hinged plates in two-dimensional oscillations, for which the optimum six de- 

grees of freedom can be evaluated. In this kind of inventive attempts, I think 

one can be duly rewarded if the efforts are directed towards extraction of the 

basic physical principles underlying the phenomenon, rather than imitating na- 
ture to the very last detail. From bird flying came the innovation of airplanes, 

which has evolved through decades to supersonic flights, a regime already 
highly transcending the original level. An effective application of the swimming 
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principle has, however, so far remained a good challenge. The previous at- 

tempts brought forth by Dr. Schwanecke will shed light to stimulate further 

developments. 

I am particularly grateful to Professor van Manen for his contribution of 

some yet unpublished results. His experiments with Dutch swimmers are most 

intriguing, in that a method of separating the thrust from the resistance is pro- 

posed. I certainly agree with him that these results should be viewed with cau- 
tion since swimming is one of those physical motions in which the quantities of 

interest, such as the thrust or the viscous resistance, when considered sepa- 
rately, can hardly be observed without disturbing the phenomenon under obser- 
vation. This is a kind of "uncertainty principle" that makes the problem inter- 

esting and the solution difficult. The quantitative results of Professor van 
Manen are nevertheless extremely enlightening. 

* * * 
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Friday, August 30, 1968 

Morning Session 

UNCONVENTIONAL PROPULSION 

Chairmen: Dr. W. E. Cummins 

Naval Ship Research and Development Center 
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THEORY OF THE DUCTED PROPELLER— 

A REVIEW 

Johannes Weissinger and Dieter Maass 

Institut fur Angewandte Mathematik 
Universitat Karlsruhe 
Karlsruhe, Germany 

ABSTRACT 

This review is concerned mainly with the theory of ducted propellers 
in incompressible, nonviscous, steady flow. Emphasis is laid on theo- 
ries which try to determine the complete flow field and which have 
been developed in the last 12 years. A brief survey of the development 
before 1955, which was covered in a review presented by Sacks and 
Burnell in 1959, is given. 

The main part starts with the theory of the duct alone (ring airfoil) in 
axial and nonaxial flow. The numerical methods which form the basis 
for the theory of the ducted propeller are outlined briefly, and some of 
the basic assumptions are considered critically. The effects of cam- 
ber (including taper) and thickness of the profile and of a central body 
are treated. 

This theory is easily extended to a theory of the ducted actuator disk of 
constant load without tip clearance in axial flow. Some linear terms 
usually neglected in linear theories are shown to have a considerable 
influence. 

The theory of the actuator disk with tip clearance treated next builds 
the-link to the theory of the ducted propeller with a finite number of 
blades. The main problem is the determination of the velocity induced 
by the free vortices shed from the propeller blades. This can be solved 
only by a priori assumptions on the form of the vortex surface. These 
can be checked and improved to some extent by iteration. In nonaxial 
flow, the propeller produces an unsteady field, which, so far, can be 
treated only by very rough methods. In this case, the duct experiences 
not only a lift, but also a side force. 

The emphasis of the review is on analysis, not on design. The under- 
lying models (vortex configurations, etc.), the numerical methods, and 
the numerical results are the main subject. 

1. INTRODUCTION 

1.1 A Brief Historical Survey 

By choosing the proper type of duct, the velocity at a propeller can be in- 

creased (''Kort nozzle") or decreased ("pump-jet''). The Kort nozzle is used 
for increasing the efficiency of heavily loaded propellers, e.g., in S/VTOL 
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aircrafts. In a pump-jet propeller, cavitation is delayed or compressibility ef- 

fects are decreased. Noise can also be influenced by shrouding the propeller. 

We can discern two trends in the development of theories, one aiming at 

most simple results and formulas which can be used in design without much ad- 
ditional computation, the other trying to predict the whole field under most gen- 
eral assumptions. The price to be paid in the first case is a loss in numerical 

accuracy and a restriction in general applicability, because special assumptions 
such as small chord/diameter ratio or special singularity distributions are in- 

troduced. Aside from the fact that theories of the second kind require an expert 

to understand them, their main disadvantage is the need of a big computer to 
perform the numerical evaluations. Naturally, theories of the first kind were 
developed first. So, we may distinguish two periods, one (ca. 1940-1955) in 
which the first trend dominates, while after 1955 more efforts were exerted in 
developing theories of the second kind. A "pioneer" period (ca. 1927-1940) pre- 
ceded both during which the idea was born and first applications, experiments 

and theoretical considerations were made. 

First Period: It seems that L. Stipa (84) in 1927 was the first to propose the 
shrouding of the propeller by using the fuselage of an airplane as a duct. There 
is also a Russian paper (82) claiming the concept for the Russian scientist C.A. 
Bracks back to 1887. In 1934 Kort proposed the '"Kort-nozzle" for heavily 

loaded marine propellers. 

Second Period: During World War II a group of Gottingen (Kichemann, Weber, 

Kriiger) began a systematic theoretical and experimental investigation of the 
ducted propeller. Here, some of the basic ideas were conceived for all further 

theoretical work. After the war, a group in Berlin (Horn, Dickmann, Amtsberg) 
improved the theory and developed a design procedure based on representing the 

duct by a vortex distribution and the propeller by a sink distribution. A similar 
concept was applied by Lerbs (46). Stewart (83) and Ribner (75) developed a 
theory for ring airfoils with small chord/diameter ratio based on a lifting line 

theory. The papers of Helmbold (28, 29), which are not so well known because of 
their restricted distribution, also contain some fundamental ideas. Unfortu- 
nately, a limited distribution is the rule rather than the exception for most re- 

ports on ducted propellers. 

Third Period: The paper of Dickmann and Weissinger (101) was the starting 
point for the investigations of a group working at Karlsruhe (Dickmann, Weis- 
singer, Wiedemer, Bollheimer, Brakhage, Maass, Rautmann). In (101) the shape 
of the (thin) duct represented by the sum of a constant and an elliptic distribu- 
tion of ring vortices was determined by a linearized theory under the assump- 
tion of a constant pressure jump at the propeller plane. Dickmann also pro- 
posed the use of semiempirical knowledge from turbomachines and pumps for 

the propeller design, a line of thinking also followed by Bussler (8) and van 

Manen. The theory was confirmed by experiments of Finkeldei (116). Using the 
vortex model of (101) completed by ring sources, Weissinger developed a theory 
for ring airfoils (without duct) of a given shape in axial flow, including effects of 
profile thickness, struts, and central bodies. This theory was generalized for 
ducted propellers with constant pressure jump in axial flow by Bollheimer, who 
included some effects of profile thickness neglected in other theories. 
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The model and some of the basic mathematical ideas used at Karlsruhe 
were also used by two other groups, working at THERM (Ordway, Ritter, Green- 

berg, Hough, Kaskel, Lo, Sluyter, Sonnerup) and at NSRDC (Morgan, Caster, 
Chaplin, Voigt). Though there are differences in mathematical details (e.¢., 
representation of kernel functions by elliptic or by Legendre functions, different 
methods for a numerical solution of the integral equations, etc.), the numerical 
results of all three groups, in so far as the same problems were treated, coin- 
cide because a common model is used. At THERM and NSRDC the theory was 

extended to finite-bladed propellers with tip clearance. At THERM the steady 

part of the forces caused by nonaxial flow was also computed. 

The numerical analysis of THERM culminated in the presentation of work 
sheets for the numerical evaluation of shroud performance for finite-bladed 
ducted propellers in axial flow at cruise velocity (151). For specified values of 

blade number, axial propeller position, tip clearance (70), ratio of propeller 
radius to shroud reference radius, propeller advance ratio, the geometric pa- 
rameters of NACA 4, 5, and 6 digit profiles and arbitrary values of propeller 
thrust coefficient and chord line incidence, tables are presented such that the 
shroud sectional radial force and moment coefficients and center of pressure, 
the shroud thrust coefficient, the net shroud pressure coefficients, and the outer 
and inner shroud surface pressure coefficients can easily be computed by hand 
on the worksheets. Configurations other than those given by the specified pa- 
rameter values can be handled by interpolation or extrapolation. On the propel- 
ler blade an otpimum circulation is assumed. An addendum (156) contains 
worksheets for the calculation of shroud-induced axial velocity. Knowing this 
velocity, the blade geometry required to produce the assume dcirculation can be 

determined by classical methods. The THERM tables can also be used for other 

purposes, e.g., two-dimensional profile theory. 

The theory developed at NSRDC was condensed in a FORTRAN program for 
the IBM-7090 high-speed computer (134). The input for the duct consists mainly 
of the section camber and thickness ordinates, the section angle of attack, and 
the chord-diameter ratio. There are options whereby the ideal angle of attack 
of the duct section can be determined in the presence of the propeller. The pro- 

peller input consists of the propeller diameter, propeller speed in revolutions 

per second, design thrust (or propeller shaft horsepower), ship speed, number of 
blades, inflow velocity, and circulation (or pitch distribution). If the propeller 
is to be designed using the LERBS optimum pitch distribution, only an estimate 

of the propeller ideal efficiency is given as input, instead of the circulation or 
pitch distribution. The output consists of the propeller design characteristics 

and performance, as well as the duct thrust and pressure distribution. The re- 

sults can normally be obtained in approximately 27 minutes of computer time. 
Consequently, features which are not included in the THERM approach include 

the following: 

(1) Any shape can be considered for the duct. 

(2) The ducted propeller can be designed for a given thrust or horse- 

power. 

(3) The design and predicted performances of the propeller can be 

obtained. 
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(4) An option in the computer program allows calculations of the ideal 
angle of attack of the duct section in the presence of a propeller. 

In (132), a computer program and results are presented for the inverse problem, 

where the duct shape is computed once the duct pressure distribution has been 
Specified. 

Perhaps the most comprehensive investigations of ducted propellers have 

been made by VIDYA (Nielsen, Kriebel, Mendenhall, Sacks, Spangler). For ex- 
ample, they include duct stall interference in tandem configurations or interfer- 
ence with hulls and also experimental investigations. The price for the compre- 

hensiveness is a simplification of the theoretical models. So, to some extent, 
these theories may be placed into the first category of theories characterized 
above. The basic model is shown in Fig. 1 (164). The propeller annulus is di- 

vided into a number ( <10) of equal-area annuli in each of which blade element 
theory is used to describe local propeller-blade performance. The bound pro- 

peller circulation is constant within each annulus, and a cylinder of ring vortices 
is assumed to be shed from each annulus and to extend downstream. Centerbody- 

induced velocities are neglected. The duct may have both thickness and camber, 
the chord/diameter ratio is not restricted to small values. The propeller is 

specified by the number of blades and by the radial distribution of chord and 
pitch. From the above model, relations are derived by which, at a specified ad- 

vance ratio, duct loading and propeller loading can be calculated from a given 
inflow profile. From the loading distributions an improved inflow profile is de- 

termined. The iteration converges rapidly. A digital computer program, pre- 
sented in (164), takes one minute on the IBM 7094. A second program (164) for 

the design of uniformly loaded propellers takes the same time. A rough esti- 
mate of the influence of the angle of attack is also possible. 

Fig. 1 - Flow model used in (164) 

Last but not least in this enumeration of institutes and major research 

groups, the name of van Manen and the Netherlands Ship Model Basin should not 

be omitted. Their work, though mainly experimental and therefore not pertain- 

ing to the subject of this review, has also contributed to the theory and gives 
very valuable advice for design, based on theory and the results of extensive, 
systematic series of experiments. 
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1.2 Program of This Review 

This review will be concerned only with incompressible, nonviscous, and, 
primarily, steady flow. Some hints referring to other problems can be found in 

the list of references, e.g., cavitation (Tulin, Chen), boundary layer (Nickel), 
compressibility (Zierep, Laschka). 

Since the development in the first two periods is well covered by the review 
of Sacks and Burnell (78), where emphasis has been placed on theories of the 
first kind, this review will be restricted to theories of the second kind developed 
during the third period. Papers and reports published before 1955 are listed in 

the references only insofar as they are referred to in the text. This is also true 
for publications concerned mainly with experiments. 

The presentation is guided by a systematic and not by a historical point of 
view. Emphasis is placed on the analysis of the phenomena and not on design 
methods. Because of the complexity of the mathematical apparatus, we cannot 

always give mathematical formulas in detail. Instead, we shall describe the 

underlying models and the basic assumptions, characterize the numerical meth- 

ods used for the solution, and state the main theoretical results. We will con- 
centrate our attention on the theories developed at Karlsruhe, THERM, and 

NSRDC. 

In aerodynamics and hydrodynamics two kinds of problems are distinguished. 
In the "direct'' problem the geometry is given and the flow field or special char- 

acteristics such as lift or pressure distribution are sought, vice versa in the 
"inverse" problem. Something inbetween is the case where a mathematical sin- 

gularity distribution is given and the corresponding geometry and/or flow field 
is to be determined. If the mathematical relations between the singularity dis- 

tribution and the geometry as well as the induced flow are known, it is purely a 
question of mathematical skill to solve the direct or inverse problem by elimi- 

nation of the singularity distribution. Of course, this can usually be done by 

numerical methods. 

The problem of the ducted propeller is a problem of interference, of inter- 
action between two bodies, the duct and the propeller. From the four possible 
direct/inverse combinations we shall choose the mixed one with given duct 

geometry and propeller distribution. From the solution of this problem, the 
propeller geometry can be determined by slight modifications (128, 134) of well- 

known methods (48). 

Problems of interference can often be solved by an iteration scheme in the 

following manner. First, one has to find a method for determining the flow field 
of each separate body in a very general (nonuniform) flow. Then, starting with 

an arbitrary field, this field is modified by the presence of the first body, the 
new field is modified by the second body, this field again by the first body, and 

so on. 

Following this line of thought, we deal first with the duct alone (Sec. 2), i.e., 
we solve the direct problem for the ring airfoil in fairly general flows. These 

contain also the case where a jet is emitted out of the ring airfoil by an actuator 
disk of constant pressure jump. This case (Sec. 3) can be considered as the 
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most simple model of a ducted propeller and shows many of the relevant fea- 

tures. Next we must consider the propeller field. The blade circulation being 

given, the main problem is the determination of the shape of the vortex sheets 
shed from the blades and of the field induced by these sheets. Then, the inter- 
ference problem can be attacked. The most important result of Sec. 5 is that 
the steady part of the flow through a finite-bladed ducted propeller is the same 
as the flow for the same configuration but with an infinite blade number. This 
problem, simplified to constant radial distribution of propeller circulation, is 
treated in Sec. 4. 

So far, axial flow is assumed. In the case of nonzero incidence, which is 
considered next (Sec. 6), there does not exist a system of coordinates in which 

the field is time independent. Obviously, this problem is very complex and only 

rough approximate solutions have been found. As a matter of fact, only the 
steady part of the solution has been determined. 

Before starting this program we will have a brief look at the two-dimen- 

sional theory in order to clear some of the basic ideas. 

1.3 Two-Dimensional Considerations 

(A) Infinitely thin airfoils (Fig. 2). ASsuming small camber and small curva- 
ture of the profile, the linearized boundary condition is fulfilled by putting on the 
chord a vortex distribution »(£) = v,(€) which satisfies the Kutta condition and 
the integral equation 

1 

1 g(é") 
= da = , = ib ss <1"; Py = 0 (1.1) 

se On gif wok! & a(€) nes vCr) 

or, written with the "Glauert operator" G in operator form, 

Gera (1.2) 

Fig. 2- Two-dimensional airfoil 
theory. The infinitely thin cam- 
bered airfoil. (Actually, for this 

configurationthe vortices rotate 
in the opposite direction.) 
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The solution is known to be 

1 

ae 1 ae ok Code a eae eee 
eee (Sa, Vie 7 E22) y 1s &* aa (1.3) 

The integral can be evaluated by means of the formula 

7 

J pee OSES Nl ee een LF Oy Guar (1.4) 
cos 0'- cos @ sin@ 

and the Fourier expansion 

a @ 

CS)) = = iF DE a, cosvd, =€ =.—cos?':, (1.5) 

v=1 

The result is the Birnbaum series 

g = —-a, cot st 2 % a, sinvé . (1.6) 

Another method (114) of solving the integral equation 

d if AES ELE EE OsOsmT (1.7) 
ae ag SCOSGh= -COS|2 

which is equivalent to (1.1), is a collocation method based on the quadrature 

formula 

7 N ‘ 
f(@" f(A.) f —#@) _ gor 2 Ys, — = PSPs el ON 

g cosiG  ="cosi0- N 4=0 cos @. = cos 0. 
(1.8) 

ial 1. fom pk = ll Neal 
igo )T gt = 2k $= 

2N 2N 
=) for k= 0 N 

This formula is exact if f(@) is a cosine polynomial of degree <2N, i.e., the 
accuracy has Gaussian character. Formally, it cna be interpreted as the appli- 

cation of the rectangular rule on the singular integral (1.8). To obtain the high 
accuracy, the collocation points ¢; must be the midpoints of the subintervals of 

length 7/N. Applying (1.8) with f(@) = g(@) sin@ and introducing the Kutta con- 

dition, the integral equation (1.7) is transformed into a set of linear equations 

ek 
N-1 

7 
— Se He ny ee Sale 
N me 2 cos Oy - cos @. (7%) 

= pl 

(1-9) Fa 

for the N finite unknowns ¢, = ¢(4,) sin 0,. These values coincide with the 
exact ones if a(@) is a cosine polynomial of degree <2N-1. 
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The tangential velocity induced by y is 

a, =| FVg/2\. (1.10) 

(B) Moderately thick airfoils (see Fig. 3). At zero incidence the boundary con- 
dition can be satisfied approximately by putting a source distribution of strength 

a(é) = 2 [Vt (¢)] (1.11) 

on the chord. This relation can be found immediately from continuity consider- 
‘ations and, in this form, is also correct for more general flows where Vv de- 
pends on €. The tangential velocity induced at the chord is 

dé’. (1.12) 

Fig. 3 - Two-dimensional airfoil 
theory. Symmetrical airfoil at 
(a) zero incidence, (b) nonzero 
incidence [actually, for the con- 
figuration in (b) the vortices ro- 
tate in the opposite direction]. 

If the profile is cambered and at incidence, u = u, + u, iS very often considered 
as the induced surface velocity. Near the leading edge, this is not very accurate 
because u, becomes infinite. If the velocity vector (Vcosa+u,0) is multi- 
plied by the surface tangent, a better approximation 

1 
a eaETaIGTG {Vcosd,t+tu,+u,}, Vici sass) = tre ys, (1.13) 

Vice Ly CS) 

is obtained for the surface velocity. 
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With cosa, ~1, this is a consequent linearization if a,, (é), t(é) (and 
the derivatives) are considered small. But it might be advisable in certain 

cases not to neglect the product of quantities proportional to y and t, respec- 

tively. If one looks at the symmetrical profile in Fig. 3b, where the vortex- and 
source -distribution of the strict linear theory is placed on the chord, one sees 
that there remains a normal component y,t‘/2 on the surface. Another compo- 

nent comes from the first-order term in the Taylor expansion of the vertical 

component induced by y, 

fe) ‘ Vyg(Ertt) = Vy(6.0) t= vy (8.0) € (1.14) 

ee ; 
= oD, ts 32 70669) a= ey NG) eety 2: a 

The sum of both normal components is d/dé (y,t)/2. Since it is continuous 

through the chord, it must be annihilated by a vortex distribution y, satisfying 

1 ‘ 

=_— dé" = - — oe . Vy, Fee z gE de Coe) 

Putting y = y, + y¢, the surface velocity is then given by (1.13). In this manner 
one obtains a theory which is linearized in t, but not in «,. For elliptic pro- 
files the surface velocity is exact. Riegels (76) first introduced the thickness- 
influences vortex distribution based on ideas of conformal mapping theory. But 
the idea is more general and can be applied to rotational flows (123), too. A 

theory in which y, is neglected will be called a "strictly" linearized theory. 

For thick airfoils with small camber, the camber-induced velocity is usually 

superposed linearly. 

(C) The biplane (Fig. 4). Aside from profile geometry, the configuration is 
characterized by the "chord/diameter" ratio c/D and the inclination of the chord 
relative to the axis. In order to avoid the second parameter in the kernels of the 

integral equations, the singularity distributions are put on a "reference chord," 
e.g., the projection of the profile on a line parallel to the axis through the lead- 

ing edge. Obviously, the vertical velocity v., induced at one profile by the vor- 

tex distribution y located on both (reference) chords has the form 

Vie eG ekoe, (1.16) 

where G is the Glauert operator and K an integral operator with a continuous 

kernel depending on c/D, The term Ky represents the velocity v, induced by 
the vorticity of the opposite profile. Similarly, the source-induced velocity is 

ve +q/2 + ve , (1.17) 

where v, is the source-induced velocity from the opposite profile. The 

(strictly) linearized boundary condition 

Vio Ve = VO) (1.18) 
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— -m Reference 
x cylinder 

ii 

Fig. 4 - The biplane in two- 
dimensional theory and the 
cross section of a ring airfoil 

dé : ( ) 

Gy Kyszi sr VO(E)) ny Vass (1.20) 

Since the right-hand side is known after evaluating the integral for v, by means 
of (1.19), an integral equation of the form 

Gg+Kg= f (1.21) 

remains to be solved for g, where f is a known function, G the Glauert opera- 
tor, and K a regular operator. 

The integral equations to be solved in the theory of ring airfoils and ducted 
propellers are of the same type. Essentially, the following four methods have 
been applied for solving (1.21). The first two were used at Karlsruhe, the third 
at THERM, and the fourth at NSRDC. 

(1) If the kernel of K is developed into a double cosine Fourier series with 

respect to the variable 6, and if the Birnbaum series (1.6) for g is introduced, 

the left-hand side of (1.21) can be expressed as a cosine series with coefficients 

that are linear combinations of the Birnbaum coefficients c,. Equating these 

coefficients with the Fourier coefficients of f, one obtains an infinite system of 
linear equations exactly equivalent to (1.21). This is solved approximately by 
truncation to a finite system and Gauss elimination. 

(2) This method (114) is a generalization of the above collocation method 
for solving the Glauert equation Gg = a by (1.8). Since Kg is a regular integral 
the same rectangular rule applied above to Gg can be used for the approximate _ 
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evaluation and again a system of linear equation for the unknown values g, = 
g(O,) sin6, is obtained. That the accuracy in this evaluation of Kg is not as 
high as that for the singular integral Gg does not matter very much, because 
usually, i.e., if c/D is not too large, Kg is small compared with Gg. Compared 
with the other three methods, this method has the advantage that no Fourier ex- 
pansions are needed for constructing the system of linear equations. Essen- 

tially, the matrix is immediately equal to the matrix of kernel values G+ K at 
the points (¢;,é,) = -(cos 6;,cos 64). Therefore, the programming will be 
easier. The disadvantage consists in the fact that the accuracy in the numerical 

evaluation of Kg is coupled with the number N of unknowns. In our experience 

this methid is superior to the first—and probably to the other ones—with respect 

to computation time. 

(3) Let g, be the solution of the Glauert equation 

Gee fo (1.22) 
0 

The Birnbaum coefficients of g, are essentially (i.e., apart from factors such 

as -2) equal to the Fourier coefficients of f. Then (1.21) is equivalent to 

¢= ge, +e, Ki -G1K., (1223) 

where the kernel of K is known because G™! is known. Then the solution g is 

given by the Neumann series 

gis Ree KA hee (1.24) 

and can be found by the iterative scheme 

bia = Gee hens HO. ds, gees (1.25) 

This operator equation can be approximated by a matrix equation if the vector 

of the first N Birnbaum coefficients is substituted for g and, for K, a matrix P 
which is connected in a simple way with the Fourier coefficients of kK. 

(4) Equation (1.21) is written in the form 

g-Kg=f, K=-GIK, f=G!f. (1.26) 

If K is represented approximately by a truncated double Fourier series, one ob- 

tains a Fredholm integral equation of the second kind with a degenerate kernel. 
This equation can be transformed into a system of linear equations by classical 

methods. 

2. THE RING AIRFOIL 

We assume that the profile satisfies the conditions of linearized two- 
dimensional theory and that the angle between profile chord and axis is small 
enough so that the surface formed by the chords can be approximated by a cir- 

cular cylinder. Then the boundary condition (zero normal velocity on the sur- 
face) can be satisfied within the limits of linear approximation by putting 

1219 



Weissinger and Maass 

distributions of ring vortices and ring sources on a reference cylinder of ra- 
dius R. If the vortex strength varies with the azimuthal angle, straight vortices 
must also be placed on the cylinder. 

We introduce cylinder coordinates (x,r,¢) and define the nondimensional 

coordinates 

C2t1}) 

and the chord/diameter ratio 

= Sa (2.2) 

The induced axial, radial, and azimuthal velocities are denoted by u, v, and 
w, respectively. If the arithmetic mean of the values of a function at the outer 
and inner point of the cylinder is denoted by a bar, we can write for the veloci- 
ties induced at the cylinder by a vortex distribution y or a source distribution q 

Peay 8 ss ee 
Uae et ye aaa (2.3) 

(2.4) 
ee 2 tas 

Pe Van 5 Vg 4 

where the upper (lower) sign refers to the outer (inner) surface of the cylinder. 

Then the (strictly) linearized boundary condition can be written in the form 

q = 
Vv Se ae Wag oe (2.5) 

where V,, denotes the normal component of the given flow on the airfoil surface. 
For zero thickness this reduces to 

Vic Vie sez (2.6) 

For an axisymmetric ring airfoil the surface can be described by 

d 
r(x) = R+ r(x) + Sea (2.7) 

or, in nondimensional form, 

1 
p(é) = a Pm(S) + te), (2.8) 

2r(x) d 

a yee ot egy Sh, (2.9) 
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For brevity we shall call po'(é) = do,/dé the camber of the ring airfoil, al- 

though—interpreted as local angle of attack—it also includes the incidence of the 

profile chord. 

Then, for parallel flow with angle of attack a,, V,, is obtained by linear ap- 

proximation as 

V, = Vt" (CS) = Viele) + Va, cos? , (2.10) 

and putting 

q=Va,, Y= Ve. +8, 1% 24 cos?) (2:11) 

Eq. (2.5) splits into 

Ges 2S) ap Tpee= ees Tobe 2% > tam oh (2.12) 

where T is an integral operator that transforms a vortex distribution into the 
radial velocity induced by it. It follows that the effects of thickness (q;, 2) 

can be obtained by considering the ring airfoil without camber (/,, = 0) in axial 
flow, the effect of camber from the infinitely thin ring airfoil in axial flow and 

the effect of angle of attack from the infinitely thin cylinder at angle of attack. 
Addition of these Separate effects gives the entire distribution. From these the 

surface velocity is determined by 

1 

Vile Te Ce) 

The continuous part of V, can be considered as the first terms of the more 

general Fourier series 

(vtu,tu,) : (2.13) 

= ps a(é) cosmp + )) b,(é) sina} (2.14) 
m=0 m=1 

This happens when the ring airfoil is not exactly axisymmetric or if there is an 
interaction with a nonaxisymmetric velocity field. Then the distribution of ring 

vortices has the form 

y = {2 gn(€) cosmf + )) h,(é) sin wap. (2.15) 
m=0 m=1 

The Fourier coefficients g,(¢é) and h,(é) which satisfy the Kutta condition 

are determined by the equations 

Pie B cg th bahia = baie (2.16) 

with the integral operator T, defined by 

1 ‘ 
g,i(6: 9 

mgs = a d 

2 eee 

r : an ba 
ky ie Ae als ple een 2 Uy gad | age bac a’ + BE. |) ce!) a6 ( ) 
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The kernels U,(7) are antisymmetric continuous functions of the argument 

‘ 
x > X 

R 
TaN CGS ae (2.18) 

So, all these integral equations are of the type (1.21) and can be solved by the 
methods described in Sec. 1.3. 

The most important of these operators is T,, defined as 

1 
r 

v, = Tye = =| GE Cait aa 4 CD eo a (2.19) 
=H 

! ke 2 sgn 7) 62 12 
eS eee ae [((1+k’*) E(k) - 2k *K(k)] 

(2.20) 
7d 

= 2 aS (Q, ,2(#) a Q.3/2()] ’ 

ee eg Oe SE siete Os (2,21) 
"2 Ae = ) ° 

where 

Tae 

G(k?) = cay | tt OOF AP dig (Riegels function) (2.22) 

0 (1-k? sin? 6)3/? 

xe cos 2md (2 23) os zm 5 
= eo et dg; Legendre function) 

saa) the [2(w- 1) + 4sin?6]!/2 

1/2 W /72 

K(k) = f A Aer a Eck) = f (1-k?sin26)!/2 46. 
0 (1-k? sin? 6)1/? 0 (2.24) 

Formulas and numerical tables for the kernels of the operators T,, have been 
presented by means of Riegels functions at Karlsruhe (102, 103) and by means of 
Legendre functions at THERM (135, 137, 138, 139). 

The basic ideas of lifting-line theory and of generalized lifting-line theory 
("three-quarter-point method") can also be applied to the ring airfoil (102), thus 
obtaining very simple formulas, e.g., for the lift. For the latter theory the 
agreement with the exact results is very good over the whole range of \, 

0 <A < o; lifting-line theory is valid only for small values of i. 

In Karlsruhe, ring airfoils with central bodies have also been investigated 
(110). The axisymmetric body is assumed to be slender and to have a small 
maximal radius r,,, such that it can be represented by an axial distribution of 
sources and doublets. To satisfy the boundary conditions at the body and the 
ring airfoil, only the leading terms in the Taylor expansion with respect to 

Pm = Tmay/R are retained. For geometry and notation see Fig. 5. 
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In (110), emphasis is placed on the 
net characteristics such as the lift and 

the moment of the body and of the ring 
airfoil. But essentially the theory can 
also be used to calculate the entire flow 

field. Numerical results are presented 
for four families of bodies: (1) (infinite) 
cylinder, (2) ellipsoid, (3) a body with a N=Nm-Ap ——— N=NmtAg 

blunt nose and a sharp tail, and (4) the c=2RA 
same body reversed (sharp nose, blunt : lp=2RAp = 
tail). In what follows we shall mention 
only a few of the theoretical and numeri- Fig. 5 - (See (106)) Ring 

cal results. airfoil with central body 

The lift and the moment of the wing 

are determined by the first-order Fou- 

rier coefficient ¢g,(é) of the wing vortex distribution (2.15) (if ¢ =- 0 corre- 
sponds to the "lowest" point on the circumference), otherwise there may be a 

change of sign and/or g, must be replaced by h,. g,(&) is determined by the 

integral equation 

Gia laa fis Wayans 0g Hl SG (2.25) 

where T, is the basic first-order operator and T,, is defined by 

X r ; Tip8i = 75 ad f eceyagts® f Bcee'y aycety ag. (2.26) 
zl eee 

The function 

PCS) = te Pay 42) (2.27) 

and the kernel B(é,é') are continuous functions that depend only on the geom- 

etry of the configuration. 

The lift coefficient of the body (referred to the Same area 27Rc as the lift 
coefficient C, y of the wing) can be expressed in the form 

1 

1 ‘ ‘ U Ca=->f Fé") 2,2") 48" - (2.28) 
aS 

The moment coefficient can be written in a similar manner. 

The function Fa(t) is plotted in Fig. 6 for three ellipsoidal bodies with dif- 

ferent values of Ap = 1p/(2R). For acylindrical body the kernel B(¢é,é') can be 
written in the form B(Aé- Aé') = B(7) = B(-7); this is plotted in Fig. 7. 

The lift ratio Ly.p/Lw of the wing-body combination and the (cylindrical) 
wing alone is shown in Fig. 8 for an ellipsoidal body in several axial positions 
and for the cylindrical body and several values of \ in Fig. 9. The lift ratio has 
been plotted over the whole range 0 <p, < 1 Of p,,, although the theory assumes 
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Fig. 6 - (See (106)) The func- 
tion F,(t) for ellipsoidal bodies 

2 4 6 8 10 zero obtained for »,, = 1 is exact for the 

cylindrical body because there is no lift 
when the wing and the cylindrical body 

71 coincide. Most of the results shown in 

these figures have been obtained by the 
-2 three-quarter-point method. It can beseen 

that they agree fairly well with the results 
derived from the "exact" (linearized) the- 
ory. No example of results for the moment 
will be shown here. 

| \ p, to be small. Nevertheless, the value of 
0 

B( A) 

Fig. 7 - (See (106)) The 
k 1 B n = <8} -7 ’ n= ee ‘ ) al a The numerical results of (110) may be 

used immediately for determining the in- 
fluence of a hub on the lift and moment of a 
ducted propeller at angle of attack by means 

of a "superposition model" as described in Sec. 6. The general framework of the 

theory may also be used for a more thorough solution of this problem. These 

remarks may be true also for the theory developed in (109) on the influence of 
struts. 

3. THE DUCTED ACTUATOR DISC WITH 
CONSTANT PRESSURE JUMP 

3.1 Linear Theory 

The simplest model of a ducted propeller is a ring airfoil with a constant 

pressure jump Ap at across section x = x, (the "disk"). Of course, this can 
be used only for axisymmetric flows. It can be interpreted as the representa- 
tion of a ducted propeller with many blades and with the swirl neglected or can- 
celled either by a counterrotating propeller or by guide vanes. 

Since the disk does not produce vorticity, we have two regions of potential 
(irrotational) flow: the propeller slipstream and the rest. The slipstream is 
bounded by the disk, part of the duct and a free surface beginning at the trailing 
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Nm/Ag=9 SSexact 

Nm /rg = 9-5, 9 

0.3|Am/*Apz1 0 
3/4-Point-Th. 

0.2 Ty 

0.1 

-01 | 4 

0 O11 02 03 04 05 06 07 08 O09 1.0 

9m =lmax/ R —a 

Fig. 8 - (See (106)) The lift ratio Ly,p,/Ly, 
i.e., of (wing + body) to wing without body 
for a cylindrical wing (A = 0.5) and an el- 

lipsoidal. body “[A, = -13/(2R) = 12) 4n seve 
eral axial positions, plotted against p, = 

mane’ 

edge of the duct. At this surface a jump in 
the tangential velocity v, must exist in order 
to cancel the jump Ap in total pressure such 
that the static pressure as determined from 
the Bernoulli equation is continuous. If the 

velocity jump is represented by a distribu- 

tion y; of ring vortices on the free surface, 
and if the mean tangential velocity is de- 
noted by v, this condition is expressed in 
the form 

PV4%¢ = Ap (p = density) . (3.1) 

Obviously, the resulting velocity field does 
not depend on the location of the disk in the 

duct. 

In the linear theory, the duct is repre- 
sented by a distribution of vortex rings and 
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source rings on the cylinder used in ring-airfoil theory. The free vortex rings 

are placed on the same cylinder (extended to x = o) and their strength y;, is as- 

sumed to be constant. Since the velocity field must be continuous everywhere 
with the exception of the jump at the slipstream boundary, the value of the free 

vorticity y; must be equal to that of the bound vorticity y7; at the trailing edge. 
Then the boundary condition (3.1) can be satisfied in one cross section only, 
which will be taken here at the trailing edge. These simplifications are reason- 
able because one is usually interested in the flow near the duct and this flow is 
influenced mainly by the behaviour of the slipstream in the neighbourhood of the 

duct. 

Using the propeller thrust coefficient 

oT 2Ap/(pV?) , (3.2) 

the boundary condition (3.1) is simplified to 

u T 
oT =e (: + ea fp Bp = V/V, (3.3) 

where u, is the mean induced axial velocity at the trailing edge. 

Now we consider the most simple case of an infinitely thin cylinder of 
length c as aduct. The constant free vorticity »; must be extended continu- 

ously to a bounded vorticity on the duct such that the radial velocity v, , in- 
duced by the sum +, of free and bounded vorticity, is zero. This can be 

achieved in the following manner. 

The constant vorticity y; of the slipstream is extended continuously on the 

duct, e.g., by a linear distribution y, that vanishes at the leading edge of the 
duct. The radial velocity v,.,,, induced at the duct can be calculated explicitly 
in terms of complete elliptic ‘integrals of the first and second kind. On the duct, 
a vortex distribution y, satisfying the Kutta-Joukowski condition is then deter- 
mined from the integral equation 

Topas Vy ptyges (3.4) 

Thus, y, is the superposition of the two bounded distributions y,, and the 

free distribution »;. From now on we shall consider only the entire distribu- 
tion y,. All further distributions will be confined to the duct and must satisfy 
the Kutta-Joukowski condition. We put 

Yer yer ge : (3.5) 

In a theory that is linearized with respect to all singularity distributions, the 
distributions of the strictly linearized airfoil theory can be added to y, in order 
to obtain the solution for the ducted disk. This is dome essentially in all the 

theories developed at NSRDC and THERM. But, for small V and heavy propel- 

ler loading, the axial velocity u,_ induced by y, can have the same order of 
magnitude as V and should not be neglected in a consistent theory. 
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In order to show clearly the distinct efforts, we put, according to Boll- 
heimer (116, 120, 122, 125), 

y= Vigete,terles + et + et]} , (3.6) 

q’= -Viq, Heratt:. (3.7) 

Here, g., g¢, and q;, give the distributions of the ring airfoil and are deter- 
mined from the equations 

Ge = 2t(E)ie oleta = PaS)s yf = -Yan- (3.8) 

Similarly, from the mean axial velocity u yo Verug? we obtain 

dan a 
qt a az let") ee ge = Ugs Pm(S) : (3.9) 

Finally, a vortex distribution is required to cancel v,+ and the component 
arising from the interaction of strong vorticity with thickness as described by 
(1.15). So, gf must satisfy 

= d (2% 
ius gt = Yat = a 3) : (3.10) 

The operator of the four integral equations is the basic operator T, of thin 
ring airfoil theory. Of course, one can determine the Sums g, + g, and gt + gt 

from one equation. Numerical methods have been discussed in Sec. 1.3. To 

solve the last three ("starred") equations, one has to determine g* first and, 

from this, u,« by numerical integration. These two functions depend only on the 
parameter \.° All equations can be approximated by relations between matrices 

and vectors composed of Birnbaum and Fourier coefficients. These have been 

tabulated by Bollheimer (116, 120) for several values of 2. 

So far, the value of the propeller thrust coefficient has not been used. This 
value is needed to determine g;. First, the mean axial velocity u; induced by 
y and q at the trailing edge can be computed from (3.6) and (3.7) as a linear 
function of g;. Insertion of u, into (3.3) gives a quadratic equation for g;. The 

coefficients of this equation can be easily computed by means of the vectors t 
tabulated by Bollheimer. Finally, the velocity distribution on the duct surface 
is the sum of V and the axial velocity induced by y and q onthe reference 
cylinder, multiplied by the Riegels factor {1+ [o/(é) + t‘(é)]?}°1/?. Inour 
notation the distributions having a subscript c or t are zero if the camber jp’ 

or the thickness are zero, respectively. 

Obviously, the static case V = 0 is contained in this theory. Putting 

Y = pial ee y Get else yO = Ses (3.11) 

gy is obtained by virtue of (3.1) from 

p (gs + Uge + Ups + gx) er = Ap , (3.12) 

if Ap is prescribed. 
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In Fig. 10, the factor gy as a function of cy, is shown for a duct with a 

0 25 50 75 

Fig. 10 - (See (122)) Non- 

dimensional vortex strength 

gr at the trailing edge ofa 
ducted actuator disc (A = 

0.5, pf = 0) with a sym- 
metric Joukowski profile 
of relative thickness T = 

0.15 plotted against the pro- 
peller thrust coefficient Cr, 

symmetrical Joukowski profile of relative thickness 7 = 0.15, chord/diameter 
ratio \ = 0.5, and zero chord incidence 

[e,(€) = 0]. The two functions g, and 

g; are proportional to the thickness pa- 

rameter 7 of the Joukowski profile. 
Their values, divided by 7, are plotted 
over the chord in Fig. 11. Multiplication 
of g, and gt by V and V,,, respectively, 
gives the two vortex distributions y, and 

y; due to thickness. One Sees that >% 
has at least the same order of magnitude 
as y, if cy, is of order 1 or greater. 

So, it does not seem consistent to neglect 
y~ and take into account y, as is done in 
most theories. 

3.2 Nonlinear Theory 

The only consistent nonlinear theory 

for ducted propellers has been given by 
Chaplin (130). The duct is assumed to 
have zero thickness. The exaxt problem 

is to find a harmonic stream function y 

having a constant value ¥ = y¥, onthe 
boundary B= D+S formed by the duct D and the slipstream surface Ss. On S, 
the condition for continuous pressure v, Av; = const., where v, denotes the 
mean (tangential) velocity and Av, the jump of the velocity at S, must also be 
satisfied. If the induced flow is produced by a distribution y of ring vortices on 

B, the pressure condition on S can be written as v,y = const. The problem is 
solved if y on B and the shape of S are determined. Then, the stream function, 
the velocity field, and other characteristics can be found by numerical integra- 

tion. Special emphasis is placed on the evaluation of the slipstream contraction 
ratio 

BEDY REPRE (3.13) 

where Ry and R, denote the radius of the duct at the trailing edge and of the 

slipstream far away from the duct, respectively. 

At present a mathematical theory of existence and uniqueness does not 

exist. No exact analytical solutions are known, not even for special cases. 
Nevertheless, there are strong reasons, based on analogy and numerical expe- 
rience, to believe that the results of the method developed by Chaplin for use on 

high-speed computer are exact in a numerical sense. 

The boundary conditions are made discrete in the following manner. 

(1) The boundary surface B is approximated by N + M cone frustum seg- 
ments such that the midpoint of the N-th segment coincides with the trailing 
edge of the duct (see Fig. 12). The (N + M)-th segment is assumed to be 
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cylindrical. In other words, the generat- 30-7 7-- ;o—— 

ing curve of B is approximated by a con- 

tinuous, piecewise linear graph. The 

approximate surface S is determined by 

M-1 radii r;. 

(2) Corresponding to this approxi- 
mation, y is approximated by a continu- 
ous, piecewise linear function, which is 
constant on the cylindrical part of S. For 
numericalreasons y is written asthe sum 

of triangular distributions (see Fig. 12). 
The first segment is loaded with a distri- 
bution which has a square-root singu- 
larity at the leading edge. The function 
y is determined by N+M parameters 

Ve, 121; ..1, N4M. 
iu 

(3) With these approximations, the 
boundary condition ~ = ¥, is satisfied at 

the leading edge and at the midpoints of 
a 

the segments, with the exception of the Fig. 11 - (See (122)) Non- 

last cylindrical one. The pressure con- Peon Oneal ortce ae 
dition is satisfied at the trailing edge and butions ¢, and gf due to 

interaction of thickness 

with the free-stream and 

the slipstream vorticity, 

the following M- 1 midpoints. For aspeci- 

fied value y, this affords N+ 2M- 1 equa- 
tions for the N + 2M-1 unknown values respectively, for a ducted 

Yi Tye actuator disc (A = 0.5, p* = 
0) with symmetrical Jou- 

Since ¥) and the induced axial and ra- kowski profile 
dial velocity can be expressed as linear 

combinations of the y;, the unknowns 7; 

appear in a fairly simple way in the equations. But the "influence coefficients" 

of the 7; contain the unknown radii in a very complex manner, so that the sys- 

tem of equations is highly nonlinear and has to be solved by iteration. 

The iteration starts by putting the values r,;, y; on S as constants (equal 
to the trailing-edge value) into the equations. Then, in the first cycle the equa- 

tions are solved for the unknowns y; on D. This first approximation must coin- 

cide exactly with the results obtainable by the linear theory for cylindrical 
shrouds or by the somewhat more general theory developed by Bollheimer (116) 
for the static case. Then, the resulting error in the boundary conditions on S is 
evaluated and from this by certain rules, improved estimates of the y,;, r; on 
S are obtained. From the improved r;, a better approximation of the boundary 

conditions can be calculated by means of improved influence coefficients. Then 

the second cycle starts by solving the improved equations for the y; on D. 

Contrary to most other theories, the basic aerodynamic input parameter is 

not the pressure jump (or some other thrust parameter), but the value \,, i.e., 
essentially the mass flow. Without loss of generality, by appropriate choice of 

units one can take ¥, as an arbitrary fixed value (¥, = 0.5 in (130)). The cyl- 

inder approximation of S begins at a distance 4R; from the leading edge. It 
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shroud trailing 

edge cone-frustum — semi-infinite 

segments cylinder 

0, So, Sy S Sp Se Sy Sg Sy. Shak 

Fig. 12 - (See (130)) Approximation of the 
vortex distribution on a shroud and its slip- 
stream by a vortex distribution on a system 
of cone-frustum segments 

has been checked numerically that this gives an adequate representation. The 
contraction ratio is not determined from the resulting value ry,y of the cylin- 
der, but, in a more accurate way, from the constant boundary value v,y. One 
general result of all numerical examples (cylindrical, conical, and parabolically 
cambered ducts, 0 <  < 1) is that the value of v,y and therefore of © and of 

other net characteristics does not change much during the iteration (see Fig. 13). 
That is a strong indication that the linear theory affords good results for these 
characteristics. 

The number of segments chosen for the computations is N = 24 on the duct, 
M = 41 on the slipstream. A check has shown that smaller numbers will also 

give sufficient accuracy (See Fig. 14). 

Unfortunately, the report does not present enough results to deduce general 
conclusions about the accuracy of pressure distribution, etc., computed from 
the linear theory. The only example presented extensively is the cylindrical 
duct with chord/diameter ratio \ = 0.1 in the static case. Fig. 15 shows that 

the vortex distributions computed by both linear and nonlinear theories agree 
rather well. Probably, with increasing \ and/or V (for noncylindrical ducts) 
the agreement would even be better. 

Two other attempts to take into account nonlinear effects may be mentioned. 
Bollheimer (116) developed a theory in which the ring vortices representing the 
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H5H08;) 

W(s;) 

Fig. 13 - (See (130)) Approximation of slipstream boundary 

conditions at various stages of a twenty-iterative-cycle calcu- 

lation. Cylindrical shroud: 1/r, = 0.2, U= 0 

© twenty-cycle estimate 

4 first cycle estimate, from ¥ (5) V(5\) 

6.05 0.10 0.20 0.50 

Chord/Radius, l/r, 

Fig. 14 - (See (1390)) Slipstream con- 
traction ratio for cylindrical shrouds 

duct are placed not on a cylinder but on a cone; otherwise linear theory is ap- 

plied. He found that the results do not depend very much on the choice of the 
approximating cone and agree sufficiently well with the usual linear theory. 

Wiedemer (113) improved the results of Dickmann and Weissinger (102) by 
an interative procedure. In (102), duct profiles (with zero thickness) have been 
obtained by determining the streamlines through the trailing edge that are in- 

duced by certain vortex distributions placed on a reference cylinder. In each 
iteration cycle, Wiedemer places the (unchanged) vortex distribution of the duct 
on the profile obtained in the previous cycle and calculates the next profile ap- 

proximation. One example is shown in Fig. 16, where a remarkable difference 
between the Dickmann-Weissinger profile and the Wiedemer profile can be seen. 
For lower values of CT, the difference is smaller. A method similar to that of 
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| 

Fig. 15 - Vortex distribution on a 
cylindrical’ ducti(X “= 0.1) in the 
static case as determined by (a) lin- 

ear theory and (b) nonlinear theory 
(130) 

i 

* We <018-=0'6) 04° =0!2: (OL i032 Of! IOfe. Viole) oe — a 

Fig. 16 - (See (113)) Duct profile correspond- 
ing to a specified vortex distribution as deter- 
mined by (a) the linear theory (102), (b) the 
first iteration of a partially nonlinear theory 

(113), and (c) the second iteration 

1232 



Theory of the Ducted Propeller--A Review 

Chaplin has been used by Hunt (35) for determining the flow from a circular 
orifice. 

4, THE UNIFORMLY LOADED DUCTED PROPELLER WITH 
AN INFINITE NUMBER OF BLADES IN AXIAL FLOW 

For the rest of this paper each propeller blade will be represented by a ra- 

dial vortex with a circulation distribution !\(r). From each element (r, dr) a 
helical vortex with strength -I’'(r)dr is shed. In an exact theory the radius and 
the pitch of the helix will naturally depend on the axial coordinate x. In linear- 

ized theory the radius is assumed constant and in most theories also the pitch, 
i.e., the helix is assumed as a regular helix of radius r and pitch j(r). The 
pitch has to be determined. See Fig. 17. 

Fig. 17 - (See (142)) Vortex 
system and geometry for ducted 
propeller configuration 

In this section is is assumed that I(r) = [ = const. Then the shed helical 
vortices have strength [ and lie on a cylinder of radius R, = propeller radius. 
On the axis lies a vortex, and "hub vortex," extending from x = x, (= axial lo- 
cation of the propeller) with strength Nr, where N denotes the number of pro- 
peller blades. It is assumed that N becomes infinite, such that 

NE el, (4.1) 

is a finite constant. In practice, it can be expected that the following theory can 
be applied for blade numbers as low as 3 or 4. 

In this model, the slipstream cylinder r = R,, x 2 x, is covered with a 
continuous and constant distribution of helical vortices. Taking orthogonal com- 

ponents, this distribution can be split into a distribution of ring vortices and of 
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straight axial vortices, each having constant strength y, and y,, respectively. 

Since the circulation outside the slipstream is zero, the total strength of the 
axial vortices on the cylinder must be -I,. Therefore, the axial vorticity is 

M9 

27Rp : 
Ye S27 (4.2) 

If the velocity components corresponding to cylindrical coordinates (x,r,¢) are 
denoted by u, v, w, then the vortex system without the ring vortices induces 

Wes Aye =U we to4 outside the slipstream 

Dr, (4.3) 
WS YS, i = —— inside the slipstream . 

271 

If w is considered small in comparison with the angular rotational propel- 

ler speed 2, we have constant pressure jump 

Q 
Ap = p—T ee (4.4) 

at the propeller disk. That gives the propeller thrust 

si = mR? Ap. (4.5) 

Putting 

= ig ap r 24 
on g ; y = = a ; a fae : 

0 <-aR2° 7% > “GR on 2? OR (S6) 
Pp Pp 

one obtains the propeller thrust coefficient 

; Tp Suier gees 
rue 2 - TT be aa (4.7) 

Pp 2.2 
2 (OR, ) mR, 

Now, if the propeller is ducted, we have almost the same model as that 

treated in Sec. 3.1. The only difference is that there is a contribution pw?/2 to 
the pressure jump at the slipstream surface. But this can be neglected for the 
Same reasons as was done at the propeller disk. So, given the propeller thrust 
or pressure jump, this problem can be solved by the methods discussed in Sec. 
3.1. The important fact that the results do not depend on the location of the pro- 

peller in the duct remains true. 

If there is a "tip clearance" (with respect to the reference cylinder), meas- 

ured by the parameter 

w= R/RG (HS 1) (4.8) 
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one has to determine the strength y, of the ring vortices from the pressure 

condition on the slipstream surface, the radial velocity v,, induced on the duct 
and a ring vortex distribution y on the duct from the integral equation 

Ty = S4i; (4.9) 

or 

a4 

Ler eons (4.10) 

If the duct is not cylindrical, the influence of camber and thickness can be taken 
into account by superposing the Singularity distributions of ring-airfoil theory 
(within the framework of strict linearization). 

By satisfying the pressure condition far away from the duct, where the 
duct-induced velocities are zero, one obtains 

a = V 
————————— fl Sis (4.11) 

yu deers Pp 

Therefore, the pitch j of the helical vortices is given by 

STE 1 peers Te 
j= -%/¥y = —(J.4+NI? + er i}: (4.12) x for) 2 p 

and we can write 

cr 

¥, = ie ; (4,13) 

The velocity induced by a semi-infinite cylinder of ring vortices with constant 
strength can be expressed by means of the Legendre functions Q,,,. So, one 
obtains 

VE VE 
Co er One ¥ p27) = = a er 9; 7207) , (4.14) 

Cy shat Sa) com belt 
oe = il caseta® tagge ori nO 2 Xs (x- x,)/Rg ‘ (4.15) 

and the integral equation 

seytee 
‘oy = rer aot) : (4.16) 

Putting 

0; A) E99 14 ny Gq. (eds m0, ji ae = /- A zcos Oi; (4.17) 
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me 0 : 
VANS, Cobra ye e fisinnG.5 (4.18) 

and introducing the coefficient vectors 

VSN hdya 22) a ACI = tena Gay ese 

the solution can be expressed as 

Ve 
te [0] {q} , (4.19) icp = 

with a matrix [0] which depends only on \ and which has been tabulated in (153) 
as a 7x7 matrix for >» = 0.25, 0.5, 0.75. For small » the matrix is close to the 
unit matrix. Interpolation for \ may be possible. The vector q has also been 

tabulated for several values of A, Xa Cs and “(0.9<y<1). Similarly, the con- 

tinuous part uy = +y/2 +uy of the axial velocity u; induced by y at the duct is 

expressed by a Fourier series whose coefficients can be calculated as a vector 

[S]{c} with a tabulated matrix [S]. Then, the total axial velocity at the duct and 
the pressure coefficient can easily be calculated by means of Legendre functions. 

For » = 1, the ring vortex distributions y, on the duct is given by yg = 

y+ y, with yg = 0 for -c/2.< x <x, andy, = const. 4 0 for x, < x= <2: 

Since the induced velocities must be continuous inside the duct, the jump of y, 
at x = x, must be cancelled by a jump of y equalto -y,. Therefore, the Birn- 
baum series (4.18) of y converges very slowly, corresponding to a slow conver- 
gence of the Fourier series (4.7) for the discontinuous function OF .(o ye wneme 
fore, for » = 1 the procedure requires a large number of Fourier coefficients 
q,, and a tabulation to n = 12 as given in (153) may not be sufficient. Probably, 
as indicated above, the methods of the first part of Sec. 3. should be preferred. 

Of course, slow convergence will also occur if the tip clearance is very 

small, i.e., if » is close to unity. In this case the logarithmic singularity of 
vy, [Or Q,,/,(c)] is replaced by a sharp peak at x = x,. The peak is still pres- 
ent for fairly large tip clearance, as can be seen in Fig. 18 (J = 0, cr, = 0.1, 
X= 0.5, » = 0.9), at x = x, = 0 for a cylindrical duct. The corresponding vor- 
tex distribution is shown in Fig. 19, together with the distribution for the pro- 
peller located at x, = -0.25c. At x = x,, an indication of the jump occurring 
for » = 1 canbe observed. The corresponding pressure distributions are 

shown in Fig. 20. The distributions on the outer surface are practically inde- 
pendent of the axial propeller position. The inner duct surface pressure decays 

almost to zero immediately behind the propeller plane. The duct-to-propeller 
thrust ratios c7,/cy, for the two cases are 0.683 and 0.706 for x, = -0.25c¢ and 
xp = 0, respectively. Even in this case of large tip cleraance this ratio is al- 
most independent of x,; for , = 1 it is totally independent. 

In (153), the influence of an improved determination of the pitch is also in- 

vestigated. The new pitch j, = j,(x) is defined by j, = J + u where ut is the 
mean axial velocity on the slipstream surface induced by y and y,. Then, from 
(4.13), an improved slipstream distribution {1 is obtained and the induced 
radial velocity v5 i 1) is introduced in the right-hand side of the integral 
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a) b) 

0.12 

-1 

Fig. 18 - (See (153) ) Uniformly loaded ducted 
propeller with infinite blade number at zero 
incidence. Cylindrical duct, A = 0.5, Xp = 0, 

w=0.9, J=0, Cr, = 0.1. (a) Radial velocity 

induced by the propeller slipstream on the 
duct; (b) ring vortex distribution on the duct. 

Suffix (0) refers to constant pitch of helical 

vortices, (1) to pitch improved by one itera- 
tion. 

equation (4.10), from which an improved duct 
distribution 7‘!) is then determined. This pro- 

cedure can be iterated. Because the pitch j (x) 
varies, the induced velocities,e.g., v5 ‘ 1), must 
be calculated by numerical integration (over an 
infinite interval) which makes the computations 
much more cumbersome. For the example 

discussed above, the effect of axial pitch varia- 
tion is shown in Fig. 18. Qualitatively, the ef- 
fect is a shift of the "effective" propeller plane 
rearward by approximately 2% of the chord 
length. The corresponding duct thrust coeffi- 
cients differ also by 2%. From this example it 
may be concluded that the small differences in 

the final results do not justify the additional Fig. 19 - (See (153)) 
computational effect of the iteration procedure. Duct vortex distri- 

bution for two pro- 
peller locations and 

.. THE FINITE-BLADED DUCTED other parameters as 
PROPELLER IN AXIAL FLOW in Fig. 18 

If a propeller-fixed system of cylinder co- 
ordinates (x,r,¢) is introduced, the flow that is 
unsteady is shroud-fixed coordinates will be steady and periodic in ¢ with a pe- 
riod 27/N. Because of the rotational symmetry of the duct, no additional normal 
velocity is introduced on the duct surface by the rotation. 

1237 



Weissinger and Maass 

As described in the first paragraph of 
Sec. 4, the propeller is represented by N ra- 

dial vortices with equal distribution I(r) of 
circulation. The helical vortices with strength 
-I'(r) shed from a blade form a quasi-helical 

surface with pitch j(r). Assuming a moder- 
ately loaded propeller, the axial pitch depend- 
ence can be neglected. From theory and ex- 

periment it is known that a hub of usual shape 
does not affect the duct distributions very 
much. Therefore, it will at first be consid- 
ered as nonexistent. I(r) is considered as a 

known function with (0) = 0 and ['(R,) = 0. 
Only if the distance between propeller tip and 

Fig. 20 - (See (153)) duct surface is practically zero do we have 

Duct pressure distri- r(R ) # O. The meaning of "practically zero" 
bution for two pro- is a question of boundary-layer theory. 
peller locations and 

other  patameters, 28 As in the theories of Secs. 3 and 4, the 
in Fig. 18 duct is represented by a distribution y of ring 

Dt haewaniaee vortices and for nonzero thickness, by a dis- 
Bete Bator suisse tribution q of sources, both lying on a refer- 

ence cylinder of radius R,. The main feature 
now is that, obviously, » depends on ¢ as well 
as on x. Therefore, from each ring element 

ydx free vortices of strength 57/Ryo¢ dx are shed. These are not straight lines. 
as in the case of the ring airfoil at angle of attack but rather are of helical shape. 
They are assumed to be regular helices with constant pitch jg = V/ORg. This 

assumption excludes the static case. It yields a reasonable approximation for 
the case of moderately loaded propellers in cruise condition. It will easily be 
perceived that the theory of this section and the computational labour involved 
are not changed essentially by the choice of another constant value for j,. 

If, within the framework of strict linearization—contrary to the more gen- 

eral Bollheimer theory described in Sec. 3.1, the interaction between the pro- 
peller slipstream and both profile camber and thickness are neglected, then the ~ 
duct distributions due to camber and thickness can be calculated separately by 
ring-airfoil theory. These have to be added to the distributions induced by the 
propeller and its slipstream on a cylindrical duct, which shape will be assumed 

for the rest of this section. As a practical choice for the duct radius R,, the 
radius of the shroud camber line at the propeller plane is proposed in (147). 

Because of the helical shape of the vortices shed from the duct, the radial 
velocity induced by the duct vortex system at the duct cannot be expressed by 
the integral operators T, uSed in ring-airfoil theory. But the main interest is 

in the circumferential average 

ed ad ronan | ¥(x,6) dp (5.1) 
0 
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because this, evidently, is the steady part of the solution y as referred to a 
duct-fixed system of coordinates. This can be determined by the ideas of the 
foregoing section. 

Obviously, y)(x) is that part of y that must cancel the average radial ve- 
locity induced by the propeller vortex system, and the average velocity is the 
same as the velocity induced by the average vortex system, which is equivalent 
to the propeller with an infinite number of blades. With respect to the model 

considered in Sec. 4 the only difference lies in the dependence of I’ on r. This 
difficulty can be overcome by integrating the pertinent formulas of Sec. 4 with 
respect to r in the following manner. 

The sought radial velocity v, is written as 

Vie if : ay 5s (5.2) 

where dv, is the radial velocity induced by an annular part of the slipstream of 
radius r < R, and width dr. By (4.14) we have 

(ez Ry)? + (x- xg)? 
1 se 

eet ea BR, 6 21/20) adr, o.= mL TOES ap dagcae Tes (5.3) 

and 

Oem Aen 2) is (5.4) 

where j(r) is the pitch of the helical vortices lying on the cylinder of radius r 
and where y, and y, denote their azimuthal and axial components, respectively. 
Since 

ON a 
Ve = Spee re (325) 

we obtain the integral equation 

T= ave (5.6) 

with 

Nuk dP 
Ve [ perhians Q3 fo) dr. (5.7) 

4n? « i(r) vrRy dr 

If the propeller-shed vortices are assumed to be convected with the free stream, 

then 

R, V 

ir AR ey il 
JoNie. 

1Cr) a Or J (5.8) 

and the integral equation (5.6) can be written in the form 
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N : Endl ee ey er 6.9) 0 %o 472 JR, ) Ry ds Q, 727) fF 

with the standard operator T,. 

Equations (5.6) and (5.9) can be solved by the methods of Sec. 2, after nu- 
merical evaluation of the right-hand side integrals for a given function I(r). If 
(R,) # 0, the right-hand side includes an explicit term similar to that of (4.16). 

By both the THERM work sheets (151) and the NSRDC computer program 
(134) only the steady part of the distributions can be calculated. In (151), y, is 
determined from (5.9) with [(r) specified as the optimum propeller circulation 
of Betz, including a tip correction for wall effects derived by Goodman (22), In 
(134), Eq. (5.6) is solved with an arbitrary distribution I(r). The tangent of the 
propeller hydrodynamic pitch angle determined by Lerbs' theory of moderately 
loaded propellers (48) is used for j(r), i.e., the propeller-induced velocity is 
taken into account in determining j(r) (to some extent), while the velocity in- 
duced by duct and hub is neglected. These are neglected in (151), too. 

The program (134) includes also a design program based on an iterative 

procedure with three steps in each cycle. First, ['(r) is determined for the un- 
ducted propeller from a slight modification of Lerbs' theory. Because of the 

modification, small additional axial and azimuthal velocities such as those in- 
duced by a duct can be taken into account. Second, the steady radial (Eq. (5.7)) 
and axial velocity components induced on the duct by the propeller are computed. 
Then, (5.6) and the corresponding equations of ring-airfoil theory, as far as 
camber and thickness are concerned, are solved and the velocity induced at the 
propeller by these duct distributions computed. Then the next cycle can be 
started. The computation starts with the determination of I(r) for the unducted 

propeller. The iteration is repeated until the inflow velocity at the propeller 
converges to four significant figures. Usually, this accuracy can be obtained in 

less than six cycles. 

The propeller can be designed on the basis of thrust or shaft horsepower 
and for a prescribed blade circulation or pitch distribution. The viscous effects 
of the propeller are taken into account by giving as input the blade-section drag 
coefficient and the propeller blade outline. The viscous drag on the duct, which 

includes both the skin-friction and pressure drag, can also be calculated on the 
computer. The frictional drag on the duct is computed by giving as input the 
frictional drag as presented by Gertler (20), where the Reynolds number is 
based on the duct length. The computer program calculates the pressure drag 

on the duct according to the method developed by Granville (23). 

At THERM (139, 142) and NSRDC (128,129), similar theories have been de- 
veloped for determining the unsteady part of y, too, i.e., the harmonics of non- 
zero order in the expansion 

¥(x,¢) = V {25 a is [g.,(x) cosmN¢ + h (x) sin mN¢@]} ‘ (5.10) 
inal 

1240 



Theory of the Ducted Propeller--A Reveiw 

Only the terms of order mN are left in the general Fourier series because the 
flow must be periodic with a period 27/N. Evidently, Vg, is identical with y, 
in the foregoing steady-part theory. 

It turns out that the two-dimensional integral equation, which equates the 

radial downwash of the duct vortex system and the radial velocity induced by the 
propeller at the duct, is equivalent to an infinite system (m=1,2,---) of coupled 
integral equations for ¢,, and h,. According to (142), these equations can be 
written in the form 

A A 

[ ekgax’ -™ f hk dR = Bpiy (5.11) 
= J oy 

A A 

if eral N ae | i; h,, Kj, dx a EnKm dx’ = Ap, + Apem - (5,12) 
aN =N 

Here, VAp-,, and VBrp:,, are the coefficients of the mN-th sine and cosine har- 
monics, respectively, in the Fourier expansion of the radial velocity induced on 
the duct by the helical vortices shed from the blades. Similarly, VAp,, is the 
sine coefficient of the contribution due to the propeller blades. For the rather 

complex formulas see (139, 142). 

The kernel K,, is defined by 

1 = ce 
K,, = a {S_nlo) - Ga(Ax')} @= 1+ (AS N27 26: (Ax va Cre st ARs 415013) 

S.(2) = Quay /9(@) + Qa3/9() » (5.14) 

co 

G_(Ax") = n | {2J?p? Q, 4/28) + $,(@)} sinwr dr, (5.15) 

@s:-1 + (Ax! - Jur)? /2. 

K,, denotes the derivative of K,, with respect to Ax’ and has the well-known 
Cauchy singularity. 

The pair of integral equations (5.11) and (5.12) can be solved simultane- 
ously by methods similar to those used in the preceding sections. In (139, 142), 
a method of decoupling the equations has been described. There, it is also indi- 

cated that there may exist nontrivial solutions of the homogeneous equations. 
The physical interpretation of these distributions is not clear. Evidence for the 
existence of such periodic eigensolutions can be deduced also from theories of 
Ludwieg (50, 51) and Rautmann (118, 120). 

As J >», the helical trailing vortices of the duct become straight lines, 
i.e., one obtains the vortex model of the thin-ring airfoil with deviations in 
shape from axisymmetry such that y depends on ¢ also. So, one gets the un- 
coupled equations of ring-airfoil theory with the integral operators T,. The de- 
coupling for 1/J = 0 can be observed immediately in (5.11) and (5.12). On the 
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right-hand side in (5.11), the Bp, become zero. Therefore, putting g¢g,, = 0, the 
first equation of each pair drops out from the computation. The expressions for 

Ap, + Ap+, Can be simplified. 

So far, numerical results have been presented only for the steady part of 

the solution. This is the most important part because it yields the time average 
of all linear quantities in linearized theory such as the distribution of velocity 
and pressure on the duct, the radial sectional force, etc. On the other hand, the 
duct thrust is a nonlinear quantity and depends not only on the coefficient of 

zero order, which is used in the usual computations, but on all Fourier coeffi- 
cients. 

6. THE DUCTED PROPELLER AT ANGLE OF ATTACK 

The problem of this section is much more difficult than the previous ones, 
because, for a propeller at angle of attack, a system of coordinates in which the 

flow is time independent does not exist. Therefore, in its present state, the 
theory iS more rough than those presented in the previous sections. 

The first rough approximation is based on the so-called superposition 
model,'' in which the time dependence is eliminated. The flow is determined by 

superposing the flow of the ducted propeller at zero incidence and the flow of a 
cylindrical ring airfoil at angle of attack. Both flows can be determined sepa- 
rately by the theory of Secs. 5 and 2, respectively. Essentially, this model was 
first used by Kriebel (160). The gross forces resulting from this model are the 
thrust due to the ducted propeller at zero incidence and a lift force due to the 

ring airfoil at incidence. 

The most important result of the following theory developed at THERM 
(157) is that it shows the existence of a mean net force due to the time-dependent 
part of the flow which, in turn, produces a side force that can be as great as 20% 
or more of the lift. Approximately one half results from the propeller and the 
other half from the duct. A decrease in shroud lift of about 10% is also pre- 
dicted by the interaction model, although it is approximately balanced by a lift 
force on the propeller. A typical example (N = 3, x,/c = -0.219, d/R, = 0,213, 
\ = 0.5, » = 0.956, J = 0.344) is shown in Table 1. The coefficients of lift and 
side forces and the corresponding pitching and yawing moments are tabulated 
separately for the duct and the propeller. The moments are referred to the 
leading edge with the nose-up and nose-right directions taken as positive. The 
positive direction of the side force is oriented to the left (Fig. 21). 

The problem to be solved may be stated as follows: Given the geometry of 
the configuration and the mean propeller blade circulation ['(r) (design circula- 
tion), determine the duct source distribution q and the steady part of the bound 

duct vortex distribution such that the tangent-flow condition is satisfied at the 
reference cylinder r = Ry and the Kutta condition, at the trailing edge. 

A duct-fixed system of coordinates (x, r, ¢) is used, as shown in Fig, 21. 
If ~ and I denote the duct and propeller distributions of the superposition 

model, then the corresponding distributions of the interaction model are taken 

tobe y+ ¥ and [+ Tf. The trailing vortices of the duct -3(y+)/d¢ are 
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Table 1 

Comparison of Predictions of Two Models 

: Superposition Interaction 

Lift 

Side force 

Pitching moment 

Yawing moment 

Lift 

Side force 
Propeller 

Pitching moment 

Yawing moment 

Com im )or 

Fig. 21 - (See (157)) Vortex system 

of the ducted propeller at angle of 

attack 

-3(%+F)/ay¥ 

assumed to convect downstream withspeed Vv. Each bound ring vortex, there- 

fore, contributes a semi-infinite cylinder of straight trailing vortices. Thecor- 

responding shed vortices 27/ét constitute a similar cylinder composed of ring 

vortices. The trailing vortices from the 1-th propeller blade -9(1+Iy)/or 

are also assumed to convect downstream with speed v, forming regular helices 

with advance ratio U/Or. The shed vortices -2f; /at emitted from each blade 

fall on these helices and are perpendicular locally to the trailing vortices. The 
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steady radial wash v may be expressed accordingly as the superposition of the 

individual contributions or 

YI ol toitaGerotdee tt Vie * [ve t+ ver + VE + vp + vp + ve] . (6.1) 

The expression in the bracket turns out to be zero. 

Putting 

= Wy hy s Uy. ml Vena ay, =) VA Cx) sin BiCx) cos gy (6.2) 

one finds easily that q and y, are the distributions of the ducted propeller at 

zero incidence, which account for the effects of thickness and camber. So we 
are left with the condition 

eee Vy! = oS Viole Simgh* yoni es (6.3) 

The left-hand side, corresponding to the model of ring-airfoil theory, can be 
written as V sing T, A+ V cos¢ T,B by means of the operator T,. 

Since only the first harmonic is present in either the case of the ring air- 
foil at incidence or that of the propeller at incidence, the distribution |" will 

turn out to vary sinusoidally with 0t such that, from Biot-Savart integration, is 
found 

vpe = V([F(x) sing + G(x) cos¢] . (6.4) 

The functions F(x) and G(x) involve complicated double integrals over the am- 

plitude and phase angle of I(r) which must be determined by solving the 

unsteady-propeller problem explicitly. 

If F(x) and G(x) are known, Eq. (6.3) splits into the two equations 

TOMS <0 FA) TXB" -Gi, (6.5) 

which can be interpreted as the\equation for a ring airfoil at incidence with a 
modified ¢-dependent camber and can be solved by the numerical methods de- 

scribed in Secs. 1 and 2. 

The distribution P(r) is determined in the following manner. At each pro- 

peller blade the unsteady axial velocity component due to y, and the unsteady 
tangential component due to both the incidence cross flow and the duct trailing 

vortices y; are calculated. The component of this velocity vector taken per- 
pendicular to the effective free stream composed of V and ({r gives the unsteady 
downwash at the propeller blade. This downwash has a sinusoidal distribution 
over the blade chord. Now, at a representative radius r = ro (e.g., Ty = 0.7 R,) 
the solution of Kemp (41) for the sinusoidal gust problem gives a value ['(r,) 
that depends on a phase angle and an amplitude factor, both of which can be ex- 
pressed by Bessel and Hankel functions of the reduced frequency 0d/(2VV2+?r,?) 
(d = propeller chord length). The application of Kemp's two-dimensional theory 
implies that the blade interference can be neglected, i.e., that the blade number 

N is small, 
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In a further simplification, it is assumed that P(r) is constant: Mr) - nccas 
Then vj is produced by concentrated helical vortices trailing from each of the 
N blade tips and can be expressed by integrals of Legendre functions over an in- 
finite interval in a way similar to that in the previous section. 

Three typical distributions of F/a and G/a are shown in Fig. 22. Since 

their importance is determined by their magnitude relative to unity, we see that 
the duct-propeller coupling is, in fact, large enough to account for a significant 

improvement over the simple superposition model but not large enough to dis- 

credit the superposition model as a reasonable first approximation. A typical 

pressure distribution is shown in Fig. 23. 

Propeller 

Fig. 22 - (See (157)) Camber 
functions for ducted propeller 
at angleofattack(N =3, p= 0.95, 

dR a ORZ, x_/c = -0.25) 

(a) »= 0.5, J=0.5 
(b) x= 0.5, J = 0.25 
(e)’ A= L.0,7 pe 0.5 

7. FINAL REMARKS 

The theory of ducted propellers as presented in this review has reached a 

first goal. Based on linearizations which have been successfully used for a long 

time in propeller and airfoil theory, a consistent and complete theory has been 

developed for axial, nonviscous, incompressible flow. To some extent, the basic 
linear assumptions have been checked by nonlinear theories; the linearization 

does not affect the relevant results gravely. Insofar as the effects of viscosity, 
compressibility, and cavitation can be determined separately, the theory should 

now afford a reliable tool for predicting design and performance. 
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\ --- Superposition Model 

—— Interaction Model 

Fig. 23 - (See (157)) Angle of 
attack contribution to net shroud 

pressure coefficient (N= 3, » = 

0.956, d/R, = 0.213, x,/c = -0.219, 
»= 0.5, J = 0.344) 

Of course, there remain problems, even within the framework of the linear 
theory. For example, the problems connected with the higher harmonics of the 

finite-bladed propeller might be investigated more thoroughly. It might be de- 
sirable to drop the assumption of slenderness for the propeller blades and to 

investigate the flow in the neighbourhood of the propeller (Supplemented, per- 
haps, by guide vanes) by a lifting-surface theory. Also problems of interfer- 
ence or of free surface might be sought. An important problem, though tran- 
scending the realm of nonviscous theory, is a practical determination of the 

propeller tip clearance for use in the above theory. 

For the ducted propeller at angle of attack, the rough theory of Sec. 6 should 
be refined, at least for checking this comparatively simple theory. 

Finally, two problems will be mentioned which are beyond the scope of this 

review. The first one arises from the fact that a ducted propeller does not usu- 
ally operate in a uniform stream. As a matter of fact, the NSRDC computer 
program includes the possibility of a radial dependence of the inflow. One might 
also include the higher harmonics induced by a ship as analysed in (4). Isay (40) 
developed a theory for ducted propellers in a wake based on two-dimensional 
theory with three-dimensional corrections. But, by the methods discussed in 
this review, the problem had to be solved by the methods of potential theory, 
though the flow in a wake usually is not a potential flow. This leads to the prob- 

lem of nonviscous nonpotential flow (Euler equations), which has been treated 
only rarely in comparison with the extensive literature concerned with solutions 
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of the Laplace equation or the Navier-Stokes equations. A first study of a ring 

airfoil in a nonuniform flow has been presented by Maass (122). 

Another problem, perhaps more important in practice, is the boundary 

layer on ring airfoils and ducted propellers. At angle of attack, the ring airfoil 
yields a comparatively simple model for investigations in three-dimensional 

boundary-layer theory which is interesting in itself (109, 113). 

Lastly, one should not forget, that—from the point of view of pure mathe- 
matics—almost nothing has been proven rigorously in the three-dimensional 
theory of airfoil and propellers, not even in the linear theory. There is a wide 

field of open problems. 

From a practical point of view, the dominating task is to check the existing 
theory by carefully designed experiments in order to find out if and where im- 

provements are desirable. But this is not the concern of this review. 

NOTATION 

c Duct (chord) length 

ey = L/(pV*7Rc) Lift coefficient 

cp = 20 /(VmR?) Propeller thrust coefficient [In Sec. 4, 
qe 2T,/(p7Rt02) | 

G Glauert integral operator 

g- y/V Nondimensional vortex distribution 

g,(€) n-th order Fourier coefficient of ¢ 

h,(é) 

J = V/OR, Propeller advance ratio 

chat Ot pcocaay 9 a Pitch of helical vortices 

L Lift 

N Number of propeller blades 

p Static pressure 

q Source distribution 

R Radius of reference cylinder (usually = R,) 

Ry Duct radius 

R Propeller radius 
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Ap 

n= A(E-§') = (x- x')/R 

@ 

h = c/(2R) 

j= R/Ra 

a= xc 

p 

Py(€) = 2r_(x)/c 

Weissinger and Maass 

Radial coordinate 

Mean camber line 

Thrust 

Propeller thrust 

Basic integral operators of ring-airfoil theory 

Nondimensional thickness distribution 

[thickness = c-t (€)] 

Axial, radial, and azimuthal induced velocity 

Free-stream velocity 

Normal component of free-stream velocity at profile 

Axial coordinate 

Axial propeller location 

Angle of attack 

Local angle of attack 

Circulation of propeller blades 

Ring vortex distribution 

Axial and azimuthal components of helical vortices 

Pressure jump at propeller disk and slipstream sur- 
face 

Argument of kernels in ring-airfoil theory (also 

= x/R, See Fig. 5) 

"Glauert variable," é = -cos 6 

Chord-diameter ratio of duct 

Propeller tip clearance with respect to reference 
cylinder 

Nondimensional axial coordinate; é = -1(+1): lead- 
ing (trailing) edge 

Mass density 

Nondimensional mean camber line 
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pate) = — og) "Camber" distribution 
S 

@ - CREP)" Contraction ratio of propeller slipstream 

Q Angular velocity of propeller 

Subscripts 

q, rysvtge Fd. Induced by q, ¥, g, 

Due to camber, thickness 

Referring to body, wing 

At trailing edge 

Referring to propeller, duct 

A bar (e.g., u) denotes the average of the limiting values at a jump discon- 

tinuity. 
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DISCUSSION 

Gilbert Dyne 
The Swedish State Shipbuilding Experimental Tank 

Gothenburg, Sweden 

The authors are to be commended for giving a very systematic and thorough 

review of the theories of ducted propellers, within the limitations imposed. I 

would, however, like to make some comments concerning some details of the 
theories described. 

In all theories reviewed by the authors, the duct shape (or the source and 

vortex distributions of the duct) is determined by satisfying the boundary condi- 
tion at the duct. When we started to design ducted propellers six years ago at 

the tank in Gothenburg, we also used this method. After some time, however, 
we discovered, that the boundary-condition method in some cases could lead to 

very unrealistic results. This was especially true for heavily loaded ducted 
propellers, when the slipstream deviated from the cylindrical form, and the 
blade circulation was zero at the blade tips. The reason was found to be that a 
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radial velocity component was lost, when the ring vortices representing the pro- 
peller slipstream were placed along cylinders with constant radii and not along 

the real streamtubes. Since the constant-radii assumption influences the 

propeller-induced axial velocities only in a slight degree, we now prefer to use 
the continuity law, when we determine the shape of the duct. 

Figure D-1 shows that the difference between the two methods can be con- 
siderable. The four ducted propellers in Fig. D-1 all have the same design total 

thrust C; = 4, while the duct thrust is varied systematically between 0 and 45%. 

Continuity-law method 

Duct D4 rIR 
--—-. 12 SIS Boundary -conaition method 

7 dr /ay = up|(Y% +U,/ 

Simplified boundary- condition 

method dr/dy = up/Vs 
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Fig. D-1 - The shape of the duct calculated 
by different methods 
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In the fore part of the duct, the difference is about the same for all ducts. 
In the rear part, however, where the influence of the propeller wake is consid- 
erable, very large differences are obtained. Duct No. D4 is neutral, which 
means that it coincides with the mean slipstream of a conventional propeller. 
The radius of the slipstream must in this case decrease continuously from 1.0 

at the propeller to 0.86 in the ultimate wake, where the propeller-induced ve- 

locities are about twice that at the propeller. If the continuity law is used to 
determine the shape of the duct the radius of duct D4 will be 0.92 at the trailing 
edge, while corresponding value obtained with the boundary condition method is 
0.80 — a quite unrealistic result. 

Figure D-1 also illustrates a fact enforced by the authors —that it is not 
advisable to ignore the induced axial velocity in comparison to the advance ve- 
locity, when satisfying the boundary condition. As seen quite different camber 
and thickness distributions are obtained with the complete and the simplified 
boundary condition equations. 

The authors state in their final remarks that "it might be desirable to drop 
the assumption of slenderness for the propeller blades.'' As described in SSPA 
publication no. 62/18/, our design method includes also lifting surface calcula- 
tions. Figure D-2 shows an example of the results obtained. Starting from the 
effective camber distribution, the camber correction due to the propeller is cal- 

culated according to the method by Pien. An additional correction caused by the 
mean vorticity of the duct is then determined. In the present case the camber 

correction due to the duct generally counteracts the correction caused by the 
propeller. 

Geometrical camber 

Without duct comber corrections 

Effective comber 

0.02 

0.0/ 

O 0.2 04 0.6 08 10 

Fig. D-2 - Radial distribution of maximum cam- 
ber of blade profiles. Ducted propeller P1315 
D6 (SSPA publication No. 63) 
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REPLY TO THE DISCUSSION 

J. Weissinger and D. Maab 

Similar difficulties (e.g., crossing of streamlines) in using the boundary- 
condition method have also been observed by Dickmann and Weissinger during 
their computations. Therefore, in (102), the figures showing the streamlines in- 

side the duct were calculated by means of the stream function which expresses 
the law of continuity. If an iteration procedure is applied, both methods should 

give the same results. An iterated-boundary-condition method has been used by 
Wiedemer (113), and Fig. 16 above shows that the duct profile can be changed 
considerably by iteration. 

It does seem to be a question if the changes are also as great in the direct 
problem, i.e., if the flow field has to be determined for a given duct shape. From 
Bollheimer's results (116), there is some indication that the location of the ring 

vortices does not matter so much, at least for the over-all characteristics. 

As long as we do not know bounds for the errors caused by the approxima- 
tions (and they are unknown even in two-dimensional airfoil theory), we must 
rely on intuition and numerical experience in judging the accuracy of a method. 
The experience brought forward in the discussion is highly appreciated by the 

authors. 
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STUDIES OF THE APPLICATION OF 
DUCTED AND CONTRAROTATING 

PROPELLERS ON MERCHANT SHIPS 

Hans Lindgren, C.-A. Johnsson and Gilbert Dyne 

The Swedish State Shipbuilding Experimental Tank (SSPA) 
Goteborg, Sweden 

ABSTRACT 

The paper starts with a survey of the trends in the development of 
modern merchant ships and how these trends have influenced propeller 

loadings and propulsive characteristics. Earlier studies on the appli- 
cation of ducted and contrarotating propellers are summarized and 
some of the SSPA research activities in these fields are presented. 
The SSPA design methods for ducted and contrarotating propellers are 
outlined and some experimental verifications in uniform flow are dis- 

cussed. Optimum propeller efficiencies, diameters and essential geo- 
metric properties are given for different propeller loadings. 

Results of comparisons between conventional, ducted and contra- 
rotating propellers applied to a 150 000 TDW tanker as well as conven- 
tional and contrarotating propellers ona 12 000 TDW container vessel 
project are reported. The comparisons are based on open-water and 
self-propulsion tests as well as on cavitation tunnel tests in uniform 

flow and irregular wake distributions. Some concluding remarks and a 
scheme for further investigations are given at the end of the paper. 

1. INTRODUCTION 

The recent, explosive development of ship size, speed, and engine power 

available for the powering of merchant ships, has been accompanied by in- 

creased propulsion problems. Questions concerning efficiency, cavitation, and 

vibration have become highly important. About 15 years ago there was a clear 
trend towards single-screw propulsion with diesel engines of low number of 
revs. The development during the last 10 years has caused increased interest 
in very high engine powers and thus actualized multiple-engine arrangements 
and, for large tankers, still lower number of revs. In this connection also, dif- 
ferent, for merchant-ship propulsion, less conventional propeller arrangements 

have been discussed. Below are presented the results of an investigation of the 
application of conventional, ducted, and contrarotating propellers on merchant 

ships, carried out at the Swedish State Shipbuilding Experimental Tank (SSPA). 

The development for tanker ships has been characterized primarily by in- 

creased size, increased block coefficient, and diminishing length-draught ratio. 
The speed has essentially remained unaltered. For dry cargo ships, the size 

has not changed so radically, and the block coefficient has tended to decrease. 
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The maximum speed has increased considerably. For both types of ships, en- 
gine power has been doubled many times over. 

For propellers, this development has caused remarkable changes in loading 
conditions and cavitation numbers (Fig. 1). The upper left corner of the diagram 
indicates the cavitation-free region for SSPA 5.60 propellers (1) in homogeneous 
flow. For tanker-ship propellers the danger for cavitation problems has in- 
creased due to increased load coefficients 

adi a (r nt/pyys) 

while for dry-cargo-ship propellers decreased cavitation numbers have in- 
creased the cavitation problems. The trend towards higher propeller load for 
the tankers means decreased propeller efficiency, while for cargo-ship propel- 
lers limited draft, and thus limited propeller diameter, may cause similar ef- 
fects. Figure 2 exemplifies the situation. In this diagram a scale of By is also 
included. 
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Fig. 1 - Cavitation number for propellers. Trend curves. 

2. EARLIER SELF-PROPULSION STUDIES 

A great number of reports and papers presented in different modern publi- 
cations deal with the propulsion of merchant ships with contrarotating and ducted 
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Fig. 2 - Propeller open-water efficiency. Trend curves. 

propellers. It is interesting to note that only a very few of these reports include 

results based on self-propulsion experiments. 

In most cases only theoretical hypotheses are presented, and in some cases 
open-water test results are included. Due to the complexity of the problem and 

to the difficulty in defining and separating different propulsive factors, complete 
self-propulsion experiments are, however, required for a final comparison be- 

tween different propeller alternatives. 

2.1. Contrarotating Propellers 

Very extensive experiments with alternative propulsive arrangements have 

been carried out with the American 106 000 TDW tanker project 'Manhattan" 
(2,3). The investigation includes conventional single- and twin-screw propul- 

sion, tandem propellers, and overlapping propellers. It also includes the only 
complete experiments with contrarotating propellers hitherto published. These 

self-propulsion test results have been condensed in Fig. 3, where the propeller 
shaft power for the different propeller arrangements has been plotted against 

propeller rate of revolutions. For reference, an approximate line representing 
conventional single-screw propulsion at different number of revs. has been cal- 

culated. The results indicate that for this project the contrarotating alternative 
is the most favourable, whilst the extreme 9-bladed propeller required the high- 

est shaft power. The gain in shaft power obtained with the contrarotating system 
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Fig. 3 - Condensed results from self-propulsion tests 
with ''Manhattan'' (2) 

was about 5.5%, compared with a conventional single-screw arrangement at the 
same number of revs. It should be mentioned that the load coefficient (K,/J*)'/* 
for the contrarotating case was about 1.0, which is a fairly low value for a 
tanker project. 

In this connection it is necessary to state that it is at present impossible to 
make any quite fair comparison between different propeller alternatives. Such a 
comparison must be based in Some cases on constant propeller diameter and in 

some cases on constant number of revs. or something between. This will be 
discussed in Sec. 6. The most important problem is, however, that a fair com- 
parison requires that for all propellers the margin against different disadvan- 
tages due to cavitation is the same and that in no case are dangerous vibratory 
forces introduced. Lack of reliable criteria for cavitation erosion for different 
kinds of propellers as well as criteria for dangerous vibratory forces makes the 

comparisons questionable in most cases. 

Some of the self-propulsion test results with contrarotating propellers pre- 

sented in Sec. 6 have been reported earlier (4). These preliminary tests indi- 
cated that the contrarotating propeller arrangement in Some cases was very 
favourable from the point of view of efficiency, especially for slender types of 

ships. 
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2.2. Ducted Propellers 

Results of self-propulsion tests with ducted propellers on large merchant 

ships have been presented by van Manen from NSMB, Wageningen (5), Minsaas 
from SMT, Trondheim (6) and English from NPL, Feltham (7). 

At NSMB, tests have been carried out with three different tanker ship proj- 

ects, 32,500 TDW, 48,500 TDW, and 90,000 TDW (5) For each project a con- 
ventional stern arrangement fitted with conventional propellers was compared 

with a Hogner-type stern arrangement fitted with ducted propellers. The results 

indicated that, for all the cases, the ducted propeller alternative was Superior 
from the point of view of efficiency. The shaft power reduction was about 5%, 
3%, and 6%, respectively, for the three projects in loaded conditions at a speed 

corresponding to trial speed. 

In (8) van Manen has presented a diagram based on the results of self- 

propulsion tests with about 15 tanker models and results of systematic open- 
water tests with ducted propellers. This diagram indicates that, for 30 000 SHP 
and 100 RPM, the power reduction due to the introduction of ducted propellers is 

4- 7% for 50 000 TDW, 
7 - 9% for 100 000 TDW, 
9 - 12% for 150 000 TDW. 

At Skipsmodelltanken in Trondheim, an extensive program of tests with 
ducted propellers on large tankers is under way. Some preliminary tests (6) 
with a 100 000 TDW tanker resulted in a power reduction of about 12% at 110 

RPM, compared with a conventional propeller with the same number of revs. 

Some tests with a 150,000 TDW tanker, fitted with a ducted propeller, car- 
ried out at NPL, have been presented in (7). Unfortunately, the report does not 
include any comparison with a ship with conventional propulsion. It is only 
stated that ''the results show that a very high propulsive performance (QPC) has 

been achieved. This is similar to the findings of van Manen...." 

Common to all the reports mentioned above is that no attempt has been 

made to analyse the results nad present components of the propulsive factors. 

3. CONTRAROTATING PROPELLERS, THEORETICAL BACKGROUND 
AND EXPERIMENTAL VERIFICATION 

3.1. Design Method 

The results with contrarotating propellers, included in the present report, 

have all been obtained with propellers designed according to the same method. 
This method is essentially the same as that of (9) and (10), i.e., a development 
of Lerbs' method. Below are listed in the main differences between the method 

used in the present investigation and the original method of Lerbs (9) and the 
refinements according to Morgan, outlined in (10). 
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(1) Morgan and Lerbs use the pitch distribution for an equivalent pro- 
peller as input data and calculate the circulation distribution. In our scheme the 
circulation distribution for the equivalent propeller is used as input data. 

(2) Morgan and Lerbs use Lerbs' induction-factor method when calcu- 
lating the relation between the circulation and the induced velocities. In our 
scheme the modified induction factor method proposed in (11) is used. The pitch 

angles assumed for the free vortices, when determining the induction factors, 
are those of an equivalent propeller, as defined in (10). 

(3) The interference velocities between the propellers are defined in 

(9) and (10) as 

asZ f 42 (T= 8,9) ’ 

ll oO 

GY ig Gg? Fai Bay's 

Up jg = Uys fey (1+ 841) » 

where u,. and u,, are axial and tangential self-induced velocities, f, and f, 
are factors for obtaining circumferential average of interference velocities, and 

é, and g, are factors for obtaining effect of axial distance on interference ve- 
locities. 

By using Stokes' law, Lerbs derived 

Powe (1) 

and introduced the following approximation: 

I TR 

In our scheme the additional approximation 

Fg ts CS De Nes 

where KH = Goldstein factor has been used in order to facilitate the procedure of 
convergence. If Eq. (1) is used instead, very large values are obtained for 
small values of u,, which tends to upset the calculation procedure. 

For g,, Lerbs obtained values by replacing each propeller by a uniformly 
loaded sink disk. Tachmindji (12) later derived new values by replacing the 
propellers by a succession of ring vortices, whose strength varies with propeller 
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radius, thereby assuming optimum circulation distribution. These values were 

used by Morgan. In our scheme Lerbs' original values have been used, as the 

improvement obtained by using the values of Tachmindji seemed to be doubtful 

for the circulation distributions normally used in our calculations. Instead, a 

modified version of the computer program, which is now under work, will con- 

tain a calculation of these factors for arbitrary circulation distributions. 

(4) The calculations are carried out for corresponding radii for the 

forward and aft propellers as defined by Lerbs: 

Eg geno es) ’ (2) 

where r, is the local radius of the forward propeller, r, is the corresponding 

local radius for aft propeller, and 8, is the contraction of streamline. 

For calculating the contraction §, Lerbs applied the equation of continuity 

to each annular element. By introducing Eq. (2) and neglecting second-order 

terms, a linear differential equation was obtained for 5_, the solution of which 

is a definite integral (see (9) or (10)). According to the authors' experience, 

this way of calculating the contraction is not accurate enough and in our scheme 

the contraction is obtained by direct numerical integration. Thereby no simpli- 

fications are necessary. The diameter D, of the aft propeller is determined, as 

by Lerbs and Morgan, by the relation 

Di=D,(1-5,) , (2a) 

where D, is the diameter of forward propeller and 5, = 5, at the blade tips. 

(5) What has been said above applies to the lifting-line calculations. 
After the completion of these calculations lifting-surface calculations are car- 
ried out according to a method based on Pien's approach (13, 14), giving correc- 
tions on camber and pitch. Finally, an approximate correction of the pitch for 
thickness effect is added (14). In the lifting-surface calculations and the calcu- 
lations of the thickness effect, the mutual interference of the propellers is 
neglected. 

3.2. Systematic Series of Contrarotating Propellers 

For checking the design method and providing figures of the possible effi- 
ciencies, a systematic series consisting of four sets of contrarotating propellers 

was designed, manufactured, and tested in open-water condition in the SSPA 
cavitation tunnel. The propellers were fitted with adjustable blades. Some of 
the important design data of the propellers are given in Table 1, together with 
the pitch ratios investigated with the different sets. Further, the blade form, 
pitch distributions, and radial distributions of maximum camber of the blade 
sections of the propellers are shown in Figs. 4-6. The results of the open- 
water tests with the four propeller sets at the design pitch are compared with 
the computed propeller characteristics for the design point in Table 2. In Fig. 7 

the difference of number of revs. between calculation and experiment are shown 

for the four propeller sets, together with the corresponding results obtained 
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Fig. 5 - Family of contrarotating propellers. Radial distributions 

of pitch. See further Table 1 (D = forward and aft propeller diam- 

eter, respectively). 
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02 Q3 OA O05 O06 O7 08 O9 10 

x =r/R 

Fig. 6 - Family of contrarotating propellers. Radial distributions of 
maximum camber of blade sections. See further Table 1 (D = forward 

and aft propeller diameter, respectively). 

QO Conventional! propellers 

AQ Contra -rotating propellers 

Vv ODucted propellers 

oO Note. For controrot. props. pitch ratio 

5 fe of forward prop. is used 

O 
Qs é LS 

4 Pitch ratio Pb /0 

ao) duct thrust 

Fig. 7 - Difference in number of revs. between calculations and 
open-water tests for different types of propellers 
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with conventional and ducted propellers, calculated according to analogous 

methods (see (14)). 

From Table 2 it is evident that for the contrarotating propellers the torque 

balance and propeller efficiency is predicted with good accuracy by the calcula- 

tions. Figure 7 shows, however, that the propellers designed for low values of 
the advance ratio J are overpitched in comparison with the calculations. This 

is in contrast to what is the case for conventional propellers, designed accord- 
ing to an analogous method. One of the reasons for this discrepancy could be 
that the use of the pitch of an equivalent propeller when determining the induc- 

tion factors is not accurate enough. 

In Fig. 8 the efficiency 7, at the design value K, = 0.38 is shown on the 
basis of the advance ratio J for the four sets of propellers, at the design pitch 

ratio as well as at other pitch ratios tested. Also the torque balance is shown 
in the diagram. From the diagram it is evident that the influence of pitch dis- 

tribution and torque balance on efficiency is very small. 

4, DUCTED PROPELLERS: THEORETICAL BACKGROUND 
AND EXPERIMENTAL VERIFICATION 

4.1. Design Method 

The ducted propellers are designed in accordance with a method which has 
been developed at SSPA (15). This method is an improvement of the theory of 
Dickmann and Weissinger (16). Thus, the distribution of blade circulation is 
arbitrary, the number of propeller blades is finite, and the thickness of the duct 
is considered. The method is analogous to the design method for conventional 
propellers in use at SSPA. This implies that also cavitation and strength calcu- 
lations are included. 

The calculations start from known values of total thrust, number of revolu- 
tions, propeller diameter, number of blades and blade form, distribution of 
blade circulation, duct vorticity, minimum cavitation margin, etc. The method 
determines blade area, propeller efficiency, duct thrust, shape of duct, and 
pitch, camber, and thickness of the propeller blade sections. 

When calculating the shape of the duct and the thrust of the propeller and the 
duct, the actual propeller is replaced by an equivalent infinite-bladed propeller, 
represented by continuous radial distributions of ring vortices and rectilinear 
vortices. The strength of the vortices is determined by the conditions in the 
ultimate wake. The duct is replaced by systems of ring vortices and ring 
sources, which simulate the acceleration (deceleration) and the thickness of the 
duct, respectively. The hub is replaced by a source distribution along the axis. 

If the hub is cylindrical and the thickness distribution of the duct is prescribed, 

the source distributions of the hub and the duct, respectively, are determined by 
the local axial velocity. The definite strength of the vortex systems of the pro- 
peller and the duct and the hub is determined by an iteration process in sucha 
way that the desired total thrust is obtained. The total thrust is calculated ac- 

cording to the momentum theorem and the thrust of the propeller according to. 
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Fig. 8 - Contrarotating propeller family. Effi- 
ciency and torque balance atdifferent pitch ratios. 

the law of Bernoulli. Allowance is made for the drag of the propeller blades and 

the duct. 

The shape of the duct can be determined either by applying the continuity 

law on the flow inside the duct or by Satisfying the boundary condition at the duct. 

Since the singularities representing duct and propeller are placed upon cyl- 
inders with constant diameters and not on the real streamsurfaces, the two 
methods give different results. The decisive factor on the boundary -condition 
method is the radial velocity induced by the propeller. When calculating this 
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velocity, however, errors can arise due to the simplified representation of the 
propeller. Since corresponding disadvantages have not been found in the calcu- 
lations of the axial velocity, the continuity-law method is preferred when the 

shape of the duct is determined. 

A method is presented which makes it possible to adjust the shape of the 

duct, if the first calculations give a shape that is not satisfactory from a practi- 
cal point of view. The corrections applied do not influence the velocities at the 
propeller disk directly, and the first calculations need therefore hardly be re- 

peated. 

In the propeller calculations the number of blades is assumed to be finite. 

Starting from the propeller thrust as obtained above, the velocities induced by 
the propeller are determined by a conventional lifting line method. The pitch of 
the helical vortices is assumed to be determined by the velocities in the ulti- 

mate wake. Due to the finite number of blades, the velocities induced by the 
duct and the hub at the blades deviate from the circumferential mean values, 
especially near the blade tips. No allowance is so far made for this fact when 
the pitch of the propeller blades is determined. 

Due to the relatively great blade widths generally used for ship propellers, 
the axial variation of the induced velocities makes camber and pitch corrections 
necessary. Besides the ordinary corrections, calculated by some lifting-surface 

method, additional corrections have to be introduced, primarily due to the vor- 
ticity of the duct. 

Pitch corrections due to viscosity and blade thickness are calculated in the 
same way as for a conventional propeller. 

4.2. Experimental Verification 

In order to obtain an experimental verification of the design method, a se- 
ries of open-water tests with four heavily loaded, ducted propellers has been 
carried out in the SSPA cavitation tunnel. The design value of the total thrust 
was in all cases the same, while the theoretical thrust of the duct was varied 
systematically. 

The important design and test data of the ducted propellers are given in 
Table 3. The blade form and distribution of blade circulation were the same as 

for a conventional propeller. The shapes of the ducts are given in Fig. 9. 

The experimental results are described in (17). A comparison between 
computed and measured ducted propeller characteristics is also given in Table 4 

and in Figs. 7 and 10. As long as no flow separation occurred, the agreement 
between the theoretical and experimental values of total thrust at the design ad- 
vance ratio was very good. The duct thrust was found to be slightly too large for 
small duct vorticity, while the opposite condition was valid when the theoretical 
vorticity of the duct was large. The efficiency of the ducted propellers was 

somewhat lower than that predicted by the theory (see Fig. 10). 
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Table 3 
Important Design and Test Data for Ducted Propellers 

Common design data 

Total thrust coefficient ........2+5--+2+ eee K rr = 0.278 
PRAVANCONEAEIO c20d aos. wari aes one a) sence oere sue etm a) = 0,412 

INUMbeTIOMbDIAGeS# .rces cucien ne eno neien cmec sec -Melrs fens z = 09 

Hub Glametetr.S les S. 6 ic o.5 Sere a oe a oy oe, cee XH =)0, 186 

Mean line of blade sections = :.. . c.0cse Sooo. wee NACA a= 0.8 

Thickness distribution of blade section......... NACA 16 

Model propeller diameter. .......-.+c2eeeee5 ° = 

Cavitation Maron. 6 6s 6 sie «62 spice et eke aces = 

Duct thrust Kyp/Kyp7-+-+-- 

Blade area ratio 4p/d4y ....- 
Pitch ratio P/D at x = 0.7.. 
Camber f _/1 of the blade 

; é 
Sections al x — 0.1 ....2. ; 

Hence the design method seems to function satisfactorily under the condi- 

tions tested, as long as no Separation phenomena occur. 

The most extreme ducted propeller, which theoretically should have given a 

duct thrust of K7)/K;, = 0.45, suffered from flow separation inside the rear part 

of the duct, which decreased Krp/Ky7 to 0.29. The separation was detected in a 

series of flow visualization studies, which were carried out using a quartz lamp 

illuminating small air bubbles in the flow through a narrow slit. 

To investigate the sensitivity of the co-operation between duct and propel- 

ler, some of the ducts were also tested together with propellers originally de- 

signed for other ducts. At the design K7;7/J? both the duct thrust and the propel- 

ler efficiency were decreased considerably, if the pitch ratio of the propeller 

was lower and the camber of the blade section higher than the design values, see 

Fig. 10. In one case of two this was also true when the pitch ratio was higher 

and the camber lower than the design values. The flow visualization studies in- 

dicated that the probable reason was flow separation inside the rear part of the 

duct. 

Flow separation outside the ducts was recorded only at values of K,,/J? 
lower than the design value. 
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Duct D6 

Bre 6.9. 1 Omi aver a — 

Fig. 9 - The shapes of the four ducts testsd 

Table 4 

Comparision Between Computed and Measured Ducted Propeller 
Characteristics at the Design Point K,,/j? = 1.64 

Ducted propeller No. P1313 D4 | P1314 D5 | D1315 D6 | P1316 D7 

Advance Design 0.412 0.412 
ratio Measured 0.422 0.443 

Deviation in % +2.4 +7.5 

Calculated 

Measured 

Deviation in % 

Duct Krp Design 0.15 

thrust K__ TT Measured 0.20 
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Fig. 10 - Efficiency of the different ducted 
propellers at the design value of any a ies 

For geometrical data of propellers and 
ducts, see Table 3 and Fig. 9. 

5. CALCULATION OF OPTIMUM PROPELLER 
EFFICIENCIES AND DIAMETERS 

5.1. Contrarotating Propellers 

Below diagrams showing the optimum relations between speed, number of 
revolutions, thrust, and diameter will be given for contrarotating propellers. It 
might, however, be of interest to look first into the reasons sometimes given 
why better efficiency should be expected with a set of contrarotating propellers 

than with the corresponding single propeller of the same diameter, developing 
the same thrust at the same number of revs. The main reasons for an improve- 

ment in efficiency should be: 

(1) The load is distributed over two propellers instead of one. 

(2) The rotational losses from the forward propeller are more or less 

nullified by the aft propeller (tangential interference). 

These conditions are illustrated in Fig. 11. This figure shows the calculated 
values of the propeller efficiency at the design advance ratio for the four sets of 

propellers mentioned in Sec. 3. From the diagram in Fig. 11 it is evident that 
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02 
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Advance ratio J 

Fig. 11 - Different approximations when calculating the propeller 
efficiency for contrarotating propellers 

the factor (1) above should be the most important reason for an improvement. 

From Fig. 11 it is, however, also evident that, when the propellers are placed 
behind each other, the beneficial influence of the factors mentioned above are to 
a large extent compensated by the axial interference between the propellers. 

Thus, the open-water efficiency of the contrarotating propeller set is only 

slightly better than that of the corresponding single propeller. 

In Fig. 12 open water test results of the four sets of contrarotating propel- 
lers, described in Sec. 3, are given. Based on this material, curves giving the 
open water-efficiency and advance ratio for optimum propellers are presented 
in Figs. 13 and 14, together with the corresponding values for conventional pro- 
pellers. The results for the conventional propellers have been reproduced from 
(1). In Fig. 13 the comparison is based on sK,/Jj?, i.e., equal diameter for the 
same load, while Fig. 14 gives the same comparison on the basis of ( (4 = K VE Ky/J* Ve K7/J*), 

» at the equal number of revs. for the same load. From the diagrams the 

Ouest conclusions can be drawn: 

(1) Compared with a conventional propeller at the same number of 
revs., about 20% smaller optimum diameter is obtained with the contrarotating 
propeller set. The open-water efficiency is about the same in the two cases, or 

slightly lower for the contrarotating case. 
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Fig. 12 - Results of open-water tests with 
contrarotating propeller family 

(2) Compared with a conventional propeller at the same diameter, 

about 35% lower optimum number of revs. is obtained with the contrarotating 

propeller. A gain in open-water efficiency of the order of 5-7% is obtained with 

contrarotating propellers under these conditions. 

5.2. Ducted Propellers 

On merchant ships the duct is introduced primarily to increase the propel- 

ler efficiency. To obtain this, the duct must be formed in such a way that the 

axial velocity at the propeller disk is increased, which means that the duct is 

taking over some part of the thrust from the propeller. If the duct vorticity, 

which determines the duct-induced velocity, is increased too much, however, the 

diffusor angle at the rear part of the duct internal surface becomes so large that 

the flow separates and the efficiency decreases. Thus, for a given total thrust, 

there exists a certain duct vorticity which gives maximum values of duct thrust 

and propeller efficiency. 

In the experiments mentioned in Sec. 4.2., the total thrust was kept con- 

stant, while the thrust of the duct was varied systematically. Maximum values 

of duct thrust and propeller efficiency was obtained with duct D6 (see Figs. 9 

and 10), which had a diffusor angle of about 8.5°. The calculated ratio between 

the wake area A, and the disk area A, was 4,/A, = 1.086. 

1283 



1.0 

08 

06 

0.4 

1.0 

08g 

06 

0.4 

02 

Lindgren, Johnsson and Dyne 

Q7 

20 

03 

Contra-rot. family 

3 Kr 4 

d) 
2 

Fig. 13 - Comparison between optimum efficiencies 
and diameters of contrarotating and conventional 
propellers. = K,/Jj? as basis. 

O7 

0 

OG 

Os 

O4 

Fig. 14 - Comparison between optimum efficiencies and 
diameters of contrarotating and conventional propellers. 
4 

Ky as basis. 

1284 



Ducted and Contrarotating Propellers on Merchant Ships 

On basis of these experimental results, a series of "optimum" ducted pro- 
pellers has been calculated for loads which can be of interest for merchant 
ships. At the Sg TES advance ratio J,,,, the total thrust coefficient was found 
to be the same, K,, = 0.246 for all ducted propellers. The ducts had a length 

L/D = 0.5 and a maximum thickness t)/L = 0.14. The thickness distribution 
was similar to NACA 0015. The ratio 4,/4, was 1.10, which means a diffusor 
angle of about 8.5°. The results of the calculations are given in Table 5. 

Table 5 

Shock free 

entrance 

—O— Ss A /Ag =110; varying load \ 
—— 

Aew/Ag = 1.42 . TK 7/4 =1.76; varying duct thrust 
= E 

/L Krp/Kr 77 0.45 ® Ducts tested by van Manen [8] 
ee 

Vip de = 224 
Qlo Krp/Krr = 0.33 

0.05 

@ e 

Kr /s4 =0.77 Aaw/Ag =288 
Krp/Krr = 015 

0° oe 10 15° &p 

Fig. 15 - Different relations between camber and geometrical 
angle of attack for duct profiles 

For the same number of revolutions, the optimum propeller diameter was 
7% less, and the maximum diameter of the duct 7-15% greater than the optimum 

diameter of a conventional propeller. 

The calculated efficiency of ducted propellers with 4/4, = 1.10 ("optimum") 
and A,/A, = 1.00 (smaller diffusor angle) is given in Fig. 16, where a comparison 
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0.8 

—-—- Conventional propellers 

——-- Ducted propellers Ka- 4.70; van Manen [8] 
—@®@— Ducted propeller P1315 D6; L/D-Q5;A /Ao- 064; 2:5; SSPA [17] 

x 
D ’ ’ he <\ —e— Ducted propellers Aq/Ag = 1.05 } calculated 

. ar | —4— Ducted propellers Aco/Ao =100} L/D=Q5; AplAg 0.60; z:5 

| | 
0.6 

| 
| 

| 

Limit for pee 
0 on the externol 

5 surface of the duct 

O4 ae = AN ee 

1.0 15 20 2S. 4 TT 30 

J 

Fig. 16 - Comparison between optimum efficiencies of 
ducted and conventional propellers 

with conventional propellers can be made. The experimental efficiencies of 
SSPA ducted propeller P1315 D6 (see (17)), and of ducted propellers tested by 
van Manen (8) are also given. From Fig. 16 the following conclusions can be 
drawn: 

(1) It seems to be possible to design ducted propellers with higher ef- 
ficiency than conventional propellers, also at low loads. For the "optimum" 
ducted propellers the lower limit for efficiency gain is 

VK ep] ES th 

which means Bu ~ 16 or Bp = 20. 

(2) The gain in efficiency due to the duct increases with increasing 
load. Unfortunately it is not yet possible to make a fair comparison based upon 
equal strength, vibration, and cavitation characteristics between different pro- 
pulsion systems. However, a comparison has been made with the conventional 
propeller series SSPA 5.60 and NSMB B.4.70 in Fig. 16. 
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(3) If 4,/A, is decreased from 1.10 to 1.00, which means that the dif- 
fusor angle decreases from 8.5° to 3°, a loss in efficiency of about 2% is 
obtained. 

(4) On heavily loaded ducted propellers, higher efficiency is obtained 

for large duct lengths. This is probably due to the fact that larger values of 
A,/A, can be used with longer ducts. 

(5) If a ducted propeller is tested at loads considerably lower than the 

design load, the flow separates from the duct external surface and the efficiency 
decreases. 

All the ducts calculated at SSPA are intended to have a shock-free entrance at 
the design point. The angle «, between nose-tail line of duct profile and propel- 
ler shaft and the camber fp)/L of the different ducts are shown in Fig. 15. Cor- 
responding values for the ducts tested by van Manen (8) are also given. 

It is interesting to note that the angle ap) is larger for the ducts tested by 

van Manen than those designed at SSPA. If, for a given total load, ap of the duct 
is larger than the value valid for shock-free entrance, a peak of low pressure is 
developed on the external surface of the fore part of the duct. Since this low 

pressure must be followed by a pressure increase for a flow-accelerating duct, 

too-large values of a) mean an increasing risk for separation on the external 

surface of the duct [compare point (5) above]. 

6. PROPULSIVE COEFFICIENTS 

6.1. Projects Investigated 

Most of the results discussed in this section have been obtained from self- 
propulsion tests with models for two projects, one tanker of about 150 000 tons 
DW and one fast container vessel of about 12 000 tons DW. Main dimensions of 
these two projects are given in Table 6. In the case of the tanker two conven- 

tional propellers, calculated for different numbers of revs., were tested as well 
as three sets of contrarotating and six different ducted propellers. In the case 
of the container vessel only two conventional propellers, designed for the same 
number of revs., and two sets of contrarotating propellers were tested. The 
different stern arrangements of the tanker and the container vessel are shown in 
Figs. 17 and 18. From the figures it can be seen that in both cases conventional 
afterbody shapes were used. 

Table 6 

Displ. | Length |, /8 | B/T | Speed 
, L P 

Project PP 

pe fn || foots | oe | 
Tanker 180,000 283 2.6 | 16:5 30,000 38.6 
Container 19,000 156 2.7 | 23.0 25,000 24.0 
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#0 #1/2 #/] #112 #2 
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Contrarot. prop. arr. Conv. prop. orr. 

Fig. 17 - Tanker project. Stern arrangements. 

6.2. Tanker Project 

The results of the self-propulsion tests, carried out with the tanker model 
are given in Table 7 and in Fig. 19. A certain caution is recommended when 
examining the results for two reasons: 

(1) From earlier studies the optimum diameter of a conventional pro- 
peller in behind condition was known approximately, and the diameters of the 
two conventional propellers were determined with this in mind. It is difficult to 

judge, however, if the diameters of the contrarotating and ducted propellers 
tested were optimum. 

(2) Due to the large scale factor, the advance velocity of the propel- 

lers is low and thus the thrust and torque values recorded are small. This may 
influence the accuracy of the measurements, particularly in the case of the 

torque of the contrarotating propellers. 

Bearing this in mind the following conclusions can be drawn from Fig. 19 
and Table 7: 

(1) The gain in efficiency for the best set of contrarotating propellers 
P1250-P1251 is about 6% compared to a conventional propeller at the same 

number of revs. 
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#0 #] #2 #3 
Controrot. prop. arr. 

THO) La 
Conv. prop. arr. 

Fig. 18 - Container vessel project. Stern arrangements. 
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Fig. 19 - Tanker project. Results of 
self-propulsion tests. 
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(2) The other sets of contrarotating propellers are comparable with 
the conventional propeller. The main difference between P1250-P1251 and the 
other contrarotating propellers is a larger diameter (see Table 7). The results 

seem to indicate that the optimum diameter in behind condition is larger than in 
open water. Compare Figs. 14 and 19. Another difference is, however, that the 
propellers P1250-P1251 have a circulation distribution, which gives more load 
near the blade tips, i.e., a larger value of Devgel tg Further, the blade area 

ratio is smaller. 

(3) The gain in efficiency for the best ducted propeller P1315 D6 is 

about 7.5%, compared to a conventional propeller at the same number of revs. 

(4) The relation between the efficiencies of the different ducted pro- 
pellers is approximately the same, when tested in open water (Fig. 16) and in 
the behind condition (Fig. 19). Thus, duct D5 gives lower efficiency than duct 
D6 and for the same duct the propeller, which is designed together with the 

duct, generally has the best efficiency. 

The different propulsive coefficients calculated by established methods are 
given in Table 7. By way of comparison the effective wake fraction and associ- 
ated factors are determined, asSuming thrust as well as torque identity. As 
shown, great differences between the two methods are obtained, both for the 
contrarotating and the ducted propellers. A comparison with the results of the 

conventional propellers indicates that the thrust-identity method generally gives 

more consistent results. 

A comparison of Fig. 19 with Fig. 14 shows that, for contrarotating propel- 
lers, a great part of the final gain in efficiency, which is obtained at the self- 
propulsion tests, must be attributed to improvement of the propulsive coeffi- 
cients 7, (i.e., w and t) and 7p. If the thrust-identity assumption is used, both 

ny and np are larger than for a conventional propeller, in spite of the slightly 

higher thrust deduction factor t. See Table 7. 

The reason for the slightly higher thrust deduction factor + in the contra- 
rotating case might be the fact that the thrust coefficient kK,/j? is smaller in 

this case than for the corresponding single-propeller case. 

Also on the relative rotative efficiency 7p of the contrarotating propellers 

an influence of the thrust coefficient can be noticed, working in the direction that 
nr increases as the thrust coefficient decreases. This might be one of the ex- 
planations of the fact that the optimum diameter in behind condition seems to be 

larger than in open water. 

The gain in efficiency for the ducted propellers compared with a conven- 
tional propeller at the same number of revs. (Fig. 19) was lower than could be 
expected from the open water tests, Fig. 16[(k,,/J*)!/4 = 2.3]. The main rea- 
son for this is lower values of the hull efficiency 7, (lower wake fraction w, 
and higher thrust deduction factor t). The relative rotative efficiency np was 
similar to that of a conventional propeller, and the thrust of the duct K7)/K;;Wwas 
about the same as in the open-water tests. 

1291 



Lindgren, Johnsson and Dyne 

Further self-propulsion tests may show if it is possible to improve the hull 

efficiency of a ducted propeller arrangement by introducing some kind of Hogner 

stern, as proposed by van Manen (5). 

6.3. Container-Vessel Project 

The results of the self-propulsion tests, carried out with the container- 

vessel model, are given in Table 8 and in Fig. 20. 

Table 8 
Container-Vessel Project. Propulsive Coefficients. 

Conventional Contrarotating 
propellers propellers 

P1319 P1252 
Prop. No. P1241 P1348 P1253 

Diam, m 

Prop. type 

Blade area ratio 

identity 

Torque 

identity 

| pive-bladed aft propeller 

The diagram in Fig. 20 shows that the gain, when using contrarotating pro- 
pellers, is in this case about 12%, compared to the single propeller, intended to 
be used for the project. Compared to a stock propeller, having too-short outer 

blade sections from the point of view of cavitation, the gain is about 10%. In 
contrast to what was the case for the tanker model, the scale factor is in this 
case not very large and the advance velocity of the propellers not particularly 

low. Thus, the accuracy of the measurements can be expected to be better and 

the results more reliable. The reasons for the gain in efficiency, obtained in 
the present case, are somewhat different from those mentioned in connection 
with the case of the tanker. In the present case, the diameter of the propeller 

was limited to 6 m. Thus, the comparison with the single propeller is one, 
based on constant k,/j?. Figure 13 shows that under such circumstances a gain 
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Fig. 20 - Container-vessel project. Results of 
self-propulsion tests. 

in open-water efficiency of the order of 5-7% can be expected. This gain, to- 
gether with the better value of the relative rotative efficiency, makes the im- 
provement as large as 12% in the present case, in spite of the lower value of the 
hull efficiency. 

7. CAVITATION AND VIBRATION STUDIES 

As mentioned above, in addition to the efficiency it is also necessary to dis- 
cuss cavitation and vibration properties when comparing the merits of different 
propeller arrangements. Although these questions have not been finally treated 

in connection with the investigation mentioned above, some preliminary experi- 

ments have been carried out in order to illustrate the situation. The experi- 

ments include cavitation studies in uniform flow with all the propellers, cavita- 

tion experiments in irregular flow distributions with some of the contrarotating 

propellers and introductory studies of local pressure variations on the afterbody, 

induced by contrarotating propellers. 

7.1. Cavitation Inception in Uniform Flow 

Some indication about the danger for cavitation with different propellers 

might be obtained from the studies of incipient cavitation. 

Tanker project. For the tanker project three different sets of contrarotat- 
ing propellers have been tested, as mentioned in Sec. 6. They differ primarily 

with regard to diameter, radial pitch distribution, and blade area ratio (see 
Table 7). Curves for incipient cavitation phenomena, including tip vortex, back, 
and face cavitation, are presented in Fig. 21. All the curves are fairly favour- 

able in comparison with corresponding curves for conventional SSPA 5.60 

1293 



Lindgren, Johnsson and Dyne 

Prop. No. RPM P IP, 

40 (165 knots) (FES proX) 
4 PI123 90 1.0 

N PII72 112 1.0 
oO P1250, P1251 84 099 

Non-cavitating region P1313 = 0.67 
| Oe OSS P1315, D6 107 0.86 

PIS7O Fi3z7i 83 069 

30 

P1250 P!25! (Contrarot.) 

P1315 D6 
(Ducted) 20 

21370 P1371 (Contrarot.) 

10 SS \\' Zip vortex and back 

sheet cavitation 

HMM Bock bubble cavitation 

4/1/1¢ Foce cavitation 

Tie 
“te, 

O 2000 4000 6000 8000 10000 12000 

T[Va2 

Fig. 21 - Tanker project. Incipient cavitation curves. 

propellers, P1172 and P1123. The advantage in decreasing the load near the tip 
is, however, obvious, i.e., the radial circulation distribution appears to be the 
most important parameter. 

A great number of ducted propeller configurations have been tested for the 

same project (See also Sec. 6). The cavitation test results are described in 
more detail in (17). It is concluded that most of these propellers are compara- 
ble with the conventional propellers with regard to cavitation properties. 

In Fig. 21, also, the best ducted propeller from an efficiency point of view, 
P1315 D6, is compared with the other types of propellers with regard to incipi- 
ent cavitation. A curve representing a conventional propeller, designed by use 
of the vortex theory, P1313, is included for comparison. Both P1315 D6 and 
P1313 have considerably better cavitation properties than the SSPA 5.60 pro- 

pellers. 

Container-vessel project. For the container project only contrarotating 
and conventional propellers have been investigated. Curves of incipient cavita- 
tion for a conventional SSPA 4.60 propeller and the contrarotating set of propel- 
lers from the systematic series, described in Sec. 3, have been presented in 
Fig. 22, together with a set of wake-adapted, contrarotating propellers, P1319, 
P1348. Also in this case a slight advantage with contrarotating propellers was 

obtained in comparison with the SSPA 4.60 propeller. 

1294 



Ducted and Contrarotating Propellers on Merchant Ships 

20 1 

15 

Non-cavitating region 
PISI9 P1348 
(Controrot.) 

10 

La» 

P1252 P1253 

(Contrarot.) 

Prop. No. RPM Po95/fo7 

(23 knots) {Forw. prop.) 

P1032 139 1.00 

Ss P1252 P1253 94 087 

> PIZI9 P1348 84 0.92 

5) —+ a eS L AN 

( WYO. 7ip vortex and back 
S sheet cavitation 

Ulli Face cavitation 

O 

O 1000 2000 3000 4000 5000 

Fig. 22 - Container vessel project. Incipient cavitation curves. 

7.2. Cavitation in Irregular Flow 

Most of the contrarotating propellers used in connection with the tanker and 
container projects have been tested in two different wake distributions in the 

cavitation tunnel. The model wake for the two projects was simulated by the aid 
of a combination of transverse wire meshes and a longitudinal centre line plate. 

The results of the experiments are exemplified in Figs. 23 and 24, repre- 
senting the tanker and container vessel projects respectively. In both figures, 
the cavitation patterns of the set of contrarotating propellers having the best 
efficiency are compared with those obtained with a conventional propeller from 
the SSPA propeller family. From these studies it can be concluded that no bub- 

ble cavitation or any other kind of cavitation, which is supposed to cause ero- 

sion, was observed on any of the propellers. The only exception is the cavita- 
tion which occurs where the tip vortex from the forward propeller hits the aft 

propeller. Other studies in the cavitation tunnel have shown that this may cause 
serious problems. It seems to be necessary to eliminate this risk, either by a 
further decrease of the diameter of the aft propeller in relation to the forward 
propeller, or by further unloading of the propeller tips of the forward propeller. 
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Contrarot. propeller (84 RPM) Single propeller (112RPM) 

Forward prop. No. P1250 Aft prop. No. P1251 Prop. No. P1172 

Fig. 23 - Tanker project. Results of cavitation tests in irregular flow. 

7.3, Local Pressure Fluctuations Induced on the Afterbody by 
Conventional and Contrarotating Propellers 

In many cases studies have been carried out at SSPA in order to determine 
the pressure fluctuations on the afterbody induced by the propeller. Unfortu- 
nately, experiments of this kind have not yet been carried out with the two proj- 

ects discussed above. To throw some light on these problems, two diagrams 
are, however, presented, Figs. 25 and 26. The first diagram illustrates the in- 
fluence of the number of propeller blades on the pressure fluctuations at some 
critical spots in the aperture. This influence is obvious. Thus an increase 
from 4 to 6 blades decreases the amplitude by more than half of the original. 
From Fig. 26 it is evident that the pressure amplitudes from the contrarotating 

propellers are somewhat lower than those from a conventional, single propeller. 

With the conventional twin-screw arrangement still lower amplitudes were re- 

corded. 

1296 



Ducted and Contrarotating Propellers on Merchant Ships 

Contrarot. propellers (94RPM]) Single propeller (139RPM) 

Forward prop. No. PI319 Aft prop. No. P1348 Prop. No. P1032 

Fig. 24 - Container-vessel project. Results of 
cavitation tests in irregular flow. 

8. CONCLUSIONS AND FURTHER INVESTIGATIONS 

From the results presented above it may be concluded that: 

(1) The contrarotating propellers of this investigation show slightly 

lower values of open-water efficiency than the conventional propellers, when the 
comparison is based on the same number of revs. and optimum propeller diam- 

eter is assumed in both cases. (See Fig. 14.) In the case of a 150 000 TDW 
tanker a corresponding comparison in behind condition resulted, however, ina 
gain in propulsive efficiency of about 6% for the contrarotating propellers (see 
Fig. 19). The main reason seems to be more favourable values of n, and np. 
(See Table 7.) 

(2) If the diameter is limited for some reasons (see Fig. 18) but opti- 
mum number of revs. can be used, the comparison between different types of 

propellers must be based on the same value of K7/j?. Under these conditions a 

gain in open water efficiency of about 5-7% was obtained for contrarotating pro- 

pellers, compared to conventional propellers (see Fig. 13). In the case of a 
12 000 TDW container vessel, a corresponding comparison in behind condition 
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Fig. 25 - Pressure amplitudes. 
Influence of number of blades. 

resulted in a gain in propulsive efficiency of about 12%, in spite of a slightly 
lower value of n,. (See Table 8.) 

(3) The ducted propellers generally had higher open-water efficiency 
than the conventional propellers at the same number of revs. The gain in effi- 
ciency increased with increasing thrust coefficient (see Fig. 16). In the case of 
a 150,000 TDW tanker a corresponding comparison in behind condition resulted, 
however, in a gain in propulsive efficiency of only 7.5%, which is less than could 
be expected from the open-water tests. The main reason seems to be a lower 
hull efficiency 7, . 

(4) There is no doubt that further work on the afterbody lines, in order 

to improve the propeller-hull interaction, is of the utmost importance, particu- 
larly for ducted propeller arrangements. Thus, tests carried out by van Manen 
with ducted propellers in combination with different types of Hogner sterns have 
given promising results (5). 
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Fig. 26 - Pressure amplitudes. Comparison 
between different propeller arrangements. 

(5) The conventional way of splitting up the propulsive coefficients ap- 
pears to be less suitable for unconventional propulsive devices. 

(6) The cavitation properties of contrarotating and ducted propellers 
seem to be similar to or better than those of the corresponding conventional 
propellers. In the contrarotating case, however, there is a risk that the cavi- 
tating tip vortex from the forward propeller might cause erosion on the aft pro- 
peller. 

(7) The investigations with ducted propellers have to be completed 
with further cavitation-tunnel experiments. 
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(8) A series of "optimum" ducted propellers analogous to the family 

of contrarotating propellers, will be manufactured and tested (see Table 5). 

(9) The questions concerning vibratory forces, maneuverability, and 

stopping and backing ability require further studies. 
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LIST OF SYMBOLS 

A 7D? o- f= qo = propeller disk area 

A, = ultimate wake area 

Ap = developed blade area 

w I beam of hull 

K 
33:48) 

P Je 

& i 

Taylor variables 
(salt water) 

K 
B, = 13.3609/24 

4 

D = propeller diameter 

f = camber of blade sections 

fy, = camber of duct profile 

G = — = non dimensional blade circulation coefficient 
A 

Va 
J" ="5., _= advance ratio 
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xy 

= = torque coefficient 
Pp. n 

1p pon 
or: = thrust coefficient 
p 

length of blade section 

length of duct 

length of hull between perpendiculars 

number of revolutions 

static pressure at propeller shaft 

vapour pressure 

propeller pitch 

torque 

radius 

= propeller radius 
NIS 

total resistance 

Rr z = thrust deduction factor 

total thrust 

duct thrust 

draught of hull 

Vaal _ Taylor wake fraction determined from torque and 

V ~ thrust identity, respectively 

speed of model 

speed of advance of propulsion system 

r/R 

nondimensional hub radius 
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1R 

As Index 

D- Py 
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number of blades 

scale factor 

angle between nose-tail line of duct profile and propeller shaft 

circulation 

propulsive coefficient 

open water efficiency 

hull efficiency 

relative rotative efficiency 

mass density of water 

= cavitation number 
uf V 2 
2 P YA 

forward 

aft 

total 

duct 

REFERENCES 

1. Lindgren, H., Bjarne, E., ''The SSPA Standard Propeller Family. Open 
Water Characteristics," Publ. No. 60 of the Swedish State Shipbuilding Ex- 
perimental Tank, Gdteborg, 1967. 

2. Hadler, J.B., Morgan, W.B., Meyers, K.A., "Advanced Propeller Propulsion 
for High-Powered Single-Screw Ships," Trans. SNAME, Vol. 72, pp. 231-293 
(1964). 

3. Pien, P.C., Strom-Tejsen, J., ''A Proposed new Stern Arrangement," Naval 
Research and Development Center, Report 2410 (1967). 

4. Lindgren, H., 'Hydrodynamiska aspekter pa motroterande propellrar," The 
Swedish State Shipbuilding Experimental Tank (SSPA), General Report 24 

1302 



10. 

11, 

12. 

13. 

14, 

15. 

16. 

17, 

Ducted and Contrarotating Propellers on Merchant Ships 

(1967) (In Swedish). See also "Hydrodynamic Aspects of Contra-Rotating 
Propellers,"' Shipping World and Shipbuilder, Nov. 1967. 

van Manen, J.D., Oosterveld, M.W.C., Witte, J.H., 'Research on the Ma- 
noeuverability and Propulsion of Very Large Tankers," Trans. 6th Naval 
Hydrodynamics Symposium, Washington (1966). 

Minsaas, K., 'Large Tanker Propulsion Research," Shipping World and 
Shipbuilder, p. 832, June 1967. 

English, J.W., Grant, S., Poulton, K., "Mammoth Tanker Propulsion with a 
Ducted Propeller System. Experiment Results,'' National Physical Labora- 
tory, Ship T.M. 121, March 1966. 

van Manen, J.D., Oosterveld, M.W.C., "Analysis of Ducted-Propeller De- 
sign,'' Trans. SNAME, Vol. 74, pp. 522-562 (1966). 

Lerbs, H.W., 'Contra-Rotating Optimum Propellers Operating in a Radially 
Non-Uniform Wake,"' DTMB Report 941, May 1955. [See also 'Uber gegen- 
laufige Schrauben geringsten Energieverlustes in radialen ungleichformigen 
Nachstrom," Forschungsheft fiir Schiffstechnik, Heft 9, April (1954)|. 

Morgan, W.B., ''The Design of Counterrotating Propellers Using Lerbs' 
Theory,'' Trans. SNAME Vol. 68 (1960). 

Johnsson, C.-A., 'Comparison of Propeller Design Techniques,'' Fourth 
Symposium on Naval Hydrodynamics, Washington, D.C., 1962. (ONR. 
ACR-92) See also Publ. No. 52 of the Swedish State Shipbuilding Experi- 
mental Tank, Gdteborg, 1963. 

Tachmindji, A.J., ''The Axial Velocity Field of an Optimum Infinitely Bladed 

Propeller,"" DTMB Report 1294, Jan. 1959. 

Pien, P.C., "The Calculations of Marine Propellers Based on Lifting- 
Surface Theory,'' Journal of Ship Research, Vol. 5 (1961). 

Johnsson, C.-A., 'On Theoretical Predictions of Characteristics and Cavi- 
tation Properties of Propellers,'' Publ. No. 64 of the Swedish State Ship- 

building Experimental Tank, Gdteborg, 1968. 

Dyne, G., ''A Method for the Design of Ducted Propellers in a Uniform 
Flow," Publ. No. 62 of the Swedish State Shipbuilding Experimental Tank, 
Goteborg, 1967. 

Dickmann, H.E., Weissinger, J., ''Beitrag zur Theorie optimaler Dusen- 
schrauben (Kortdiisen), Jahrbuch STG, Bd. 49 (1955). 

Dyne, G., 'An Experimental Verification of a Design Method for Ducted 
Propellers,'' Publ. No. 63 of the Swedish State Shipbuilding Experimental 
Tank, Goteborg, 1968. 

1303 



Lindgren, Johnsson and Dyne 

DISCUSSION 

M.W.C. Oosterveld 

Netherlands Ship Model Basin 

Wageningen, Netherlands 

The investigations presented in the paper under discussion are a valuable 
contribution to the attempts of providing merchant ships with superior propul- 

sion devices. I would like to make a comparison between the ducted propeller 
work given in the paper and performed at the N.S.M.B.. 

Extensive investigations performed by van Manen at the N.S.M.B. concern- 
ing ducted propellers with nozzles of the accelerating-flow type have led to the 
development of a standard nozzle (nozzle no. 19A) which meets a number of 
practical requirements. It has an axial cylindrical part on the inner side of the 

nozzle at the location of the screw, the outside of the nozzle is straight, and the 
nozzle has a relatively thick trailing edge. In addition, screw series especially 
for use in this nozzle, were developed (the K, screw Series). The screws of 

this series have wide blade tips (attractive with regard to cavitation), uniform 
pitch, and flat face sections. Experimental investigations have shown that this 
screw type is as good as theoretically calculated screws with regard to effi- 

ciency and cavitation. Besides, they have reasonable stopping qualities. 

The open-water test results of nozzle no. 19A in combination with the K , 

4-55 screw series are given in Fig. Dl. It can be seen from this diagram that 
at a design coefficient C; = 4.17 (corresponding with the design loading of the 
ducted propellers given in the paper), the optimum ducted propeller with regard 
to efficiency has an efficiency 7, = 0.53, an impeller thrust total thrust ratio 
+ = 0.72, while the impeller has a pitch ratio P/D = 0.88. The values of Ny and 
t are of the Same magnitude as found for the best nozzle of the series given in 

the paper under discussion. 

Not clearly given in the paper is the way in which for given speed and thrust 

the optimum impeller diameter or rpm with regard to efficiency of the ducted 
propellers were determined. For instance, if for a systematic series of nozzles, 

the diameters of the impellers are chosen equal, then the optimum rotation 

speeds with regard to efficiency will certainly not be equal. In the paper, all the 
ducted propeller systems have equal impeller diameters and rpm's, and, conse- 

quently, these systems will not be optimum. This fact has also been shown in 

Fig. 10 of the paper. From this diagram it can be seen that only duct D6 and 
screw P1316 form more or less an optimum combination from the standpoint of 

efficiency. 

The conclusion in Sec. 5.2 of the paper that the N.S.M.B. nozzles suffered 
from flow separation at the exterior surface of the nozzle at low screw loads, 
due to the relatively large angle a, (between nose-tail line of the nozzle profile 
and the propeller shaft), must be considered with caution. The risk of flow 

separation on the nozzle depends on the complete shape of the nozzle profile de- 

termined by ap, the camber ratio, the location of the maximum camber, and the 
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Fig. Dl - Open water test results of kK, 4-55 screw series in nozzle No. 19A 

thickness ratio, and thickness distribution of the nozzle profile. The optimum 
relationship between the efficiency 7 = and the thrust coefficient (K7/J*)!/4 is 

shown in Fig. 2 for the N.S.M.B. nozzle no. 19A and the SSPA duct D6. In addi- 
tion the nozzle shapes are presented in this diagram. From Fig. D2 it can be 
seen that the standard nozzle no. 19A of the N.S.M.B. has better characteristics 

at low screw loads than the SSPA duct, in spite of a larger angle ap. 

For a propeller operating in the wake of a ship, the intake velocity will be 

lower in the upper part of the screw disk than in the lower part. Consequently, 

the propeller is relatively more heavily loaded in the upper part of the screw 

disk. The inflow velocity can be made more constant over the screw disk by 

surrounding the propeller by a noncylindrical nozzle which is adapted to the 
wake distribution and the flow direction as occur behind the ship. A view of the 

stern of a tanker equipped with a noncylindrical ducted propeller is given in 

Fig. D3. The noncylindrical nozzle is at the inside of the nozzle still cylindrical 
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Figure D2 

from the leading edge of the nozzle to the impeller, only the aft part of the noz- 
zle is made noncylindrical. The outside of the nozzle is straight. 

Tests performed at the N.S.M.B. with tanker models equipped with non- 
cylindrical ducted propellers have shown that with this arrangement reductions 
in SHP can be obtained for a conventional afterbody which are of the same order 
as found for a Hogner type stern with cylindrical nozzle. The noncylindrical 
ducted propeller offers a definite means of minimizing propeller-induced vibra- 
tion and cavitation problems due to the homogenizing effect of the noncylindrical 

nozzle on the inflow velocity of the propeller. 
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Fig. D3 - View of stern of tanker with non-cylindrical ducted propeller 

Finally, it may be noted that application of the noncylindrical ducted propel- 
ler also offers a means of improving the propulsion characteristics of already 

existing ships without expensive alterations of the hull shape. There is no doubt 

that further work on noncylindrical ducted propellers for tankers is of utmost 

importance. 
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DISCUSSION 

A. Emerson 

University of Newcastle-on-Tyne 
Newcastle, England 

I would like to add to the list of references on contrarotating-propeller re- 

sults and then make one or two comments. 

For the high-speed cargo ship, particularly the container ship, the change 
from Single- to twin-screw propulsion leads to considerable loss of cargo space 

and requires a different, bigger ship. For this reason, Stone Manganese Marine 
investigated the engineering and hydrodynamic problems of contrarotating- 

propeller drive. The result for a ship similar to that described by the authors 

was given before a meeting of the Institute of Marine Engineers in January of 
this year (L. Sinclair and A. Emerson, ''The design and development of propel- 

lers for high-powered merchant ships"). The model self-propulsion results 
were given in the discussion by Mr. C.A. Lister of Vickers St. Albans Tank, be- 
cause they designed the excellent model instrumentation for S.M.M. and carried 

out the experiments. Briefly, a set of contrarotating propellers replaced the 

single propeller on a recently completed 22.5-knot cargo vessel, changing only 
the size of aperture. They showed a 10% increase in propulsive efficiency above 

the excellent result obtained with the single propellers. The diameter of the 

forward propellers was maintained the same as for the Single, and the design 

used optimum rpm. The contrarotating pair was designed using a method de- 
vised by Glover; the results showed the calculated improvement of 12% in effi- 
ciency of the propeller, but the increased aperture size caused a small increase 
in thrust-deduction fraction. Cavitation-tunnel observations suggested that the 
area of the propeller could be reduced; there are other alterations that are be- 
ing investigated. 

Turning now to the comments: We are used to the scaling differences be- 
tween the propeller results from the towing tank at relatively low Reynolds 
number and the results in the cavitation tunnel. But for contrarotating propel- 
lers with critical balancing of power between the forward and aft propellers, the 

question of designing for the model experiments and then redesigning for the 
ship becomes a very real one. 

A second observation from tunnel experiments is designing for a particular 

condition. 

Thirdly, in related experiments with tandem propellers on a tanker model, 
we have obtained consistent values when the total result is used, but the individ- 
ual thrust and torque results show peculiarities. Have the authors any com- 
ments ? 
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DISCUSSION 

V. Silovic 

Hydro-og Aerodynamisk Laboratorium 
Lyngby, Denmark 

At Lyngby, we use Cheng's development of Pien's theory for lifting-surface- 
effect calculations. To my knowledge, the authors use a simplified 0.8 mean- 
line representation. My question would be: What is their experience as to the 
comparison of the two? 

REPLY TO THE DISCUSSION 

H. Lindgren, C.-A. Johnsson, and G. Dyne 

After having listened to the discussion, the authors have come to the con- 
clusion that one of the most important results of the paper might be that it has 

initiated activities in different laboratories and brought a great deal of interest- 
ing material to common knowledge. In the case of the Dutch Tank, these activi- 
ties have been So intense that they went two days ahead of us in the end of the 

race by reading a similar paper without any advance announcement. 

With regard to the oral discussion by Dr. English and Mr. Minsaas, the re- 
sults they have presented are of the utmost interest and we regret that they have 

not given their discussion in a written form. We look, forward, however, to 
Seeing their material published. 

Mr. Oosterveld raises the interesting question about the relation between 
the ducted propellers designed in accordance with the SSPA design method and 

the systematic series of ducted propellers tested by van Manen. The number of 

unknown factors influencing the efficiency and the cavitation characteristics of a 
ducted propeller is of course much greater than for a conventional propeller. 
This means that the empirically based systematic series must be very extensive 

to ascertain that all factors have been considered. With the aid of a reliable de- 
sign method it is possible to come to a good result much faster and in a more 
controlled way. The influence of a number of factors can be clarified purely 
theoretically, and the experiments can be concentrated to investigate such diffi- 
cult problems as, for example, duct flow separation behind the propeller. In 

connection with this question, it is interesting to note that the values of geomet- 

rical angle of attack (a) = 8.8°) and camber ratio (fp/L = 0.062) of NSMB noz- 
zle no. 19A is much closer to the theoretical values for shock-free entrance 
than the earlier NSMB ducts plotted in Fig. 15. 
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As pointed out by Mr. Oosterveld, the optimum diameter of the different 
ducted propellers in our investigation must be different. Calculations carried 
out show, however, that the deviation from the optimum diameter means a loss 
in efficiency of less than about 2%. 

The authors agree with Mr. Oosterveld that the risk for flow separation on 

the duct depends also on the thickness of the duct profile. The reason why ducted 
propeller P1315 D6, which has a higher efficiency than NSMB nozzle at the design 
point, is less effective at lower loads is certainly its more slender duct profile. 

Since the wake behind a ship is nonuniform, it seems, at a first glance, to 
be natural to use noncylindrical ducts. The question is, however, \how to design 
the duct shape in this case. A local increase of the low velocities in the upper 

part of the screw disk will certainly make the inflow velocity more uniform, but 
this does not necessarily mean an increased propulsive efficiency. However, 
the NSMB tests with the noncylindrical ducts are very interesting, and we hope 
that there will appear a more detailed description of the investigation in a near 

future. 

Turning to Mr. Silovic's question, it is true that we use a simplified repre- 

sentation of the 0.8 mean line for our lifting-surface calculations. As described 
in Ref. (14), a constant distribution over 90% of the chord length is used, start- 
ing from the leading edge. Comparison with results of calculations using the 
true 0.8 mean-line distribution show very good agreement, and this is the rea- 
son why we have not yet used our limited programmer staff for completing the 

program in this respect. 

Mr. Emerson's summary of the Stone Manganese Marine investigation on 

contrarotating propellers is valuable, and it is interesting to note that the im- 

provements obtained with regard to propulsion efficiency and cavitation proper- 

ties are in good agreement with the results presented by the authors. 

The authors are not convinced that the balancing of power between the for- 
ward and aft propellers represents a critical problem. As a matter of fact, our 

results indicate an astonishingly small influence of the relation of power be- 

tween the two propellers, as could be seen, for instance, in Fig. 8. However, no 
doubt the scale-effect problem including Reynolds-number effects is very diffi- 
cult, and there are still many confusing problems to be solved. In connection 
with our experiments with the tanker, we tested one pair of contrarotating pro- 

pellers designed for the model case and one pair designed for the ship case. At 
the conventional self-propulsion experiments the "model'' pair was superior, but 

when we tried to carry out experiments at a J value corrected for wake scale 

effects the ''full-scale" pair gave better results. The scale effects are, how- 
ever, not known with sufficient accuracy and, furthermore, it is impossible to 

copy the full-scale case on a model in a quite true way. 

As mentioned in our paper, we have no experience of our own with regard 

to the application of tandem propellers. Furthermore, we do not know of any 

measurements that include individual thrust and torque readings. 
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COMPARISON OF THEORY AND 
EXPERIMENT ON DUCTED PROPELLERS 

Wm. B. Morgan and E. B. Caster 
Naval Ship Research and Development Center 

Washington, D. C. 

ABSTRACT 

The adequacy of the various theories in predicting the performance of 
annular airfoils and ducted propellers is discussed. Force data and 
pressure distributions are presented and conclusions are drawn as to 
the limitations of the theories. In general, the available theories can 
give an adequate prediction of the forces and the pressure distribution 
if no separation occurs on the annular airfoil and,in addition for ducted 
propellers, if a sufficient mathematical model of the propeller is used. 

INTRODUCTION 

Many studies have been made during the past few years of annular airfoils 

and of the uSe of annular airfoils as shroud rings around propellers. These 

studies have been both theoretical and experimental and have been directed to- 

ward application in both air and water. An extensive summary of this work was 

made by Burnell and Sacks (1) in 1960. 

Ducted propellers of two types have been investigated: (1) where the duct 
accelerates the flow at the propeller, and (2) where the duct decelerates the flow 
at the propeller. The first type is used for thrust augmentation; the second has 
been suggested for increasing the limiting Mach number of the propeller in air 

and for increasing the cavitation inception speed of the propeller in water. For 
these applications, the annular foil, or duct, is an integral part of the propulsor, 
and a theoretical treatment must consider the interaction between the propeller 
and duct. Because of the complexity of the problem, this interaction is consid- 

ered by an iterative procedure. 

The results of the various experimental studies have direct application to 
either air or water, providing the Mach number is not too high for the studies in 
air and cavitation does not occur for the studies in water. The theoretical stud- 
ies, of course, have application to any fluid, i.e., providing the mathematical 
model gives a reasonable approximation to the real flow. It is the purpose of 

this paper to discuss the adequacy of the various theories in predicting the ac- 
tual performance of annular airfoils and ducted propellers. Are the various 
theories adequate to predict the pressure distribution on the duct or to predict 

the duct and propeller forces? What are the shortcomings of either the theories 

or experiments and where does additional work need to be done? These ques- 

tions will be considered in the subsequent discussion. It is not the intent of this 
paper to present new data, but to synthesize comparisons already made. 
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In the following sections of the paper, the theory of annular airfoils and 
ducted propellers will be discussed first, then the experimental data available 
for use in making comparisons will be presented. The review of the theory will 

be very brief, as Weissinger's review (2) gives the details of the various theo- 
ries. Theoretical-experimental comparisons will be made for pressure distri- 

butions and forces, and from these comparisons conclusions will be drawn as to 
the adequacy or inadequacy of the theory. 

DISCUSSION OF THE THEORY 

Theoretical investigation of the ducted propeller has concentrated to a large 

extent on linearized theory. Some investigations have been made, however, 
where the annular airfoil, or duct, is treated in a less restrictive manner. In 
general, the following assumptions are made regarding the mathematical model 

of the annular airfoil and the duct of a ducted propeller: 

(a) The fluid is inviscid and incompressible, and no separation occurs 
on the duct. 

(b) Body forces such as gravity are neglected. 

(c) The free-stream flow is, in general, axisymmetric but may have a 
small cross-flow component. The free-stream velocity is, of 
course, zero for the static case. 

(d) The annular airfoil is axisymmetric and of finite length. Although, 

Siekmann (3) has considered annular airfoils of elliptic cross- 
section. 

For the linearized theory, the following two additional assumptions are made: 

(e) The annular airfoil can be represented mathematically by a distri- 
bution of ring vortices and ring sources along a cylinder of con- 
stant diameter. This implies that the boundary conditions are lin- 

earized, i.e., the perturbation velocities are small in relation to 
the free-stream velocity (in calculating the pressure distribution, 
the Bernoulli equation without linearization is often used) and the 

boundary condition (normal velocity zero) is satisfied on the cylin- 
der rather than on the foil surface. 

(f) The trailing vortex system of the annular airfoil, if one exists, has 
the constant diameter of the annular airfoil and extends from the 
annular airfoil to infinity. 

These foregoing assumptions apply only to the duct. Assumptions for the 
propeller are usually more restrictive, and the propeller is often considered as 
a crude approximation. Various mathematical models of the propeller have 
been used, some of which are: [1] momentum theory (4), [2] variable -load actu- 
ator disk (5), and [3] lifting-line theory (6). In the design process, the propel- 
ler and duct are treated separately, and a process of iteration is used to obtain 
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the mutual interaction. This means that for practical purposes we can discuss 

each separately. 

In general, the linearized theories of the duct are based on the so-called 
Dickmann-Weissinger mathematical model, i.e., a distribution of ring vortices 
and ring sources lie on a cylinder of a diameter representative of the duct di- 

ameter and a length equal to the duct length. Some pertinent references are 

(7-17). In the various references quoted, the theory of the annular airfoil is 
essentially the same but with differences in numerical approach. Generally, two 

problems have been considered: [1] the direct problem, and [2] the inverse 
problem. The direct problem of the annular airfoil is: Given the annular air- 

foil shape, determine the pressure distribution and forces (7-12), The inverse 

problem is: Given the pressure distribution, determine the annular airfoil 
shape (13). Both the direct and inverse problems require the solution of a sin- 

gular integral equation, the first for the ring vortex distribution and the second 
for the ring source distribution. Another version of the inverse problem is to 
assume the ring vortex strength and, if the effect of thickness is considered, to 
assume either the thickness or source distribution (14-17). The shape and 

pressure distribution of the annular airfoil are then calculated. For the pur- 

poses of this paper, any approach is pertinent as long as the theoretical and ex- 

perimental data are for the same shape. 

Some of the previously mentioned references considered the annular airfoil 
at an angle of incidence (8, 10-12). In the linearized theory, the effect of the 
angle of incidence on the pressure distribution, forces and moments are inde- 
pendent of the actual duct section shape, except for a small moment component, 

and only dependent on the chord-diameter ratio. This means that the angle-of- 
incidence effect is that of a circular cylinder at an angle of attack with a length- 

diameter ratio equal to the chord-diameter ratio of the duct. 

As stated previously, various mathematical models of the propeller have 

been added to the theory of the annular airfoil. In some cases, a constant pres- 
sure jump with no clearance has been used to represent the propeller (17 - 19) 

and in others, a variable-load actuator disk (16, 20, 21), or lifting-line theory 
(9,10). The use of a pressure jump at the propeller location would not appear 

to represent a realistic flow, as this would imply that a pressure jump could 

occur on the inner surface of the duct at the plane of the propeller (13). For the 
normal number of blades used in ducted propellers and an adequate tip clear- 
ance, it would not be possible to maintain a pressure jump on the duct surface. 

A more realistic approach, it would seem, would be to use an actuator disk which 
does not have a constant pressure jump or to assume a small tip clearance (5). 
In any case, the propeller induces a radial velocity on the duct which, for the in- 

verse problem, causes a change in the duct shape (13). 

When the lifting-line theory is used as the mathematical model for the pro- 
peller, the finite blade effect causes the ring vortex strength to vary in the cir- 
cumferential direction and free vortices are shed from the duct. The vortex 

strength is steady with respect to the rotating propeller but unsteady with re- 
spect to a coordinate system fixed in the duct. The finite blade effect can only 
be considered for the direct problem as in this case, the pressure distribution 

can fluctuate with the rotation of the propeller, but the finite blade effect in the 
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inverse problem would imply the physical impossibility that the duct shape could 
change with the rotation of the propeller. 

For the design of a ducted propeller it may be necessary to consider the ef- 

fect of the finite number of blades, but this effect hasn't been completely inves- 
tigated. The principal interference with the duct is the average velocity induced 

on the duct by the propeller. The form of the equation of this average component 

is identical with the actuator disk solution with the same average radial load, but 
the induced velocity differs somewhat because of the fact that the propeller pitch 

changes with the number of blades and that the viscous drag of the blades changes 
with the propeller blade area, i.e., if viscous effects are considered, the theo- 
retical thrust of the propeller must be increased to account for this additional 

drag. 

A few investigations of the nonlinear theory of ducted propellers have been 

made. In these cases the nonlinear theory was applied to the duct only and not to 
the propeller. A nonlinear approximation, based on second-order airfoil theory, 
has been given by Morgan (10), but more exact theories have been given by 

Chaplin (18) and Meyerhoff (22). Chaplin places a distribution of ring vortices 
on the surface of the duct and downstream along the slipstream of the wake. The 
slipstream boundary is not known a priori but is obtained by an iteration proce- 
dure. The pressure distribution and duct forces are obtained once the slip- 

stream location is known. Meyerhoff uses a finite-difference approach (itera- 
tion and relaxation) and calculates the stream functions, and streamlines, for a 
known duct shape. Both the Chaplin and Meyerhoff treatments of the theory are 
mathematically correct, but certain numerical approximations must be made in 
each. Also, both treat the propeller as a pressure jump, which means that the 

mathematical model of the propeller is less sophisticated than that of Ordway 

et al. (9) or Morgan (10). As with numerical approximations of the type used by 
Chaplin and Meyerhoff, some difficulty is encountered in obtaining solutions for 
arbitrary shapes. 

Besides the work of Chaplin and Meyerhoff on the nonlinear theory, the cal- 
culation procedure developed by Douglas Aircraft Division for the solution of the 

Neumann problem has been applied to the calculation of pressure distributions 
on the forward part of a ducted propeller (23). In the use of the computer pro- 
gram, the duct must be treated as semi-infinite, which means that only the pres- 

sures calculated near the leading edge are meaningful and no duct forces can be 
determined. Here again, the propeller is treated as a pressure jump. 

The theoretical approaches discussed have generally been for the case of 
the ducted propeller moving at a constant velocity. However, there have been 

some investigations of the static condition, i.e., zero forward velocity. Linear- 
ized theories for this condition have been developed by Kriebel (24) and Green- 

berg et al. (25). Also, the Chaplin development of the nonlinear theory was car- 

ried out mainly to obtain a solution for the static case (18). In the linearized 
theory of the static case, the axial perturbation velocity cannot be assumed 

small, as in the free-running case. Both Kriebel and Greenberg neglect the 
slipstream contraction behind the duct even though the ducted propeller is heav- 

ily loaded. On the other hand, Chaplin, in his nonlinear treatment of the duct in 

the static condition, concentrates mainly on calculating this contraction. 
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In addition to these studies, some work has been done on the ducted propel- 

ler system at an angle of incidence, Kriebel (24) and Greenberg et al. (26). In 
both these approaches, the mathematical model is similar to the linearized the- 

ory discussed previously. As a first approximation, both Kriebel and Greenberg 
et al. showed that the ducted propeller may be regarded as a superposition of the 

ducted propeller at zero incidence plus a cylindrical duct at a given incidence. 

This approximation, however, does not account for the side forces and moments 
which occur on a propeller at an angle of attack (27). Greenberg et al. refined 
the approximation by taking into account the cyclic variation of the blade loading 

and these additional forces appear in the solution. 

Some theoretical work has been done on the effect of blade tip clearance on 

performance. Both Kopeyetskiy (28) and Tachmindji (29) have considered the 
case of a finite-bladed propeller in an infinite cylinder. Lifting-line theory was 
utilized by both and the theories are essentially the same although different nu- 

mercial solutions are utilized. Turbal carried out a theoretical and experimen- 

tal investigation utilizing the previous theories (30), while English (31) and 
Gearhart (32) have utilized one-dimensional analysis to obtain the effect of blade 

tip clearance. Gearhart and Turbal considered the viscosity of the fluid in their 

analyses. 

In the next section, comparisons will be made between pertinent theoretical 

and experimental results. 

THEORETICAL AND EXPERIMENTAL COMPARISONS 

Criteria for Comparison 

Determination of whether a theory is adequate for predicting experimental 

performance is highly subjective. To offset this problem to some extent, cri- 

teria for the adequacy of the comparisons will be established on the basis of the 

use of the data. Two types of measurements will be analyzed in the following 
sections; pressure or velocity distributions and forces and moments. The pres- 
sure or velocity distributions will be both those on the annular airfoil surface 
and those within the flow field of the airfoil. Knowledge of the pressure distri- 
bution on the airfoil, or duct, is necessary: [1] for estimation of the critical 
Mach number in air or the critical cavitation number in water, [2] for estima- 
tion of the probable boundary-layer characteristics such as separation, and 
[3] for making structural analyses. Satisfactory prediction will be taken to 
mean that the predicted pressure distribution is generally within experimental 

accuracy and that the pressure distribution is adequate for determining the 

foregoing items. Unsatisfactory prediction will be taken to mean that the pre- 

dicted pressure distribution is not adequate for determining these items. For 
many comparisons the prediction will be marginal, in that the pressure distri- 

bution is adequate for determining only some of these items. 

Knowledge of the velocity field of the annular airfoil, or duct, is necessary: 
[1] for design of the propeller, stator and guide vanes (if used), [2] for predict- 
ing improvement in cavitation performance of the propeller, and [3] for deter- 
mining the interaction of the duct with a centerbody (hub) or other bodies in the 
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flow field. Satisfactory, unsatisfactory, and marginal will be defined in a simi- 

lar manner to that for the pressure distribution on the surface of the annular 
airfoil. 

Knowledge of the forces and moments is necessary: [1] for estimating the 
system performance, [2] for design of a system to produce a given force, [3] for 
determination of the stability of a particular craft, and [4] for making structural 
analyses. Satisfactory will be taken to mean that the particular force or mo- 

ment being discussed is, in general, within experimental accuracy, and unsatis- 
factory will be taken to mean that it is not within experimental accuracy. When 

discussing the thrust, or drag, on the duct of a ducted propeller however, the 
adequacy will be based on a comparison of the total thrust of the system, since 
the total force is the important parameter. 

These criteria serve as abasis for making comparisons, however, the estab- 
lishment of the experimental accuracy of the varioustests is not straightforward. 
If no information is available on the experimental accuracy of a particular set of 

data, the following accuracy will be assumed: (1) for the pressure, or velocity, 
coefficients +5 percent, and (2) for force and moment coefficients +2 percent. 
The accuracy of the pressure measurements may very well be less than +5 per- 
cent and more than +10 percent for small values of the pressure coefficient. 

Annular Airfoil Pressure Distributions 

Experimental and theoretical pressure distributions are presented for sev- 
eral annular airfoils (ducts) which typify some of the duct shapes used for ducted 
propeller systems. Two ducts were tested in a wind tunnel at NSRDC and re- 
ported in Ref. (33). Duct I typifies a shape used for accelerating velocities at 
the propeller (Kort nozzle type). This duct has a NACA 0010 thickness distribu- 
tion, a NACA 250 mean line with a camber-chord ratio of -0.0375, a chord- 
diameter ratio of 0.8, and a section angle of attack a, of 6°. 

The measured pressure coefficients Co. along with the theoretical predicted 
values from linearized theory with a nonlinear approximation (33) are plotted in 
Fig. 1 for this duct at a zero angle of incidence(a, = 0). The symbols used are 

described in the Notation Section of this paper. Two sets of theoretical curves 
are shown on this figure; one using the linearized Bernoulli equation (Shown by a 
solid line) and the other using the Bernoulli equation without linearization (shown 
by a dashed line). Figure 1 shows that the theoretical prediction of the pressure 

distribution on the inside of the duct is satisfactory. While on the outside of the 

duct boundary layer separation* occurs near the leading edge of this duct and 

*Two regions of separation may occur on an annular airfoil; one is laminar 

separation near the leading edge and the other is turbulent separation near the 

trailing edge. The occurrence of separation depends on the gradient of the 
chordwise pressure distribution and will always occur if the annular airfoil has 
a sufficiently high angle of incidence. For ducts which are very thick, it would 
be expected that turbulent separation would occur near the duct trailing edge at 
angles of incidence lower than for which laminar separation would occur near 
the leading edge. For ducts of conventional thickness, laminar separation would 
be expected at lower angles of incidence than for which turbulent separation 

would occur. At high angles of incidence, both regions of separation would be 
expected to be present and at sufficiently high angles, the regions merge and 
stall of the annular airfoil occurs. These various flow regions on annular air- 
foils have been investigated in detail by Eichelbrenner et al. (34). 
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Fig. 1 - Pressure distribution on NSRDC duct I 
at zero angle of attack (a, = 0) 

the flow is distorted so that the theoretical pressures are not valid. The differ- 

ence in results from the two forms of Bernoulli equation is small, with the com- 
plete form giving slightly better results. 

The separation occurring near the leading edge of this duct is undoubtedly 
laminar separation and Fig. 1 indicates that the flow reattaches itself probably 

near the transition region. This type of separation is, in general, predictable 
(34) and was predicted for this duct from the theoretical pressure distribution. 

Thus, for predicting separation this pressure distribution was satisfactory. 

The experimental and theoretical pressure distributions on Duct I when this 
duct is at a 6° angle of incidence are shown in Fig. 2 for an angular position 

¢ = 0 and in Fig. 3 for an angular position of ¢ = 180°. The angular position 
¢ = 0 refers to the duct section at the uppermost point of the duct and at a duct 
incidence angle of 6°, the local section angle to the flow is 12°. The angular 
position ¢ = 180° refers to the duct section at the lowermost point of the duct 

and at a duct incidence angle of 6° the local section angle to the flow is 0°. As 
before, two forms of the Bernoulli equation were used for the theoretical calcu- 
lations. Figure 2 shows that a, = 6°, a = 12°, the theoretical predictions are 
unsatisfactory on both the inside and outside of the duct. Flow separation cov- 

ers more of the duct for this position and incidence than for zero incidence and 

apparently is severe enough to affect the pressure distribution on the inside of 

the duct. On the other hand, Fig. 3 shows that at ¢ = 180°, a = 0°, the theo- 
retical predictions are generally satisfactory near the leading edge but only 
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Fig. 2 - Pressure distribution on NSRDC duct I, 
a. = 6 degrees and ¢ = 0 degrees 

marginal toward the middle and trailing edge of the duct on both the inside and 
outside. Again, the form of the Bernoulli equations has only a small effect. 

Duct II typifies a shape used to decelerate the velocity inside the duct. This 
duct has a NACA 66 modified thickness distribution with a thickness-chord ratio 

of 0.10, a NACA a = 0.8 mean line with a camber-chord ratio of 0.04, a chord- 
diameter ratio of 0.8, and a 0° section angle of attack. The measured pressure 
coefficients C, along with the theoretical predicted values (33) for this duct at 
zero angle of incidence are plotted in Fig. 4. Also shown in Fig. 4 is the theo- 
retical pressure distribution calculated from the nonlinear theory of Chaplin (18) 

and the nonlinear approximation of Morgan (10). All the theoretical predictions 
are generally satisfactory, with the nonlinear theory of Chaplin (18) giving the 
best prediction. The prediction using the linearized theory (using the linearized 
Bernoulli equation) gives a somewhat lower pressure on the outside of the annu- 
lar airfoilnear the leading edge than measured. 

The experimental and theoretical pressure distributions on Duct II when this 
duct is at an 8° angle of incidence are shown in Fig. 5 for an angular position of 
¢ = 0 and in Fig. 6 for an angular position of ¢ = 180°. Figure 5 shows that at 
the position ¢ = 0°, a = 8°, the comparison between theory and experiment is 
generally satisfactory. The linearized Bernoulli equation gives a slightly better 

prediction on the outside of the duct and the other form gives a better prediction 

on the inside. Figure 6 shows that at the position ¢ = 180°, a = -8°, the 

1318 



Comparison of Theory and Experiment on Ducted Propellers 

LINEARIZED THEORY [33] (LINEARIZED BERNOULL!) 

LINEARIZED THEORY | 33] 

EXPERIMENTS OUTSIDE 

EXPERIMENTS INSIDE 

Fig. 3 - Pressure distribution on NSRDC duct I, 
a, = 6 degrees and ¢ = 180 degrees 
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Fig. 4 - Pressure distribution on NSRDC duct II 
at zero angle of attack (a, = 0) 
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LINEARIZED THEORY [33] (LINEARIZED BERNOULL!) 

——— LINEARIZED THEORY [33] 

-0.4 
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0.5 

2 

Fig. 5 - Pressure distribution on NSRDC duct II, 
a, = 8 degrees and ¢ = 0 degrees 

theoretical predictions from linearized theory are unsatisfactory but do give the 
right general shape. The difference in the results from the two forms of the 
Bernoulli equation is small. Apparently at an angle of incidence of 8°, this duct 
has started to separate at the position ¢ = 180°. Separation was apparent at 
this position when the angle of incidence was 10° (33). 

Another duct (BTZ duct) for which extensive data is available is one de- 

signed and tested by the Bureau Technique Zborowski (12). This duct has a 
NACA 66-006 thickness distribution, zero camber, zero section angle of attack 
and a chord-diameter ratio of 0.96. The measured pressure distribution Co» 
along with the theoretical predicted values from linearized theory with a non- 

linear approximation (33), are plotted in Fig. 7 for the duct at a zero angle of 
incidence. The predicted pressure distribution for this duct is very satisfac- 

tory indeed. Experiments were conducted on this duct at angles of incidence but 

the data are not presented here, as they show the same trends as for Duct I and 
Duct II. The BTZ duct did show separation on the inside at the position ¢ = 180° 

at an angle of incidence of 12°. The prediction is given by both forms of the 
Bernoulli equation. 

Pressure distribution tests on annular airfoils were also made at the Admi- 
rality Research Laboratory (35). These ducts all had NACA 0006 thickness dis- 

tributions, slightly thickened at the trailing edge for structural reasons, and a 
chord-diameter ratio of 0.75. Ducts Bl, B2, and B3 have maximum camber 
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LINEARIZED THEORY [33] (LINEARIZED BERNOULL]) 

LINEARIZED THEORY [33] 

EXPERIMENTS OUTSIDE 

EXPERIMENTS INSIDE 

Fig. 6 - Pressure distribution on NSRDC duct II, 

a, = 8 degrees and ¢ = 180 degrees 
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ratios of 0.065, 0.025, and -0.022, respectively. Each of the ducts were designed 
to have a constant chordwise circulation distribution. 

The experimental pressure distribution, along with two sets of theoretical 

values from linearized theory, are shown in Figs. 8, 9, and 10 for these ducts at 
zero angle of incidence. The solid lines are the theoretical results from Ryall 
et al. (35), who assumed that a constant chordwise circulation distribution pro- 

duces only 74% of its theoretical loading. They based this assumption on the 
fact that in two dimensions the constant chordwise circulation distribution 
(NACA a = 1.0 mean line) produces only 74% of its predicted lift (36). Thus, in 
determining tie pressure distributions shown by the solid lines in Figs. 8, 9, 
and 10, only 74% of the contribution from the ring vortices was used in calculat- 
ing the pressure distribution. The dashed lines on these figures are the theo- 
retical pressure distribution calculated by the linearized theory of Ref. (33) with 
a nonlinear correction. All the predictions shown in these figures were made 

using the Bernoulli equation without linearization. 

OUTSIDE 

INSIDE 

— 
—--—-— 

Se Se 

O EXPERIMENTS OUTSIDE 
@ EXPERIMENTS INSIDE 

LINEARIZED THEORY | 351 (LINEARIZED BERNOULL!) 

SS S= LINEARIZED THEORY | 33] nn 

Fig. 8 - Pressure distribution on ARL duct Bl at 
zero angle of attack (a, = 0) 

The theoretical predictions for this set of tests are quite inconclusive. The 

predicted pressure distribution for duct B1, decelerating type, is satisfactory 

except near the leading edge if 74% of the contribution from circulation is used 
in the calculation (35), Fig. 8. For duct B3, accelerating type, the prediction is 
unsatisfactory on the inside of the duct using the same procedure, Fig. 10. On 
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O EXPERIMENTS OUTSIDE 
@ EXPERIMENTS INSIDE 

LINEARIZED THEORY | 35] 

———=— LINEARIZED THEORY (33) 

Fig. 9 - Pressure distribution on ARL duct B2 at 
zero angle of attack (a, = 0) 

the other hand, for this duct the prediction is generally satisfactory using the 
method of Ref. (33) with no reduction in circulation. For duct B2, both ap- 
proaches generally give a satisfactory prediction, Fig. 9. Both prediction meth- 
ods are, in general, marginal to unsatisfactory near the leading edge. The 
method of Ref. (35) shows more of a deviation on the inside of duct B1 and B2 
and on the outside of duct B3 near the leading edge, since a nonlinear correction 
for the velocity is not used (10). The results of the comparison for this series 
are very interesting for two reasons: (1) the sizeable viscous effect on the cir- 
culation distribution, and (2) the need for judicious choosing of the load distri- 
bution to minimize these effects. 

In summary, the data reviewed show that the linearized theory gives a gen- 

erally satisfactory prediction of the pressure distribution (both forms of the 
Bernoulli equation) on a duct when leading-edge laminar separation does not oc- 
cur and other viscous effects are small. The nonlinear approximation (10) im- 
proves the prediction toward the leading edge and eliminates the theoretical 
prediction of infinite pressures at the leading edge. The nonlinear theory of 
Chaplin (18) gives a better prediction of the pressure distribution than the lin- 
earized theory. It should be pointed out that the duct shapes did not deviate 

markedly from a cylinder so that the good comparisons obtained might be 
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O EXPERIMENTS OUTSIDE 

@ EXPERIMENTS INSIDE 

LINEARIZED THEORY |33| (LINEARIZED BERNOULL!) 

LINEARIZED THEORY | 33| hy 

Fig. 10 - Pressure distribution on ARL duct B3 at 
zero angle of attack (a, = 0) 

misleading if extreme shapes were used. On the other hand, separation might 

occur on extreme shapes which would void the comparisons anyway. The main 

shortcoming of the theory is the inability to predict the pressure distribution 

when separation occurs. 

Annular Airfoil Forces 

When annular airfoils are at a zero angle of incidence to the flow, the only 
net force is that due to viscous drag. Each section of the duct will be subject to 
forces and moments, however, which balance out. At an angle of incidence, the 
forces and moments do not balance out, and there are lift, moment, and induced 
drag forces acting on the duct in addition to the viscous drag. These forces and 
moments, except for a moment arising from horizontal forces, are independent 
of the section shape in linearized theory, and depend only on the chord-diameter 
ratio of the annular airfoil. Figure 11 shows the theoretical lift-curve slope for 
a range of chord-diameter ratios. Also plotted on this curve are the test spots 

from Ducts I and II, BTZ duct, and results obtained by Fletcher (37). The ducts 

tested by Fletcher had Clark-Y sections with a thickness-chord ratio of 0.117. 
As can be seen from this figure, the theory gives a satisfactory prediction even 
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Fig. 11 - Lift curve slope as function of chord-diameter ratio (33) 

though some of the ducts had laminar separation. When stall occurs, the predic- 
tion would not be satisfactory. 

The theoretical lift coefficient C, , drag coefficient Cp , and moment coeffi- 
cient c,, along with measured values are plotted in Fig. 12 for Duct II (33). This 
figure shows that the theoretical predictions are generally satisfactory. Results 

for the other ducts mentioned previously show similar trends. 

The drag coefficient shown in this figure is the sum of the profile drag, i.e., 
drag at zero incidence, and the induced drag calculated theoretically (33). The 
profile drag can be approximated, for instance, by the method discussed by 

Granville (38) for predicting the drag of axisymmetric bodies. This procedure 
gives reasonable drag predictions when no separation occurs on the duct, e.g., 
the measured drag coefficient for Duct II at zero incidence was 0.07, while the 
drag predicted by the Granville method was 0.077. However, for Duct I, on 
which separation occurred, the measured drag coefficient was 0.48 at zero inci- 
dence, while the drag predicted by the Granville method was 0.413. At the 
higher angles of attack (positive or negative) where Separation begins, the drag 
prediction starts to deviate from the measured value, Fig. 12. Ryall et al. (35) 

indicated in their investigation that the profile drag of one of their ducts in- 

creased by a factor of about 1.8 when the angle of incidence was changed from 0 
to 41073 
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Fig. 12 - Lift, drag, and moment coefficients for NSRDC duct II (33) 

The theoretical moment shown in Fig. 12 consists of two parts: one part 
from the vertical forces (lift) and one part from the horizontal forces (drag). 
The solid line is the theoretical moment including both of these parts, while the 
dashed line is the moment due to the vertical forces only, which is the dominant 

part. 

In summary, the linearized theory gives a satisfactory prediction of the lift, 
induced drag, and moment for angles of incidence up to where separation influ- 
ences the results. The first effect of laminar separation at the leading edge is 
on the drag force. This separation does not have much of an influence on the lift 

and moment when it first begins, but as the separation region increases in size, 

stall of the annular airfoil will occur (see footnote in previous Sec.). 

It appears that the profile drag (viscous) of the annular airfoil can be esti- 
mated with some degree of confidence. However, if separation occurs on the 
duct, this drag may be underestimated by a significant amount. Because of the 
detrimental influence of separation, it would seem worthwhile to attempt to pre- 
dict separation during the design stage of an annular airfoil. References (12) 
and (34) indicate that this has been done with some success. 

Annular Airfoil Axial Induced Velocities 

Axial induced velocities were measured at a number of locations inside 

several ducts tested at ARL (35). Figure 13 presents the axial induced veloci- 
ties measured at the midchord for Ducts Al, A2, and A3 along with the theoreti- 
cal predictions obtained using Ref. (35). Figure 14 presents similar results for 
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@ Experiments 

Fig. 13 - Radial variation of the axial in- 
duced velocity distributions in midplane of 
ARL ducts Al, A2, and A3 (35) 

Ducts B1, B2, and B38. ARL ducts Al, A2, and A3 all have chord-diameter ratios 
of 1.0, a section angle of attack of zero, and a NACA 0006 thickness distribution. 
The maximum camber ratios for these ducts are 0,0659, 0.0385, and 0.0118, re- 
spectively. Ducts Bl, B2, and B3 were described in a previous section. 

In Fig. 13 the theoretical predictions for A2 and A3 are within experimental 

error and therefore, satisfactory; whereas for Duct Al, which has the largest 
camber ratio, the prediction is unsatisfactory. In Fig. 14, satisfactory predic- 
tions are obtained for Duct B2; Duct B1 is marginal, whereas for Duct B3 
(accelerating-type duct) the prediction is unsatisfactory. 

It should be noted that the velocities were predicted by Ryall et al. (35) on 
the basis of using only 74% of the contribution from the vortex distribution. As 
discussed previously, the stated reason for this reduction (35) was to correct 
for viscous flow effects. Even though the comparison between theory and exper- 
iment for the majority of ducts was satisfactory, it is difficult to draw general 
conclusions as to the applicability of the linearized theory from these data. Ad- 

ditional experimental results are needed for duct shapes for which the viscous 

effects would be expected to be small. 

Ducted-Propeller Pressure Distribution 

In this section, experimental and theoretical pressure distributions on ducts 
when a propeller is operating on the inside will be presented for a number of 
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Fig. 14 - Radial variation of the axial in- 
duced velocity distribution in midplane of 
ARL. ducts BY, BZ; and B3" (35) 

different ducted-propeller systems. Pressure measurements were made on a 

duct for various propeller loadings (Model 3650) in the David Taylor Model 
Basin (20, 39). This duct has a maximum camber ratio of 0.067, at approxi- 
mately 67% of the duct chord from the leading edge, and a maximum thickness 
ratio of 0.045, at approximately 63% of the duct-chord length. Each duct section 
has an angle of attack of 3.9° and the chord-diameter ratio of the duct is 1.57. A 
five-bladed propeller with a hub radius of 0.4 was located at 28% of the duct- 
chord length from the leading edge and six stator vanes were located aft of the 

propeller at approximately 54% of the duct-chord length. 

The experimental and theoretical pressure distributions on the duct of 
Model 3650 are shown in Fig. 15 at the design speed of advance, J, of 1.27. It 
is apparent from Fig. 15 that the predicted pressure distribution using linear- 
ized theory with a nonlinear approximation (20) gives a slightly better predic- 
tion on the outside of the duct than on the inside. This is also true for the 
Meyerhoff nonlinear theory (22) of the duct. The nonlinear theory gives a 

slightly better prediction than the linearized theory on the outside of the duct 
and on the inside of the duct forward of the propeller. In general, both predic - 

tions are satisfactory. The assumed pressure jump due to the propeller 
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Fig. 15 - Pressure distribution on NSRDC duct model 3650 
£08 fo deaiaCa = 1.3950 

appears in the predictions by Meyerhoff (22), and the more realistic treatment 
of the propeller in the linearized theory is apparent. Theoretical predictions of 

the duct pressure distributions have been made at off-design conditions using 
both the nonlinear and the linearized theory. The comparisons, especially on 
the inside of the duct, are not as good as the data presented in Fig. 15 for higher 
propeller loadings. Part of the problem at these conditions may be due to the 

inaccuracy involved in estimating the effect of the stator vanes. This may also 
be the reason the predicted pressure distribution on the inside of the duct was 

not as good as on the outside for the design speed coefficient (22). 

The most extensive duct pressure distributions have been measured on the 

Bell X22A ducted propeller system. This system consists of a duct with a 
chord-diameter ratio of 0.525 and a maximum thickness ratio of 0.172, of a 
three-bladed, controllable-pitch propeller, and of six streamlined support struts 

aft of the propeller. A one-third scale model of this system was tested in the 

8x10-foot subsonic wind tunnel at NSRDC (40). Data were recorded for zero as 
well as a number of other angles of incidence at several forward flight speeds. 
Tests of a full-scale system were conducted at the NASA Ames Research Center 

in their 40x 80-foot wind tunnel (41). Experimental pressure distributions are 
presented in Figs. 16 and 17 at two operating conditions for the full-scale model 
only, since the one-third scale test results were similar. 

The theoretical predictions shown on Fig. 16 were calculated by Kriebel and 
Mendenhall (19) and those shown on Fig. 17 by Hough and Kaskel (21). The meth- 
ods used by both were similar, except that Kriebel and Mendenhall used a non- 
linear approximation to correct the duct velocity distribution and they used a 
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Fig. 17 - Pressure distribution on the X22A duct 
for J= 0.628, C,, = 0.276 (21) 
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pressure jump to represent the propeller. The experimental scatter shown in 

Fig. 16 was also present in the data for Fig. 17, but only the average value is 

plotted in this figure. 

Figure 16 presents the theoretical and experimental duct pressure distribu- 

tions for a propeller thrust coefficient Crp of 0.220 and a speed coefficient J of 
0.617, and Fig. 17 presents data for Cry = 0.276 and J = 0.628. Generally, the 
agreement between theory and experiment is satisfactory for the outside of the 

duct but not satisfactory for the inside. This conclusion also holds for other 
speeds of advance for this ducted system (19, 21). The calculations of Menden- 
hall and Kriebel give a slightly better prediction on the inside of the duct than 
those of Hough and Kaskel. It can be observed in Fig. 16 that the nonlinear cor- 
rection to the duct surface velocity used by Mendenhall and Kriebel overcor- 
rects the velocities on the inside of the duct forward of the propeller. Hough and 
Kaskel observed in making their calculations (21) that a better prediction could 
be made if a different cylinder diameter were used for the inside of the duct 
from that used for the outside. 

For the ducted propeller in static operation, experimental and theoretical 
pressure distributions are presented in Fig. 18 as obtained by Hess and Smith 
(23), using a nonlinear theory. This figure compares calculated and experimen- 

tal distributions on the forward portion of the duct only, asthe pressure distri- 

butions behind the propeller cannot be calculated by the Douglas method (23). 
The predicted pressures are very satisfactory indeed. Kriebel and Mendenhall 

(19) have made theoretical predictions of duct pressure distribution for a ducted 
propeller in static operation which was a model of the Doak V2-4DA ducted sys- 
tem. This unit consists of a duct with a chord-diameter ratio of 0.608 anda 
profile-thickness ratio of 0.158, an eight-bladed propeller with pitch of 15° at 
the tip, a set of seven inlet guide vanes, and a set of nine stators aft of the pro- 
peller. At the static condition, the pressure distribution predictions from lin- 

earized theory (19), Fig. 19, are very satisfactory for the outside of the duct, 
are marginal for the inside of the duct forward of the propeller, and are unsat- 

isfactory aft of the propeller. It is apparent that the contributions of the propel- 

ler, guide vanes, and stator blades are not adequately considered. 

Fig. 18 - Pressure distribution 
on the Douglas duct for the static 
condition (23) 
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Fig. 19 - Pressure distribution 
on the Doak duct for the static 
condition (19) 

Mention should be made of the pressure distribution on ducts when the 

ducted system is at an angle of incidence. Kriebel and Mendenhall (19) have 

made comparisons between theory and experiment for the full-scale X22A ducted 
propeller system, discussed previously, for angles of attack of up to 80°. These 
comparisons are not presented here, but it is obvious that significant improve- 
ments in theory are needed before reasonable predictions of the duct pressure 

distributions on the inside can be made for ducted systems at the high angles of 

attack investigated. 

In summary, the prediction of the duct pressure distribution when a propel- 

ler is operating within the duct is satisfactory on the outside of the duct but 

varies between marginal and unsatisfactory on the inside of the duct. This poorer 
prediction than for the duct by itself is most probably related to the fact that the 
pressure contributed by the propeller is not properly determined. For instance, 
none of the experimental data reviewed showed a pressure jump at the propeller 

1332 



Comparison of Theory and Experiment on Ducted Propellers 

position, as is sometimes assumed in the theoretical calculations. Also, the 

finite blade chord and blade thickness may produce considerably different in- 

duced velocities, even on an average, than given by an actuator-disk model. An 

example of this difference is the steady axial and radial induced velocities pre- 

sented in Table 1, which were calculated from actuator-disk theory and propel- 

ler lifting-surface theory. These data are for a three-bladed marine propeller 

for J = 0.833 and C;, = 0.578. The lifting-surface calculations, which contain 

both effects of loading and thickness, generally give slightly greater values for 

the axial induced velocities and considerably different values for the radial in- 

duced velocities, as compared to the lifting-line calculations. The lifting-surface 

calculations smooth out the radial velocities in the vicinity of the blade tip. 
Since these induced velocities are different from those obtained from the 
actuator-disk model, it is not possible to say whether the linearized theory of 

the duct is adequate or not in the presence of the propeller. Quite clearly the 

mathematical model used for the propeller in the pressure distribution data 

presented must be improved. 

Table 1 
Average Propeller-Induced Velocities from Lifting-Line and 

Lifting-Surface Theory at R,/R = 1.05 

Ducted Propeller Forces 

Considerably more force data (measured ducted propeller thrust) than pres- 

sure distribution data are available on ducted propellers. However, theoretical 

predictions have not been made for most of available force data. 
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For NSRDC Model 3650 ducted propeller system, the theoretical and meas- 
ured ducted forces are presented in Table 2 (20). These results show satisfac- 

tory agreement between measured and theoretical results. In making these cal- 
culations, the stator thrust was determined from the measured propeller and 

duct plus stator thrust and the calculated duct thrust. For this reason, the com- 
parison may not be truly representative of the accuracy of the calculations. 

Table 2 

Theoretical and Measured Thrust Coefficients for a 

Pumpjet and Kort Nozzle Type Ducted Propeller (20) 

Theory — Pumpjet 
Measured — Pumpjet 

Theory — Pumpjet 
Measured — Pumpjet 

Theory — Kort Nozzle 
Measured — Kort Nozzle 

Tapae, Nomenclature: J = speed SOc cacuL, Cr, = propeller thrust coefficient, 
C,, = duct thrust coefficient, C = stator thrust coefficient, C,, = total thrust T 
coefficient (C ot Cpg toe oe 

T sv)" 

The second set of data shown in Table 2 is for a Kort nozzle type ducted 
propeller (20), and the agreement is also satisfactory. In this case, the theory 

over-predicts the duct thrust by about 6% and the total thrust by about 1%. 

Theoretical and measured duct forces for the X22A ducted system are 

shown in Table 3 (19). On the basis of the total thrust, the theoretical predic- 

tions are satisfactory for a speed coefficient of 0.22 and higher. The theory 
over-predicts the duct forces for speed coefficients below 0.22 and slightly 
under-predicts the duct forces at the higher speed coefficients. The maximum 
deviation is at a speed coefficient of zero where the predicted duct thrust is 10% 
high and the total thrust 5.5% high. This unsatisfactory comparison may be due 
to separation occurring on the inside of the duct. 

Dyne (42) has also made comparisons between theoretical and experimental 

ducted propeller forces. Results presented in Table 4 show generally satisfac- 

tory agreement between theory and experiment for three ducted systems but un- 
satisfactory agreement for one of the four. This unsatisfactory agreement is 

probable due to separation that occurred on the duct. 

Figure 20 shows the ratio of propeller thrust to total system thrust for a 
range of thrust coefficients as presented by Weissinger (43). The experimental 

curve shown in this figure is from the work of Finkeldei (44) and the theoretical 
curve from the work of Bollheimer (11). The agreement between theory and ex- 
periment is very satisfactory. 
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Table 3 

Measured and Predicted Thrust Coefficients for 

the Doak Ducted Propeller (19) 

J CTT Crp 
Measured Measured 

0.890 
1.530 
2.250 
4.150 

12.700 
19.400 

306.000 

Table 4 

49 
D2 50 
D9 53 
58 53 

0 20 «4 6 80 100 120 140 160 180 200 
Cry 

Fig. 20 - Comparison of ducted 
propeller thrust by Weissinger (43) 
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The most extensive experimental investigation on ducted propellers has 

been conducted by the Netherlands Ship Model Basin (NSMB). Oosterveld (17) 
and (45) has made theoretical-experimental comparisons for three ducts de- 

signed for decelerating the flow at the propeller. These data are Shown in 
Table 5. The theoretical predictions, which did not include the viscous drag, 
are generally satisfactory for two of the ducts, nozzles 30 and 31, and unsatis- 
factory for nozzle 32. Including the viscous drag would have improved the pre- 
diction for nozzle 30 only, and would probably have made the prediction for noz- 

zle 31 unsatisfactory. 

Table 5 

Measured and Predicted Thrust Coefficients 

According to Oosterveld (45) 

Theory — Nozzle 30 
Measured — Nozzle 30 

Theory — Nozzle 21 

Measured — Nozzle 31 

Theory — Nozzle 32 
Measured — Nozzle 32 

In addition to the theoretical-experimental comparisons for the free-running 
condition, comparisons have been made at the static condition by Kriebel and 

Mendenhall (19), Table 3; comparisons were also made by Greenberg and Ord- 
way (25). Their predictions under-predicted the measured value of the duct 
thrust by 30%, whereas Kriebel and Mendenhall (19) over-predicted the thrust. 
Both predictions were unsatisfactory. 

A few theoretical-experimental comparisons of force and moment data have 
been made for ducted propellers at an angle of incidence by Kriebel and Men- 
denhall (19). Data for both the Bell X22A and Doak VZ-4DA systems have been 
compared. The variations of lift, duct thrust, and drag coefficients with propel- 
ler thrust and angle of incidence are shown in Figs. 21, 22, and 23, respectively, 
for the Doak system. The theoretical predictions are, in general, greater than 
the measured results. Prediction of the lift, except for small thrust coefficients, 
was unsatisfactory while the prediction of duct thrust and pitching moment was 

marginal. The theoretical predictions of the lift and pitching moment for the 
Bell X22A system were lower than measured (19) and varied between marginal 
and satisfactory. 

In summary, the predicted ducted propeller thrust is generally satisfactory, 
except at the static condition, if separation does not occur on the duct. For the 
ducted propeller at an angle of attack, the prediction of thrust and pitching mo- 
ment was marginal, while the prediction of lift was unsatisfactory in one case 
and marginal to satisfactory in another. In calculating the duct thrust, some of 
the methods used the measured propeller thrust rather than a theoretical value. 
Consequently, the predictions may not be as good as the data indicate if all the 
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8 

Fig. 21 - Lift of the Doak ducted propeller at 
angles of incidence (19) 

c 
Ty 

Fig. 22 - Duct thrust of the Doak ducted propeller at 

angles of incidence (19) 
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Fig. 23 - Pitching moment of the Doak ducted propeller at 

angles of incidence (19) 

comparisons were based on predicting the total system thrust. It can be con- 
cluded that a more complete mathematical treatment is required for the propel- 
ler, stator vanes, and guide vanes to be able to predict all the forces satisfac- 
torily. Also, more complete experimental data are required where the forces 
on the various components are measured separately, especially for an angle of 

incidence. 

Tip Clearance 

Several investigations have been made of the effect of tip clearance on the 
performance of ducted propellers, e.g., Refs. (28-32). Results of a theoretical- 
experimental comparison made by English (31) are shown in Fig. 24. The basic 
conclusions of this work is that, for increasing tip clearance, the duct thrust de- 
creases and the propeller thrust increases, while the net effect is a small re- 
duction in efficiency. The theoretical predictions of English slightly under- 
predict the change in efficiency with tip clearance. The comparisions made by 
Turbal (30) show similar results. In summary, the comparisons show that the 
theory indicates the trends of the experimental data. 

CONCLUSIONS 

The following conclusions as to the adequacy of the theory are based on a 
limited number of geometric shapes. Consequently, general applicability of the 

conclusions may be limited. 

1338 



Comparison of Theory and Experiment on Ducted Propellers 

(4) 

(5) 

(6) 

7 0.6 rockets 

Aa SE apa 
—= 

(EXPE 5 

RIMENTAL) 
PROPULSIVE EFFICIENCY 

; iam oes 
0 0.01 0.02 0.03 0.04 0.05 

TIP_CLEARANCE 
PROPELLER DIAMETER 

0.4 

Fig. 24 - Variation of thrust and effi- 
ciency with tip-clearance by English (31) 

The comparison of the theoretical and experimental pressure dis- 
tributions on the annular airfoil show that the theoretical predic - 
tion is satisfactory if no Separation occurs on the duct and other 
viscous effects are small. The linearized theory, of course, does 
not give as good a prediction as the nonlinear theory. 

The linearized theory predicts annular airfoil forces and moments 
satisfactorily if no separation occurs on the airfoil. 

The linearized theory gives a satisfactory prediction of the veloci- 
ties in the annular airfoil if the pressure distribution on the airfoil 
is satisfactorily predicted. 

The prediction of the duct pressure distribution when a propeller 
is operating within the duct is satisfactory on the outside of the 
duct but varies between marginal and unsatisfactory on the inside 
of the duct. 

The predicted ducted propeller thrust appears to be generally sat- 
isfactory, except at the static condition, if separation does not oc- 
cur. However, because of the procedures used, this conclusion is 
probably optimistic. 

The predicted propeller forces and moments for an angle of attack 
are marginal. 
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(7) The linearized theory of the duct with suitable nonlinear correc- 
tions appears to be generally satisfactory if separation does not 

occur on the duct. 

(8) The importance of separation should be emphasized, and, if predic- 
tions are to be reasonable, the duct must be designed so that 
boundary-layer separation does not occur. 

(9) Lifting-surface theory of the propeller should be used in predicting 
the interaction between the propeller and duct and for the propeller 
design. This mathematical model of the propeller would have the 

same linearized boundary conditions as presently used for the duct. 

(10) Adequate consideration must be given to the influence of the guide 

vanes and stator vanes. 
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NOTATION 

a Duct-chord length 

Dy 
Cy Drag coefficient, —————— 

3 pa RW? 

Cy Lift coefficient, ae ee 
3 Pa R, v2 

a Lift coefficient, —~—— 
z pT R,V? 

Gs Moment coefficient, : 
> pr ed 

Gf Moment coefficient, sae Save 
5 pt R, 3 y2 

Cc Pressure coefficients on outside and inside of duct, 

[PCX 4, xp) = Po} 

1 

geve 
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ps 

2564 

rad 

P 

Power coefficient, ———-—— 
= 2V3 Q pT R*V 

ae T 
Thrust coefficient, ~——~___ 

> pn R2y2 

Propeller diameter 

Drag 

Chord-diameter ratio of duct 

Propeller speed coefficient, V/nD 

Lift 

Moment 

Propeller rps 

Shaft power 

Local pressure on duct 

Free-stream static pressure 

Propeller radius 

Duct radius 

Thrust 

Free-stream velocity 

Axial induced velocity 

Radial induced velocity 

Nondimensional radius 

Ratio of duct radius to the propeller radius 

Axial distance from leading edge of duct nondimensionalized by the 

duct chord 

Number of blades 

Duct section angle of attack with reference to section nosetail line 

Relative duct angle of incidence 
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C 
n Efficiency of ducted propeller system, a 

ps 

i) Mass density 

pd Angular position of a duct section 

Subscripts 

d Duct 

P Propeller 

sv Stator vanes 

8 Total 
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DISCUSSION 

V. Silovic 
Hydro- og Aerodynamisk Laboratorium 

Lyngby, Denmark 

The interaction between the ship and the propulsive unit plays an important 

part in the case of a partial duct. In this case, the open-water results and avail- 

able theories are of little help. Do the authors have any comments ? 

* * * 

DISCUSSION 

Gilbert Dyne 
The Swedish State Shipbuilding Experimental Tank (SSPA) 

Gothenburg, Sweden 

This is a very interesting paper and it illustrates in a striking way how 
astonishingly few the experimental verifications of the theories are, especially 

for ducted propellers. In fact, a closer examination shows that the stringent 
verifications are still fewer than what they first seem to be. I would like to 

make some comments on this fact. 

The results from two different theoretical approaches to the problem have 
been described in the paper. These approaches are set forthin Table D1. It is 
common to all theories mentioned that the total thrust (or propeller thrust) and 

the advance ratio are given, while the duct thrust and the pressure distribution 

along the duct are determined. 

Table Dl 

Direct-inverse Duct shape and radial Propeller shape 

distribution of circulation 
or ideal pitch angle 

Inverse-inverse Duct vortex distribution Shapes of duct 

and radial distribution of and propeller 

circulation or ideal pitch 

angle 
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A stringent verification of these theories means that 

(1) the ducted propellers are designed according to the theory (experi- 
ments carried out after the calculations); 

(2) the comparison between theory and experiment are made only at 

the design point. 

As far as I know, these requirements are fulfilled only by 

(1) the four ducted propellers tested at SSPA (42), 

(2) one of the ducted propellers tested at Karlsruhe (44), and possibly 

(3) some of the ducted propellers tested at NSMB (45). 

In many of the ducted propeller investigations described, however, the calcula- 
tions have been carried out after the tests. Since, so far, no stringent theory 

has been presented for this direct-direct approach of the problem, the theories 

used must involve some more or less satisfactory approximations. The authors 

have mentioned some of them in their paper, for example, the pressure jump at 

the propeller assumed in Refs. (19, 21, 22), but it would be valuable to get some 
information also about the more reliable method used in (20). The paper seems 

to indicate that the authors use the measured propeller thrust rather than a the- 
oretical value. If, instead, one starts from the pitch and camber distributions 
of the propeller and not from the measured propeller thrust, how large will the 
difference between the experimental and theoretical values of propeller thrust 
be for the three ducted propellers described in (20)? 

* * * 

DISCUSSION 

George Rosen 
Hamilton Standard Division of United Aircraft Corp. 

Windsor Locks, Connecticut 

The authors should be complimented on an excellent contribution toward the 

improving technology on ducted propellers. It is from this type of continuing 
correlation of advanced theoretical and experimental work that the necessary 
refinements in design criteria must come. 

At the Ducted Propeller Panel meeting I described some extensive wind- 
tunnel tests conducted by Hamilton Standard on a series of systematic ducted 
propeller configurations. Unfortunately, the results of these tests were not 
available in time for the authors to include them in the studies reported in this 

paper. I hope that they will have the opportunity to do this in the near future. 
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I would like to make the following two comments on this paper: 

(1) Shroud static pressure distribution measurements made under the 

shrouded propeller research wind-tunnel program conducted by 

Hamilton Standard and reported in HSER 4048 indicate a definite 
pressure jump at the propeller plane particularly at low forward 
speeds. The tip clearance was 0.25 percent of the diameter. This 
appears to be inconsistent with the views expressed in this paper. 

(2) The generally favorable comparison of the theoretical and experi- 

mental pressure distribution reported in this paper is in agree- 

ment with similar comparisons made with shrouded propeller per- 

formance method developed from the Therm-Ordway theory by 
Hamilton Standard reported in HSER 4776 and the test data of HSER 
4348. However, in these latter comparisons the pressure distribu- 

tions inside as well as outside of the duct were quite accurately 

predicted by the calculation method. 

* * * 

REPLY TO DISCUSSION 

Wm. B. Morgan and E. B. Caster 

We wish to thank the discussers for contributing to the paper by their taking 

time to make pertinent comments. The problem posed by Dr. Silovic is a diffi- 

cult one, both from the standpoint of the interaction and from the fact that the 
duct operates partially in the boundary layer of the ship. One way of approach- 

ing this problem is to design the unit as if the duct is whole, then multiply the 

duct force (thrust or drag) by the ratio of circumference of the partial duct to 
the complete duct. This method should give the approximate effect of the duct 

on the propeller and vice versa. The partial duct on a ship also gives a lift 

force; whether its direction is up or down depends on the duct shape, and the ef- 
fect of this force should be considered, since the ship trim could be changed 

enough to affect the ship's resistance. 

Dr. Dyne discussed what we found to be one of the most distrubing aspects 
of the comparisons, i.e., there were little data available where the duct and pro- 
peller were designed and compared by the same method. In fact, only for the 
duct by itself were we able to find such data which included experimental pres- 
sure distributions. Some of the data presented were for a more or less exact 

solution in inviscid flow (18, 22) of the duct, but the propeller was treated as a 
pressure jump. References (18, 22) give no method for doing the direct propel- 
ler problem. The linearized procedure given in Ref. (20) can start with either 

the propeller thrust or total thrust. The calculations for the theoretical data 

given in Ref. (20) for the pumpjet-type ducted propeller when operated at two 
propeller loading conditions started with the measured propeller thrust, and, for 
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the Kort nozzle-type ducted propeller, the theoretical data were the design data 
for the ducted system. We don't know of any theoretical calculations for ducted 

propellers where the starting point was the pitch and camber distributions of the 
propeller. We can only guess that such comparisons would not be very satisfac- 

tOLy. 

We wish to thank Mr. Rosen for reference to work on ducted propellers at 
Hamilton Standard and supporting comments. We were aware that this work 

was going on but did not receive a copy of the report of this work until after 
completion of the paper. In our paper we said that none of the experimental re- 

sults that we knew about showed a pressure jump at the propeller, and, in gen- 

eral, we were referring to the free-running case. Hamilton Standards's results 
do show a pressure jump at the static condition and at very low speed coeffi- 

cients, and due note should be taken of these results, but this does not change 
our conclusion about the pressure jump at the higher advance coefficients. 

* * * 
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THE BLADELESS PROPELLER 
Joseph V. Foa 

Rensselaer Polytechnic Institute 
Troy, New York 

ABSTRACT 

The mechanism of cryptosteady pressure exchange is discussed, with 

particular attention to its applications to propulsion. The available 

theoretical and experimental information is briefly reviewed, and per- 

tinent problem areas are identified. 

NOMENCLATURE 

Symbols 

A Cross-sectional area 

c Flow velocity in "relative'' frame of reference 

pane Static, stagnation specific enthalpy 

H Total head 

m Mass flow rate 

p,p° Static, stagnation pressure 

r Radial distance from axis of rotation 

s Specific entropy 

t Time 

T,, 5° Static, stagnation temperature 

u Flow velocity in a space-fixed frame of reference 

V Transverse or peripheral velocity of primary discharge 

orifice 

B Azimuthal flow angle 

Bix Spin angle 

1351 



Foa 

B,;" = tan! cea Equivalent spin angle 
1 

IN Entrainment coefficient 

m = m,/m, 

p Density 

a Thrust augmentation ratio 

Subscripts 

0 Free stream 

1 Primary 

2 Secondary 

i Merger station 

d End of deflection phase 

E End of interaction 

Superscripts 

A prime (‘) denotes the conditions of the primary flow when expanded isen- 

tropically to pressure p, . 

INTRODUCTION 

The simplest thrust augmenters are those in which the transfer of mechani- 
cal energy from the driving "primary" to the induced "'secondary"' flow takes 
place directly, i.e., through the work of mutually exerted forces at the inter- 

faces between the two flows. 

With the exception of the conventional ejector, where the energy transfer is 
effected through the work of shear forces, all devices of this class operate on 
the basis of nonsteady flow processes. In these devices the transfer is effected 
in whole or in part through "pressure exchange," i.e., through the work of inter- 
face pressure forces; and this requires that the flow be nonsteady, because no 

work is done by pressure forces acting on a stationary interface. 

The conventional steady-flow ejector is simple, but inefficient and bulky. 
Its effectiveness as a thrust augmenter is low and deteriorates rapidly with in- 

creasing forward speed (Ref. 1). Nonsteady-flow thrust augmenters—e.g., the 
pulsating-flow ejector (Fig. 1)—are capable of higher energy transfer efficiencies 
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Fig. 1 - Steady-flow and pulsating-flow ejectors 
(from Ref. 2) 

with greatly reduced interaction lengths (Fig. 2 and Ref. 2). However, their 
performance normally depends very critically on the timing of the wave proc- 

esses on which their operation is based. Furthermore, if the primary flow is 

initially steady, its conversion to nonsteadiness for the purpose of utilizing 

pressure exchange may be accompanied by losses large enough to offset the en- 

tire thrust increment that is produced in the augmenter (Ref. 3). 

These drawbacks and difficulties are largely eliminated in a pressure ex- 
changer whose flow processes admit a frame of reference in which they are 

steady. This device, which has been variously referred to as the "bladeless" or 
"pseudobladed" propeller, promises to combine an attractive efficiency with ad- 

vantages of compactness and simplicity. 

This paper will discuss the principle of operation of the bladeless propeller 

and briefly review the available theoretical and experimental information that 

relates to its performance as a thrust augmenter. 

THE PRINCIPLE 

Euler's equation and the definitions of total head 4 and specific stagnation 

enthalpy »A° yield for a fluid element, in the absence of body forces, 

wn = $e + u-f (if incompressible) , 

and 

0 ee 
a ae T 3S + ae -f (if compressible) , 
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INTERMITTENT JET 
EJECTOR TESTS 
(LOCKWOOD) 

AUGMENTER LENGTH TO DIAMETER RATIO 

Fig. 2 - Comparison of static perform- 
ance of steady-flow and pulsating-flow 
ejectors (from Ref. 2) 

where p, ,, and T are the static pressure, density, and temperature, respec - 
tively, s is the specific entropy, a the local velocity, f the force per unit vol- 
ume due to surface viscous stresses, and t the time. These equations show 
that a reversible transfer of mechanical energy within a flow system is possible 
only in regions where the local derivatives 9p/dt are not zero, i.e., in regions 
of nonsteady flow. 

From this it must also be concluded that a transfer of mechanical energy 
from one flow to another can be nondissipative only if both flows are nonsteady. 
This conclusion is supported by the observation that the only known steady-flow 
mechanism of direct exchange of mechanical energy between two flows is that of 
the conventional ejector, where the exchange is entirely effected through irre- 
versible transport processes, whereas considerably higher efficiencies can be 
achieved through nonsteady flow induction. 

Of special interest, among the methods of nonsteady flow induction, is a 
method that does not require that the interacting flows be nonsteady in all 
frames of reference. As demonstrated in Ref. 4, a nonsteady process that ad- 
mits a frame of reference with respect to which it is steady over certain re- 

gions in space and intervals of time will be said to be cryptosteady over these 

Space and time domains. 

A flow which is steady and iSoenergetic in a frame of reference eis 
neither steady nor isoenergetic in any other frame of reference F unless it is 
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uniform in the direction of the velocity v of F relative to F, Indeed, since the 
pressure is constant at any point fixed in F., at points fixed in F the pressure 

varies with time at the rate op/ot =- V-V,. Therefore, except when Vp is zero 
or normal to V, the flow in F is nonsteady — more precisely, cryptosteady — and 
the energy level of its particles undergoes nondissipative changes that are ab- 
sent in F,. Similarly, whereas two contiguous streams will exchange energy 
only by irreversible transport processes in a frame of reference F, in which 
they are both steady, they will exchange energy also by pressure exchange in 

every other frame of reference. This additional transfer of mechanical energy 

is essentially nondissipative. It is, as in all forms of pressure exchange, equal 
to the work done by the pressure forces which the interacting flows exert on one 

another at their interfaces. This work is zero in F., where the interfaces are 
stationary. In every other frame of reference the interfaces move and energy is 

transferred from one flow to the other by pressure exchange. The special merit 
of cryptosteady interactions is that they can be generated, controlled, and ana- 
lyzed as steady-flow processes in F., while retaining the potential advantages of 
nonsteady interactions in the frame of reference in which they are utilized. 

In the following discussion, the frame of reference F_ will be referred to 
as the "relative'' frame, and the velocities in it as "relative velocities,'' whereas 
the frame of reference F, in which the sought energy transfer is to be effected 
and utilized, will be referred to as the "absolute" frame, and the velocities in it 

will be called "absolute velocities." 

Consider, in the absolute frame, the interaction schematically described in 
Fig. 3, between two flows at different energy levels — that of a "primary" fluid I 

and that of a "secondary"! fluid II, both inviscid. Upstream of the interaction 

region, the two flows are separated from one another by an infinitely thin con- 
taining wall, extending to infinity in the + y direction. At infinity upstream, the 
velocity is uniform and constant in each flow and both velocities are parallel to 

the x axis. 

The primary fluid enters the interaction space through an orifice in the 

containing wall. This wall moves in the ,; y direction at the constant velocity V, 
but since the wall is infinitely thin and the fluid is inviscid, no momentum in the 
y direction is imparted by the moving orifice on the primary fluid: the area of 
emergence of this fluid moves at the velocity V, but the primary fluid particles 
themselves emerge through it at a velocity U,, which is parallel to the x axis. 
Because of the stipulated absence of viscosity, no work is required to sustain 
the motion of the containing wall; nor is any energy otherwise exchanged be- 

tween the double-flow system considered and its surroundings. 

In the frame of reference fixed to the orifice — the relative frame — the two 

flows are, both steady. Therefore, the flow system is cryptosteady in the abso- 

lute frame. 

In contrast to the absolute velocities g of the two flows, their relative ve- 

locities ¢ upstream of their merger station are not parallel. On the other hand, 
in the relative frame the streamlines of the two flows must be parallel to one 

another at their interfaces, because the latter are stationary. Thus, as they 
come in contact, the interacting flows must deflect each other, in the relative 

1355 



Foa 

Fig. 3 - Plane-flow cryptosteady 
pressure exchange 

frame, to common orientations at their interfaces. If the primary stream spans 

the whole width of the interaction space (as in the situation of Fig. 3), the entire 

flow is deflected in pressure exchange to a common orientation in the relative 

frame. Under these conditions, and if the mutual deflection is assumed to be 
completed before any appreciable mixing takes place across the interfaces, the 
process can be analyzed in the relative frame as an interaction between steady 
isoenergetic flows. The resulting modification of the flow is described by the 
velocity vector diagram of Fig. 4 for a situation in which the final pressure p, 
is equal to the static pressure p, of the undisturbed secondary flow. The ve- 

locities of the deflected flows in the relative frame are c,, and c,,, and the 
corresponding "absolute" velocities are u,, and u,,. It can be seen, from the 
relative magnitudes of these vectors at the beginning and at the end of the inter- 
action, that in this process the secondary flow gains mechanical energy, in the 

absolute frame, at the expense of the primary flow. 

The "deflection phase'' just described is normally followed by further inter- 
actions. A second phase of pressure exchange takes place if the two flows, fol- 
lowing the deflection phase, are subjected together to Coriolis or other acceler- 
ations normal to their interfaces, as in a rotating flow field or in a passage of 

varying cross section. Heat transfer and mixing also start as soon as the two 
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Fig. 4 - Velocity vector diagram 

flows come in contact, i.e., simultaneously with the start of the pressure ex- 

change phases, but can be expected to proceed at a slower rate. In an ex- 

treme idealization, mixing can be regarded as the third and last phase of the 

interaction. 

It is possible, and sometimes desirable, to separate the two fluids after 
pressure exchange, before mixing between them has progressed too far. One 
obvious way to do this is to extract them from the interaction zone through sep- 

arate ports suitably arranged in fixed positions in the relative frame. Another 

way is suggested by the observation that u,, and u,, have different orienta- 

tions. If the exit from the interaction zone is made up of two sets of stationary 

passages, one with the orientation of u,, and the other with the orientation of 

a, then a predominant portion of each of the two fluids will flow out through 

that set of passages which matches the orientation of its motion. 

The simplest embodiments of the cryptosteady pressure exchange concept 
are those in which frame Ff. rotates at a constant angular velocity relative to 
frame Ff. Figures 5 and 6 show two such arrangements. The primary fluid is 
discharged into the interaction space through skewed orifices on the periphery 

of a rotor. If no external torque is applied to the rotor —i.e., if the rotor spins 

freely, with negligible friction, and is solely driven by the reaction of the issu- 
ing jets — and if no prerotation is imparted on the flows by fixed vanes or by 
other external means, then the deflection phase of the interaction takes place 

essentially in the manner discussed above. 

At every instant, the primary fluid which has emerged during a brief and 
immediately preceding time interval from each rotating orifice, occupies in 
space a Spiral or helical region which rotates about the same axis and at the 
same angular velocity as the rotor. Although the fluid particles within this re- 

gion do not follow the same motion, its boundaries are the interfaces separating 

the primary from the secondary fluid, and their relation to the flow of this sec- 
ondary fluid is therefore substantially the same as that of blade or vane sur- 
faces of the same Shape, rotating at the same angular velocity. Thus the driving 
fluid forms a cascade of 'pseudoblades,'' the action of which on the driven fluid 
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Fig. 5 - Radial-flow crypto- 
steady pressure exchanger 

Fig. 6 - Axial-flow cryptosteady 
pressure exchanger 

is somewhat similar to that of fan or propeller blades. Similarly, the effect of 

the interface pressure forces on the primary flow is essentially the same as the 
energy-extracting action of a turbine. Figure 7 is a flash photograph of these 
pseudoblades. Here water was used as the primary fluid, for the purpose of 
visualization. The flow of water is parallel to the interfaces in F_ but not in Fr, 

as shown by the streaks, which are particle path lines inf. 

THE BLADELESS PROPELLER — AVAILABLE THEORIES 

Figure 8, which is taken from Ref. 5, shows a schematic section view of a 
typical thrust augmenter utilizing this mode of energy exchange — a "'bladeless 

propeller" — and identifies the angles that, following Hohenemser's terminology, 
will hereafter be referred to as the "spin angle" and the ''coning angle." 

The first analysis of the operation of this device (Ref. 6) dealt numerically 
with a variety of specific cases, involving plane interactions between compres- 

sible or incompressible flows, with or without separation of the two flows after 
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Fig. 7 - Water pseudoblades in air (streaks are particle path lines) 
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Fig. 8 - Schematic of bladeless propeller 
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the pressure exchange phase, and with or without a subsequent mixing phase. 
Similar but generalized treatments were developed in Refs. 5, 7, and 8. These 
analyses considered Situations in which the coning angle was zero and the width 
of the interaction space was constant and very small compared to its mean ra- 

dius, so that the flows could again be treated as two-dimensional in the interac- 
tion region. Heat transfer and mixing effects were neglected. Under these con- 
ditions, the effect of the interaction could again be described by a velocity vector 

diagram like that of Fig. 4 and the thrust augmentation ratio could be calculated 
as 

it Ui,ath U5 4) cos Ba = (1+) Up 

Use Ue 

The analysis of Ref. 8, which was limited to the case of an interaction duct 
of constant cross-sectional area, revealed the necessity of velocity nonuniformi- 
ties at the merger station —a necessity reflecting the implictly assumed irrota- 
tionality of both flows in the deflection phase. Thus, the absolute velocities of 
the secondary fluid particles have different orientations at the merger Station, 

although the overall transverse momentum of this flow is, of course, still zero 
at this station in the absolute frame. The results of this analysis, for static op- 
eration and for two values of the secondary-to-primary density ratio, are pre- 
sented in Figs. 9 and 10. Here, as in subsequent performance charts, 4, and 4, 
denote the cross-sectional areas of the primary and of the secondary flow, re- 
spectively, at the merger station. These figures show that an increase of the 
secondary-to-primary density ratio has a very favorable effect on the thrust 
augmentation obtainable with the bladeless propeller (whereas it has the oppo- 
site effect on the performance of the ejector). It should be noted that, because 
of the specified absence of mixing, the bladeless propeller considered in this 

analysis does not, for @,, = 0°, reduce to an ejector: instead, it is reduced to 
a totally ineffective device, for which ¢ = 1.0 throughout. 

An elegant generalization of this analysis was developed by Hohenemser in 

Ref. 5, through the introduction of an "equivalent spin angle,'' defined as B, ;' = 
tan! W/u, ‘). Use of this parameter in lieu of the actual spin angle made it pos- 

sible to bypass the axial momentum equation, and hence to bypass consideration 

of the shape of the interaction duct. Except for cases involving very large den- 

sity differences between the two fluids, equivalent and actual spin angles were 

found to differ relatively little from one another. In fact, the results of the two- 
dimensional analyses of Refs. 5 and 8 are practically identical. 

A further refinement of the theory was introduced by Hohenemser, also in 
Ref. 5, through a strip approach similar to the strip concept of propeller theory. 
Here, the primary jet is assumed to be thin in comparison with the width of the 
interaction space and is further assumed to penetrate this space at a coning 

angle small enough to make it permissible to neglect primary velocity compo- 
nents normal to the direction of the secondary flow. The interaction is then 
treated as an infinite succession of infinitesimal steps, in each of which the pri- 
mary jet and the elemental layer of secondary flow which it penetrates deflect 

each other to a common direction. Coriolis and centripetal accelerations are 

again neglected, as if these secondary flow layers were plane rather than annu- 
lar. The resulting axial velocity distribution at the shroud exit is nonuniform, 
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Fig. 10 - Static performance of an axial-flow 
bladeless propeller 

and the calculated thrust augmentation ratio is lower than that predicted by the 

two-dimensional theory. Furthermore, the strip theory predicts for each area 
ratio an optimum spin angle. The discrepancy between the two theories in- 
creases as the density ratio increases. A comparison of the results of the two 
theories for a density ratio of 1.0 is presented in Fig. 11. It should be noted 
that neither of the two theories accounts for the adverse effect of mixing during 
the deflection phase. Although in remarkably good agreement with experimental 
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Fig. 11 - Static performance of a bladeless propeller 
for p/p, = 1.0 

results, the thin-jet-strip theory is probably overly pessimistic as a basis for 
prediction of potential performance. If the primary jet were of sufficient radial 
width to span the entire interaction space, the upper limit of performance would 

(apart from the effect of mixing during deflection) be that predicted by the two- 

dimensional theory. 

In the analysis of Ref. 9, a constant-area mixing phase is added to the de- 
flection phase, which is again treated as a plane-flow interaction. With this ad- 
dition, the analytical model reduces to the ideal constant-area ejector when the 
Spin angle is zero. Typical results of this analysis, for static operation with an 
area ratio of 15, a ratio of primary total pressure to ambient static pressure of 
2.8, and two primary-to-secondary stagnation temperature ratios, are presented 

in Fig. 12. These results confirm that the superiority of the bladeless propeller 
over the ejector increases as the primary-to-secondary temperature ratio —or 
the secondary-to-primary density ratio —is increased.* They also show that 
the effect of mixing following the deflection phase may be favorable or unfavor- 
able, depending on the spin angle and on the temperature ratio. 

*As the spin angle is increased from 0° (ejector) to 20°, the calculated energy 
transfer efficiency (ratio of mechanical energy gained by the secondary to 
mechanical energy lost by the primary) increases from .40 to .53 if the tem- 
perature ratio is 1.0; whereas it increases from .22 to .55 if the temperature 
ratio is 4.0. 
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Fig. 12 - Static performance of a bladeless propeller 
with and without constant-area mixing following the 
deflection phase 

When the coning angle is large, Coriolos and centripetal accelerations can 
no longer be neglected. These accelerations, first accounted for in the two- 
dimensional analyses of Ref. 10 and 11, have a marked and favorable effect on 
performance (Fig. 13). 

Coriolis effects are incorporated in the analysis of Ref. 12, where, in addi- 
tion, (a) the deflection phase is treated by the strip method of Ref. 5, (b) consid- 
eration is given to the effect of partial mixing during the deflection phase, and 
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Fig. 13 - Performance of a bladeless propeller with a 

large coning angle 

(c) a constant-area mixing phase is added, as in Ref. 9. The primary gas par- 
ticles are assumed to move, during the deflection phase, along the surface of 
the cone defined by the initial coning angle of the nozzle axes. Of particular in- 

terest here is the effect of mixing during the deflection phase. Jet cascade 
tests by Palmieri at R.P.I. (Ref. 13) and velocity surveys in jet injection tests 
at the McDonnell Propulsion Laboratory (Ref. 5) have shown that the mutual de- 
flection of the two flows can be completed before mixing has made substantial 
progress. This, however, has yet to be accomplished in the actual operating 

conditions of the bladeless propeller, mainly because mixing is promoted by the 
curl components which are introduced in both flows by the rotation of F,. Mix- 
ing in the deflection phase is described in Ref. 12 as a mass transfer which is 

assumed to progress at a constant rate per unit length of the primary jet. The 

mass transferred from the secondary to the primary flow during the deflection 

phase is related nondimensionally to the length of the primary jet through an 
"entrainment coefficient" \ , the value of which varies from zero (for the case 
of no mixing) to 0.05 for the worst condition considered. Some of the numerical 

results of the analysis of Ref. 12 are shown in Fig. 14. The adverse effect of 
entrainment increases, as expected, with increasing spin angles. An increase 

of primary-to-secondary stagnation temperature ratio (hence of secondary-to- 
primary density ratio) is again found to increase the augmentation ratio and to 

decrease the optimum spin angle for any given area ratio. 

Special attention to the interaction of a gaseous primary with a liquid sec- 
ondary fluid has been given in recent years at Grumman Aircraft Engineering 
Corp. in an extensive study of underwater propulsion applications of the blade- 
less propeller (Refs. 14 and 15). In such interactions, the collision angle be- 
tween the two flows is generally very much larger than the spin angle, and the 
Grumman study has revealed that the best performance is obtained, as a conse- 

quence, with very small spin angles. In Refs. 14 and 15 the deflection phase is 
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Fig. 14 - Effect of mixing during the 
deflection phase 

analyzed by the strip approach, but with consideration of meridional deflections 

of the primary jet. In addition, these analyses stipulate the presence of (a) sec- 
ondary prerotation guidevanes for the purpose of obtaining radial uniformity of 
energy transfer, hence radial dynamic equilibrium, (b) exit straightening vanes 
for the purpose of turning the secondary flow, after the interaction, everywhere 

to the axial direction, and (c) a separator for the extraction of the deflected pri- 

mary flow, which is then also turned to the axial direction and discharged isen- 
tropically to ambient pressure. Numerical results of these analyses, for a 
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noncondensing primary, are presented in Figs. 15and16. The thrust augmentation 
ratios predicted by the Sarro-Kosson strip theory for very low spin angles and 
disc loadings are considerably higher thanthose predicted for the same conditions 
by the two-dimensional theory. This is primarily due to the fact that the analyti- 

cal model considered in the latter theory makes no provision for the recovery of 
the transverse momentum of the two flows after the deflection phase. Work on 

the theory of the bladeless propeller witha condensing primary is in progress at 

R.P.I. and at Grumman, but no numerical result is yet available at this writing. 

SARRO-KOSSON STRIP 
THEORY, NONCONDEN - 
SING PRIMARY 

GRUMMAN STEAM-WATER 
TESTS 

e 

Pi Po 

2 

2.66 

3.33 

Uo» fps 

Fig. 15 - Comparison of the Sarro-Kosson 
strip theory with the results of the Grum- 
man steam-water tests,\ for a noncondensing 

primary (Refs. 14 and 15) 
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Fig. 16 - Static performance of two- 
phase bladeless propeller, Grumman 
steam-water tests 

EXPERIMENTAL RESULTS 

The first experiments on a bladeless propeller were conducted by this 

writer in 1952, using an unshrouded model with a large afterbody. The tests 
(air-to-air) were conducted in a free jet simulating a forward speed of 300 
ft/sec. Thrust augmentation ratios as high as 1.2 were measured, but the re- 
sults were considered inconclusive because it could not be ascertained whether 
the apparent increase of thrust was not in part a decrease of drag such as might 
be caused by delayed flow separation on the afterbody. Following some work on 

pumping applications, thrust augmentation experiments were resumed at R.P.I. 
by Vennos in 1959 (Ref. 16). These experiments were conducted on a variety of 

water-water models, the most successful of which had zero coning angle, a spin 
angle of 35° (Fig. 17), a secondary-to-primary area ratio of 37.6, and a shroud 
length-to-diameter ratio of about 1. Two of the test points are shown in Fig. 9. 
Not shown are the test points corresponding to the highest augmentation ratios 

measured in these experiments, because they were obtained under test conditions 
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Fig. 17 - Rotor No. 2 of the Vennos water-water 
test series (Ref. 16) 

that left some room for error (Ref. 16). It was foundin these and subsequent 
tests that apparently minor modifications of external shape or internal ducting 

in these models could produce major changes of performance. 

Also plotted in Fig. 9 is an air-to-air test point reported by Hohenemser in 
Ref. 5. Finally, for the purpose of direct comparison with the conventional ejec- 
tor, there is also shown a typical constant-area ejector test point (Ref. 17). 

Results of air-to-air experiments conducted by Hohenemser (Ref. 5) are 
compared in Fig. 11 with the predictions of the two-dimensional theory and of 

the strip theory. The experimental points fall very close to the performance 
envelope according to the strip theory. However, as has already been noted, 
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this agreement should not be interpreted as an indication that the upper limit of 
performance has already been attained. Indeed, the theoretical prediction, being 
based on an analysis that does not account for the finite thickness of the primary 
jets, is likely to be pessimistic except for very small area ratios. 

Measurements made at McDonnell Aircraft (Ref. 9) have shown that rotary 
jet mixing can be accomplished within rather short mixing duct lengths. This 
observation appears to be confirmed by the results of an experimental program 
recently reported by Palcza (Ref. 17). Less is known about the extent to which 
mixing progresses during the deflection phase. Comparison of theoretical and 

experimental results in Figs. 12 and 14 seems to indicate that the actual en- 

trainment coefficient may exceed the estimated value. 

Air-to-air models with large coning angles have been extensively tested by 
Avellone (Ref. 18). These models had an externally-driven, thin-walled rotor 
with sharp-edged orifices, incapable of imparting a significant tangential mo- 

mentum to the primary fluid. Thus, the spin angle could be varied continuously 

by just varying the rotor speed. Typical results of these tests are shown in Fig. 
13, where they can be compared with the theoretical predictions of Ref. 10. 

Two-phase underwater propulsion tests have recently been reported by 
Avellone and Sarro (Ref. 19). The model used was of the axial-flow type and 

had an externally-driven, thin-walled rotor for continuous spin angle control in 
the Same manner as the Avellone air-to-air model. In all tests the optimum 

spin angle was found to be between 1° and 2°. Some of the reported test points 
are plotted in Figs. 15 and 16. Direct comparison of the experimental results 
with those of the available theories for two-phase interactions is not yet possi- 
ble in this case, because the primary fluid used in these tests was steam, 
whereas numerical results of the theories are available only for the case of a 
noncondensing primary. It will also be noted that, whereas the theory (Ref. 14) 

predicts a decrease of thrust augmentation with increasing pressure ratio, the 

experimental results are stil] inconclusive in this respect. Clearly, there is a 
great need for further research in this area, particularly since it is evident 

from Figs. 15 and 16 that the possibility still exists for vast improvements in 
the performance of two-phase bladeless propellers. 

CONC LUSIONS 

1. The bladeless propeller has the distinct advantages of efficiency and 

compactness over the conventional steady-flow ejector, and the distinct advan- 

tages of simplicity, ruggedness, and flexibility of operation over existing 
nonsteady-flow thrust augmenters. 

2. The superiority of the bladeless propeller over the ejector increases as 
the secondary-to-primary density ratio is increased, all other conditions being 

equal. 

3. For each spin angle there exists a secondary-to-primary area ratio that 

produces the maximum augmentation; and, similarly, there exists for each area 
ratio an optimum spin angle. These optima depend on the density ratio, the 
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thickness of the primary jet, and the secondary-flow entrainment during the de- 
flection phase. 

4. Jet dissipation during the deflection phase has an adverse effect on per- 
formance under all conditions (in the limit, if the two streams were to mix in- 
stantly at merger, the performance of the bladeless propeller would be reduced 
to that of the conventional ejector). 

D. The effect of mixing after the deflection phase can be favorable or un- 
favorable, depending on the spin angle and the temperature ratio. 

6. An increase of coning angle can have a markedly beneficial effect on 

performance. 

7. Marine applications of two-phase bladeless propellers appear to be very 

promising. 

Further study is needed in several areas, including: 

(a) a means of inhibiting jet dissipation during the deflection phase; 

(b) the operation of bladeless propellers with large spin angles and/or 
large area ratios; 

(c) the operation of bladeless propellers with large density ratios; 

(d) the operation of bladeless propellers at high forward speeds; 

(e) utilization of two-phase interactions, with a condensable or nonconden- 

sable primary gas; 

(f) the determination of criteria for rotor and shroud contouring, the de- 

sign of internal ducting, and the selection of primary orifice shapes; 

(g) utilization of rotating stall through a stationary cascade for the genera- 
tion of cryptosteady interactions; and 

(h) optimization of thrust generators in which cryptosteady pressure ex- 

change is compounded with other energy transfer mechanisms for the purpose 

of augmentation. 
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ABSTRACT 

This paper is dedicated to the study of particular rotatory motions of 
masses in space. 

It is demonstrated experimentally that, within certain limits, small mo- 

tions in the desired direction of a vehicle can be obtained by placing 
within it a mass that is kept rotating by a motor. The devices that were 
used are described and a full summaryof the results that were obtained 
is given. 

We have pointed out what, with certain difficulties overcome, will prob- 
ably be the most important application of these devices: on certain 
types of ships, to give them forward or backward motions, lateral and 
evolution motions, at low speeds; in automobiles, to create in them lat- 
eral motions which would be useful for parking, in forward and back- 
ward motions, and in changes of the direction of motion. 

DESCRIPTION OF THE TESTED DEVICES 

In January 1962, we proposed to initiate a study on the rotatory movement 

of a mass in space, to see if the dynamic actions produced by it could make 

way for possible applications in the field of propulsion. We decided to begin 
by considering the rotatory motion of a mass around a point. 

The device indicated in Fig. 1 immediately appeared useful to our study. 
It executes the motion of a point on a hemisphere. With simple mechanisms, 

it was possible to have an arm AP = R, rotating around a point 0, having the 
extremity A coincide with 0, and the extremity Pp free to move on the hemi- 

sphere. A mass m was concentrated in P. 

As a matter of interest, it is recalled that the trajectory described by P 

belongs to the hypopedes family, studied in astronomy by Eudoxus, a contempo- 
rary of Plato. More precisely, the trajectory represents the window of Viviani, 
a pupil of Galilei, who posed the problem of tracing four windows of maximum 

area on a hemisphere. (The solution of the problem, given by Gauss, requires 
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Fig. 1 - Rotatory motion ofa 

mass around a point 

that each window have as its contour the trajectory described by P, which is also 
the intersection of a hemisphere with a cylinder of circular section, having the 

ray of the sphere as its diameter.) 

The device was tested extensively on the ground and on the surface of the 

water with satisfying results on the whole. 

Continuing our study, we thought it suitable to release the extremity of arm 

A from the center 0 and to insert between A and 0 anarm r = OA. Thus we 
obtained the device indicated in Fig. 2 which represents a mass that turns 

around an axis, with the latter rotating around 
another axis. The mass moves on a sphere of 

z ray R, = (R? + r?)!/?,. The device, which may 
be considered the basis of the present paper, 

P,(™) 6 is formed as follows. 

On a light base (1) posed on a horizontal 
plane, a motor is placed (2) which, by means 
of a transmission (3), turns the horizontal 
shaft (4) that is held up by two supports (5) 
and (6) attached to the base. The shaft has a 
collar (7) within which can rotate an arm 
0A, = r, Which has welded in A, at 90° an- 
other arm A, Py) = R, at whose extremity P, 

Fig. 2 - Rotation of a is concentrated a mass m. There are also 
mass around an axis, two toothed conical wheels of equal diameter 

with the latter rotating (not designated in the figure), one connected 
around another axis to arm 0A, and the other connected to one of 
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the supports. Thus, when the motor, and therefore the shaft, are in rotation, 
the collar makes arm 0A, rotate around the shaft (4), while the two toothed 

wheels make it rotate around itself. Therefore, m rotates around 0A) that, in 
turn, rotates around the shaft (4). 

If the weights of all the rotating parts are negligible with respect to the 
weight (p) of the mass(m) and if the two arms are of equal length (R = r), then 
this peculiar fact is proved experimentally: when m reaches point P, the de- 

vice behaves as if it were struck by an external force passing through P,. 
The force is transmitted to the base (1) by means of the arms, the shaft, and 
the supports; the base is thus forced to undergo a small displacement on the 
plane of support in the direction indicated by the arrow. The same thing is not 

repeated for P,, symmetrical to P,, nor for the other points. It follows from 

this that the device, at each turn of the shaft (4), acquires a small displacement 

in only one direction, And if the shaft rotates with continuity, the device com- 
pletes a succession of small jerks, and therefore, a forward motion on the 

supporting plane, 

Thus, the rotatory motion of the mass corresponds to a forward motion of 

the device on the supporting plane. 

The experiment also demonstrates that the displacement occurs when the 

angular speed (w) of the motor shaft (4) is adapted to the dimensions of the de- 
vice. In fact, if » is relatively low, the thrust brought about by the mass is not 
sufficient to overcome the friction resistance from the contact of the base (1) 

with the supporting plane, and the device remains motionless; if, instead, is 
relatively high, the device undergoes strong vibrations, and hops about on the 

supporting plane in a disorderly fashion. 

The experiment demonstrates, finally, that the propulsive effect of the ro- 
tating mass can also be obtained without making a complete 360° rotation of the 
shaft. In fact, if it leaves p, and is made to rotate the shaft a few degrees, 
first in one direction and then in the other, each time m passes through P, we 

observe the formation of a force that displaces the device on the supporting 

plane always in the same direction. 

The motion of the mass can be related to the system of orthogonal axes 0, 

x, y, and z fixed with the device and having the origin on the point of intersec- 
tion of the axis of the shaft (4) with the arm along r; x parallel to the base (1) 
of the device; y coinciding with the axis of the shaft (4); and z perpendicular 
to the base. If point P, belonging to the plane xy is assumed as the origin of 
the motion, then point P, is also found on plane xy, but rotated 180° in respect 

to P,; i.e., from P, it passes to P,, making the shaft (4) rotate 180°. 

The device accomplishes, as has already been said, a propulsive effect for 
each turn of the shaft (4). If, however, (Fig. 3) we add an arm r' equal tor, 
we weld to A,’ an arm R' equal to arm R, and we place in P)' a mass m' equal 
to the mass m placed in P,, we get as a result a device with two masses, 

which, in one turn of the shaft, generates two propulsive effects. In fact, let 
us assume point P, as the origin of the motion. For a rotation of 180°, the 
mass from P, passes to P, and generates a propulsive effect there. In the 
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Fig. 3 - Expansion of Fig. 2 to 
two rotating masses with two 
propulsive effects ina single 
shaft revolution 

same instant, mass m' is at P} and after a successive rotation of 180° it passes 
to Pj and generates its propulsive effect there. 

The arrangement of the device with three toothed wheels (one fixed and 
two mobile) and two rotating masses, indicated in Fig. 4, allows two propulsive 
effects to be executed for each turn of the motor shaft: one is generated by m 
when it is at P; and the other is generated by m' when, after a 180° rotation 

of the motor shaft, it is at point P,. 

If, instead, the two rotating masses are arranged as indicated in Fig. 5, 

then the device, for each turn of the motor shaft, generates at the same instant 
two propulsive effects, symmetrical in respect to the y axis: one is generated 
by m at the moment in which it is at P, and the other is generated by m' which 
at the same moment is at P'. This description shows how effectively the motion 
of the devices has been observed, and can be verified by arranging the same de- 

vices on a horizontal plane and setting them in motion. 

EQUATIONS OF THE MOTION OF THE MASS WITH 
DEVICES FIXED TO THE SUPPORTING PLANE 

It seems rather difficult to be able to write the general equations for the 
motion of the tested devices; first, because the cause of the forward motion in 
a desired direction, instead of a back-and-forth motion, is not very clear; 

second, because the motion of the devices is accompanied by strong vibrations, 
depending on the number and weight of the rotating masses, the rotatory speed 

of the motor shaft, the reactions of the support, etc. 

Consequently, we can do nothing but limit ourselves to the case in which 
the bases of the devices are not free to move on the supporting plane, but are 
fixed rigidly to this plane. Likewise, for simplicity, we have to suppose that 
the mass is concentrated in one point, that the arms of length R and r and the 
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Pim 0° - Ni Pim) 

Ww 

3 
Fig. 4 - Arrangement 
of the device in Fig. 3 Fig. 5 - Arrangement 
to include one fixed and of the device in Fig. 3 
two mobile toothed so that the two propul- 
wheels sive effects atone shaft 

turn are both symmet- 
rical to the y axis 

toothed wheels have a negligible weight in respect to the weight of the mass m, 
and finally that the passive resistances are null. With these simplifications, we 

can write equations for the motion of the mass and obtain useful results. 

Let us begin with the case of the basic device indicated in Fig. 6, which, as 
has already been mentioned, executes a rotatory motion of a mass around an 
axis, with the latter rotating in turn around another axis. Let us refer the mo- 
tion of the mass to the system of axes 0, x, y, and z as previously indicated. 
Let us assume the point P, as the origin of the motion on the xy plane cor- 

responding to the angle of rotation 6 = 0. At time t the two arms are turned 
by 6; therefore, from 0A,P, we pass to OAP. If P" is the projection of P on the 
plane z0x, we have AP' = AP sin @ = R sin @. The coordinates of P then are: 

x - AC - AB = AP’ sin@-r cos@ =R sin? @ - cos@ 

yroor R cos 9 (1) 

z= DC + CP’ = OA sin@ + AP’ cos@0 =(Rcos@ +r) sin@. 

These expressions represent a trajectory whose projections on the three 

coordinate planes have the forms indicated in Fig. 7. In P, we have a check- 
point. If the angular speed and acceleration are indicated with @ = w and 

6 =e, the components of the speed and those of the acceleration assume the 
form 

v, = (R sin 20 +r sin@)w 

v. = R sin@w (2) 

(R cos 20 +r cos@)o , 
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Fig. 6 - Arrangement of the de - 
vice in Fig. 3, with e=0 as the 

angle of rotation, for determi- 
nation of the coordinates of P 

a, =.(2R cos 20 41 cos 0) w? 

+ (R sin 20 +r sinO)e 

a = Rcos@w? + R sinde (3) 

a. = - (2R sin 20 +r sin@)o? 

+ (R cos 20 +rcos@)e . 

The speed of the mass becomes 

V2 
via very. ive) = 

x y Zz (4) 

[R? (1 + sin?6) +r? + 2Rr cos @]!/2 w. 

For R = rand 6 = 7, i.e., in P,;, we have 
v= 0. 

Fig. 7 - Trajectory projec- In the study of the dynamics of the point, 
tions of the three coordinates the principle of the conservation of energy is 
of P often used. If we suppose that in the system 

we are considering the energy remains con- 
stant, we can derive an expression that may 

give us an indication about the way of varying w and e to the varying of the 
angle 6. For this expression we can write: 

1 1 
E= 5 mv’ + alee ct pz = const. , (5) 
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where 1/2 mv? is the kinetic energy of the mass m, 1/2 Jw? is the kinetic energy 

of the remaining masses that rotate around the y axis and in respect to which 
the moment of inertia equals J, and pz is the energy of the vertical motion of 

the weight p. 

Equations (5), (4), and the third equation of Eqs. (1) yield 

1 = a [R*(1 #sin*@) 4+ r?2 + 2Rr cos G]-aw- + 5 Jo? + p(Rceos@+r)sin@g. 

If we put h = J/mR?, we obtain 

E - P(Rcos@+r)sin@ 
@ = 

5m (R2(1+sin?@) + r? + 2Rrcos@ + HR?) (6) 

Differentiating Eq. (5) with respect to the time t, we obtain «. To determine 
the value of E necessary for the calculation of w, we can resort to the mean 
value of the number of revolutions N. In fact, from dé = wadt, using Eq. (6), 
we obtain the period 

1 1/2 
5 m [R2(1+ sin? @) +, r? + 2Rr cos 0+ hR?] 

4 I 

——, 

Lael 

a cr II 

—, 

ie} 3 a. 
cls 

Il 

= 

nN Fs 

a DS I 

Z| E - P(Rcos@+r)sin@ (7) 

To deduce E from this expression, we can proceed graphically, choosing arbi- 

trary values E,, E,, E;,..., calculating the integral and determining the cor- 
responding values T,, T,, T,,... . Entering in graphs having E as a function 

of T with the value of 1/N, we can obtain the value of E. 

By applying the procedure used for the device indicated in Fig. 3 to other 

devices, the corresponding expressions can be obtained. 

It is particularly useful for what will be said to consider the device indi- 

cated in Fig. 5. 

The coordinates of points P, and P, in which the masses are concentrated 
are: 

e = Rsin- o> ncos 0 x, =)-Risin* 9+ r-cos @ 

y, = -Rcosé y, = -R cos0 

Zz, = (Reos@+r)sinO z, = -(RcosO+r)sin§g. 

With R=r and putting m, = m, = M/2, the coordinates of the center of gravity 
G of the two masses are 
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This means that, instead of the two masses which are symmetrical every 
moment in respect to the y axis, a single mass M may be adopted which moves 

with a well-timed back-and-forth motion along the y axis. The quantities of 

motion and their derivatives are: 

Q, = 0 0: = 0 

Q,= MRsin@ Q, = MR (cos 6? + sin de) 

Q,= 0 OQ = 0). 

The energy of the system is: 

E-= Smet 5 Mavy + = Jo? = iconst. 

Continuing these calculations, using h = j/MR?, we obtain 

E = MR? [sin?@ + 2(1+cos@) + h]w? , (8) 

and thus, 

@ = 1/R (E/M)!72 [sin?@+ 2 (14.cos 0) +h) 442 = dO/dt .. (9) 

From this expression, it follows 

27 1 19/2 

1: [ av = (%) | [sin? @:+ 2 (1+ cos 0) + hj*/2.d6.= (10) 
0 (0) ZI | 

With this expression we can obtain E. By substituting in Eq. (9), E is obtained, 
and thus by deriving from Eq. (8), we have 

sin 0@(1- cos 0) E? 
aS 

[sin? 6 + 2(1+cos @) + h]? 

The expression of Q, becomes therefore: 

1+ (2+h) cos @ + cos?4 
Q, = MRE? (11) 

[sin?@6 + 2 (1+cos @) + hj? 

If we plot Qy against t, we obtain a graph of the type indicated in Fig. 8. 

RESULTS OF THE TESTS 

The described devices were submitted to a long series of tests to establish 
what concrete results could be obtained for propulsive purposes by a mass 
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Fig. 8 - Graph plot of Q, against t 

rotating in space. We studied above all the device with two masses indicated in 
Fig. 3. The tests were carried out on land, in the water, and in the air, with no 
saving of time. We can now report the most important results of these tests. 

Land Tests 

These tests were carried out on the floor, on horizontal tables, and on 

inclined planes. 

Figure 9 shows a device with two masses placed at the front extremities 

of two sets of longitudinal poles, one of which is attached to two transverse 
poles which rest on the floor by means of four heels. The device weighs 30 
kg; the two masses consist of two pieces of lead each weighing 200 grams, and 

are driven by an electric motor. 

In Fig. 10 the results of the tests are shown; in the abscissa we have the 
speed with which the device moves on the floor, and in the ordinate the gross 
motor power absorbed by the apparatus. Since it was a small motor and since 
we did not have at our disposal any torque meter qualified to calibrate these 

motors, we cannot effectively say what the net power absorbed by the device is. 
If, in the case we are considering, we assume that the efficiency is 0.25 for the 
motor and the transmission, we may deduce that at the maximum speed of 0.41 

m/sec the net power measured on the motor shaft is 50 watts. 
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Fig. 9 - Land-tested device 
weighing 30 kg, with two 
masses consisting of two 
pieces of lead weighing 200 
grams each 

WATT 

Fig. 10 - Results of tests on 
the device in Fig. 9 

Di Bella 

WATT 

With a device having two masses of 
the same type, but with a weight of 450 
grams and with two pieces of lead weigh- 
ing 20 grams each, we obtained the re- 
sults shown in Fig. 11. If we assume the 
efficiency of the electric micromotor and 

the transmission to be equal to 0.20 at 
the maximum speed of 0.61 m/sec, the 
absorbed power measured on the motor 
shaft is 4.6 watts. The device advances 
toward the right or toward the left, ac- 
cording to the way in which the rotating 

masses are oriented. 

Figure 12 shows a device placed on 
four wooden heels covered with soft rub- 
ber. It weighs 1,275 grams and climbs a 
sheet of glass, inclined at 59° on a hori- 
zontal plane. 

Figure 13 shows one of the different 
curves obtained to measure the efficiency 
of a device that climbs a table inclined at 
an angle 6 on a horizontal plane. Differ- 

ent values of 8 were assumed, and for 
each value the height of the climb (h) and 
the time of the climb (t) of the device 
were measured. By multiplying the weight 
p of the device by the h/t we obtained the 
power rendered by the device. It can be 
deduced from the figure that the device 
renders the greatest power when it climbs 
a table inclined at an angle £ given by 
tg B= 0.41. 

Figure 14 shows a device placed on 
the back part of a wooden frame 2 meters 

long and 1 meter wide and having four au- 
tomobile wheels. The device, with two 
masses of 3 kg each, put in motion by a 

12-volt battery of an automobile, turns 
the frame around vertical axes. The front 
part of the frame remains substantially in 

the same position, while the back part 
moves sideways to the right or left, ac- 
cording to the direction of rotation of the 

two masses, 

Figure 15 shows a Fiat 1100 automobile. On the lower face of the bottom of 

the trunk a device with two masses is placed, turned toward the road surface. 
The weight of each mass is 6 kg, and the motor of the device, put in motion by 

the automobile battery, absorbs a power of 220 watts. 
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Fig. 11 - Results of tests on the 
same type of device as in Fig. 9, 
but with a total weight of 450 
grams and having two pieces of 
lead weighing 20 grams each 

The phenomenon shown in the \ 

preceding case is repeated here; i.e., 

the back part of the car moves side- 
ways toward the right or toward the 
left, according to the direction of ro- 
tation of the masses. In about 40 
seconds, the back part of the car 
moves sideways about 2 meters. This 
means that if the car is approaching 
to park at a pavement and its longi- ' 
tudinal plane forms an angle of 30° Fig. 12 - de Oy on a 
with the pavement itself, a device with eolieedt eA ain ieee 
two masses is able to bring all of the eae praae of a inclined 
car to the pavement ina short time. at 59° 
By changing the direction of rotation 
of the two masses, the car is brought 
back to the position of arrival. 

An indication of the efficiency of the device can be obtained in the following 

way. Let us assume an automobile weight of 800 kg, and let us distribute 500 
kg on the front wheels and 300 kg on the back wheels. If we assume a friction 
coefficient between wheels and pavement equal to 0.60, the force necessary to 
move the back part of the car sideways is equal to 300 x 0.6 = 180 kg. Since the 
lateral displacement of 2 meters happens in about 40 seconds, the useful power 

is 180 x 2/40x 75 = 0.12 hp. The ratio of the powers is 0.80. 

1383 



Di Bella 

Fig. 14 - Device on back 
oe part of a wooden frame set 

on four automobile wheels, 
Fig. 13 - Curve measur- consisting oftwo masses of 

ing the efficiency of ia 3 kgeach. The masses are 
device thatclimbs a table put in motion by a 1l2-volt 
inclined at an angle B automobile battery and 

move the back part of the 
frame sideways, in the di- 
rection of rotation 

Tests on the Surface of Water 

We devoted a gr + deal of time to tests on the surface of water. We tested 

models of merchant auu military ships, pontoons, catamarans, and wooden and 
plastic containers. We shall report here some of the results. 

Figure 16 shows a device with hyppopedes placed on the forward part of a 
ship model 1.60 meters long and weighing 15 kg. The model advances at low 
speed on the surface of the water, with a rectilinear motion. 

Figure 17 shows a float with a flat bottom and vertical sides. Length L is 
4 meters, width | is 0.74 meters, and displacement d is 77 kg. It has a two- 
mass device, each mass having a weight p, of 4.900 kg. Arms R = r are 0.16 
meters long. The relation of the weight of the two masses to the displacement 

is 2p,/d = 2x 4.90/77 = 0.127. The relation of double the length of the arms 
to the length of the hull is 2r/L = 2 X0.16/4 = 0.08. The float moves at a 
speed of 0.36 m/sec. 

Another float similar to the preceding one, 1.60 meters long, and with 
2p,/d = 2 X0.300/4.20 = 0.142 and 2r/L = 2X 0.04/1.60 = 0.05, has a speed 
v of 0.22 m/sec. Since the scale of the models is \ = 4.00/1.60 = 2.5, the 
results of the tests indicate that the functioning of the devices can be regulated 

in such a way as to satisfy the relation V = v (A)!/2 

With another hull having a flat bottom and vertical sides, and with 2p,/d = 

2 x 0.30/24.90 = 0.02 and 2r/L = 2 X0.10/4 = 0.05, we obtained the speed of 
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0.085 m/sec. If this hull were extended 
proportionally, to the length of 160 me- 
ters, it would be able to reach a speed 
Vv =v(d)!/2 = 0.085/0.514 x (160/4) 1/2 = 
1.04 knots. The device would occupy 
5/100 x 160 = 8 meters of the length of 
the hull, and 2% of the displacement. 
The hull of Fig. 17, on the other hand, 
if lengthened to 160 meters would be 
able tc reach a_ speed Vv = 0.36/ 
0.514(40) 1/2 = 4.45 knots. The device 
would occupy 8/100 X 160=12.8 meters 
of the length of the hull, but 12.7% of 
the displacement. 

Figure 18 shows the hull indi- 
cated in Fig. 17 tested in the port of 
Genoa. The wave produced by the lat- 

eral displacements of the hull is quite 

visible. 

Figure 19 shows a very light hull, 
1.40 meters long, with a flat bottom, 
driven by a device with two masses. 

The hull can advance in any direction. 
It completes a rotation of 360° in 30 
seconds. 

Indicated in Fig. 20 is a model 
destroyer with 2p,/d = 0.062 and 2r/L = 
0.039. In a surface of water of 10.5 
square meters, it turns in ashort time. 

Figure 21 shows along device hav- 
ing R = r = 0.80 meters. It will be 
tested in the sea as soon as a suitable 
small ship is found. In such a way we 
hope to see what can be achieved on a 

ship in normal navigation on the open 

sea. 

It should be pointed out that very 

little force is needed to move afloat on 

an absolutely calm surface of water. 
For example, the model of the de- 
stroyer indicated in Fig. 20, which weighs 24 kg can be moved by applying a force 

Fig. 15 - Trunk of a Fiat 
1100 with a device consist- 
ing of two masses at 6 kg 
each and having the same 
effect on the back part of the 
car, after being set in mo- 
tion, as the device in Fig. 14 

Fig. 16 - Device with hyp- 
popedes on forward part of 
a ship model 1.60 meters 
long, 15 kg weight, advanc- 
ing at low speed and having 
rectilinear motion 

of 1 gram to it. Since, as we have seen, the tested device has the capacity to 

move a float, it follows from this that the device generates a propulsive effect 
even when the resistance is very low. 
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Fig. 17 - Float with flat 
bottom and vertical 
sides, 4meters long, 0.74 

meters wide, 77 kg dis- 
placement, having a 2- 
mass device and moving 
at 0.36 m/sec 

Fig. 19 - Very light hull, 

Fig. 18 - Hull of float in Fig. i 40nmie te r shlom gsi filtaxt 
17, showing the wave produced bottom, driven by a device 
by its lateral displacements with two masses 

Tests in Immersion 

These tests were carried out by placing a two-mass device on a com- 
pletely immersed hull, 3.10 meters long and 0.48 meters wide, with 2p,/d = 
2 x 4,90/470 = 0.208 and 2r/L = 0.18/3.10 = 0.116. The resulting speed was 
very low, but it was sufficient to demonstrate that the device functions even 
when placed on a hull that is completely immersed. However, because of the 
excessive dimensions of the device, its weight, and its very low speed, it can- 
not at presence have practical applications for navigation in immersion. 
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We must add that the immersion tests 

are rather difficult and that we have dedi- 

cated very little time to them. To the study 

of navigation in immersion we must return 

at another time. 

Tests in Air 

The tests were carried out by placing a 
small two-mass device on two hydrogen- 
filled balloons enclosed within a frame of 
very light wood. The tests were performed 

in a closed room with the air absolutely still. 

A device (Fig. 4) placed at one end of 
the two balloons with the y axis horizontal, 

made the balloons turn around vertical axes. 
With the device rotating 180° around the y 
axis, the balloons rotated in the opposite di- 
rection. The device has the capacity to im- 
part a forward motion to the balloons, but at 
a very low speed. 

Saar aa ™m. 9,84 

Fig. 20 - Diagram of 
the turn of a model 
destroyer 

These tests were also very difficult. We had to avoid the formation of air 
currents, eliminate the vibrations of the two balloons, reduce to a minimum the 
propulsive effect of the apparatus which stirs up the air, and limit the weight of 

the apparatus as much as possible. 

Fig. 21 - Long device having 
R = T = 0.80 meters for navi- 
gation testing on the open sea 
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The results of these tests do not allow us to predict the immediate practi- 

cal applications of the devices for air navigation, since here also we dedicated 

a rather limited amount of time to the tests. 

Tests in Rarefied Air 

These tests were carried out with the aim of observing the influence of air 
on the functioning of the device. We set up an airtight iron case, in the form of 
a cube, each side 60 cm long. The vacuum within the case was created with a 
pump, and was measured by means of a column of mercury. A vertical pole 

with a metallic tip was attached to the bottom of the case. Around it could ro- 

tate a horizontal pole, carrying a device at one end and electric piles at the 

other. The center of gravity G of the device-transversal-piles complex falls 

on the vertical w passing through the tip (Fig. 22). 

The result of the tests was that 
the device was not influenced by the 
absence of air. In fact, the device, at 
the same motor power, made the hori- 
zontal pole rotate the same number of 

turns (24 at first) with atmospheric 
pressure as with a 98.4% vacuum. 

In place of the device we substi- 
tuted a small propeller with dimen- 

sions equal to those of the device. We 
found that the propeller, with its mo- 

tor power used for the device, makes 
the pole rotate at 74 rpm with atmos- 
pheric pressure; but in the vacuum 

indicated above, the propeller acquires a very high number of revolutions with- 

out generating thrust, and the pole remains still. 

Fig. 22 - Transversal-piles 

device for rarefied air tests 

@ 

The device makes the pole rotate, even if the center of gravity G does not 
fall on the vertical w. In fact, if Y, is the distance of G from w, the pole for 
Yc = 0, 0-1, 6-3, and 2 cm completes 31, 31, and 26 rpm respectively. 

The maximum number of revolutions reached with the pole was 61 rpm. 

Since the distance of the device from the axis of rotation was 0.25 meters, it 
follows that the maximum speed reached by the device was 1.6 m/sec. 

Tests With the Device Suspended from a Thread 

Figure 23 shows the horizontal pole t having a device (A,) and the piles 
(A,). A vessel R having a circular section contains water in which is placed 
a float G, which also has a circular section. A thin thread f suspends the 
pole to the float. By operating the motor of the device, the pole begins to ro- 
tate, and by means of the thread, also sets the float rotating. In such a way 

both the pole and the float turn slowly in the same direction with continuity. 
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Tests on Dry Ice Moving ona 
Horizontal Smooth Slate 

As it is known according to the principles 

of mechanics, a body not subjected to any force 

either remains at rest or moves at a uniform 
speed. In practice, it happens that a body put 
into motion by an initial thrust, slows its own 
motion gradually because of friction, and stops. 
However, if the friction is very small, the 
body is able to maintain a constant speed for 

quite a long time. 

Fig. 23 - Diagram of a 
test with the device sus- 
pended from a thread 

In order to create in the laboratory a motion with very low friction, we re- 
sorted to small pieces of smooth dry ice on a horizontal slate that was likewise 
accurately smoothed. The friction derived from it is, in effect, very low. In 

fact, a piece of dry ice pushed by a light puff of air, can run the length of the 
slate at a uniform speed. Glass is less suitable than slate, because the ice, 
which melts little-by-little, sticks to the glass very easily. 

The friction coefficient for dry ice in motion on a smoothed slate, accord- 
ing to experiments specifically carried out by us, is equal to about 0.001. As 

may be recalled, the coefficient of friction for steel on ice, as given by the 

manuals, is 0.01. 

A device with two masses, with an overall weight of 140 grams, was posed, 
by means of a light wooden frame, on four small pieces of dry ice placed on an 

accurately smooth slate 3.20 meters long and 0.50 meters wide. Numerous 
tests of systematic type were carried out, with the device running over the 
slate in all directions. The tests were repeated with another device weighing 
120 grams. The final result of these tests was that the device-frame-ice com- 

plex, according to the way in which the device is oriented on the slate, (a) ad- 
vances on the slate with rectilinear and uniform motion, (b) turns to the right, 

(c) turns to the left, and (d) launched at low speed from extremity A to the other 
extremity B of the slate, at a certain point stops and returns backwards. As is 
apparent, a friction resistance that is of the order of thousandths of grams 

does not impede the functioning of the apparatus. 

It should be noted that in the last case, both the dynamic action of the ro- 
tating masses that brings the frame back again and the friction resistance are 

headed in the same direction: from B toward A. 

Graph of the Forward Motion of the Device 

A large sheet of paper was laid out on the floor, and on it the device (Fig. 9) 
was made to advance, carrying a penpoint for writing on the paper. The pen- 

point was more or less in correspondence to the vertical passing through the 
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center of gravity of the device. The device was tested with one mass and with 
two masses, at different numbers of revolutions. The trajectory described by 
the penpoint in the various cases is shown in Fig. 24. We have: 

(1) one arm and N = 150 (5) two arms and N = 132 
(2) one arm and N = 200 (6) two arms and N = 170 
(3) one arm and N = 224 (7) two arms and N = 210 
(4) one arm and N = 318 (8) two arms and N = 250 

2... Lf. 2 Bw Dae dae a 

Fig. 24 - Trajectories described 
by penpoint for various tests on 
the forward motion of a device 

It is clearly noted that for each revolution of the motor shaft, we have a 
forward motion (s,) and a backward motion (s{) of the device. The second is 
much smaller than the first. For example, we have: 

s'/s, = 0.10 for N = 200 and a device with one arm 

s'/s, = 0.25 for N = 224 and a device with one arm 

s'/s, = 0.27 for N = 250 and a device with two arms. 

Graph Using the Oscillograph 

In order to complete the series of experiments, it was considered suitable 
to have a graph of the variation of N and of the motor power during a 360° 
rotation of the motor shaft. Siemens oscillographs were used, and altogether 
there were carried out eighty graphs of tension, current, and N on devices with 

one mass or two masses. 

Figure 25 shows one of these graphs. It was carried out on the device indi- 
cated in Fig. 9 fixed to the floor, and having a single rotating mass. In the 
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Fig. 25 - Oscillograph of the per- 
formance of the device indicated in 

Eig. 9 

abscissa we have the angle of rotation @ of the motor shaft and in the ordinate 

N, the voltage V and the current I, measured on the terminals of the motor. 
In order to pass from the input power VI to that measured on the shaft in Eq. 
(4), it was necessary to remove from VI the power absorbed by all the passive 
resistances and to multiply the power that remained by the efficiency of the 

motor. The power absorbed by the passive resistance was 9 watts. 

For 6 = 0 andfor @¢ = 27 we have V = 26v, I = 0.46 amp, and VI = 
11.96 w, The corresponding power on the device is 2.96 w. 

In the points 6 = 0 and @ = 27 we have N = 1.42/sec and at the maxi- 
mum 2.22/sec. The mean value measured by a tachymeter during the test was 
N = 95/min = 1.58/sec. The corresponding period is T = 0.6316/sec. 

With this value of T, Eq. (7) gives E = 0.1828 kg-m. Having had in the 
device R = 0.20 m, r = 0.15 m, p = 0.200 kg, and h = 2.15, it was possible 
to calculate with Eq. (6) the angular speed w. In Fig. 26 the values of w ob- 
tained during the test are indicated with (+), and those calculated with Eq. (6) 

are indicated with (o). 

We wanted to see the contribution given by pz and by 1/2 Jw? to the values 
of E and of w. In Eq. (6), placing pz = 0 produces a curve indicated by (-), 
and placing h = 0 gives the curve indicated by (A). The values of E are 

0.1666 kg-m in the first case, and 0.0927 kg-m in the second. 

For R =r, h = 0, 6 = 180°, from Eq. (6) we obtain w = ©, 
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3 60,34 

43,5 
459 } ' 

26,33 
304 

Experience 

E- 01828 kg. 

£ = 0 1666 ny —= pz=0 

E=0 098% n = J=0 

0 100 200 300 360 

Fig. 26 - Comparison of values of w obtained from tests 
with those obtained from Eq. (6) 

CONSIDERATION OF TESTED DEVICES 

The device which first produces the greatest interest is the one indicated 
in Fig. 5. In fact, it is perfectly balanced, moves forward on the floor, and 
climbs an inclined plane. A small device of this kind, held in the hand, gives 
evident proof of the possibility it has for generating a substantial propulsive 

thrust for each turn of the motor shaft. 
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However, this device does not function in either water or air, nor when 
suspended from a thread, nor even on small blocks of dry ice that are free to 
move on a horizontal slate. When the device is placed on a model of a ship, 
for example, it makes the model go forward and backward, while the center of 
gravity of the model remains in the same position. The device, therefore, func- 
tions only if a suitable value of friction resistance exists; if this resistance is 
too low or nonexistent, the device does not function. 

In order to give an explanation of this, it is necessary to consider only the 

derivative of the quantity of motion (Fig. 8). Since the area of this diagram is 

zero, it follows that, if there is no friction, the device goes back and forth; if 

there is friction, linear or not, the device acquires a forward motion. 

In fact, if the friction resistance is represented by lines +R, and -R, as 
indicated in Fig. 8, then the device advances and does not go back. This is so 
because the diagram of force that thrusts the device back is always inferior to 

the friction resistance, while in the meantime the point of the diagram of force 

that thrusts the device forward is superior to the friction resistance. The de- 
vice, in correspondence to this point, undergoes a forward jerk. If instead 
the friction resistance is very low, the two lines +R, and -R, that represent 
it come very close to the t axis, so that the two areas of the diagram remain 
substantially equal between them, and the device does not advance. The device 
thus remains defined, in both its functioning and its limited practical 
applications. 

This conclusion cannot be extended to the devices indicated in Figs. 2 and 3, 
They, in fact, function even with a very low friction, as can be seen in the tests 
in water and on dry ice. On the other hand, if we analyze the trajectory of the 

forward motion of the device (Fig. 27) deduced from Fig. 24, it is clearly indi- 
cated that when the mass reaches point P, and remains there motionless, the 
device is displaced of +s,; when the mass is 

in the remaining points of the trajectory, the 

device goes forward and backward; when the 4 
mass returns to P, there is the +s, dis- eg Pie 
placement again; and thus it goes on. The 

trajectory of the motion of the device is 
therefore composed of two parts: one closed, 

in which the device completes a back-and- 

forth motion, and the other open, giving proof Fig. 27 - Trajectory 
of theforward motion of the device. It seems of devices (Figs. 2 and 
very difficult to give an explanation for this 3) that function with 
forward motion. On the one hand, we have very low friction 
definite proof that the device advances, even 

inthe presence of an extremely small amount 

of friction; on the other, we have the theorem of the motion of the center of 
gravity, which excludes the possibility of the device advancing, unless there is 

a friction resistance. No 'internal'' muscular force and no "internal'’ mecha- 
nism, simple or complex, can influence the motion of the center of gravity. 

The explanation of the forward movement will eventually be found. What is 

necessary is a thorough examination of the functioning of the device, both from 
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the theoretical and experimental point of view. As to the theoretical viewpoint, 
it will be necessary to be able to form the general equations for the motion of 

the device, to find again the trajectory indicated in Fig. 27, and to demonstrate 
that the displacement +s, ceases to exist if there is effected a lack of friction 
resistance because of the contact of the device with the surface of the support. 
As to the experimental viewpoint, it is a question of finding a laboratory test in 
which the friction resistance is small enough to remove the possibility that the 

device might move. 

For now, we have established the fact that a vehicle, by means of an ""in- 
ternal'’ mechanism, can move in the presence of very little friction. 

CONCLUSIONS 

During the tests that were made, the best results were obtained with the 
device indicated in Fig. 3; thus, we intend to refer to this device in our final 
summary considerations. 

1, The device, as has been mentioned, does not generate a continuous 
thrust, as happens for example in the case of the propeller, but produces two 

propulsive effects for each turn of the motor shaft. Meanwhile, in the interval 
between one propulsive effect and the other, the device undergoes the reaction 

of the vehicle that it must thrust. It follows from this that the functioning of 
the device depends upon the type of vehicle, and on the point and way in which 

it is placed on the vehicle. 

2. The number of turns of the motor cannot be notably increased, because 
beyond a certain value the device begins to jump around on the supporting plane, 

and the absorbed power is thus dispersed in vibrations. 

3. Up to the present time, it has not been possible to combine more than 
two rotating masses in such a way as to be able to have more than two propul- 

sive effects for each turn of the motor shaft. Even after having recognized 
the great importance that the resolution of this problem would have, we have 

only been able to devote rather limited time to it. 

4, The device generates vibrations that may be tolerable on ships and 

floats in general, but rather unpleasant in land vehicles. It is necessary to 
foresee an arrangement of mechanisms that can absorb the vibrations. In the 
case of automobiles, if the device is attached to the axis of the rear wheels, 
it is necessary to anticipate an arrangement of shock-absorbers that will pre- 

vent the vibrations from passing from the axis of the wheels to the chassis. 

5. The weight and dimensions of the device may constitute a serious ob- 
stacle for its use on ships. It depends on the speed it has to reach. If it is 
limited to the minimum speed needed to move a ship in port, with a calm sea 
and without wind, then the weight and the dimensions of the device may be 
tolerable. Numerical indications concerning this problem will be obtained 

only after having made tests on some ships. 
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6. We did not run any tests of devices placed on hulls in motion to see 
if a device produces its forward motion even when the hull has the propeller in 

action, or if it produces its turning motion even when the hull has the propeller 

alone or the propeller and the rudder in action. These are tests that would be 

of great interest for the practical application of the device. If the outcome of 
the tests were satisfactory, the use of the device could become useful even if 
just for the contribution it would make in support of the rudder. These tests 
should be carried out, naturally, on a ship under normal navigation conditions. 

7. It was not possible for us to conduct research on trajectories different 
from those indicated previously; for example, trajectories that are less cum- 

bersome and more efficient. 

Having seen from the first that, even with determined limitations, there 
existed the possibility of moving a vehicle in a desired direction, by making a 
mass rotate within it, we dedicated ourselves solely to the execution of a vast 
series of tests with the goal of giving a definite proof of the existence of this 

possibility. 

We are of the conviction that what is of interest is mainly the construction 
of evidence for a given phenomenon, If it appears useful for practical applica- 
tions, the necessary modifications can always be found in order to execute the 

phenomenon in the best possible way. 

Finally, we should like to state that the present paper is original and that 

the devices described in it are patented. 

* * * 

DISCUSSION 

Prof. M. Poreh 
Technion-Isvael Institute of Technology 

Hafia, Israel 

The propulsion effect of certain unsteady motions of a mass within a 
closed system with rigid boundaries seems, at first, surprising and contra- 
dictory to physical laws. The phenomenon is not new, however. The "Mexi- 

can jumping bean" is just one example of a motion due to polarized accelera- 

tion. Friction is the dominating factor in all of Prof. DiBella's experiments. 
In some of them, the friction coefficient is very small indeed, but so is the 

power necessary to maintain the motion. 

* * * 
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REPLY TO DISCUSSION 

Prof. Alfio Di Bella 

I should like to thank Prof. Poreh for his contribution to the discussion and 

to write down here some of my considerations. 

To show that results of tests of my devices are in agreement with the prin- 

ciples of mechanics it is not necessary to draw an analogy with larval insects; 

it is enough to remember these principles. 

The chapter concerning the motion of any material system in Appell's 

classical treatise on Rational Mechanics states that: 'Le centre de gravite 
du systeme se meut comme un point materiel, qui aurait pour masse la masse 

totale du systeme, et auquel seraient appliquées des forces égales et paralleles 
aux forces exterieures.'' We can see therefore that any force conditions are 

acceptable, as long as they are "external." 

The test results of my devices were obtained in the presence of external 

forces. In fact: 

- In tests on dry ice, friction resistance is the dominating factor; it 

is very little (practically negligible), but not strictly zero. 

- In tests in water the water pressure acting against the hull is the 

dominating factor. 

- In tests in air the pressure against the balloon on which the device 

is placed is the dominating factor. 

For these reasons the working of the devices follows the classical mechanical 
principles, and the dominating factor in my experiments is not the friction 
coefficient alone, 

However, it would be interesting to know the minimum values of the ex- 
ternal forces which are necessary to prevent the device from working. Theo- 

retically, this could be done by writing the motion equations of the device; and 
in a practical way, by carrying out tests in the presence of external forces 

that gradually decrease to zero. 

As far as the power absorbed by the device is concerned, it has not been 
possible to find out experimentally if the power diminishes with the external 
forces. The 140-gram device works with the same small battery both on dry 

ice and on a wood table. We should remember, however, that the device is 
subject to vibrations and shocks on the supporting plain. 

At present, it is difficult to say how power absorbed by the device is 

distributed. 
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THE AERODYNAMICS OF SAILS 

Jerome H. Milgram 

Massachusetts Institute of Technology 

Cambridge, Massachusetts 

INTRODUCTION 

The general nature of the aerodynamics of sails is similar to that of low- 
speed aircraft, for the most part. However, there are a few significant differ- 
ences. It is the purpose of this paper to discuss the fundamentals of these 

differences and, to a limited extent, how these differences affect the design of 
sails, As in the case of aircraft, the best starting point here is the lifting line 

theory for a single lifting line. One difference between the lifting line theory 
for sails and the lifting line theory in an unbounded free stream is that there is 
a boundary beneath the lifting line in the sail problem which represents the hull 
and the sea. Another difference is that sails operate in a wind gradient that is 
significant over the entire span of a sail, whereas on most aircraft the wind 

gradient is usually significant only near the root of a wing. 

For a vessel carrying two sails, much can be learned from the theory of 

two interacting lifting lines. This is, of course, similar to the biplane theory 
for aircraft, and some generalizations drawn from aircraft theory can be ap- 
plied to a sailing rig. Because of the various limitations of the biplane theory, 

however, as well as the fact that, for sails, the lifting lines are skewed to each 
other if one of the sails is set on a stay, detailed results from the theory of two 
lifting lines must be obtained by numerical methods. 

When boundary layer effects are examined, the situation relating to sails is 
much more complicated than most other applications, because, for the most 
part, sails operate at relatively large lift coefficients. For example, a typical 

wing or propeller blade might have a lift coefficient of about 0.4, whereas a 

typical sail would have a lift coefficient of about 1.4. Most boundary layer ef- 
fects are determined by the chordwise pressure distribution, since the flow is 

usually almost wholly chordwise. This is shown in Fig. 1 which is a photograph 

of sails having tufts to indicate the flow direction in a wind tunnel. Two other 

frequent effects are also indicated. These are the local leading-edge separation 

on the mainsail near the head of the jib due to a poor match between the sails, 
and the local trailing-edge separation near the head of the mainsail due to the 

large local lift coefficient in this region. 

LIFTING LINE THEORY FOR A SINGLE SAIL 

Two of the main differences between the aerodynamics of sails and the aero- 
dynamics of most other low-speed lifting surfaces are that a sail operates in a 
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Fig. 1 - Model sails with tufts in a wind tunnel 

velocity gradient and that it has a solid boundary beneath it formed by the hull 
and the sea surface. The effects due to these differences can be determined 
from the lifting line theory. The actual design of sail shapes must be carried 
out by the lifting surface theory (see, e.g., Milgram, 1968). However, for the 
linearized problem the lifting line theory and the lifting surface theory yield 
identical flows in the Trefftz plane. Hence gross quantities such as lift, in- 
duced drag, and heeling moment can be calculated by the lifting line theory. 

Consider a steady, incompressible, inviscid flow in the presence of a 
heeled lifting line. The flow is taken to be irrotational except on the lifting line 
and its trailing vortex sheet. The boundary conditions beneath the lifting line 

are approximated by a plane parallel to the sea surface lying somewhere be- 
tween the deck of the hull and the sea surface. To satisfy the boundary condi- 
tion of no-flow through this plane, henceforth called the image plane, the method 
of images is used as shown in Fig. 2. The free stream velocity is approximated 
by a linearly varying function of height having the value U, at midspan and a 

slope of K. The direction of the free stream is taken to be constant in this de- 

velopment, whereas on an actual sailing vessel the incident stream direction is 
not constant. This occurs because the incident wind is the vector sum of the 
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true wind velocity whose magnitude 

increases with height, and the neg- 

ative of the velocity of the vessel. 
This small effect is neglected in 

this analytical development, but is 
taken into accountin the numerical 
calculations of the next section. 

The lifting line problem isfor- 
mally posed as follows. Determine 
the flow field and associated lift, 
and the induced drag and heeling 
moment for a lifting line of length 

b perpendicular to an incident, x - 

directed, shear flow and inclined to 
the vertical by an angle ¢. An in- 
finite horizontal plane is located at 
a distance h below the lifting line, 
and the variation of free stream 
velocity depends only on height in 

a linear fashion such that its speed 

is given by 

U = Uy + Ky . (1) 

The origin of the coordinates 
is at the midspan of the lifting line 
(Fig. 2). Calling the disturbance 
velocity potential by ¢ and the dis- 
turbance velocity components by u', 
v', and w', the boundary conditions 
are: 

Fig. 2 - The geometry for aheeled 
lifting line in the presence of an 
image plane 

ie y=-b/2-h aa (2) 

Lim Vd = 0 (3) 
y>oto 

Pimevo 2.0 (4) 
zZ7+o 

Lim Vé= 0 (5) 

Lim Vé < ©. (6) 
x7o0 

The method of solution is similar to that used by Glauert (1948) for an un- 

bounded airfoil in a uniform stream, The circulation must vanish at the ends of 
the lifting line to satisfy Eq. (6). This is because a nonzero value of circulation at 
an end of the lifting line would necessitate a trailing vortex of nonzero strength, 
since the vortex field is solenoidal. The circulation strength on the lifting line 
is expanded in a Fourier series, each term of which vanishes at the ends of the 
span. First the angular variable y is defined by the relation 
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yor cos yp (7) 

with the simple Jacobian 

dy. br” 
ay = a sin W . (8) 

Then the circulation can be expanded as 

Ply(¥)} = 2U,g b )” A, sin ny , (9) 
n=1 

where the A,'s are dimensionless. The usual relation for the lift distribution 
holds; 

O[yc4)] = pucy) Icy) , (10) 

which gives 

Lo. =e PU,” b- PUy Kb? cos w] »: Aj sini ny: (11) 
n= 1 

Since the vortex field is solenoidal and Kelvin's circulation theorem is valid, 
there must be a trailing vortex sheet of strength equal to the negative of the 

spanwise derivative of the circulation: 

oe Y [y(y)] = By (12) 

and in terms of y , 

foe} 

-4 UF, yy nA, cosnwy 

y(W) = pet (13) 
sin wW 

The solution of this problem is carried out by use of the method of images 
as shown in Fig. 2, where the sign of the image of any vortex element is oppo- 
site to the sign of the element in order to satisfy the boundary condition on the 
image plane. The perturbation velocity is taken as the velocity induced by the 

system of vorticity comprised of the lifting line and its trailing vortex sheet as 
well as the image system. There is another source of velocity alteration. This 
alteration occurs whenever the system of vorticity induces velocity parallel to 

the direction in which the free stream speed varies. Because of the vertical 
variation of free stream velocity, such induced flow convects fluid of a given 
stream velocity to a region where the undisturbed stream velocity has a possibly 
different value. For wind gradients commonly encountered in normal sailing 
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craft, this effect is very small and will not be taken into account in the 
following theory. 

It is shown in appendix A that the effect of heeling on sail aerodynamics is 

negligible. Hence, the following developments will be carried out for zero heel. 
The dominant effects of heeling can then be accounted for by proper resolution 

of forces. The lift and heeling moment are determined by the circulation distri- 
bution on the lifting line and the free stream velocity distribution. These inde- 

pendent variables, along with the induced velocity component w', determine the 

induced drag to the first order in the velocity ratio. 

We can now determine w'. From the law of Biot and Savart, 

b/2 b/2 
' =, (71) le ACH) 14 

i aes yon o" xf Eb Pon eae (14) 
=b/2 =b/-2 

The negative sign occurs on the second term because the sign of the image vor- 

tex system is the negative of the sign of the lifting line and trailing vortex sheet 

system. 

Let 

n= - 2 cos Udon thee eine tine (15) 

n=- = cos $’ on the image line , (16) 

and, as before, 

ee ee (17) 
2 

In terms of the variables », y', and ¢', w'(y) is given by 

' ol. = ” cosny’ dy" i if cosn¢’ dg’ 18 

Oot a Bs «oso | cos Y - cos | 2+4h/b-(cos vt cosP } ( ) 

The first integral was evaluated by Glauert (1948) as 

io cos ny’ dy’ ee sin ny (19) 

9 cos wy - cosy | siny ~ 

The second integral is evaluated in appendix B as 
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ih cos no’ dd’ wb Lacy)-Vo2(y)-1)" (20) 

4h OPE 
O21 Face (cos ¥ + cos ¢') Q7(y)-1 

where 

Qy) = 2 + a5 cos (Ww) . (21) 

Using Eqs. (19) and (20), the expression for the downwash becomes 

/ 

wy) =~ Uy Di nA, {ean abig ecw svor=2] i: (22) 
7 sinwy Q2()-1 

n= 1 

In the linearized theory the induced angle, a a(y), is given by 

OR ian ely (23) 

and the induced drag distribution d,(y) is 

diCy) = €€y)_ ay Cy) - (24) 

Hence, 

di(y) = pU(y)w'(y) . (25) 

The total induced drag is 

D; I. - pl(y) w'() 3 sin wy dy . (26) 

_ Using Eqs. (9) and (22) and carrying out the integration for the part of the 
downwash due to the trailing vortex sheet gives 

fo) fo} foe) 7 = YP 

D, = fel i ly nA aD vs nA, wal sin my wih g ENO E MOTT A 

n=1 n=1 m=1 0 Vo2%(v) - 1 (27) 

Using the notation 

{hh [Ada n 

ae =[ simimurie in ec OD) re li dy , (28) 

0 VQ7(y) - 1 

then 
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2 ; 4 @ 7 - @ 

D, = Uy? b 25 nA, [5 AL 2 AL tan] ; (29) 

Values of I,,, for various values of h’/b are shown in Table 1. This table 
indicates that I, decreases rapidly as m or n increases. For practical pur- 

poses, negligible error is introduced in the induced drag calculation by neglect- 

ing the effect of all terms in the double sum for m or n greater than eight, 
except possibly for the case of h equal to zero. 

Table 1 

1, for Various Values of h/b (gap/span) 

3 > as bee ce = - 

COON MOUTHLWNe 

ae 
Bo 

iT] 

5s Ol 

(an) 

— 

1 
2 
3 
4 
5) 
6 
7 
8 
9 
0 = 

ARHTNhwoONMe BS 

(Table continues) 
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.009 

.006 

.003 

.008 

.005 

.003 

Milgram 

Table 1 (Continued) 

.003 

.002 

.001 

.007 

.004 

.003 

.005 

.003 

.002 

.004 

.002 

.002 

1404 

.002 

.001 

.001 

.001 

.001 

.001 

.001 

.001 
-000 

.001 
-000 
.000 

(Table continues) 
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Table 1 (Continued) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
0 

/ ES 
I 

COON OUP WNe — 

The problem of determining the conditions needed for minimum induced drag, 
with fixed lift, of a lifting line in an unbounded fluid with the free stream speed 
being dependent on the position in the plane perpendicular to the stream direction, 

was solved by Von Karman and Tsien (1945). The result is that minimum induced 
drag occurs when the induced angle is constant over the span, which reduces to 

the well-known case of constant downwash when the stream speed is independent 

of position. When the method of Von Karman and Tsien is applied to a lifting line 
over and normal to an infinite plane, the condition for minimum induced drag is 

the same as before — constant induced angle. However, the circulation distribu- 
tion needed to cause a constant induced angle over the span depends on the dis- 

tance from the base of the lifting line to the infinite plane. Table 2 shows the 
values of the first ten A's divided by A, needed to result in a constant induced 
angle for various values of h/b. The values in this table were determined by 

inversion of Eq. (22), subject to the condition of constant induced angle. 

The total lift L is given by 

b/ 2 

ry 0 Cy) dy . (30) 



A, 

h/b = 0.010 
1.0000 

h/b = 0.010 
1.0000 

h/b = 0.010 
1.0000 

h/b = 0.010 
1.0000 

h/b = 0.010 
1.0000 

h/b = 0.050 
1.0000 

h/b = 0.050 
1.0000 

h/b = 0.050 
1.0000 

h/b = 0.050 
1.0000 

h/b = 0.050 
1.0000 

h/b = 0.100 
1.0000 

h/b = 0.100 
1.0000 

h/b = 0.100 
1.0000 

h/b = 0.100 
1.0000 

h/b = 0.100 
1.0000 

Milgram 

Table 2 

Values of the First Ten A.'s for Minimum Induced Drag for 
Various Values of h’/b and Kb/2U, 

2 Ag 

Kb/2U = 0.000 
0.1165 0.0667 

Kb/2U = 0.100 
0.0957 0.0658 

Kb/2U = 0.200 
0.0749 0.0648 

Kb/2U = 0.300 
0.0539 0.0639 

Kb/2U = 0.400 
0.0329 0.0629 

Kb/2U = 0.000 
0.0943 0.0420 

Kb/2U = 0.100 
0.0742 0.0415 

Kb/2U = 0.200 
0.0540 0.0410 

Kb/2U = 0.300 
0.0337 0.0404 

Kb/2U = 0.400 
0.0133 0.0399 

Kb/2U = 0.000 
0.0756 0.0304 

Kb/2U = 0.100 
0.0550 0.0300 

Kb/2U = 0.200 
0.0343 0.0296 

Kb/2U = 0.300 
0.0136 0.0292 

Kb/2U = 0.400 
-0.0072 0.0289 

A 
4 S) 6 

0.0362 0.0221 0.0143 

0.0356 0.0217 0.0141 

0.0351 0.0214 0.0138 

0.0345 0.0210 0.0136 

0.0339 0.0206 0.0133 

0.0205 0.0108 0.0060 

0.0202 0.0106 0.0059 

0.0199 0.0105 0.0058 

0.0196 0.0103 0.0057 

0.0194 0.0101 0.0056 

0.0133 0.0062 0.0030 

0.0131 0.0061 0.0030 

0.0129 0.0060 0.0029 

0.0127 0.0059 0.0029 

0.0125 0.0058 0.0028 

1406 

A, 

0.0098 

0.0097 

0.0095 

0.0093 

0.0092 

0.0035 

0.0034 

0.0034 

0.0033 

0.0032 

0.0015 

0.0015 

0.0015 

0.0015 

0.0014 

8 

0.0069 

0.0068 

0.0065 

0.0065 

0.0064 

0.0021 

0.0020 

0.0020 

0.0020 

0.0019 

0.0003 

0.0008 

0.0008 

0.0008 

0.0008 

0.0128 

0.0125 

0.0123 

0.0121 

0.0119 

0.0023 

0.0023 

0.0022 

0.0022 

0.0021 

0.0007 

0.0007 

0.0007 

0.0006 

0.0006 

Aro 

0.0091 

0.0090 

0.0088 

0.0086 

0.0085 

0.0014 

0.0014 

0.0014 

0.0013 

0.0013 

0.0004 

0.0004 

0.0004 

0.0003 

0.0003 

(Table continues) 
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h/b = 0.150 
1.0000 

A, A, 

Kb/2U = 0.000 
0.0634 0.0235 
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Table 2 (Continued) 

A, Ac Ag A, 

0.0094 

h/b = 0.150 Kb/2U = 0.100 
1.0000 0.0424 0.0232 

h/b = 0.150 Kb/2U = 0.200 
1.0000 0.0213 0.0230 

h/b = 0.150 -Kb72U-= 0-300 
1.0000 0.0002 0.0227 

h/b = 0.150 Kb/2U = 0.400 
1.0000 -0.0209 0.0224 

h/b = 0.200 Kb/2U = 0.000 
1.0000 0.0544 0.0189 

h/b = 0.200 Kb/2U = 0.100 
1.0000 0.0331 0.0187 

h/b = 0.200 Kb/2U = 0.200 
1.0000 0.0113 0.0185 

h/b = 0.200 Kb/2U = 0.300 
1.0000 -0.0096 0.0183 

h/b = 0.200 Kb/2U = 0.400 
1.0000 -0.0311 0.0180 

h/b = 0.250 Kb/2U = 0.000 
1.0000 

h/b = 0.250 
1.0000 

h/b = 0.250 
1.0000 

0.0475 0.0156 

Kb/2U = 0.100 
0.0260 0.0154 

Kb/2U = 0.200 
0.0044 0.0152 

h/b = 0.250 Kb/2U = 0.300 
1.0000 -0.0173 0.0151 

h/b = 0.250 Kb/2U = 0.400 
1.0000 -0.0390 0.0149 

0.0093 

0.0092 

0.0090 

0.0089 

0.0071 

0.0070 

0.0069 

0.0068 

0.0067 

0.0055 

0.0054 

0.0053 

0.0053 

0.0052 

0.0040 

0.0039 

0.0038 

0.0038 

0.0028 

0.0027 

0.0027 

0.0027 

0.0024 

0.0020 

0.0020 

0.0020 

0.0019 

0.0019 

0.0018 

0.0017 

0.0017 

0.0017 

0.0012 

0.0011 

0.0011 

0.0011 

0.0011 

0.0008 

0.0008 

0.0008 

0.0007 

0.0007 
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0.0008 

0.0008 

0.0008 

0.0008 

0.0005 

0.0005 

0.0005 

0.0005 

0.0005 

0.0003 

0.0003 

0.0003 

0.0003 

0.0003 

Ag 

0.0040 0.0018 0.0008 0.0004 

0.0004 

0.0004 

0.0004 

0.0004 

0.0002 

0.0002 

0.0002 

0.0002 

0.0002 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

Ag 

0.0003 

0.0008 

0.0003 

0.0003 

0.0003 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

Aio 

0.0001 

0.0001 

0.0001 

0.0001 

0.0001 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
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This can be written in terms of the angular variable » by use of Eqs. (8) and (10): 

™ < Kb = 
L.= Uy »? | > Aq Up sin ny siny -— > sin 2y > A, sin ay ay. (31) 

0 n=1 n=1 

Carrying out the indicated integration gives 

Kb 
L = Puy b= (v, A, - ae a.) j (32) 

The heeling moment about the midspan is called M_, and is given by 

bi/ 2 

M . -| E (y)'y dy. (33) 
—b/-2 

Using Eqs. (7), (8), and (11), 

PU, p> an 17 Kb 

Moret P » af E sin n¥W sin 2y - iy (cosy - cos 3W) sin nu) a , (34) 

which reduces to 

PU, b 
et oe Arenal Varian be ce { rat (35) 

4n2=1 °° 4n 229 

The heeling moment about the base of lifting line is 

MOSM) eG (36) 

For the relative values of Kb and U, commonly encountered, the dominant 
terms contributing to the heeling moment are the lift itself which are found in 

the second term in Eq. (36) and the first term of Eq. (35). 

Conclusions from the Theory of a Single Lifting Line 

The second term of Eq. (32) represents the effect of the nonuniform 
strength of the incident wind on the lift. For the case of a constant windspeed 
gradient considered here, the lift is affected through the second term in the 

Fourier series representation for the circulation distribution. Different forms 
of nonuniformity would affect the lift through other terms in the series. It 
should be noted that the ratio of the part of the lift generated by the nonuniform 
part of the wind to the lift generated by the uniform part of the wind is small. 
This ratio can be obtained from Eq. (32) as 
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Uo h- unter oma Kb Ay (377) 

uniform 0 

Typical values of Kb/4U, are on the order of 0.03. 

The condition for minimum induced drag at fixed lift is constant induced 

angle. As shown in Table 2, the circulation distribution needed to result in 
constant induced angle under normal conditions has only the first four terms of 

its Fourier series representation in Eq. (9) significantly different from zero. 
For a fixed value of the lift, the strength of the second term needed for minimum 
induced drag is the quantity most affected by the presence of the image plane and 

the wind gradient. Under normal conditions these effects oppose each other 

(Table 2). The fact that the wind strength increases with height reduces A from 
its value in a uniform wind for minimum induced drag. The presence of the 
image plane increases A from its value on an unbounded airfoil for minimum 
induced drag. For most cases the image-plane effect slightly outweighs the 

velocity gradient effect, and A, is small and positive for minimum induced drag. 

For a fixed lift, the largest effect on the heeling moment is that due to A,. 
Furthermore, the way to alter the load distribution from that giving minimum 
induced drag, such that the heeling moment is changed the most for the least in- 
crease in induced drag, is to alter A,. The above facts coupled with the fact that 
most sails can support more circulation over their lower portions than over their 

upper portions, because of differences in local chord length, indicate a general 

scheme for the design of vertical load distributions. This is to choose A, to 
give the desired amount of lift, and A, to prevent excessive heeling moment and 
excessive local lift coefficients near the head of the sail. All the other An's 
should be almost zero. 

THE THEORY OF TWO LIFTING LINES 
AS APPLIED TO SAILS 

Within the limits of linearized theory, the lift, induced drag, and heeling 
moment of a system of staggered airfoils are independent of the stagger. This 
is a consequence of Munk's (1918-1921) equivalence theorem for stagger which 

states that the total induced drag of a lifting system is unaltered if any of the 

lifting elements are translated parallel to the free stream direction. This 
theorem is true because such a translation causes no change in the flow in the 

Trefftz plane. By the same theorem, airfoils can be contracted to lifting lines 

for purposes of determining lift, drag, and heeling moment. Therefore, the lift, 
drag, and heeling moment for a sloop-rigged vessel can be determined by con- 
tracting the mainsail to the mast and the jib to the jibstay. The problem is then 
that of a pair of skewed lifting lines. 

The drag of a sailing rig is dominated by the induced drag. Therefore, 
sloop rigs can be evaluated by determining the lift and induced drag, and the 
resulting forward force, side force, and heeling moment for the pair of skew 
lifting lines representing the mainsail and jib. A computer program has been 
prepared to do this in the presence of an image plane and a linear velocity pro- 

file. The program has been checked with known analytical results, and forces 

obtained by the two methods vary by about one percent. 
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As an example of the use of this program, a rig evaluation of a sloop- 
rigged offshore cruising boat is carried out. The vessel chosen is the New York 

''32'', a vessel for which the results of model tests are available. Figure 3 shows 
three rigs which are analyzed for this vessel; the original seven-eights rig, and 

two masthead rigs. Tables 3a through 3f show the analysis of these rigs based 
on the theory of two interacting lifting lines. The speeds predicted by model 

tests for the resulting forces and moments are shown in each table. The course 
with respect to the direction of the true wind is taken as 42.5° and the wind 
strength considered is 18 ft/sec at the midspan of the mainsail, with a velocity 
profile slope of 0.12 per second. Table 3a shows the results for the original 
seven-eights rig with lift coefficients of 2.0 based on the true windspeed on both 
main and jib. Note the relatively high value used for the second Fourier coeffi- 
cient in the circulation series on the jib. This is necessary to keep the local lift 

coefficient near the jib head at an attainable value, because the chord lengths in 
this region are so small. The problem is not as severe on the mainsail because 

of the headboard and the roach. Another reason for keeping the circulation at 
the jib head small on a seven-eights rig is that this region is near the mainsail. 
If the jib circulation does not taper to zero gradually enough as the jib head is 
approached from below, the mainsail shape will have to vary greatly in passing 
from regions below the jib head to regions above the jib head, if the mainsail is 
to attain an efficient load distribution. Table 3b shows the results for conditions 

as above, except that the mainsail lift coefficient is increased by 15 percent. 
Note the decrease in the drag factor, which shows that this is a better relative 
distribution than the preceding one, provided that the mainsail lift coefficient is 
not too large to be attained. 

Table 3c shows the results of the rig calculation for the lower of the mast- 
head rigs shown in Fig. 3. The lift coefficient based on the true wind is 2.0 for 
both sails, and the sail area is reduced from its value on the seven-eights rig. 

The increase in resulting boat speed over that for the case shown in Table 3b is 
apparent. The improved load distribution is also revealed by a reduction in drag 

factor, which is the ratio of the drag coefficient to the square of the lift coeffi- 
cient. Since, according to linear theory, this ratio is unchanged by multiplying 
the lift coefficients by a factor, it is a measure of the efficiency of the rig geom- 

etry and relative load distribution. An increase in mainsail lift coefficient of 
10 percent increases the boat speed and leaves the drag factor unaffected 
(Table 3d). Since the jib is taller than the mainsail, it should and does carry 
more lift than the mainsail as shown in Tables 3c and 3d. It does so even though 

it has a smaller lift coefficient than the mainsail, because it has more area 
(Fig. 3). Increasing the jib lift coefficient by 10 percent so that both the jib 
sails and the mainsails have lift coefficients of 2.2 increases the boat speed 

further, as shown in Table 3e. An increase in rig height of 3 feet while main- 
taining the same sail area as before improves performance, as shown in Table 3f. 

Conclusions from Numerical Examples 

The example just described indicates the beneficial effect of an increase in 

span, as long as the heeling moment does not become excessive. It is instruc- 

tive to take note of the magnitude of the induced drag of a sailing rig. For ex- 
ample of Table 3f, the rig producing the highest speed of all the rigs considered 
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FEET 

Seven-elghts rig 
Sall Area=1322 sq. ft. 

- - - Masthead rig 
Sall Area=1196 sq. ft. 

— — — — Masthead rig \ 

Salil Area=1196 sq. . \ 

Fig. 3 - Comparative rigs for the New York "32" 

for the New York ''32', the mean lift coefficient is 1.26 and the mean induced 
drag coefficient is 0.225. The following section will show that the skin friction 
drag coefficient is on the order of 0.03, and when the effect of parasitic drag of 
masts and stays is included in the sail skin friction drag, the friction drag co- 
efficient is on the order of 0.05. Hence, the induced drag is typically about four 

times as large as the remaining air drag. 

BOUNDARY LAYER EFFECTS ON THIN, 
HIGHLY LOADED LIFTING SURFACES 

The major effect of viscosity on most airfoils having lift coefficients less 
than 0.5 is the production of skin friction drag. The boundary layer on such 
airfoils is quite thin, and a very accurate prediction of the pressure distribu- 

tion is obtained by solving for the potential flow about the airfoil. When the air- 

foil is relatively thin, the lift can be easily obtained by the thin airfoil theory 
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Table 3 

Sailplan Calculations for the New York ''32" 

(a) Seven-Eights Rig 

BB = 55.00 CH = 24.80 JBB = 47.50 JCH = 26.70 HH = 6.00 
HI..,=/ 3,00 -.'r@L -=-2,000.,. CL = 2.000 
A(1) = .146 A(2)=.029 A(3) = 0 A(4) = 0. 
J(1) =.184 = (2) = 074 =: J(3) = O J(4) = 0 
SSS ——— eal 

Forces and Coefficients -- Boat speed = 7.03 knots 

Jib Main Total 

Forward 206.538 237.250 443.788 
ood 2314 .363 

Side 712.433 790.644 1503.077 
1.209 1.248 1.229 

Lift 720.625 813.317 1542 .942 
1.238 1.283 1.262 

Drag 133.662 141.144 274.806 
wal 223 PAR 

Drag factor .148 135 141 
Moment 13531.864  21806.493  35338.356 

.967 1,128 .947 

NOTES: 
The following have their respective indicated value the same throughout 

Table 3: 
8B, the angle between wind and course = .740; 6, the momentum 
thickness = .300; VV, the windspeed = 18.00 ft/sec; KK, the wind 
gradient = .10 ft/sec/ft; VB, the approximate boat speed = 11.00 
ft/sec; MM, the JMM ratio of the 2nd to Ist circulation series 
coefficients = .200; MMM, the same as for JMMM, but for 4th 
coefficients = 0; JMM = .400; JMMM = 0; CR and CRL = 0. 

The following symbols, included in the tables, are defined as: 
BB = the main span; CH = boom length (for finding area only); 

JBB = jib span; JCH = jib foot length (for finding area only); 
HH = distance from main foot to image plane; HI = distance 
from mainsail foot to jib foot; A's and J's = circulation series 

coefficients. 

The heeling moments and coefficients are about the jibtack. Nondimen- 

sional length is from jibtack to midspan of jib for jib column, and to mid- 

span of main for main and total columns. 

All forces are in pounds and all computed coefficients are based on the 
apparent wind at the midspan of the mainsail. The nominal input coeffi- 

cients CL and JCL are based on the true wind. 

(Table continues) 
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Table 3 (Continued) 

(b) Seven-Eights Rig with More Mainsail Load and Less Jib Load than in 

Case (a) 

BB = 55.00 
HI 3.00 
A(1) = .168 
J(1) = .147 

(c) The Lower of the Two Masthead Rigs Considered 

A(1) = .112 
J(1) = .132 

CH = 24.80 
CL =.2.300 
A(2) = .034 
J(2) = .059 

JBB 
JCL 
A(3) 
J(3) Ir ow ow al 

Forces and Coefficients -- Boat speed = 7.09 knots 

Forward 

Side 

Lift 

Drag 

Drag factor 

Moment 

19.00 
oe 2.000 
A(2) = .022 
J(2) = .053 

Forward 

Side 

Lift 

Drag 

Drag factor 

Moment 

Jib 

177.647 
.302 

572.756 
972 

991.763 
1.004 

97.077 
.165 
.163 

10914.981 
.780 

JBB 
ifort 
A(3) 
J(3) 

Jib 

267.667 
.428 

773.484 
1.237 

811.561 
1.298 

106.264 
.170 
101 

18032.782 
.995 

Main 

276.520 
.436 

912.427 
1.440 

939.810 
1.483 

160.446 
.293 
115 

25264.003 

Main 

187.104 

17143.011 
1.158 

1413 

Total 

454.167 
71 

1485,.182 
1,214 

1531.573 
1,252 

257.923 
211 
134 

36178.983 
.970 

Total 

454.771 
.409 

1386.438 
1.248 

1443,511 
1.300 

212.849 
£92 
113 

35175.793 
1.038 

(Table continues) 
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Table 3 (Continued) 

(d) As in (c), But with More Mainsail Load 

BB = 55.00 CH = 19.00 JBB = 58.00 JCH = 23.20 HH = 6.00 
HI = 3.00 CL = 2.200 JCL = 2.000 
A(1) = .123 A(2) = .025 A(3) =. 0. A(4) = 0. 
J(1) = .132 J(2) = .053 J(3) = 0. J(4) = 0. 

Forces and Coefficients — Boat speed = 7.12 knots 

Jib Main Total 

Forward 265.767 201.058 466.825 
425 .414 -420 

Side 774.257 675.465 1449.721 
1.239 1.391 1.305 

Lift 811.403 694.106 1505.509 
1.298 1.430 1.356 

Drag 108.309 122.041 230.350 
173 1251 -207 

Drag factor 103 123 113 
Moment 18055.765 18890.349  36946.114 

.996 1.276 1.091 

(e) As in (c), But with More Load on Both Sails 

BB = 55.00 CH = 19.00 JBB = 58.00 JCH = 23.20 HH = 6.00 
HI = 3.00 CL = 2.200 JCL E 2.200 
A(1) = .123 A(2) = .025 A(3) = 0. A(4) = 0. 
J(1) = .145 J(2) = .058 J(3) = 0. .. J(4) = 0. 

Forces and Coefficients — Boat speed = 7.14 knots 

Jib Main Total 

Forward 283.907 194,511 478.418 
.454 401 431 

Side 852.037 676.790 1528.827 
1.363 1.394 1.377 

Lift 889.090 692.365 1581.455 
1.422 1.426 1.424 

Drag 126.847 128.489 255.336 
203 265 .230 

Drag factor .100 .130 .113 
Moment 19845.283 18917.212 38762.495 

1.095 1.278 1.144 

(Table continues) 
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Table 3 (Continued) 

(f) The Taller of the Two Masthead Rigs Considered 

BB = 58.00 CH = 18.00 JBB = 61.00 JCH = 22.00 HH = 6.00 
HI = 3.00 CL = 2.200 JCL = 2.200 
A(1) = .110 A(2) = .022 A(3) = 0. AG) == 0; 
J(1) = .131 J(2) = .052 J(3) ==70: J(4) = 0. 

Jib Main Total 

292.380 206.992 499.372 
.469 427 .450 

Forward 

Side 850.933 672.756 1523.689 
1,365 1.387 1.375 

Lift 891.889 694.335 1586 .224 
1.431 1,432 1.431 

Drag 118.773 115.522 234.295 
191 .238 211 

Drag factor .093 .116 .103 
Moment 20881.878  19722.493  40604.372 

1.098 1.271 1,145 

(Prandtl, 1919; Glauert, 1943). Although experimental data is in abundance for 
sections of moderate camber and thickness, very little data is available for very 
thin, highly cambered sections. The small amount of such data that is available 
indicates that the lift predicted by the thin airfoil theory is in poor agreement 
with experiment. Figure 4 shows data obtained by Wallis (1961) and by the 
author for thin, circular-arc sections with camber ratios of 0.10. The differ- 

ence between experimental results and the theoretical solution for potential flow 

about the section lies in the effect of the boundary layer. Under the assumption 
of the boundary layer theory (Schlichting, 1955) that the pressure associated with 
flow outside the boundary layer is conducted across the layer to the body, the 
correct pressure should be obtained by calculating the potential flow about the 
shape formed by the airfoil and the displacement thickness of the boundary layer. 
The displacement thickness of the boundary layer and the external pressure are 
interdependent, so that an iterative scheme must be used to determine the 

solution. 

The Use of Semi-Empirical Boundary Layer Theories 

An exact solution to the boundary layer equations is impossible for the turbu- 

lent boundary layer, so that a semi-empirical theory must be used to determine 

the boundary layer parameters. There are a large number of these semi- 

empirical theories in existence and of these, four have been investigated by the 
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Fig. 4 - Calculations from four semi-empirical 
boundary layer theories 

They are those of Von Doenhoff and Tetervin (1943), Truckenbrodt (1955), 
Spence (1956), and Moses (1964). 
author. 

For all of these semi-empirical theories, a 
skin friction law must be used and a number of investigators have deemed the 
Ludwieg- Tillman Law (1950) to be the most reliable of these laws. This law 
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relates the skin friction coefficient to the Reynolds number based on momentum 

thickness and H, the ratio of displacement thickness to momentum thickness, as 

G@. = 0.246 Rare 10°09: 678H ; (38) 
f 

This law has been used in connection with a number of existing semi-empirical 
theories. Moses (1964) has supplied a computer program for his semi- 
empirical theory. He uses a skin friction law where the skin friction coeffi- 
cient is dependent only on Rg in order to compensate for some approximations 

in his theory. 

In almost all cases the presentations of the semi-empirical theories in- 

clude a comparison with experiment, and the semi-empirical results are shown 

to be in excellent agreement. However, when a number of the theories are ap- 

plied to a given experimental situation, there is often a significant discrepancy 

between their various predictions. For example, Fig. 4 shows results from the 

four theories investigated for a normalized chordwise velocity distribution 

given by 

U 
a =A { (ar Fyrec( ie Sx] 2; (39) 

where the chord is taken as the line 0 < x <1. K is chosen to locate the point 
of maximum u' 40% of the chord length aft of the leading edge. A is chosen to 
correspond to a lift coefficient of 1.8. The predominating influence on separa- 

tion is the velocity gradient. The velocity distribution is also shown in Fig. 4. 

The semi-empirical theories predict separation points between 71 and 92 per- 

cent of the chord. The normalized velocities at these two points are 1.45 and 

1.06, respectively. This range is too large to accept the accuracy of all of the 

theories, and accordingly an examination of them has been carried out to deter- 
mine which one, if any, is likely to be accurate. The experimental comparisons 

considered by Von Doenhoff and Tetervin (1943), Truckenbrodt (1955), and 
Spence (1956) were for airfoils on which it is quite difficult to make accurate 

pressure measurements, Furthermore, there are three-dimensional effects 
affecting the entire flow field, and there is no way to determine the results of 
these effects. The experiments of Moses (1964) were carried out in an annular 
chamber with axial flow in which the axial pressure distribution could be varied 

by varying the leakoff on the outer wall. Boundary layer growth was studied 

on the inner wall. It is less difficult to make accurate pressure measurements 

on such a device than on an airfoil. Three-dimensional effects are minimized, 

since the purely axisymmetric effects can be accounted for. 

Almost all section data (Abbott and Von Doenhoff, 1959) indicates that rais- 

ing the Reynolds number results in an increase in lift coefficient and a decrease 
in drag coefficient, indicating that the separation point moves aft when the Reyn- 
olds number is increased. The semi-empirical theories of Spence and of Von 
Doenhoff and Tetervin (Fig. 4) indicate the reverse of this. This is always the 

case with the theory of Von Doenhoff and Tetervin and occurs on some pressure 

distributions with the theory of Spence. Spence and Truckenbrodt present 

1417 



Milgram 

relatively little experimental data, whereas Moses presents a considerable 
amount for a variety of pressure distributions which is in excellent agreement 
with his semi-empirical theory. 

The Design of a Chordwise Pressure Distribution for High Lift 

The dominating effect on boundary layer growth in an adverse pressure 
gradient is the work done against the force of the adverse gradient by the fluid 
in the boundary layer. To minimize this work, the maximum pressure on the 

suction side of the airfoil should be made as small as possible. The lift coeffi- 
cient is given by 

1 i x 
oat | dP ha (40) 

0 oui? c 

where the suction side pressure is AP/2 for a very thin airfoil. Clearly, the 
way to minimize the strength of the peak suction while retaining a given lift 

coefficient is to make AP(x) constant. However, just ahead of and just behind 
the airfoil the pressure must be equal to free stream pressure, but streamwise 
pressure jumps are not realizable. Furthermore, it has been found that if the 
approach of the pressure to free stream pressure at the trailing edge is faster 

than linear, separation is likely. Most experiments indicate that the value of 

H for turbulent flow just following transition is 1.4 (see, e.g., Von Doenhoff and 
Tetervin, 1943). In an adverse pressure gradient, H rises with increasing 
downstream position, Since separation is avoided by keeping H small and since 
transition from laminar to turbulent flow occurs just aft of the point of maximum 

suction, it seems desirable to have the point of maximum pressure difference 
relatively far aft. Putting the above facts together indicates that a pressure 
distribution giving relatively high lift without separation might have the form 
shown in Fig. 5. The results of the boundary layer calculation, by the theory of 
Moses (1964) with a lift coefficient of 1.9, on this pressure distribution are 

shown in Fig. 6. The maximum attainable lift coefficient without flow separa- 
tion is about 1.9. The section shape needed to attain this pressure distribution 
in two-dimensional flow with a lift coefficient of 1.9 has been calculated by use 

of the thin airfoil theory and is shown in Fig. 7. 

0:0) O51) Or (OlSser O'S FOS -Ol6yr).O.7%, )'0:8'— 10.9450 

LEADING FRACTION OF THE CHORD TRAILING 

EDGE EDGE 

Fig. 5 - Pressure distribution for a 
high-lift section 
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Fig. 7 - Shape of a high-lift section 

The Effect of a Mast 

The flow over a section with an unfaired leading edge spar is shown sche- 
matically in Fig. 8. The mast acts as a turbulence stimulator. The region on 

the suction side of the section just aft of the mast has a negative (favorable) 
pressure gradient which accelerates the boundary layer. Measurements on 

boundary layers in negative pressure gradients aft of the turbulence stimulators 

were made by Launder (1963). He found that for the range of Reynolds numbers 
and pressure gradients of interest here, the semi-empirical boundary layer of 
Spence (1956) gave good agreement with his experiments which showed a very 
strong thinning of the boundary layer in the favorable pressure gradient. When 
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Fig. 8 - Schematic view of the outer edge of the 
boundary layer on the suction side of a section 
with a mast (A-Airfoil, B-Turbulent region behind 
the mast, C-Thickening of the boundary layer near 

the trailing edge, D-Mast) 

semi-empirical boundary layer theory is applied to the region behind a mast, 

there is no set place to begin the integration and no set values to choose for@ 

and H at this point. Launder (1963) shows that H attains a value between 1.4 
and 1.5 a short distance aft of his turbulence grid. The momentum thickness 
is less certain, as it increases rapidly with downstream distance. For the esti- 

mates made here the integration is started at the leading edge with H equal to 
1.4 and the momentum thickness equal to the width of the projected thickness of 
the mast perpendicular to the local flow direction. Figure 6 shows the results 

of the boundary layer calculations on a high-lift section with and without a mast. 
The mast reduces the tendency for flow separation. This effect is found on all 

pressure distributions. 

The Boundary Layer Thickness Correction 

As shown by Van Dyke (1964), the effect of a thin boundary layer on the flow 
around a body is to yield pressures on the body associated with the potential flow 
around a shape defined by the body plus the displacement thickness of the bound- 
ary layer. In the case of an airfoil treated within the framework of linearized 

theory, the flow can be decomposed into components due to thickness and com- 

ponents due to camber (see, e.g., Ashley and Landahl, 1965). The flow associated 
with the thickness yields no lift. For an infinitely thin airfoil all the thickness:is 
due to the displacement thickness of the boundary layer, and the camber is the 

mean line between the section and the line representing the displacement thick- 
ness of the boundary layer. For sections without a mast the displacement thick- 

ness will be significant only near the trailing edge, whereas for sections with a 
mast there will be significant displacement thickness effects near the leading 
edge and near the trailing edge. In the design of a section for a given pressure 
distribution, each point must be moved to windward from the shape calculated 
by the thin airfoil theory by an amount equal to half the displacement thickness 

of the boundary layer at that point. 
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Experiments on Thin, Highly Cambered, Two-Dimensional Sections 

Although vast amounts of data have been taken for sections common to air- 
plane wings (Abbott and Von Doenhoff, 1959), very little data has been taken for 

thin, highly cambered sections. Data 
for circular arc sections with camber 1.8 

ratios between 0.02 and 0.10 were 
taken and reported by Wallis (1961). 
His sections were of uniform thick- 1.4 

ness, with a thickness-to-chord ratio 12 
of 0.02. The lift was measured on a 

circular arc section with a camber 1.0 

ratio of 0.10 by the author. This sec- 
tion had a thickness ratio of 0.04 and 
a faired thickness form with sharp 0.6 

edges. The data for this foil and the 
10 percent foil of Wallis is shown in po 
Fig. 9. Thin airfoil theory predicts an 0.2 
ideal angle of attack of zero degrees 0.0 
with a lift coefficient of 1.25 for these 
sections, At zero degrees Wallis Rd eee ey ney Gar Sa 
measured a lift coefficient of 0.90 and ANGLE OF ATTACK 
the author measured 0.94. The dis- WALLIS © MILGRAM 
crepancy is due to boundary layer 
thickness near the trailing edge. When ; : 

er : fora thin sectionwitha cam- 
this is taken into account, theory pre- ber ratio of 0,10 (Reynolds 
dicts an ideal angle of attack of 1.8° punibereer ee 0s) 
and a lift coefficient of 1.07 at this 
angle. This is in excellent agreement 
with the experiments. The drag measurements of Wallis show the profile 

drag coefficient to be 0.022 at ideal angle of attack. 

Fig. 9 - Experimental results 

A series of four highly cambered sections were tested with and without 

masts by Herreshoff (private communication). His sections are shown in Fig. 
10 and his results are shown in Figs. 1la through 1ld. The figures show the 
ideal angle of attack and lift coefficient at this angle predicted by the thin air- 
foil theory in the absence of boundary layer effects. In the cases without a 
mast, the flow separates, so that the thin airfoil theory cannot be used for a 
lift prediction. With a mast, however, the effect of the displacement thickness 
forward reduces the effective camber and lift sufficiently to prevent flow sepa- 
ration, Taking the boundary layer into account, the thin airfoil theory predicts 
an ideal angle of attack of 1.76° with a lift coefficient of 0.85, for Herreshoff's 
Number One foil with a mast. This is in good agreement with experiment. It 
is worth noting that at ideal angle of attack the measured drag coefficients 
were about 0.05 without a mast and 0.06 with a mast. The drag coefficients 
measured by Herreshoff are higher than those representative of the sections, 
because there were many structural members protruding from the pressure 

sides of the airfoils. 
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Mad SAIL 1 ARC 

MAX CAMBER 50% BACK CAMBER=0.190FT. CHORD=1.55FT. 

Alpha, =0.0 degrees CL,=1.5 

SAIL 2 fwd DRAFT FORWARD 

MAX CAMBER 35% BACK CAMBER=OI9OFT. CHORD=1.55FT 
Alpha;#2.3 degrees CL ,=1.237 

SAIL 2 bwd DRAFT AFT 

MAX CAMBER 65% BACK CAMBER=190 FT. CHORD=I.55FT 
Alpha; =-2.3 degrees CL, =1.237 

Alpha; =0.0 degrees CL;=1.411 

SAIS, evi 

MAX CAMBER 50% BACK CAMBER=0.24FT CHORD=1.55FT 

Fig. 10 - Two-dimensional sections 
tested by Herreshoff 

CONCLUSIONS 

Because sails operate at unusually high lift coefficients and in the presence 
of a lower boundary and a spatially varying incident wind, there are some im- 
portant differences between the aerodynamics of sails and those of most other 
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ANGLE OF ATTACK - DEGREES 

Fig. lla - Herreshoff Number One section 
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= se 2 ° Ne Ez 8 10 i2 14 
ANGLE OF ATTACK -DEGREES 

Fig. 1lb - Herreshoff Number Two section-- 
draft forward 

lifting surfaces, Because of the constraints of the maximum of heeling and 

pitching moments that can be resisted by a given hull, there is a limit on usable 
sail spans, These constraints, coupled with the large lift coefficients, result in 
large coefficients of induced drag. The major effect of the lower boundary is a 
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ANGLE OF ATTACK - DEGREES 

Fig. lle - Herreshoff Number Two section-- 
draft aft 

ANGLE OF ATTACK- DEGREES 

Fig. lld - Herreshoff Number Three section 

small reduction in the induced drag that would exist in the absence of the bound- 
ary. The effect of the increase in wind strength with height is that minimum 
induced drag occurs with more loading on the upper parts of the sails than that 
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loading which would produce minimum induced drag in a uniform wind. This is 
of little practical importance, since the loading must usually be relatively higher 

in the lower parts of the sails than that loading which would result in minimum 
induced drag because of limitations on pitching and heeling moment. 

The effect of the unusually high lift coefficients of sails results in large 
alterations of the suction side pressure due to boundary layer effects. In some 

cases these effects are restricted to a thickening of the boundary layer, and in 

others they result in flow separation. Recently, some analytical methods have 

been devised to handle partially separated flows. A presentation of this subject 
is currently being prepared by the author. 
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SYMBOLS 

A Multiplicative constant or coefficient 

b, B, BB Sail span 

JB Span of a jib 

(@ Chord length 

en Drag coefficient 

cy Lift coefficient 

d. Induced drag per unit span 

D. Total induced drag 

h Gap from bottom or mainsail to image plane 

H Boundary layer shape factor, the ratio of displacement thickness 
to momentum thickness 

HI Vertical distance from foot of jib to foot of mainsail 

Y Lift per unit span 

L Total lift 

Heeling moment about the foot of a sail 
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Heeling moment about the midspan of a sail 

Pressure 

Pressure difference 

Reynolds number based on chord length 

Reynolds number based on momentum thickness 

Apparent wind 

Apparent wind at midspan 

Perturbation velocity components 

x, y, z Coordinate axes moving with vessel; x is in the apparent wind 
direction or in the plane containing the three corners of a sail, 

z is positive in the direction to which the wind is blowing, y 
is positive upward 

X Forward force — in the direction of the course of a vessel 

Y Side force 

a, Induced angle 

8B Angle between a vessel's course and the true wind 

y Vortex sheet strength 

r Circulation 

7 Dummy linear variable 

® Heel angle; velocity potential 

¥, v', ® Dummy angular variables 

P Density of air 
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Appendix A 

THE EFFECT OF HEELING ON THE AERODYNAMICS OF SAILS 

The aerodynamic effect of heeling will be considered for lifting-line theory 
inasmuch as almost identical results are obtained for lifting-surface theory. 
Consider the lifting line and image system of vorticity shown in Fig. 2. The 
problem is to determine w’' on the lifting line. For a given circulation distri- 
bution, the value of w' induced by the lifting line and its trailing vortex sheet is 
independent of the heel angle ¢. Therefore, only the velocity induced by the 
image system of vorticity will be considered. Since the line representing the 
direction of w' and the image of the lifting line are coplanar, there is no w'- 

directed induced velocity on the lifting line due to the image of the lifting line. 
Hence, only the image-trailing vorticity need be considered. Calling the w'- 

directed induced velocity at the lifting line by the image-trailing vorticity by w', 

bi A2) 

7 1 Y¥(N) cos (¢+a)d 
we (yn) = ~| ee See (A1) 

T Loya V(y+ 7+ 2b+h)2 cos?¢+ (N-y)? sin2¢ 

where 

a = tan’! (7 tan @] ; (A2) 
y+ b+ 2h+7 

The integrand of Eq. (A1) can be written as 

I ( a oZGlD) cos a - sina tand 

yal rahe ae i (A3) 2 2 
= t jf PGRsao" Htan oe 

Gye by eee a7) 

where the term outside the brackets is what the integrand would be if the heel 
angle were zero. The bracketed term can be interpreted as a weighting function 
due to heel. The difference between the weighting function and unity increases 
with increasing heel angie and decreasing lower-end gap, h. Under normal cir- 
cumstances, the largest heel angle of most boats does not exceed 30°. Values 
of the weighting function for various values of y and 7, with ¢ equal to 10, 20, 
and 30° and the gap, h, equal to five percent of the span are shown in Table Al. 
This table shows that the weighting function is positive and differs significantly 
from unity only when the heel angle is large, and even then only for values of y 
near the lower end of the lifting line and values of 7 near the lower end of the 
image of the lifting line; i.e., for points on the lifting line near the image plane 
and points on the image of the lifting line far from the image plane. The influ- 
ence of the image vorticity is least for large values of 7, as shown in Table A2 
which is a table of values of the integrand of the integral in Eq. (A1) divided 

by y(n). 
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Table A2 
Relative Contributions to the Downwash due to 
Various Regions of the Image of the Lifting Line 

(Tabulated values are given by I(y,7)/¥(7) 
as defined by Eq. (A3)) 

Percent of the Span of the Image of the Lifting Line 
(Zero is closest to the image plane) 

Pm fi fm [| |i | oo | | | oo | soo | 
Heel = 0. degrees 

Percent of the Span of the Lifting Line (Zero is closest to the image plane) 
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It then appears that the effect of heeling on sail aerodynamics is small. To 
provide further confirmation of this fact, the downwash on a lifting line with an 
end gap of five percent of the span of the lifting line was calculated for 0° heel 

and 30° heel. These results are shown in Fig. Al. The difference in downwash 

between 0 and 30° of heel is discernable only near the bottom of the lifting line, 
and the maximum difference is 4.5 percent of the value of the local downwash. 
Therefore, accurate prediction and analysis of sailing rigs in the heeled condi- 
tion can be carried out by proper resolution of forces and moments determined 

in the non-heeled case. 

100 
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Oo HEB] SOHEEE 

0 Pre see ieee Se 
0.2 04 0.6 08 1.0 

DOWNWASH VELOCITY FT./SEC 

Fig. Al - Downwash on a lifting 
line with an elliptical circulation 
distribution at zero and 30° of heel 
(gap from the base of the lifting 
line to the image plane is five per- 
cent of the span of the lifting line) 
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Appendix B 

EVALUATION OF LIFTING-LINE IMAGE INTEGRALS 

This section contains the evaluation of the set of integrals 

ei oe (B1) 
0 a eo (cos + cos ¢) 

Let 

Q= 2+ - cosy? 1 (B2) 

Then, 

" $ ; cos n . B3 Te | Tea ok (B3) 
0 

A difference equation for the I's will now be derived. 

dd . (B4) T+ SF err = 

id cos (n+l) @+ cos (n-1)¢ 

Q- cos¢ 
0 

This can be written as 

“T 20 cos n¢ 
Tova +. dad “al Oise nt | (B5) 

Since the integrated value of the second term of Eq. (B5) is zero, 

Tt lh. 200 aay (B6) 

The solution of Eq. (B6) contains two constants which can be determined by 

equating the solution to 1, for two different values of n. I, and I, can be de- 
termined by simple integration, giving 

(B7) 

and 
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I, = QTo et Lik (B8) 

With these two requirements, the solution of Eq. (B6) is 

am (Q- /Q2-1)" ae , (B9) 
Q2- 1 

* * * 

DISCUSSION 

Hans Thieme 
Institut fiir Schiffbau der Universitat Hamburg 

Hamburg, Germany 

I think Professor Milgram's lecture here is a long step forward in theoreti- 

cal calculation of sail forces. Hoping he will proceed in his work, I may only add 

some additional information on experimental work. 

At the Shipbuilding Institute of the University of Hamburg a lot of wind- 
tunnel tests are performed. Most of the results are not published yet, but it is 
possible to have the reports open for your future use. A list of the reports is 

given below. They comprise our investigations on single sails of different pro- 

file and shape, fundamental sail combinations, and complete rigs for three types 
of vessels. The best results for the cruiser yacht, 7KR- YACHT, the oldtime 
four-masted barque, PAMIR, and the six-masted square-rigger, 6M-DYNA, de- 
veloped by Mr. Prélss of Hamburg, are compared in the figure here (Fig. D1). 

I think the figure also shows quite clearly the possibility of increasing the ef- 
ficiency of sail propulsion. The last report in the list comprises some informa- 

tion on the blockage effect of large sail areas and other superstructure lateral 

areas on the forces measured in the wind tunnel by means of so-called ''silhou- 

ette tests." 

REPORTS OF THE INSTITUT FUR SCHIFFBAU 
DER UNIVERSITAT HAMBURG 

No. 107 (1962). Wagner, B.: Preliminary wind-tunnel tests with full-rigged 

masts, 

No, 122 (1964). Wagner, B.: Wind-tunnel tests with cambered plate section 

sails on a square-rigger mast of elliptic cross section and new cantilever 

design. 
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Fig. Dl - Comparison of wind-tunnel tests on sail per- 
formances of 7KR-YACHT, 6M-DYNA, and PAMIR at 

at the Institut ftir Schiffbau, Hamburg 

No. 123 (1964). Wagner, B.: Wind-tunnel tests for a square-rigger mast of 
elliptic cross section with a cambered plate at different adjustments of 
studding sails. 

No. 132 (1967). Wagner, B.: Calculation of speed for sailing vessels. 

No. 171 (1966). Wagner, B.: Wind-tunnel tests with cambered plate sails, with 
single rigged masts, and with plate sails in multimasted arrangements. 

No. 172 (1966). Wagner, B.: Wind-tunnel tests with the rigging model of a 
four-masted barque. 

No. 173 (1967). Wagner, B.: Wind-tunnel tests for a six-masted sailing vessel 
of Prélss-design. 

No. 207 (1968). Wagner, B., and Boese, P.: Wind-tunnel tests with a sailing 
yacht model at different sail settings. 

* * * 
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REPLY TO DISCUSSION 

Jerome H, Milgram 

I wish to thank Mr. Thieme for his comments and valuable references. 
Some interesting results can be obtained by comparing theory with the data 
presented in Mr. Thieme's discussion, For given normalized load distributions 

and lift coefficients, theory predicts that the coefficient of induced drag is pro- 
portional to the area of the lifting surfaces divided by the square of the span. 

This ratio is 0.30 for the 7KR YACHT, 1.70 for PAMIR, and 1.92 for DYNA. 
The fact that the drag coefficients for DYNA are less than those for PAMIR 

attests to the high efficiency of her rig which has equal sail areas on spans 

of equal height. 
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MAGNETOHYDRODYNAMIC 

PROPULSION FOR SEA VEHICLES 

E. L. Resler, Jr. 

Cornell University 

Ithaca, New York 

Any propulsion mechanism, internal or external to the vehicle structure, 

is ultimately a pump that imparts momentum to the fluid medium in the direc- 
tion opposite the vehicle's direction of motion. The thrust on the vehicle is the 

reaction force and is equal and opposite the force on the fluid. For magneto- 

hydrodynamic (MHD) type propulsion, the general features are the same; how- 

ever, some of the reaction forces may act via the electromagnetic fields on 

magnetic pole pieces or current elements producing the magnetic field. Al- 

though many different arrangements are possible, the general features of such 
propulsion systems are most easily discussed and examined for a simple duct 

flow with constant area, 

Consider a simple propulsive duct or MHD-type pump, as depicted in Fig. 
1, This type of pump is usually referred to as a crossed fields pump, as the 

electric and magnetic fields are at right angles to one another. The details of 
the sources of the electromagnetic fields will not be discussed, but our purpose 

is to explore their interaction with the fluid in the propulsive duct. 

Os MAGNETIC FIELD 

U=FLUID VELOCITY 
a 

S,=ELECTRODE AREA | = CURRENT 

Fig. 1 - MHD propulsive duct, B field towards 
the reader 

In this discussion we will neglect the internal resistance of the source of 

current I, and the fluid in the duct will have a conductivity >. The resistance 
the fluid offers to the current flow in Fig. 1 is then R =35 /oSe. The applied 
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voltage is V and the current is determined by this voltage, the back emf (elec- 
tromotive force) generated by the fluid motion, and the resistance R in accord 

with Ohms law, and is: 

D= = eee oSe (=- vB) : (1) 

Consider a constant area duct. Then for incompressible fluids the velocity 
U will be constant through the duct. The force IBé will act on the fluid to in- 
crease its pressure in going through the duct. The MHD duct serves as a pump 

without blades or vanes, the force on the fluid being a direct body force acting 
throughout the flow where the electrical currents flow in the presence of the 
magnetic field B. The work done on the fluid per unit time (Pp) is the IB5 force 
multiplied by the velocity U or 

P, = (IBS )U = oSe BUS ie s vB) : (2) 

The power supplied by the source of current is just IV, so the pumping ef- 
ficiency, the ratio of work done on the fluid to the power supplied by the source, 

is: 

og! IBsU ——*UB U 
7 = efficiency = —— =—= —. 

IV Vv 

8 

(3) 

The efficiency is therefore the ratio of the electric field induced by the mo- 
tion (UB) to the applied electric field V/s or, alternatively, the velocity of the 
fluid U divided by the velocity (V/s)/B. The choice of voltage for the power 
source thus determines the efficiency of the pumping action and is under the op- 

erator's control. Using Eq. (3) to eliminate the voltage V from the equation for 

Pp, Eq. (2) gives 

he 

Pp = (oUS) (U) (B?Se) (=). (4) 

The expression for Pp has been written as the product of four terms, each 
enclosed in parentheses. The first term is the so-called magnetic Reynolds 
number Rm = oUé and is a measure of how efficiently the electromagnetic forces 
are coupled to the fluid. The second term is the fluid velocity U, the useful 
power Pp being the force acting multiplied by this velocity. The term B?Se is 
the magnetic pressure B? multiplied by the area Se, in a certain sense the 
maximum force expected. The last term involving the efficiency is controlled 

by proper choice of voltage V. The force on the fluid supplied by the forces in 

the propulsive duct or MHD pump is then 

F £°(ous) ‘(pase SL 2 | (5) 
1) 
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Consider the MHD pump or propulsive duct integrated into a thrust- 

producing propulsive unit, as shown in Fig. 2. The vehicle and propulsive unit 
will be considered moving with constant speed V. The propulsive duct will be 

considered as square and therefore of area 5%. Ae is the exit area for the fluid 

jet and Ue is the exit velocity. For steady motion, the thrust of the propulsion 
unit must equal the drag on the vehicle. If w is the mass flow per unit time 
through the unit, the thrust is (w = pUeAe), so that 

Thrust = 1 = Prag = w (e=V): . (6) 

The drag can be expressed in terms of the wetted area of the vehicle S, and 
the drag coefficient C) as Drag = (1/2) pv? CpSy so that Eq. (6) becomes 

Ue /Ue 
CpSy = 2Ae Gar (7) 

OOOO SSS R : OSS 55205 
ee a REO no OO 

———— 

Pa Ue Ae 

PA 

Fig. 2 - Propulsion unit with propulsive duct 

For a given vehicle of known Cp and Sy, the velocity ratio Ue/V is deter- 
mined once the exit area of the propulsive unit is chosen. The propulsive ef- 
ficiency of the unit 7p is determined by this velocity ratio 

Tees (8) 

Equation (7) could just as conveniently be written in terms of the propulsive 
efficiency, or 

CpSw = 4Ae (an) tir tp) en Tp) (9) 

ne 

As mentioned above, although the velocity does not change through the duct, 
the pressure does. The fluid enters the duct with a Bernoulli constant equal to 
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that in the free stream, namely ?, + (1/2) V?, where ?, is the ambient 
pressure, At the exit of the propulsion unit the Bernoulli constant is ?, + 

(1/2) pu,2,_ These two Bernoulli constants differ by the pressure rise across 
the propulsive duct which is equal to F, Eq. (5), divided by the duct area 57, 
so 

F 1 Li 

In accordance with the above discussion, 

Px FeV? + B= Py. 4 J pue?. (11) 

The fluid is incompressible, so the velocities Ue and V are related by the con- 

tinuity equation as 

UeAe = US? . (12) 

Using Eqs. (10) and (12) in Eq. (11) gives 

(3) (5) (2, eS wae rie cris =F 52 2 p 

Equation (7) can be solved for Ue/V, giving 

Ue 1 1 1 2CpSw 

ANil vigeD at eo heAe ; (14) 

Using Eq. (14), Eq. (13) can be alternatively written 

CDS w 2Cp Sw 

Ae\ /S Blodldy-anti wadentisiebAel oo i e e = 

5 2 82) \82/| 1 7 OCS 
1+ ]/1 + 

Ae 

Equation (15), which is general, can be rearranged to be used to compute the 

required magnetic field B to propel a vehicle, giving for B: 

ACY. 

CpSw re 2CpSy 1 

1 sar (S53 \Cen ree AEY | gaurd farce spec (= \(E | ES gp Ae ee egy 2 1-7 \Ae/\Se/ oVéd 20> Sw 

1+ {/1 + 
L 
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Suppose we now use Eq. (16) to estimate the magnetic field necessary for 

the described propulsion system. Some of the parameters will be taken from 

the paper ''Prospects for the Electromagnetic Submarine," by S. Way and C, 
Devlin, presented at the AIAA 3rd Propulsion Joint Specialist Conference in 

Washington, D.C., in July, 1967 (AIAA paper 67-432). The system they de- 

signed and tested is reported there and may be referred to for actual design 
details. Their measured value of o for sea water was o = 4.5 mho/m or 
o = .045 mho/cm. A typical drag coefficient will be taken as Cp = .004. In 
Eq. (16) if we wish B in gauss, then pV? must be expressed in dynes/cm? and 
rms = 10°°o V8, if oc is in mhos/cm, V in cm/sec, and § incm. Putting V in 
knots and 5 in meters for convenience (1 knot = 51.4 cm/sec), 

1/72 

CS 2G, Sy 
2 2 merase = iy 

eos hee eae fou vee ke 
o6 1- 7 \ Ae Se oo (17) 

2p Sw 
1+ 1 + 

Ae 

where B~ gauss, V~ knots, >~ mho/cm, and 5~ meters. 

Consider a typical case. For a submarine shape, the wetted area, if the 
length is L and its maximum diameter D, is about S, = ~DL. Suppose Ae, the 

exit area of the propulsion unit, is about 1/5 (7D?/4). Then CpSy/Ae = 
Cy7DL / 1/5rD?2/4 =(20)CpL/D. If L/D = 10 and C, = .004, then C,Sy/Ae = 0.8. 

In this case, J 1+ 2C)Sy/Ae = ¥2.6= 1.613, so Ue/V= 1.31 and the propulsive 
efficiency 7, = 86.5%, and 

_ ee eee 62 ae i 
Br= Tels se re 7 re a : (18) 

In Eq. (18) the term 5?/Ae is the area of the propulsive duct divided by the 
exit area. If this term is small, B is small, because the velocity in the duct 
gets larger, increasing the fluid coupling with the electromagnetic fields. The 
fluid attains its maximum value of velocity there, however, and care must be 
taken to avoid cavitation. For our purposes here, assume 6? = 1/2 Ae. Also 
assume the propulsive duct length » is half the length of the vessel, so the elec- 
trode area might be 5\ = 8(L/2). Then, if o = .045 mho/cm, 

Bee 5) 56'2 10° (E) a lhe: (19) 
L 1-7 

where B~ gauss, L~ meters, and V~knots. 

For a submarine tanker with L about 200 meters and v = 20 knots and 

with 7 = 0.5, a field of 1.76 x 10% or 17,600 gauss is required. This is not a 
difficult field to produce in small volumes, but generally does require heavy 

equipment. Of course, with superconducting magnets the prospects are much 

better, but the engineering details are indeed challenging. 

1441 



Resler 

I would like to discuss now some variations of the propulsion system which 

would allow smaller fields. In the preceding discussion we have assumed that 
the magnetic field must necessarily act on the sea water and also that the elec- 
tric field came from a battery-type source or possibly a generator. We also 
assumed that we would use electrodes, always a source of possible difficulty in 
MHD-type devices. 

Consider first the possibility of avoiding the electrodes. To operate without 
electrodes the currents would have to close in the fluid, but then the electric 
field would have to be induced in the fluid. If the fluid flow was in an annulus 
the electric field could be induced by a coil and the fluid in the annulus would 
act like the secondary of a transformer. More appropriate for our purposes, 

consider a coil surrounding an annulus, a conducting fluid in the annulus, and a 
single-turn coil moving with speed Vp, carrying a current and thus producing a 

magnetic field, as depicted in Fig. 3. The radial component of the magnetic 
field B passing through the fluid at a relative velocity Vp - U will induce a cir- 
cumferential electric field proportional to B and the relative velocity. So in 
this case V/é in our formula is 

V/5 « (Vp- U)B. (20) 

Fig. 3 - Magnetic field of a 
conducting fluid in an annulus 

The moving magnetic field can be likened to a screen that is dragged 

through the fluid. The higher the conductivity of the fluid the less porous the 
screen, The field tends to drag the fluid with it, and the interaction is the same 
as already described except for the reinterpretation of the electric field term. 
Of course, it is possible to energize a solenoidal winding electrically so that a 
magnetic field configuration will travel along the winding, thus making it un- 

necessary to move the coil physically. In this case, Vp would be the phase ve- 

locity of the electromagnetic configuration along the winding. 

To propagate magnetic fields of the size of 20,000 gauss and larger along 

the coil is not at all practical, so that to use this scheme a fluid of larger con- 
ductivity is required. Consider for a moment other fluids such as the liquid 

metals which possess conductivities from 10* to 105 mho/cm. If > were 104 
in our example instead of 0.045, the required field would be reduced by 
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(10*/.045)* = 471, or B need only be 37.4 gauss. Fields this size can easily 
be arranged to travel along coils. It is unfortunate that the sea does not have 

such an enhanced conductivity. Liquid metal pumps of this type, however, can 

operate with very reasonable fields. 

Since pressure forces are conveniently created in liquid metals, consider 
the possibility of using electromagnetic fields to pump a liquid metal which 
then pumps the sea water. One needs the liquid metal to transfer the momen- 

tum from the electromagnetic fields to the sea water. Consider a flexible 
elastic tube filled with a liquid metal. It is well known that a pressure pulse 

in such a system will be propagated as a wave along the tube. Consider the 
possibility of pushing a solid ring along the tube with the pulse, the pulse being 

driven and sustained if necessary by our traveling electromagnetic wave. The 

device might resemble that depicted in Fig. 4. 

Fig. 4 - Electromagnetic wave 
propagation along plastic tube 
filled with liquid metal (ring is 
propelled forward by the pulse) 

Of course, the elastic properties of the tube wall must be chosen so that 
the wave velocity and the phase velocity V, are the same, or nearly so. The 

magnetic field B drives the pressure pulse in the liquid metal ahead of it. Now 
consider the possibility of replacing the solid ring by sea water. The water 
would, unfortunately, flow around the bulge if it were not prevented from doing 

so. The sea water to be pumped can be prevented from flowing around the 
bulge by providing another wall or sealing surface. The whole propulsion con- 

figuration might then look as in Fig. 5. In Fig. 5 the radial position of the 

water "ring" and liquid metal have been interchanged. 

The magnetic field traveling along the coil will tend to deform the liquid 
metal so as to conform to the field configuration. How successful it is in do- 
ing this is governed by the magnetic Reynolds number previously discussed. 
The magnetic pressure is transformed to fluid pressure in the liquid metal, and 
the pressure is transmitted to the sea water across the flexible diaphragm. The 

pressure pulse will also propagate along the interface, and the whole system is 

designed so that the magnetic field configuration, the pulse in the material, and 
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FLEXIBLE COIL DIN Gee 

DIAPHRAGM 

Fig. 5 - Use of sea water as the "ring" of 
Fig. 4 

the water move together. This combination makes use of the good coupling, 
because of the high electrical conductivity of the liquid metal, and retains the 
general features of MHD propulsion. 

Note that these electromagnetic devices work successfully, in that the 
currents flow in such a manner as to realize the magnetic pressure as a fluid 
pressure. We have discussed above mostly dynamic systems. Magnetic pres- 
sure can be realized in yet another manner. It is possible to fabricate a fluid 
with ferromagnetic properties by suspending very small ferromagnetic parti- 
cles, say magnetite, in a fluid such as kerosene. These fluids tend to deform 
with the magnetic fields, much as conducting fluids. This is another way that 
magnetic pressure can be materialized in a fluid. Such a ferromagnetic fluid 
can be used in the device shown schematically in Fig. 5, and would replace the 

liquid metal. This fluid would also be more compatible with sea operations. 

A number of papers that describe such a fluid appear in the bibliography that 

follows. The theory outlined at the outset is not directly applicable to ferro- 

magnetic fluids, but the phenomena are similar to those described. 

A brief presentation of the principles governing direct magnetohydro- 

dynamic propulsion has been discussed and typical operating conditions out- 
lined. Other indirect schemes, seemingly more convenient, have also been 
discussed. It seems fair to conclude that the versatility of MHD propulsion 

makes worthwhile the further exploration of its possibilities. 
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PERFORMANCE OF PARTIALLY 

SUBMERGED PROPELLERS 

J. B. Hadler and R. Hecker 
Naval Ship Research and Development Center 

Washington, D. C. 

ABSTRACT 

Open-water experiments have been conducted on 2 three-bladed and 1 
two-bladed supercavitating propellers operating in the partially sub- 
merged condition. Thrust, torque, and rpm have been measured over a 
wide range of advance ratios. The results have been compared with 
existing experiments made with the propellers fully submerged, both 
cavitating and noncavitating. A geosim of one of the three-bladed pro- 
pellers has been further tested over a wide range of advance ratios at 
various speeds of advance. Besides the thrust, torque, and rpm, the 
vertical and horizontal components of the transverse forces have been 
measured as well as the location of the center of thrust. The latter 
measurements have been made with a four-component dynamometer 
that measures the bending moments imposed by the propeller. 

The results have been analyzed to ascertain the hydrodynamic origin of 
the various forces and how they change with different advance ratios 
and different speeds of advance. Through this analysis, identification of 
major problem areas is attempted with the hope that viable research 
goals can be established. 

HISTORICAL BACKGROUND 

Since the 1850's, the screw propeller has been the dominant form of marine 

propulsion. Its advantages over the paddle wheel, which it replaced, were its 

light weight, its relatively high rotative speed, and its insensitivity to change in 
submergence. As a consequence of its success, much inventive and research 
effort has gone into improving performance or devising specialized applications, 

using the screw-propeller principle. One of the specialized offshoots was the 
partially submerged propeller. Initially, this propeller was viewed as another 

means besides the paddle wheel for achieving shallow-draft propulsion in shel- 

tered waters. The first U.S. patent was issued about one hundred years ago 
(1869) to C. Sharp of Philadelphia (Pa.). His patent was quite ingenious, in that 
he yawed the propeller to the flow to reduce the transverse force, used multi- 

blades to reduce unsteady forces, cupped or, in current terminology, cambered 
the blades to improve their effectiveness, and used high pitch for maximum ef- 

ficiency. Figure 1 shows some of the sketches contained in his patent grant. 

As engine developments progressed and higher boat speeds became practi- 

cal, the emphasis as shown by the patents shifted from low-speed shallow-draft 
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displacement ships to hydroplane boats, where a fixed-water surface existed at 

the stern. Typical of these developments was a patent issued in 1914 toW. H. 

Farber for a hydroplane boat having two large surface propellers, Fig. 2. Dur- 

ing and immediately after World War I, Albert Hickman, of Sea Sled fame, em- 
ployed "surface" propellers on a sea-sled torpedo boat and on a 55-mph sea- 
sled airplane carrier he developed for the U.S. Navy. Throughout these 

developments Hickman had the active support of Adm. D. W. Taylor. It was 
at this time that the first known model tests [1] were run both in open water 
and self-propelled on a propeller designed to operate in the partially sub- 

merged condition for a high-speed vessel. The propeller used in these tests 

was three-bladed, with semiogival sections having a flat pressure face and 
sharp leading edge. The test results showed high efficiency, comparable to 
those fully submerged, but significantly reduced thrust and torque. The self- 
propulsion tests brought forth the prime design difficulty with this type of pro- 

peller, that of developing adequate thrust at the ''hump" resistance speed to 

assure successful operation of the craft over the desired speed range. 

Among the list of subsequent inventions was a patent granted in 1927 to 
Gebers of the Model Basin in Vienna, Austria. He recognized that the partially 
submerged propeller was limited to a relatively narrow range of load variations. 

Thus, for application to displacement vessels it was necessary to provide some 

means for operating at low speed or during heavy loads by incorporating a com- 
bination of small fully submerged propellers with minimal appendages and large 

"semisubmerged" high-pitch propellers as shown in Fig. 3. 

Insofar as practical applications of the partially submerged propeller are 

concerned, they have, so far, been limited to the racing high-speed hydroplane, 

which evolved into the well known "prop riders."" The key developments oc- 
curred in the period just before and immediately after World War II and resulted, 
in 1948, in the pace-setting hydroplane Slo- Mo which increased the unlimited 
speed record from 141.7 to 183 mph. The propellers employed are two-bladed 
with wedge-type sections and are high-pitched. Besides being highly efficient, 

these propellers also provide a lift, thus, to a point, establishing the magnitude 

of their submergence; hence, the name prop riders. 

Much of the development previously recounted was carried out without the 
benefit of model or "'scientific'' investigation, but was largely the result of ''cut 
and try" in actual applications. Laboratory research work on partially sub- 

merged propellers has largely been confined to the problem of air drawing of 

the normal displacement ship-screw propeller when the ship is ballasted, so that 
part of the propeller is partially out of water. Osborne Reynolds was one of the 

first to study this problem in a paper entitled ''On the Effects of Immersion on 

Screw Propellers" [2] in Transactions Institute of Naval Architecture 1874. 
Since then, the results of a number of investigations have been published. The 

publication by H. Shiba of Japan [3] provided the most thorough analysis, using 

the widest range of experiments, and gave the most complete bibliography. He 

tested 28 propellers in which area ratio, pitch ratio, number of blades, section 
form, plan form, pitch distribution, and skewback were varied. In his experi- 

ments he varied the tip emergence from 0 to 20% of the propeller diameter. 
Most of the blade sections were of the airfoil type, but he did include a circular 
arc section with a flat pressure face and sharp leading edge and noted the 
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difference in the performance curves. Besides the wide range of experimental 
information, he established, through the hydrodynamic equations of motion, the 
law of similarity as it related to the air drawing of a partially submerged 
propeller. 

The most recent work on this problem was that by Gutsche in East Germany 
[4]. He tested eight propellers, covering a wider range of blade-area ratios 
over a slightly wider range of submergences. Since he used airfoil sections, his 
results were similar to those of Shiba. 

The tests on the circular arc sections in Refs. [1] and [3] clearly show dif- 
ferent characteristic curves than do those with airfoil sections. Although all 
partially submerged propellers show a reduction in thrust and torque coefficient 

with reduction in advance ratio, those with the airfoil sections show a more pre- 

cipitous drop at a critical advance ratio than do sections employing flat or cam- 

bered pressure-face sections. 

The other recent noteworthy work was that of the Russians Yegorov and 

Sadovnikov, Ref. ei; who were concerned with applying this type of propulsion 

to hydrofoil craft operating in protected water such as rivers. 

INTRODUCTION 

With the growing interest in high-speed high-performance craft, the Naval 
Ship Research and Development Center has undertaken the task of developing 

more effective means of propelling these vehicles. Most schemes of propulsion 

involve fully submerged supercavitating propellers with appropriate appendages 

to house the shafting. These appendages, unfortunately, impose drag penalties 
which become quite severe at high speed (Ref. [6]), hence, the interest in ex- 
amining other means of propulsion. The partially submerged propeller with its 
low appendage drag appears to offer a possible solution for high efficiency, pro- 

vided performance is not unduly jeopardized in solving the vibration and strength 

problems arising from the cyclic loading and unloading of the blades. 

Since preceding work, Refs. [1] and [3], had shown that the circular arc sec- 
tion with flat faces and sharp leading edge had efficiencies comparable to those 
for the fully submerged condition and had more desirable thrust characteristics 

than propellers with airfoil sections, it was decided to start this investigation 

utilizing propellers with supercavitating-type sections. The availability of a 

number of supercavitating propellers from previous research programs made 
this approach quite attractive and provided a large data base for comparison of 
performance between partially submerged, fully wetted, and supercavitating 

operation, Refs. [7] and [8]. 

The initial investigation was made on three propellers in which the major 

differences were the P/D ratios and number of blades. The objective of these 

tests was to investigate the steady-state power performance, i.e., torque, thrust, 

and propeller efficiency over a wide range of advance coefficients. Subsequently, 

measurements were made on a geosim of one of the preceding propellers over a 
wide range of advance coefficients and test speeds. As well as the usual measure- 

ments of thrust, torque, and rpm, measurements were also made of the force in 
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the transverse plane and the shaft-bending moments with a dynamometer 
especially designed for this purpose. 

It is the objective of this paper to present the results of the experiments 

on the four propellers and to make comparisons with their performance when 

fully submerged, both cavitating and noncavitating. An analysis will be attempted, 
albeit somewhat heuristically, of the hydromechanical sources of the force gen- 
erated by partially submerged propellers so that guidance can be obtained for 
future research, both theoretical and experimental. There will be many questions 
raised which at this point are incompletely answered. It is hoped that these ques- 

tions will stimulate other investigators into examining this form of propulsion, 

which holds potential for the efficient propulsion of high-speed vehicles. 

EXPERIMENTAL PROCEDURES 

The objective of the initial set of experiments was to determine the efficiency 

and thrust characteristic of partially submerged supercavitating propellers and 

to compare these with the fully submerged performance. 

For this phase three propellers were used from the NSRDC supercavitating- 
propeller library, Propellers 4002, 3820, and 3767. Table 1 lists the character- 
istic coefficients for these propellers. Figures 4-6 show the geometry and 
photographs of the three propellers. As may be noted, only the camber shape of 
the sections was common to all three propellers. All of the sections had blunt 

trailing edges, except the tip 20% of Propeller 3767. The primary differences 

sought in selecting these propellers were number of blades and pitch ratio. 

Measurements of thrust, torque, and rpm were made in open water at two 
submergences, semisubmerged, and with the shaft centerline 2 in. above the 

Table 1 

Propeller Characteristics 

Modified 

2-term. 

do 

do 

do 

*Propellers 3768 and 3767 are different-sized models of the same pro- 
peller. 
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2a 

Fig. 4 - Drawing of propeller 4002 

water surface. Normal open water-test procedures were used, i.e., the rpm 

was held constant and the forward velocity ranged from 0 to about 12 fps. Test 
conditions are tabulated in Table 2. A three-to-one elliptical fairwater was 

used in front of the propeller. It was noted in the semisubmerged condition that 
a film of water came over the fairwater into the propeller disk. Comparisons 
of the spray patterns in both the semisubmerged and hub-out conditions did not 
seem to indicate any effect from this thin film of water. It was also noted in 

running these tests at the low advance coefficients that the propeller and its hub 

were generating a wave train which appeared to modify the submergence. 

The objective of the second phase of the experimental program was a more 
detailed examination of all of the steady forces generated by a partially sub- 

merged propeller for a number of speeds of advance. For this phase, Propeller 
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3768, a geosim of Model 3767, the most thoroughly tested of all the supercavi- 
tating propellers available at the Center, was used. 

The experiments in this phase were carried out somewhat differently, as 

the effect of speed of advance upon performance was an objective. Hence, the 
tests were run at a constant forward velocity, and the rpm's were varied. This 

limited the lowest advance coefficient to the maximum torque attainable with the 

propulsion dynamometer and removed the problem of the wave train at low ad- 

vance coefficients. Table 2 lists the conditions tested. During these tests visual 

observations were made of the flow variations. 

In order to minimize the effect of the elliptical fairwater on performance, 
it was replaced by a 60° cone. This seemed to help in reducing the thickness of 

the film of water. 
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Fig. 6 - Drawing of propeller 3767 

Since the center of thrust is well below the shaft axis, the propeller gen- 

erates large bending moments in the shaft. Correspondingly the unbalanced 
torque force during 1 revolution also generates a large force in the transverse 

plane. To determine the shaft-bending moments arising from the thrust eccen- 
tricity and magnitude and direction of the transverse force, a special dyna- 

mometer which measures the bending moment in the shaft at two points was 
used. The dynamometer was designed to measure these moments in both the 
horizontal and vertical planes on the propeller shaft housing. Thus, identifica- 
tion of the various components of the steady propeller force is possible with 

this dynamometer in conjunction with the thrust and torque measured by a con- 

ventional propulsion dynamometer. A detailed description of the dynamometer 

and the calibration is given in Appendix A. 
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Table 2 
Summary of Test Conditions 
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PRESENTATION OF EXPERIMENTAL RESULTS 

The results of the experiments of the first phase are presented in Figs. 7- 12 

as propeller efficiency n, thrust coefficient K,, and torque coefficient K, versus 

advance coefficient J. The thrust and torque coefficients of all these propellers 

show a characteristic increase, a maximum, and then a decrease as the advance 
coefficient is decreased — similar to those of supercavitating propellers working 

under cavitating conditions. Propeller 3820 in Figs. 9 and 10 also shows a defi- 
nite discontinuity in the performance curves. This discontinuity will be discussed 

in detail in a later section. 

The results of the second-phase experiments on Propeller 3768 are pre- 

sented in Figs. 13-15, The vertical e, and horizontal e, locations of the cen- 

ter of thrust from the shaft axis, expressed as a function of propeller diameter 

are also included. In addition to the normal propeller coefficients, the horizontal 
and vertical transverse force coefficients are included in Figs. 16-18, which 
are defined as follows: 
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All of these quantities are presented as a function of the advance coefficient J. 

The results at one submergence are presented together to show the effect of 

advance speed upon the results. 

It may be noted that the thrust and torque curves show a discontinuity, not 

obtained in the first set of tests upon the prototype Propeller 3767. Part of the 
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objective of the second set of experiments was to look for any discontinuity in 

the performance curves. The discontinuity was most easily found by observing 
the change in spray pattern and then making several measurements in that region. 
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Fig. 17 - Transverse force coefficients of propeller 3768 40% submerged 
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Fig. 18 - Transverse force coefficients of propeller 3768 60% submerged 

It is common practice to present the results of open-water propeller tests 
in the K,, Kg, J system of coefficients. This system has limitations when com- 
parisons of the performance of the propeller at different submergence levels or 

when comparisons with fully submerged operation are being attempted, either 
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fully wetted or cavitating. More effective comparisons can be made by present- 
ing n) and J as a function of the thrust coefficient 

rE 
ee) Ae 

where A,’ is the submerged disk area, V is velocity, and Tis thrust. Figures 

19 - 22 present the results of these comparisons. In Figs. 19 and 20 the results 

of the partially submerged tests are compared with the supercavitating tests of 

Propeller 3767 presented in Refs. |7| and [8]. Figure 23 shows the fully sub- 
merged data of Propeller 3767 over a range of cavitation numbers which may 
be compared to Fig. 21, showing the performance of the same propeller at 

three partially submerged conditions. 

VISUAL OBSERVATIONS 

Visual observation of the flow around Propeller 3768 indicates, at the high 
J values prior to transition, that the spray is relatively low to the water surfac 
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Fig. 20 - C} - 7) - J diagram of propeller 3820 partially submerged 

and comes largely from the exit side of the propeller. In this flow regime, as 

the advance coefficients were reduced toward the transition regime, there 
seemed to be a cavity starting from the leading edge on the suction face as the 
blade entered the water surface which became slightly larger as the advance 
coefficient was reduced. In this regime there did not appear to be any change 

of water-level flow into the propeller, except at the very lowest test speed of 

5.18 ft/sec, where there appeared to be an actual lowering of the water surface — 

suggesting that there may have been a wave effect. 

‘At transition there was a very marked change in the flow pattern. The spray 
became much more intense and extended considerably higher into the air. The 
intensification seemed to be most marked on the entry side of the propeller. It 

was noted on most tests that in the region of transition there was strong forced 

vibration of the propeller and propeller shaft. 
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Fig. 21 - C} - 7) - J diagram of propeller 3767 partially submerged 

At the low advance coefficients, after transition, the flow pattern remained 
similar to that at transition, except that the amount of spray increased in quantity 

and amplitude as the advance coefficient was reduced. Forward of the propeller 
it was noted that the water surface increased in elevation, the amount varying 
inversely with the advance coefficient. At one point the increase just before 

entry into the propeller was more than 1 in., thus indicating a blockage of flow 

and a positive pressure field forward of the propeller. It was also noted that 

there was an extensive amount of spray extending forward of the propeller. 

In conjunction with these observations a-special test was made at 1-knot 

intervals from 1 to 9 knots, when the propeller rpm at transition was recorded. 

During the measurements it was noted that just as transition occurred there was 

a sudden increase in the rpm, which made it difficult to obtain a consistant 
value for the transition advance coefficient. 

ANALYSIS OF PERFORMANCE 

Before undertaking an interpretation of the test results for the guidance they 
can offer in predicting the performance of a partially submerged propeller, it is 

helpful to examine the flow regime around a supercavitating-type section under 

ventilated flow conditions. To assist there is a small but growing body of informa- 
tion on hydrofoils with ventilated flows of which Refs. [9] and [10] are most 
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helpful. Three flow regions are distinguishable for surface ventilated foils 

as follows: 

Base-Vented Region. In this regime the cavity springs from the blunt trail- 
ing edge of the foil and trails aft. At this condition the foil develops its appr oxi- 

mate design lift. This is also the condition in which the foil develops its highest 

lift-to-drag ratio. If the foil has some reduction in thickness at the trailing edge 

the ventilation probably starts from a separation point near the point of maxi- 

mum thickness. 

Partially Cavitating Region. In this regime a vapor cavity of less than one 
chord length exists on the suction side of the foil. At this condition the foil force 

and moment coefficients are usually unsteady. ; 
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Fig. 23 - Cr- 7, - J diagram of propeller 3767. fully submerged 

Fully Vented Region. In this regime a cavity greater than one chord length 
exists on the suction side starting from the leading edge, thus the suction side 
and the base of the foil are fully vented to atmospheric pressure. At this condi- 
tion there is a drop in lift coefficient when compared to base-vented regions and 
a corresponding drop in lift-to-drag ratio. 

The results of these flow regimes may be readily summarized on the follow- 

ing force diagrams as a function of angle of attack, Fig. 24. The forces are shown 

in the usual convention — lift and drag coefficients parallel and normal to the flow. 
The break in the lift curve is the transition point from the partially cavitating to 

the fully vented region. This transition is accompanied by violent oscillation in 
the forces identified as buffeting. The angle of attack where the transition takes 
place, as well as its magnitude, is a function of a number of variables, most of 
which are dependent upon the section geometry. Increasing the base thickness- 
to-chord ratio tends to increase the transition angle of attack and results in a 
larger shift in the lift coefficient. The details of the suction surface, particularly 
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Fig. 24 - Lift and drag coefficients of wedges 
in various flow regimes 

the leading edge, can have a marked effect. Flattening or blunting the leading 
edge reduces both the transition angle of attack and the magnitude of the shift 
of the lift coefficient. Reducing the hydrofoil-aspect ratio increases the transi- 

tion angle of attack. 

The absolute speed of a given hydrofoil also has a marked effect. Increas- 
ing speed tends to reduce the transition angle of attack and reduces the magni- 

tude of the change in lift, even at a Reynolds number well above the laminar- 

turbulent transition region. 

With this background we are now better able to analyze the action of the 
propellers tested. Figure 25 shows Propeller 3768 operating semisubmerged 
in the Hydronautics variable-pressure channel, Ref. [11]. The J = 0.75 condi- 

tion is base-vented, whereas the J = 0.35 condition is fully vented. The differ- 
ences in both the spray and cavity patterns may be noted for those two oper- 

ating conditions. 

The abrupt shifts in the k, and kK, coefficients noted on Propellers 3820 
and 3768 are quite clearly the points at which transition occurs from base- 

vented to fully vented operation. As could be expected the efficiency drops 

when the sections become fully ventilated. The drop in lift-to-drag ratio ac- 

counts for this. 

1474 



Performance of Partially Submerged Propellers 

PITCH RATIO 0.80 

Se PROPELLER NO. 343 
ul TYPE Aa - 40 

TORQUE CONSTANT, q 

THRUST CONSTANT, t 

ADVANCE CONSTANT, v 

Fig. 25 - Performance characteristics of partially 
submerged propeller (Ref. 3) 

The clear transition point noted on Propeller 3820 at relatively high ad- 

vance ratio is a result of the greater thickness-to-chord ratio on this propeller. 

The difference in the J value at which transition occurred between the two sub- 
mergences was probably due to the lower aspect ratio of the blade at the 

smaller submergence. 

In presenting the eS and results for Propeller 3768, a single curve has 
been faired through each of these quantities for all of the speeds tested except 
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for the lowest speed of 5.18 ft/sec. The low-speed test clearly shows a sig- 
nificantly larger torque coefficient and a small increase in the thrust coeffi- 
cient in the base-vented flow regime. A close examination of the torque results 
indicates that there is a possible difference for each test speed but this is 

largely masked by the experimental scatter. An estimate of the propeller blade 

drag shows that the base drag is quite large for the low speed test due to the 

relatively low blade velocity, hence, the high torque values measured. Since 
the base drag coefficient decreases as a function of the local velocity squared, 
it becomes quite small at the highest test speed. This points to the importance 

on this type of propeller experimentation of scaling the section o values. 

A comparison between the K; and Ky versus J curves for propellers with 

airfoil sections shows marked difference from those with supercavitating-type 
sections. Figure 26 from Ref. [3] is typical. It may be noted that at the high 
advance coefficients the Ky and Ky values are independent of test rpm but as 
J is reduced, the higher-rpm tests start to show a decrease; ultimately, there 

is the transition point where there is a large drop in K, and Ky, the magnitude 

of which is sensitive to the test rpm. To explain the differences we should know 

how ventilation develops on an airfoil-type section. At the higher advance co- 
efficients the foil is at a low enough angle of attack that it is fully wetted, thus 
K; and Ky are independent of test speed. As the advance coefficient is reduced, 

a vented cavity probably forms from a point near the maximum thickness. 
Eventually the advance coefficient will be reduced to the point that a fully vented 

cavity forms from the leading edge. It is at this point that there is a rapid 

change in the lift, which results in the drop in the K, and Kg values. The large 

drop in lift observed on the airfoil section can be accounted for by noting that 
when a fully vented cavity develops on an airfoil section it acts as a supercavi- 

tating section with negative camber. Unpublished measurements of side forces 

on wedgelike and ogival surface-piercing struts show much more radial change 

in side-force coefficients for those struts with convex curvature on the pressure 

face. The preceding comparison points rather clearly to the desirability of us- 

ing section shapes that do not result in convex curvature when operating fully 

vented and that have a minimum tendency towards cavitation inception at the 
leading edge. 

COMPARISON OF TEST RESULTS 

So that comparisons can be more easily made between the performance of 

the propeller at different test conditions, the system of ny) and J versus Cy, 
have been used in Figs. 19-22. The thrust coefficient C, is based on the 
submerged-disk area. These curves rather clearly show that the maximum ef- 
ficiencies in the partially submerged condition are comparable to those for the 
fully wetted condition. The lift-to-drag ratio of base-vented sections is greater 

than when fully wetted, but the blade entry and exit losses must reduce their ef- 

ficiency to the point where they are comparable. It should also be noted that the 
range of Cy value over which a given propeller can operate efficiently is much 
narrower than for the fully submerged condition. The extent of the operating 

range is comparable to that of the supercavitating propeller. 

These curves, particularly those on Propellers 3767 and 3768 show that for 

the base-vented condition there is partial collapse of the data for the range of 

1476 



Performance of Partially Submerged Propellers 

Fig. 26 - Photographs of propeller 
3768 partially submerged 

submergence tested, and that for estimating purposes it would be possible to 

make a tentative prediction of the performance at any submergence based upon 

the results of tests at one submergence. 

It was noted in comparing the efficiency curve of Propellers 3767 and 3768 at 
the semisubmerged condition that the efficiency of 3768 was somewhat higher. 
This was because the test speeds of 3767 were quite low; thus, the base drag of 

the blade sections was relatively high. 

The collapse for the two tests conducted on Propeller 3820 is not as good 
but the region of greatest variation is the low C,'’s where the small amount of 
data that exist are of questionable accuracy and where there is a fairly large 
base-drag component. The coincidences demonstrated from Propellers 3767, 
3768, and 3820 do not hold for 4002. It may be noted that the test data are 
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considerably more scattered. Because this is a two-bladed propeller, the un- 

steady forces are quite large. At the smaller submergence the thrust will vary 
from nearly zero to the maximum developable by one blade. 

The results of the cavitation tests in a variable pressure water tunnel on 

Propeller 3767, Ref. [7], have been presented on the same type of diagram, Fig. 
22, for purposes of comparison with partially submerged operation, Fig. 21. As 
may be noted in Fig. 22, the curves change their character with decreasing o, 

indicating in particular a reduction in the favorable operating range of thrust 
coefficient. The only region of comparability between cavitating and partially 
submerged operation is when full ventilation has occurred for the latter. In this 

region the n and J values are somewhat similar to those of the cavitating pro- 
peller when operating at low o values. 

ANALYSIS OF TRANSVERSE FORCES 
AND THRUST ECCENTRICITY 

The fully submerged propeller, when operating in a uniform flow field, de- 

velops a net thrust and torque which acts at the axis of rotation. If the propeller 

operates in an asymmetric flow field, the forces no longer occur at the exact 

center of rotation nor do they appear as a simple steady force (thrust) and mo- 
ment (torque). Usually these asymmetries in the flow are not large enough to 

be of concern as far as the thrust eccentricity and transverse forces are con- 
cerned. This is no longer possible in the case of the partially submerged pro- 

peller, which may be viewed as a limiting case of asymmetry in the flow field, 

i.e., a step-function velocity field which is symmetrical about a vertical plane 

through the propeller axis. 

Before undertaking an analysis of the results of the measurements of the 

side force and the thrust eccentricity, it is helpful to examine the force on the 
propeller as it enters and exits through the air-water interface. There isa 

modest amount of literature derived from seaplane dynamics and hydroballis- 
tics on the air-water entry of bodies and more recently on water exit of mis- 
siles. The most applicable literature is that derived from seaplane dynamics, 

which is concerned with impact forces of wedgelike bodies. The work was in- 
tended for the deadrise angle of seaplane floats rather than the knife-edge 
shapes of propellers; however, extensions have been made using the same as- 

sumptions as for the larger vertex angles, Ref. [12]. 

There are three phases recognized in the air-water entry of a rigid body, 

Ref. [13], which might be considered applicable to a propeller blade; sequen- 
tially these are as follows: 

Shock Phase. This regime covers the initial, extremely brief period of wa- 
ter contact where compressibility is the important effect. Since this phase lasts 
only microseconds, and the leading edge of the blade is ''sharp,"' the pressure is 
localized on an extremely small area; thus, any imposed drag force on the blade 

is probably negligible. 

Flow-Forming Phase. In this regime the water around the blade is set into 
motion, and the entry cavity is initiated. It is during this phase that there is a. 
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considerable exchange of energy taking place which can give rise to large im- 

pulse forces. Ona partially submerged propeller the time duration of the im- 

pulse force can be relatively large when considered in relation to the time of 
one revolution. For the root sections of Propeller 3768 when operating in a 
semisubmerged condition, the impulse phase lasts as long as one-fourth of a 
revolution, and its duration is approximately one-third of the time the blade is 

in the water. Even at the 0.7 radius the duration is more than 20% of the time 

the blade is in the water. 

Open-Cavity Phase. This phase occurs when the blade proceeds beyond the 
flow-forming phase, and an open cavity grows outward from the region of flow 

separation, either base-vented or fully vented, depending upon the advance co- 
efficient of the propeller. This phase is the dominant regime of the propeller 

action and has been discussed in the previous section on performance, 

Considerably less knowledge exists on the water-exit regime of rigid bodies 
such as missiles, which geometrically are far from similar to a rotating pro- 
peller blade. It is known from this work that the amount of entrained water 

exiting with the body is equivalent to 7 - 12% of the body volume. This tends to 
reduce the vertical force on the propeller. This is also the source of much of 

the spray generated by the propeller when operating in the base-vented regime. 

We can now examine the results of the measurements made of thrust ec- 
centricity and transverse force on Propeller 3768 as shown in Figs. 13-18. The 
test results for horizontal thrust eccentricity e, show that the center of thrust 
in the base-vented condition is a small distance, less than 5% of the propeller 

diameter to the right, or starboard, for a right-hand-turning screw; whereas 

for the fully vented condition it is almost the same amount to the left, or port. 
This implies for the base-vented condition that more blade lift is developed on 
the entry half of the revolution, while for the fully vented condition more blade 

lift is developed on the exit half of the revolution. 

The vertical position of the center of thrust is obviously a function of sub- 

mergence of the propeller, the less the submergence the larger the eccentricity 

e,. The most marked effect is in the magnitude of the shift between base-vented 
and fully vented operation. The implication of these results is that there isa 

very large shift of the center of loading towards the root in the change from 

base-vented to fully vented operation. The reason for this is not clear. 

The results of the transverse-force measurements, Figs. 16-18, show sig- 
nificant vertical force as well as the expected strong horizontal force. As 
noted before there is a marked difference in the magnitude of these forces for 
the two flow regimes, the base-vented condition producing the larger forces. 
The horizontal force coefficient for the fully vented condition appears to be in- 
dependent of the test speed. Just the opposite is true for the base-vented con- 
dition, where the force coefficient varies significantly with test speed. This is 
not unexpected, as both the base and viscous components of the blade drag de- 
crease with increasing speed. It would be expected that smaller differences 

would have been obtained at the higher test speeds. This again points to the 
necessity for proper modeling of the section o if successful predictions are to 

be made. 
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The vertical force coefficient for the base-vented regime is dependent upon 
both test speed and submergences. The force is upward, implying that the im- 

pact forces are significant and that more blade lift is developed during the entry 

half of the revolution than during the exit half. This is consistent with the thrust- 
eccentricity measurements. 

The vertical force coefficient for the fully vented condition, just as for the 
horizontal force coefficient, appears to be independent of test speed. It also 

appears to be independent of depth of submergence. In this regime the net 
force is downward, implying that more blade lift is being developed on the exit 

half of the revolution and that this net force is greater than the impact force 

upon entry. This again is consistent with the thrust-eccentricity measurements, 

where the center of thrust is located in the exit half of the propeller disk. 

The generation of the spray upon blade entry and exit represents a loss of 
energy to the system. It would be expected that this would have a significant 

effect upon the efficiency of the propeller. It is probable that these losses ac- 

count, in the case of Propeller 3768, for the gains made in the L/D ratio when 

operating in a base-vented as compared to the fully wetted condition; hence the 
reason for the comparable efficiencies when being operated as either a fully 

wetted or a partially submerged propeller. 

SCALING 

The dominant scaling problem is associated with maintaining the proper 

value on the propeller blade sections to ensure achieving similarity of flow. 
Since the cavities are vented to the atmosphere at all times, with the possible 
exception of a small leading-edge vapor cavity just before transition from base- 

vented to fully vented flow, the static pressure is equal to the atmospheric 

pressure. The pressure differential is 

Ap = yhe, 

where y is the density of water, and h is the depth of water at the propeller 

blade section; thus 

where U is the inflow velocity to the propeller-blade section. This relationship 

can also be expressed in terms of a depth Froude number: 

2 
0, — 

h F,2 

where F, =U/gh. Since o, is a function of Froude number, the condition for 
similarity of flow is that the speed of advance of the model and full-scale pro- 
pellers should be in accordance with the Froude law of comparison; thus 
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and 

where » is the linear ratio of full-scale to model propeller. 

In the open-water testing of fully submerged propellers it is not necessary 
to observe the Froude law of comparison; hence, the practice of running these 

tests at constant rpm just high enough to achieve an adequate local Reynolds 

number to ensure turbulent flow (usually greater than 5 « 10° at the 0.7 radius). 

It would appear from these tests that the same minimum-Reynolds-number 

requirements will have to be maintained for the open-water testing of partially 

submerged propellers. In addition there is the requirement of o (or Froude) 

scaling. Fortunately, the base drag coefficient decreases as the square of the 
velocity; thus, there must be some o value beyond which any further increase in 

test speed is unwarranted. Some of the low advance coefficient data at the 

higher test speeds in this series has o, values, based upon tip velocity, of less 

than 0.005 (root section o values were considerably larger). The good collapse 

of test results in this region adds support to such a suggestion. 

The advance coefficient of transition from base-vented to fully vented op- 

eration is also subject to o scaling as demonstrated by the speed dependency 

shown in Table 3. These results along with the transition value obtained from 
the tests have been plotted as a function of o,, based upon the propeller-tip 

velocity in Fig. 27. Above and to the right of the line is the base-vented region, 
and below and to the left is the fully vented region. An extrapolation of these 
results to a lower o value would indicate that there is a probable maximum J 

value at which transition would occur. If o is one of the dominant scaling laws 

then it would be expected that geosims would provide a comparable curve. At 
this writing a similar test has not yet been made on Propeller 3767 to check the 

validity of this hypothesis. 

Assuming that this is the proper relationship for scaling transition, the re- 

sults of the lowest test spots from Propeller 3767 are shown in this same figure; 

hence, it becomes apparent why transition was not achieved on the tests on this 

propeller. 

SUMMARY 

As stated in the introduction, the results of these experiments tended to 
raise as many questions as they answered. It must also be remembered that the 

experiments represent the results of only three propellers, all with similar-type 

sections and all with a small number of blades; hence, the conclusions should be 

construed as tentative, pending a wider base of experimental and theoretical 

knowledge. 

Summarized below are the major findings from these experiments. 
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Table 3 

Tabulation of Transition Advance Coefficients 

for Propeller 3768 

Speed J for J. for 

(knots) 40% Submergence 50% Submergence 

Unattainable Unattainable 

0.267 0.363 

0.365 0.486 

0.452 0.525 

0.534 0.564 

0.541 0.613 

0.566 0.635 

0.598 0.667 

05 

Lowest, speed test 
—_———+ 

04 

50% Submergence 

iS @ 

(=) ine) 

%,(propel ler tip) 

O01 
Fully Ventilated 

Region 

Fig. 27 - Transition curves for propeller 3768 

1, There are two flow regimes in which the propeller operates, one where 

the blades are base-vented, and the other where the blades are fully vented with 
the cavity springing from the leading edge. 
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2. The propeller has inherently a higher efficiency in the base-vented 
regime because of the higher L/D ratio of the blades. 

3. The advance ratio at which the propeller changes from fully vented to 
base-vented flow is subject to scale effects. 

4. During the period that the propeller blade is entering the water, impact 
forces are developed which contribute to the vertical force generated by the 

propeller and, in the fully vented regime, contribute significantly to the genera- 
tion of the spray. 

.. During the period that the propeller blade is exiting, entrained water is 

carried into the atmosphere, creating much of the spray, particularly for the 

base-vented regime and contributing a downward component to the vertical 
force. 

6. Propulsive efficiencies in partially submerged operation comparable to 

fully submerged noncavitating operation can be achieved, in spite of the losses 
mentioned in 4 and 5 above. 

7. The partially submerged propeller has a narrower range of thrust load- 

ings over which it can operate efficiently than it does when operating fully 
submerged. 

8. It appears for the base-vented condition, at least within engineering 
needs, that the results of tests at various depths of submergence can be nor- 
malized on a thrust coefficient, C,', which is based upon submerged area. 

9. The center of thrust is near the vertical center plane of the propeller 

shifting from the starboard side to the port side for a right-hand-turning pro- 

peller when the flow changes from base-vented to fully vented. 

10. The vertical center of thrust is reduced significantly when the flow 

changes from base-vented to fully vented. 

11. The vertical component of the transverse force is upward for the base- 
vented regime shifting to downward in the fully vented regime. 

12. The horizontal component of the transverse force is to starboard for a 

right-hand-turning propeller and the force coefficient is much larger in magni- 

tude for the base-vented than for the fully vented regime. 

13, The appearance and intensity of the spray pattern changes significantly 

when the flow changes from base-vented to fully vented. 

14, The supercavitating-type section shows a much smaller drop in thrust 

than does a propeller with airfoil section when operating fully vented. 

15, The condition for similarity of cavity flow pattern on ventilated partially 

submerged propellers requires that the speed of advance of the model full-scale 
propeller should be in accordance with Froude's law of comparison. 
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RECOMMENDATIONS 

The results of the experiments presented in this paper are only the begin- 

ning of a long chain of research which must be accomplished before this type of 
propeller can be applied to high-speed high-performance vehicles. Some of the 
most important of these are listed below. 

1. Scaling of the point of transition from base to fully vented flows must be 
examined and a method for prediction developed. 

2. High-speed photographs should be taken of the flow at the suction side of 
the leading edge of the blade as it enters the water in both base-vented and fully 

vented operating conditions to help guide the development of the theory. 

3. Develop theory for the force and moments on a propeller blade as it en- 

ters and emerges from the air-water interface. 

4, Measure the time history of lift, drag, and moment on an individual 
blade, so that we can better understand the forces experienced by the blade and 

the results can be used to check theory. 

5. Develop a rational hydrodynamic theory for designing this type of pro- 

peller comparable to that for propellers operating fully submerged. 

6, Examine the vibratory forces produced by a propeller which is experi- 

encing both cyclic loading and unloading and impact force upon water entry. 

7. Blade strength and fatigue must be investigated for their effect upon 
performance. 

8. Details of blade section shape should be investigated to obtain sections 

of adequate strength which will have minimum drag under base-vented condition, 
reduced magnitude of drop in lift coefficient when fully vented, and will produce 

minimum impact force when entering the water. 

9. The explanation for the large radial shift in center of loading towards 
the root when the propeller changes from base-vented to fully vented should be 

ascertained. 

10. It is necessary to be able to predict the pressure field ahead of the pro- 

peller in both of its two operating modes so that interaction forces with the 

vehicle can be estimated. 
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Appendix A 

MEASUREMENT OF TRANSVERSE FORCES 

DESCRIPTION 

As previously discussed in this paper, propellers which operate partly out 

of the water cause the effective center of thrust to be applied below the shaft 

centerline. The imbalance of the torque force results in a transverse force in 

the plane of the propeller. In order to determine the resultant force and mo- 
ment, a four-component dynamometer was designed and built. The four com- 

ponents were the horizontal and vertical components of the resultant moment 

and the horizontal and vertical components of the transverse force. 

In principle, the dynamometer acts as a cantilever beam of hollow cross 

section with a concentrated load at the free end. Two reduced-area sections, 
designated Plane A and Plane B, are strain gaged. The strain gages are wired 
into 4 four-arm Wheatstone bridges. Each bridge is wired so that it reacts to 
the bending moment at a given plane in a given direction. For example the 
vertical moment at Plane A is proportional to the signal produced by a Wheat- 

stone bridge where one side (two legs) measures the strains in the top of the 
flexure while the other two legs measure the strains in the lower sides of the 
flexures. Hence, the output is the difference between a compressive and a ten- 
sile force in the material. Figure Al shows a schematic of the dynamometer, 

and Fig. A2 shows the dynamometer assembly and the strain-gage wiring 

diagram. 

Propeller Reference 

Plane A Plane B 

HOUS TNG 

\- 

Fig. Al - Schematic diagram of four-component dynamometer 

PRINCIPLE OF OPERATION 

Consider a coordinate system where the shaft is coincident with the x axis, 
the positive y axis is vertically upward, and the positive x axis is horizontally 
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to the right, facing forward. The origin is at the intersection of the shaft axis 
with the transverse propeller plane. The coordinate system is shown in the 

upper part of Fig. A3. Arrowheads indicate the positive x, y, and z directions. 
Also included for reference are the positive direction of rotation n and speed v 
for a right-hand propeller. 

+X +y 

ine 
Propeller Reference 

Plane Piseen Plane B 
! 

wousiING == 

Fig. A3 - Coordinate system and force diagram 

Eccentric application of the thrust force T at a distance y below the shaft 

produces a moment M = Ty. This moment can be represented by a pure moment 

in the vertical plane (Z = 0), My and a vertical force F, applied to the shaft in 

the same transverse reference plane, see Fig. A3, Resisting moments are gen- 

erated at Plane A and Plane B, respectively: 

- May = Mzy - FL b, 

- My = M 
BY Va aes ee © as a ae 

From these relationships, the force F, is 

Fy = (Mpy - May)/a 

and the moment Mz, is 

- Myy = [Ca b) May - b Mpy!/a 3 
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Similarly, the horizontal force and moment coefficients are 

Fy = (Mgx — Max)/a, 

- Myy = [(a + b) May - b Mpy) /a. 

If the moments are divided by the thrust, the x and y distances to the point 

of application are obtained. These distances are nondimensionalized with re- 
spect to the propeller diameter, thus 

en = Mzy/T.D. ’ 

e, = Mzy/T.D. 
Vv 

CALIBRATION PROCEDURE 

From the foregoing description it is seen that the force and moment in 
either the vertical or horizontal plane can be computed if the moments in 

Planes A and B are known. Hence, the calibration procedure must relate these 
moments to the output of the strain-gage bridge circuits. The calibrations in- 
volve two steps, first, the exact axial location of each strain gage must be es- 
tablished, and, second, the slope of the calibration curve is established. 

Establishing the center of the strain-gage grids was done by mounting a 
calibrating arm on the shaft with the short leg in the plane of the propeller and 

the long leg extending back past Planes A and B (see Fig. A4). 

With the calibrating arm in place, but no additional weight, the two gages in 

the same transverse plane (either horizontal or vertical) are zeroed. A nominal 

force, or weight (5 lb.) is then imposed on the long leg of the calibrating arm. 
The weight is then moved toward Plane A until the output of the A gage is zero. 
This location is then marked as the center of the gage grid at Plane A. The out- 

put of gage B is also recorded. 

Plane B is then established by moving the weight until the output of gage B 
is zero. The location of Plane B is then marked, and the output of gage A is 

recorded. 

Note 1. If the outputs of gages A and B are not identical, the gage sensitivity 

is adjusted until the outputs are the same. This may require going through the 
above procedure two or three times. 

Note 2. The same procedure is then followed for the horizontal gages but 

the weight is hung from a "frictionless" pulley. 

The described procedure has established the dimension as indicated in Fig. 
A2, For this dynamometer, a = 2,19 in. Dimension b is then measured from 
Plane A to the point of application of the transverse force. For the calibration 

this was 2.62 in. 
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The actual calibrations are then 
performed by applying a known force 

(weight) at a given point simultane- 
ously with a pure moment. The force 

and moments are varied independ- 

ently. Outputs of all four gages are 
recorded as various weights are im- 

posed on the systems. The same 

range of weights is then calibrated 
withdifferent moments to assure that 
there are no coupling effects. A typi- 

cal calibration curve is shown as Fig. 
A5. The line has a slope which is the 
arithmetic average of the data over 
the range of interest. The error of 
any reading is within 1.5%; hence, 
data acquisition with this dynamom- 

eter is considered to be about 3%. 

Since the dimension b enters into 
the calculation of the moment, it is 
necessary to establish the point of 

application of the transverse forces 

in the plane of the propeller. For 
Propeller 3768 the design reference 
plane, located at the mid-chord length, 
was used (b= 3,31 in.). The center 
of lift on the blade varies depending 
upon the flow regime. A check on the 
error introduced by inaccuracy inde- 
termination of the magnitude of b 
shows that if the error was as large as 1.0 in. there would be less than 1% 

error introduced into the determination of the eccentricity. 

Fig. A4 - Photograph of dyna- 
mometer calibrations 

NOMENCLATURE 

A Area 

A, Disc area (7D2/4) 

A! Submerged disc area 

Bor Blade thickness fraction 

Cp Drag coefficient (p,/5 eave) 

C, Lift coefficient (u/ chv?| 

om Loading coefficient (1/-- pA,v?) 

Cy Loading coefficient Ge pasy?) 
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MOMENT CALIBRATION 

(( atb )May-bMay)/a 

APPLIED MOMENT (INCH-LBS) 

APPLIED LOAD (LBS) 

Fig. A5 - Typical calibrations 

os & Chord length at 70% R 

Chord 

Propeller diameter 

Drag 

Expanded-Area ratio 
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Horizontal thrust eccentricity/diameter 

Vertical thrust eccentricity/diameter 

Transverse horizontal force 

Transverse vertical force 

Depth Froude Number (U/\/ghE) 

Acceleration due to gravity 

Depth of submergence of a propeller blade section 

Advance coefficient (V/nD) 

Horizontal force coefficient (Fy/on7D*) 

Vertical force coefficient (Fy/oen?D*) 

Torque coefficient (Q/pen2D5) 

Thrust coefficient (T/en?D*) 

Lift 

Lift-Drag ratio 

Moment in horizontal plane 

Moment in vertical plane 

Revolutions per unit time 

Pitch-Diameter ratio 

Torque 

Propeller radius (D/2) 

Reynolds number (Vo 7 co 7/v) 

Thrust 

Inflow velocity to blade section = V[1 + (7x/J)2]1”? 

Velocity 

Nondimensional propeller radius 

Number of blades 
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y Density 

he Propeller efficiency in open water (TV/27Qn) 

r Linear ratio of full-scale to model propeller 

Vv Kinematic viscosity 

p Mass density 

o Cavitation number 

op Local blade cavitation number based upon h 

Subscripts 

m Model 

s Ship 
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DISCUSSION 

H. Volpick 

Brown Bros. & Co. Ltd. 

Edinburgh, Scotland 

In the historical introduction of this very interesting paper, the authors 

have remarked on the use of partially submerged propellers years ago on 
rivers and lakes. As a former member of the Denny Ship Model Basin in Dum- 
barton (Scotland), which was liquidated in 1963 — at least in name — with the 
entire firm of Denny, I should like to mention that already in the 1920's ship 

propulsion of this type for specific river application in India and Burma was 

evolved by Denny. After extensive model tests, the first experimental vessel, 
the Meccano, was built, and full-scale experiments were continued. One of the 
first commercial vessels, the Chuchow, of about 100-ft length had two large, 
slightly submerged propellers, or ''vane wheels''as they were called, at the 
stern, turning at about 60 rpm through a gearbox. Before this vessel was 
finally shipped out East, further extensive tests were carried out on the River 

Clyde at different immersions of the vane wheels, which were four-bladed, of 
large area, and with ordinary circular back sections. These trials showed 
that the predictions from the model tests were reasonable, and that the optimum 
propulsive efficiency coincided with an immersion coefficient (i.e., immersion 

of wheel/diameter) of between 0.30 and 0.35 falling off rapidly with higher im- 
mersion, due to increased drag. This peak efficiency was over 0.45, which did 
not compare unfavorably with the figure of 0.50- 0.55 for customary paddle 

propulsion. 

The largest vessel of this type built by Denny was the M. V. Stanley, a river 

cargo vessel which operated from 1929 onward on the Congo river. With the 

advent of high-speed Diesels and directly coupled, fast-turning, small, fully 
immersed propellers, vane-wheel propulsion went out of use. However, the 
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Denny Ship Model Basin was going to reactivate this system for a specific pro- 
posal for India in 1963 and commence a new series of experiments in the light 
of modern propeller design, when the firm's liquidation put an end to this pro- 
posed program. 

DISCUSSION 

S. G. Bindel 

Bassin d'Essais des Carenes 

Paris, France 

When the submergence of a propeller is not sufficiently large, a ventilation 
may occur when the ship is stopping, since the rotation of the propeller is re- 
versed while the motion of the ship is still forward. This ventilation leads toa 
decrease of the thrust, and thus to an increase in the stopping length. It is 
speculated that this unfavorable effect may also be severe on the partially sub- 
merged propeller. 

I should like to ask Mr. Hadler if tests were carried out to investigate these 
unusual working conditions. 

DISCUSSION 

C. Kruppa 

Technische Universitat 

Berlin, Germany 

I would like to congratulate the authors on the presentation of a paper that 

undoubtedly will have to be looked upon as the first piece of fundamental informa- 
tion on the performance of partially submerged high-speed propellers. I think 
we all are aware of the fact that partially submerged propellers have been used 
for some time in racing craft and record-breakers, and have performed more or 
less successfully, due largely, no doubt, to the reduction of appendage drag. How- 

ever, nobody has so far been able to quote efficiencies or.account, on a rational 
basis, for possible advantages that this type of propulsion device may offer under 
certain circumstances. 

The authors have already outlined what they think should be done in the 
future on a theoretical basis and experimentally, in order to arrive at a better 
understanding of the hydrodynamic phenomena in partially submerged propellers 
and to derive the basis for a design method, if possible. To their 10 recommen- 
dations for future investigations, however, I would like to add a further one, which 
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is concerned with the number of blades in partially submerged propellers. Al- 

though this aspect is directly linked to the question of vibratory output in par- 
tially submerged propellers, I think there is a strong need for testing partially 
submerged propellers with larger numbers of blades than commonly in use in 
fully submerged propellers. In fact, Iam quite certain that in more sophisti- 
cated installations the partially submerged propellers will only stand a chance, 

from the vibration point of view, if the number of blades is sufficiently high. 

I would like to ask the authors whether they share this point of view. 

Finally, I would like to mention that at Berlin Technical University an ex- 
perimental investigation into the performance of partially submerged propellers 
will be carried out in the near future. The tests will be conducted in the free- 
surface cavitation tunnel of the cavitation laboratory. All together, 8 propellers 
will be tested in the first phase of the program, among them propellers of the 
Newton-Rader series that have successfully been used for fully submerged pro- 

pellers in the fully cavitating mode, but do not make use of blunt trailing edges. 

It is planned to extend the program eventually to measuring the fluctuating 

forces on individual blades and to investigate possible advantages of skew-back. 
The paper presented by the authors provides extremely valuable guidance for 

this work. 

DISCUSSION 

K. Suhrbier 

Vosper Ltd. 
Portsmouth, England 

The authors presented an interesting and stimulating paper, which contains 

very useful information on this subject. 

We have recently carried out some limited experiments with three super- 

cavitating propellers on a race boat (described in the panel discussion on Planing 

Craft by Cdr. Du Cane). All propellers were designed for the same boat and had 

about the same characteristics in the fully submerged condition; they were: 

1. a wedge-type SC propeller (P. Rolla, Switzerland), designed for semi- 

submerged condition; 

2. a wedge type SC propeller, designed for fully submerged condition; 

3. a Newton-Rader SC propeller (modified airfoil section), designed for 

fully immersed condition. 

In the semisubmerged mode, good performance could be achieved with the 

first two propellers; the hump was no problem -- in particular with Propeller 1, 
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which also gave by far the best overall performance. However, with the third 
propeller it was not possible to get on the plane (i.e., over the resistance hump), 

although this type has proved to be very successful in normal applications on 
many planing craft. 

As already stated by the authors, the blade shape is very important and our 

experience seems to confirm that airfoil-type sections are not suitable for this 
working condition. For race boats, where the propeller is more deeply im- 
mersed at lower speeds, the vertical forces generated by the propeller have 

probably also some effect on the overall performance (trim). 

From some tests with Propeller 3 in the Vosper Cavitation Tunnel, run with 
free surface at atmospheric pressure, the fully ventilated condition could be 

studied at low advance coefficients to simulate the acceleration phase in the 

hump region. The cavities were so large that hardly any water could be accel- 

erated; only very small thrust (and torque) was measured. 

* * * 

REPLY TO DISCUSSION 

J. B. Hadler and R. Hecker 

Mr. Volpich has added significantly to the historical aspects of this paper. 

It should be noted that Mr. Volpich's comments pertain to the low-speed shallow- 

draft application of this type of propeller, where little or no ventilation occurs 
on the blade. 

Captain Bindel requested performance information for the backing condition 

with the ship going forward. To our knowledge no work has been done in this 

area as yet. It certainly must be investigated before engineering application can 
be made on an operating vehicle. 

Professor Kruppa's remarks pertain largely to possible vibration problems 

on partially submerged propellers. Our paper was concerned primarily with 

steady-state performance, and thus we have not treated the problem of vibratory 

forces. We most certainly would agree with Professor Kruppa that significantly 

increasing the number of blades offers one of the best means for reducing the 
vibratory forces to an acceptable level. To this end we are conducting ongoing 
research on an eight-bladed propeller to establish the effects of high number of 

blades upon performance both steady-state as well as vibratory. 

Mr. Suhrbier notes the difference in performance at low advance coefficients 

for similar propellers with different types of blade sections. His experiences 
help point out the fact that little is known about interference effects of the cavities 

between propeller blades, particularly at low advance coefficients. We must ob- 

tain considerably more knowledge in this area if successful designs are to be 

achieved for the propulsion of sophisticated, high-performance craft which have 

a marked resistance hump to traverse in the process of achieving their design . 

speeds. 
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OSCILLATING-BLADED PROPELLERS 

S. Bindel 
Bassin d'Essais des Carenes 

Paris, France 

SUMMARY 

Due to the inclination of shaft on the flow coming along the hull, the angle 
of attack of the sections of a propeller blade is variable with the position of the 

blade. The performances in cavitation are reduced especially for the sections 
near the hub, 

In order to decrease these drawbacks, it is proposed to oscillate the blades 
at the frequency of rotation of the shaft. 

The results obtained in cavitation for one propeller model do not seem as 

promising as expected; however, further experiments are required in order to 
form a valuable estimate of this type of propeller. 

SYMBOLS 

D Diameter of the propeller 

J=V/nD Advance ratio of the propeller 

n Number of revolutions of the propeller 

R Radius of the propeller 

i Radius of a blade element 

TH Radius of the hub 

x Reduced radius of a blade element 

XH Reduced radius of the hub 

Meets Induced velocities 

V Velocity of the flow 

Vii Transverse component of the flow velocity 

W Amplitude of the transverse flow variations 
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ae Oia Maximum variations of the angle of attack 

y Oscillation amplitude 

6 Inclination of the flow on the propeller shaft 

Q Longitude of a blade element 

v Phase of the oscillation relative to the incidence variation 

o Cavitation parameter (based on the velocity V). 

INTRODUCTION 

The flow coming to a ship propeller is often inclined on the shaft, particu- 

larly in the case of multiscrew fast ships such as destroyers or torpedo boats, 

As a consequence, the relative flow is unsteady, even if the wake of the hull is 
uniform, with the corresponding drawbacks: vibrations and premature 

cavitation. 

There may also be severe erosion near the propeller hub. In some cases 
it is possible to prevent this erosion by modifying the shape of the blade sections 

[1], but in other cases this procedure seems to be insufficient [2]. 

Thus, among the solutions that may be considered, one consists in adjusting 

the pitch of each blade to the local conditions encountered, so that the variations 
of the relative flow become as small as possible: this would constitute an 
oscillating-bladed propeller. This solution may be also considered for a pro- 

peller operating in the wake of the hull (the case of a single-screw ship, for ex- 

ample), but the law of pitch variation is here generally less simple. 

It was initially planned to evaluate this idea by experiments on several pro- 
peller models, but, due to a lack of time, it was not possible to test more than 
one model. The present paper gives the results of this experiment and the ten- 

tative conclusions that can be drawn concerning oscillating-bladed propellers. 

VARIATION OF THE INCIDENCE ON THE BLADE ELEMENT 
DUE TO THE INCLINATION OF THE SHAFT 

Let V be the velocity of the flow and @ the angle of inclination of the flow 

on the propeller shaft (Fig. 1). The axial flow component is then V cos @ and 

the transverse component V sin @, 

Assume that the hub is an infinite cylinder of radius r,; the transverse flow 

is then the well-known two-dimensional potential flow around a circle (at least 
out of the viscous wake of the shaft). At a given point of radius r and longitude 

o (the angle between the radius and the velocity at infinity), the component of 

the relative velocity normal to the radius (the transverse component V,) is 

given by the formula: 
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we 

(Vess@+u, ) 

Fig. 1 - Definitions 

2 
r 

Vira, F + (2) | sind sing. 

The variations of V, with » are sinusoidal. For a noninfinite hub, a cor- 
recting factor of 1/2 may be applied [3] and the tangential component of the 

velocity be written as: 

2 
1 r 

vyevfr+d ("3 lin sing = W sing. 

This tangential component is to be added to the relative velocity due to the 
rotation of the propeller in order to have the angle of attack of the blade ele- 

ment during its rotation. Supposing that the induced velocities (u,, u,) are 
constant, the maximum variations a, and «, of the angle of attack are then 

given by: 

2 
x 

jes ae ergo [1 +2 (3 )]} 
J cos@ |J cosd@ 2 

(with the sign - for o, and+for a,). Here x = r/R is the reduced radius (R = 

D/2 is the radius of the propeller), xy is the reduced hub radius and J = V/nD 
the advance ratio of the propeller. Figures 2a through 2d give the variations 

of a, and a, for two values of x, and two values of ¢. 

For a given J, «, and a, decrease rapidly with x, i.e., the sections near 
the hub are more subject to premature cavitation than the outer sections of the 
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x. = 0.20 

@ = 10° 

Fig. 2a - Variation of incidence on the blade 
element due to shaft inclination, x, = 0.20 

and @ = 10° (supposing u, = u, = 0) 

blade. This is in accordance with common experience; however, it must be 

noted that for consideration of strength, the thickness ratio of the sections near 
the hub is larger and therefore less sensitive to incidence variations than the 
sections farther from the axis. 

The incidence variations increase with J, i.e., large-pitch propellers are 
more sensitive to the phenomenon involved than low-pitch propellers. The in- 

cidence variations increase also, of course, with @. It is thus normal that 
fast ships, such as torpedo boats for example, which have generally large- 
pitch propellers and for which ¢ is also large are the ships suffering the most 

severe erosion near the hub (for this type of ship, @ is approximately the angle 

between the shaft and the hull; it may be of the order of 15°). 
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x = 10220 

@ =15° 
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Fig. 2b - Variation of incidence on the blade 
element due to shaft inclination, x, = 0.20 

and @ = 15° (supposing u, = u;, = 0) 

It must be noted that the calculations made above do not take into account 
the length of the sections. In fact, if this length is not small relative to the 
"wavelength" 27r, a sophisticated theoretical approach can take into account 

not only the mean incidence at each position of the blade but also the camber of 

the relative flow. In addition, the variations of the induced velocities u, and 

u, are probably not negligible. 
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att = 0.35 

@ = 10° 

Fig. 2c - Variation of incidence on the blade 
element due to shaft inclination, x, = 0.35 

and 9 = 10° (supposing u, = u, = 0) 

THE OSCILLATING-BLADED PROPELLER 

The principle of this system is simple: each blade is oscillated separately, 

the angle of oscillation being a function of the position of the blade, determined 
to avoid or delay the type of cavitation considered as the most dangerous — in the 

present case the cavitation near the hub, 

But the problems to be solved are not simple. First, as shown above, the 
variations of the incidence due to the inclination of the shaft are not sinusoidal 
if 6 is finite: «a, is larger than a,. However, from a practical point of view, 

it is sufficient to adopt for the oscillation a sinusoidal law which is simpler 
to apply. 
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Fig. 2d - Variation of incidence on the blade 
element due to shaft inclination, x, = 0.35 
and 6 = 15° (supposing u, = uz = 0) 
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Second, the variations of the incidence due to the inclination of the shaft 
are not constant with the radius of the section, but the oscillation of the blade is 
necessarily the same for all the sections. This leads to a difficult problem. If 

the amplitude of the oscillation is small (for example equal to the amplitude of 
the incidence variation at the tip), the resultant incidence on all the sections is 

reduced, but, due to the very important difference between the hub and tip sec- 

tions, the incidence near the hub remains too large. On the other hand, if the 
amplitude of the oscillation is large, a favorable effect may be expected as re- 

gards the cavitation near the hub, but the incidence variations near the tip are 
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reversed and have a greater amplitude than without oscillation of the blades, 
thus leading to increased drawbacks. Finally, the choice of the amplitude +» 

is a compromise resulting from the estimation of the various dangers encoun- 

tered by the propeller. 

Third, as stated above, if the length of the sections is not negligible (which 
is generally the case for the propellers concerned), the sections are sensitive 

not only to the mean incidence of the flow but also to its camber, i.e., to the in- 
cidence of the flow along all the sections. In particular, it is not evident that 
the oscillation of the blade ought to be in phase with the variation of the flow 
incidence at the mean station of the section. 

Regarding the application, the oscillating-bladed propellers raise some 

problems which it is not our purpose to deal with in this paper. However, we 
shall notice that the hub diameter ratio is necessarily larger than in the case 
of fixed-bladed propellers, due to the necessity of housing the oscillation 
mechanism system. Likewise, the shape of the blade root will resemble that 
of the controllable pitch. 

CONDITIONS OF THE EXPERIMENTS 

Initially, it was planned to test several propellers of different types, but, 

due to a lack of time, it was unfortunately not possible to test more than one 

propeller. 

This propeller, number 2133, a photograph of which is given in Fig. 3, is 
the propeller of an escort vessel. It was chosen because it was originally a 

controllable-pitch propeller, although its nominal pitch was not high. Its char- 
acteristics are the following: 

- Number of blades: 4 

- Hub diameter ratio: 0.345 
- Blade area ratio: 0.628 

- Effective pitch in nominal conditions: 0.89 

- Diameter of the model: 0.200. 

It was tested in the cavitation tunnel of Bassin d'Essais des Carenes under 

the following conditions: 

- Inclination @ of the shaft: 10° and 15° 
- Amplitude of oscillation y of the blades: 0 and +3° 
- Phase y of the oscillation relative to the incidence variation at the mean 

line of the blade: 0 and +30° (oscillation in advance) 
- Speed of the flow in the tunnel: 3 m/sec 
- Air-content ratio of the water at atmospheric pressure: 0.3. 

For each condition of inclination of the shaft, and of amplitude and phase of 
the oscillation, visual observations were made first in order to determine the 
curves (co versus J, where o is the cavitation parameter based on the velocity 

V) of inception of the different types of cavitation encountered, and secondly, 
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Fig. 3 - Fitting of propeller 2133 
in the cavitation tunnel 

to determine the cavitation patterns for given values of J and o, At this effect, 
three values of J were selected: J = 0.65, corresponding to normal conditions 
of loading; J = 0.50 and J = 0.75, corresponding to overloaded and underloaded 
conditions. 

EXPERIMENTAL RESULTS 

Fixed-Bladed Propeller (y = 0) 

Types of Cavitation Observed — Figures 5a through 8a, and Fig. 10a show 
the cavitation patterns for different values of 6, J, and o. According to the 
value of J, six different types of cavitation can be observed: 

1. Bubbles on the back near the hub 
2. Bubbles on the back for x > 0.6 at the inception 

3. Sheet on the leading edge prolonged by a tip vortex 
4. Tip vortex 

5. Hub vortex 
6. Sheet on the face leading edge near the hub. 

Figures 4a and 9a give the inception curves (co versus J) for ¢ = 10° and 

15° respectively. 

Influence of the Longitude » — As expected from the analysis made in the 
section on variation of incidence on the blade element due to inclination of the 

shaft, the longitude has a considerable influence on the back and face cavitations. 
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Fig. 4a - Cavitation inception curves for 

fixed-bladed propeller, @ = 10° 

The back cavitation is more developed when the blade is going down 
(0 < » < 180°), especially the bubble cavitation near the hub, the tip vortex 
cavitation depending only slightly on ». Conversely, the face cavitation is 

more developed when the blade is going up (180° < 9 < 360°). 

Influence of the Inclination of the Shaft — The cavitation patterns are similar 
for 6 = 10° and 15°, as can be seen from the comparison between Figs. 7a and 
10a. This is the reason for which the pattern schemes relative to @ = 15° were 

limited to one figure. 

As expected, the cavitation appears earlier for 9 = 15° thanfor @ = 10°. 
The difference is small for bubble cavitation in the upper part of the back (second 

type) and for the sheet-vortex cavitation (third type). 

Oscillating-Bladed Propeller with Oscillation In- Phase 
(y ="43 | tae <0) 

According to Figs. 2b and 2c, an oscillation amplitude of +3° could practi- 

cally remove the cavitation near the hub and, on the other hand, strengthen the 
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FHV :Flashing hub vortex 

FTV Flashing tip lenpex 

F $V :Flashing sheet vortex 

FS: Flashing sheet 

B|: Bubbles 

BFS 

0S 06 0,7 08 

(dotted lines (a= o° wo = 0°) 

Fig. 4b - Cavitation inception curves for 
oscillating-bladed propeller, @= 10° 

other types of cavitation (except, of course, the hub-vortex cavitation, which in- 

tegrates the behavior of all the blades) with an inverted effect of 0. 

Cavitation Patterns — The cavitation patterns (Figs. 5b through 7b and Fig. 
10b) are more complicated than for the fixed-bladed propeller. First, according 

to the longitude 9, the bubbles on the upper part of the back appear either amid 

the section (type 2; » ~180°), or near the leading edge (type 7; 9 ~ 0°). 

Second, there can exist a sheet cavitation along the face leading edge, even- 

tually prolonged by a vortex (type 8). 

As in the case of the fixed-bladed propeller, the cavitation patterns are very 

Similar tor 0 = 10° ‘and’¢ =\15 - 

Influence of the Longitude » — The influence of 9 is less clear than in the 

case of the fixed-bladed propeller. The cavitation near the hub (back or face) 
seems to appear for about the same values of 9. As for the other types (bub- 

bles, sheet vortex, tip vortex), they depend less upon 9 than in the case of the 
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FHV :Flashing hub vortex 

: Flashing tip| vortex 

FSV :Flashing sheet vortex 

: Flashing she et 

: Bubbles 

Os 06 07 08 

Fig. 4c - Cavitation inception curves for 
oscillating-bladed propeller, with oscilla- 
tion in advance, @ = 10° 

Fig. 5a - Cavitation patterns for fixed-bladed 
propellets37:=20,50 SxhOS;; Jr=10 508.0: =75 
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Fig. 5b - Cavitation patterns for oscillating - 
bladed propeller, Y = +3°, w= 0, @= 10°, 

je= 02509 G2 ——5 

Fig. 5c - Cavitation patterns for oscillating - 
bladed propeller, with oscillation in advance, 

y= $3, W = 30,60 = 10-5 J = 0,50, or="5 

fixed-bladed propeller, the inverted effect seemingly sensitive only for sheet- 

vortex and tip-vortex cavitations. As already noted, according to » there 

exist two types of bubble cavitation in the upper part of the back. 

Inception of Cavitation — Figures 4b and 9b allow an evaluation of the influ- 
ence of oscillation on the inception of the different types of cavitation. The 

oscillation is beneficial as regards the bubble cavitation on the back near the 
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Fig. 6a - Cavitation patterns for fixed-bladed 
propeller, Y= 03 @= 10°,«J=0.65,-0'=3 

Fig. 6b - Cavitation patterns for oscillating - 
bladed propeller, y = +3°, p= 0, @= 10°, 

Ja=-0265,,0:—"3 

hub (at least for @ = 15°), But, on the other hand, there is a substantial loss 
as regards the sheet cavitation on the face leading edge. 

For the other types of cavitation, there is a loss, especially for bubble and 

sheet-vortex cavitation, independent of the existence of new types of cavitation. 

On the whole, the combination y = +3°, ¥ = 0 has a negative effect. 
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Fig. 6c - Cavitation patterns for oscillating - 
bladed propeller, with oscillation in advance, 

Via S a= G05 Oe 0" oe 406550; = 9 

Fig. 7a - Cavitation patterns for fixed-bladed 
propeller, y =.0, 6= 10°, J= 0.65, 0=2 

Oscillating-Bladed Propeller with Oscillation in Advance 

(y= 48°; Y= +80°) 

Cavitation Patterns —~ The same remarks may be made as for ¥= 0 regard- 
ing the existence of two types of bubble cavitation on the upper part of the back, 
and of a sheet cavitation along the face leading edge. The same remarks also 

may be made regarding the influence, not so clear, of the longitude 9. 
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Fig. 7b - Cavitation patterns for oscillating - 
bladed. propeller, y = 43°, y-= 0, 9.=.10°, 
J = 04655 o-= 2 

Fig. 8a - Cavitation patterns for fixed- 
bladed propeller, y = 0 

A great difference exists, however, for the cavitation near the hub. Rela- 
tive to the fixed-bladed propeller, the bubble cavitation on the back is strength- 
ened for @ = 10°, while the sheet cavitation on the face leading edge is sub- 

stantially reduced, especially for @ = 15°. 

The influence on the other types of cavitation is of the same order as for 
Y = 0, except for the sheet cavitation along the face leading edge, which is 

much lower for yw = +30° than for ¥ = 0. 
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Fig. 8b - Cavitation patterns for 
oscillating -bladed propeller, y = +3°, 

p= 0 

Fig. 8c - Cavitation patterns for 
oscillating-bladed propeller, with 
oscillation in advance, y = +3°, 

Y= 30°, 8 =) E5o gy =10.753 20:4 

On the whole, dephasing in advance the oscillation relative to the incidence 
is beneficial as regards the face cavitation, but causes a loss as regards the 
back cavitation near the hub. 
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FHV: Flashing hub vortex 

10 : Pa Flashing tip vortex 
\ FSV :Flashing sheet vortex 

Fg : Flashing =a 

: Bubbles 

6-15 Y=0° 
(dotted lines = 10° We: =210°) 

Os 06 0,7 08 

Fig. 9a - Cavitation inception curves for 

fixed-bladed propeller, @ = 15° 

CONCLUSIONS 

1. The experiments carried out on a propeller model in inclined flow 

confirm, when the blades are fixed, the calculated influence of the longitude 
on the inception and development of cavitation, especially as regards the cavi- 

tation near the hub (bubbles on the back, sheet on the face leading edge). 

2. For this propeller, the oscillation of the blades can delay the cavita- 

tion near the hub (back cavitation for the oscillation in phase with the incidence, 
face cavitation for the oscillation in advance of 30°), but the cavitation far from | 
the hub is strengthened and even new types of cavitation can appear. 

3. If the results obtained with this propeller do not seem as a whole very 
promising, a valuable conclusion regarding the oscillating-bladed propellers 
cannot be drawn without further experiments, especially with large-pitch 

propellers. 

4, The influence of the amplitude and of the phase of the oscillation should 
also be investigated more thoroughly. For example, when two types of cavitation 
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Fig. 9b - Cavitation inception curves for 
oscillating-bladed propeller, @ = 15° 

could take place near the hub (in the case of the propeller tested), better re- 

sults would perhaps be obtained with a nonsinusoidal oscillation, the oscillation 
being successively in phase with the variation of incidence in order to delay 

cavitation near the mean line of the propeller, and in advance of phase to delay 
cavitation on the leading edge. Of course, the oscillation mechanism system 

would then be more complicated. 

5. A sophisticated theory, taking into account the blade width and the vari- 
ations of the induced velocities, seems also necessary for a better understand- 
ing of the phenomenon, 
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\ FSV: Flashing sneet vortex 

10 FFY-Frashing tip vortex 

FHV : Flashing | hub vortex 

FS: Flashing |sheet 

B : Bubbles 

& = 15° 
(dotted lines 

06 0,7 08 

Fig. 9c - Cavitation inception curves for 
oscillating-bladed propeller, with oscilla- 
tion in advance, @ = 15° 

Fig. 10a - Cavitation patterns for fixed- 
bladed propeller, »y = 0, @= 15° 
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Fig. 10b - Cavitation patterns for 
oscillating-bladed propeller, y = +3°, 
p=0; 0 = 15° 

Fig. 10c - Cavitation patterns for oscillating - 
bladed propeller, with oscillation in advance, 
VS EB wy 'a950°5 815957 = 0065; ci SS 
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DISCUSSION 

G. G. Cox 
Naval Ship Research and Development Center 

Washington, D. C. 

The author's paper on the effects of shaft inclination deals with a very im- 
portant problem for high-speed ships, whether subcavitating or supercavitating 
propellers are used. Incidentally, the problem, although usually transient, is 
identical to the propeller in yawed flow, as during a turn. 

Although the author has confined his investigation to the use of oscillating 
blades in an attempt to overcome the root erosion problem, there are other im- 

portant aspects to the problem. For instance, a normal force and yawing mo- 

ment arise about the normal axis through the propeller disc. These are in addi- 

tion to the usual thrust and torque along and about the shaft line. At the 9th ITTC 
meeting, Newton [1] presented test results for a model destroyer propeller at 
zero and 10 degrees shaft inclination. These results indicated that all forms of 
blade cavitation inception occurred much earlier. In its turn, this cavitation 
tended to reduce thrust and increase torque for a wide range of advance coeffi- 
cients. This is in contradistinction to the noncavitating inclination effects which 

tend to indicate an increase in thrust. 

Lerbs and Rader [2] presented an interesting analysis method to determine 
the effective angle of attack for a blade section based on the concept of effective 
aspect ratio. This method can be useful in predicting cavitation inception char- 

acteristics for a propeller in inclined flow. 

Finally, I would like to put a question to the author. In view of the results 
obtained from tests on one propeller with oscillating blades, does he really con- 
sider it worthwhile to continue with the full test program indicated in his paper ? 
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DISCUSSION 

L. A. Van Gunsteren 
Lips Propeller Works 

Drunen, The Netherlands 

I would like to make two comments. 

1. In my opinion, the value of the paper would be improved if Mr. Bindel 

would provide a description of the test arrangement. In other words, by which 
kind of mechanism did he obtain the desired motion of the propeller blades ? 

This could give an indication about the efforts required for the realization of 
this device in practice. Also, a sketch of the hub-form would be appreciated, 

as this is an essential point with regard to blade-root cavitation. 

2. We considered the oscillating-bladed propeller some years ago with 
regard to the wake-field of single-screw ships. We dropped the idea because 

of the continuous energy losses due to mechanical friction in the actuating 
mechanism, This, despite the fact that field-wake irregularity of single-screw 
ships is practically unavoidable. The nonuniformity of flow due to shaft incli- 

nation, however, can be avoided by simply placing the shaft in the direction of 
flow. In order to achieve this, the propeller shaft could be connected to the in- 
clined shaft by some special kind of coupling, or by a gearing of two wheels with 
conical teeth. Such a device seems to be more attractive than any hub mecha- 

nism required for the oscillation of blades. 

* * * 

DISCUSSION 

Prof. L. Mazarredo _ 
Asociacion de Investigacion de la Construccion Naval 

Madrid, Spain 

Although these results don't appear to be very promising, I don't think this 
idea should be rejected at once. The cavitation which appears with oscillating 
blades may be due to the curvature of the relative flow, since it is stronger in the 
leading and trailing halves of chords at +90° from the "longitude" where the root 

cavitation has been eliminated. If the movement was sinusoidal the rotation speed 

of the blades and the corresponding flow curvature would be maximum at that 

position. 
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We have also planned to carry out tests with oscillating blades, but ina 

tanker model. The arrangement consists in providing the rotating blades with 
pins which slide on a groove inside a cylinder fixed astern. Although this de- 
vice introduces undue friction, I hoped that the improvement of the efficiency 

would balance this loss, since not only the change of angle of attack but also the 

lengthening of the hub will provide (as shown by Dr. Castagneto some years ago) 
such an improvement. 

Even if the system is not used, this type of test may load to a better under- 
standing. In this case, it may be interesting, for instance, to see whether an 

improvement of the propulsive coefficient is attained as a result of lowering the 
load in front of the stern post. 

REPLY TO DISCUSSION 

S. Bindel 

In reply to the question of Dr. Cox, I should say that the test program indi- 
cated in the paper is a general outline of some possibilities among which it would 
be necessary to choose. It seems to me, at this time, that the best option would 

be to consider one or several ''desperate"' cases, for which the other methods re- 
vealed themselves ineffective (cf., for example, Ref. 2 of my paper), and to see 

if oscillating the blades may lead to an acceptable solution. If so, it would be de- 
sirable to cover all aspects of the investigation; if not, the system ought to be 
rejected, at least for inclined propellers. 

I did not give the description of the mechanism used because the paper was 

primarily concerned with the hydrodynamic aspect of the problem; but the way 
to build the mechanism is important, of course, as underlined by Mr. Van 
Gunsteren. On the model, two opposite blades were actuated by a lever con- 

nected with a piece turning around a fixed cylinder, the axis of which was cross- 

ing the axis of the propeller. This system was simple; however, I do not think 
that its complete description would give valuable information on the efforts re- 
quired for a full scale propeller, due to the fact that the real system would 

probably be different. 

I agree with Mr. Van Gunsteren that from a hydrodynamic point of view it 
would be better to place the shaft in the direction of the flow, but in this case 
the coupling would have to transmit all the propulsive torque, whereas the torque 
necessary to oscillate the blades is much smaller and the mechanism may be 
located inside the hub. 

I agree with the suggestion of Mr. Van Gunsteren and Prof. Mazarredo, that 

the oscillating-bladed propellers would perhaps be best utilized in the case of 
single screws working in nonuniform flow. I also thought of this application, but 

so far I have had no time to make any investigation in this direction. 

Finally, I thank very much the contributors for their supplementary infor- 

mation, their remarks, and their questions. 

* * * 
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UNUSUAL TWO-PROPELLER ARRANGEMENTS 

T. Munk and C. W. Prohaska 
Hydvro- og Aerodynamisk Laboratorium 

Lyngby, Denmark 

INTRODUCTION 

Many of the problems connected with the screw propulsion of ships origi- 

nate from the irregularity of the wake of the ship. When a propeller is working 
in an irregular wake, the change of the inflow velocity and the angle of incidence 

may give rise to cavitation or vibrations. 

These difficulties are less pronounced when twin-screw propulsion is used, 

but then only a small part of the energy in the friction wake is utilized and this 
causes a decrease in the hull efficiency. In many cases this decrease will not 
be fully compensated for by the increase in propeller efficiency due to the re- 

duced loading of the two propellers. 

THE INTERLOCKING PROPELLER ARRANGEMENT 

The difficulties here are thoroughly treated by P. C. Pien and J. Strgm- 

Tejsen in Ref. 1 which discusses several stern arrangements with regard to 

total efficiency and the ability to reduce cavitation and vibration. In addition, 

a new stern arrangement is proposed. 

In this arrangement, the two propellers of a normal twin-screw system 

are moved aft to the longitudinal position of a normal single-screw propeller 
and inward until the distance between the shafts is less than the diameter of 
the propellers, which therefore overlap in the centerline zone. This should 
combine the advantages of the twin-screw system, which are high propeller 
efficiency due to the reduced propeller load and minimal generation of cavita- 
tion and vibration due to the smooth wake field, with those of the ordinary 

single-screw system, which are low appendage resistance and high hull effi- 

ciency due to the high viscous wake just behind the ship. 

Tests were carried out with the system mounted on a tanker model and the 
results compared with results from previous tests with other propulsion sys- 

tems on the model. It was evident that the interlocking propeller arrangement 

offers great advantages. 
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THE AUXILIARY PROPELLER ARRANGEMENT 

Another propeller arrangement which may reduce the risk of cavitation 
and vibrations was developed at the Hydro- and Aerodynamics Laboratory 
(HyA) at Lyngby, Denmark. It consists of a normal single-screw propeller and 

a small auxiliary propeller placed in the high-wake zone between the upper 
part of the main propeller and the stern. The auxiliary propeller will acceler- 

ate the water behind the stern and thereby smooth out the wake at the position 
of the main propeller. The primary effect is the higher safety against cavita- 
tion and vibrations, but a minor increase in propeller efficiency should also 

be expected. 

PRACTICAL POSSIBILITIES 

In practice, both systems may be adopted in ships without any technical 
difficulties. In the case of interlocking propellers the two shafts are geared 

together and driven by a single propulsion unit. The cost of the gear and the 

extra shaft will be modest in comparison to the gain in total efficiency of the 
system, and the gear will permit an optimum number of revolutions to be 

chosen. 

Separate drives of the two shafts may be adopted if the two overlapping 
propellers are placed clear of each other in the longitudinal direction. This 

arrangement corresponds to a twin-screw ship with an abnormally low distance 

between the two shafts at the tail end. 

In the auxiliary propeller system, the small propeller may be driven in any 

number of ways: by gear, chain-drive, or electric motor. The power required 

will only be about 10 percent of the total power. 

Even a combination of the two systems might be advantageous, e.g., a three- 
propeller system with two interlocking and one auxiliary propeller, all driven 

by a single propulsion unit. 

TESTING OF THE SYSTEMS 

At HyA the results from Ref. 1 were found to be of the greatest interest, and 
as no further treatment of interlocking propeller arrangements was available, it 

was decided to carry out supplementary tests with this system in order to con- 
firm the results of Ref. 1, and to obtain more knowledge of the interaction be- 
tween propellers. It was considered of special interest to know how the vibration- 

generating variation of the forces on a propeller blade would compare with the 

variation on a normal single screw, and how the wake of one propeller is influ- 
enced by the induced velocities from the other propeller, since this would be of 

importance in the design of interlocking propellers. 

The problems connected with the auxiliary propeller system are similar, 
and it was therefore decided also to carry out tests with this arrangement. 
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The two systems should be of particular interest for large tankers and bulk- 
carriers, which usually have a high and very irregular wake, and where the di- 

ameter of the propeller often is kept small on account of the relatively high 

number of revolutions of diesel marine engines for large ships. The two pro- 

pulsion systems were therefore tested on a model of a tanker in the fully loaded 
condition and in a ballasted condition. The model fitted with interlocking pro- 
pellers is shown in Fig. 1, with auxiliary propeller in Fig. 2, and with ordinary ~ 
twin screws in Fig. 3. The principal data of model and ship fully loaded and 

ballasted are stated in Table 1. 

Fig. 2 - Auxiliary propeller arrangement 

The interlocking propeller arrangement was tested with three different 
distances between the propeller axes and with the propellers turning both in- 

wards and outwards. 
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Fig. 3 - Ordinary twin-screw arrangement 

Table 1 
Data of Model and Ship Ballasted and Fully Loaded 

(Scale = 1:35) 

Ballasted Fully Loaded 

Length, perpendicular — Lop (m) 252.000 252.000 

Length, vertical — L,, (m) 245.000 256.235 

Breadth — B. (m) 38.990 38.990 

Draught forward —d, (m) 7.490 13.37 
Draught aft — d, (m) 8.015 13.37 

Mean draught —d_ (m) 7.752 13.37 

Displacement — V (m*) 59951.8 108176.9 

Wetted surface —S (m’) 11203.4 14188.0 

Block coefficient 

Prismatic coefficient 

Midship section coefficient 

Waterline coefficient 

ey Dea 
B/d 

L/B 

Longitudinal center of buoyancy 
aft of Lop/2 — LB (%) 

In order to get an impression of the influence of the induced velocity from 
one propeller on the wake at the position of the other propeller, nearly all the 
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tests were repeated with only one propeller working and the other removed and 

compensated for by a tow-rope force. 

The auxiliary propeller arrangement was tested with a right-hand as well 
as a left-hand auxiliary propeller in combination with a right-hand main 

propeller. 

For comparison, self-propulsion tests were also carried out with a normal 

single screw and with normal twin screws turning outwards. 

The stress at the root of one propeller blade was measured in a number of 

the tests. 

In Table 2 a list is given of the total number of tests carried out until May 
1968. Further tests, however, are underway. 

Stock propellers were used for all the tests. The diameter of the single- 
screw propeller was chosen as optimum for a number of revolutions for the 
ship in agreement with that of large slowly running diesels. The diameter of 
the interlocking propellers was taken as 0.9 times that of the single-screw pro- 
peller. This diameter gave an optimum number of revolutions somewhat below 
that of the single-screw propeller, but this was found permissible, as a gear 
in any case is necessary for the connection of the two shafts, and some reduc- 

tion of the number of revolutions will then be natural. 

Two sets of stock propellers were used as interlocking propellers. Both 
had pronounced rake and were therefore not quite suitable for the purpose. 

In the auxiliary propeller system the stock propeller with the smallest 
diameter was used as an auxiliary propeller. This propeller was not very suit- 
able, since the diameter was too large and the pitch ratio and the developed 

blade area ratio were too high. 

Data for the propellers are given in Table 3. 

TESTING METHODS 

The resistance tests were carried out in the normal way. 

The self-propulsion tests were carried out with a tow-rope force accord- 
ing to the Hughes friction line for a form factor of 1.36 for fully loaded condi- 

tion and 1.28 for ballasted condition, and with c, = 0.15°10°°. 

Except for the auxiliary propeller arrangement, torque and thrust were 

measured by mechanical dynamometers. In the two-propeller cases the two 
dynamometers were connected to one motor to ensure uniform running of the 

propellers. 

The stress at the root of one propeller blade was measured by means of 
strain gauges. These were placed on each side of the propeller blade to pre- 
vent signals caused by temperature expansion. The strain gauges were wired 
through a hollow shaft to a unit which was placed on the shaft inside the model 
and which consisted of the remaining resistances of a Wheatstone's bridge, an 
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Unusual Two-Propeller Arrangements 

Table 3 
Propeller Data 

Propeller Number 6507 6137 5915 6109 

Diameter, model (mm) 88.9 
Diameter, ship (mm) 3110 
Number of blades 3 

Pitch ratio 1.335 
Developed blade area ratio 0.794 

Rake (deg.) 0 
Purpose auxiliary 

prop 

amplifier for amplification of the signals from the bridge, and an accumu- 
lator for feeding the amplifier. The measuring circuit was fed by an accumulator 
through slip rings, and the amplified signal was led through slip rings to an oscil- 
loscope and a direct-recording ultraviolet oscillograph with a sensibility enabling 
it to follow the variation of the stress through a revolution (Fig. 4). 

Electronic dynamometers were used in the self-propulsion tests with the 

auxiliary propeller system, and each propeller was driven by a separate motor. 

At each tested speed, the numbers of the revolutions of the two propellers that 
would minimize the stress variations in the main propeller blade were found by 

Fig. 4 - Shaft equipment for measuring of 
the stress at the propeller blade root 
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successive changes of the revolutions of the auxiliary propeller, adjusting in each 
case the revolutions of the main propeller until the model was self-propelled. 

ANALYSIS OF THE RESULTS 

The resistance tests were extrapolated to ship scale by using the Hughes 

method and a form factor of 1.36 for fully loaded condition and 1.28 for ballasted 
condition, and a C, value of 0.15°10°*. The self-propulsion tests were analyzed 
by the method described in Ref. 2, which method normally is used at HyA. The 

analysis work was done on the HyA-GIER computer. 

The wake coefficient corrections used in the different cases are given in 

Table 4, 

Table 4 

Wake Coefficient Corrections Used for Analysis 

of the Self- Propulsion Tests 

(Ship wake coefficient = model wake coefficient - 
wake coefficient correction) 

Wake 

Coefficient 
Propulsion Arrangement Correction* 

Ordinary single-screw 0.140 
Ordinary twin-screw 0.010 

Interlocking propellers, distance between axes = 0.7°D 0.097 
Interlocking propellers, distance between axes = 0.8°D 0.086 

Interlocking propellers, distance between axes = 0.9°D 0.074 

Auxiliary propeller system, main prop 0.140 

Auxiliary propeller system, small prop 0.180 

*The wake correction is calculated as the difference between the ve- 
locity in the boundary layer integrated over the propeller disk for 
model and for ship. 

The results of the stress measurements were given by the recorder in the 

form of curves showing the stress caused by the bending moment on the blade as a 
function of time or of blade position, a mark being placed on the paper every time 

the blade was in the upper position. 

The blade stress is proportional to the bending moment, and after calibration 

the curves therefore represent the bending moment at the blade root as a function 
of the blade position. The bending moment is a function of the resultant force on 

the blade normal to the section where the stress is measured, hereafter called 
the normal force, and of the distance of the center of pressure from the root, 
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which may be assumed to be nearly constant. The stress, consequently, in the 
first approximation is proportional to the normal force. The normal force is a 

function of the inflow velocity vector, which is the vector sum of the ship speed, 

the circumferential velocity, and the wake speed. Only the last is not constant. 
Therefore, the variation of the curves gives an impression of the variation of 

the wake during one revolution. 

TEST RESULTS 

The results of the test series are given graphically in Figs. 5 through 12. 

Figures 5 through 9 give the required propeller horsepower for the tested 

propulsion systems as a function of the ship speed, and the corresponding num- 

bers of revolutions are given in Fig. 10. 

PHP 
ff 

NORMAL SINGLE SCREW P No.6507 ji ; 
-1x—- NORMAL TWIN SCREW P No.5915 ; 
-e—e— _|NTERL.PROPS.OUTW. DIST. 077=D,P No5915 
<= o AUX PROP SYSTEM TOTAL PHP P Nos. 6507,6109 

30000 

20000 

10 000 

KNOTS 

12 13 4 15 16 17 18 

Fig. 5 - Comparison between the required 
propeller horsepowers for the different 
propeller arrangements 
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Fig. 6 - Propeller horsepowers from 
tests with inward-turning interlocking 
propellers 

The model torque wake coefficients for all the tests are given graphically 
as a function of the speed in Fig. 11. The thrust deduction coefficients and the 
relative rotative efficiencies varied little and not systematically and were of the 
order of 0.29 and 1.00 respectively for a fully loaded ship, and 0.27 and 1.00 for 
a ballasted ship. 

The results of the stress measurements are shown in Figs. 12a through 12h. 
For the interlocking propellers the distance between the axes is 0.7°D. 

DISCUSSION OF THE RESULTS 

Interlocking Propellers 

It is seen from Fig. 5 that the interlocking propeller system with the pro- 

pellers turning outward is the most favorable one as regards total efficiency, 
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Fig. 7 - Propeller horsepowers from 
tests with outward-turning interlocking 
propellers 

while the inward-rotating propellers give almost the same result as the normal 
single-screw. None of the propellers were optimum propellers. For instance, 

at 16 knots the optimum number of revolutions for the single-screw and for the 
outward-turning interlocking propellers were 106 and 94 respectively, while the 
actual numbers of revolutions in the self-propulsion tests were 115 and 74. 

From Fig. 11 it is seen that the mean wake is higher when the propellers 

are turning outward than when they are turning inward, and that the mean wake 
for each interlocking propeller is decreased by the action of the other, espe- 

cially for the inward-rotating propellers. The differences in total efficiency 

are caused by the differences in wake, a higher wake giving a lower propeller 

efficiency, but a higher hull efficiency. 

A small shaft distance is not advantageous. As the propellers are moved 

inward the wake and thrust deduction increases, but the interaction of the pro- 
pellers will increase also and decrease the resulting wake. This additional 

inflow velocity is dependent on the propeller load, and as the resulting wake 
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PHP 
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Fig. 8 - Comparison between best results 
from tests with inward- and outward- 
turning interlocking propellers 

has a great influence on the total efficiency, the optimum distance between the 
propeller axes must be a function of the propeller load. A general optimum 
distance, therefore, cannot be given at present. For cases considered most 
important, shaft distance is clearly the best. 

The differences corresponding to inward- and outward-rotating interlocking 
propellers are due to the wake components in the propeller disk plane. It is 
possible to get an impression of this component if the normal force on a blade in 
a certain position is compared to the normal force on the blade in the same posi- 

tion, but with the propeller turning in the opposite direction. The difference 

between the normal forces is due to the differences between the tangential 
velocities as shown in the velocity diagram, Fig. 13. The tangential wake ve- 
locity, w,, is seen to change the resulting inflow velocity from v, to v,, when 

the direction of rotation is altered, and this largely influences the normal force. 
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PHP 
= — AUX. PROP SYSTEM TOTAL PHP, P Nos. 6507, 6109 / 

—_ MAIN PROP P No. 6507 M4 

»—-— AUX. PROP P No. 6109 
————— MAIN PROP ONLY (NORMAL SINGLE SCREW) iy 

/j 
wv 
i 

SHIP FULLY LOADED i 
30000 eS : 

Us 
‘7, 

Vy) 
é y 

d /| 

20000 

10000 
— 

om 

SERVICE 
SPEED 

ae 

0 KNOTS 

12 13 14 15 16 17 18 

Fig. 9 - Propeller horsepowers 
from tests with the auxiliary 
propeller system 

If the stress curve is looked upon as a curve of normal force, as mentioned 
earlier, and the curve for the normal right-hand single screw is copied upside 

down, the copy will give the normal force for a left-hand propeller. When the 

two curves are placed together as shown in Fig. 14, their mean value represents 

the normal force in the case of no tangential wake component, and the difference 
between the mean curve and one of the other curves gives the additional normal 
force caused by the tangential wake component. Figure 14 then indicates that 

wake components are present as shown in Fig, 15. 

The stresses measured in the cases where one of the interlocking propellers 

was removed, are compared in the same way in Fig. 16, which shows the curves 
representing mean normal force and additional normal force. The transverse 

wake components are indicated in Fig. 15. The normal force is at the same 
speed, but the number of revolutions is higher for an outward- than for inward- 
rotating propeller. When the model is self-propelled, this difference will result 

in a lower number of revolutions and a higher wake for the outward-rotating 
propeller, in accordance with what is well known from ordinary twin-screw ships. 
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Fig. 10 - Revolutions versus speed 
for the propellers 

The rest of the difference between the wake for inward- and outward- 
rotating interlocking propellers may be explained by the velocity diagrams for 

a blade in the overlapping position, rotating inward and outward, as given in 
Fig. 17. The figure shows that the induced velocity from one propeller is much 

higher for the inward-rotating propeller and therefore the wake for the other 
propeller is much reduced. 

This is in good accordance with the result of a comparison of the stress 
curves for a propeller rotating inward and outward when it is working alone and 
when the other propeller is also working. It can be seen from Fig. 18 that the 
influence from the other propeller is much greater for an inward-rotating than 
for an outward-rotating propeller. 

The results of the stress measurements on single-screw and on interlock- 
ing propellers are scaled to the same mean normal force in Fig. 19 to show the 

relative stress variations. The comparison is, however, not quite correct be- 
cause the wake-scale effect is not taken into account and because the distance 
between the shafts here is the smallest distance, and not the one which gave the 
best propulsion result. 
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Fig. 11 - Model torque wake coefficients 

The Auxiliary Propeller System 

In this case the auxiliary propeller system does not yield favorable results 

from the point of view of efficiency, but it must be remembered that the small 
propeller is too large and works at a poor value of the advance coefficient. The 

results from the stress measurements are nevertheless interesting. 

As mentioned earlier, it was possible to find on an oscilloscope the best 

number of revolutions for the small propeller. A good result was obtained 

within rather wide limits, but it was also seen that it was not possible to remove 
all of the high-stress peak for the upper position of the blade. A further in- 
crease in the number of revolutions for the small propeller only gave a decrease 
of the stress in front of the remaining stress peak as shown in Fig. 12d, It must 
therefore be expected that on account of the tangential wake component a position 

of the axis of the auxiliary propeller slightly outside the center line will be opti- 

mum. It must also be expected that an additional auxiliary propeller below the 

main propeller axis will almost completely smooth out the stress curve. 
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16 KN. 
MAIN PROP RIGHTH. 
AUX. PROP LEFTH. 

‘AUXILIARY PROPELLER SYSTEM 
16 KN. 
MAIN PROP RIGHTH. 
AUX. PROP RIGHTH. 

AUXILIARY PROPELLER SYSTEM | 
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Fig. 12 - Propeller blade stress recordings 
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Fig. 12 - Propeller blade stress recordings (Continued) 
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Nxtx Dx x 

Fig. 13 - Velocity diagram showing 

the influence of the tangential wake 
component 

PROPELLER TURNING RIGHTHANDED 
PROPELLER TURNING LEFTHANDED 
PROPELLER TURNING RIGHTH. OR LEFTH. AXIAL WAKE ONLY. 

6r or 27 0 TURNING 
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Fig. 14 - Normal force curves for right-hand 
and left-hand single screws 
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| 

Fig. 15 - Wake components in the 
propeller disk plane 
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PROPELLER TURNING OUTWARD 

4r ar 

PROP TURNING OUTWARD, ADDITIONAL NORMAL FORCE 
FROM TANGENTIAL WAKE COMPONENT. 

INWARD TURN. 

Fig. 16 - Normal force curves for only one 
interlocking propeller, inward- and outward- 
rotating 

nx t«D«x 

Fig. 17 - Velocity diagram for a propeller 
blade in the interlocking zone, inward- and 
outward-rotating 

CONCLUSION 

The results of the test series show that from a propulsion point of view 

both of the new arrangements may be used with advantage. 

In the case of interlocking propellers, a higher total efficiency is obtained 
than for the normal single-screw and twin-screw systems. However, the direc- 

tion of rotation of the propellers has a great influence on the results, and it is 
obvious that the wake components in the plane of the propeller disk must be 

taken into account, as they are a part of the mean wake. 

The auxiliary propeller arrangement has in this case shown a decrease 
and not an increase in the total efficiency in comparison with the normal single- 
screw arrangement. However, the tests with the system were primarily carried 
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Fig. 18 - Normal force curves for an in- 
terlocking propeller working alone and in 
combination with the other propeller 
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Fig. 19 - Comparison between normal 
force curves for the different propul- 
sion systems 

1540 



Unusual Two-Propeller Arrangements 

out to examine the possibility of reducing the high wake peak just behind the 

stern, and the results indicate that this may be done. If so, the developed 
blade area may be reduced, and a higher propeller efficiency for the main pro- 

peller will be obtained. This, together with a specially designed auxiliary pro- 
peller, should give a higher total efficiency. Yet the main reason for using this 

arrangement should still be the reduction of the risk of vibrations and cavitation 
on the main propeller. 

The stress measurements give no direct information on the reduced risk of 

cavitation. It must be expected that a smooth stress curve is an expression of a 

smooth wake field, for which it is easy to design a cavitation-free propeller, but 

only cavitation tunnel tests will give the final information. 

At zero speed, stress measurements were taken at full power and showed 

for both propulsion systems greater variations than normally found on single- 
screw ships. In the case of interlocking propellers, it is expected that these 

stresses will be reduced considerably for greater shaft distances. This problem 
will be studied carefully in coming experiments. For the auxiliary propeller 
system, it is obvious that the remedy will be to make arrangements permitting 
this type of propeller to be coupled in only when a certain forward speed has 

been obtained. 

NOMENCLATURE 

D Propeller diameter 

x Nondimensional radius 

W Wake 

W. Resultant wake 

W, Tangential wake component 

W., Axial wake component 

n Number of revolutions per second 

V. Ship speed 

V Inflow velocity 

Mie Velocity induced by the propeller itself 

Ved Velocity induced by the other interlocking propeller 

N Resultant force normal to the blade-root section 

EHP Effective horsepower 
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PHP Propeller horsepower 

Ce Additional resistance coefficient 
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APPENDIX A 

FURTHER TESTS WITH INTERLOCKING PROPELLERS 

A supplementary test with outward-rotating interlocking propellers with a | 

distance between the shafts of about 0.9*D was carried out after the comple- 

tion of the paper, and the results are given in Fig. Al (refer to Fig. 7). 

The results confirm that a distance between the shafts of about 0.8°D 

still gives the lowest propeller horsepower at the service speed. 

Supplementary stress measurements were also carried out for outward- 

rotating propellers with a distance between the shafts of about 0.8°D and 0.9-D. 
The results at service speed were nearly the same as earlier found for a dis- 
tance of 0.7°D. At zero speed, the stress variations proved to be smaller, and 

thus can be judged as of no importance. 

APPENDIX B 

OVERLAPPING PROPELLERS 

Test No. 18 with interlocking propellers, which gave the lowest propeller 

horsepower, was repeated with the propellers placed clear of each other, in 

longitudinal direction. The distance between the propeller shafts was about 
0.8°D and the longitudinal distance about 0.2°D. The shafts were still coupled 

together and the propellers therefore ran at the same number of revolutions. 

This modification of the arrangement did not give rise to any measurable 
difference in the total horsepower. The wake coefficient for the forward pro- 
peller was increased by 0.06, and for the aft propeller decreased by 0.04. The 
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Fig. Al - Propeller horsepowers from tests 
with outward-turning interlocking propellers 

two propeller loadings were therefore different. If this arrangement should 
be preferred to interlocking propellers, the two propellers should have different 

diameters and pitch. 

Stress measurements were carried out on both propellers running at the 

same number of revolutions as well as at different numbers of revolutions. The 
stresses were nearly the same as for interlocking propellers (Fig. 18). The in- 

fluence of the aft propeller on the stresses of the forward propelle was ex- 
tremely small, but the influence of the latter on the stresses of the former was, 

as could be expected, more pronounced. 

* * * 
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DISCUSSION 

DraP. C,. Pien 

Naval Ship Research and Development Center 
Washington, D. C. 

This paper by Professor Prohaska and Mr. Munk is very interesting. At 
the Naval Ship Research and Development Center we have been experimenting 

with the overlapping propeller stern arrangement for the last couple of years. 

The authors use the term "interlocking propellers."' Six models with such an 
arrangement have been tested for powering performances. In each case, a 
large saving in power requirements has been achieved as compared with a con- 

ventional twin-screw arrangement, At several other towing tanks, similar ex- 
periments have been conducted, All the available experimental results are 

quite comparable with those given in the paper. 

Despite the simplicity and the high hull efficiency of a single-screw stern 
arrangement, there are many cases where such an arrangement cannot be 

used. In most cases a conventional twin-screw arrangement has been chosen 

as an alternative. In the light of the results given in this paper, as well as 
other published and unpublished test results, it can be stated that the over- 
lapping propeller stern arrangement is a better alternative. Besides saving 

power, another advantage is the possibility of using with it either a single or a 
twin powerplant. If two powerplants are chosen, an overlapping propeller ar- 
rangement is simply a matter of installing the propellers in the proper loca- 

tions to a single-screw ship hull. Two shafts are inclined to have propellers 
overlapping each other. By choosing a different number of blades between the 

two propellers, each propeller is essentially independent of the other as far 
as the hull vibration problem is concerned. Since the power absorbed by each 
propeller is only one-half of the total, the risk of propeller cavitation and 

propeller-induced vibration would be greatly reduced. 

In view of this discussion and their own experience with the overlapping 
propeller stern arrangement, what reservations would the authors have in 

recommending such a stern arrangement to the shipping industry ? 

* * * 

DISCUSSION 

J. Strém-Tejsen 
Naval Ship Research and Development Center 

Washington, D. C. 

I would like to congratulate the authors on a most interesting paper, and in 

particular on their measurements of the fluctuating-blade bending forces, which 

to my knowledge are the first measurements of this kind carried out for the 
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overlapping-propeller arrangement. The tests indicate that there should be 
no reason to anticipate problems due to the close proximity of the two pro- 

pellers to each other. In comparison with a single-screw arrangement, 
vibration and cavitation problems should be greatly reduced, since the loading 

carried by each propeller in the overlapping arrangement would be only half 

of the load to be carried by the propeller in a single-screw arrangement, 

The authors have considered the application of the overlapping system to 
a large tanker, and the test results show that the system would be most attrac- 

tive due to the reduction in the horsepower requirement. Another typical ap- 
plication would be the fast cargo ship, where, in particular, vibration problems 

might become serious for a single-screw arrangement, Consequently, a contra- 

rotating system might be considered. In this case, however, the overlapping 
arrangement would seem to have an advantage over the contrarotating system, 

since there should be no particular mechanical problems in comparison with 
those to be faced in developing the shaft arrangement for the contrarotating 

system. 

In the analysis of the test results, the authors have introduced a correction 
of the wake coefficient due to scale effects. This correction makes a twin- 

screw arrangement more favorable, whereas the single-screw is penalized. 
As a result of this analysis technique, the optimum distance between the pro- 

peller shafts in the overlapping-propeller arrangement is somewhat larger 
than in the case where no scale-effect correction is applied. The correction, 
however, is very small, and it seems that the difference in the method of analy- 

sis would give only an insignificant difference in the optimum shaft distance. 
I should like to know if the authors share this view. 

* * * 

REPLY TO DISCUSSION 

C.W. Prohaska 

It has been a great pleasure for the authors to have the comments of Dr. 
Pien and Dr. Strgm-Tejsen, who originally drew attention to the subject 

treated in the present paper. 

Dr. Pien mentions that a further series of tests with overlapping propellers 

have been carried out at the Naval Ship Research and Development Center and 

that the results are quite comparable with those of this paper. The authors are 
glad to learn this, as the advantages of the new propeller arrangements regard- 

ing total efficiency are thus further confirmed. 

The authors agree with Dr. Pien that the interlocking or overlapping pro- 

pellers should be a superior alternative to the heavily loaded single-screw 

and to twin-screws. Until now, however, only a very full hullform has been 
tested at HyA, and our experience is therefore limited; but for this type of ship 

nothing has been found which could justify a rejection of the new systems. 
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Dr. Strdm-Tejsen points out that the new systems should also be an alterna- 

tive to the contrarotating propeller system. This is also the opinion of the 

authors, as the reduction of required horsepower for the rather simple over- 
lapping or interlocking propeller systems in relation to the other propulsion 

systems was of the same order as the reduction which might be expected for 
contrarotating propellers, where the technical difficulties are unpredictable. 

Finally, Dr. Strgm-Tejsen mentions the correction of the wake for scale 
effect. This correction is used to reproduce the conditions of the trial trip, 
and the test results in this paper are therefore only valid for this case. If no 

correction had been used, the wake and consequently the other results found by 
the tests would correspond to some undefined service condition for the ship a 

year or two out of dock. 

The wake correction is largest for the single-screw propulsion system. 

Part of the gain in total efficiency obtained by using overlapping or interlocking 
propellers instead of a single screw is therefore due to this correction. This 

part is, in the present case, about one-fourth of the total gain. 

The difference in the wake correction for the three different distances 
between the shafts of the interlocking propellers is small, and only of minor 
importance for the comparison. The optimum distance between the shafts, as 
mentioned in the paper, is determined by the propeller loading and the strength 

of the tangential wake component, rather than by the use of the wake correction. 
It is therefore difficult to give a general optimum distance between the shafts. 

* * * 
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PANEL DISCUSSION—WAVE RESISTANCE 

Nonlinear and Viscous Effects in Wave Resistance 

J. N. Newman, Panel Chairman 

Massachusetts Institute of Technology 

Cambridge, Massachusetis 02139 

INTRODUCTION 

In recent years there has been increasing evidence of the shortcomings in 
existing techniques for predicting the wave resistance of surface ships. Theory, 

as represented by the classical approach of Michell, and experiments carried 

out with the Froude hypothesis, have been known to be in poor agreement, espe- 
cially at low Froude numbers. But the main impact of recent investigations, and 
particularly the direct experimental measurements of viscous and wave drag, 

has been to suggest that the fault may rest with both the theoretical and experi- 
mental techniques. This premise has now led to a broad questioning of the 

classical assumptions that wave resistance could be considered entirely as an 

inviscid mechanism and theoretically analyzed using the linearized theory of 
water waves. Relaxing either assumption involves a compounding of the ana- 

lytical complexities, so that progress has been slow, and we must not expect 

any major breakthroughs to occur in the next few years, but sufficient advances 
have recently been made that it is timely to discuss and report on our progress 

at this time. 

The following brief summaries are categorized under the three headings 
Nonlinear Effects, Viscous Effects, and Miscellaneous. Acknowledgment is due 
to the participants in the panel discussion on wave resistance. Of necessity, 

their contributions have been severely abbreviated in this report. 

NONLINEAR EFFECTS 

The classical Michell theory assumes that the ship hull is geometrically 

thin, and the boundary conditions both on the hull and on the free surface are 
linearized with only the leading (first) order terms retained. For many years 

the relative importance of these two linearizations has been discussed, and 

some investigations were aimed at the more tractable extension of including 
nonlinear effects from the hull boundary condition. The work of Sizov (1961) has 

stimulated several investigations of the complete second-order solution. These 
have included the two-dimensional treatments of submerged cylinders by Tuck 

(1965) and Salvesen (1966), and in three dimensions the analysis of the sub- 
merged sphere by Kim (1968), the spheroid by Chey (1968), and the parabolic 
strut by Eng (1968). All of these references contain actual calculations, and 

in some cases experimental confirmation is included as well; the importance of 
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nonlinear free-surface effects is emphasized, especially at low Froude 
numbers. 

The second-order theory for thin surface ships was outlined by Wehausen 
(1963) and subsequently has been studied extensively by Eggers (1966), Yim 
(1968), and Wehausen (1968). In principle, the numerical calculations of wave 
resistance are tractable, but as yet these have not been completed. 

Salvesen (1968) and Newman (1968) have considered certain aspects of the 
third-order theory, from different viewpoints. Salvesen showed that third- 

order effects were negligible for the submerged two-dimensional cylinder, thus 
validating the second-order truncation. Newman showed that no resonant non- 
linear energy exchange mechanisms exist in the third-order solution of the 
three-dimensional free-wave distribution, as opposed to the opposite conclu- 

sion reached in the case of wind-generated wave spectra by Phillips and others. 

The above-mentioned work is all based upon the Eulerian description (with 
the notable exception of Wehausen (1968) who has formulated the thin-ship 
problem in Lagrangian coordinates) of the fluid motion and the asymptotic ex- 

pansion in terms of a suitable, small parameter such as the ship's beam or the 

wave elevation. The leading-order contribution to the asymptotic expansion is 

the classical linear solution associated with Kelvin's ship-wave pattern and 

Michell's wave-resistance integral. Second- and third-order contributions can 
be regarded as approximations to the nonlinear effects, although solutions ob- 

tained in this manner are, at each successive order of approximation, associ- 

ated with linear boundary value problems. An entirely different and inherently 
nonlinear approach to wave problems is that developed by Whitham and others, 

in which the wave system is assumed to be of large amplitude but slowly varying 

in amplitude and wave number, so that it is in essence a perturbation of the 

exact nonlinear solution for purely periodic unidirectional wave motion. (Vari- 

ous papers describing and using this method are contained in the Proceedings of 

the Royal Society of London, Series A, Vol. 299, No. 28, 1967.) This method has 
been applied to the study of ship waves by Howe (1967, 1968) with striking non- 
linearities along a "cusp" line where, in effect, a shock wave is formed. So far, 

however, this study has been restricted to a system of diverging waves only, 
since the assumption of slowly varying wave numbers does not permit the simul- 

taneous existence (and interaction) of diverging and transverse wave systems. 
The interrelationship between the Whitham technique and the Eulerian perturba- 
tion approach has been examined in a recent paper by Hoogstraaten (1968). 

Gadd (1968) has proposed a second-order correction for the hull boundary 

condition which is similar to the earlier technique of Guilloton. A computer 

program has been written which incorporates this correction and which is 

claimed to give realistic estimates of the wave resistance of fairly fine hull 
forms. (The free-surface nonlinearities were neglected after initial investiga- 

tions showed that they required excessive computer time.) 

VISCOUS EFFECTS 

One only need observe the flow in the wake behind a ship's stern to realize 

that viscous effects, and especially separation, affect the ship's waves and 
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wave resistance. The converse effect of the waves on the viscous flow is more 

difficult to observe but no less surprising. 

The earliest work in this area was Havelock's inclusion of the displacement 

thickness on the effective beam which led, from Michell's integral, to an estimate 
of the effects of viscosity on the wave resistance. Wu (1963) included the effects 

of the wave-field pressure gradient on the boundary layer for the case of a flat 

plate, and with wake effects ignored. Experimental investigations of this theory 

are in progress. Webster and his collaborators (1967) used a boundary-layer 
formulation, in conjunction with Guilloton's method, to compute the separation 

point on the hull as a function of Froude and Reynolds numbers. 

It seems likely that, for reasonably full ships where the disagreement be- 
tween theory and experiment is most severe, the effects of separation will domi- 

nate those of the relatively thin boundary layer upstream of the separation point. 
With this in mind Milgram (1968) has recently used Michell's integral, with em- 

pirical values of the wake geometry, to determine the wave resistance of a sim- 
ple hull form. Generally speaking, the computed values of the wave resistance 

are decreased by the presence of the wake, at those speeds where the wave re- 

sistance is a decreasing function of the Froude number, and unaffected by the 

wake at other Froude numbers. 

The effects of the wake can be idealized, from another viewpoint, by con- 
sidering the characteristics of wave propagation ina shear flow. This problem 
has been considered by van Wijngaarden (1968), as well as in the earlier papers 

by Brooke-Benjamin (1959) and Kolberg (1958). 

If the Reynolds number is sufficiently small and the body streamlined, so 
that laminar attached flow can be assumed, it is possible to attack the boundary- 
value problem for the solution of the Navier-Stokes equations, including the free- 

surface boundary condition. This has been done by Dugan (1968) for the re- 

stricted case of a submerged two-dimensional horizontal plate, moving at suffi- 

ciently low velocities that the Oseen linearization of the Navier-Stokes equations 

can be made. With the additional assumption that the plate is deeply submerged, 

the following equation is obtained for the drag coefficient: 

_ 4n/R + 6/R2F4d3 

D y-1 + 2n(R/16) 

Here, R and F are the Reynolds and Froude numbers based on the chord length 
of the plate, d is the ratio of the depth of submergence to the chord length, and y 
is Euler's constant. -This result is valid for large values of F and d, and is 

asymptotic to the non-free-surface results when F*4d3~%, 

The interaction of waves and viscous wakes has been considered by Lurye 
(1968), using the Oseen equations and the linear free-surface conditions. A par- 

ticular ''singularity'"’ solution is obtained, and more general flows can be gen- 
erated by superposition. The Oseen equations have also been used by Nikitin 
and Gruntfest (1966) to find the wave resistance of a moving pressure distribu- 

tion in a viscous fluid. (I am indebted to Professor Weinblum for calling atten- 

tion to this work, and also to the subject of propeller and rudder effects on wave 
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resistance.) The latter problem was also treated in two dimensions, but in- 

cluding surface tension, in the earlier work of Wu and Messick (1958). 

MISCELLANEOUS 

One of the most important experimental developments, which has brought us 

to our present state of inquiry, is the determination of wave resistance from 

analysis of wave records. Several different methods exist for performing this 
analysis, and none can be regarded as ''exact,'' but the results are fairly consist- 

ent and seem likely to be at least as reliable, for their stated purpose, as the 
Froude or Michell approaches are for theirs. However, the wave analysis tech- 
niques are still being examined critically, and Sabuncu (1968) has examined the 

effects of the local disturbance which are neglected in the usual free-wave analy- 

sis, and has also proposed the use of the wave-height measurements to deter- 
mine the "equivalent body shape" which is the source of the disturbance. This 

appears to be an interesting scheme for experimentally finding the effective hull 

shape, including the displacement effects of the boundary layer and the separated 

wake. (The same scheme has been employed by Hogben (1967, 1968), who has 

demonstrated its success in the case of a parabolic model.) 

Inui and Kajitani (1968 a,b) have investigated the bow wave system of a 
Wigley model and have compared the experimentally measured waves with cor- 
responding theoretical predictions. It is found that good agreement results for 

wave angles 20° <@ <60°, but that for smaller or larger angles the theoretical 
prediction of wave amplitude is substantially greater than that which is meas- 

ured, For wave angles greater than 60° (i.e., very short wavelengths), this dis- 

crepancy is attributed to nonlinear effects, associated with the high values of 

the wave steepness in this region. For the angles less than 20°, the discrepancy 

is attributed to sheltering effects of the hull. Correcting empirically for the 

sheltering effect improves the experimental agreement considerably and also 

appears to lead to a superior approach for the investigation of low-resistance 
hull forms. 

A recent experiment of fundamental significance has been performed by 
Sharma (1968), which might be conveniently described as a modern version of 

the Weinblum-Kendrick- Todd friction plank experiment. Sharma towed a wall- 
sided parabolic strut, of length 2.0 m, beam 0.1 m, and draft 0.3 m, at Froude 
numbers ranging from 0.2 to 1.0. Measurements were made of the free-wave 
spectrum using a longitudinal cut, and the wave resistance was computed from 
these data and also from Froude's method using the Prandtl-Schlichting fric- 
tional drag estimate and a constant form factor C,/C,; = 1.15. The results of 
both experimental methods show quite good agreement with each other and with 
Michell's integral over the entire Froude-number range. Some significant dis- 
crepancy was found in the phase of the free waves at low Froude numbers, 

which Sharma attributes to nonlinear wave effects. (The satisfactory agreement 

achieved for this model, and for the parabolic hull discussed by Shearer and 

Cross (1965), is the principal evidence to suspect the importance of separation 

and nonlinear effects.) 

Since attention has been focused on the low-Froude-number regime by the 

practical speeds of merchant ships and by the lack of satisfactory theories and 
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experimental predictions in this domain, it seems natural to seek a theory for 
the slow ship in the sense of a systematic perturbation expansion. This idea is 
not new, but attempts to exploit it have been abandoned in early stages when 

difficulties were encountered. In recent work Ogilvie (1968) has sought a fresh 

approach, in which the slow motion of a submerged body is treated as a per- 

turbation about the exact zero-Froude-number, or rigid-free-surface, flow field. 
This approach seems more likely to succeed, although the subsequent extension 

to surface vessels is not trivial. 
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An Evaluation of the Wave Flow Around 

Ship Forms with Application 

to Second-Order Wave Resistance Calculations 

K, Eggers 
Institut fur Schiffbau der Universitat Hamburg 

Hamburg, Germany 

ABSTRACT 

For a class of shiplike bodies, a procedure is established for the cal- 
culation of first-order flow components including the local wave field. 
A second-order correction flow field then is defined, using an iteration 
procedure based on Green's formula. However, under introduction of 
an "inverse flow principle," the first- and second-order wave resist- 
ance can then be calculated directly from first-order flow components. 

Numerical results show that the corrections to first-order wave re- 
sistance, both from free-surface singularities and from improvement 
of the body-boundary condition, are negative for Froude numbers £ 0.31, 
as was to be expected from experimental information. For higher 
Froude numbers, the correction due to free-surface effects becomes 

positive. However, mainly due to increasing influence of corrections 
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due to flow at the ship's bottom, the ship-surface corrections remain 
negative and large. This is in contrast to experimental evidence as 
well asto results from a slender-body-theory approach. Tentative cal- 
culations support the conclusion that at high Froude numbers the first- 
order approximation should be constructed according to slender-body 
theory (this would even imply a reduction of the computational effort) 
with less flow intensity at the ship's bottom area, and then improved by 
the iteration method developed. 

It is found that the procedure developed is not affected by singular be- 
havior of the first-order flow at the bow, stern, and keel, resulting from 
that part of the flow which would persist at zero Froude number, if ap- 
propriate methods of quadrature are selected and if the flow is evalu- 
ated on the hull rather than on the centerplane. This is considered to 
be even more pertinent for analytical reasons. 

The second-order corrections found explain a significant part of the 
discrepancies between experimental wave resistance and predicted val- 
ues from first-order theories. The rest must be attributed either to 
viscous wave interactions or to resistance components of still higher 
order. At least in the range of Froude numbers larger than 0.2, where 
the present investigations were performed (mostly for reasons of econ- 
omy), it is felt that the computational effort is moderate, once a com- 

puter program has been established, and attempts to apply the method 
to more conventional forms should be encouraged. 

* * * 

Wave-Resistance Calculations for Practical Ships 

G. E. Gadd 
Ship Division, National Physical Laboratory 

Feltham, England 

A computer program has been written which appears to give fairly realistic 

estimates of the wave-making of practical ship hulls which are not too bluff. 
Kelvin sources are distributed over the vertical plane of symmetry of the hull, 

which is divided into a grid of rectangular panels, the hull shape being defined 
by the lateral offsets corresponding to the grid intersection points. The source 

density is assumed uniform over each of the panels in the computation of the 
downstream waves, but for computing local effects near the hull the cruder ap- 
proximation is made of replacing each source panel by a concentrated source of 

equal flux output at its center. 

Source strengths are calculated using second-order corrections as de- 
scribed by the author (J. Inst. Maths. Applics. Vol. 4, p. 43, 1968). The free- 
surface pressure distribution, which should be imposed (K. W. H. Eggers, Pro- 

ceedings of the Sixth Symposium on Naval Hydrodynamics, p. 649) to compensate 
for linearization errors in the free-surface boundary condition, is neglected. 

This pressure distribution was computed for the simple case of a single sub- 

merged point source, but so much computer time was involved that it was judged 
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impracticable to incorporate such corrections in routine wave-resistance 

calculations. 

Calculations of the wave pattern generated by practical ship hulls reveal 
several discrepancies between theory and experiment. In the bow-wave region, 
the main discrepancy is that the observed waves lie outboard of the predicted 

ones. It is not thought likely that inclusion of the free-surface pressure cor- 

rection, if it were thought practicable, would remedy this defect, which prob- 
ably springs from a nonlinear effect on the propagation speeds of the waves that 

increased their rate of lateral spreading. However, crudely speaking, the effect 
is as if the model were upstream of its true position, and therefore, as far as 

the computation of the wave resistance from downstream wave pattern goes, it 

may not be very important to remedy this defect of the theory. More significant 

is the fact that the stern-wave system is greatly overestimated in amplitude by 

the theory. This seems likely to be mainly a frictional effect. Theory predicts 

that a large wave crest exists just behind the stern, similar to the bow crest on 
the hull. Whereas the fluid entering the bow crest has been very little influenced 
by viscosity, however, the fluid just behind the stern has traveled through the 
hull boundary layer, and it is doubtful whether it could negotiate the steep slope 
of the forward face of a wave crest there such as theory predicts. It is not sur- 

prising, therefore, that in practice the stern-crest amplitude is often greatly 

attenuated. This could lead to the radiated stern waves being much smaller in 

practice than in theory. 

Such effects would obviously be very difficult to treat theoretically. A 
seemingly useful empirical approach is as follows: The total downstream wave 

pattern is written as = (, + ¢,, where (, represents a system centered on the 

bow and ¢, a stern-centered system. Numerical estimates of ¢ are obtained 
from the theory incorporating second-order hull source corrections; ¢ is decom- 

posed into ‘3 and ¢s in such a way that the amplitude functions of ¢, and ¢, are 
as smooth as possible, to give the most ''natural'' subdivision into bow and stern 
waves. The stern-centered system ¢, is then multiplied by the empirical reduc- 
ing factor k and recombined with (p, to give the total wave pattern, and hence the 

wave resistance. For a typical 0.60-block-coefficient ship, an appropriate value 

of k is 0.5, and fairly realistic estimates of downstream wave pattern and wave 

resistance are then obtained. 

Derivation of Source Arrays from Measured Wave Patterns 

N. Hogben 
Ship Division, National Physical Laboratory 

Feltham, England 

INTRODUCTION 

In Refs. [1] and [2], a method for deducing theoretical source arrays from 
measured waves by solving linear simultaneous equations, is described. 
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Experience in analyzing experimental results has revealed some difficulties, and 

Ref. [3] describes a new method of solution which overcomes these. This new 
method uses Fourier analysis to solve the equations and is particularly effective 

in absorbing measured results covering a wide range of speeds. A practical ex- 
ample of a successful application to experiments by Everest on a fine model 

(Ref. [4]), is discussed in Ref. [3]. 

SKETCH OF NEW METHOD 

The simultaneous equations relating source strength M, and positions 
(x,; 0,z,) with measured free-wave amplitude (according to linear theory for 

deep water) are 

coal M, -Z a 2 /_K b k? 
‘ —eiron cos(ay%e) HiT b2 sis) ASe 

(1) 

where 

Vv is the speed of travel of the array, 

Xr are longitudinal coordinates, 

Zr, are vertical coordinates, 

a Tick; seers x; 

k = ee 

0, = Angle of propagation of nth wave component, 

b = Tank width, 

A,, B, are measured wave amplitudes. 

Let (1) be rewritten as 

De a + wee cos | (— oif 2 aad Ba es —_—— ‘OL —= a --__ 

: Vv Vv (aa 0() 167 : a? Ane : 

(2) 
pe M,. 4 M., : Wr ; bs b {2 ze a2/k 

: x Tear) (bsin (=) a B¢a) t= Ta 2 or, Bee , 
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where 

ae is a mean depth, 

fy(a2), f(a) are functions which are invariant with speed if the linear theory 
is valid, 

Aa is a range of a defined by 

USS ee 

*r ha ay oe (3) 

From (2) it may be shown that 
+ Aa 

M. rT 
: = ae {fon cos =) “| tt (a) sin (=) -]| dam 

M +Aa (4) 
= 1 1 : = ae J {00 cos (=) 2] +, £ Ca) san (=) :]| da , 

with 
f(a) = f5(-a)°3 

and 4 ala 
gh %), = st.(-a)- (5) 

Figure 1 shows the results of applying this method to wave measurements 
by Everest (Ref. [4|) behind a model defined by 
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| O LINEAR THEORY 

sf O EXPERIMENT 

/ 
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Fig. 1 - Source distribution 
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length L = 25 feet, 

breadth B = 1.25 feet, 

draft... d.= 1.5625 feet, 

and an equation of form 

2 2 
yi 

ay ie 7 [= (2)). =p d 5 

Measurements over the range of Froude number 0.3-0.55 were analyzed. 
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Interaction of Free-Surface Waves with Viscous Wakes 

Jerome R, Lurye 
Control Data Corporation, TRG Division 

Melville, New York 

ABSTRACT 

A method of investigating the interaction of free-surface waves with 
viscous wakes is described. The method consists in constructing a 
viscous-wake solution to the Oseen equations that satisfies the three 
linearized free-surface conditions appropriate to a viscous fluid. The 
solution is characterized by a singularity which simulates approxi- 
mately the effect of a body. More general flows of the same type can 
be formed by superposition. The solution obtained is believed to be the 
first one to represent explicitly a viscous wake in the presence ofa 
free surface. 
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Recent Developments on Bulbous Bows at Hydronautics, Inc. 

M. Martin 
Hydronautics, Inc. 
Laurel, Maryland 

It has been well known that a bulb at the bow reduces the bow wave height, 
and thus the wave resistance is decreased. (Inui, 1962; Yim, 1963). A simple 
analytical representation of a bulb is the flow due to a point doublet located at 
the stem of a ship bow. For a given polynomial representation of a Michell's 

ship source distribution, the optimum strength of the doublet or the approxi- 
mate size of bulb at a given position located on the stem was given for low 

Froude numbers Fr < 0.3 by Yim (1965). 

An approximate simple image system for a bulbous ship was also given 

(Yim, 1966c), and plotting streamlines of a bulbous ship can easily be done. 
However, when we plot the streamlines of a ship with a point-doublet bulb, the 
bulb is seen to have a narrow neck and is therefore susceptible to separation. 

Therefore, it has been customary to fair the waterlines so that separation can 

be avoided even though the fairing was not very scientific. 

Yim (1964) has found an optimum source type of bulb for appropriate water- 

lines. These do not have any neck to induce flow separation. This type of bulb 

has been investigated by Maruo (1964) both theoretically and experimentally with 

good results. Pien (1964) also made use of the source type of bulb whenever his 

optimum ship waterline had negative-cosine bow waves. However, the source- 
type bulb needs the consideration of sinks in order to close the body and the ship 

shape which needs a purely source-type bulb is not too practical. Thus, this 
idea is useful only when we consider a total ship with proper attention to both 

the bow, the stern, and the shoulder. 

At Hydronautics, Inc., a simple cylindrical bulb with a spherical head hori- 
zontally oriented at the bow was designed for a given ship and tested at the Naval 
Ship Research and Development Center (formerly David Taylor Model Basin) 

(Yim et al., 1966). Although the ship waterlines had been analyzed and it was 

found to need a strong source-type bulb in addition to a doublet-type bulb, a 
further important reason for taking the bulb to be a cylinder was its easy 

fabrication. 

In this report, an optimum ship form for a given cylindrical bulb horizon- 

tally oriented at a ship bow is analyzed. A basic mathematical form for the ship 

is assumed based on the concept of a double model ship (Inui, 1957) and Michell's 

ship. Considering a point-doublet bulb and the optimum ship form from the 
theory already developed (Yim, 1965), many such bulbous ships were superposed, 
so that the bulb would fill in the given cylinder. A typical model was selected 

and tested in the Netherlands Ship Model Basin with good results. 
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THEORETICAL CONSIDERATIONS 

The mechanism of bulbs at a ship bow has been studied quite extensively 
(Wigley, 1936; Inui, 1962; Yim, 1963). The wave resistance is known to be due 
to the regular waves which carry out energy far away. The regular waves con- 

sist of bow waves, stern waves, and possibly shoulder waves, all of which can 
be considered to originate from the discontinuities of a function representing 
the hull shape of a ship. These waves are a composition of sine waves and co- 

sine waves propagating in all directions from the originating point and are called 

elementary waves (Havelock, 1934). In particular the bow waves of a sine ship; 
i.e., one represented by the source distribution 

3 2n 
BE (KT) 

m(X,;) = ag COS(7X,) = ag i rairay 

n=0 

in 

0 Stix, Kid yo=s0.o and! .0n.<oz°< Ul 

consists only of positive sine waves originating from the bow. The regular waves 

due to a point doublet below the free surface are known to be negative sine waves. 
Since the point doublet can be represented by an approximately spherical bulb, 

such bulbs, properly selected, can cause cancellations of the bow waves. Yim 
(1964) determined, for various Froude numbers, the optimum radii ry, of point- 
doublet bulbs located at various depths at the stem of sine ships. For low Froude 

numbers, it was shown that the same results applied to any general ship (Yim, 
1965). This theory was applied to a practical bulb design with reasonable suc- 
cess (Yim et al., 1966). However, in practice, such bulbs must be made roughly 

cylindrical in order to avoid separation due to necking down of the bulb. This 

can be expected to reduce the bulb effectiveness. 

In connection with problem, Yim (1967) has proposed a simple method for 

constructing an approximate source distribution and corresponding doublet dis- 

tributions for an optimum ship with a cylindrical bulb. He assumes that for the 

ship with a cylindrical bulb, represented by the source distribution for the ship 
and the doublet distribution for the bulb, the volume of ship is the linear super- 
position of the volume of the ship without the bulb and that of isolated bulbs 
which would be produced by the doublet in an infinite medium. He considers a 
cross section of the ship with a cylindrical bulb whose center is located at 
y = O, z = -Hin Fig. 2. Using the notation in Fig. 2 the area inside the circle 
of the given radius r and outside the cross section of the ship model is 

2 

A =r? - (= + 176 + yr cose 3 

where 6 is inradians. In Fig. 2 the Michell ship assumption (Michell, 1898) has 
been made insofar as the waterlines are taken to be given by dy/dx = 27m(x,) . 
Actual stream surface calculations (Yim, 1966c) show that the Michell assump- 
tion does not give the correct ship sectional shape. However, since the influence 

of draft is small at the low Froude numbers considered here, the simple 
attachment of a semicircular section to the bottom as shown in Fig. 2 has 
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been assumed to provide a sufficiently 

realistic shape for the present purpose. 

If we use an approximate relation 

y = ax 

for a short interval of x, we can find the 

volume inside the cylindrical column and 
outside the original ship hull between x = a 26 r 
and x = b by an integration of A(x) 

b a 

lees A(x) dx y 

Fig. 2 - Cross section 
of a ship with cylindri- 
cal bulb b 

+ ¢ Var a))| ; 

By. 

where a, and b, are values corresponding to a and b due to the approximation 

y = ax, or a, = y(a)/a and b, = y(b)/a. Since the volume of a sphere with the 

radius r, is 4rr,*>/3, using the radius-strength relation of doublet bulb we can 

add a proper doublet to fill in V, at a proper position, say, z= -H, y= 0, x=d. 
Then this would produce another negative sine wave which can be reduced by 

adding a sine ship which has the bow stem at the position of the doublet. Thus, 

for this sine ship the original Froude number F will be increased to 

if the stern position is kept the same for each elementary ship. Thus, 1, and F 

are known. Therefore one can obtain the optimum a, from the optimum rela- 
tion mentioned before for r,, F, and a). 

For a given radius of cylindrical bulb r, we took 

4 
Ce a d¢n); —n. = 05 15-2.,.35 ss, N 

a= (2+45) P= a(n) Daa {2 +4 corny} =) EGonID) 5 

me Of 2a eae Nee 

where Nis such that Vv, is always positive. Thus, N + 1 is equal to the number 
of point doublets distributed. Although the idea behind the choice of d, a, and b 
is that a cylindrical column whose radius is r and whose volume is the same as 
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that of a sphere of radius r has a column length equal to 4r/3, any other finer 

choice of intervals is suitable. We note that, for 

ACD), + <x — a(nat:d)-5 

y(x) = 2 ». a,(n) sin{m[x-d(n)]} , 
n=0 

dy B 
a(x) = ie on Dt a,(n) cos{7[x-d(n)] } 

dx 
=0 

By the above procedure many waterlines for many different Froude numbers 
F = V/VgeL , length-draft ratios L/H, and radii of cylinder r/H were obtained. A 

few of these are shown in Figs. 3 and 4 for L/H = 32. 

O15 

| FR=0.225, r= 0.506 
2 FR=0.250, r= 0.504 

O10 L 3 FR=0.275, rp= 0.503 
4 FR=0.300, rp= 0.502 

0.05 

(0) 
ce) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 045 0.50 

x/L 

Fig. 3 - Waterlines for cylindrical bulbs -L/H = 32 

0.15 

FR = 0.250, rp = 0.609 
FR=0.275, rp = 0.606 

010 FR =0.300, rp= 0.604 

ay FR=0.325, rp = 0.603 
SS FR=0.350, rp= 0.602 

i 

(@) 0.05 0.10 O15 0.20 0.25 0.30 0.35 040 0.45 0.50 

xZE 

Fig. 4 - Waterlines for cylindrical bulbs -L/H = 32 

MODEL TESTS 

To determine the effectiveness of the above procedure, Hydronautics, Inc. 

had model resistance tests made for the case of L/H = 32, r/H = 0.604, F=- 0.3. 
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The calculated waterline is shown in Figs. 5 and 6. The model was built in the 

Netherlands Ship Model Basin, with its body plane shown in Fig. 7. The results 

are shown in Figs. 8 and 9 in scales of CGS and feet-pound, respectively. The 
plottings of EHP (test)/EHP (Taylor) for the ship model with and without bulb 
are shown in Fig. 10. At the design point of F = 0.3, it is seen that a reduction 

in EHP of almost 20% was realized. 

O15 

B/L = O.15I5 B/H,, = 3.013 Hm = MAXIMUM DRAFT 

Hm/L = 0.0500 r/Hp = 0.604 Hp = DEPTH OF THE CENTER OF BULB 

0.10 r/L = 0.0188 

rv Hp/L = 0.0312 
ns 
> 

0.05 

10) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

KALE 

Fig. 5 - Waterline of a ship with a cylindrical bulb (tested) 

O'S 

B/L = 0.1510 

H,,/L = 0.0499 
010 r/L = 0.0187 

Hp/L = 0.0312 
— 
SS 
> 

0.05 

10) 
0.50 0:55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 

K/L 

Fig. 6 - Waterline of a ship with a cylindrical bulb (tested) 

CONCLUSIONS 

The encouraging results of the model tests seems to support the theoretical 

approach proposed here for reducing ship wave resistance. This approach 
would be applicable not only to the determination of a good bulbous ship but also 

to the design of a bulb to an existing ship. If one can find a superposition of 
elementary sine ships for an existing ship, the optimum bulb for the given ship 

could be built up of the superposition of optimum bulbs for each elementary 

ship. 

For the stern of a ship a separate treatment will be necessary. However, if 

the modification of the stern improves the efficiency of the ship without the bulb, 

1565 



Wave Resistance 

uetd 
Apog 

- 
2 

‘314 

3NI1 
S3SVE 

~ 

O01 SLVNIGYO 

O 3LVNIGHO 

| | / O10 
7 vf 

S0
10

 
a
 

oi
e)

 

w9
0¢

'O
 

= 3N
I7
 

3S
va
@ 

3A
O8

V 
G
W
 

Ls
vu
a 

Ol 

3NITSSVE 3AQSV LHONVAG 

ANIM YaiNao 

WW E'QO0E 

w226'0 = Gad INOW HLGV3ANA 

wWZ7l9 

=O1-O 

3LVNIGHYO 

N33M1L38 

HLON]A1 

Oo 
S
N
O
I
S
N
3
W
I
G
 

W
W
d
l
O
N
I
d
d
 

Soo 

AQ
GO
@ 

Y
3
L
s
V
 

A
g
o
g
 

3
Y
O
4
 

@1
Ng
 

HL
IM
 

13
0d
0W
 

—
—
—
 

|
 

gn
a 

LN
OH
LI
M 

73
G0
W 

. 
Nv

1d
 

Ag
og
 

S6
0 

|
 

1 1 

1566 



MODEL RESISTANCE - KILOGRAMS 
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© MODEL WITHOUT BULB 
@ MODEL WITH BULB 

2 
1.6 18 2.0 2.2 2.4 26 2.8 3.0 

HORSEPOWER 

MODEL SPEED - METERS/SECONDS 

Fig. 8-Results of resistance tests 
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28000 BULB 

24000 
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Fig. 9 - Curves of effective 
horsepower for a ship model 
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1.30 

= 1.20 
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ls 
Qa 
ae 

W990 
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0.80 

0.70 
14 16 18 20 (ae 24 26 28 30 
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Fig. 10 - EHP (test)/EHP (Taylor) for 
ship models with and without bulbs 

it will be safe in general to expect almost the same amount of improvement due 

to the stern in the ship with a bulb. 

For ships of higher Froude numbers (f > 0.35) the method of analysis in this 
report may not be used. It would be rather more appropriate to use a modified 

slender-ship theory (Yim, 1967 or Maruo, 1962). 

NOTATION 

H is the ship draft in the Michell ship sense, 

1: is the ship length, 

m is the source strength per unit area, 

x is the longitudinal distance aft from the bow nondimensionalized by 

dividing by L, 

Z4 is the vertical coordinate from the mean free surface nondimen- 
sionalized by dividing by H, 

x,y,z is arectangular coordinate system with origin on the mean free 
surface, x in the direction of uniform flow at infinity and z positive 

upward. 
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United Aircraft Corp., Windsor Locks, Connecticut). 

15. Design of Supercavitating Propellers on the Basis of Lifting- 

Surface Theory, T. S. Luu (Centre du Calcul Analogique, Chatillon 
sous Bagneux) and P, Sulmont (Ecole Nationale Supérieure de 

Mecanique, Nantes). 

16. A Propeller Design Method, A. Melodia (Cantieri Navali del Tir- 

reno e Rinuiti, Genoa). 

17. A Method to Determine the Efficiencies of Propellers, E. A. 
Schatte (Supramar, Lucerne). 

18. Discussions on Cavitation Erosion Resistance of Propeller and 

Hydrofoil Structural Materials, J. Z. Lichtman (U.S. Naval Applied 
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In these proceedings only the introduction by Professor Van Manen has been 
printed. For the contributions to the Panel Discussion, see "International Ship- 

building Progress,'' March and April 1969. 

Introduction 

J. D. van Manen, Chairman 
Netherlands Ship Model Basin 

Wageningen, Netherlands 

A propeller design can be divided into two parts: 

1, the selection of propeller type; 

2. the determination of the main dimensions, such as diameter, rpm, and 

number of blades. 

In solving these two questions special attention should be paid to the follow- 

ing requirements: 

1. high efficiency or minimum required shaft horsepower; 

2. minimum danger of cavitation erosion; 

3. minimum propeller-excited vibratory forces; 

4. good stopping abilities; 
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5. good behaviour in a seaway; 

6. favorable interaction with the rudder, to improve maneuverability. 

In the selection of a propeller type all these hydrodynamic aspects of a 

ship propeller play an important role. Besides the dependability, minimum 
vulnerability and low initial and maintenance costs has to be taken into 
consideration. 

The conventional ship screw with fixed blades designed for noncavitating 

condition has been for a period longer than 100 years the most applied type 
of ship propeller. 

The ducted propeller (screw and nozzle or pumpjet) has shown its ad- 

vantages for ship types where the propeller load is high or the cavitation 
danger is serious. Tugs, trawlers, and minesweepers are frequently outfitted 
with a ducted propeller. Coastal vessels and frigates are other ship types 

where the ducted propeller shows its favorable characteristics. Results of 
model tests show that application of ducted propellers to large tankers will be 

realized in the very-near future. The demand for a cigar-shaped afterbody, 
if a nozzle were applied to a tanker, is eliminated by the recent introduction 

of nozzle shapes adapted to both wake distribution and flow direction at the 
stern. At this moment it can be stated that sufficient theoretical and system- 

atic experimental data are at hand for any design of a ducted propeller. 

Contrarotating propellers form a type of propulsion that might be a seri- 

ous competitor of the conventional ship screw on large container ships with 

such high speeds that the required power cannot be developed by one screw. 

Gradually, more design information becomes available for this propeller type. 
The selection of the blade number of fore and aft screws is of particular im- 

portance for the control of the propeller-induced vibratory forces and also fcv 

the transmission solution between propulsion plant and propeller. 

The number of controllable-pitch propeller applications has increased 
very rapidly during the last years. Improvement of the dependability and mini- 
mum vulnerability and a reduction of the initial and maintenance costs are not 

the only reasons for this growth in controllable-pitch propeller applications. 

The solution of mechanical and technological difficulties and the development 
of suitable control systems have pushed the controllable-pitch propeller for- 
ward to application to frigates and even now to tankers. Shaft horsepowers up 

to 30,000 have successfully been absorbed by controllable-pitch propellers. 
The supreme qualities of controllable-pitch propellers with respect to stopping 

(for tankers) and accelerating (for frigates) promise a continuing growth in the 
application of this propeller type. The reduction and control of the blade spindle 

torque by advanced techniques such as ventilation or jet flaps might be a promis- 

ing field for investigation. 

The paddle wheel, before 1850 the most-applied ship propeller, is still one 
of these special-purpose propellers, which deserves our special attention for 
transport in very shallow waterways. In that case, it happens that the screw di- 

ameters which can be realized are seriously restricted, and the efficiency of 
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the paddle wheel is clearly superior. During the last 15 years, sufficient de- 

sign information has been published on this particular type of propeller. 

The vertical-axis propeller is a propeller type with outstanding maneuver- 

ing capabilities. Ferries, tugs, and supply vessels are examples of ship types 
where successful application of the vertical-axis propeller has frequently been 
realized. In solving problems of dynamic positioning of any vehicle at sea, the 
vertical-axis propeller has its own advantages. At very high speeds, in which 

case the blade motions will resemble the motion of a fish, some promises for 
the future may be hidden in further developments of the vertical-axis propeller. 

The range where the conventional ship screw has never realized itself as 
a sufficient means of propulsion is that of very-high ship speeds. High-speed 

vehicles, such as hydrofoil boats, hovering crafts, and hydroskimmers (c.a.b. 
vehicles), are means of transportation where selection of the propeller type 

has a dominating effect on the whole design configuration. 

Fully or supercavitating propellers with fixed or adjustable blades have 

shown successful operation at speeds up to about 50 knots, despite the problems 
of inclined shafts and partial immersion. Design methods for fully cavitating 
propellers are approaching a quality where the design requirements may al- 

ready be satisfied by a first propeller design. Ventilation techniques have im- 

proved the off-design characteristics of this propeller type considerably. 
Strength problems have been attacked successfully by proper material selec- 
tion and original ideas about the geometry of the blade profiles. 

Pulse-jet propulsion and air propulsion are examples that underline our 
insufficient knowledge to solve the problems of high-speed propulsion in a 

satisfactory way. In this respect it is worthwhile to mention the development 

of two-phase hydrojets (water-ramjets) in the U.S.A., the Netherlands, and 
Italy. This type of high-speed propeller may become the most valuable con- 
tribution of all our extensive research activities in the field of high-speed 

propulsion. 

A final remark on the selection of the propeller type may be on a way of 
representation of the propulsive efficiency which is suitable for comparison 
purposes. It may occur that for a certain propeller type the usual advance co- 
efficient J, the ratio between advance and rotational speed of the propeller can- 
not be determined, for instance, due to the fact that there is no rotational speed. 

In that case it is recommended to plot against the Froude number based on dis- 
placement, the ratio between the required power and the product of displace- 

ment and ship speed: 

SHP VC 
versus 

Ax V K y vA 

In fact, this last ratio is the resistance per ton displacement divided by 

the total propulsive coefficient and is, as such, qualitative for the propulsion 

abilities of any ship or vehicle. 
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In the second part of my introduction to the panel discussion, I should like 
to emphasize some points with respect to the requirements already mentioned, 

tee, 

1. selection of optimum diameter and rpm from the viewpoint of efficiency; 

2. cavitation criteria, based on systematic experimental data; 

3. the effect of cavitation on propeller-excited vibratory forces; 

4. data for analyzing stopping maneuvers; 

5. variations of propeller load in a seaway; 

6. the effect of rpm variations on the interaction between rudder and 

propeller. 

In Fig. 1 the effect of rpm on the efficiency has been illustrated by the re- 

sult of a number of calculations for a 16-knot tanker with a 30,000-hp propul- 

sion machinery. The calculations have been carried out both for conventional 

four- and seven-bladed screw propellers and for ducted propellers. Some con- 

clusions can be drawn from this figure: 

4 BLADES .WITHOUT NOZZLE 

2 ———- 7BLADES. WITHOUT NOZZLE 

—-—— 4BLADES WITH NOZZLE 
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Fig. 1 - Effect of rpm on screw diameter 
and efficiency of a single-screw tanker 
having an engine power of 30,000 DHP 
and a speed of 16 knots 
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1. The seven-bladed screws are worse from an efficiency point of view 

than the four-bladed screws. Even at equal diameter and a corresponding dif- 
ference in rpm this is the case, 

2. The ducted propeller is better from an efficiency point of view than the 

four-bladed screw propeller, although at decreasing rpm this improvement in 

efficiency decreases and even disappears because of the smaller propeller load 

due to the larger screw diameter. 

3. However, the most interesting point is a further decrease in rpm from 

that which is now usual. If the rpm be decreased from 80 to 50, then the screw 
diameter will increase in this case from 9 m to 12 m. The manufacturers of 

large screw propellers consider a screw propeller with a diameter of 12 m 

within their technological capabilities. 

The improvement in efficiency, consequently, reduction in required SHP, 
amounts to more than 20 per cent. Such savings in SHP force us to consider 

the consequences for reduction gears and propeller shafts at these extremely 

low rpm values in order to approach an economical optimum. Attention should 

also be paid to diesel engines with relatively high rpm combined with reduction 
gears. In addition to these conclusions it is interesting to note that at the 

N.S.M.B. recently developed asymmetric nozzles have delivered an average 
reduction of SHP from 3 to 5% with respect to the results of conventional noz- 
zles as indicated in Fig. 1. These asymmetric nozzles have been adapted both 
to the wake distribution and the flow direction at the stern. This asymmetric 

nozzle has the advantage that the conventional shape of afterbody can be main- 
tained. The extra initial costs of such an asymmetric nozzle are more than 

compensated for by the reduction in required SHP. 

Preliminary studies on the reduction of the resistance increase of large 

tankers as a consequence of course keeping indicate that an improvement may 

be expected by an enlargement of the nonrotatable rudder surface (deadwood). 
This can even be done by a reduction of the rotatable rudder surface. Another 
solution to this problem might be the application of nozzles outfitted with 
maneuvering devices. 

In Fig. 2, results of identical calculations, as shown in Fig. 1, are indi- 
cated. In this case the ship is a fast cargo liner with a speed of about 25 knots 
and a propulsion plant of 30,000 hp. The calculations have been carried out for 
four- and seven-bladed screw propellers and for contrarotating propellers. In 
most cases it is usual that the propeller specialist has to design a ship propeller 

for a required speed, a given rpm and SHP; the propulsion machinery has al- 
ready been selected and the propeller has yet to be designed. For these design 
conditions we see from Fig. 2 that contrarotating propellers deliver a 4- 5% 
higher efficiency than the comparable four-bladed screw propellers. By a more 
favorable interaction between ship and propeller this increase in efficiency can 
be enlarged by about 3% with respect to required SHP. It may be that the en- 

gine power becomes so large that application of the conventional ship screw is 

only reliable as a twin-screw arrangement. This leads to an increase of re- 
quired SHP of about 8%. So in the future contrarotating propellers may lead to 
reductions in SHP of 15 - 16% compared to the twin-screw arrangement of 
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Fig. 2 - Effect of rpm on screw diameter 
and efficiency of a single screw cargo liner 
having an engine power of 30,000 DHP and 
a speed of 25 knots 

conventional propellers. These percentages make it desirable to calculate the 
comparative costs for the two types of propulsion system. So far our remarks 
concern contrarotating propellers at equal rpm (identical propulsion plant). 

Our design considerations will lead to quite different conclusions if we 
start our propeller design for these fast cargo liners from an equal maximum 
allowable propeller diameter for the propeller types in question. At a diam- 

eter of 6.30 m the rpm of the conventional four-bladed screw amounts to 130 
and for contrarotating propellers to 90. The improvement in efficiency at equal 

diameter is in this case for the contrarotating propellers more than 10% (at 

equal rpm this increase in efficiency is, as mentioned, 4- 5%). For the up-to- 

date fast cargo liners it is very desirable to make calculations for the 

two described alternatives, i.e., a ship with the conventional ship screw and a 
ship with contrarotating propellers of the same diameter as the conventional 
screw propeller. The consequences of the difference in rpm of the propulsion 

plants have, of course, to be taken into account. 

In Figs. 3a and 3b, examples have been given of the results of systematic 
cavitation tests with the Wageningen B-screw series. On base of the screw 

load C,, 
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the various characteristic curves for the onset of the different types of cavita- 

tion have been indicated: bubble cavitation midchord (bmc), sheet cavitation at 
the suction side (ssc), sheet cavitation at the pressure side (psc) and the visible 
tip vortex (tvc). 

In Fig. 4, a part of the large N.S.M.B. cavitation tunnel is shown schemati- 
cally with a measuring arrangement designed for the investigation of the effect 

of cavitation on the propeller-induced vibratory forces. 

In Fig. 5, pressure distributions of a two-dimensional screw blade profile 
have been reproduced for various cavitation numbers at constant angle of inci- 

dence. From this figure, the effect of cavitation on the under-pressure peak at 

the leading edge is clear; cavitation reduces this peak strongly. 
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Fig. 3b - Curves of incipient cavitation phe- 
nomena of screw of the B 5-75 series 

Propulsion tests with ship models in a towing tank are carried out under 
atmospheric pressure (thus, a relatively high pressure). The consequence is 

that during a propulsion test in a towing tank no cavitation occurs as it does in 

reality. The arrangement as indicated in Fig. 4 forms the first part of a re- 
search on the consequences of neglecting of cavitation during propulsion tests 
in a towing tank. The effect of cavitation on propeller-hull interaction and on 
propeller-induced dynamic transverse forces will form the most important 

research items of ship propulsion in the coming years. It might be that the 
results of this research will prove that the results of a propulsion test ina 

conventional towing tank are inadequate both for quantitative predictions and 

qualitative selections. 

In Fig. 6. an example has been given of an extension of the ''open-water" 

screw diagrams of the Wageningen B-series. This extension refers to the so- 
called ''four-quadrant'' measurements. The thrust coefficient C; and the 
torque coefficient C, are given for the following conditions: 
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The part for a = 0° to about 30° indicates the "normal" ''open-water" screw 

diagram. From Fig. 6 the effect of the width of blade chord, also of B.A.R., on 
thrust coefficient and torque coefficient in the ranges where separation of flow 
occurs is clear. This type of diagram is of importance for the analysis of stop- 
ping maneuvers of ships. 

A research area of increased interest is that of the behavior of the propeller 

in a seaway. Besides the dynamic load on the shaft and the afterbody induced by 

the propeller, the behavior of the propeller in a seaway with respect to cavita- 

tion plays a role. Diagrams as indicated in Fig. 3 may be of great value, when 
we analyze the danger of psc and ssc starting from the design condition (known 
Cy and given cavitation index o,) if we should know the load variations of the 

propeller in a seaway. From test results with ship models in waves, it has ap- 

peared that the load variations of the propeller are built up on an average power 
increase due to seaway. These load variations are the same order of magnitude 
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PROFILE : 

$= 00400 

Fig. 5 - Pressure distribution on a blade section for 
different cavitation numbers 

as the average power increase in the case of head seas. In that case, the risk of 
ssc will increase considerably. This type of cavitation has least risk of dam- 
age due to the cavitation. The chance of psc will remain equal or decrease. 

Data for the behavior of the propeller in quartering seas are still lacking. 

It might be expected from the data as represented in Fig. 3, that in quartering 
seas, and as a consequence a power decrease, an increased risk of psc occurs. 
As a rule, psc must be qualified as very unfavorable from a view point of cavi- 

tation damage. 

Figure 7 illustrates clearly that propeller and rudder must be considered 
as a closed system when solving maneuvering problems. The results shown 

in Fig. 7 refer to a 65,000-t.d.w. tanker. This is a ship type with low SHP/ 
displacement ratio. Starting from equal speed (2.60 m/sec) and equal rudder 

angle (20°), the effect of an increase in rpm from 28.8 to 48 on the path of the 
ship appears already to be considerable; the ship speed only increasing 

slightly. 
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Fig. 7 - Effect of increased rpm on the 
maneuver of a 65,000 TDW tanker 
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PANEL DISCUSSION—AIR CUSHION 

VEHICLES, HOVERCRAFT, AND 

SURFACE EFFECT SHIPS 

James L. Schuler, Panel Chairman 

The Chairman opened the meeting by stating the purpose, introducing the 
major participants, and briefly outlining the general areas to be discussed. The 
purpose of the meeting was to exchange ideas, concepts, and opinions on air 

cushion vehicles, hovercraft, and surface effect ships. The large number of 
attendees precluded general discussion. However, the leading participants were 
requested to make a few introductory remarks designed to provoke questions 

and dialogue. A summary of the remarks is as follows. 

The first problem in defining a vehicle is defining the mission, size, speed, 
and payload to perform the required tasks. Once these are known, the technical 

problems concern (a) structure, arrangement, power, thrust, and lift and (b) 
control and stability. The technical areas of most interest to the hydrodynami- 
cist are (a) propulsion, thrust, and drag, (b) internal flows, and (c) stability and 
control. 

A full-cushion craft is quite accurately represented as a moving pressure 
field. This theoretical treatment is more representative of reality than using a 
moving pressure field to represent a displacement ship. The theoretical drag 

must then be corrected for appendages, if applicable. The major difficulty is 
how to realistically treat the degradation of performance in a seaway with the 
attendant wave impacting and spray drag. 

Comparing the sidewall craft to the nonsidewall craft introduces new prob- 

lems concerning frictional resistance of the sidewalls, possible cavitation, and 
control dynamics. Sidewalls should improve directional stability but could 
complicate steering. Sidewalls should reduce lift power requirements but could 
introduce surge in the air supply system due to wave-pumping action. 

Following the preceding remarks, Mr. House was asked to present some 
comments and lead a discussion on some aspects of machinery selection. He 
made several important points (see Tables 1 and 2 and Fig. 1). One is that the 
use of lightweight power plants leads naturally to consideration of marine gas 
turbines. These machines are costly and require long development cycles. 
This leads the vehicle designer to select proven prime movers and this (to 
some extent) tends to yield craft designed around one or more existing ma- 
chines. Recent developments, such as blade cooling techniques, will improve 
the performance of existing machines as we move forward in time. 
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Possible propulsion systems include turbojets and turbofans, which are 
clearly suited to amphibious craft. Fully submerged or partially submerged 
supercavitating propellers as well as waterjets with flush or ram inlets can be 

used on nonamphibious types. The pure turbojet has an exhaust velocity which 

makes it unsuited for even fast craft speeds. The engine efficiency is further 
diluted with duct losses, gear losses, and drag induced by appendages. Putting 
these factors together gives some measure of efficiency. The actual numbers 

change with time as new developments appear. 

Mr. House presented an example showing that a specific 500-ton sidewall 
craft does the greatest amount of work when operating in the 70 to 80 knot re- 
gion. The example showed the interrelation among power plant efficiency, lift / 
drag ratio, and tons per mile per year with a constant 2000 hours of utilization. 
The percentage of operating time spent at each speed as well as the assumed 

sea conditions also affect the results. He also concluded that at these speeds 
waterjet propulsion seemed to be the best choice. Mr. House answered Dr. St. 
Denis that blade cooling and better materials would probably account for im- 
proved turbine performance rather than the use of regenerative cycles. 

Mr. House assured Mr. Weller that his lift/drag calculations included the 
lift power requirements. He noted that the seaway places an upper limit on 

cushionborne performance. 

Mr. House informed Dr. Quant that the tradeoff between propulsion system 
weight and propulsive efficiency depends heavily on how much time is spent at 
the various operating speeds. His final point was that the conclusions are very 

sensitive to the details of the specified mission. 

Mr. House suggested, in reply to Dr. Wang, that speeds of 150 to 200 knots 

would give better propulsion efficiencies if you could build a craft to take it. 

Dr. Sheets then presented some comments on three new subjects: fan de- 

sign, propulsion, and load and structures. 

The fan design characteristics govern the cushion characteristics, which in 
turn affect speed, degradation in a seaway, and bubble leakage. He has studied 
centrifugal and axial flow fans with variations in speed of rotation and pressure vf 
quantity relationships plotted against horsepower. Craft of 100 tons, 500 tons, 
and 4000 tons have been analyzed. In some cases, the propeller and fan are 

driven by the same prime mover. 

On the subject of propulsion, Dr. Sheets agreed with the problems as stated 
by Mr. House. Dr. Sheets compared his results with those of Fielding and 

Stanton-Jones to show that these vehicles fall in an unoccupied area in the 

Gabrielli/Von Karman line. 

On the subject of loading criteria and structural analysis, Dr. Sheets dem- 
onstrated an approach using computer calculations and tank tests to assess the 
validity of a structural model. A large number of loads and loading conditions 
were included. He mentioned hogging, sagging, and torsional loads as well as 

unusual loads caused by docking, towing, and hoisting. 
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In reply to Dr. St. Denis, Dr. Sheets said that his treatment did not include 
nonsteady-state phenomena such as hydrodynamic impact because of the short 
time available in the panel discussion. Dr. Sheets also noted that larger ships 
may require greater flexibility. 

The craft must have variable flexibility with hard structures to carry loads 
and a soft cushion of air connected by semirigid structures. 

Dr. Wang asked if the data indicated that we could look forward to ships of 
100 knots from a drag point of view. Dr. Sheets acknowledged that the curves 
he showed were cut off above hump speed. Above hump speed it is a third- 
power curve. 

Dr. Skolnick then presented a contribution to the effect that bold ventures 
such as the surface effect ship (SES) were needed to galvanize the marine com- 
munity into action. If the marine community did not heed the challenge, it would 
be accepted by the aerospace industry. 

Mr. Weller asked how this related to the traditional marine concept of pro- 
viding low-cost transport. Dr. Skolnick agreed that the SES case has not yet 
been adequately made. 

Dr. Wang asked if the systems approach to SES had a clear objective. Dr. 
Skolnick stated that the SES program has a clear objective. 

Dr. St. Denis lamented the emphasis on studies which can cost large 
amounts of time and money and hoped we would not suffer from "paralysis of 
analysis.'' Mr. Calkins asked if part of the problem could be the kind of train- 
ing given to naval architects. Dr. Skolnick concurred that this added to the 
problem. 

Mr. Christopher Hook raised the problem of the "rogue" wave. Dr. Skolnick 

was sure that such problems should not be overlooked — neither should they be 
overemphasized. 

Mr. J. B. van den Brug presented some clear exposition of recent model 

tests including films and outlined a straightforward method for deriving lift fan 
requirements. He noted that in some cases the model acted as if it had a "neg- 
ative added mass." That is to say, it has precisely the effect on damping. In 
reply to a question from Dr. Skolnick, he noted that their open water tests were 
not yet complete. 

Mr. Everett asked if the behavior was different with upward motion than 
with downward motion. Mr. van den Brug stated that their tests centered on 

stability and therefore focused on small deviations from equilibrium. 

Dr. Savitsky asked how the vehicle natural frequencies compared to the 

natural frequency of encounter with the waves. Mr. van den Brug stated that he 
would answer the question with data after the session. 
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Mr. T. K. S. Murthy presented some work he has done on the motions of 
craft in a wind-generated irregular seaway. 

Dr. St. Denis felt that sea state defined in terms of wind and fetch was ap- 

propriate for oceanography, but he felt that the naval architect prefers sea state 
defined in terms of wave heights. 

The chairman then closed the session. Copies of the actual transcript are 
available on request from the chairman. 

* * * 
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PANEL DISCUSSION—LIFTING-SURFACE THEORY 

R. Timman, Panel Chairman 
Delft Institute of Technology 

Consultant Netherlands Ship Model Basin 

The discussion mainly consisted of three parts: (a) mathematical methods 

and foundation of the theory, (b) experimental verification, and (c) applications, 
in particular to sails and design of propellors. 

Timman: The aim of this lifting-surface panel is an appraisal of the theory, 
a discussion on its physical foundation, a general outline of mathematical methods, 
and considerations on its applicability to practical problems. 

The origin of lifting-surface theory dates back a long time. The Birnbaum 

series is from 1923. In the old days nobody ever tried to solve the two- 
dimensional integral equation because of the formidable amount of work re- 
quired. For this reason airplane wings and ship propellors were calculated by 

lifting-line methods, based on Prandtl's formulation. Now, "exact" lifting sur- 
face theories are available, "'exact'' meaning a two-dimensional, linearized, non- 

viscous lifting-surface theory. 

First is mentioned the theory of Tsakonas, and its counterpart, developed by 

Verbrugh (a joint effort of N.S.M.B. and Hydronautics-Europe). The theory of 
Tsakonas is a rather complete: Starting from the two-dimensional integral equa- 

tion for the acceleration potential a numerical method is developed where the wake 

is simplified by taking stepwise constant distributions of free vortices, whereas 
Verbrugh's report, based on Sparenberg's theory, contains helicoidal wake vor- 
tices. Both methods use chordwise series of Birnbaum type and derive spanwise 

integral equations for the coefficients. Both require a special treatment of the 
Hadamard singularity in the integral equation, but Tsakonas makes a more ex- 
tensive use of expansions in special functions, whereas Verbrugh uses more di- 

rect numerical methods. 

Verbrugh's report dates from April 1968, but is not published because of ad- 
ministrative difficulties; Tsakonas' latest publication is in the April issue of the 

Journal of Ship Research. It will be of great interest to correlate the two theories. 
Since the starting points are the same, discrepancies must be due to numerical 

deviations. 

Now it is proposed to discuss the value of these theories. Suppose they 

agree; (if they do not agree, it is only a matter of time before these differences 
are eliminated) we have available an accurate method for the solution of the 

linearized nonviscous integral equation. The computing time is about 40 minutes 

on the TR4 (somewhat less on a IBM 7090) and probably shorter on a third- 

generation computer. 
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The questions which now rise are 

1. What is the use of this computer program for design purposes ? 

2. What kind of improvement is desirable for improvement of its applica- 
bility and which effects would be expected to be included in the near future ? 

Professor Weissinger (Technische Hochschule Karlsruhe) gives a contribu- 

tion on the improvement of the treatment of the singularity in lifting-surface 

theory. [M. Borja and H. Brakhage, Z.F.W. 16 (1968), pp. 349-356]: 

U 1 -1 X-x 
WOR) = —— LS —_— k¢x’.,.y. .)dxiidy. rs 

47V IJ (y-y')2 (x-x')2 + aye (x" ,y’ )dx' dy 

where a (x,y) is the local angle of attack and k the vorticity on the lifting sur- 
face. Through partial integration, the equation is transformed into 

2 gii/2 eae = jr [(x-x") + (y-y!)2)° k ! x Sy! dx'dy' 

(x-x’) (y-y’) ( ) y y. 

where the form for the kernel 

K(x, x'xy,y" ) 

Oxo) 4Cy-V 7) 

is essential for the method. 

Introducing Glauert coordinates x', = -cosw’;, x; = -cos¥,, 
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where the first set of points are pivot points and the second set are collocation 

points. 

These configurations give the approximation formulas 
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which are exact for polunomials of degree N- 1 viz., N. They correspond to 
Gaussian integration, giving a great improvement in accuracy. For unsteady 

motions a special treatment for the infinite wake is needed. The improvement 
in integration time as compared to a conventional method (e.g., Truckenbr odt) 

is about a factor of 10. | 

Coming back to the problem of applicability, viz., the alternative of using 

exact theories in design or faster approximation methods, which are checked or 

corrected by lifting-surface theory. 

Pien (NSRDC, Washington, D.C.) remarks that we can predict rpm and thrust 
quite accurately. The main problem is to predict loading over the propeller 

blade with relation to the cavitation problem and secondly to predict vibratory 

force accurately. The question is the accuracy of the theory. 

Theories have two purposes understanding the physical problem, this is 

already reached in history, but in order to reach quantitative predictions we can- 

not modify the problem too much in order to reduce computing time, we have to 
come as Close to the problem as is possible. 

The main point is geometry of the slipstream, we have very nonuniform in- 

flow and the free vorticity has to follow this flow. This is a drawback of the 

vortex representation of the propellor. Going back to acceleration theory we 

either know the loading or assume the loading and go back to the history of the 

blade and bypass the helical sheet. 

We have to reach the stage of high loading and nonuniform flow, which seems 

difficult on present computers. 

Timman remarks that for this purpose two ways are open much more compli- 

cated calculations or simplified models which simulate special features. In his 

opinion the formulation of linearized lifting-surface theory contains. 

Pien's time history: Going from the acceleration potential to the velocity 
potential requires an integration over the wake, which is essentially the same as 

in integration over the time history, since the free vortices in the wake carried 

along with the flow with the strength they have when they were generated. 

For results as accurate in the nonlinear case as in the linear case it is nec- 
essary to put on more effort, but is it important to include some effects and 

leaving out others. It would be of interest to know whether it is contemplated to 

work on lifting surface theory with cavitation. 

Weissinger asks whether in Dr. Pien's method the calculation of the shape 
of the wake vortices would give regular helices. There are some linearization 

assumptions in the theory, and it could be that the improvement is essentially an 
improvement in computing time. 

Pien remarks that his theory bypasses the free vorticity and only calculates 

dq/dt at the time the propellor blade passes. 
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Timman, as a reply on a question on Tsakonas' staircase approximation, re- 

plies that in his experience the detailed structure of the wake in oscillating flow 
is not very crucial. The vortex strength oscillates and there is, at some dis- 
tance, a cancelling effect of neighbouring vortices of opposite strength. This 
does not hold in the near slipstream, which is, however, always poorly repre- 

sented by theory. 

Probably there will be a reasonably close agreement between Tsakonas' 
theory and a more exact theory (5%). The problem of comparison with experi- 

ments is raised. 

Laitone (Berkeley) reports on experiments on airfoils at low Reynolds num- 

bers. From NACA data it was known that at Re < 200,000 in this case the lift 
curve slope is higher than at high Reynolds number. Experiments on rectangu- 
lar wings to check these effects. The-effects are either due to a separated 

wake or the formation of vortices at the leading edge. At Re > 200,000 and an 
aspect ratio of 6 results in de, /dx= 0.075 Re > 200,000, and a lift-drag ratio 
of 20 at Re < 50,000 aspect ratio 6 result gives de, /dx= 0.085 even greater than 
27, For a ring airfail a vortex is actually formed. For diameter/chord~12 
the data went along quite well, at high Re, but below 50,000 de, /dx is about 15% 
higher than the theoretical value. 

To check profiles, 5, 10, 20% thick wings gives a strong vortex at the lead- 
ing edge. 

Thieme (Hamburg) reports on experiments with similar results NACA pro- 
files 12% thick 1958 and flat plates with different leading edges, and elementary 

ship forms with aspect ratio 0, 1 at Re 106. Not only lift coefficients, but also 
moments showed a remarkable increase at the low Reynolds numbers. The only 

explanation is the bubble at the leading edge. 

Laitone tested several profiles for gliders and found that for flat plates at 
Re < 50,000 at 6 degrees is very linear and drops off at 45 degree. Max C, of 

1.2 were found; the paper gliders optimize design at that Reynolds number. 

Timman remarks that from a mathematical point of view classical theory 

uses the Kurta condition to fix the vorticity at the trailing edge, but at the lead- 
ing edge there must be additional empirical conditions to fix the location and 

strength of the vortex. For ship propellors the leading edge vortex sheet is re- 

placed by a cavity. 

Weissinger remarks that for delta wings a theory is developed which as- 

sumed free vortices everywhere on the lifting surface. 

Milgram (M.I.T.) reports on work on sails as an application of lifting- 

surface theory. The chief advantage of the kernel-function method is on the 
unsteady case. In the steady case Falkner's vortex lattice theory (1943) is very 
successful. It gives a prescription for the numerical computation, which avoids 

the trouble. 

Referring to Cunningham's papers, which were carried out for rectangular 
and delta wings and no camber. A sail has a different shape and camber and a 
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high aspect ratio. Calculations by these methods, for an elliptic loading give a 
parabolic shape and linear down wash. For high aspect ratio and camber ap- 

parently numerical discrepancies arrive. Next problem regards the flow be- 
hind the blade, for according to D. Cummins the wake rolls up quite rapidly and 
within the framework of linear theory it is possible to predict this rolling up. 
But the next blade will meet this rolled up vortex sheet, which gives rise toa 
correction. For sails the leading edge vortex, as mentioned by Dr. Laitone, the 
separation from the top surface will be accompanied by separation from the 

bottom surface which gives a low lift, while the lift slope is very high. 

Pien remarks that for a sail the camber is caused by the loading, because 

the sail is flexible the camber is different for different angles of attack. 

Thieme refers to a thesis of Dr. Feltz (Braunschweig), with Prof. Schlichting. 
Here a flexible plate is ccnsidered between two small cylinders and the pressure 

distribution is calculated on the plate for several values of the parameters. 
This problem is similar to the problem mentioned. (Z.A.M.M.). 

Barakat remarks that essentially the determination of the shape of the sail 
is essentially an eigenvalue value problem. (Thwaites, Nielson) The sail can 

assume different shapes under similar circumstances. For a porous sail the 

problem is changed somewhat. 

Weissinger remarks that for a swept delta wing the downwash cannot be ex- 
pected to be linear because of three-dimensional effects. 

(Admirally) wrote a program for the design of propellors by lifting-surface 

theory. 

A number of features are still lacking: the difference of the hub, there is 
not only an effect due to contraction due to nonlinear effects, there is alsoa 

contraction due to the absence of the hub. 

Moreover boundary-layer effects are not included. For a section with large 

boundary-layer development the sheet would be wrong. The design by lifting- 

surface theory cannot yet compete with the design by an experienced designer in 

particular with respect to cost. 

Pien remarks that at NSRDC Dr. Morgan's group is developing a program 
for taking account of the hub. 
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PANEL DISCUSSION—DUCTED PROPELLERS 

D. E. Ordway, Panel Chairman 
Therm Advanced Research, Inc. 

Ithaca, New York 

The objectives established for discussion were to determine what applica- 

tions are of current interest for the ducted propeller, to review the analytical 
and experimental results that are available to meet the needs for these appli- 

cations, and to recommend the future work required if any gaps are found. 
Representatives from many different countries participated and, in view of 

their diverse backgrounds, we hoped that such broad objectives could be 

achieved in a realistic and comprehensive fashion. 

With regard to current interest in the ducted propeller, the response was 

very enthusiastic and a number of applications were cited. These included pro- 
pulsion for hovercraft, hydrofoil boats, ocean-going merchant ships and liners, 
and several other high-speed craft. One specific suggestion was to consider 

some kind of a ducted propeller for the Sidewall Craft Program sponsored by 

the Joint Project Office of the U.S. Navy and Maritime Service. Design speeds 
here range from 80 to 100 kt for sizes from 100 tons up, It turned out that work 
along these lines is underway by Sogréah on what is called a "water-jet pro- 

peller.'' This was reported on briefly. 

At the low-speed end, reference was made to V/STOL aircraft, such as the 
Bell X-22A for carrier operation, and variable geometry for off-design per- 
formance, to the classical tug-boat application or Kort nozzle, to dynamic posi- 

tioning of research vessels and drilling and dredging rigs, and to lateral or bow 
~ thrusters. Bow thrusters are really not ducted propellers but more of a conduit 
‘propeller. Much interest was expressed in this area for stopping and emergency 
braking, as well as maneuvering and stabilizing big cargo and passenger ships, 

supertankers, ferries, cutters, and other vessels. Efforts here to date have been 

limited to low speeds, but attention has now been turned to higher speeds. An- 
other variation from the normal ducted propeller configuration of interest 
touched upon was the noncylindrical nozzle to compensate for nonuniform inflow. 

Simultaneous with the above discussions, the associated advantages of the 

ducted propeller for the different applications were reviewed in some depth. 
Since most of these advantages are well known, e.g., compactness, efficiency, 
static thrust increase, inlet flow control, etc., they will not be elaborated on. 

The second objective for discussion concerned the analytical and experi- 

mental results that are available to meet different applications. In view of the 
thorough coverage by J. Weissinger and D. Maass from Karlsruhe, W. B. Mor- 

gan and E, B. Caster from NSRDC, and G, Dyne, C. A. Johnsson, and H, Lind- 
gren from SSPA that was scheduled for the Session On Unconventional 
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Propulsion later, we shortened this discussion somewhat. However, related ma- 
terial which had been submitted in prepared communications was presented by 

G. Rosen from Hamilton Standard and J. Duport and J. Renard from Sogréah. 
This included a short description of the very extensive study recently completed 

by Hamilton Standard and the numerical programs used by Sogréah for high- 
speed inlet conditions. A new 1200 m. towing tank under construction in France 
with a fast gas-turbine-driven carriage was also mentioned. Several other par- 

ticipants made supporting remarks and clearly indicated the wealth of data avail- 
able from NSMB to NPL, from Skipsmodeltanken of Norway to the Sao Paulo 

Towing Tank, for most ship applications, if"... we can find an owner prepared 
to fit one." 

We finally addressed ourselves to the third and last objective, namely, to 

recommend the future work required in general ducted-propeller technology. 
Without order or preference, the following possibilities were suggested: 

Refine the mathematical model(s) for conditions at or near 

zero forward speed and lower rotational speeds. 

Incorporate more exact analyses for the effect of the hub, 
with special attention to larger hub-to-shroud-diameter 

ratios. 

Improve the existing analyses for the case of angle of attack 

and nonuniform or angular variations in inflow. 

Study ways and means to avoid separation/cavitation on duct 

and center body. 

Complete the analytical efforts to formulate an optimum 
ducted-propeller design, analogous to the Goldstein optimum 

for the free propeller, cf., J. A. Sparenberg, and confirm the 
design by experiment. 

Develop test facilities suitable for large-scale (10 m.) cavita- 

tion tests. Such facilities would also fulfill many other needs. 

Work on application of lateral thrusters to large ships at 

cruise speeds. 

Investigate the use of lifting-surface theory for the propeller in 
the caleulation of propeller-shroud interaction. Also, include 

propeller thickness. 

Continue to refine the state of the art of ducted-propeller de- 

sign procedures and narrow the differences between these pro- 

cedures and measurements. 

These recommendations were by no means unanimous. Some felt, in particular, 

that with respect to the first three recommendations, emphasis should be placed 
on the nonlinear but potential flow aspects. Others felt that, when linear theory 
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fails, the flow is no longer potential flow and viscous effects must be considered. 
All agreed, though, that an importance factor should be assigned to each recom- 

mendation and priority given accordingly. 

* * * 
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PANEL DISCUSSION—HYDROFOIL CRAFT 

J. P. Breslin, Panel Chairman 
Stevens Institute of Technology 

Hoboken, New Jersey 

INTRODUCTION 

The session was opened by a plea from the chairman for active participation 

from all and a dictum that this meeting was not to be reduced to a succession of 

prepared presentations. All prepared material was to be abstracted, leaving a 

maximum of time for airing of diverse opinions. 

It was also arbitrarily announced that discussion would be largely limited 

to three aspects of hydrofoils with the hope that some answers to basic questions 

in each of these subtopics might be achieved. These aspects and questions were: 

(1) Application of hydrofoil craft -- what are the future size and speed 

prospects for military and commercial vessels ? 

(2) Research in all hydrofoil-related phenomena — are the results of past 
research of use to designers and what kinds of investigations should be conducted 
in the future ? 

(3) Current features of hydrofoils -- what are the expected trends in hydrofoil 

technology, particularly in regard to control and propulsion ? 

TOPIC 1 

Topic 1 was initiated by J. Weller (Director of the NATO ASW Research 
Center at La Spezia), who virtually cast a bomb at all hydrofoil enthusiasts when 

he concluded that hydrofoils would prove to be too slow and too range-limited 

to be effective as a countermeasure for future high-speed submarines. To the 
dismay of the chairman, there was no hue and cry to this dramatic challenge, in 

spite of the presence of representatives of nearly all of the firms and agencies 

involved with current hydrofoil craft development and operation! W. Carl 
(Grumman Aircraft, Bethpage, N.Y.) suggested that certain studies were under- 
way which might allow hydrofoils to listen for submarines while foil-borne at 
high speed. Weller brushed this aside by stating he knew of no way of solving 
that problem and retired uncontested from the podium! Reluctantly, the chair- 
man introduced the second topic, hydrofoil-connected research. 
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TOPIC 2 

A detailed presentation by J. Z. Lichtman (Naval Applied Science Labora- 
tory, Brooklyn, N.Y.) was given in connection with cavitation erosion, resist- 

ance of propeller and hydrofoil structural materials. Lichtman presented 
several graphs showing the relative performance of samples of Titanium 621, 
17-4 PH(1025) steel, HY 130, Cunisibe 18, Mn-Ni bronze, Mn bronze and HY 
80, as well as the effectiveness of elastomeric coatings. He concluded that the 
resistance to cavitation erosion of several propeller and hydrofoil structural 

materials has been determined using high-velocity (rotating disk) and vibratory 

(magnetostriction) apparatuses. The materials were rated on the basis of their 

relative resistance. None of the structural materials were as resistant as high- 

strength elastomeric coatings, inlays or overlays, suggesting the use of elas- 
tomeric patches in local areas where erosion of structural materials occurs. 

The erosion of non-corrosion-resistant ferrous alloys was increased signifi- 

cantly in sea water, in comparison with fresh-water exposure due to electro- 

chemical (corrosion) effects in the former liquid. The use of a sacrificial 

zinc-anode cathodic protection system decreased the erosion of these alloys to 
values within the range associated with fresh-water exposure. (Further details 

should be sought directly from the Naval Applied Science Laboratory.) 

There were no discussers of this vital topic, which is so essential to the 

operation of transcavitating hydrofoils. 

Professor T. Y. Wu (California Institute of Technology) abstracted a de- 

velopment of a quasi-steady planing of delta wings by R. K. DeLong and A. J. 

Acosta. Professor Wu pointed out that this study was indeed new, in that hereto- 
fore a nonstationary flow theory had not been attempted for planing craft. Agree- 
ment between measurements and theory was found to be good for angles of attack 

up to 10°. Agreement would be better at larger angles if the nonlinear terms 
could be doubled. The influence of reduced frequency was noteworthy. Out-of- 

phase forces were well predicted, but in-phase forces were lower than measured, 

D. Savitsky (Stevens Institute of Technology, Hoboken, N.J.) asked if there 
were any physical interpretation of the in-phase lift results at very low reduced 

frequencies. He noted that analysis of experimental planing data for cases of 
slowly applied vertical velocity could not be analyzed simply as a change in trim 

or angle of attack, but, rather, it is necessary to calculate a higher effective for- 
ward or planing velocity to explain the large increase in lift due to a vertical 

velocity component. In contradistinction to wings, the planing body not only 

changes angle of attack with heave velocity, but also its wetted length. At low 
reduced frequencies, these two effects can be accounted for by calculating a 

higher steady-state planing speed. 

Professor Wu generally deferred answers to the questions to the authors 

who were not in attendance and offered some copies of the paper to any who may 

be interested. 

Next, a description was given of a new high-speed water-tunnel facility and 
hydrofoil tests in cavitating conditions at the Centre d'Etudes Aerodynamiques 

et Thermiques de Poitiers in France. This prepared work, read by Professor 

1602 



Panel Discussion 

R. Goethals, was entitled Research on High-Speed Hydrofoils. The abstract of 

this presentation is as follows: 

On March 1966 a blow-down water tunnel was started by the CEAT 

for research sponsored by the "Direction des Recherches et Moyens 
d'Essais''". This research deals with supercavitating hydrofoils, 
submarine propulsion, and air-cushion vehicles over water. In our 

facility, water is driven out by compressed air from a tank and runs 

in free surface channels (cross area 1-2 dm”) with a maximum ve- 
locity of 50 m./sec. The facility gets all the necessary equipment 
for pressure and force measurements. 

The first research work was a theoretical and experimental study of 
wall effect on force measurements. Especially for a test without 
wall correction, we designed a bottom with parallel slots. Research 

has been done on experimental studies of a hydrofoil family of finite 
aspect ratio in supercavitating flow. We have studied some hydrofoil 

groups corresponding to the same aspect ratio with various 

planforms. 

We have initiated the study in unsteady range of two-dimensional 

hydrofoils. We use the method of forced oscillations, and we are 

looking for the rotary derivatives. 

Further, along with the "Centre de Calcul Analogique,"’ we have 
studied the design of a hydrofoil according to a given lifting pressure 
distribution. The control tests are under way. 

Again, in spite of encouragement from the panel chairman, no discussion of 
hydrofoil experimentation was offered, save a question by M. Tulin (Hydronau- 

tics, Inc., Laurel, Md.) who inquired if this new facility at CEAT had been em- 
ployed to study flutter problems as it possessed the unique advantage of high 

speeds. The answer was no. 

M. Tulin next presented a summary of work done by Dr. M. Martin in sur- 

veying methods for study of hydrofoil flutter. The conclusions reached were as 

follows: 

It appears to be abundantly clear from the preceding survey that 

the hydro-elastic behavior of hydrofoils in the low mass density 

range is extremely sensitive to small changes in system parameters. 

Continuing research into obtaining a better understanding of viscous 
and nonlinear effects on the unsteady forces and moments on oscillat- 
ing lifting surfaces is needed. Careful observations with the aid of 

dyes, motion pictures, and other flow visualization techniques, of 
the flow field around oscillating hydrofoils should provide some of 
the necessary ingredients for a lifting theory which corrects for the 

nonsatisfaction of the Kutta condition, for nonplanar wake effects, 
etc: 
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Additional, carefully planned, experimentation is needed to provide 
force, moment, and flutter data which would be useful in connection 
with the theoretical investigations in progress on aspect ratio, Froude 
number, and cavitation effects. 

From the structural point of view, we have seen that, though in some 
cases it was possible to obtain conservative estimates of the flutter 

speed of swept, low-y hydrofoils by taking a sufficiently large number 
of modes, in others the estimates were seriously under-conservative. 
Though insufficient knowledge of the hydrodynamics may account for 
much of this discrepancy, there is some evidence that in the low- pu 

range, additional insight into the problem might be obtained from the 
application of the differential-equation method of analysis and from 

correlations of careful observations of flutter mode shapes with 

theory. In the latter connection, motion pictures appear to be an 

extremely useful tool. 

Since it appears that many strut-pod-foil systems operate in an effec- 

tive mass density ratio range which is higher than the asymptotic 

value, the effects of sweep at moderate sweep angles may be small 
for such systems, and therefore simplifications in the analysis may 

be possible. 

As far as actual hydrofoil configurations are concerned, it appears 

that, where hydroelastic stability is a source of serious concern, 

scale-model tests are a necessary ingredient in any analysis of the 

hydroelastic properties of the structure. In this connection, it appears 

to be a matter of the highest priority to develop techniques for the 

design and construction of realistic flutter models of strut-pod- 

hydrofoil prototype configurations. 

Dale Calkins (Naval Undersea Warfare Center, San Diego, Calif.) asked if 
there were any instances of operational hydrofoils which suffered damage at- 
tributable to flutter. Tulin felt that the answer had to be no, but probably be- 

cause of the limited number of craft that have been built and the preponderance 
of those being of relatively low speed. He went on to emphasize the dramatic 

failures due to flutter that have been obtained in model scale. 

Next C. Elata (Hydronautics, Inc.) reported upon the principal findings of a 

study entitled ''Choking of Strut-Ventilated Foil Cavities.’ He concluded that the 
ventilated cavity would be choked or starved of air for submergence- Froude 
numbers given by 

GA fe) 
F, << 5\/ — Ve 

2 Py 

Cp is the drag coefficient of the foil, 

where 

A is the foil area, 
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t is the strut thickness, 

£, is the mass density of air, 

’, is the mass density of water. 

Dr. Breslin said that he would expect a considerable scale effect in such em- 
pirical determinations, since the spray sheets from the strut are continuous in 

model scale, causing an early closure of the ventilated cavity, as compared to 
full scale, where the spray sheets break up near the leading edge into discon- 

nected droplets, allowing air to flow nearly unobstructed into the cavity at the 
base of the strut. Elata surmised that such effects would only change the con- 
stant in his inequality. 

TOPIC 3 

The third category, viz., current features of hydrofoils now under develop- 
ment, was opened by W. Carl (Grumman Aircraft, Bethpage, N.Y.) who showed 
an impressive film taken of the PGH-1 while operating during deck-gun firing. 
This craft cruises at 50 knots in six-foot waves. Carl pointed out that at 
Grumman the prospects of flutter are considered real and that both by design 

and experiment, they have managed to avoid flutter. This vessel is propelled by 
a KaMeWa controllable pitch propeller giving greater range and efficiency than 

the water-jet propulsion of the competing design developed by Boeing. 

Dr. M. Kinoshita (Hitachi Shipbuilding Co., Osaka) gave a detailed analysis 
of data from commercial craft operating between the islands of Japan. He 

showed that suspension of service due to rough seas is a vital factor which 
could be reduced by research on the seakeeping characteristics of hydrofoils. 
This analysis was very thorough but, unfortunately, the unprepared charts could 

not be effectively projected. 

Dr. Breslin asked if Dr. Kinoshita had established a relationship between the 
foilborne clearance and the wave height at which service had to be curtailed. No 
definitive answer was secured, although Dr. C. Hook (Hydrofin Design Centre, 

Bosham, England) allowed as how the relationship also depends upon speed. 

"The faster you go, the higher you must stand." 

Baron H. W. Von Schertel (Supramar, Lucerne) showed slides and a motion 

picture. The slides depicted a new large car-carrying ferry. His new craft em- 
ploy a pneumatic scheme to reduce lift by allowing air to be sucked by the lower 

pressure areas on the foils. The air supply is controlled by a valve, which is 

activated in response to pitch angle, roll angle, and roll angular rate. High re- 
liability is claimed for this control system, which, when applied to only one foil 
(after) in conjunction with a surface-piercing foil forward, gives a smooth ride. 
The film showed an experimental craft with fully submerged foils employing the 

controlled ventilation principle. This craft was built for the U.S. Navy. The op- 

eration of this craft, as could be ascertained from the movie, was certainly 

impressive. 
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Dr. Hook gave an interesting account of the development of mechanical inci- 

dence control of hydrofoils. There were no discussers. 

A movie of the water-jet propelled Boeing PGH-2 was shown. This vessel 
displays remarkable maneuverability and had, to that time, displayed a high de- 

gree of continuous reliability of the entire propulsion system. 

The panel session was concluded on the note that, although answers to our 
arbitrarily posed questions were not obtained, we were all brought up to date on 

many aspects of hydrofoil research and development, particularly in the realms 

of new propulsion and control systems which are now being put to trial. 

*K * * 
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Panel Discussion—Numerical Solutions 

L. Landweber, Panel Chairman 
Institute of Hydraulic Research, The University of Iowa 

Iowa City, Iowa 

INTRODUCTION 

There were approximately two dozen participants in the Panel on Numerical 

Solutions. The following subjects were presented and discussed: 

1. "Growth of Eddies in a Flow Expansion,"' by E.O. Macagno and T.K. 

Hung; presented by J. F. Kennedy. 

2. ‘Laminar Boundary Layer on a Flat Plate in a Flow with Disturbances," 

by O.F. Vasiliev and I. V. Pushkareva; presented by O.F. Vasiliev. 

3. 'Some Problems in the Numerical Solution of Three-Dimensional, In- 

compressible Fluid Flows," by S. Piacsek. 

4. "Numerical Solutions of the Two-Dimensional Navier-Stokes Equations," 

by M. Gauthier. 

do. ‘Parametric Equations of Ship Forms by Conformal Mapping of Ship Sec- 

tions,'' by L. Landweber. 

6. "Computations of Ship Boundary Layers," by M. Martin; presented by 
L. Landweber. 

Growth of Eddies in a Flow Expansion 

Enzo Macagno 
Institute of Hydraulic Research, The University of Iowa 

Iowa City, Iowa 

and 

Tin-Kan Hung 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

presented by 

J.F. Kennedy 
Institute of Hydraulic Research, the University of Iowa 

Iowa City, Iowa 

The basic equations for this calculation of the laminar flow establishment at 

a two-dimensional abrupt flow expansion were the vorticity-transport equation 
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Ig 3 ‘ OC <A fete E 32 ¢ (1) 

a ee Oy COR One Oye 

and the relation between vorticity and the stream function 

07y O2y 

oe (2) 

These equations are dimensionless with reference to the mean velocity U, and 
the spacing Do of the upstream portion of the nonuniform conduit, and the density 

of the fluid. The vorticity is denoted by ¢, and the stream function by y. (i, j) 
denote spatial coordinates in discrete form, n is a superscript which counts the 

time intervals in the following finite-difference equations which were established 
as counterparts of Eq. (1) and (2): 

a1 4 oR Ro pn- 1 hha ney wadich nN XK pica | net ties n n 

oa Ge , a (2 ft hp (Gon Sy Sip, id Gasiea 

nti 1 Wy = ; (ott | + ETE + vith, + opt, + neerts) 
Boundary conditions (for example the nonslip condition) were also expressed 

by means of finite-difference schemes in the form of inward expansions, The 
functions ¢ and y were expanded by means of Taylor series from the walls 
inwards. 

Because the computational technique is based on calculating the distribution 

of the stream function during one of the steps, and subsequently that of the vor- 
ticity function, expressions in difference form are necessary to calculate ¢ in 
terms of y at the boundaries (the expressions at inner points have the standard 
form for the Laplacian in two dimensions). One of the expressions used at the 

boundaries, which can be considered as a typical one, is 

3 1 h? 
72 OBS Ye. De aes gs Coxx + Syy)B Cpt 

Here, B is a point at the wall and B+ 1 is a point one mesh inside. 

To begin the calculation we assumed that the flow would be started impul- 
sively and that at the time 0* the flow would be irrotational. Thus, the initial 

values of y were given by irrotational flow without separation. 

The results given in Fig. 1 show how an eddy forms initially at the entrant 
corner, and how it grows. Two eddies form at a certain time, but one is 
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Figure 1 

predominant (the closer to the expansion) and the other is finally eliminated. The 

Reynolds number for this flow, based on U, , Dy , and v was 200. We have calcu- 
lated steady annular eddies for higher Reynolds numbers (see J. Fluid Mech., 
1967, Vol. 28, Part 1), using equations including the local acceleration. In a way 
this also gives an example of a transient flow. 

Computational Instability 

The numerical calculations were based on an explicit finite-difference 

scheme, which has the advantage of being very simple to formulate and to treat 
numerically. It has the disadvantage of becoming unstable outside a region 
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bounded by a limiting curve of R versus D/h (Reynolds number versus ratio 
of spacing D to mesh size; D/h is actually the number of meshes across the 
channel in its upstream section). 

As a means of verifying the accuracy of the difference scheme used (which 

was checked at each step by iterating until the discrepancies were reduced toa 
prescribed value), and also as a means of testing the stability of the scheme be- 
fore applying it to the long calculations for the unsteady problem under investi- 

gation, the finite-difference system was applied to a disturbed uniform flow, 
i.e., a flow within parallel straight boundaries for which the vorticity distribu- 
tion had been initially prescribed to be quite different from the one for uniform 

steady flow. The entire system of equations, including those for the boundary 

conditions, was used in calculating the 
transient flow that should lead from the 

Ke) disturbed flow to the steady uniform 
flow. Were the scheme unstable, it was 

0,8 reasoned, the disturbed flow would fail 
we to return to the original uniform flow; 

aes were the scheme stable, but still con- 
04 vergent to a different solution, this would 

‘ also be discovered. Figure 2 shows what 
0,2 happens when a calculation for uniform 

flow becomes unstable: Such rapidly ex- 
Oo | 4 ee 7 1 j 7 -00/ 0 00) 002 003 004 005 006 panding oscillations with a wave length 

u directly related to the mesh size are 
; quite typical of numerical instability as 

Figure 2 opposed to hydrodynamically originated 
instability. Figure 3 shows the result of 
a study of instability in the case of a 

two-dimension expansion. The effects of iterating in different ways are also 

shown (the influence of the paths of iteration is not great, but a less biased dis- 

tribution of errors results from sweeping the field diagonally, N.W. to S.E., N.E. 
to S.W., S.E. to N.W., and S.W. toN.E.). 

The exact position of the neutral line was not sought, because the process 

is time-consuming. 

DISCUSSION 

In reply to an inquiry by A. M.O. Smith (Douglas Aircraft Co., Long Beach, 

Calif.) whether the results obtained had been compared with other similar work, 
a recent study by a graduate student at the University of Notre Dame was men- 

tioned by S. Piacsek (University of Notre Dame, Ind.). In this investigation a 
uniform stream parallel to a wall with a step was treated, and similar results 

were found. 

Another comment was that symmetry of boundary geometry does not ensure 
flow symmetry, as is assumed in the present work. A calculation at Reynolds 
numbers from 100 to 200 of flow in an axisymmetric conduit which yielded non- 

axisymmetric flow was cited. 
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Figure 3 

Several comments pertained to the stability of the calculations. One sug- 
gestion, by P, Fink (University of New South Wales, Australia), based on Dr. 
Hirt's paper in the session on Fundamental Hydrodynamics (paper No. 11 of 

these Proceedings), was that the mesh size for stability could be investigated 
analytically, rather than empirically by numerical trial, by carrying addi- 
tional terms in the Taylor-series expansions used to express the Navier- 

Stokes equations in finite-difference form. Another suggestion, based on nu- 
merical calculations of flow about a cylinder, was that the results are sensitive 

to the assumed upstream and downstream boundary conditions. This is contrary 
to the experience of Macagno and Hung in the case of an abrupt expansion, who 
found that the development of the vortex structure was insensitive to the as- 

sumed upstream velocity profile, a uniform stream in one case and parabolic 

velocity profile in another; furthermore they found that the downstream flow 
pattern eventually became parabolic without the necessity of any assumption. 

It appears that the sensitivity of the computed flow to the assumed boundary 

conditions depends on the boundary geometry. 

* * * 
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Laminar Boundary Layer on a Flat Plate 

in a Flow with Disturbances 

O. F. Vasiliev and I. V. Pushkareva 
Institute of Hydrodynamics 

Siberian Department of the U.S.S.R. Academy of Sciences 
Novosibirsk, U.S.S.R. 

presented by 

O. F. Vasiliev 

The work is devoted to the theoretical analysis of the behavior of the two- 

dimensional laminar boundary layer along a flat plate when the free-stream ap- 

proach flow of an incompressible fluid has disturbances. The influence both of 
periodic disturbances of two types and of random disturbances of the simplest 

type are treated. 

At first the boundary-layer velocity distribution is studied when the outside 

stream u(x,t) has periodic disturbances imposed on a constant velocity flow Up « 

As mentioned, this problem is treated in two variants. In the first case, 

u(x,t) = ug [pen cos of = ) 

(the disturbances are carried by the mean flow). 

In the second case, 

u(t) = ug (1+A cos at) 

(the x axis is directed along the plate, t is the time). 

The assumption of the relative smallness of the disturbance amplitude » 

permits one to construct the solution in the form of an expansion in power series 

of the small parameter }. The coefficients of the first three terms of this series 

were found. Because of a special choice of the nondimensional variables, the 

problem is reduced to the determination of universal functions. 

Next the boundary-layer velocity fluctuations were studied, assuming that, 
upon the free flow with the constant velocity u, are superimposed stochastic 

disturbances u', carried by the free stream with the approach velocity uy, 

Hy EVES ugar th B(2)GET9= etSesius 
Ug 

It is thereby assumed that the flow velocity fluctuations are represented by a 

stationary random function of + and that the relative intensity of turbulence in 

the free flow is small: 
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The latter assumption permits one to construct the solution in the form of a 

power series of the small parameter e«. 

In all cases the coefficients of the expansions are defined by systems of 
partial differential equations. These systems of equations were solved numeri- 

cally by application of implicit difference schemes. 

From the analysis of the behavior of the solutions obtained in this manner, 
some qualitative conclusions were reached in regard to the properties of the 

flows studied. For example, with increase of the parameter ¢ = wx/u, the in- 

fluence zone of outer disturbances is displaced closer to the edge of the boundary 

layer in the first case, but closer to the place surface in the second case. 

In the case of the random disturbances, the free-stream velocity fluctua- 
tions permeate the boundary layer most of all at the relatively large values of 

the scale of turbulence. In this case the velocity fluctuations within the boundary 

layer may exceed those which occur outside. 

DISC USSION 

K. Wieghardt (Universitat Hamburg, Germany) asked whether the term 

37u/dx2, which is neglected in the derivation of the boundary-layer equations, re- 
mains small in the presence of the assumed disturbances, as could easily be 

verified by examining the resulting solutions. It was stated, in reply, that the 

derived coefficients were examined for their variation with frequency and down- 
stream distance x, but it would be necessary to examine the paper in detail to 

determine when 07u/dx* became large. 

x * OK 

Some Problems in the Numerical Solution of 

Three-Dimensional, Incompressible Fluid Flows 

S. A. Piacsek 
University of Notre Dame, Indiana 

Current attempts at numerical calculations of three-dimensional, incom- 
pressible flows on digital computers may be divided into two categories: 

1. Velocity-Pressure Approach: In this method one uses the time- 
dependent Navier-Stokes equations to find the velocity components from a time 

iteration, and the pressure is found from a Poisson equation that one obtains by 
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taking the divergence of the Navier-Stokes equations. The relevant equations in 

Cartesian coordinates are 

i fe) 
Bet CL) Be Ge Te Bae (1) 

Vp = - Po. Vi (ws ¥) a= Flay) (2) 

where » and o are assumed constant for this discussion. Since neither the 
pressure nor its normal gradient are known at a rigid wall, the application of 
the boundary conditions becomes an integral part of the iteration process. The 

exact procedure is as follows: One forecasts new values of u, at time level 
nt+1, say, using their values (and that of p) at levels n and n-1, depending on 

the scheme employed. Then one finds p to order n+1 by iterating (2), using the 
values of the normal derivative 9p/dn on the boundaries and the source function 
F evaluated at time level n+1. The boundary values of 9p/9n at level n+1 are 

obtained from (1) upon substitution of the u?*1 into all the terms. 

2. Vorticity-Stream Function Approach: In this method one introduces a 

vector potential ¥ and a vorticity vector ¢. Defining u= yxy and €-vxu, 

one obtains the following set of equations: 

oC; 
St (er¥) Gomeyohe: = 4" oy. (3) 

t 

Geet rasa Ne (4) 

where the condition V- y = 0is put on the vector potential. The numerical pro- 
cedure is similar to the previous one, though the boundary conditions are again 
troublesome. The components of the vorticity vector parallel to a rigid surface 

are not known, whereas the corresponding stream functions and their normal 
derivatives are known. It is clear that we cannot use both sets of conditions in 

solving (4), because then the problem becomes over-determined. Rather, one 

uses the boundary values of ¥. to solve (4), and the boundary values of dy. ,/on 
to find the vorticities ¢. at the wall from a Taylor-series expansion. The 
exact iteration procedure is then as follows: One forecasts new values of ¢,; 

at time level n+10n all interior mesh points and then finds ¥, by iterating Eq. 
(4). Finally, the boundary values of ¢, are found from a Taylor - series expan- 
sion of the stream function values on mesh points adjacent to the wall, about 

values on the wall, and utilizing the fact that, at a rigid wall, any parallel com- 
ponent of vorticity is given by Cae norve7 ont evaluated at the wall. An alterna- 

tive procedure would be to forecast be ‘on the wall itself, using one-sided spatial 

differences and ensuring that the total ‘forecast procedure remains conservative; 

however, this procedure has not met with much success. 

In 1966, a paper appeared by Arakawa that showed how to difference the ad- 
vective terms in two-dimensional, incompressible flow that conserves vorticity, 
mean-square vorticity, and kinetic energy. An analog of this procedure for Eq. 

(3) has not yet been found. 

The author is not aware of any published works relying on the velocity- 
pressure approach, though recently successful use of it has been reported by 
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Orszag (1968) and Williams (1967). The vorticity approach has been used suc- 
cessfully by Aziz and Hellums (1967). 

SOLUTION OF POISSON'S EQUATION 
ON THREE-DIMENSIONAL GRIDS 

The standard iterative techniques that have been developed for the two- 

dimensional Poisson equation, such as the successive over-relaxation (SOR) and 

the alternating-direction implicit (ADI) cannot be carried over directly to three 

dimensions. Two alternative approaches are being employed at present to solve 

(2) with op/en given or (4) with ¥, given on the boundaries. 

(A) One regards the Poisson equation as the steady-state version of the 

time-dependent parabolic diffusion equation 

OW. , 
mes = w. : 

at V it Cy ; (5) 

in which ¢, is a known source function, and uses any of the techniques devel- 

oped for iterating (5) in three space dimensions. Among the successful tech- 

niques that have been used by the author with good success are the DuFort- 

Frankel (1953), Douglas-Rachford (1956), Douglas (1962), and Saul'ev (1957) 
schemes. In any of these methods, if the spectrum of the initial error is known 

in advance, one can choose a sequence of time steps such that each extinguishes 

a particular harmonic. By repeating this sequence several times one can ob- 

tain very good convergence; e.g., on a 102 mesh, four sweeps of a five- time- 

step sequence resulted in decreasing the error by a factor of 10> ; 

(B) If the boundary conditions are either periodic or of the ''dynamically 

free" kind (no stress and no normal velocity) at one or two pairs of opposing 

boundaries, one can expand both the components ¥, and ¢, parallel to these 
surfaces in a sine or a sine/cosine series, as the case may be. Equation (4) 

may in general be reduced to a system of jn? ordinary differential equations of 
the type 

mn 2 

SFC ar yar oe? ve = b ; (6) 

where the a,,, and the b,, are the Fourier coefficients of ¥ and ¢ inthe x-y 

expansion. The finite-difference version of (6) can be solved easily by a special 

algorithm devised for tri-diagonal matrices (see Varga, p. 195). 

Most of the computer time in approach b is spent in finding the coefficients 

bmn and superimposing the a,, tofind y. For Fourier synthesis of functions 

with complex values, a very efficient algorithm exists if the number of grid 

points has a particular value, say, N - 2", as shown by Cooley and Tukey (1965), 
This approach, however, has as yet no known counterpart in the case of real 
functions (e.g., sines alone). Hockney (1965) devised a related method utilizing 
the symmetry of the sine functions and a cyclic reduction technique on grids of 

size N = 3-2", but his technique was applied to two dimensions only. Studies are 

being made to extend the method to three dimensions. 
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DISC USSION 

R. Barakat (Itek Corp., Lexington, Mass.) has stated that, to his knowledge, 
an algorithm similar to that of Cooley-Tukey has been developed by Lanczos 

(1943) for real sine functions. The author replied that he has not read that 
paper, but will look into it. Barakat also questioned whether the Fourier- 

transform method would be accurate for functions which do not vanish outside 
a certain region. Piacsek indicated that his procedure was of the nature of 
"curve-fitting" by means of a discrete set of Fourier harmonics, so that the 

criticism did not apply. 

Numerical Solutions of the Two-Dimensional 

Navier-Stokes Equations 

M. Gauthier 
Société Sogréah 

Grenoble, France 

I shall discuss briefly two numerical problems we have met for the solution 

of the Navier-Stokes (NS) equations for the two-dimensional case. 
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SOLUTION OF THE POISSON EQUATION 

To solve the NS equation we have to solve at each step a Poisson equation 

which consumes much computing time. It would be very useful to have a sys- 
tematic study of all the algorithms to solve this problem. According to our own 
experience, however, it is preferable to use iterative methods to solve a problem 

with afree surface. For fixed boundaries we have had better success by using 
properties of symmetric band matrices. Actually, we plan to use a modified 
algorithm based on chain-matrix properties. 

NUMERICAL DIFFUSION OF TRANSPORT EQUATION 

The problem of numerical treatment of transport terms is a very difficult 

one, We tested about twelve different schemes in both one- and two-dimensional 

cases. Because of the numerical diffusion we found it necessary to retain 

second-order terms in the time scheme. The use of staggered mesh gives 

rather good results but introduces difficulties with the boundary conditions. 

We have also studied nonanalytical algorithms which give very good results, 

in particular for steady flow. This fact has facilitated the solution of the steady 

case even for high-Reynolds-number turbulent flow. 

DISCUSSION 

S. Piacsek inquired about the details of the staggered-mesh procedure in the 
numerical treatment of the transport equation and the coupling of solutions at odd 
and even time levels. The author emphasized that the major difficulty encoun- 

tered is with the boundary conditions, because there are two different expressions 

of these conditions for the two levels. It is necessary to couple the two levels 
because otherwise there would be a discrepancy between the two solutions, as 

was discussed in a 1966 paper. 

Parametric Equations of Ship Forms 

by Conformal Mapping of Ship Sections 

L. Landweber 

INTRODUCTION 

In a previous paper [1], a modification of the Bieberbach method of con- 
formal mapping has been applied to obtain added masses of ship sections. When 

a note by Kerczek and Tuck [2] appeared, suggesting that the coefficients of the 
mapping functions could be made to yield parametric equations of the entire ship 

hull, an attempt was made to apply the Bieberbach method for this purpose. 
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When the results were tested by comparing the computed ship sections with the 

original, it was found that the agreement was excellent for all but one of 20 sec- 
tions, but was very bad, showing double points and poor agreement at the ends, 
in the one case of failure. The reasons for this failure will be discussed in a 
following section. 

Another method of conformal mapping, which has been studied by many in- 
vestigators, is that of the Gershgorin integral equation. This method is thor- 
oughly treated by Gaier [3] from both the theoretical and practical point of view. 
Nevertheless, other investigators have found [4] that odd-shaped forms can be 

successfully mapped by means of the Gershgorin equation only if extreme care 

is taken in expressing the integrals by quadrature formulas. 

The purpose of this note is to present our experience and recommendations 

for mapping pathological double ship sections, i.e., sections with inflection 

points and corners at the free surface and keel. Since it is intended to use the 

resulting mathematical representation in integral equations for potential flow 

about ship forms, economy of numerical evaluation is an important consideration, 

BIEBERBACH METHOD 

Let 

ge Ge oe ene (1) 

b b b 
Ce, By kiss tee t tase (2) 

be a transformation and its inverse which map a double ship section in the com- 

plex z plane into a circle about the origin in the ¢ plane. Here, a,, a5 S88 
and b,, b3, °** are real and only the coefficients with odd indices appear be- 
cause of the symmetry of the section about the vertical and horizontal axes. 

The Bieberbach method is based on the property that, among the closed curves 
in the ¢ plane obtained from the given section in the z plane by the transforma- 

tion (2) for various values of bi, bs, ***, the circle will bound the maximum 
area. Thus, if the series in (2) is truncated, and the condition of maximizing 
the area is applied to each of the b's, one obtains a set of linear equations for 

determining them (Ritz procedure), as is elaborated in [1]. Finally, Eq. (2) is 
inverted to yield (1), since it is usually the a's that are of interest. 

Since both (1) and (2) are infinite series, we must be concerned with their 

convergence. For (1) we can state that the series converges in the exterior of 

the unit circle and gives a one-to-one mapping of the given profile into the unit 
circle. For (2), however, we can only say that the series in (2) converges in the 
exterior of the smallest circle in the z plane which circumscribes the given 
profile. Actually, the radius of the inner circle of convergence may be reduced 
until the radius of the singularity of the mapping function closest to the circum- 

scribing circle, Thus, (2) will give a one-to-one convergent transformation of 
the profile into the unit circle if and only if no singularities of the transforma- 
tion (2) lie between the inscribed and circumscribed circles. 
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One sees then that the Bieberbach method, which necessarily operates with 

the inverse transformation (2), cannot be assured of success. Furthermore, a 

corollary of the foregoing discussion is that the probability of success is much 
higher for a nearly circular section than for an elongated one. This indicates 
the desirability of a preliminary transformation of the Joukowsky type, such as 
that used in the Theodorsen method of conformal mapping, which first maps the 

given profile into a near circle. 

BRANCH- POINT TRANSFORMATIONS 

Consider a ship section which intersects the free surface at an angle a at 
A and the vertical centerplane at an angle 6 at B. The double ship section will 

then have corners of angle 22 at A and 26 atB. We wish to transform the con 

tour of this double section into one without corners. 

A transformation which eliminates the corners at A and its image in the y 
axis is [5] 

a ee 
This transforms the point B toa point B inthe z plane with coordinates 

(0,b'), where 

b' = cot, 2= cot Y - (4) 

Since the point A is transformed into a point A' with coordinates (1,0), we see 

that 

yee 
-?p 

(5) 

is the angle 0'p'A', where o0' denotes the origin in the z' plane. Then we have 

9 A 

Next, we wish to eliminate the corner at B' in the z' plane. Put 

‘ caw (Gai) gal -B veges. 1 ea) ; 
7 ap sh }o) Zea 

In the z"' plane, the points A and B are now transformed into A’ and B" with 

coordinates (a'' ,0) and (0,1), where 

af =) tan Das y" = Nexo Th ee , (7) 

Sepa) i2 q 

Here, y"' is the angle 0''B''A" in the t plane. 
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If the corner at B were removed first, and that at A second, the resulting 
angle in the z'' plane could be obtained from (7) by replacing y and ¥'' by their 

complements and q by p. Thus we would obtain 

yee (-4). (8) 

Comparison of (7) and (8) shows that y3 < y']. Since, in general, mapping into 
a circle is accomplished more readily for nearly circular sections, it would be 

desirable to select that order which makes y"'' closer to 7/4. For example, if 
y = 77/8 (a/b =0.445), a = 7/4, and B = 37/8, we have p = 3/2, q =5/4, and 
then, from (7) and (8), we obtain y') = 7/6 and ¥'} = 27/15. In this case the 
original order appears to be preferable. The difference between (7) and (8) is 
independent of 7, viz., 

yi - = % (1-4) 0-4). (9) 

Let us combine the transformations (3) and (6). Put 

a : fA = wal 4 Be —" 3 ; (10) 

We then also have, putting z = x + iy, 

at. Ae Poe ie a oe 8 Daley. (11) 

and, with Z" =o+ it, 

1 5 - 1 peek pis ciae -coN ges alee toe CoE he A (12) 
ae Ad (o=11)? 4 42 

Solving both (3) and (6) for z' gives 

[epaz oP raga? 
Se es oo 

1 4 71/0 ee 

and then, by (4), 

(13) 

From (11) - (13) we can compute the real and imaginary parts of a point z"' 

from the coordinates of a point z. 

If, in accordance with the foregoing discussion, it is preferable to reverse 
the order of the transformations, this can effectively be accomplished by ro- 
tating the given profile through an angle of 7/2 rad, by 
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7 

iz (14) 

and then substituting z, for z in the above formulas. 

JOUKOWSKY TRANSFORMATION 

We shall now transform the profile in the z'' plane to one in which the ratio 

of the principal dimensions is unity. Put 

Za cl te (15) 

and select the coefficients c and d so that the principal dimensions in the ¢ 

plane are each unity. Then we have, from (15), 

e+ d= a"',c-d=l1 (16) 

where a" is given in (7), and hence 

c=Z(a"t oie d= 5 (a"- 1) (17) 

Set 

z" = pt iv, € = dei¥ . (18) 

Then from (15) we obtain 

he (-a i $) cosy, (19) 

2 = < sin v= (ca <) ves (20) 

Eliminating \) between (13) and (14) yields 

p2 peace y- y? esion py = 4cd 

or 

4cd sin* w+ (pe? + v2 = 4cd) sin? y- pe = 0", (21) 

a quadratic equation in sin? y. From its solutions one can obtain the corre- 

sponding values of \ from (19) or (20). 

GERSHGORIN INTEGRAL EQUATION 

We now wish to transform the profile in the ¢ plane into a unit circle 

about the origin in the w plane, 

Pate (22) 
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Polar coordinates in the ¢ plane have been designated as (\,y) in (18). Arc 
length along the contour will be denoted by s , with s=0 at A''' and increasing 
in the counterclockwise sense of traversing the contour. We shall also require 
the polar coordinates of the chord directed from a point P at arc length s toa 
point Q at arc length t along the contour, 

Po = rot eiPst (23) 

in complex notation. In particular, the chord A'''P would have the polar coordi- 

nates (r,., 9,,). 

The Gershgorin integral equation [3] may be written in the form 

27 

0 (Ww) - { K (v.w') 6 (o') db’ + 2000, (24) 
0 

where Or P = rei¥, o'''Q= Kieiv 

’ 1 OO st 
K (vy) ==> ( ae 

e ’ ‘ dv! a ‘ 
rn’ [vA = Rveu sui mei lh ha 7 yaanh (ve) 

me (25 
Rea 2 = ANY “coat = ay) ) 

; A, 
9,5 = aresin € sin | : (26) 

os 

rag = (Ag? +A? = 2X9/A cos ¥lt7?, Ay =A (OD. (27) 

When y' = y, the expression for K(y,y') in (25) is indeterminate. Although the 
limit can be readily obtained, it is preferable to avoid this difficulty by writing 

(24) as 

27 

Ap) = ral K(w,w') [Aqy') - OC¥)] av’ + 9, . (28) 
0 

which is equivalent to (24), since, by (25), 

27 27 20 , 

if K(v,¥' )OCp)dy’ = - -@ | 37 dp’ = -O(y) . (29) 
0 0 

The integral equation (28) can be solved approximately by reducing it toa 
set of linear equations in a discrete number of values of ¥ and @. Because of 

the double symmetry, (28) can be collected so that the range of integration ex- 
tends from zero to 7/2. Mappings were computed for ¥ = 1°, 2°, 3°, +++, 89° 
and the resulting values of 9 also range between 0 and 90°. It is assumed that 

6 = 0 when y = O and 6 = 90° when y = 90°. 
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Finally, we wish to obtain the coefficients a,, a,, °°: of the mapping 

functions 

Zz = Aw. ++: a + aoe ee (30) 

Express the original profile in polar coordinates (Fig. 1), 

z= r(M)ei” : 

Figure 1 

and since w = e'®, (30) becomes 

rei? j= AciP + aye if + apes 2 + ° 

Then 

27 ; 277 

Aiea = || opjei(?— 9) 36 = x | r(@) cos (9-0) dO (31) 
0 0 

and 

27 

A@ stage a r(@) cos [9+ (2n-1)0] dO, n= 1,2, *** * (32) 
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The ranges of integration in (31) and (32) can also be reduced to 0- 7/2 by taking 
advantage of symmetry. The number of coefficients that can be computed with 

accuracy from (32) depends upon the number and distribution of the values of ¢. 
For example, if nine values of ¢ ina half cycle of the oscillating integrand in 
(32) are considered to be necessary for the numerical evaluation of the integral, 

the series should be truncated at a,, when intervals of 1° are used in the 

calculations. 

From (30) we now have the parametric equations of the ship section: 

x = (A+a,) cos 6 + a3 cos 36 + ag cos SOA aoe (33) 

y = (A-a,) sin 6 - a3 sin 30 - as sin 50 - *r8 > (34) 

How well a given section can be represented by these equations is shown in 

Fig. 2. Results are shown for various combinations of mappings from the sec- 
tion into the unit circle. It is seen that the poorest representation is obtained 
from a direct application of the Gershgorin integral equation, with no interven- 
ing transformations. Preliminary branch-point transformations, or a prelimi- 

nary Joukowsky transformation for transforming the section into one of unit 

height-to-breadth ratio, followed by the Gershgorin transformation, consider- 

ably improve the representation. Best of all is the result obtained by the suc- 

cession of branch-point, Joukowsky, and Gershgorin transformations. 
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DISC USSION 

In reply to a question by R. Barakat, the author clarified the procedure for 

representing the entire ship hull in parametric form. If 20 sections were used, 
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Figure 2 

there would be 20 sets of a's. Each a would be treated as a function of longi- 
tudinal distance, and a curve would be fitted to the 20 values of 2. Barakat 
suggested that Chebycheff polynomials might be well suited for this purpose, and 
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further inquired whether constraints on the coefficients are needed to represent 
ship sections. The author replied that advantage had already been taken of the 
symmetry of the ship sections, as a consequence of which only odd powers and 
real coefficients occurred in the series form of the transformation, and that, 
because the series was convergent, the only restriction on the number of terms 

was that of numerical accuracy. 

Dr. Timman (Delft Technological University, Netherlands) asked whether 

the high degree of accuracy sought in the representation was desired for the 
purpose of laying out ship lines or for use in calculating added mass and damp- 

ing coefficients. The author agreed that, for the latter purpose, high accuracy 
of representation is not required, but wavemaking resistance is sensitive to 

small variation in form. 

Since the parametric form consists essentially of expansions in Fourier 

series, Dr. Eggers (Universitat Hamburg, Germany) was concerned that slopes 
might not be accurately reproduced. The author's experience is that appreci- 

able deviations occur only near corner points which are necessarily rounded 

by a truncated Fourier series. He felt, however, that it was preferable to ac- 

cept a slight rounding of corners than to include the mathematical form of the 

branch-point transformations in the equations of the ship hull. 

Finally Dr. Barakat described his recent work on the heaving of a semi- 
immersed cylinder of arbitrary section on a free surface in water of finite depth 
in which the added mass and damping coefficients were determined in the 

presence of an incident wave. He found that the modified values of these coeffi- 

cients, the so-called dynamical added-mass and damping coefficients, make a 
tremendous difference in the ship response. Thus, contrary to the previous 
discussion on the insensitivity of the added mass and damping coefficients, the 

dynamical response of a cylinder is quite sensitive to the shape of section. 

* * * 

1628 



Panel Discussion 

Computations of Ship Boundary Layers 

M. Martin 
Hydronautics, Inc. 
Laurel, Maryland 

presented by 

L. Landweber 

INTRODUCTION 

The present study uses the available tools of the linearized potential flow 

about a ship and the three-dimensional integral turbulent boundary-layer equa- 
tions to study the characteristics of the boundary-layer on ship forms. The 

method of Guilloton, as presented by Korvin-Kroukovsky, was used to compute 

the streamlines and pressures about the ship. Solutions of the boundary-layer 

equations were obtained using a nonslip boundary condition in the ship surface 

and the velocity and pressure distributions given by the potential theory as the 

"outer" conditions. The set of boundary-layer equations was integrated along 
the streamline using a Runge-Kutta-type technique and, as a result, the momen- 
tum thickness, shape parameter, and the angle of the boundary-layer flow to the 

outer flow were calculated. 

The numerical results for series 60/.60 and 60/.80 ships of different lengths 
at various Froude numbers were presented. 

THREE-DIMENSIONAL TURBULENT 
BOUNDARY-LAYER EQUATIONS 

The following set of nondimensional boundary-layer equations were derived 
by Webster and Huang [1] from the three-dimensional turbulent boundary-layer 

equations presented by Cooke [2] 

a i & : =) Bip ee oCey) gC OHt Ht 1) Oe “AT tin) ’ idle 38132 
7 SSeS — 

u Ss 2 Bb Os Sx SE 2 ae 

(1) 

OBS Bi (4 gil 2°08a.) Sw CHA eHy: Goa 2) 1+H du 
te et) ee (2) 

os 2g 0s u \Ox 8% Q yH+ 2 om 

OH 1 Ou “s uy (Ht Ht 1) 3 

pale a) ee H) —— = - 0 , 
os Tia as, bea? © (3) 

*This is a summary of part of the research carried out at Hydronautics, Inc. 
by Dr. W. C. Webster and T. T. Huang, between the years 1964 and 1967, on 
ship boundary layer research. The work was sponsored by the Society of 
Naval Architects and Marine Engineers under Purchase Order No. 400. 
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where 

Bo (2B) semen] 
Bp =-——* 

(H-1)(H+2)u#+! 

" 

— 

8 

( - =| d¢(= boundary-layer thickness, 

¢ = distance measured normal to surface, 

u,, = resultant velocity in the boundary parallel to surface, 

@ -= { = ( 3 3 at = boundary-layer momentum thickness, 
0 

— & H O° 

and 

n is related to the local friction formula, i.e., 

Ou -n 

Crle. coils pU? = a(H) (~) ; (4) 

The solution to these equations will lead to the determination of 6, the 

boundary-layer momentum thickness, £6 the angle between the limiting stream- 
lines at the wall and the external streamlines, and H the shape parameter. It 

is clear that 0, 8 and H are determined from two sets of variables. The first 
set of quantities are dependent on the Reynolds number and are, for instance, n 
and a(H). The second set of quantities are dependent on the "outer" flow quanti- 

ties, which are determined by obtaining the potential flow on the ship surface. 
These are dependent on the Froude number and the ship geometry, and are, for 

instance, u, u, was afunction of s, m, x, Z. 

By comparing the empirical relation of Ludwieg and Tillman [4] for the 
local friction coefficient in a pressure gradient with Eq. (4) the following values 

of a(H) and n are determined: 

Q(HyHaHO}246 x 107926782 . 

(5) 
n = —0% 268° 

However, this relationship, when used to obtain c, for flat plates, with H de- 
termined from the comprehensive analysis of Landweber (3), gives poor agree- 

ment with the Schoenherr friction curve at Reynolds number corresponding to 
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large-scale ships. Webster and Huang [1] have therefore proposed the following 
relationship, which is a proposed extension of the Schoenherr curve to flow with 

a pressure gradient: 

0.46 2 n(Rg) 
0.678(— - ‘| 

0.46 2n(Rg- 1) 
a(H) = 0.019 x 10 (6) 

n = -0.256 + 0.004 En(Rg) . 

This result is based on the assumption that at a given Ry the ratio of c, without 
and with a given pressure gradient by Ludwieg and Tillman and by Schoenherr 

are the same. 

The initial condition for the differential equations (1)-(3) is: At station 1/2 
(that is, 5% aft from the bow), 6 = 0, @ and H are chosen to be identical to that 
which would exist on a flat plate of the same length between stations 0 and 17/2; 

These approximations may be sufficient for computing the boundary-layer char- 

acteristics at the stern section of the ship but not for that near the bow. 

POTENTIAL FLOW ABOUT THE SHIP 

The potential flow about the ship will be determined under the assumption 

that thin-ship theory of Michell [5] is valid. With this assumption, it is possible 
to write down formulas for the streamlines, free-surface elevation, and pres- 
sures on the hull of the ship (for instance, see Wehausen, [6]). The formulas 
for these quantities would be exceedingly tedious to evaluate. The improper 
integrals involved in these expressions converge so slowly that, even with to- 

day's high-speed computers, their computation is not an insignificant task. For 
the purposes of this study, the method of Guilloton [7], as presented by Korvin- 
Kroukovsky in [8], was adopted. This technique is ideally suited for digital- 
computer application, since the difficulties with the improper integrals are 

concentrated into universal functions, which have been tabulated in this 

reference. 

In the Guilloton method, the hull is represented as a summation of simple 
geometric wedge shapes. Thin-ship theory is used to compute the flow about an 

elemental wedge; the functions which describe the constant-pressure lines and 

the streamlines of this flow comprise the aforementioned Guilloton functions. 
The flow about the given ship is then found by the summation of the flows about 

the wedges which make up the ship. This operation is valid because the velocity 

potential and the first-order thin-ship boundary conditions are all linear. The 

errors incurred by approximating the exact hull shape by the Guilloton wedge 

system appear to be quite small [7,9, and 10]. 

A recapitulation of the details of the derivation of the Guilloton method will 

not be given here, but the reader is referred to the detailed exposition given in 

[8]. For the purposes of this boundary-layer study, none of the somewhat ques- 

tionable second-order corrections to the theory, introduced in this reference 

have been adopted. The tables given in the reference have been punched on 
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cards, and a computer program has been written to use these tables, in connec- 

tion with the ship offsets to determine the projections on the ship's centerplane 
of: 

(a) Three lines of constant pressure on the ship's hull. The uppermost of 

these lines is the line of zero pressure or the free surface. The bottom two 

lines correspond to the locus of points such that the local piezometric head 

equals 0.5H and H, where H is the draft of the ship at rest. 

(b) Three streamlines on the ship's hull. The uppermost streamline also 

corresponds to the free surface and thus is identical to the uppermost constant- 
pressure line. The bottom two streamlines correspond to streamlines at a 
depth of 0.5H and H at upstream infinity. 

Since Guilloton's method yields only three streamlines and three constant 
piezometric-head lines, several additional streamlines were interpolated. With 
these results it was possible to obtain the variation of the velocity vector along 

the streamlines as required to permit integration of Eqs. (1)-(3). 

NUMERICAL RESULTS AND DISCUSSION 

The numerical computation was performed on the Hydronautics, Inc. IBM 

1130 computer. Two typical ships, series 60/.60 and series 60/.80 were used 

in the present computation. Five speed-length ratios of 0.75, 0.80, 0.85, 0.90, 
and 0.95 corresponding to Froude numbers 0.224, 0.237, 0.252, 0.268, and 
0.283, respectively, were used for each ship. Each Froude number covers five 
ship lengths — 800, 500, 200, 20, and 5 feet. Typical results of the cross-flow 
angle 8, shape parameter H, and momentum thickness 6, along streamlines 
are shown in Figs. 1 and 2. The cross-flow angles are shown only along the 

stern section of these ships since the results are more reliable there. 

Cooke's criterion is that separation occurs when the cross flow is 90°. It 
is important to note that within the range of present computation no separation 

is found before station 19 for the series 60/.60 ship model as well as its proto- 
type (Fig. 1, for example). However, flow separation occurs at the shoulder of 

series 60/.80 model ships at low Froude numbers in the present calculation 
(Fig. 2, for example). The tendency toward separation at shoulder of a series 
60/.80 ship is stronger for the model ship than that of the prototype; for the 

model ship, separation occurs only near the free surface. It is to be noted that 
the exact potential field near the bow is not known and the initial conditions 

used at station 1/2 are only the first approximations. Thus, the present results 
on separation at the shoulder may at best be considered as indicating the trend. 
The exact prediction is understood to be beyond the scope of the present study. 

The cross-flow angle is larger near the stern of the ship model than that of 
the prototype for both ships of all Froude numbers calculated. Thus, separation 

is more likely for the ship model if it would occur after station 19. The present 

results indicate that the values of 6/L and H at a given station of the ship is much 

larger for the model ship than that of the prototype. 
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As can be seen from Fig. 2, for series 60/.80 ships, the momentum thick- 

ness oscillates considerably along the streamlines, which is due to the effect of 
the large pressure gradient generated by the large waves. 

The average momentum thickness at station 19 of series 60/.60 is shown in 

Fig. 3. There exists a maximum at F = 0.252 at which the wave height is also 
maximum at this station. 

It is to be understood that the present results, like the theories from which 
they are derived, bear only a qualitative resemblance to the complicated real 
situation. Much is to be done in order to develop a reliable theoretical tech- 
nique for predicting the boundary-layer characteristics on ship forms. 

NOTATION 

I Constant forward velocity of the ship 

TO1 z acu) 

v 

1+ £,2 + £,2, where the ship hull y = + f (x,y) 

Shape parameter 

Shape parameter along a flat-plate boundary layer in zero pressure 
gradient 

Ship length 

m/L 

OU/v 

s/L 

Arc lengths along streamline coordinates with s along streamline 
and ¢ normal to the ship surface 

External velocity components parallel to axes x,y,z 

External velocity components parallel to and perpendicular to 
streamlines 

U/c 

U/c 

Resultant velocity in the boundary layer parallel to surface 
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(H) 

v(H) 

re) 

Numerical Solutions 

Cartesian ship coordinates, x forward, y to port, z up 

Angle between limiting streamlines and external streamlines; limit- 
ing value of « at wall 

So [isan 
(H-1)(H+2)uH*1 

Boundary-layer thickness 

Boundary-layer momentum thickness 

Angle between flow direction in the boundary layer and external 
streamlines 

C/L 

Coefficient of viscosity 

Kinematic viscosity 

Density 

Components of the skin friction along and perpendicular to the exter- 

nal streamlines 

9,524 (H = 1.21) (fel) 

0.00307 (H - 1)? 

[2 2) scone] 
Ea yy 
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DISCUSSION 

In his presentation of this contribution, the chairman referred to the re- 
markable agreement between the analytical prediction of J. D. Lin, who had 
preceded Webster and Huang in working on this problem at Hydronautics, and 
the experimental result of S. K. Chow at the University of Iowa, that, if separa- 
tion occurred near a free surface, it would occur farthest forward at a Froude 
number of about 0.25. Also mentioned was the phenomenon of a generation of 
secondary flows in the boundary layer at a wave crest, and resultant separation 
at a depth below the free surface, observed in Chow's experiments. 
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Dr. Wieghardt inquired about the variation of boundary-layer characteris- 
tics around the girth of a section. Reference to Figs. 1 and 2 of the text indi- 
cated that the shape parameter and momentum thickness varied little with depth. 

* * * 
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PANEL DISCUSSION—PROPELLER-HULL 

INTERACTION 

F. H. Todd, Panel Chairman 
Office of Naval Research Branch Office 

London, England 

The chairman, in opening the discussion, pointed out that the subject of 

propeller-ship interaction involved many different aspects of our disciplines. 

A balanced design for a ship needs not just an optimum hull shape from a re- 

sistance point of view and a propeller with the highest open-water efficiency, 

but requires that we have the optimum combination of the two. It is not always 

the case that the best hull and the best open propeller together lead to the best 
combination, this last being a function of the interaction between the propeller 

and the ship, the subject of this panel discussion. 

The chairman went on to outline the principal headings under which the panel 
members might wish to contribute their ideas. The first of these is the wake, 
because a propeller behind the hull is not operating under open-water conditions 

but in the somewhat confused flow field that exists behind the ship and, therefore, 
a knowledge of the wake distribution is an essential factor in the interaction be- 
tween hull and propeller. The second factor is the resistance augment or thrust 
deduction due to the effect of the propeller in accelerating the water ahead of it, 

which can have a number of effects on the hull--it reduces the pressure over the 
stern compared with that in the towed condition, thus increasing the resistance; 
it can cause an increase in the skin friction, because a greater part of the after- 
body is subject to higher-velocity flow; also, by moving any point of separation 

aft, it may result in a decrease of separation resistance, A third heading is the 
propeller performance. Model propellers are standardized in open water, but 

when operating in the wake behind the hull the efficiency is in general different 
from that realized in open water. The variable wake will also induce cavitation 

at an earlier stage than that at which it will occur in open water. The operation of 

the propeller behind the hull also gives rise to propeller forces, Each blade as it 
rotates has a pressure field around it, and as this pressure field passes the hull, 

rudder, or bossings, the varying pressure gives rise to forces both on the pro- 
peller shaft and on the hull surface—forces referred to as bearing forces and 
surface forces, respectively. In addition, the pressure fields are themselves 
varying, due to the effect of the wake, which in turn modifies the transmitted 
forces. These forces can excite hull and shaft vibration, and it is desirable that 

they be kept as small as possible. 

For many of the items mentioned, difficulties arise in applying model re- 

sults to a ship because of scale effect, and Dr. Todd suggested that the panel 

might well discuss our present knowledge on scale effect upon the propulsive 

factors, and the overall problem of extrapolation from model to ship in which 

these factors play a most important part. Other items suitable for attention 

were the effect of fully cavitating propellers on thrust deduction and the relative 
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scale effects on different kinds of appendages. The treatment of the latter in 

different tanks differs quite materially, and leads to anomalous results in the 
predictions of ship powers. 

Lastly, the chairman said it would be interesting to have from panel mem- 
bers their views on what research should be pursued in the future to resolve 

some of these problems and to improve the design of the optimum hull-propeller 

combination. In this connection, he read an extract from a written contribution 
from Professor E. V. Lewis, of the Webb Institute of Naval Architecture (who 
was unable to be present at the Symposium), because it summarized the general 

state of our knowledge and pointed to a definite objective. Professor Lewis 
wrote: 

I would like to pose the following question for discussion at the panel 

meeting: Is it possible to coordinate the design of hull and propulsive 

device in such a way as to obtain a significant advantage in overall 
propulsive efficiency over a good hull with an optimum propeller ? 

Many experts, including the late Professor Burrill, have thought other- 
wise. Professor Horn long ago pointed out the fallacy of "wake gain," 

and aircraft designers have generally striven to put propellers well 

ahead of wing or fuselage. A little-noticed paper by Professor Troost 
in 1957 tends to confirm the negative view by adopting the idea of a 
"substitute propeller.'' As you know, this involves considering a pro- 
peller completely clear of the hull as a standard of comparison. 

Professor Troost's point is simply that what one gains in hull effi- 
ciency, he generally loses in propeller efficiency. Perhaps it would 

be worthwhile to make a broad survey of different types of ships and 

the various relevant factors, such as ship speed, limitations on pro- 
peller diameter and RPM, and thrust requirements, to see if there are 
any circumstances under which one could expect to improve hull effi- 

ciency more than the loss in propeller efficiency. 

Dr. J. P. Breslin (Stevens Institute of Technology) opened the panel meeting 
with an account of theoretical work he had carried out to find the force ona 
cylinder caused by both the loading and thickness effects of a propeller operating 
in a wake, the propeller shaft being parallel to the axis of the cylinder. He 

showed that the force can be simply obtained from the fields induced by the pro- 

peller alone, being due to the sum of the pressures induced by all the loading 
components and by the blade thickness, and he deduced expressions for the total 
pressures and forces arising on the hull. From these it was concluded that the 

dominant contribution to the hull force arises from the (m- 1)th harmonic of the 

wake, where mis the number of blades, and it may be expected that the vertical 
hull force on a ship will be large when the (m - 1)th wake harmonic is large. 

Increasing the tip clearance from 20 to 30% of the propeller diameter only 
reduced the hull force due to the blade loading by 8%, and the larger the hull 
relative to the propeller the less sensitive the force to clearance. The reduction 

of the force due to blade thickness was more responsive to clearance. 

Means for achieving reductions in the hull force will be studied by further 

detailed evaluations of theory. 
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H. Lackenby (British Ship Research Association) said that his organization 

had not been directly involved in work on propeller-hull interaction, but had 

sponsored a great deal of systematic model testing over the years and, of course, 

this had involved the determination of the usual hull interaction factors such as 

wake and thrust deduction fractions, hull efficiency, etc. Some recent tests on a 
very full model of an 0.85 block-coefficient tanker form had shown some very 

interesting trends, which he thought worth reporting to the panel. These re- 
ferred to the effects on the hull factors of systematically varying the longitudinal 
position of the center of buoyancy (LCB) over a range of 0.5% forward of mid- 
ships to 2.5% forward, as shown in Fig. 1. The various hull interaction factors 

are plotted there on a base of longitudinal position of the center of buoyancy. 

The Taylor wake fraction, the second curve from the bottom, stays remarkably 
constant over the range; the bottom curve is the thrust deduction fraction, and 
unlike the wake fraction it is reduced quite significantly in going from 0.5% for- 
ward to 2.5% forward. This is somewhat unusual, because experience generally 
shows that any wake gain is quite often offset by a corresponding disadvantage in 

increased thrust deduction, and the hull efficiency generally remains much the 
same. But not in this case—the wake fraction stays constant, thrust deduction 
fraction goes down, and the effect on the hull efficiency is shown in the top 
curve. As the LCB moves from 0.5% to 2.5% forward, the hull efficiency goes 
from about 1.07 to about 1.22, a change of about 15%. And, of course, this is 
reflected in the quasi-propulsive coefficient, where, in going over that LCB 

range, there is again an increase in QPC of something like 18%. On the other 
hand, the relative rotative efficiency remains sensibly constant. It is a very 
Simple case of some systematic experiments and there is a hull-interaction 

gain of 18% in moving the LCB over that range. Lackenby pointed out that it is 
not roses all the way, however, because as the LCB is moved forward of about 
1.5% the resistance begins to go up, which begins to offset the gain in the pro- 
pulsive effect. The overall effect of LCB, including both the resistance and this 
hull interaction effect, is shown in Fig. 2, where the delivered horsepower co- 
efficient is plotted, again on the same base of LCB position, and it is seen that 
the optimum position of LCB is about 2% forward. The practical V/VL for a 
form of this kind must be around 0.56, and when the LCB gets further than 2% 
forward the curve begins to rise again due to the increase in resistance offsetting 
this very favorable hull interaction effect. Nevertheless, the results are very 

striking, and if we could maintain this very favorable interaction without losing 

out on the resistance side it would be very attractive indeed. 

Professor G. Aertssen (University of Ghent) first gave the results of the 

correlation between the calculated and measured two-node vertical natural hull 
frequency for a large ore-carrier, the Min Seraing, having a length of 218 m 
(715 ft). He had made a voyage on the ship from Chile to Antwerp, in the loaded 

condition, and in very smooth water in the Cape Verde Islands, where the ship 
called, had been able to do an anchor-drop test in deep water. The ship was 
instrumented with strain gages on the main deck amidships, which recorded the 

' stresses and the two-node vertical natural hull frequency. The latter was very 

well defined, and therefore a full integral calculation was made for the two-node 
vertical frequency. The ship length was divided into 115 parts to give a correct 
distribution of hull weights, and the distribution of cargo was also known quite 
accurately. The added mass of water was calculated by the Lewis-Todd method, 
and amounted to 76,912 tons on a loaded displacement of 66,130 tons. A reduc- 
tion factor of 0.97 was applied to the transverse moment of inertia of each 
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section to allow for the effect of shearing stresses on deck and double bottom. 
The iteration necessary in the calculation was carried out on an IBM 360 com- 
puter. The calculated frequency was 45.3 per minute as compared with the 
measured value of 44 per minute. The effect of shear deflection on the total 
deflection was 15%. 

Professor Aertssen's second point dealt with the problem of wake scale 

effects. There has been much discussion about a 1 or 2% reduction of ship rpm 

due to wake scale effect between model and ship. There is some evidence that 
this allowance on rpm is correct for a welded ship of about 200-250 m in length 

with the hull in best trial condition on the measured mile. When, however, the 

power allowance necessary on model-test results increases due to fouling or 
the state of the sea is not calm but moderate, this 1 or 2% allowance on rpm 
may disappear. The fouling is a result, for instance, of the ship going on 

trials (and this occurs frequently) a fortnight or even more after undocking. 

Hull fouling resulted in an increase of wake on the ''Lubumbashi," where thrust 
was carefully measured. Professor Aertssen believed she is the only fouled 
ship where thrust has been measured carefully, and the measurements of thrust 
were good. On the ''Lubumbashi" the wake was deduced from these thrust meas- 

urements, the increase being 0.027 after six months service. The corresponding 

increase in power, due to fouling, was 9%. 

On large ships with high block coefficients, a substantial scale effect on 
wake has been found. The ore-carrier "Min Seraing,"’ 218 m in length, with a 
block coefficient of 0.80 in loaded condition, at a speed of 16.5 knots at sea in 
the newly built condition, had a wake of 0.345 for the ship as compared with 
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0.398 for the model, which results in a value of 0.92 for the ratio (1 - W,,)/(1 - W,). 
In ballast condition, the wake on the ship was 0.335. Unfortunately, the model test 

did not allow the wake to be estimated in the ballast condition. 

Dr. Ing. A. Melodia (Cantieri Navali del Tirreno e Riuniti, Genoa) proposed 

a criterion for the analysis of the performance of a propeller behind a hull. The 
classical methods for the analysis of the performance of the propeller behind a 

hull follow two different criteria: the thrust identity and the torque identity. Such 
an analysis required the introduction of the relative rotative efficiency concept 
and gives different results for both wake and propeller efficiency. In consequence, 
the analysis gives different values for the relative rotative efficiency too. In order 
to eliminate the ambiguity of analysis, it is usual to assume as wake value the 
arithmetic mean of the values resulting from the application of the two different 

criteria. 

Dr. Melodia, for many years (see Papers of the Collegio degli Ingegneri 
Navali e Meccanici, Genoa 1954), had adopted for the study of propeller perform- 

ance a criterion of analysis which eliminates the ambiguity of the relative rota- 
tive efficiency by introducing the concept of the relation of tangential wake to the 
number of propeller revolutions, a concept which is similar, physically, to the 

one of relating axial wake to speed of advance. 

Assuming that the operating point of the propeller is the one for which the 
same power corresponds to the same generated thrust, the comparison coeffi- 

cient between open and behind propeller is no longer either K, or K,, but the 

K, coefficient, given from the relation 

K, SK 87K (27/75) 'S3)\/eD?P? 

As kK, is independent both of the propeller revolutions and the advance speed, 

entering into open-water propeller diagrams with the K, value, determined by 

self-propulsion tests, gives the corresponding values of J, and »,, by which it 

is possible to calculate the axial wake factor 

(1 ae Wo) ia Vo/V ’ 

the tangential wake factor 

(1%=5 ug) = no Ais 
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the advance speed 

Vo = 75 7P/S , 

and the effective revolutions 

No = Vo/Jo D 4 

The fundamental efficiencies equation is thus satisfied without the necessity of 
any corrective factor: 

1-t _ __75RV = —RV/75  _ ehp 

TOR I9S soy 88S S¥8 A789, dp 1 - wo 

Two typical examples of the practical application of simultaneous thrust and 
power identity criteria are presented in Fig. 3. In the first example, the case 
of a central propeller, the axial wake factor obtained has a lower value than that 
obtained by applying either the thrust identity or the torque identity criteria. 

The tangential wake factor is slightly less than unity. 

In the second example, which refers to the case of propulsion with two 

lateral propellers (outward-rotating), the axial wake factor, on the contrary, is 
higher than those determined by the two classical identity criteria, while the 
tangential wake factor is slightly higher than unity. 

As this result recurs qualitatively for all the cases examined, it seems 

possible to reach the conclusion that the overall inflow to the propeller is en- 

dowed with a rotating component in the same direction as the propeller in the 

central-propeller case and with a rotating component in the opposite direction 

to the propeller in the outward-rotating lateral-propeller case. In this regard, 

it may be observed that, independent of the identity criterion adopted, it is es- 

sential that the available open-water tests are carried out at a Reynolds number 
high enough to ensure that the performance of the propeller is surely turbulent 

and, therefore, comparable with the behind flow. If this is not so, it is advis- 
able to correct the open results by the well-known Lerbs method (J.A.S.N.E. 
1951). As the application of this method implies, at equal advance coefficient, 
a reduction of the torque coefficient, while the thrust coefficient remains 
practically unchanged, the Ky, coefficient will be too high. 

To sum up, both the Jy and J 4 advance coefficients would tend to approach 

to the intermediate J, value in the central-propeller case, while in the lateral- 
propeller case they would both tend to move away from the J, value. 

Therefore it seems that if the analysis is carried out with open-water dia- 

grams deduced from turbulent-flow tests (or corrected for turbulent flow), 

instead of with diagrams deduced from experiments in flow which is not en- 
tirely turbulent, the rotating component in the inflow would be of a lower in- 
tensity in the central-propeller case and of a higher intensity in the lateral, 

outward-turning-propeller case. A possible explanation of this different be- 

havior may be the following: For a central propeller it is possible to consider 

the inflow as divided into two equal symmetrical fields; for a lateral propeller, 
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Fig. 3 - Application of simultaneous thrust and 
power identity criteria. See text 

however, this possibility does not exist, because of the asymmetric position of 

the propeller with respect to the hull. 

The application of the thrust and power identity criteria of analysis allows 

one to point out, and to evaluate the intensity of, the rotating inflow component 

and therefore to have a more complete knowledge of the action which the hull 

and its appendages exercise on the propeller performance, 
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Professor J. D. van Manen (Netherlands Ship Model Basin) discussed the 

effects of cavitation on propeller-hull interaction, a subject on which he said very 

little is known, It is certain, however, that the change in the chord-wise pres- 

sure distribution on the propeller blade with cavitation will have a marked effect 

on the propeller-hull interaction factors as we determine them now in our con- 
ventional towing tanks, on the surface forces, and on the bending moments on the 
propeller shaft. Dr. van Manen said that one of the very few publications on the 

subject is from Russia, and was reported at the International Towing Tank Con- 

ference in London in 1963, which showed that in a towing tank with a ventilated 
propeller the thrust deduction was reduced by 50%. That would mean for big 

tankers a reduction in thrust deduction factor of 50% due to the effect of cavita- 
tion and about 10% change in power. That would be a very important effect in 
all our correlation thinking, and maybe if we have to test in the near future 

500,000-ton tankers and have no experience to predict the power to install in the 

ship to get the speed, it might mean a mistake of about 6,000 horsepower, which 
is not too nice for the shipyard that has to build that ship. Dr. Todd asked Pro- 

fessor van Manen if he meant that there could be a 50% change in thrust deduc- 
tion factor on a large tanker? Professor van Manen said that that was his esti- 
mate, but it could be wrong. If the thrust deduction measured without cavitation 

was 0.2, it would come down to perhaps 0.1. In addition to the effects of cavita- 
tion on thrust deduction, on correlation, on power prediction, on blade-spindle 
torque, and thus on the bending moments in the shafts, there is another aspect. 
If a conventional propeller and a ducted propeller, or a contrarotating propeller, 

are tested in a towing tank we may come to the conclusion that there is an im- 
provement with the ducted propeller, but it might be that the effect of cavitation 
in one propeller type is quite different from that in another propeller type. It 

can be expected that the effect of cavitation on thrust deduction in a conventional 

propeller is larger than in a ducted propeller. That means that the reduction in 
the required shaft horsepower for the ducted propeller would be smaller, due to 

the effect of cavitation, which we neglect in our present towing tanks. Professor 

van Manen was of the opinion that there is a very great need for evacuated or 
reduced-pressure towing tanks and said that the preliminary design for sucha 

facility at the NSMB was ready and the money problem informally already solved. 
In the design of an evacuated towing tank it is necessary to start with the model 

propeller, which cannot have a diameter less than 24 cm. This means that for 

the very big tankers the models will be 12 m or more in length. With such 
models a very big tank is needed, for instance, 175 m long, 18 m wide, and 8 m 
in depth. This is the line being considered at NSMB at this moment. Professor 
van Manen also referred to the small reaction to E. V. Lewis' remarks in his 
contribution about optimum hull, optimum propeller, and now the optimum hull 
and propeller combination, as read out by the chairman. In the last two years 
NSMB had adopted the duct design to nonuniform flow. That is normally done 

with the conventional propeller, too, but with the ducted propeller there is a 

chance to adopt the duct to the flow direction. There is an upward flow at the 

stern, and if the duct is designed in such a way that the flow into the propeller 
is horizontal, that means a lot to the propeller efficiency, and for a ducted pro- 
peller it is always favorable to change the stern shape to achieve such flow. 
With such a flow-directed nozzle, giving horizontal flow at the stern, NSMB suc- 
ceeded in the case of three tankers in getting the same shaft horsepower reduc- 

tion as for the Hogner stern, some 8-10%. Another example of the use of these 
ducted propellers might be with inclined shafts, where the control of the flow 
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with a pumpjet or ducted propeller might be very important for delaying the 

inception of cavitation. 

Dr. M. Kinoshita (Hitachi Shipbuilding and Engineering Co, Ltd.) had some 

remarks to make on H. Lackenby's statement about the effect of LCB position on 

ship power. He understood from Lackenby's report that the position of the longi- 
tudinal center of buoyancy must be chosen as far forward from the midship sec- 

tion as possible as far as propeller interaction factors and vibration problems 

are concerned. He felt quite agreeable to this opinion so long as the ships' sizes 
and speeds are moderate. But as regards very large tankers, with a deadweight 
of more than 200,000 tons, the conditions change, and he hesitated to agree with 
this conclusion, and would like to recommend to designers of such large tankers 
selection of a longitudinal position of center of buoyancy not so far forward. The 

reason for such hesitation is that recently there have been occasions, on the 

speed trials of large oil tankers with a deadweight of more than 200,000 tons, 
when the measured speed has fallen short of the value predicted from the model 

experiments. Since the beginning of this year his company had started a very 

productive study to solve the probable difficulties to be encountered in the 

course of designing and building a large tanker with a deadweight of 400,000 
tons. In these studies, the problem of discrepancies between the results of tank 
experiments and the results of speed trials is included as one of the important 

items, and has been carried out under Dr. Kinoshita's supervision. As to the 
cause of these discrepancies, we must examine both sides— model-experiment 
and sea-trial. In his personal opinion, however, the latter must be examined 
more carefully, and he considered that there were three main causes for these 
discrepancies. One of the three is concerned with the matter which Lackenby 

pointed out. In consequence of the expansion of the ship size, the length in- 

creases but the speed of tankers has kept nearly constant, so that the optimum 
longitudinal position of the center of buoyancy has a tendency to be chosen more 

and more ahead of midships, as he recommended. Furthermore, the value of 
the L/B ratio has become smaller and smaller and finally has reached a value 
less than 6.0. All of these above-mentioned factors lead to the so-called 
Kempf phenomenon, not only on a straight course during a service voyage but 

also at the important time of the speed trials. Dr. Kempf's phenomenon is the 

small yawing, long-period, snake action of the ship under straight-course sail- 

ing, which leads to increased resistance. It also happens sometimes—not always, 
but sometimes—that the ship loses its course stability slightly, and even on the 

maiden voyage of such newly built large tankers the expected speed cannot 

always be obtained for such ships. The ship designers also have a tendency to 
make the stern aperture and cut-up as large as possible for such tankers with 
large values of block coefficient to avoid vibration problems and to get a smaller 

value of thrust deduction, and this further reduces the course stability. In con- 
clusion, Dr. Kinoshita emphasized that for all these very, very large vessels the 
location of the longitudinal position of center of buoyancy must be chosen care- 
fully, not only from the point of view of the tank tests, but also to keep good 

course stability features. 

Professor C. W. Prohaska (Hydro- og Aerodynamisk Laboratorium, Denmark) 
said that H. Lackenby had shown a most interesting diagram, from which it ap- 

peared that the position of the LCB had an enormous, and in some respects 
rather unexpected, influence on some of the propulsion factors, Professor Pro- 

haska pointed out that this result necessarily must be a function of the method 
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of analysis used by the British tanks, and wondered if the Danish tank on the 
same set of experiments would have got the same results--he was positive that 

they would not. At HyA, they used for model-ship correlation a combination of 

the Hughes’ method of extrapolation of the viscous resistance, together with a 

wake scale-effect allowance. In using this combination, they got, they believed, 

more constant C, values than could be obtained by any other method. With 
respect to ship size and ship type, loaded or light condition, they could use the 

same value of C, for ship predictions and believed that they obtained good re- 
sults. If this method had been used for the analysis of the experiments made 
by the British tank, then the results probably would have looked different. This 
is because a change of LCB position from 0.5 to 2.5% forward certainly will in- 
fluence the form effect, the factor (1 + k), and if that is taken into account, the 
thrust deduction figures will be completely changed and probably would not have 

the trend shown in the figure. This is mentioned here, not as a criticism of 

Lackenby's contribution, which obviously is very valuable and which will be 

studied with great interest, but just to point out that we must, in our profes- 
sion, be very careful when comparing results from other tanks, because they 
have been analyzed and arrived at in quite different ways. And, unless the raw 
figures are available for the actual model resistance and thrust, etc., and all 
details about the loading of the propeller during the measurements, it is not 

possible to compare them. One brief remark also on the figures given by 
Professor Aertssen, who gave some results for a special case where he 
showed the presence of wake scale effect. The Danish tank could give a very 

great number of these from all the trial trips that have been performed, and, 
generally, for a new ship of average size compared with a model of normal 
size, say, 7 m, wake scale effects of the order of 0.10-0.12 are obtained. These 
figures are largely in excess of those shown by Professor Aertssen, and they 
are found both for loaded and for light conditions, but not necessarily the same 
in each condition. They should be substantiated on trial trips wherever possi- 
ble, when horsepower and revolutions are determined accurately. However, 
one must remember that the wake scale effect on the trial trip is there on that 

day but disappears after a period of time. It will decrease with time—it will 

even become negative--and an original wake scale effect of say 0.12 might, 
after five years, have changed to -0.05, a total change of 0.17 in-wake. This 

will occur with a ship which has been regularly docked and cleaned, and is only 

due to deterioration of the hull. It is thus necessary to distinguish between the 
wake scale effect for a new ship and for an old ship. Also, for a new ship, there 

will, of course, be cost differences according to the paint applied. 

V. F. Bavin (Kryloff Shipbuilding Research Institute, Leningrad) commented 
on the remarks by Dr. van Manen, in which he had made reference to the Rus- 
sian work presented at the London ITTC Meeting, and suggested that a reduction 

of about 50% in thrust deduction factor would be possible for a large tanker. 
Bavin did not think that this would be so, because the influence of cavitation on 
thrust deduction factor was due to the cavity thickness effect, and he did not be- 
lieve that supercavitating propellers would be used on super-tankers, even in 

the future. So the reduction, if any is possible, will be much less. The second 
point Bavin discussed was concerned with wake-adapted nozzles. In his insti- 
tution, also, experiments have been made with such nozzles and a reduction of 
bending moment on the blade of the propeller of about 200% was found, i.e., it 
became about one-third of that with the propeller operating in a conventional 
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nozZle for a single-screw ship. There was also a reduction in thrust deduction 

fraction with the propeller operating in the wake adapted nozzle. 

Dr. J. W. English (National Physical Laboratory, England) referred to the 
remarks of H. Lackenby and the comments on them by Professor Kinoshita and 

Professor Prohaska. An NPL tanker model has confirmed Professor Kino- 
shita's remarks about directional stability and at the same time refutes the re- 
marks of Professor Prohaska regarding the British method of analysis. This 
particular tanker had its LCB well forward and it was directionally unstable, 

but it is believed that there is a physical explanation of why a large hull effi- 
ciency was obtained in this case. Like all modern tankers, it had a very large 

beam/draft ratio and at the stern the flow outside the boundary layer was pre- 

dominantly upwards. This had the effect of turning the inner boundary layer 

upwards at the outside, and in fact, as has been pointed out at the last ITTC, 
swirling areas of flow can be seen, It is probably incorrect to call them 

vortices. Rather, they are a collection of the boundary-layer material from 

further upstream which is passed through the stern in the vicinity of the pro- 

peller disk. As a consequence of this, the wake is abnormally high and, one 
ends up with a high hull efficiency. The flow has now been studied by five-hole 
Warden tubes and flow visualization tuft techniques, etc., and the flow clearly 
has a downward component near the center line and an upward one further out. 

Dr. Todd reminded Dr. English that he wished to comment upon Professor 
Prohaska's remarks about the method of analysis. Dr. English said that Pro- 
fessor Prohaska had implied that the methods of analysis used in British tanks 
gave different results, but he did not believe this to be true. There is a large 

wake fraction, there is a large hull efficiency, what Lackenby has shown is 
correct, and there is a physical explanation for them. 

H. P. Rader (Hamburg Model Basin, Germany) described some work being 

done for the ITTC Cavitation Committee. The wake scale effect has not only 

a great bearing on the scaling of the shaft speed, but also on the local wake dis- 
tribution for determining the cavitation patterns and the effect of the latter on 
thrust and torque variations in a nonuniform velocity field. Now, there are two 
ways of studying this effect. One is to consider it as a boundary-layer problem, 
and the other is to consider it as a wake problem far behind the ship. In be- 

tween, one can interpolate (or make some guesses) with a polynomial of high 

order. It can be assumed that an essential part of the wake of model and ship 

consists of boundary-layer material which has been subjected to a pressure in- 
crease. Velocity distributions in accelerated and retarded turbulent flows can 
be described to a good approximation by the universal relation 

ipitaert a 
where 

u = the local velocity inside the boundary layer, 

U = the undisturbed velocity outside the boundary layer, 

y = the distance from the wall, 
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and 

5 = the thickness of the boundary layer measured to the point where 

u = 0,99U. 

The power coefficient n depends on the pressure gradient or on a form 

factor H,,, which is the ratio between the displacement thickness 5, and mo- 
mentum thickness 5, of the boundary layer, where 5,/5, = (2+n)/n. The 
thickness of the boundary layer can be calculated approximately by the relation 

_ (S 
§ =0 Rno-2 , (2) 

where 

¢ = the length of the boundary flow, 

C = a constant depending on the pressure gradient or on the form 

factor H,,, 

and 

Rn = the Reynolds number (U/», 

For the flat plate without pressure gradient, n is about 7, and C is about 
0.37. Substituting the value of 6 in the first expression, 

u.(2 mr) 1/n 

U f.+C 

Using the subscripts M and S for the model and ship, respectively, an 
equation like this can be written for model and ship. Usually, n will be a little 
larger on the full scale, and little is known about the values of G, and Cs. As- 
suming that n and C are the same for model and ship, then approximately the 

velocity ratios at equal relative positions y/? in the propeller plane of ship and 

model are related as follows: 

By Froude's relation, Rng/ Rny = \3/2, where » is the scale ratio between 
ship and model, so that 

0.3/ny 

For a flat plate, if n is 7 and the scale ratio \ is 30, the value of the ratio 
ug / Uy is 1.16; for \ equal to 40, it is 1.17. If n is less than 7 (say, 5) these 
ratios become 1.23 and 1.25. 

The program for the cavitation committee is to do a test first in the uncor- 

rected wake field and then to determine the value of n from a model test at 
various water lines and correct the wake field for the scale ratio. The new 

wake field would then be simulated in the cavitation tunnel and the cavitation 

pattern studied. The same methods will be used to calculate the thrust and 
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torque fluctuations, and it is hoped to report about this in a year's time, when 
the ITTC meets in Rome in 1969. This relation, of course, holds only as long 
as u, /U, is smaller than unity. This means also that the foregoing observa- 

tions do not allow any direct conclusions regarding the scale effect on the volu- 
metric mean value of the wake. But this can be easily obtained by integrating 

over the disk area. 

If the scale effect is considered as a wake problem, it is found that the maxi- 

mum wake behind a strut or shaft bracket on the ship is approximately equal to 

the maximum wake on the model, which can be measured, times the ratio of the 
drag coefficient C,, for the ship appendage to the drag coefficient C,,, of the 

model appendage, to the power of 1/2. This is shown in books on boundary-layer 

theory, such as Vol. 3 of Durand's ''Aerodynamic Theory" in Division G— The 
Mechanics of Viscous Fluids. Now, this would not be very serious if the two 
drag coefficients had near enough the same value, but it can happen that the 
Reynolds number of the model appendage is of the order of 8 x 10* and the Reyn- 
olds number of the ship appendage may be about 10°. For a shaft strut witha 

- thickness-chord ratio of 20% (which is a little high, perhaps) the drag coefficient 
of the model strut could be 0.07 and the drag coefficient of the full-scale strut 
about 0.01, which means a ratio of seven to one. The appendage drag is thus 
very sensitive to scale effect, and is very often overestimated. (This is a very 

important matter and the effects can be estimated from the diagrams given in 

Figs. 4 and 5.) 

The chairman announced that there were no other written contributions whose 

authors were present and declared the meeting open for anyone to talk about any 

aspect of propeller-hull interaction. He was sure that many questions in this 

field had come up in the past, and here was an opportunity to voice them and 

hear what other people think about them. 

H. B. Lindgren (The Swedish Tank, Gothenburg) said he would like to come 

back once more to the question raised by Dr. van Manen a while ago dealing with, 

in his opinion, the very important question of the possible scale effect on the thrust 
deduction factor. His reaction was very similar to the one previously expressed 

by Bavin. He had a strong feeling that Dr. van Manen must have overestimated 
the importance of this question. In this connection, he did not think it necessary 

to build such an extremely big new cavitation laboratory to find the solution to 

this problem. In Gothenburg they were just now finishing a new cavitation tunnel 
in which it was possible to install a complete ship model of a little more than 8 

m in length, and in that it will be possible to study the propeller effects behind 

this big ship model. The Swedish Tank has been carrying out tests for a long 
while with models in the existing cavitation laboratory, and if there were such 
very big influences of cavitation on the thrust deduction factor, Lindgren was 
quite sure that they would have been detected when carrying out those experi- 

ments, because they were made under atmospheric pressure as well as under 

cavitating conditions. 

The chairman believed that there was still a lot of vagueness about the thrust 

deduction. A great deal of model work done in the past has had very contradictory 

findings. The work on the Victory ship models at the Wageningen Tank showed a 

very large scale effect on thrust deduction t, increasing quite materially and 
rapidly with increase in size of model, and this continued right up to the 72-ft 
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Fig. 4- Data on sectional drag (at ~ zero lift) of streamline foil- and strut- 
sections. Many of the experimental results are obtained by wake-survey 
technique; in others, drag of blunt wing tips has been subtracted from the 
original values. Drag coefficients at subcritical R' numbers are as indi- 
cated by equation 24 (using C, = 2.66 VR); at very high R' numbers as 
given by equation 28 (using C, as indicated by the Schoenherr equation in 

Chapter II) 

"ship'' which they built. The U.S. Navy found almost exactly the same rate of in- 
crease of t in the case of submarine Albacore. The Germans have run tests on 
a series of tanker models and they again found an increase in t with size. On 
the other hand, the Series-60 Models that were run at the Taylor Model Basin 
were later repeated at the Michigan tank on a smaller scale, and in this case the 

opposite effect was found — the bigger model had a smaller thrust deduction 

coefficient. He believed that something should be done about this question and in- 

vited any thoughts or opinions on the situation. 

Dr. W. B. Morgan (Naval Ship Research and Development Center) also.made 
a brief remark about the comments by van Manen. So far, only one paper had 
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Fig. 5 - Selected results on the drag of rotationally symmetric bodies 
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been referred to on this problem, but he knew of at least five. In 1955 there was 
a Symposium held in Russia on ship hydrodynamics at which Bavin contributed 

two articles. These are quite extensive, one giving the theoretical treatment of 

the problem, the other the experimental. These were both very good pieces of 
work. Also, research has been done at the Naval Ship Research and Develop- 

ment Center by Beveridge on thrust deduction with a fully cavitating propeller, 
and by Nelson at Naval Weapons Center. It seems very clear with the fully 

cavitating propeller, at least, that the apparent change in thrust deduction is 

due to the increase in cavity size. It acts like a thickness effect, and there is 
some retarding of the flow ahead of the propeller. Dr. Morgan found it difficult 
to believe that the small amount of cavitation probably present on a large tanker 

would have such a big effect as stated by Dr. van Manen. 

Dr. Morgan next referred to scale effect on propeller efficiency. The usual 

procedure for making powering predictions is to assume that the propeller ef- 
ficiency does not change between model and full scale. This is obviously incor- 

rect and does affect the magnitude of the correlation factors as well as giving a 
scale effect on rpm. The statement is made without regard to whether or not 
the flow is turbulent. For the blade sections normally used on propellers and 

for the conditions for which they normally operate, the viscous drag is for all 
practical purposes all frictional drag, i.e., no form drag. It would be expected 
for the usual condition that the frictional drag of the full-scale propeller would 
be about one-half that of the model which would lead to efficiency changes of be- 

tween 4 and 8%, depending on the particular conditions. This difference in drag 
could be greater if the Reynolds number is low and if the flow remains turbulent. 
It would seem reasonable to include the changes in propeller performance, be- 
cause of frictional drag, in our prediction procedures. Theoretical calculation 

methods should be sufficient for this purpose, although confirming experimental 

results are needed. 

In regard to thrust deduction, Dr. Morgan felt that the discussion of any 
substantial scale effect on thrust deduction should be dismissed in the light of 
recent work by Beveridge at the Naval Ship Research and Development Center. 
In this regard, it is necessary to remember that thrust deduction is the differ- 

ence between two large numbers and subject to considerable error. It has been 
possible to calculate the thrust deduction quite accurately on a body of revolu- 

tion and a slow-speed cargo ship (the Simon Bolivar). The results of the calcu- 

lations are shown in the following table. 
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Potential Frictional Total Measured 

t t t (3 

Body of revolution 0.069 0.015 0.084 0.09 

Body of revolution 0.159 0.015 0.174 0.15 
(with appendages) 

Simon Bolivar 0.232 0.015 0.247 0.24 

It was his contention that since the thrust deduction can be calculated with 
such good accuracy there can be little scale effect on thrust deduction per se. 

Since most of the thrust deduction comes from the potential part of the problem, 
the scale effect must be small as only the frictional part can be affected. This 
is assuming, of course, that the propeller loading on the model is the same as 

the full-scale loading. 

Apparent scale effect on thrust deduction could arise if the radial loading 

of the propeller is radically different between model and full scale or if the 

propeller action changes the separation point at the ship stern or the ship trim. 

The loading effect could come about by differences in the radial wake distribu- 

tions. Calculations show that the radial load on the propeller can affect the 

thrust deduction to some extent. However, this effect is not large and in any 
case, it is not a true scale effect on thrust deduction. Also, changes in ship re- 
sistance by change in separation point or trim, even though the effect could be 
large, should be considered more rationally and not lumped in as part of the 

thrust deduction. 

The chairman asked if these calculated values of t were done for the model 
size. Dr. Morgan said they were all model values. Similar calculations could 
be done for the full scale if it were possible to measure the full scale wake. 
What are called scale effects are really indications that there is something 

going on that is not understood. 

Dr. M. Schmiechen (Berlin Towing Tank, West Berlin) said he had actually 

touched on this problem that morning and had given a set of equations for the 
thrust deduction in terms of thrust loading, wake ratio, which is the ratio of the 
total wake to the frictional wake, and the known uniformity of the propeller jet. 
This set of equations was derived upon the assumption that the frictional thrust 
deduction is zero. The work is based on that of Dickman, which is apparently 

completely forgotten (and is not even mentioned in the new Principles of Naval 

Architecture). In 1939 he presented a paper on this subject, but in his work 

there was a slip, and Dr. Schmiechen had tried to find out what the error was 

and so come up with the proper set of equations by putting the frictional com- 
ponent equal to zero, and saying that the thrust deduction is a function of the 
thrust loading, of the wake ratio and the known uniform thrust of the propeller 

jet. 

L. A. Van Gunsteren (Lips Propeller Works, Holland) referred to Lind- 
gren's earlier remarks, in which he said that the Swedish tank was building a 

test facility for models of 8 m in length. Van Gunsteren pointed out that that 
was about the length of the models employed at the NSMB. For the large tankers 
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his firm had made quite a few propellers weighing about 50 tons and costing 

$120,000, a serious matter for the customers. They found lower efficiencies 
with these very large ships and also that the propellers had a lower efficiency 

in the tank compared with the computer design. Tests at the NSMB at different 

Reynolds numbers showed that this effect could be fully explained by the low 
Reynolds number at which the propellers were tested in open water. Van Gun- 

steren believed that the ship models were too short for the large tankers, and 
that to get a correct prediction the model must be certainly larger than 8 m, 
giving a scale ratio of more than 1 to 50 for the propeller. 

Lindgren agreed that this was a problem and also with the need of higher 
Reynolds numbers for the big tanker models. The philosophy at Gothenburg was 

that with the new cavitation laboratory it will be possible to study the influence 

of Reynolds number up to appreciably higher values than at present because 

there will be no free water level in the cavitation tunnel. On the other hand, he 
would like to know a little more about what Van Gunsteren meant about this scale 
effect due to low Reynolds number. Did he mean that laminar separation is 

present when carrying out propulsion experiments or does he mean that :aminar 

flow occurs around the propeller profile? What was his hypothesis ? 

Van Gunsteren replied that conditions are under-critical if there is laminar 

flow at the root sections, and referred to a diagram given in the famous work of 
Troost, Van Lammeren, and Van Manen. Dr. Gutsche proposed a critical Reyn- 

olds number based on propeller diameter and revolutions. If the propellers for 

models of very large tankers are plotted in this diagram, it will be found that 
they are in the region where, based on this Reynolds number, the flow is going 

from turbulent to laminar. So the propellers are in the under-critical condition. 
Moreover, the effect is not the same for all types of propellers. If another kind 

of section or a different type of propeller is used, open water tests in sucha 

critical range may show that one propeller is better than another, while behind 

a ship both propellers might be equal or the relative efficiencies may even be 

reversed. 

Lindgren said that the Gutsche under-critical Reynolds number means that 

there is laminar separation on the profiles and is related to the performance in 

homogeneous flow in the open-water condition. He did not think that the Reyn- 

olds number in the open condition could be compared with that calculated using 

the wake fraction in the behind condition. They are operating in quite another 
degree of turbulence. What that really means is not known but it must have a 

very marked influence on the performance. 

Dr. Morgan wished to make one point about the scale or Reynolds number ef- 

fect on propellers. There seemed to be some confusion here and it might be as 

well to point out that the work that Gutsche did for propellers in uniform flow 

does not apply to the entirely different conditions behind the model. The friction 
coefficient variation with Reynolds number is something like that shown in Fig. 6 
with a transition from laminar to turbulent flow. This transition on a propeller 

blade of airfoil section is roughly about 5 x 105 at 0.7 radius. However, if the 
propeller is operating in turbulent flow or is rough, it falls upon the upper tur- 

bulent line. The friction coefficients on model propeller blades may be three 

times higher than those on the full scale, and it is necessary to be very careful 

in analyzing the data when comparing different propellers. Such a problem was 
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met with in work done some years ago at NSRDC on the model of the tanker Man- 
hattan when trying to compare a nine-bladed propeller with a five-bladed pro- 

peller of roughly the same blade-area ratio. The Reynolds number of the nine- 

bladed propeller was about 1.5 x 10°, and that of the five-bladed propeller was 
about 5.0 x 10°. It is clear from Fig. 6 that this would give rise to a consider- 
able difference in the performance, whereas at full scale both propellers op- 

erate in the rather flat area and should not show any significant difference. 
Actually the comparison between the five-bladed and the nine-bladed models 

would indicate that the nine-bladed was not as efficient relatively as it actually 

would be full scale. Dr. Morgan came upon this problem when he was well along 

in developing a design technique for propellers. He discovered that on a couple 

of propellers, especially the nine-bladed, the performance was not as expected, 

and the theory did not match the experiment results. In the theoretical calcula- 

tions it was assumed that the drag coefficient was 0.008, but reference to airfoil 
data showed that the drag coefficient in fully turbulent flow would have been 

0.012, or 50% higher. By assuming this value, the theoretical and experimental 

results matched on the model, but the difficulty is to know whether the flow is 
fully turbulent, and this is a very important point in doing analysis. 

Lackenby made a brief reply to Dr. Kinoshita, Professor Prohaska, and Dr. 
English. In regard to Dr. Kinoshita's remarks, he pointed out that the results 

given were essentially a resistance and propulsion investigation on a methodical 

series, and he agreed entirely that if these results were used on an actual de- 
sign there might well be restraints on the movements of the LCB due to vibra- 
tion and directional stability considerations. As to how this sort of behavior 

might apply to very large tankers, this work was done some time ago and was 

aimed at a tanker of about 75,000 tons. Certainly in a 250,000 tonner, the pro- 
peller today would be proportionally less in diameter in relation to the draft and 
the behavior might be somewhat different. Again, of course, as time goes on, the 

tendency will be to have slower-rotating propellers of much bigger diameter, 
but this trend may not be sufficient to overcome the effects just mentioned. In 
regard to the question of loading, raised by Professor Prohaska, the same load- 

ing was used throughout all the five model tests. In Lackenby's opinion, the 
peculiar changes with LCB position were a function of the shape of the sections. 
Some other results for a model of the same block coefficient of 0.85 in which a 
somewhat similar variation in LCB position was made, but where the section 
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shapes were different, showed that there was practically no change in hull effi- 
ciency as the LCB moved forward, while in a third model the hull efficiency 

decreased slightly. All these models were analyzed in the same way and 
Lackenby believed that the changes are essentially an effect of the ship form 

and the propeller interaction. 

Dr. Todd recalled that in the analysis of the Series-60 models some pe- 
culiar shapes were found for some of these propulsion factor curves, which it 

was not possible to explain in a logical way. 

J. Leaper (Admiralty Research Laboratory, Teddington, England) said that 
this propeller-hull interaction was not his specialty, but until Dr. Morgan spoke 

he had been very surprised by the complete absence of any mention of attempts 

to predict these factors theoretically, because it would seem that such a capa- 

bility would be useful in itself and could possibly give an understanding of scale 

effects at the same time. The panel would be interested to know that at ARL 

one of his colleagues had started a program to compare theoretical predictions 

of hull efficiency elements with experimental measurements, Initially these 

experiments deal with a series of axisymmetrical hulls and behind the hull he 

has a simulated propulsion unit. He can also vary the actual spacing between 

hull and propulsor. This work is going to be done in a large wind tunnel, and 
he is going to measure drag, pressure distribution on the hull, pressure distri- 

bution on his simulated propulsor, and the mass flow through the propulsor. 
The measurements will be made on quite a series of hull shapes that have been 

theoretically derived. Some account will also be taken of the viscous effects 

and the boundary layer. The hope is that if these experiments on a wide range 
of body shapes give good agreement with theory, then an effort will be made to 
extend the theory to the case of the nonaxisymmetric body. Even if the theory 
is not confirmed, the work should show in what respect it is deficient, and in 

any case it will give a fairly large amount of systematic data. 

Dr. Schmiechen said that the last speaker mentioned that naval architects 

had never considered the case of the theoretical prediction of t. He disagreed, 

and pointed out that a lot of work in this field had been done by the Berlin School 
under Professor Horn and Professor Dickman, and then by Professor Amtsberg 
and his pupils, the last work appearing from this school being that by Novaki. 

This research has covered a great many of the problems previously mentioned. 
Dr. Todd also pointed out that a great deal of work had been done on this sub- 
ject by many people. A number of problems had been uncovered in the discus- 
sion, and a number of suggestions had been made as to what might be done to 
solve some of them in the future. He believed that at the ATTC Meeting in 
Ottawa in June a proposal was discussed to build an 80-ft craft -- call it a model 

or a ship — in order to get some line on the scale effect on wake and thrust de- 
duction and other propulsion factors. Such a proposal has been discussed many 

times at Taylor Model Basin and by BSRA, but it has never got far because of 
expense. Dr. Todd said he had been one of the people who have for years advo- 

cated such full-scale trials, but he did not feel enthusiastic about an 80-ft model 
because he believed at the end it would still be necessary to run a fairly large 

ship. A 72-ft Victory model had been made at Wageningen and a 75-ft model of 
a tanker in Germany, and although they extended the geosim range quite appre- 
ciably, they probably created as many or more problems than they solved. In 

the Wageningen work, for instance, considering the range from the small models 
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of (1/50)-th scale of the Victory ship up to the size normally used in a towing 
tank — say, 23 ft - there is not too much wrong with the pattern. In fact, it is the 

75-ft craft that really leads things astray. So he did not know whether a model 
of that length would really solve the problems. We had a feeling that, if we built 
it and spent a lot of money in testing it, when we were finished the experiments 
we would feel the need to extend them to a full-scale ship. It's a question of 

whether such an intermediate one is really worth the money. It is a remarkable 

fact that in all the history of ship research there has never been a good and 

comprehensive set of full-scale data. The nearest approach was the BSRA tests 

on the Lucy Ashton, but although they gave probably the most reliable resistance 
measurements ever made on a ship, the fact that the ship could not be propelled 

meant that no information was obtained about scale effects on the propulsion 

factors. The money that BSRA put into the Lucy Ashton provided an end spot on 

a geosim series, but in fact all that was really obtained was a roughness allow- 
ance for the Lucy Ashton with different hull surfaces, without any information on 

propulsion problems. This is in strange contrast to the money that is spent on 

other forms of transport, such as aircraft or hovercraft. It is strange that ever 

since powered ships were built there has never been a single vessel devoted 
solely to research, in which all the model tests could be repeated full scale. In- 

stead, we have to put up with a few odd hours that some generous and forward- 
looking shipowner is willing to provide. Perhaps the main lesson to be learned 
from this panel discussion is the need for full-scale trials to investigate the 

problems of propeller-hull interaction. 

Rader mentioned that in Germany they were in the fortunate position of hav- 
ing a large research vessel, the Meteor. The ship is about 90 m long and, this 

summer, wake surveys have been done, the ship being propelled by aircraft jet 

engines on deck. The data will be presented at the autumn meeting of the S.T.G. 
in Germany. Unfortunately, the vessel is relatively slow, but the trials should 
provide some data about wake scale effect, thrust deduction, etc. Unfortunately, 

the ship is mostly used by oceanographers. 

Dr. Todd said that again the tests were restricted to what can be done in the 

time that is made available from the ship's other duties. Rader agreed, and said 
that sometimes they had to wait two years before time was allocated to do trials 
on the ship. Dr. Todd welcomed the good news that a research ship was avail- 

able, even on an intermittent basis. Rader had said that if the panel had any sug- 
gestions as to work that could be done with the Meteor, the people concerned 

would be glad to see if they could be worked into the program. 

* * * 
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Daniel Savitsky, Panel Chairman 

Stevens Institute of Technology 

Hoboken, New Jersey 

INTRODUCTION 

The currently increasing number of, and utilization of, planing craft in both 
naval and commercial applications has brought into sharp focus the relative 

dearth of small-boat hydrodynamic technology available to the naval architect. 
For the most part, the planing-boat designer has borrowed from the scientific 
literature on water-based aircraft and displacement ships, seasoned this with 
his own ingenuity, and produced a variety of successful and unsuccessful hull 
forms. The existing literature has now been extracted to exhaustion, making it 
essential to develop a program of hydrodynamic research tailored to the unique 

problems of small high-speed craft. Almost every phase of planing-craft tech- 
nology is requiring of research —i.e., hull hydrodynamics, propulsion, seakeep- 
ing, maneuverability and stability, shallow-water water effects, structural loads, 
and model-full-scale correlation, to name just a few. Many of these important 
problems have not been considered in past research programs. Fortunately, it 
now appears that an integrated program of small-boat research is being con- 
sidered by the U.S. Navy. If so, it is eagerly awaited by the design community. 
It is hoped that the present panel discussion (which reports the first instance of 

separate consideration of planing craft in all seven Symposia on Naval Hydro- 

dynamics) represents the start of a continuing series of technical seminars con- 

cerned with the varied hydrodynamics of planing craft. 

The deliberations of the panel were well attended, and some fifteen formal 
contributions were presented. This large number of prepared statements pre- 

cluded the possibility of arranging for general informal discussions on planing 

hulls and necessitated the presentation of the prepared material followed by dis- 
cussions from the attendees. The material presented was grouped into the follow- 

ing three categories: 

1. Innovations in Planing-Craft Design; 

2. Model Test Procedures for Planing Hulls 

3. Recent Test Results for Planing Hulls 

The specific formal contributions to each of these categories, along with the 

associated discussions, are discussed below. 
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1. INNOVATIONS IN PLANING-CRAFT DESIGN 

Commander P. DuCane of Vospers, Ltd. described the application of a 

"surface" propeller to a deep-veed racing boat of the international R1 class. 
It might be explained that in a ''surface" propeller the axis of the propeller is 

so placed that only about one-half the disc is immersed. This is necessary to 
avoid propeller blade cavitation by allowing the propeller to break the water sur- 

face and thus ventilate the negative pressure side of the blade. Further, no ap- 

pendages excepting a rudder will be under the boat, thereby eliminating the ap- 

pendage drag arising from shaft and propeller strut. The propeller itself was a 
three-bladed supercavitating type with blunt trailing edge. In full-scale trials, 

other conditions being essentially identical, the fully submerged propeller drove 

the boat at 54.8 mph and the surface propeller drove the boat at 60 mph. Subse- 
quent discussions indicated general interest in the application of a surface pro- 

peller to shallow-draft planing hulls and surface-effects ships. 

D. F. Calkins of the U.S. Naval Undersea Warfare Center, discussed the de- 
sign features and model test results for a three-point ram-wing hydroplane in- 

tended for unlimited hydroplane racing. This unique hull, which is a concept 

developed jointly by D. F. Calkins and B. Bryant, consists of two parallel planing 
surfaces that provide lateral stability and are located forward of the center of 
gravity; an NACA 4406 wing section between the planing surfaces and central 
hull operating in ground effect, and the vertical component of propeller thrust. 
The planing surfaces are extended aft along the wing tip chord to act as wing 
fences, thus creating a ram-wing hydroplane. The intent is to design a vehicle 

which has the C.G. forward of wing aerodynamic center and thus provide for 
longitudinal stability of the craft — conventional hydroplanes suffer from a lack 
of longitudinal stability at high speed. Tow-tank tests were conducted on a model 
of the ram-wing configuration up to model speeds of 60 fps. These tests, which 

were conducted at the Marine Technology Center, General Dynamics, showed that 
at 100 mps (full-scale equivalent) the lift-drag ratio of the ram-wing design was 

approximately twice that of the conventional hydroplane designs which generally 

consist of two sponsons (connected to a center hull) planing on their aft extremi- 

ties and the lift of a ''surface"' propeller. Further, the test results showed that 
the trim of a conventional hull increases with speed up to the point that it liter- 

ally flies from the water surface, whereas the trim of the ram-wing hull de- 

creased with increasing speed in the high-speed range. Work is now proceeding 

on optimizing the configuration. 

A report was presented on the work of E. P. Clement of NSRDC on the dyna- 

plane boat concept. This is a stepped planing hull where most of the lift is pro- 

vided by a cambered planing lifting surface of moderately high aspect ratio lo- 

cated just forward of the center of gravity with an adjustable lifting surface at 
the stern providing balance, stability, and control of trim. The large portion of 

superfluous wetted area of the conventional unstepped planing boat is eliminated 
by this approach and a drag decrease results from this fact together with the 

more favorable value of aspect ratio. Model tests at NSRDC showed that for 
boats of 100,000 pounds gross weight, the dynaplane design requires 10% more 
horsepower than the conventional unstepped design at a speed of 25 knots and 
50% less horsepower at speeds of 55 knots. The respective values of lift to 
drag ratio at 55 knots are 6.2 for the conventional design and 12.5 for the dyna- 

plane design. 
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A contribution was received from F.R. Miller and S. N. Gyves of Hydro- 
nautics on tests of a self-propelled 1/2 scale model (20 ft long) of a high-speed 
inverted V or sea-sled-hull amphibious vehicle. All tests were conducted in 

Chesapeake Bay and measurements were made of resistance, trim, and wave 
impact acceleration in various sea conditions up to upper 3 (significant wave 

height = 2.5 ft). In addition, self-propulsion tests were conducted on a 1/6 

scale wood model at the National Physical Laboratory, England. Full-scale 
tests were conducted by the Marine Corps Landing Force Development Center, 

Camp Pendleton, California. The correlation between model and full-scale 
data varies from excellent to a maximum difference of 15% lower full-scale 
SHP in the speed range from 15 to 20 knots. Data were presented on the mo- 

tions and impact accelerations of the sea-sled and qualitative comparisons 

were made with Vv bottom hulls. 

2, TESTING PROCEDURES FOR PLANING-HULL MODELS 

Professor C. Falkemo of Chalmers University of Technology described a 
new outdoor facility for model tests in calm water, regular waves, and also at 

sea in natural waves. The test basin is 300 ft long, 45 ft wide, and 15 ft deep. 
It is formed by a natural crevice which has been dammed and blown out. 

Planing boats can also be tested in full-scale on measured miles in sheltered 
water and outside the belt of rocks. 

J. T. Everest and D. Bailey of National Physical Laboratory, England, 
described experiments made to determine the total power requirements of a 

systematic series of high-speed displacement craft. Measurements were made 

of the total resistance and wavemaking resistance by the method of Eggers 

based on wave-pattern analysis. Tests were limited to a maximum speed of 
15 ft/sec, which, in turn, limited the wave-pattern measurements to a maxi- 
mum Froude number based on water depth (v/Ved) of approximately 0.55. The 
measured values of wave drag formed well-defined curves, although there was 

a discontinuity at a ship Froude number of approximately 0.53. At this speed, 

a tumbling wave existed at the stern of the craft falling on to the transom — it 

is speculated that this effect could likely cause the discontinuity in wave- 

resistance measurements and also invalidate the assumptions made by Eggers 

in his method of estimating wave drag. Viscous drag was estimated using the 

ITTC formulation and measured wetted areas with an allowance for a form fac- 
tor. It was found that the summation of wave drag and estimated friction drag 
was as much as 40-50% less than the measured total drag. Several possible 

reasons for this large discrepancy are discussed, and it is suggested that the 

complete lack of pressure recovery at the stern caused by complete flow sepa- 

ration at the transom is the most significant effect. 

Consideration is also given by the author to wavemaking resistance of high- 
speed catamaran hulls. The estimation of this resistance was based upon the 

linear superposition of experimental wave-pattern data for a single hull in or- 

der to calculate the wave pattern and, hence, the wave resistance of multi- 
hulled ships. The results show that wave interference effects between hulls 
can be of some importance for Froude numbers less than 0.5, although adverse 

influences exceeding 25-30% are unusual. Some slight beneficial influence is 
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predicted at a Froude number of 0.4; the apparent absence of interaction for 

Froude numbers in excess of 0.5 was striking. 

J. B. Hadler of NSRDC presented some comments on trim measurements 

of "'free-to-trim" resistance tests on planing craft. Referring to the work of 
Sottorf and Schmidt (1933, 1937) on the comparison of geosims with full-scale 

seaplane floats, the expected scale effect on the viscous drag were observed, 
but the running trim for the geosims was larger than full-scale trim — which is 
opposite to what was expected. Tests at DTMB on models of the PT8 ranging in 
size from 11.1 ft to 5.6 ft also showed that the smallest models ran at higher 
trim angles for v//L > 1.75, but that there was good agreement between the 
various size models at v A/L < 1.75. Mr. Hadler suggests that a research pro- 
gram be undertaken to explain this difference. The chairman suggested that, if 
the chine edges of the smallest models were not made with exaggerated sharp- 
ness, the flow separation would be delayed in the aft regions of the small model, 

which could result in slightly higher running trim angles. The practice at the 

Davidson Laboratory, Stevens Institute of Technology, is to sharpen the chines 
and recess the model walls immediately above the chine line in order to ensure 
proper ventilation and flow separation from the sides. It was suggested that 
consideration be given to adapting a standard for model construction which 
would provide for sharp chines. 

R. Lofft of AEW, Hasler, also reported on "Effect of Scale on Running Trim 
and Resistance of Planing Forms." Tests were made of 1/6, 1/8, 1/12, and 1/20 
scale models of a fast patrol boat (model beams of 3.52 ft, 2.78 ft, 1.39 ft, and 
0.84 ft), An interesting side investigation was to determine the effect of model 

construction material on the test results. The 1.39-ft-beam and 2.78-ft-beam 
models were constructed in both wood and wax. Unfortunately, the smallest- 
scale model was only built of wood. From the test results, Lofft concludes that 
there is no scale effect for the 1/6-, 1/8-, and 1/12-scale models. The smallest- 
scale wooden model (1.20) had a lower resistance relative to the larger wooden 
models, and this was attributed to lack of artificial turbulence stimulation in the 

small model. The smallest model also ran at a slightly higher trim than the 
other models. Lofft attributes this high trim angle of the smallest model to its 
wooden construction. He found that for the other scales, the wood models ran 
at approximately 1/4° to 1/2° higher than the wax model. 

E. Amble of the Norwegian Ship Model Basin reported on tests to investigate 

scale effects which arise when testing longitudinally stepped planing-hull models. 

A test program was carried out in Trondheim using four geometrically similar 

models where, for the same test Froude number for each model, the Reynolds 
number varied from 9.275 x 10° to 4.950 x 10°. A surface-piercing turbulence 
strut towed ahead of the models was effective in obtaining satisfactory conform- 
ity in results. From the test results, Amble concludes that the drag-to-lift 
ratio for the largest model of the stepped hull (B = 391 mm) was 10% less than 
for the unstepped hull, while, for the smallest model tested (B = 128 mm), there 
was little difference between stepped and unstepped configurations. Further, 
Amble states that tank tests of longitudinally stepped planing hulls are much 
more exposed to scale effect influence than are tests with conventional, un- 

stepped planing designs. It was suggested from the audience that the sharpness 

of the edges of longitudinal steps for the smallest model may have been insuffi- 
cient to assure flow separation and that, further, perhaps, the introduction of 
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artificial ventilation in the way of the longitudinal steps would modify the flow. 
It was pointed out that, in seaplane model tests, the afterbody area just aft of 

the transverse step is open to the atmosphere to assure proper ventilation and 

flow separation — particularly if there is a shallow depth of step in the design. 

3. RECENT TEST RESULTS FOR PLANING HULLS 

Professor A. Nutku of I.T.U. described model tests in the Turkish tank with 
systematically varying hull forms to study the effect of geometric form, dynamic 

planing conditions, and loading on the performance and resistance of planing 

hulls. Geometric variations included flat bottom and constant deadrise pris- 

matic hulls; varying deadrise surfaces; models with longitudinal variation in 

beam, and slope of buttock lines. In addition, hard-chine and round-bottom sec- 
tions were tested. Professor Nutku has planned an extensive systematic model 

study of planing — however, his presentation at the panel discussion was limited 
to a presentation of only some of the test results collected to date. Many interest- 

ing performance characteristics were evident from the 13 data plots which were 

presented. Unfortunately, limited space does not permit the reproduction of those 

test results in this summary, and a discussion and interpretation of these data 
cannot be adequately accomplished without these plots. The attendees at the sym- 

posium expressed great interest in Professor Nutku's experiments and eagerly 

await publication of his work. 

A. C, Conolly of the Marine Technology Center of General Dynamics dis- 

cussed a procedure to predict the performance of stepped planing boats from 

model tests on a standard series of flying-boat hulls. The systematic seaplane 

model data were obtained by the Davidson Laboratory, Stevens Institute of Tech- 
nology and by General Dynamics. Conolly refers to the work of Saunders-Roe 
in England in collapsing this data and making it easily usable by the designer for 

pre-design purposes. The work of F.W.S. Locke, Jr., is also referred to in 
this regard. Using these collapsed seaplane data, Conolly predicts the perform- 

ance of a stepped planing boat with a plum stabilizer which had been model- 

tested. He finds that the resistance was overestimated throughout the speed 
range by about 15%, but the resultant resistance curve was of the same form as 

the model and the predicted hump resistance occurred at the same model speed. 
Seaplane data indicated a hump trim of 5.0°, whereas 5.8° was measured on the 
model. At planing speeds both seaplane data and model data agreed. 

Dr. J. J. van den Bosch of Delft presented the results of a brief study on 

the linearity of motions of planing craft in head seas. Two models were tested. 

One was the series-62 type developed by Clement and Blount. The other was 
derived from this model by increasing the deadrise angle. For test speed co- 
efficients up to Fy = 3.5, it is shown that, considering the pitch and heave mo- 
tions, the derivation from linearity were small at wave lengths approximately 
equal to the hull length, but that the derivations increased for longer wavelengths, 
especially for Fy > 2.5. The accelerations were distinctly nonlinear for all wave 
and speed conditions. Heave and pitch response amplitude operators obtained 
from irregular and regular waves were compared at a Fy = 2.7. The agreement 

was satisfactory for the high-frequency (short-wave) part of the spectrum but 

poor for the low-frequency (long-wave) part. Dr. van den Bosch speculates that 

the low-frequency part is not trustworthy because of the reflection of the very 
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long wave components involved. The chairman described some of the results 
from a systematic series of planing-hull tests in rough water currently under- 

way at the Davidson Laboratory, Stevens Institute of Technology. The results 
showed that for speed-length ratios larger than approximately 2, the pitch, 
heave, accelerations, and added resistance are significantly nonlinear and that 
these nonlinearities increased with increased speed up to a maximum test 
speed-length ratio of 6.0. Further, it was found that wavelength had a signifi- 
cant effect on nonlinear behavior. For wavelengths of the order of hull length, 
linear relations for motions were observed at all speeds. Deviations from 

linearity increased as wavelength increased and reached a maximum for wave- 
lengths approximately three times the hull length. For longer wavelengths, the 

trend to linearity in motions increased until, at a wavelength approximately five 

times the hull length, linear motion relations were observed at all speeds. The 
accelerations and added resistance were strongly nonlinear at all test speeds 
and wavelengths. These Davidson Laboratory results were obtained from regu- 
lar wave tests, where, for a given test wavelength, the wave height was varied 
and from tests in two irregular sea states. 

Dr. Graff of the Ship Model Tank at Duisburg made some general comments 
on operating regimes for round- and vee-bottom hulls. Quantitative information 

on this subject must await publication of his work. 

G. Rosen of United Aircraft completed the session with a sound movie on 

full-scale operation of high-speed planing hulls driven by lightweight gas turbine 

engines, 
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