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NOTATION 

D Fluid domain 

f; Function defined in Equation (23) 

g Acceleration of gravity 

By Function defined in Equation (24) 

h Body or free surface defined in Equation @)) 

J Functional 

m Source distribution 

Pp Pressure distribution 

Sp Free surface 

Sy Interface of near and far fields 

S. Body surface 

t Time 

Viet Rectangular Cartesian coordinates 

0) Variation 

0 Water density 

T Time 

a) Potential 

w Function defined in Equation (21) 

w Frequency defined in Equation (21) 

Subscript 

i The ith order 

n Normal derivative toward fluid 

fe) Projection on the z = 0 surface 

t The time derivative 

iv 



The z derivative 

Near field, the first order 

Far field, the second order 





ABSTRACT 

In this report, a variational principle for unsteady body 

wave problems is treated both with and without a convolution 

integral, and with both linear and nonlinear free surface con- 

ditions. Functionals are obtained for the numerical computation 

of unsteady flow fields near a body that moves on or beneath the 

free surface. This formulation can be applied to ship hydro- 

dynamic performance problems of water entry and body slamming, 

as well as to arbitrary body motion. 

ADMINISTRATIVE INFORMATION 

The work reported herein has been supported by the Numerical Naval Hydrodynamics 

Program at the David W. Taylor Naval Ship Research and Development Center. This 

program is jointly sponsored by the Office of Naval Research and DINSRDC under Task 

Area RRO140302, Work Unit 1542-018. 

INTRODUCTION 

In the early 1970's the David W. Taylor Naval Ship Research and Development 

Center (DTNSRDC) recognized the demand for advanced numerical methods to predict the 

hydrodynamic performance characteristics of naval ships, particularly when classical 

methods proved inadequate. 

Thus, in 1974 the Numerical Naval Ship Hydrodynamics Program was begun at 

DTNSRDC. Under this program the author previously investigated the steady ship-—wave 

problem using a variational principle associated with a localized finite-element 

Pochndaeee This method is useful particularly to analyze the flow field near the 

ship in detail; in the far field, the Michell approximation can be used. This report 

extends the problem to the unsteady case. 

For both the steady and unsteady problems, the simple calculation is for a 

linear free surface condition with exact body boundary conditions. An iterative 

method is needed for a nonlinear free surface condition. However, in the unsteady 

problem, the variational principle requires an integration with respect to time using 

the initial conditions; in this instance, a convolution integral is useful. The 

variational principle for the unsteady body wave problem with exact body boundary 

conditions is treated both with and without convolution, and with both linear and 

*A complete listing of references is given on page 13. 
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nonlinear free surface conditions. For the linear free surface problem, a func- 

tional for the variational principle is obtained with a convolution rather than a 

general integral. The convolution cannot be applied to a nonlinear free surface 

problem; the condition is required for large values of time. A nonlinear solution 

derived using an iteration scheme having the linear convolution form is also dis- 

cussed. The time integration can be eliminated if the motion is sinusoidal. 

This formulation can be applied to problems of water entry and body slamming, 

as well as to arbitrary body motion. 

NONLINEAR PROBLEM 

Since problems dealt with here can be generalized easily to three-dimensions, 

for simplicity we first consider a two-dimensional problem in the rectangular Car- 

tesian (x,z) coordinate* plane. When a body whose surface is represented by 

S. [z=h(x,t)] | @) 

enters the water surface Sa (Ze= 10), bes a = h(x,t), t > 0) at time t = O, or when 

a semisubmerged or fully submerged body starts to move at time t = O and either exits 

the water or stops moving at t = th» then the boundary conditions for a velocity 

potential $¢ are as follows: 

¢ = >, = 0 for t < 0 everywhere 

+ (1b)? - 6, + gh=0 oS (2) 

h - VoV (h-z) = 0 

h_ - ® eo = 0 
t n x 

Here, S(t) is the submerged body surface varying with time t, and n is the normal 

direction into the fluid. We consider potentials 1 in the domain Dy and >, in the 

*Definition of notations are given on page iv. 



domain Dos where dD, is the near field including 85> and Dy is outside of D,- Then 

at the interface Sy of D, and Das we need to have 

(4) 
¢,--¢ n 2n 

The outer potential 5 in Ds is assumed to satisfy the linear free surface condition 

ate t SPon © o 

For such 5 we know the time-dependent Green fundetor 

Now we will construct a Lagrangian for the previously described problem, con- 

sidering the Lagrangian that feateee used 

ic ‘ 2 1 re x 

i -| \j (5 Ma % 1-41, ) azexet +f | g > dxdt a | (0,- 5 by) bo. dzdt (6) 
a 

0 Dd, 0 Sip 0 Sy 

where P> %, and h vary with time, and t is a sufficiently large time after the body 

has either exited from or come to rest in the water so that we can safely assume that 

the variation bo), Sb, aue 5b, vanishes at t = tT. It will be shown later that the 

use of a convolution integral necessitates only the initial condition without the 

Condition at t = T. 

Since 

hiGcat ye ~niGc, t) 

ma bdz = ods + $(z=h) a (7) 

we have 



re h(x,t) h(x,t) 

{ fx] >. dzdt I aE al odz — o(z=h) hy dxdt 

0 

heat) T AE 

“| ee | | dt (z=h) he dx 

0 

or 

Ag cr 5 

{| ), dzdxdt = S| | h, ¢dxdt +f bdxdz (8) 

Dis Ce) Q ss. D, (t=t) 

Now we take a variation of J in Equation (6), and use the Green theorem, and the 

He eye aL 
condition at large t = T obtaining 

T 

1 
6J -{ | € Vo, Vy ,t2h ) Oh dxdt 

0 Sie 

au 40 

“| il vo, 89, dzdxdt I { (19/65 *,) 6h, dxdt 

0 0 3, ,Us. 
Di 1F 

i ic 

=| | (>, +45,) 66, dade = | (¢,-$5) 665, dadt 
0 Ss; 0 Sy 

i 
1 

+ “| J (50. P5409 56, ) dzdt = 0 (9) 

0 Ss 

However trom the identity, 



ff (9° 865-50" (66,)} ards -| {$, 66,-$5(8b,,)} ds = 0 
S 7) Sor 

and from the linear free surface condition on Sop Equation (5), and the condition 

at t = T, we have 

€ i 

| J (9 55,,-$5565,) dadt = =| A (8$505,-¢5505,,) dxdt 

0 Sj 0 Se 

(10) 

iG 

. Al SUT he STP ores a | (8$.565,7$95¢5,) = dx = 0 

ope w Sop 

so that the last integral of Equation (9) vanishes. Since 5by5 5b, Sbo0> and 6h 

are arbitrary, we obtain from Equations (9) and (10) the corresponding time- 

dependent, free surface boundary value problem represented by Equations (2)-(4) 

together with the Laplace equation for ¢. Therefore, solving the variational problem 

with the functional J of Equation (6) is equivalent to solving the Laplace equation 

with the boundary conditions as set forth in Equations (2)-(4), provided we assume 

that 

6b, = 5b, = Ob, = 0 at t=T 

LINEAR PROBLEM 

If we assume a linear free surface condition in both Sip and Sop and keep the 

exact boundary condition [Equation (3)] on the body surface, 

Paper ie! nH ad 

then we may use 
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a {fa Vo,V$, dzdxdt - ak [ $191 ep dxdt 
OD 

iL 

{Jom f] 
where S is the projection of S, on z= 0. When we take the variation of J, we have 

Fo 

S13 AD. 

Sace Veoh edule dsdese Oe ee deat me Tele eee pa | UA aes, lee) oe 
anny SN 

1 (i> 2&2) $,,dsdt (12) 

ie ( o,, ve -,) dxdt 

T c 

-| j ($4 -%5) bo) dzdt -| j (6) 5,257 dzdt (12a) 

0 Sy 0 Sy 

Here, in addition to Equation (10), the following equation holds 

J js Care dxdt -f J Tee dxdt f i ee dxdt 

als 

Z 2) a +f 9750 OO ter OX 2 
0 “Ss 0 Fo ene ae (13) 



Thus, as in the previous section, we can easily derive the corresponding linear free 

surface boundary value problem using Equation (5) with the exact body boundary con- 

dition in Equation (11). 

USE OF CONVOLUTION 

Equations (6) and (12) are Lagrangians in a time-dependent, two-dimensional 

space with nonlinear and linear free surface conditions, respectively. They could 

be localized in space but not in time. Namely, we had to specify the conditions on 

Se at t = 0 and t = Tt with a sufficiently large T. On the other hand, we did not 

require the initial condition un = 0 at t = 0. In addition, such time T when 1 = 0 

on Sp may be too fleeces for practical use. For linear free surface boundary condi- 

tions, we can treat our variational problem in the same way as those who have treated 

variation principles for linear initial value problems using convolutions defined 

by 

i 

* = oe 
oT 5 :{ >, (x,z,t) (85257 t) dt 

0 

(14) 

ab ad ao ao 
= 1 2 1 D 

15 * VO5 ~ Ox z ox us Oz ; Oz 

We change Equation (12) to 

Ta ye. eo deol] Caren ecee 
2 al 1 22 il det 

an SG 

5 ak ; | he x %) dx | (0° 7 +, * Pon dz (GLE) 

ne Si 

If we use the identity relation 



and the initial condition %) =o = 0 at t = 0, instead of the conditions Ot = 0 on 
lt 

Sp at t = 0 and t = Tt with large T used in the previous section, we obtain, for any 

time, T 

T 1G 

s| 1 * ee dx -| 5o, (x, t) Prep Hott) dxdt | | >, (x,t) 5b pp He T-t)dxdt 

0s 0s 
Fo Fo Fo 

T 

= 2 ( 6, (x,t) dy pp So Tot dxdt 

05 
Fo 

+f {($, (x,t) S$, , (x, t-1)-$,, (x, t) 84, (x, t-t)} 14 dx 

S 
Fo 

il ho 

o> 

T 

| dp, (x,t) by pp Ho Tt) dxdt 

S 
Fo 

(16) HI N 

n> 

OQ a 
ke 

> 
rR ct Gr 

a. * 

where T need not be large, and x represents a point on the free surface z = 0. Thus, 

we obtain as in Equation (12a) 

2 
x : 

D 
i Sao 

f2. 
- | 6b, * (1, hy+1 - hy] dx 

S 
Ss 

|| (5-95) * 86, dz - i (b, 45.) * 60,42 (17) 

eT aT 



To obtain Equation (17), we used a convolution expression of Equation (16), where we 

can use the initial condition 4 = =1 0; 
Ve 

Since Soy > Soo, and Soo, are arbitrary, we obtain the corresponding equations 

for a time-dependent linear free surface boundary value problem that has a unique 

solution. 

If we lift out Sy so that D, occupies the entire fluid domain, then the last 

integral of Equation (15) ieee The resulting equation appears much simpler 

than that obtained by Mapeae! due to a simple difference in the treatment of the 

free surface condition. Equation (15) does not give the wave height as a natural 

boundary condition, whereas Murray's corresponding equation does. However, from h = 

$,/8 the wave height can be obtained. 

If we consider eigen solutions that satisfy only the Laplace equation; the 

linear free surface condition, Equation (5); and the radiation condition in dD, U Dy» 

then >, which satisfies the body boundary condition in Equation (11), can be derived 

from Equations (15) and (17) by using 

1 Vid. 
= —_— — * J | (3 Oe hyt1 ny] odx (18) 

s 
s 

When we know a functional whose minimum value is attained by the solution, we 

can find the solution numerically by such methods as the finite-element eechatiques 

F P 9 
or singularity method. 

For example 

b= D7 a9) (19) 

where o, is the Green function, which is available for this problem for a source 

distribution on the body surface. The source distribution m; will be obtained from 

soltuion of the simultaneous equations, 

SO . fa1'2,°.2N (20) 



SINUSOIDAL MOTION 

If we consider a sinusoidal ship oscillation such as h =f Bawe for S, of 

Equation (1), we substitute 

i iwt 

into Equation (12), integrate with respect to t, and obtain 

-iwt Al, Ne 2. 
e J= Jy = > Vb, dzdx - oe vy dx 

Si Sp 

+) fb, dx-] (vw -tu,)u, 4 (22) i ices ( P22 5) Dass © ji 

This is exactly the same Lagrangian that Bai and Yeung. used. Working from Equation 

(18), we can apply eigen solutions to the whole field by using 

i =| (5 ¥,-F) ds 

where 

h,/ vno+1 ape 

A similar functional was used by Sao et Fale? to solve the problem of a heaving 

oscillation of a dock. 

ITERATIVE SCHEME 

For problems with the linear free surface condition, we can completely localize 

the numerical scheme in DS with 0 < t < Tt for any T with the help of the convolution 

form. However, for nonlinear problems, the finite-element technique has to rely on 

: P “ : saa oe 
an iteration. We may thus use an iterative free surface condition on z = 0 

10 



OVS gel f=: 0 (23) 

gh, - bat +g, = 0 (24) 

where, for the first order perturbation solution, fy = 0, 8) = QO and, for the nth 

order, ae and g, are known functions of 5 of the (n-1)th or the lower order 

solutions. 

Then the Lagrangian for each f. is 

1 i 
= —- * —_—— 

oe {J Paes eae | oie uae & 
Dy (z=0)ND, 

ae * * | $,, *f, det fo, 4, ax 
(z=0)9D, 

oa 

oJ, = 0 (25) 

where the solutions for 1= 1, 2,...n - 1 should be used to determine the solution 

when i = n. Equation (24) gives the wave height h for each i. 

If we specify a time-dependent, free surface pressure distribution p on the 

projection oan of S, to z = O instead of hy in S. we may use 

£, = 8) — p/P OD ee 

in Equations (23) and (24) for the first order, where p is the water density. 

lel! 



Although we have discussed the two-dimensional time-dependent problem, Equations 

(19) through (24) can be extended to the three-dimensional time-dependent problem. 

| al il 
= = *k Sek 

D 

That is 

l (2=0)ND, 

- \| , * fs dxdy (fr, * 4 dxdy 

(z=0)ND, 

alt 

-{{ (¢)- 2 b,)* 6, de 

=F 

and soon. 

CONCLUDING REMARKS 

We have formed functionals with both linear and nonlinear free surface boundary 

conditions. For the former but not the latter case, we could apply a convolution 

integral. However, the body boundary condition is satisfied exactly in both cases. 

In many cases, the flow field near an arbitrary body is of interest, and eigen solu- 

tions with linear free surface conditions are known. Even in any large unsteady 

motion such as ship slamming, the free surface condition for a short period in the 

beginning may be linear, then the convolution may be applied in the early time 

period. Especially in the slamming problem, the peak pressure is known to be reached 

early in the beginning and estimation of the early pressure distribution on the 

slamming body is required. With this functional, we can find the solution for an 

arbitrary body numerically by such methods as the finite element technique or singu- 

larity method. Thus, a wide application of such functionals can be expected. 

12 
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ali 1170 G.R. Lamb 

i 1170 S. Hawkins 

al 1500 W.B. Morgan 

Al 1504 V.J. Monacella 

1 1520 WG. ian: 

1 1521 W.G. Day 

1 isk A.M. Reed 

ik: 522. G.F. Dobay 

al 11522 M.B. Wilson 

ih 1540 J.H. McCarthy 

ANS) 1540 B. Yim 

i 1542 T.T. Huang 

Al 1542 J. Bai 

i 1560 D. Cieslowski 

iL 1560 Division Head 

1 1561 GAG Cox 

1 1561 S.L. Bales 

1 1562 D.D. Moran 

il 1562 Es. Zarniek 

il 1562 Y.S. Hong 
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Code 

1563 
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Byala Db 
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Name 

W.E. Smith 

J.P. Feldman 
R.M. Curphey 

Reports Distribution 

Library (C) 

Library (A) 
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DTNSRDC ISSUES THREE TYPES OF REPORTS 

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH- 

NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF 

THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT. 

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM- 

INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. 

THEY CARRY A DEPARTMENTAL ALPHANUMERICAL !DENTIFICATION. 

3. TECHNICAL MEMURANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION 

OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN- 

TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE 

NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC 

MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE 

BASIS. 




