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One  of  the  most  striking  effects  of  the  publication  of  Ein- 

stein's papers  on  generalized  relativity  and  of  the  discussions 
which  arose  in  connection  with  the  subsequent  astronomical 
observations  was  to  make  students  of  physics  renew  their  study 
of  mathematics.  At  first  they  attempted  to  learn  simply  the 
technique,  but  soon  there  was  a  demand  to  understand  more; 
real  mathematical  insight  was  sought.  Unfortunately  there 
were  no  books  available,  not  even  papers. 

Dr.  Murnaghan's  little  book  is  a  most  successful  attempt  to 
supply  what  is  a  definite  need.  Every  physicist  can  read  it  with 
profit.  He  will  learn  the  meaning  of  a  vector  for  the  first  time. 
He  will  learn  methods  which  are  available  for  every  field  of 
mathematical  physics.  He  will  see  which  of  the  processes  used 
by  Einstein  and  others  are  strictly  mathematical  and  which  are 
physical.  Every  chapter  is  illuminating,  and  the  treatment  of 

the  subject  is  that  of  a  student  of  mathematics  and  is  not  de- 
veloped ad  hoc.  The  extension  of  surface  and  line  integrals  is 

most  interesting  for  physicists  and  the  discussion  of  the  space 

relations  in  a  four-dimensional  geometry  is  one  most  needed. 
This  is  specially  true  concerning  the  case  of  point-symmetry 

which  forms  the  basis  of  Einstein's  formulae  for  gravitation  as 
applied  to  the  solar  system. 

I  feel  personally  that  I  owe  to  this  book  a  great  debt.  I  have 
read  it  with  care  and  shall  read  it  again.  It  has  given  me  a 
definiteness  of  understanding  which  I  never  had  before,  and  a 
vision  of  a  field  of  knowledge  which  before  was  remote. 

JOSEPH  S.  AMES. 
JOHNS  HOPKINS  UNIVERSITY, 

June  1,  1921. 
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PREFACE. 

This  monograph  is  the  outcome  of  a  short  course  of  lectures 
delivered,  during  the  summer  of  1920,  to  members  of  the  graduate 
department  of  mathematics  of  The  Johns  Hopkins  University. 
Considerations  of  space  have  made  it  somewhat  condensed  in 
form,  but  it  is  hoped  that  the  mode  of  presentation  is  sufficiently 
novel  to  avoid  some  of  the  difficulties  of  the  subject.  It  is  our 

opinion  that  it  is  to  the  physicist,  rather  than  to  the  mathe- 
matician, that  we  must  look  for  the  conquest  of  the  secrets  of 

nature  and  so  it  is  to  the  physicist  that  this  little  book  is 
addressed.  The  progress  in  both  subjects  during  the  last  half 

century  has  been  so  remarkable  that  we  cannot  hope  for  investi- 
gators like  Kelvin  and  Helmholtz  who  are  equally  masters  of 

either.  But  this  makes  it,  all  the  more,  the  pleasure  and  duty 
of  the  mathematician  to  adapt  his  powerful  methods  to  the 

needs  of  the  physicist  and  especially  to  explain  these  methods 
in  a  manner  intelligible  to  any  one  well  grounded  in  Algebra 
and  Calculus. 

The  rapid  increase  in  the  number  of  text  books  in  mathematics 
has  created  a  problem  of  selection.  We  have  tried  to  confine 
our  references  to  a  few  good  treatises  which  should  be  accessible 
to  every  student  of  mathematics. 

Ch.  V  should  be  omitted  on  a  first  reading.  In  fact  it  is 
quite  independent  of  the  rest  of  the  book  and  will  be  of  interest 

mainly  to  students  of  Hydrodynamics  and  Theoretical  Elec- 
tricity. There  are  several  paragraphs  in  Ch.  IV  which  may  be 

passed  over  by  those  interested  mainly  in  the  application  of  the 
theory  to  the  problems  of  relativity.  For  these  we  may  be 
permitted  to  suggest,  before  taking  up  the  subject  matter  of 

Chap.  VII,  a  reference  to  an  essay  "The  Quest  of  the  Absolute" IX 
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which  appeared  in  the  Scientific  American  Monthly,  March 

(1921),  and  was  reprinted  in  the  book  "Relativity  and  Gravita- 
tion," *  Munn  &  Co.  (1921).  It  may  be  useful  to  add  the  well- 

known  advice  of  the  French  physicist,  Arago — "When  in 

difficulty,  read  on." 
The  manuscript  of  the  book  was  sent  to  the  printer  in  June, 

1921,  and  its  delay  in  publication  has  been  due  to  difficulties  in 
the  printing  business.  In  the  meantime  several  important  papers 
bearing  on  the  Theory  of  Relativity  have  appeared;  it  will  be 
sufficient  to  refer  the  reader  to  some  significant  notes  by  PainlevS 
in  the  Comptes  Rendus  of  this  year  (1922).  We  are  under  a 

debt  of  gratitude  to  Dr.  J.  S.  Ames  for  valuable  advice  and  en- 
livening interest.  And,  in  conclusion,  we  must  thank  the  officials 

of  The  Johns  Hopkins  Press  for  their  painstaking  care  in  this 
rather  difficult  piece  of  printing. 

F.  D.  M. 
OMAGH,  IRELAND. 

June,  1922. 

*  Edited  by  J.  Malcolm  Bird. 



VECTOR   ANALYSIS  AND   THE   THEORY   OF 
RELATIVITY 

INTRODUCTION 

Vector  Analysis  owes  its  origin  to  the  German  mathematicians 

Mobius*  and  Grassmann  f  and  their  contemporary  Sir  William 
Hamilton.!  Since  its  introduction  it  has  had  a  rather  checkered 
career  and  it  is  only  within  comparatively  recent  times  that  it 
has  become  an  integral  part  of  any  course  in  Theoretical  Physics. 
It  is  well  known  that  the  subject  was  regarded  with  disfavor 
by  many  able  physicists,  among  whom  Sir  William  Thomson, 
afterwards  Lord  Kelvin,  was  probably  the  most  prominent. 

The  reason  for  this  is,  in  our  opinion,  not  hard  to  seek.  Grass- 
mann,  who  undoubtedly  had  a  much  clearer  conception  of  the 
generality  and  power  of  his  methods  than  most  of  his  followers, 
expounded  the  subject  in  a  very  abstract  manner  in  order  not 
to  lose  this  generality.  Naturally  enough  his  writings  attracted 
little  attention  and  when,  some  forty  years  later,  Heaviside§  and 
others  were  earnestly  trying  to  popularize  the  method  they 
swung  to  the  other  extreme  and,  in  attempting  to  give  an 
intuitive  definition  of  what  a  vector  is,  failed  to  convey  a  clear 
and  comprehensive  idea.  Roughly  speaking  their  definition  was 

*  Mobius,  A.  F.,  Der  barycentrische  Calcul  (1827).  Werke,  Bd.  1,  Leipzig 
(1885). 

f  Grassmann,  H.,  Ausdehnungslehre  (1844).  Werke,- Bd.  1,  Leipzig  (1894). 
Grassmann  was  particularly  interested  in  the  operations  he  could  perform 

upon  his  "  vectors  "  and  not  in  the  transformations  of  the  components  of 
these  which  occur  when  a  change  of  "  basis  "  or  coordinate  system  is  made. 
In  this  respect  the  point  of  view  of  his  work  will  be  found  very  different  from 
that  adopted  here. 

J  Hamilton,  W.,  Elements  of  Quaternions.     Dublin  Univ.  Press  (1899). 
§  Heaviside,  0.,  Electromagnetic  Theory,  Vol.  1,  Ch.  3.     London  (1893). 

1 



2  VECTOR  ANALYSIS  AND  RELATIVITY 

that  "  a  vector  is  a  quantity  which,  in  addition  to  the  quality 
of  having  magnitude,  has  that  of  direction."  The  fault  with 
this  definition  is,  of  course,  that  it  fails  to  explain  just  what  is 

meant  by  "  having  direction."  That  this  idea  requires  ex- 
planation is  clear  when  we  realize  that  the  simple  operation  of 

rotating  a  body  around  a  definite  line  through  a  definite  angle — 

which,  a  priori,  "  has  direction  "  in  the  same  sense  that  an 
angular  velocity  has — is  not  a  vector  whilst  an  angular  velocity 
is.  Then,  again,  endless  trouble  arises  when  vectors  are  intro- 

duced in  a  manner  making  it  difficult  to  see  their  "  direction  " 
and  even  today  some  of  the  better  text-books  on  the  subject 

speak  of  "  symbolic  vectors  "  such  as  gradient,  curl,  etc.,  as 
if  they  are  in  any  way  different  from  other  vectors.  In  1901 

Ricci  and  Levi-Civita*  published  an  account  of  their  investiga- 
tions of  "  The  Absolute  Differential  Calculus  " — a  kind  of  dif- 

ferentiation of  vectors.  This  paper  was  written  in  a  very  con- 
densed form  and  did  not  at  once  attract  the  notice  of  students 

of  Theoretical  Physics.  It  was  only  in  1916  when  Einsteinf 
called  attention  to  the  usefulness  of  the  results  in  that  paper 
that  it  received  adequate  recognition.  However  it  seems  to  be 
the  common  opinion  that  the  methods  there  dealt  with  (and 

often  referred  to  as  the  "  mathematics  of  relativity ")  are 
extremely  difficult.  It  is  the  purpose  of  this  account  to  lessen 
this  difficulty  by  treating  several  points  in  a  more  elementary 

and  natural  manner.  For  example,  in  an  interesting  introduc- 
tion to  their  paper,  Ricci  and  Levi-Civita  point  out,  as  an  instance 

of  the  power  of  their  methods,  that  they  can  obtain  easily, 
by  means  of  their  absolute  differentiation,  the  transformation 

of  Laplace's  differential  operator  A2 — which  in  Cartesian  co- 
ordinates takes  the  form 

A        ̂ l+^l  +  il ~  dx*'*' dy*^  dz* 

*Ricd,  0.,  and    Levi-Civita,  T.    M&hode*  de  Cdcul  diff4rentiel  absolu. 
Math.  Annalen,  Bd.  54,  p.  125  (1901). 

]  Einstein,  A.,  Die  Grundlage  der  allgemeinen  Relativitdtstheorie.     Annalen 

der  Physik,  Bd.  49,  p.  169  (1916). 
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— into  any  curvilinear  coordinates  whatsoever.  This  trans- 

formation was  first  obtained  by  Jacobi,*  and,  while  expressing 
admiration  for  the  ingenuity  of  his  method,  they  justly  remark 
that  it  is  not  perfectly  satisfactory  for  the  reason  that  it  brings 

in  ideas — those  of  the  Calculus  of  Variations — foreign  to  the 
nature  of  the  problem.  Now  by  a  method  due  to  Beltramif  it 
happens  that  this  very  transformation  can  be  obtained  by 

Vector  Analysis  without  any  knowledge  of  absolute  differentia- 
tion; the  apparently  fortuitous  and  happy  disappearance  from 

the  final  result  of  the  troublesome  three  index  symbols  of  that 
part  of  the  subject  is  thus  explained.  In  addition  we  hope  to 

make  it  clear  that  the  methods  of  the  "  Mathematics  of  Rela- 

tivity "  are  applicable  to,  and  necessary  for,  Theoretical  Physics 
in  general  and  will  abide  even  if  the  Theory  of  Relativity  has  to 
take  its  place  with  the  rejected  physical  theories  of  the  past. 

*  Jacobi,  C.  G.,  Werke,  Bd.  2,  p.  191.    Berlin  (1882). 
t  Beltrami,  Ricerche  di  analisi  applicata  alia  geometria.    Giornale  di  mate- 

matiche  (1864),  p.  365. 



CHAPTER  I 

1.  Every  student  of  physics  knows  the  important  role  played 
by  line,  surface  and  volume  integrals  in  that  subject.  For 
example,  the  scalar  magnitude  work  is  the  line  integral  of  the 
rector  magnitude  force  and  this  will  suggest  a  simple  mode  of 
defining  a  vector.  As,  however,  we  shall  wish  to  apply  our 
results  in  part  to  gravitational  spaces  it  is  desirable  at  the 
outset  to  state  as  clearly  as  possible  what  we  mean  by  the  various 
terms  employed. 

Space. — By  this  term  is  meant  a  continuous*  arrangement  or 
set  of  points;  a  point  being  merely  a  group  of  n  ordered  real 
numbers.  In  our  applications  n  is  either  1,  2,  3,  or  4  and  the 

space  is  said  to  be  of  one,  two,  three,  or  four  dimensions  respec- 

tively. The  ordered  group  of  numbers  we  denote  by  z(1),  z<2), 
•  •  • ,  z(n),  and  call  the  coordinates  of  the  point  they  define. 
Nothing  need  be  said  for  the  present  as  to  what  the  coordinates 
actually  signify.  A  space  defined  in  this  way  is  a  very  abstract 
mathematical  idea  and  to  distinguish  it  from  a  more  concrete 

idea  of  space  in  which,  in  addition  to  the  above,  we  have  a  funda- 
mental concept  called  length,  we  may,  where  necessary,  call  the 

latter  a  metrical  space  and  the  former  a  non-metrical  space. 
We  use  the  symbol  Sn  to  indicate  our  space,  metrical  or  not, 
of  n  dimensions. 

SPREADS  IN  S» 

It  is  possible  to  choose  from  the  points  of  Sn  an  arrangement 
or  set  of  points  such  that  any  one  point  is  determined  by  the 

value  of  a  single  variable.-  Thus  if,  instead  of  being  perfectly 

independent,  the  n  coordinates  x(1\  •••,  a;(n)  are  all  functions 
•Continuity  is  assumed  as  an  aid  to  mathematical  treatment.  In  certain 

modern  theories  preference  is  given  to  a  discontinuous  or  discrete  set  of  points. 
4 



THE  TENSOR  CONCEPT 

of  a  single  independent  variable,  or  parameter,  u\ 

(*=  1,2,  ...,n) 

the  point  x  is  said  to  trace  a  curve  or  spread  of  one  dimension 

as  MI  varies  continuously  from  the  value  MI°  to  MI(I).  The  points 
corresponding  to  the  values  MI  =  MI°  and  MI  =  MI(I)  are  called 
the  end  points  of  the  curve  and  if  they  coincide,  i.e.,  if  all  cor- 

responding coordinates  are  equal  the  curve  is  said  to  be  closed. 
A  spread  of  two  dimensions  in  Sn  is  similarly  defined  by 

X       =  X      \U\,  Uz)  \8  =   1,   "  *  *,  Tl) 

where  MI  and  Uz  are  independent  parameters.  Here  we  have 
two  degrees  of  freedom  because  we  can  vary  the  point  x  by 

varying  either  MI  or  M2.  It  is  necessary,  however,  that  the  func- 

tions a;' (MI,  Uz)  should  be  distinct  functions  of  the  parameters 
MI,  Uz;  the  criterion  for  this  being  that  not  all  the  Jacobian 
determinants a  ( 

d  (MI, 

du\ 

dx(t*> 

—  i  \ 

sz  =  1,  •  •  •,  n) 

should  vanish  identically.  If  this  were  to  happen,  we  would  not 
have  two  degrees  of  freedom  but  only  one  and  the  points  would 
lie  on  a  curve  and  not  on  a  proper  spread  of  two  dimensions. 

Similarly  by  a  spread  of  p  dimensions  in  Sn  •  •  •  (p  ̂   n)  we 
mean  the  locus  of  points  x  with  p  degrees  of  freedom; 

where  not  all  the  Jacobian  determinants 

=  1,  •  •  •,  n 

s= 
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vanish  identically.  This  we  denote  by  Fp  (the  corresponding 

French  term  being  variete*)  and  we  shall  suppose  all  our  Vv 
to  be  "  smooth  ";  by  this  we  mean  that  all  the  partial  deriva- tives 

\m= 

are  continuous.    This  restriction  is  not  really  necessary  but  is 
made  to  avoid  accessory  difficulties. 

INTEGRAL  OVER  A  SPREAD  OF  ONE  DIMENSION  FI* 

Consider  an  ordered  set  of  n  arbitrary  continuous  functions 

Xi,  •  ",  Xn  of  the  coordinates  x(l\  •••,  x(n).  (For  brevity  sake 

we  shall  hereafter  use  the  phrase  "  functions  of  position.  ") 
The  numerical  value  assigned  to  the  label  r  in  the  symbol  Xr 

tells  which  one  of  the  components  Xi,  •  •  •  ,  Xn,  which  are  ordered 
or  arranged  in  this  sequence,  we  are  discussing.  Now  for  any 
curve  FI  given  by 

*<•>  = 
form  the  differentials 

and  then  form  the  sum  Xidx™  +  X^dx™  ----  h  Xndx(n)  which 
is,  by  definition,  identically  the  same  as 

If  in  each  of  the  functions  X,  of  position  we  replace  the  co- 

ordinates xw,  •  •  •,  x(n)  by  their  values  on  the  curve  FI 

Xt  -z  —  becomes  a  function  of  ui,  F(UI)  let  us  say,  and  we  may 

*  Reference  should  be  made  to  the  classical  paper  by  H.  Poincart,  "  Sur 
les  r6sidus  des  int^grales  doubles,"  Acta  Math.  (9),  p.  321  (1887). 
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evaluate  the  definite  integral  J^(l\F(ui)dui.  This  is  called  the 
integral  of  the  ordered  set  of  n  functions  of  position  (X\,  •  •  •  ,  Xn) 
over  the  curve.  If,  now,  we  change  the  parameter  u\  to  some 

other  parameter  »i  by  means  of  the  equation  u\  =  Ui(vi)  the 

points  on  the  curve  are  given  by  a;(*)  =  a;(8)(wi)  =  XM(VI)  say 
(*  =  1,  •  •  •,  n)  and  it  is  conceivable  that  the  value  of  the  integral 
might  depend  not  only  on  the  curve  but  on  the  parameter  used 
in  specifying  the  curve.  However  this  is  not  the  case  since 

/»"l(1)  /«»iO>  f    « 
F(«i)rf«ia    I  £ 

J«,o  Jujo       I  «=i and 

7  /     n          \  *—l  U 1)]   I  /      n          I  *— 1  f}lL]     1 

This  independence,  on  the  part  of  the  integral,  of  the  accidental 
parameter  used  in  describing  the  curve  allows  us  to  speak  of  the 

integral  as  attached  to  the  curve  and  the  symbol  J'^",=iX,,dx(^ 
is  used  since  it  contains  no  reference  to  the  parameter  u. 

In  what  follows  we  shall  adopt  the  convention  that  when  a 
literal  label  occurs  twice  in  a  term  summation  with  respect  to 

that  label  over  the  values  1,  •  •  •,  n  is  implied.  Thus  our  line 
integral  may  be  conveniently  written 

/i  =  SX*dx" 
Such  a  label  has  been  called  by  Eddington  a  dummy  label  (or 

symbol)  of  summation.  We  prefer  to  adopt  the  term  "  umbral  " 
used  by  Sylvester  in  a  similar  connection;  the  word  signifying 

that  the  symbol  has  merely  a  shadow-like  significance  disappear- 
ing, as  it  does,  when  the  implied  summation  is  performed. 

2.  INTEGRAL  72  OVER  A  SPREAD  F2  OF  TWO  DIMENSIONS 

Consider  a  set  of  n2  ordered  functions  of  position  (to  indicate 
which  we  use  two  labels  si,  Sz) 

X8l,tt  (tit  *2  =    If    *••>») 
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The  numerical  values  assigned  to  *i  and  *2  tell  which  one  of  the 

set  of  n2  functions  we  wish  to  discuss.  It  is  convenient  to  think 

of  the  functions  as  arranged  in  a  square  or  "  checkerboard  " 
with  n  rows  and  n  columns;  then  Si  may  indicate  the  row  and 
*2  the  column.  K2  is  specified  by  means  of  two  parameters 

u\,  uz  through  the  equations  x(l)  =  x(t)(u\,  Wj).  Substitute  these 
expressions  for  the  coordinates  in  the  functions  X^  and  con- 

sider the  definite  double  integral 

T         r  (  v     dz(tl)  dx<"«>  \  ,     ,        ,  u    i  i  u  i  \ 72  =  j  {  A,...  —  --  -  —  J  duidut     (*i  and  $2  umbral  labels) \          dui    duz  ) 

extended  over  the  values  of  u\,  ui  which  specify  the  points  of  F2. 
This  integral  will  depend  for  its  value  not  only  on  the  spread  F2 
but  on  the  parameters  u\,  iiz  used  to  specify  it  unless  the  set 

Xtl)  ,f  is  alternating,  i.e.,  Xtl,  ,,  =  —  XH,  ,,  which  implies  the 
identical  vanishing  of  the  n  functions  ATi,  \;  •••  Xn,  n  and  the 

arithmetical  equality  in  pairs  of  the  remaining  n2  —  n  so  that 
there  are  but  n(n  —  l)/2  distinct  functions  in  the  set.  Grouping 
together  the  functions  of  each  pair  we  have 

, 
0(Ui,  Uz) 

where  now  the  umbral  symbols  do  not  take  independently  all 
values  from  1  to  n  but  only  those  for  which  the  numerical  value 
of  $1  is  less  than  that  of  *2.  If  a  change  of  parameters  is  made  by 
means  of  the  equations 

Ui  =  Ui(Vi,  Vi) 

where  u\  and  uz  are  distinct  functions  of  v\  and  r2  the  coordinates 

are  given  by  equations 

x(.)  =  x(.)(Ul>  uj  =  f(.)(,,lf  „)     (,  =  1,  .  .  .,  n) 

and  the  value  of  72  when  the  TI,  r2  are  used  as  parameters  is 
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which,  by  the  rule  for  multiplying  Jacobians, 

r  [  v     d(x*<>  x(s*>)  }  d(ui, =  f  \  X,ltt  ~b  --  r   ̂  d(ui,  uz)    j  dfa, 

and  this  by  the  formula  for  the  change  of  variables  in  a  double 
integral __   f 

d(ui,  uz) 

Starting,  then,  with  an  alternating  set  of  functions  of  position 
XM  we  can  form  an  integral,  (over  any  F2),  which  depends  in  no 

way  on  the  parameters  chosen  to  specify  it.  To  avoid  all  refer- 
ence to  the  accidental  parameters  we  write  72  in  the  abbreviated 

form  f{Xtl.  tld(x(ai\  z(">)}  (ft  <  $2).  We  adopt  this  in  pref- 
erence to  the  customary  notation  ̂ [X^dx^dx^}  (si  <  52) 

since  no  product  of  differentials,  such  as  will  occur  later  when 
we  use  quadratic  differential  forms,  is  implied. 

In  an  exactly  similar  way  an  integral  Ip  over  a  spread  Vp  of 

p  dimensions  (p  ̂   n)  is  defined.*  By  an  alternating  set  of 
functions  Xtli  «,,  ...,  Sp  of  position  we  mean  that  a  single  inter- 

change of  two  of  the  labels  merely  changes  the  sign  of  the  func- 
tion. If,  then,  two  of  these  labels  are  the  same  the  function 

must  be  identically  zero.  Then 

is  a  definite  multiple  integral  of  order  p  extended  over  the  values 

of  MI,  •  •  • ,  Up  which  specify  the  points  of  Vp.    We  write 

/*-.'/
 

where,  in  the  summation  with  respect  to  the  umbral  symbols, 

ft,  sz,  •  •  • ,  sp,  si  <  sz  <  •  •  -  <  Sp.    To  emphasize  the  fact  that 

*  When  p  =  n  it  is  customary  to  use  the  phrase  region  of  Sn  in  preference 
to  spread  of  n  dimensions  in  Sn. 
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IP  does  not  depend  in  any  way  on  the  parameters  u\,  •  •  •  ,  u 
it  will  be  written 

IP  =  fXtl,  -..,  .fd(*(tl\  •  • 

Examples,     n  =  4    x1  =  x,  x(2)  =  y,  x(3)  =  z,  x(4)  =  £ 

Zi  =  X,  Xz  =  Y,  etc. 

<fy  -f  Zdz  +  r<&) 
,  z)  +  Z3.  id(z,  x)  +  Xud(x,  y)  +  Xl4d(x,  t) 

+  Xz<d(y,  t)  +  W(z,  0 

utfL(x,  y,  z)  +  Xiud(x,  y,  0  +  ̂134^(2;,  2,  0 
+  Xtud(y,  2,  0 

i,  z,  3.  *d(x,  y,  z,  t) 

Here  in  72  we  may  write  Xs\d(z,  x)  instead  of  X\,  *d(x,  z)  since 

X3i  =  —  Xn    and    d(z,  x)  =  —  d(x,  z) 

As  a  concrete  example  of  72  we  may  take  the  case  of  a  moving 

curve  in  ordinary  Euclidean  space  of  three  dimensions,  the  curve 

being  allowed  to  change  in  a  continuous  manner  as  it  moves. 

Here  x,  y,  z  may  be  rectangular  Cartesian  coordinates  and  t 

may  denote  the  Newtonian  time.  u\  is  any  parameter  which 

serves  to  locate  the  points  of  the  curve  at  any  definite  time 

t  =  to  and  Uz  may  well  be  taken  =  t.  Then  the  equations  of 
our  Fa  are 

and  the  parameter  curves  u^  =  constant  are  the  various  positions 
of  the  moving  curve,  whilst  the  curves  u\  =  constant  are  the 
paths  of  definite  points  on  the  initial  position  of  the  moving  curve. 
Denote  dx/dt  by  x  and  we  have 

d(s,  >)  - 

d(x,  0  3s  -  dmdi  -    £  .dujt 
i,  0  dui 
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(It  may  not  be  superfluous  to  point  out  that  it  is  essential  to  the 
argument  that  u\  and  Uz  should  be  independent  variables.  Thus 
in  the  present  example  u\  could  not  stand  for  the  arc  distance 
from  an  end  point  of  the  moving  curve  if  the  curve  deforms  as  it 
mows  although  it  could  conveniently  stand  for  the  initial  arc 
distance.)  Our  72  may  here  be  written 

dz  1 
-r-  0X34  +X&X  —  X^y)  ——  \  duidt 

dui  j 

showing  it  in  the  form  of  a  time  integral  of  a  certain  line  integral 
taken  over  the  moving  curve.  Before  proceeding  to  define  the 
idea  of  vector  quantities  it  is  necessary  to  make  one  remark  of  a 
physical  nature.  We  have  written  expressions  of  the  type 

(s  an  umbral  symbol) 

and  regarded  the  separate  terms  of  these  expressions  Xidx(r>,  -  •  -, 
etc.,  as  mere  numbers.  To  actually  perform  the  indicated  sum- 

mations it  is  necessary,  when  we  apply  our  methods  to  physics, 
that  the  separate  terms  in  a  summation  should  be  of  the  same 
kind,  i.e.,  have  the  same  dimensions.  Thus  if  the  coordinates 

#(1)  .  .  .  XM  are  ali  of  the  same  kind  the  coefficients 

occurring  in  the  various  integrals  must  all  have  the  same  di- 
mensions. 

3.  TRANSFORMATION  OF  COORDINATES 

It  has  already  been  seen  that  if  the  various  line  integrals 
under  discussion  are  to  have  values  independent  of  the  choice  of 

parameters  (MI,  •  •  •,  up)  care  must  be  taken  that  the  np  functions 
of  position  X^,  ....  8p  which  form  the  coefficients  of  the  Ip  should 

s 
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be  alternating.  Let  us  now  see  what  happens  to  these  coefficients 

when  we  change,  for  some  reason,  the  coordinates  xw,  •  •  •  ,  x(n) 
used  to  specify  the  points  of  the  Vp.  The  formulae  of  transforma- 

tion are  given  by  n  equations 

the  functions  z(t)  being  supposed  distinct  so  that  the  Jacobian  of 
the  transformation 

does  not  vanish  identically.  These  equations  may  be  regarded 

in  two  ways.  First  the  y(t)  may  each  denote  the  same  idea  as 
the  corresponding  a:(f)  and  then  we  have  a  correspondence  set  up 
between  a  point  y  and  some,  in  general  different,  point  x. 

Secondly  the  symbols  y(t)  may  have  a  meaning  quite  distinct 
from  the  symbols  x(l)  and  then  we  have  a  correspondence 
between  one  set  of  coordinates  y(t)  of  a  point  and  another  set 
of  coordinates  x(t)  of  the  same  paint.  It  is  the  second  way  of 
looking  at  the  matter  that  interests  us  and  we  speak  then  of  a 
transformation  of  coordinates.  (From  the  first  point  of  view  we 

would  have  a  point  correspondence.)  Since  the  functions  x(t)  are 
distinct  we  can,  in  general,  solve  the  equations*  and  obtain 

As  an  example  take  n  =  3  and  let  z(1),  z(2),  x(3)  be  rectangular 
Cartesian  coordinates  and  (yw,  y(2),  y(3))  space  polar  coordinates 
in  ordinary  Euclidean  space  of  three  dimensions. 

j.d)2 

sin (2)2 

£v  ' 

_  Z(2
) 

y        ~  **u     ff(i) 

•Cf.  Gawtat-Hedrick,  Mathematical  Analysis,  Vol.  1,  Ch.  2,  or  Wilson, 
E.  B.,  Advanced  Calculus. 
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In  order  to  have  a  uniform  transformation  of  coordinates  —  so 
that  to  a  given  set  of  numbers  y(l),  y®\  y(3)  there  may  correspond 
but  one  set  z(1),  x(2),  z(3)  and  conversely  —  it  is  frequently  neces- 

sary to  restrict  the  range  of  values  of  one  or  the  other  set.  Thus  in 

the  example  chosen  we  puty(l)  >  0;  0  <  y(2)  <  TT;  0  <  y(3)<2ir. 
If  now  in 

/i  =  J*Xadx(t)       (s  an  umbral  symbol) we  substitute 

(s  =  1,  •.-,») 

dx(t) 

Xs  become
s  

X»(yl, 
 
•  •  •,  yn)  say,  and  dx^  =  —  —  du\  become

s 

OUi 

(Qx(»)
  Qy(r)  \ 

—  rr  -  —  I  dui     (r  an  umbral 
 
symbol)

 oy(r>  dui  ) 

and  so  Ji  becomes 

(—    dx(t)  dy^
r)\ Xg  -T—T-.  -*  —  )  dui     (r,  s  both  umbral  symbols) dy(r)  duij 

where  Y  is  defined  by  the  equation 

Yr  s  X,  (r  =  1,  •  •  •,  n;  s  umbral) 

We  shall  from  this  on  drop  the  bar  notation  above  the  X,  which 

indicates  that  the  substitution  xw  =  x(9)(y(l\  •  •  •,  2/(n))  has  been 
carried  out.  It  will  always  be  clear  when  this  is  supposed  done. 
For  an  72  we  have 

d(x^\  x('^        (si  <  *2)  (si,  s2  umbral) 

(d(x9
1  x'1) 

 ] 
^«i»*  -^r   r  \du\dui   

     
(s\  <  *2)  by  definition

 
0(Ui,  Uz)    ) 

(dx('l
)  dx('2)  1

 X*H  T~          -\duiduz dui     duz  J 

since  the  functions  XSlSt  form  an  alternating  set. 
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Now 

dxM       dx^  dyM 

1ST  ;  '  efzra^  (ri  umbral) so  that 

dx(l*>  __  dx(tl)  dx(>*>  dy(r*>  dy(rt) 

dui        ditz        dy(ri)  dy(r*>   dui     duz 
(ri  and  r2  both  umbral  symbols) 

Hence  if  we  define 

,  ,     n 
(Sl  and  *2  umbral) 

72  takes  the  form 

r   fv      dy^ay f  \  YW  -%—  •£ I  d«i     dw 
Now 

dar(tl)  dar^^ 

^.  n  =  ̂ .  ̂   ̂   ̂ 5  (by  definition) 

dx(lt}  dx('l) 
=  X,t,  ,,  a~~?T)  (^  a  mere  interchange  of  the  letters 

dy      dy  l       standing  for  the  umbral  symbols $1  and  *2) 

„     dx(tl)  dx('*>  (since  Xtl,  ,t  is  alternating  by  defi- 
*li>  dyM  dyfi)      nition) 

=  —  Fr,.  r,  (by  definition) 

Accordingly  the  set  of  functions  Yfl,  r,  of  position,  defined   as 
above,  is  also  alternating  and  we  may  write 

Generalizing  we  may  write  Ip  in  the  form 

(fit  -  •  -  ,  TP  umbral)  and  r\  <  r2  <  •  •  •  <  rp 

where  the  coefficients  7r,  .....  rp  form  an  alternating  set   of  np 
functions  of  position  defined  by  the  equations 

f 
(»„...,*,  umbral  symbols) 
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Accordingly,  then,  if  an  integral  over  a  curve,  or  more  generally 
a  spread  of  dimensions  p,  is  to  have  a  value  independent  of  the 
coordinates  the  coefficients  are  completely  determined  in  every 

system  of  coordinates  once  they  are  known  in  any  particular 
system  of  coordinates.  The  coefficients  in  a  line  integral  form 

as  we  shall  see  later  a  set  of  functions  which  "  have  direction  " 

in  Heaviside's  sense  and  so  might  be  called  a  vector.  As,  how- 
ever, the  term  vector  is  derived  from  a  geometrical  interpretation 

of  the  idea  which  loses  to  a  great  extent  its  significance  when  we 
apply  our  ideas  to  spaces  of  arbitrary  metrical  character  the 
name  has  been  changed  and  the  coefficients  of  a  line  integral  are 
said  to  form,  taken  as  a  group,  a  Tensor  of  the  first  rank  of  which 

the  coefficients  are  the  ordered  components*  To  distinguish 
between  this  definition  and  another  of  similar  character  this 

Tensor  is  said  to  be  covariant.  More  generally  the  coefficients 

of  an  Ip,  np  in  number,  are  said  to  form  a  covariant  tensor  of 
rank  p  of  which  the  separate  coefficients  X8l  .....  8p  are  the  ordered 
components.  Knowing  the  values  of  the  components  XSl  .....  if 

of  a  covariant  tensor  in  any  suitable  system  of  coordinates  x(t) 
the  components  in  any  other  set  y(s)  are  furnished  by  the  equa- 
tions 

Although  not  of  such  physical  importance  it  is  convenient  to 
extend  the  idea  of  Tensor  to  an  arbitrary  set  of  functions  of 

position  XSlt  ...,  8p  which  follow  the  same  law  of  correspondence, 
when  a  transformation  of  coordinates  is  made,  as  the  alternating 
set  above.  If  we  do  this  it  is  merely  the  alternating  covariant 
Tensors  which  arise  as  coefficients  in  integrals  over  geometric 

figures.  The  reason  for  the  correspondence  between  the  com- 

*  The  term  Tensor  was  used  by  Gibbs  in  another  sense  in  his  lectures  (see 
his  Vector  Analysis,  Chap.  V,  edited  by  Wilson,  E.  B.)  and  also  with  the  same 

meaning  as  that  given  here  by  Voigt,  W.,  "  Die  fundamentalen  Eigen- 
schaften  der  Krystalle,"  Leipzig  (1898).  Cf.  Ch.  IV,  §  4,  infra. 
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ponents  in  different  systems  of  a  Tensor  in  the  general  non- 
alternating  case  would  remain  to  be  explained. 

4.  INTRODUCTION  OF  CONTRAVARIANT  TENSORS 

In  the  expression 

h  =  SX.dxM  =  f  W>  (*  umbral) 

the  quantities  by  which  the  components  X,  of  the  covariant 
tensor  of  rank  one  are  multiplied  have  a  law  of  correspondence 
defined  by  the  equations 

—  as  • 
Similarly  in  the  integral 

/,  -  y 

the  factors  X",  Yrt  which  multiply  the  components  Xrt,  Yrt 
respectively  of  the  alternating  covariant  tensor  of  rank  two 
have  a  law  of  correspondence  given  by  the  equations 

(bv  definition) 

'duidv*  (T"  "  umbral  symbol9) 

(by  definition) 

and  so  in  general  for  an  integral  over  a  spread  of  p  dimensions 

(p  <  n).  These  factors,  regarded  as  a  whole,  are  said  to  form 
a  contravariant  Tensor  of  the  first,  second,  •  •  •  ,  pth  rank  as  the 
case  may  be.  The  sets  introduced  in  this  way  are  not,  as  in  the 
case  of  the  covariant  tensors,  alternating.  Even  though  the 
correspondence  between  the  two  sets  of  functions  of  position 
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X'1'*  '"  *'  and  y*1  •"  •»  may  not  arise  in  the  above  manner  the 
set  is  said  to  form  a  contravariant  tensor  of  rank  p  if  the  corre- 

spondence between  the  ordered  components  is  defined  by  the 
equations 

«  « 

(f  „  ..., 

The  labels  which  serve  to  oHer  the  components  are  written 
above  in  the  case  of  contravariant  and  below  in  the  case  of  co- 
variant  Tensors.  The  following  remark  may  be  useful  in  aiding 
the  beginner  to  remember  easily  the  important  equations  defining 
the  correspondence.  The  umbral  symbols  are  always  attached 

to  the  x  coordinates  on  the  right.     When  the  labels  are   ,        [ 

on  the  left  the  y  coordinates  are   f  ow  \  on  the  right. 
Thus 

(si,  Sz  umbral) 

oyv  "  oy^'*' whilst 

By  an  obvious  and  useful  extension  we  can  now  introduce  mixed 
Tensors  partly  covariant  and  partly  contravariant  in  nature. 

Thus  the  set  of  n3  functions  of  position  Xrr\Tt  form  a  mixed 
tensor  of  rank  three,  covariant  of  rank  two  and  contravariant  of 
rank  one,  if  the  correspondence  between  the  two  sets  of  ordered 
components  is  defined  by  the  equations 

Now  when  we  recall  that  the  x  coordinates  are  perfectly 

arbitrary  as  also  are  the  y's  it  becomes  apparent  that  it  must  be 
possible  to  interchange  the  x  and  y  coordinates  in  the  equations 
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defining  the  correspondence.    Thus,  to  give  a  concrete  example, 
it  must  be  possible  to  derive  from  the  r?  equations 

rt  = 

which  serve  to  define  a  covariant  tensor  of  rank  2,  the  equations 

(*i,  82  umbral) 

In  fact 

all  umbral) 

is  umbral)  is  =       by  the  rule  for 

composite  differentiation  and  this,  on  account  of  the  mutual 

independence  of  the  x  coordinates,  is  =  0  unless  t\  =  r\  in  which 

case it  =  ll 

To  conclude  these  definitions  it  will  be  sufficient  to  state  that 

a  single  function  of  position  may  be  regarded  as  a  tensor  of  rank 
zero  if  its  value  (not  its  formal  expression)  is  the  same  in  all  sets 

of  coordinates.  No  labels  are  here  required  to  order  the  com- 
ponents and  the  equation  defining  the  correspondence  is  simply 

Y=X 

Such  a  function  of  position  is  also  called  an  invariant  or  absolute 
(or  in  the  text-books  on  vector  analysis  a  scalar)  quantity.  The 
reason  for  regarding  this  as  a  tensor  (of  either  kind)  of  rank  zero 
will  become  apparent  from  a  study  of  the  rules  of  operation  with 
tensors. 

Example. — Consider  the  formulae  of  transformation  from  rec- 
tangular Cartesian  to  space  polar  coordinates  (§  3). 
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Here 

=  sin  y(2)  cos  y(3);         —-     =  +  y(1)  cos  y(2)  cos  !/(3); ) 

=  —    (V  sin  /<2>  sin 

etc.,  and  we  obtain 

,,  daP>  ,    Y  , 
Yl  =  Xldy™       W» 

=  (Xi  sin  y(2)  cos  y(3)  +  X2  sin  ?/(2>  sin  y(3)  +  X3  cos  2/(2)) 

cos        cos  y  z  cos  y     sn  y     -     3  sn 
C7»v  -rr    C7*C  -inr    C7X 

=  yw[—  Xi  sin  i/(2)  sin  y(3)  +  JJT2  sin  y(z)  cos 

the  X's  on  the  right  hand  side  being  supposed  expressed  in  terms 
of  the  i/'s.  If  then  we  denote  by  R,  0,  $  the  resolved  parts  of 
the  vector  X\,  Xz,  X3  (the  theory  of  the  resolution  of  tensors 
will  be  dealt  with  later  but  we  may  anticipate  here)  along  the 
three  polar  coordinate  directions  at  any  point 

r;  3  =  2/     sn          s  r  sn 

For  a  contravariant  tensor  of  rank  one  we  have 

yd)  =   Vd)    »  __  i_  v(2)    »  __  L 

sin  y  ̂  Cos  i/<3>  +  X™  sin    <2>  sin 

4. 

^ 

V(3)  —    Vd)  _L    -F(2)        __  L    V(3) ^ 

cosy(3)  +  X®  cosy(2>  sin  y<3>  -  Z<*>  sin 

fy 
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1 

sn (-  X1  sin  7/(3)  +  X*  cos 

where  the  Jf  's  on  the  right  are  supposed  expressed  in  terms  of  the 
y's.  Call  the  resolved  parts  of  (Xw,  Z(2),  Z(3))  along  the  polar 
coordinate  directions  R,  6,  $  as  before  and  we  have 

yd)  ==  R.        y( r  '  r  sin  0 

*  A  general  result  of  which  this  is  a  special  case  is  given  in  Chapter  IV. 



CHAPTER  II 

THE  ALGEBRA  OF  TENSORS 

1.  ELEMENTARY  RULES  FOR  DERIVING  AND  OPERATING  WITH 
TENSORS 

(a)   The  Ride  of  Linear  Combination 

(     —  n  i         \ 

™  )  and 

q  =  0,  1,  •  •  •  / 

X%'.".r£  is  another  tensor  of  the  same  kind  then  the  set  of 
niH-«  functions  of  position  found  by  adding  components  of  like 
order  (that  is  with  all  corresponding  labels,  both  upper  and 
lower,  having  the  same  numerical  values  each  to  each)  forms  a 
tensor  of  the  same  kind  as  X  and  X  which  is  called  the  sum  of 

X  and  X.  By  the  phrase  "  of  the  same  kind  "  we  imply 
not  only  that  X  and  X  must  have  the  same  rank  both  as  to 
covariant  and  contravariant  character,  but  that  corresponding 

components  have  the  same  dimensions.  The  proof  of  the  state- 
ment is  immediate  for  from  the  equations 

Q:::^all  umbral) 

and  a  similar  one  obtained  by  writing  a  bar  over  Y  and  X  we 
obtain  by  addition 

which  is  the  mathematical  formulation  of  the  statement  that 
X  +  X  is  a  tensor  of  the  same  kind  as  both  X  and  X. 

If  we  multiply  the  equations  written  above,  which  express  the 

tensor  character  of  X^'."r,^  by  an  invariant  function  of  position 
21 
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(possibly  a  constant)  m  we  have  that  mX  is  a  tensor  of  the  same 
character  as  X.  Combining  this  with  the  previous  definition 
of  a  sum,  repeatedly  applied  if  necessary,  we  have  what  is  known 
as  a  linear  combination  of  Tensors 

where  the  l\,  Jj,  •  •  •  are  either  mere  numbers  or  scalar  (invariant) 
functions.  The  separate  members  of  this  linear  combination  must 
be  of  the  same  kind.  If,  as  a  special  case,  /2  is  a  negative  number 

lz  =  -  1  say  and  li  =  +  1  then  X  +  (-  Z1)  is  written  X  -  X1 
and  in  this  way  subtraction  is  defined.  A  tensor  all  of  whose 

components  are  zero  is  said  to  be  the  zero  tensor.  (It  is  im- 
portant to  notice  that  the  property  of  having  all  the  components 

zero  is  an  absolute  one;  i.e.,  it  is  independent  of  the  particular 
choice  of  coordinates  in  terms  of  which  the  components  are 
expressed.  This  follows  at  once  from  the  equations  defining 
the  correspondence  between  the  ordered  components  in  different 
systems  of  coordinates.  The  General  Principle  of  Relativity 
merely  says  that  all  physical  laws  may  be  expressed  each  by  the 

vanishing  of  a  certain  tensor.  This  satisfies  the  necessary  de- 
mand that  the  content  of  a  physical  law  must  be  independent  of 

the  coordinates  used  to  express  it  mathematically.  The  fixing 
of  the  number  of  dimensions  n  as  4  rather  than  3  and  the  inter- 

pretation of  the  physical  significance  of  the  coordinates  are  the 
difficult  parts  of  the  theory  of  relativity;  the  demand  that  all 
physical  laws  express  the  equality  of  tensors  has  nothing  to  do 
with  these  and  must  be  granted  by  everyone.  Here  we  regard 
an  invariant  as  a  tensor  of  zero  rank.)  Since  the  idea  of  a  linear 
combination  of  tensors  is  reducible  to  a  linear  combination  of 

the  corresponding  components  it  follows  that  the  order  of  the 
separate  members  in  a  linear  combination  is  unimportant. 

2.  (6)   The  Rule  of  Interchange  of  Order  of  Components. 

A  specific  example  will  show  most  briefly  and  clearly  what  is 
meant  by  this  rule.     Consider  the  co  variant  tensor  XTlrt  of  the 
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second  rank.    The  components  have  a  definite  order  which  may 
be  conveniently  specified  by  a  square  arrangement. Xln 

If  now  we  rearrange  the  n.2  functions  amongst  the  n.2  small  squares 
in  such  a  way  that  the  rows  and  columns  are  interchanged, 
then  this  same  interchange  of  rows  and  columns  will  take  place 
in  the  square  for  any  other  coordinate  system  y.  We  denote 

the  new  ordered  set  by  a  bar  thus — 

~Xr..=  X8,r  (r,8=  1,2,  •••,») 

From  Xr, «  we  obtain  Yra  by  means  of  the  equations  of  corre- 
spondence and  we  wish  to  show  that  Yri  =  Ytr  where  the  Yra  are 

obtained  from  the  Xr»  by  the  same  equations  of  correspondence. 
All  we  have  done  is  to  rearrange  the  order  of  summation  on 

the  right  hand  side  of  the  equations  of  correspondence  and  the 
formal  proof  is  very  easy. 

V     = 

=        V —    •*  sr 

by  definition  (p  and  a  umbral) 

from  definition  of  X 

(from  equations  of  correspondence). 

Combining  this  rule  with  rule  (a)  we  derive  some  important 
results.  Thus  starting  with  X  whose  components  are  Xr,  we 

derive  X  whose  components  are  Xrs  =  Xsr  and  then  the  differ- 
ence X  —  X  whose  components  are  Xrg  —  Xrs  =  Xrt  —  XiT' 

This  new  tensor  is  alternating  and  an  important  example  of  this 
type  will  be  given  to  exemplify  the  next  rule. 
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3.  (c)  The  Ride  of  the  Simple  Product. 

Consider  any  two  tensors  not  necessarily  of  the  same  kind  or 
rank.  Let  us  form  the  product  of  each  component  of  the  first 
into  each  component  of  the  second  and  arrange  the  products  in  a 
definite  order.  The  set  of  products  will  form  a  tensor  whose 
rank  is  the  sum  of  the  ranks  of  the  original  tensors.  Again  it 
will  suffice  to  show  how  the  proof  runs  in  a  special  example. 

Let  the  two  tensors  be  XTt  and  XTt  and  denote  by  the  symbol 

X'lr\  the  product  Xrirt-X'1'*.  (Here  r\,  r2,  *i,  sz  have  definite 
numerical  values  so  that  X^'\,  defined  in  this  way,  is  a  single 
function  out  of  a  group  of  n4  obtained  by  giving  r\,  r2,  *i,  s% 
each  all  values  from  1  to  n  in  turn.)  We  have  to  show  that  the 

group  of  n4  functions  X?£t  really  form,  as  the  notation  implies, 
a  tensor  of  rank  four  covariant  of  rank  two  and  contravariant 
of  rank  two.  To  do  this  we  have 

Yr['rl  a  Frir,  .  y-ii  by  definition  of 

(Pit  P2»  frb  02  umbral) 

dx(pl)  dx(n)  dy(t 
by  definition  of  X%£ 

which  proves  the  statement. 
It  is  quite  apparent  that  X^  is  not  the  same  as  X%%  so  that 

the  order  of  the  factors  in  this  kind  of  a  product  is  important. 
Multiplication  of  tensors  is  not  in  general  commutative.  This 
remains  true  even  when  both  the  factors  are  of  the  same  kind  and 

rank.  Consider  the  simplest  case  where  we  have  two  tensors 

X  and  X  both  covariant  of  rank  one.  Then  the  product  X-  X 

is_a  tensor  Xr»  =  XT  •  .X,_covariant  of  rank  two  whilst  the  product 
X'X  is  a  tensor  Xrt  =  Xr>Xt. 
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The  difference  Xra  —  Xra  is  again  a  covariant  tensor  of  rank 
two  which  is  alternating  since  Xr»  =  Xtr.  Since  alternating 
tensors  have  a  more  immediate  physical  significance  than  non- 
alternating  tensors  it  is  natural  to  expect  that  this  difference 
should  be  more  important  than  either  of  the  direct  products 
Xrs  or  Xra-  It  is  what  Grassmann  called  the  outer  product  of 
the  two  tensors  X,  X  in  contrast  to  another  kind  of  product  which 

he  calls  "  inner  "  and  which  we  now  proceed  to  discuss. 

4.  (d)  The  Rule  of  Composition  or  Inner  Multiplication. 

Let  us  first  consider  a  simple  mixed  tensor  of  rank  two  Xrir* 
for  which  the  equations  of  correspondence  are 

Yrir*  =  ̂ V2-r         (*i  and  *2  umbral  symbols) 

If  now  we  make  r2  =  n  =  r  (say)  and  use  r  as  an  umbral  symbol 
we  get 

The  remarkable  simplification  on  the  right  hand  side  is  due  to 
the  results  from  composite  differentiation 

dy(r)  =  dz(<l) 

dy(r)
 

=  0  if  sz  4=  Si  and  =  1  if  s2  =  si 

In  this  way  we  can  form  from  a  given  tensor  a  tensor  of  lower 
rank  (in  this  case  an  invariant). 

The  proof  in  the  general  case  is  of  the  same  character. 

Consider  the  mixed  tensor  X^'.^mi"'^  which  is,  as  the 
labels  indicate,  covariant  of  rank  p  +  /  and  contravariant  of 

rank  p  +  <?  so  that  the  equations  of  correspondence  are 

where  -^rr  stands  for  -^7-,  •  •  •  -—  v  and  so  for  the  others. 
dx(  "        ox(  p' 
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If  now  we  make  p\  =  r\,  p%  =  Tt  •  •  •  pp  =  rp  and  use  r\  •  •  •  rp 

as  umbral  symbols  of  summation,  -^  •  — ^  on  the  right  hand 

side  becomes 

(TI  •  •  •  Tp  umbral) 1     fr^         1      Cr^ 

oyv '    ox( ' 
and  successive  applications  of  the  results 

dy(T
 

gives  us  that 

-r  =  0  Unless  t\  =  T\ 

ri) 

=  1  if  *!  =  n 

=         U     SS  ̂  = 
=  1    if  <i  =  ri,  • •,  tp  =  r 

so  that 

>,  Ml  •"
 

r,  -.  r, 

(r,  ra,  *  all  umbral) 

giving  the  result  that  (^rj'."^^'.'.'/"!,)  is  a  tensor,  co  variant  of 
rank  /  and  contravariant  of  rank  q.  If  q  =  0,  /  =  0  we  have  the 
result  that 

Xrr\"'.rrfr  is  an  invariant     (fi  •  •  •  rp  umbral) 

explaining  why  we  regard  an  invariant  as  a  tensor  of  zero  rank. 
If  now  we  have  two  tensors  not  both  entirely  covariant  or 

contravariant  and  take  their  simple  product  we  have  a  mixed 

tensor  to  which  we  may  apply  the  method  here  described  and 
obtain  a  tensor  of  lower  rank.  This  is  called  composition  or 

inner  multiplication  of  the  two_tensors.  Thus  starting  with 

Xr  and  X'  we  obtain  X,T  =  Xr-X$  and  then  making  r  =  *  (i.e., 
picking  the  n  diagonal  elements  or  components  of  the  tensor  Xf 

of  rank  two)^and  summing  with  respect  to  *  we  derive  an  in- 
variant Xt'X'  which  is  the  invariant  inner  product  of  the  two 
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tensors.  (To  obtain  an  inner  product  the  tensors  must  be 

of  different  character — one  covariant,  the  other  contravariant.) 

Similarly  from  the  two  tensors  of  rank  two  Xrir*  and  XtlSt  we 
first  obtain  the  mixed  tensor  of  rank  4 

X  «1»*   == 

and  from  this  the  scalar  or  invariant  function  of  position 

X'lrl  =  Xrir*'Xrirt     (n,  r2  umbral  symbols) 

Notice  that  in  these  cases  the  order  of  the  factors  is  not  im- 

portant— the  same  invariant  results  if  we  change  the  order. 

5.  (e)  Converse  of  Rule  of  Composition. 

Again,  for  the  sake  of  simplicity,  let  us  explain  this  for  a 
special  case.  We  consider  a  set  of  n  functions  of  position  Xr 
which  has  such  a  law  of  correspondence  between  components 
in  different  coordinate  systems  that  for  any  contravariant  tensor 

Xr  of  rank  one  whatsoever  the  summation  XrXr  is  invariant 
(r  umbral).  Then  we  shall  prove  that  the  set  Xr  actually  form, 
as  the  notation  implies,  a  covariant  tensor  of  rank  one. 

We  have 

Yr-  F  =  Xt-Xw  (by  hypothesis) 

=  Xt'Y1  -r— :-.      (since  Xr  is  contravariant  of  rank  one) 

dyM 
We  now  take  as  a  special  illustration  of  the  tensor  XT  that  one, 
which,  in  the  y  system  of  coordinates,  has  all  its  components  =  0 

save  one  which  is  =  1,  e.g.,  Y*  =  0  if  *  4=  r  whilst  Yr  =  1. 
This  choice  of  X  is  permissible  since  we  make  the  hypothesis 
that  X  is  any  tensor  we  wish  to  choose.  And  we  have 

proving  on  assigning,  in  turn,  to  the  label  r  the  numerical  values 

1,  •  •  •,  n,  the  statement  made.     (It  is  apparent  that  instead  of 
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taking  XT  as  perfectly  arbitrary  it  is  the  same  thing  to  say  that 
X(T)  shall  be  any  one  of  the  n  tensors  which  in  some  particular 
system  of  coordinates  have  each  all  but  one  of  their  coordinates 

=  0,  the  remaining  one  being  =1.)  As  another  example  of 

this  converse  let  us  suppose  that  the  n2  functions  Xr*  have  such 
a  law  of  transformation  that  the  summation  Xr*  •  Xtt  is  a  covariant 
tensor  of  rank  two  (*  umbral)  where  Xtt  is  an  arbitrary  covariant 

tensor  of  rank  two;  we  have  to  prove  that  the  n2  functions  of 
position  X/  actually  form,  as  the  notation  implies,  a  mixed  tensor 
contra  variant  of  rank  1  and  covariant  of  rank  1. 

We  have 

Yr'Y.t  -  CX/JW  by  hypothesis 

- '          z 

(since  X  is  covariant  of  rank  2) 

Now  as  our  arbitrary  tensor  X  let  us  choose  that  one  for  which 

Fjm  =  0        unless  both  I  =  s  and  m  =  t 

Qy(t)      Qx(r) 

Y,t  =  1        and  using  ̂ -}  .  _  =  1        (T  umbral) 
we  obtain 

d  7/«)  fob) 

r''mZ'M*ij»  (*,P  umbral) 
proving  the  statement.  The  essence  of  the  proof  is  that  the 
multiplying  tensor  must  be  an  arbitrary  one.  In  concluding 
these  remarks  on  the  elementary  rules  of  tensor  algebra  it  may 
not  be  superfluous  to  remark  that  although,  for  example,  the 

product  XT»  =  Xr*  'Xtt  is  a  definite  tensor  we  do  not  introduce 
the  idea  of  quotient  Xr,  -f-  XT*.  The  reason  for  this  is,  of  course, 
that  there  is  no  unique  quotient;  there  are  many  tensors  X,t 

which  when  multiplied  by  a  given  tensor  Xr*  in  this  way  will 
yield  a  given  tensor  Xr»-  In  the  algebra  of  tensors  it  is  possible 

to  have  a  product  (inner)  of  two  non-zero  tensors  equal  to  zero. 
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6.  Applications  of  the  Four  Rules  of  Tensor  Algebra. 

The  most  useful  applications  of  these  rules  will  be  found  by 
returning  to  a  consideration  of  the  integrals  which  served  to 
introduce  us  to  the  tensor  idea.  It  will  be  remembered  that  a 

curve  V\  is  either  open  and  has  two  end  points  as  boundary  or 

else  is  closed  and  has  no  boundaries;  a  spread  Vz  of  two  dimen- 
sions is  either  open  and  bounded  by  one  or  more  closed  curves  or 

closed  and  without  boundaries.  In  general  a  spread  Vp+\  of 

p  +  1  dimensions  (p  <  n  —  1)  is  either  open  and  bounded  by 
one  or  more  closed  spreads  Vp  of  p  dimensions  or  else  closed  and 
without  boundaries.  When  the  spread  Vp+i  is  open  there  is  an 
important  theorem  giving  the  value  of  an  arbitrary  integral  Ip 
extended  over  the  closed  boundaries  Vp  in  terms  of  a  certain 
connected  integral  extended  over  the  open  Vp+i  bounded  by  Vp. 

The  simplest  case  is  when  p  =  1  in  which  case  an  integral  over 
a  closed  curve  is  shown  to  be  equivalent  to  a  certain  integral 
extended  over  any  surface  or  spread  of  two  dimensions  Vz 
bounded  by  the  curve  V\.  This  case  was  discussed  by  Stokes 
for  ordinary  space  of  3  dimensions  and  the  general  theorem  is 

known  as  "  Stokes'  generalized  Lemma."*  It  will  be  noticed 
that  the  theorem  is  a  non-metrical  one  as  we  have  not  yet  had 
occasion  to  say  anything  about  the  metrical  character  of  the 
space  Sn  containing  the  spreads  Vp.  We  shall  prove  the  theorem 
when  p  =  2  as  this  will  suffice  to  show  the  details  in  the  general 
case. 

Here  the  equations  of  the  open  V$  are 

and  the  boundaries  will  be  specified  by  one  or  more  relations  on 
the  parameters  u\,  Uz,  u3.  If  there  are  several  distinct  boundaries 
Vz  we  may  connect  them  by  auxiliary  surfaces  Vz  so  as  to  form 
one  complete  boundary.  The  parts  of  the  72  over  this  complete 
boundary  coming  from  the  auxiliary  surfaces  will  cancel  (each 

*  H.  Poincart,  loc.  cit. 



30  VECTOR  ANALYSIS  AND  RELATIVITY 

auxiliary  connecting  surface  may  be  replaced  by  two,  infinites- 
imally  close,  surfaces  and  it  is  the  integrals  over  these  pairs  of 
surfaces  that  cancel  each  other  in  the  limit  as  the  surfaces  are 

made  to  approach  each  other  indefinitely).  The  relation  between 

the  parameters  on  the  boundary  may  be 

03  =  <t>(ui,  ut,  u3)  =  0 

and  we  introduce  two  other  functions  v\  and  02  of  u\,  it*,  u9 

such  that  01,  02,  03  are  distinct  functions,  and  change  over  to 

0i,  02,  03  as  parameters.  We  shall  suppose  the  parameters  such 

that  the  equations  giving  the  coordinates  x  are  uniform  both 

ways.  Not  only  does  an  assigned  set  of  parameters  give  a 

unique  point  x  but  to  a  point  x  there  corresponds  but  one  set  of 

parameters  0. 

Accordingly  the  surfaces  03  =  const,  cannot  intersect  each  other 
and  they  form  a  set  of  closed  level  surfaces  filling  up  the  initial 

open  Fj.  On  each  of  these  closed  level  surfaces  we  shall  have 

the  level  curves  0i  =  const.,  0j  =  const.,  and  we  suppose  the 
functions  0i,  03  of  Ui,  u*,  M»  so  chosen  that  these  level  curves 
are  closed. 

Now  consider  the  integral 

/,  =  fX^tld(x(tl),  x(t*>)          (si,  8Z  umbral  and  *i  <  *2) 

extended  over  the  boundary  03  =  0.  If,  instead  of  integrating 

over  03  =  0,  we  take  it  over  any  of  the  level  surfaces  03  =  constant 
it  will  take  on  different  values  depending  on  this  constant  and 
to  indicate  this  we  write 

?=  rx *     d0id0 

+ 

Ar<'d  dr(»»)  ] 
/tj  vJ,          VJ,  I 

-=  —  I 

001       002 
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(It  is  only  necessary  to  differentiate  the  integrand  since  the 
limits  of  the  integral  are  independent  of  03).  Now  if  F  is  any 

function  of  position  (not  merely  of  the  parameters)*  on  a  closed 
dF 

curve  with  parameter  v  the  integral  J* -—  dv  taken  round  the 
dv 

closed  curve  is  necessarily  zero.  For  it  is  the  difference  of  the 
values  of  F  at  the  coincident  end  points  of  the  curve.  If,  in 
particular,  we  take  as  F  the  function 

F  =  XSltt  —   —  ($1,  82  umbral) 

and  integrate  round  the  closed  curve  vt  =  constant  we  get 

8i8J  I    a a a '       a a     a       I 
\  001003    002  003    001002  / 

_       vi  =  0 

dvz    J 

and  integrating  this  with  respect  to  02  over  the  surface  03  =  con- 
stant we  have 

f\Xgltt{^.  >
_|_te^d*a:    -\ 

=  0 

Similarly  on  taking 

00 

f)F 
and  integrating  f  ,—  dvidvz  over  the  closed  surface  v3  =  const. 

dvz 

*  The  distinction  implied  here  should  be  clearly  grasped.     If  the  equations 
of  the  curve  are 

xi  =  a  cos  v 
x*  =  a  sin  v 

F  must  be  periodic  in  v  with  period  2ir. 
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we  get 

r\X     ( 
 d*x(>t)  dx('l)

 [     ''''Vdfladfla  dvi          303 

0t>2        003       Ofli 

Now  add  these  two  equations  together  and  note  that 

0     (*i»  *2  umbral) 

because  the  terms  in  the  summation  cancel  out  in  pairs  owing  to 

the  alternating  character  of  XtlH  —  the  factor  multiplying  X,ltt 
in  the  summation  being  obviously  unaltered  by  an  interchange 
of  the  symbols  *i  and  sz.  We  find  that 

*1*1 

4- 

d*x(tt)  dx('l)  \ 
dvydvz  dv\   J 

so  that 

dh_    r\dX^dx^dx^ 
dt>3     dvi     dfy          dv\ 

Now  the  X^H  are  functions  of  position,  i.e.,  of  the  coordinates  x 
so  that 

air  s  v        ?»_f«.l 

(*8  umbral) 

The  second  term  in  dlz/dv^  we  shall  slightly  modify  by  a  change 
in  the  umbral  symbols.    Thus 

-i  /..\  ->  r.,\ 

(si,  sz,  s3  all  umbral) 

dx('l) 

dX^ 

dx(tl) 
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so  that  we  can  write 

=  J  <  — - — —  ~~  — - — —  •"•  — 7~"v  i   dcidvz 

On  writing 

Y       = •A«i«i««  — 

and  integrating  the  expression  for  dlz/dv3  with  respect  to  08 
we  find 

' 
dvidvzdv*  (si,  sz,  s3  umbral) 

since  the  set  of  functions  X,ltt»t  defined  as  above  is  obviously 
alternating  (on  account  of  the  fact  that  Xrt  is  an  alternating  set). 
The  limits  for  v$  are  03  =  0  and  v3  =  some  constant  for  which 

/2  =  0  —  since  the  corresponding  F2  is  either  a  point  or  a  spread 
traced  twice  on  opposite  sides.  Let  the  integration  be  such 

that  03  =  0  is  the  upper  limit  and  we  have 

/2  =  fX,lHd(x(ti>x{t*>)  (*i<*2>  over  boundary 

=  fXwtd(x^x^x^)  (Si  <  *2  <  *3)  over  the  F3.* 
In  general  from 

Ip  = 
over  a  closed  boundary  we  derive  as  equivalent  to  Ip  an 

/„+! 

where 

*  It  will  be  observed  that  placing  the  +  sign  before  /»  on  the  left  makes 

=  0  the  upper  boun 

from  the  open  spread 

t>3  =  0  the  upper  bound  of  the  integral  f  -^  dvs.    Thus  vt  is  increasing  away 
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It  is  usual  to  preserve  a  cyclic  arrangement  of  suffixes  for  the 

X's  and  then,  on  account  of  the  alternating  character  of  the  X's, 
we  have 

the  upper  signs  being  used  when  p  is  even  and  the  lower  when  p 
is  odd.  Since  Ip  is  by  hypothesis  invariant  so  is  Ip+i  because 

IP+I  =  Ip  and  accordingly  the  coefficients  XSl  ...  Vl  form  an 
alternating  covariant  tensor  of  rank  p  -f-  1  [seen  either  directly 
as  when  tensors  were  introduced  or  as  a  case  of  the  converse  of 

rule  (d),  the  set  of  functions  — —  •  •  •  -r—   —  dvi  •  •  •  dvp+i  form- 001  OVp+i 

ing  an  arbitrary  contra  variant  tensor  of  rank  p  +  1].  In  this 
way  we  can  derive  from  any  alternating  covariant  tensor,  by  a 
species  of  differentiation,  a  covariant  tensor  of  higher  rank.  , 

EXAMPLES. 

p  =  1.    From  any  covariant  tensor  XT  of  rank  one  we  derive 
an  alternating  covariant  tensor  of  rank  two 

X    -dXr  -dXt 

It  is  the  negative  of  this  tensor  that  is  called  the  curl  of  the 
vector  X  in  the  earlier  vector  analysis.  It  is  rather  important 
to  notice  that  this,  and  the  other  tensors  of  this  paragraph,  have 
no  reference  to  the  metrical  character  of  the  fundamental  space 
Sn.  The  derivation  of  them  by  the  methods  of  the  Absolute 

Differential  Calculus  introduces,  therefore,  extraneous  and  un- 
necessary ideas. 

p  =  2.    From  an  alternating  covariant  tensor  of  rank  two 
Xrt  we  derive  the  alternating  covariant  tensor  of  rank  three 

f\  *y  «\  TT  A  T^ 

Y         _  O**-Tt    i     OA.tt    ,    OA.tr 
•"•  rtt  ̂ s 
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If  n  =  3  there  is  only  one  such  function  and  in  the  usual  analysis 
it  is  called  the  divergence  of  Xrs.  We  shall  have  to  modify  this 
slightly  for  the  general  tensor  analysis.  It  is  interesting  to 
notice  that  if  we  take  as  Xr»  the  tensor  of  the  previous  example 

we  find  Xrst  —  0.  It  is  easily  seen  that  this  happens  in  general. 

If  we  derive  Xtl  ...  9p  from  Xtl  ...  g^  in  this  way  then  the 

Xtl  ...  v,  derived  from  Xtl  ...  8p  is  =  0.  When  the  XSl  ...  v, 
derived  from  XSl  ...  8p  is  =  0  we  have  that  Ip+i  =  0  and  so  Ip 
(extended,  of  course,  over  any  closed  spread  of  p  dimensions) 
is  =  0.  In  this  case  Ip  is  said  to  be  the  integral  of  an  exact 
differential.  It  can  then  be  proved  that  the  value  of  Ip  over 
any  open  Vp  is  equal  to  the  value  of  a  certain  integral  Ip-i  over 

the  closed  boundary  of  this  Vp* "If 

IP  -  SX^  ...  tpd(xW  •  •  •  X<»P>)      («i<a,...  <  8P) 

(an  \
  71  ? -i  )—  -  n  -  r—  T7 

p  +  !/      n  —  p  —  lip  +  1! 
partial  differential  equations 

Y  =  n 
•Atl«2  ...  Ip+l    —   W 

The  theorem  stated  is  that  these  are  the  necessary  and  sufficient  conditions 

that  there  exist  (  _  i  )  functions  of  position  Xn  ...  .^j  satisfying  the  (  ) 

partial  differential  equations 

That  the  conditions  are  necessary  is  an  immediate  result  of  a  direct  substitution 

of  the  left  hand  side  of  the  equation  just  written  for  Xtl  ...  ,  in  the  equation 
of  definition 

To  prove  the  sufficiency  an  appeal  is  made  to  the  principle  of  mathematical 
induction.  Let  us,  for  definiteness,  take  p  =  2.  Then  we  shall  prove  the 
statement  that  if  the  theorem  is  true  for  a  particular  value  of  n  it  is  true 
for  the  next  greater  integer  value  n  +  1.  Granting  this,  for  the  moment,  we 
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p  =  n  —  1.  This  is  the  next  and  last  case  if  n  =  4.  For 
an  arbitrary  value  of  n  it  is  second  in  importance  only  to  the 

first  case  p  —  I.  In  order  to  avoid  having  to  write  out  separately 
observe  that  the  theorem  is  true  for  n  —  2.  (In  this  case  there  are  no  in- 
tegrability  conditions  necessary;  on  account  of  the  alternating  character  of 

the  Tensor  X^^  whose  vanishing  expresses  these  conditions,  it  is  neces- 
sarily s  0.)  We  have  two  unknowns  X\  and  Xt  satisfying  the  single  differen- 

tial equation 

and  a  particular  solution  is  found  by  assuming  that  neither  A"i  nor  Xt  involves 
z(».  Then  Xl  may  be  any  function  of  z»>  and  Xt  =  -  f*(1>Xitdx(1\  the 
lower  limit  being  any  constant  i0n>.  In  the  integration  z(1)  is  regarded  as  a 
constant.  Hence  by  the  induction  lemma  the  theorem  is  true  for  n  =  3 
and  then  for  n  —  4  and  so  for  every  integer  n. 

To  prove  the  induction  lemma  let  us  seek  for  a  solution  of  the  equations 

•y  dXr  dXt  f 

rt  *  az^>  ~  az^>  (r 
where  the  unknown  Xn  s  0.    We  have  then 

AY 

X"-+i£)  <r-l,...,n-l) whence 

XT  -  +Xrndx<*>  +Xr         (r  =  1,  •  •  -,  n  -  1) 

where  x0(*)  is  a  constant;  XT  is  any  function  of  x(1>,  •  •  •,  z*"""  and  in  the 
integration  za),  •  •  •,  z(*~x)  are  constants.     The  remaining  equations 

xr  dXr          dXt  .  . 

X"  •  tow  ~  Sw  (r  <  «  -  1,  •  •  -,  n  -  1) 
give  on  substituting  these  values 

C*™dXn  f^dXn  dXr       dX. 

JU  ̂^    ~  JU  a^)^  ̂   a^  ~  ̂o 
dxr.          d~xt     ax. <->          T     («>          ̂ > 

•1  v-  a  y- 

Zr.  —  X,.  +  T-TTT  —  T-T;:  where  Xr,  is  the  function  Xr,  when  x(B)  is ozv*'       aZv  ' 

put  -  z»( 
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the  cases  corresponding  to  n  even  and  n  odd  we  shall  adopt  the 
first  form  for  Xtl ... ,  ,. 

Hence  we  have  the 
(      o      ) dX. 

dx<r> 

with  n  —  1  unknowns  XT  and  involving  n  —  1  independent  variables 

x(1),  ••-,  x(n-1).  Also  we  have  (  „  )  integrability  equations  Xrtt  ̂ 0 

found  by  putting  x(n)  =  Xo(n)  in 
XTlt  =  0          (r  <  s  <t  =  1,  •  •  •,  n  -  1) 

Hence  if  we  can  solve  these  equations,  i.e.,  if  our  hypothesis  is  true  for  n  —  1, 
we  can  solve  the  original  equations  which  are  identical  in  form  but  involve 

one  more  independent  variable  x(n).  The  particular  case  of  this  theorem 

corresponding  to  n  =  4,  p  =  2,  tells  us  that  Maxwell's  equations 
_          j  a  5  _ 

curl  E  -\  ---  ̂ r  =  0      div  B  =  0    (in  the  usual  notation) C  at 

imply  the  existence  of  the  electromagnetic  potential  (At,  Av,  A,,  —  c<t>)  — 
which  is  as  in  the  general  case  when  p  =  2  a  covariant  tensor  of  rank  one  — 
such  that 

B  -  curl  A;  E  -  -  grad  ̂   -  - C  at 

For  further  details  cf.  Physical  Review,  N.  S.,  Vol.  17,  p.  83  (1921). 
It  is  apparent  that  there  is  a  great  degree  of  arbitrariness  allowed  in  the 

determination  of  the  functions  Xtl  ...  ,  _t;  in  fact  we  may  add  to  any  solution 
any  alternating  covariant  tensor  of  rank  p  —  1  whose  integral  over  any  closed 
spread  Vp-\  of  p  —  1  dimensions  is  zero.  For  example  we  may  add  to  the 
electromagnetic  potential  any  gradient,  of  a  function  of  position;  that  is 

if  (A,,  Ay,  At,  —  c<t>)  is  any  determination  of  the  electromagnetic  potential, 
so  is 

A      ±d
F AV  ~T  7~ ,„       where  F  is  an  arbitrary  function  of  x,  y,  z,  t. 

Of - 

idF 
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Here  p  +  1  =  n  and  there  is  only  one  distinct  function  Xtl  ...  ,„ 
on  account  of  the  alternating  character  of  this  set.  Let  us  choose 

this  one  as  A'i  ...  „  and  our  formula  is 

_  dXv ... n-l  -1,  2  •••  n-t  n 

Now  there  are  only  n  distinct  functions  X,t  ...  ,„_,  and  it  will  be 
possible,  and  convenient,  to  indicate  these  by  means  of  a  single 
label.  Thus  we  write 

n-2,  n 

n-  3,  n—  1,  n  = 

where  we  are  careful  to  put  parentheses  round  the  symbols  (Xr) 
to  indicate  that  they  are  not  the  components  of  a  covariant 
tensor  of  rank  one. 

Maxwell  availed  himself  of  this  arbitrariness  and  chose  F  so  that  div  A  a  0 
whence 

d»F      d*F  .  3*F 

yielding,  from  the  theory  of  the  Newtonian  Potential, 

Fas  _L  ydivA 

4»          r 

The  usual  procedure  with  modern  writers  is  to  choose  F  so  that 

div  A 

The  equation  determining  F  is  now 

whence 

F 

from  the  theory  of  the  retarded  potential. 

/YdivA-  !£) 
I       V                        Cdt/t_r 

1      /         ?_dT 4»»/  r 
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Then  we  have 

Xi  •••  n  =  .  ,;  (s  an  umbral  label) 

ox(t) 

Although  the  (Xa)  do  not  form  a  covariant  tensor  of  rank  one 
they  are  very  closely  related  to  a  contravariant  tensor  of  rank  one. 
In  fact  there  is  a  reciprocal  relationship  between  an  alternating 

covariant  tensor  of  any  rank  r  and  an  allied  contravariant  alter- 

nating tensor  of  rank  n  —  r.  It  is  a  special  case  of  this  reciprocity 
stressed  so  much  by  Grassmann  in  his  Ausdehnungslehre  that 
gives  the  dual  relationship  of  point  and  plane,  line  and  line  in 
analytic  projective  geometry  and  it  is  from  the  terminology  of 

that  subject  that  the  terms  "  covariant  "  and  "  contravariant  " 
are  taken.  In  order  to  bring  out  this  reciprocal  relationship  in 
the  clearest  manner  we  must  make  a  digression  and  discuss  what 

are  meant  by  "  metrical  properties  "  of  space. 



CHAPTER  III 

1.  INTRODUCTION  OF  THE  METRICAL  IDEA  INTO  OUR  GEOMETRY* 

Let  us  consider  a  curve  V\  specified  by  the  equations 

XM  =  z<*>(«)  (*=  1,  ••-,*,) 

The  quadratic  differential  form 

grtdx(r)dx(t)  (r,  s  umbral) 

where  the  gr»  are  functions  of  position,  will  be  invariant  provided 
that  these  functions  form  a  covariant  tensor  of  rank  2.  (This 
is  a  consequence  of  our  rule  (d),  Ch.  2,  §  4,  and  its  converse  since 

the  set  of  n*  functions 

/fr(r) du      du 

form  a  contravariant  tensor  of  rank  two.)     Accordingly  the  grt 
being  of  this  kind  the  integral 

•du 

du    du 

has  a  value  independent  of  the  choice  of  coordinates  x;  it  is  called 
the  length  of  the  curve  V\  from  the  point  specified  by  UQ  to  that 

specified  by  u'.  If  the  upper  limit  u'  is  regarded  as  variable 
and  written,  therefore,  without  the  prime  S  is  a  function  of  this 
upper  limit  u  and  its  differential  is  given  by 

(<fo)2  =  grtdx(r)dx(t)  (r,  s  umbral) 

where  the  positive  radical  is  taken  on  extracting  the  square  root. 

It  will  be  convenient  to  agree  that,  in  some  particular  set  of  co- 

ordinates x,  we  arrange  matters  so  that  gT»  =  g»r',  this  can  always 
*  The  most  satisfactory  presentation  of  the  general  idea  of  a  metrical  space 

is  that  given  in  Bianchi,  L.,  Lezioni  di  Geometria  Differenziale,  Vol.  1,  §  152. 40 
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be  done  by  rewriting  any  two  terms,  gzzdx(z)dx(*> 
for  example,  of  the  summation  which  do  not  satisfy  this  require- 

ment in  the  form  %(g23  +  g32)dx(2)dx^  +  %(gn  + 
The  equations  defining  the  covariant  correspondence 

where 

then  show  that 

since  *,- 

We  inay  express  this  result  by  saying  that  the  property  of  any 
special  tensor  of  being  symmetric  is  an  absolute  one  just  as  is 
the  property  of  being  alternating. 

2.  RECIPROCAL  FORM  FOR  (dsf 

Consider  the  n  linear  differential  forms 

£r  =  grtdx(t)    (s  umbral;  r  =  1,  •  •  •,  n) 

We  can  solve  these  for  the  differentials  dxM  in  terms  of  the  n 
quantities  £r  as  follows.  (Note  that  the  £r  form,  as  the  notation 
indicates,  a  covariant  tensor  of  rank  1  from  our  rule  (d)  of  com- 

position or  inner  multiplication.)  Let  us  denote  the  cofactor  of 
any  element  grs  in  the  expansion  of  the  determinant 

ii     <7i2     •  •  •     gin 

7»1        '  *  '  <7nn 

by  (Gr»),  observing  in  passing  that  (G>«)  ==  (Gtr).    The  parenthe- 
ses indicate  that  the  (G>«)  do  not  form  a  tensor.    From  the 
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definition  of  a  cofactor  the  summation 

0r.(G>m)  =  g    when  m  =  s  (r  umbral) 
=  0    when  m  ̂   s 

We  shall  now  introduce  the  hypothesis  that  our  metrical  space 

is  such  that  g  does  not  vanish  identically  (it  will  be  presently  seen 

that  this  is  an  absolute  property)  and  for  all  points  where  g  is 
not  zero  we  have 

(C    ̂  
0r«^—  ̂   —  1        when  m  =  *  ,         ,     lx 
g  (r  umbral) 

=  0        when  m  4=  s 

Write  0*m  =  (Gim)/g  and  let  us  justify  the  notation  by  showing 

that  the  glm  form  a  contravariant  tensor  of  rank  two.  From  our 
definition  it  is  symmetrical  and  so  we  have  in  addition  to 

gr»grm  =1        if  m  =  s 
=  0        if  m  4=  s 

the  equivalent  equations 

0.r0mr  =1        if  m  =  s 
=  0        if  m  ̂   s 

These  relations  suggest  that  we  multiply  the  equations  of  defini- 
tion 

£r  =  gridx^ 
by  grm  and  use  r  as  an  umbral  symbol.    We  obtain  then 

(r,  a  umbral) 

=  dx(m)     from  our  relations  just  written 
Accordingly 

(<fc)2  =  gimdxwdx™  =  gimglr£r'gm't.  (I,  m,  r,  s  umbraD 
=  grl£rk,  (r,  s  umbral) 

since  gimg*r  =  0  unless  m  =  r  when  it  =  1. 
The  £r£«  form,  by  rule  (c),  Ch.  2,  §  3,  an  arbitrary  contravariant 

tensor  of  rank  2  and  (<&)2  being,  by  hypothesis,  invariant,  the 
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converse  of  rule  (d),  Ch.  2,  §  5,  gives  us  the  result  that  the  grt 
form  a  contravariant  (symmetrical)  tensor  of  rank  2.  When  we 
write 

g"tet  (r,  s  umbral) 

it  is  said  to  be  written  in  the  reciprocal  form.     We  could  start  with 
this  form  and  write 

and  solving  these  obtain 

£.  =  9. 
and  then  find 

(ds)z  =  gr 

3.  If  now  we  have  two  determinants  a  =  \ars\,  b  =  \brs\ 
each  of  order  n  (the  notation  implying  that  ars  is  the  element  in 
the  rth  row  and  sth  column  of  the  determinant  a)  it  is  well 
known  that  the  product  of  the  determinants  a  and  b  may  be 

written  as  a  determinant  c*  of  which  the  elements  crs  are  defined by 

cr»  =  airbis          (I  an  umbral  symbol) 

This  kind  of  a  product  is  said  to  be  taken  by  multiplying  columns 
of  a  into  columns  of  b. 

We  can,  with  the  aid  of  this  rule,  easily  see  how  the  determinant 
g  behaves  when  we  change  our  coordinates  x  to  some  other 
suitable  coordinates  y.  We  get  a  determinant  /  of  which  the 
r,  sth  element  is 

frs  =  gin 

x 
Here  —-T-.  may  be  conveniently  denoted  by  (/&)  since  it  is  the (r) dx(l) 

—-T 

dy( I,  rth  element  of  the  Jacobian  determinant  J  of  the  transformation 
from  x  to  y  coordinates 

*  Cf.  Bdcher,  M.,  Introduction  to  Higher  Algebra,  Chap.  2,  Macmillan  (1915). 
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,7  = 

and  then 

,<!> 

dy( 

,(n) 

/          #x(l)  \  Qx(m] 

is  the  mrth  element  of  the  product  gJ  so  that  I  0jm  ̂ -rr  )  -^-r^ 

is  the  r*th  element  of  the  product  of  the  determinants  gJ  by  J. 

Hence  /  =  g J2. 
This  important  formula  shows  us  that  if  g  ̂  0  neither  will 

/  s=  0  unless  J  =  0  in  which  case  the  y's  would  not  be  suitable 
coordinates.  /  can  be  zero  at  points  where  0=t=0if«/  =  0at 
those  points;  such  points  would  be  singular  points  of  the  system 

of  coordinates  and  the  quantities  frt  would  not  be  defined  for 
them. 

EXAMPLE 

In  Euclidean  space  of  3  dimensions  with  rectangular  Cartesian 
coordinates  xw  xw  xw  we  write 

so  that  0n  =  022  =  033  =  1>  0i2  =  0i3  =  023  =  0.    In  space  polar 
coordinates  we  find 

fii  =  1        /2z  =  (y(1))2       /33  =  y(l)*  sin2  y(2> 
/12  =  /13  =  /23  =   0. 

Here  0=1 

/  =  /U/22/33  =   J2 so  that 

___1.      /22__=   __  . 

fu  /«      lf(1)l> 

1 
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and 

In  fact  £1  =  dxw,  etc.  There  are  no  singular  points  in  the  x 
coordinates  but  there  are  in  the  y  system;  those  for  which  J  =  0, 
i.e., 

yO)«giny»-0 

These  are  the  points  on  the  polar  axis 

y<»  =  r  =  0;        i/(2)  =  6  =  0  or  ir 

4.  If  now  ui  "  '  Un  are  any  independent  parameters  in  terms 
of  which  it  is  convenient  to  specify  both  the  x  and  y  coordinates 

we  have,  by  definition  of  the  symbol, 

and  a  similar  equation  for  d(x(l)  •  -  •  z(n))  so  that 

i    •  •  u  ) 
If  we  multiply  the  determinants  -  -  -  r^  and  .  .  \n  -  ̂ 7 

together  and  note  that 

dx^  du 

=  0      itt^r 

we  find  that  their  product  is  unity  and  so  we  can  write  the 

quotient 

w«  *•      x- 
(m  umbral) 
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as  above 

33  Jgjf  since  /  =  gJ*. 
Accordingly 

Vf  (%<»  .  • 
so  that  this  expression  is  an  invariant.  In  view  of  the  fact  that 

it  depends  on  the  fundamental  quadratic  differential  form  («fo)2 
it  is  called  a  metrical  invariant. 

Let  us  consider  an  integral  over  a  region  of  the  fundamental 

space  Sn,  fX\ ...  nd(x(l)  •  •  -  x(n)).  Here  X\ ...  n  is  the  single 
distinct  function  of  an  arbitrary  alternating  covariant  tensor  of 

rank  n.  Since  the  integrand  is  invariant  and  since  V</  d(xw  •  •  • 
x(n))  is  invariant  it  follows  by  division  that  X\ ...  n  -5-  V^  is  an 

invariant.  As  an  application  of  Stokes'  Lemma  we  have  already 
seen  that  if 

(Ai)  =    (        l)n^L2  ."  n  =  An2  •••  n— 1»        '  '  '      (An)  =   -^1  •••  n—  1 

(where  Xtl ...  .^  is  any  alternating  covariant  tensor  of  rank 
n  —  1)  then 

V  d/TT\  /Ll\ 

X i ...  n  =  T-77j  (A«)  (*  umbral) 

is  the  coefficient  of  an  integral  over  a  region  of  Sn.    We  see 

1        a therefore  that— p-r-ri  (-^«)  is  an  invariant. 

We  shall  now  investigate  the  nature  of  the  n  functions  (Xt). 
Under  a  transformation  of  coordinates  from  x  to  y  we  find,  for 
example, 

(V\=v  Y  dx(tl)         dx('"~* """"-iay<1>"  '  '  dyt»-« 
(»!•••  *»_i  umbral) 

a(a;Ci)  •  •  •  s<'»-i>) l"""-1(1>(»-1> 

(owing  to  alternating  character  of  X^  ...  .„.,) 
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In  general 

And,  accordingly,  if  we  denote  the  cofactor  of  ̂ -^  in  the  expan- 

sion of  J  by  (Jr»)  we  have 

(Fn)  ==  (Jn)(X.)  (s  umbral) 

(Yr)  S   (J.r)(X.) 

If  we  solve  the  n  equations 

=  -^-7-)  =1        if  s  =  r         (p  umbral) 

=  0        it  s  ̂   r      r  =  1  •  •  •  n 

for^-(-j  we  find jdy(p)  _  (Jgp) 

so  that  we  may  write 

or 

,     n 

umbral) 

V/  Jg  9*
** 

showing  that  ̂ ^  is  a  contravariant  tensor  of  rank  one.    We 

may  then  put  (Xt}  =  ̂g  X*  and  our  previous  result  takes  the 
1     d 

form  that  -7= — —  (V0  X")  is  an  invariant;  X9  being  any  contra- 

\gdx(8' 
variant  tensor  of  rank  one.    This  metrical  invariant  is  known 

as  the  divergence  of  the  contravariant  tensor. 

5.  SPECIAL  RESULTS 

If  u(xm  -  -  -  x(n))  is  any  invariant  function  of  position  the  rule 
of  differentiation 

du         du  dx(9)  f         ,     1N 
T~T^  =  TT^  -^~77\  (s  umbral) 
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0tt 

tells  us  that  the  n  functions  Xt  =  r-n  form  a  covariant  tensor 

dx{*' 

of  rank  one;  this  is  known  as  the  tensor  gradient.  If  Xr  is  any 
covariant  tensor  of  rank  one  its  simple  product  by  itself  or 

"  square  "  is  a  covariant  tensor  of  rank  two,  Xr»  =  XTXt. 
Hence  by  rule  (d),  Ch.  2,  §  4, 

(f'XTX»  is  an  invariant  (r,  s  umbral) 

This  is  called  the  square  of  the  magnitude  of  the  tensor.  In 
particular  the  square  of  the  tensor  gradient  is  the  invariant 

A  .  du    du  ,  ,     lx 

AlWHEE/o^>dx^>  (r,*  umbral) 

This  is  known  as  the  "  first  differential  parameter  of  u."    Similarly 
the  magnitude  of  the  square  of  a  contravariant  tensor  of  rank  1 

is  the  invariant  g^X^  X^  . 
Again 

9"<^  =  X'  (r  umbral) oar 

is  contravariant  of  rank  one  (rule  (d)).    Hence 

7r  JIT)  (  ^S  9"  Q-^)  )  is  &n  invariant     (r,  *  umbral) 

by  the  result  of  the  preceding  paragraph.  It  is  written 

and  is  known  as  the  "  second  differential  parameter."*  In 
ordinary  space  of  three  dimensions  in  which  the  s's  are  rec- 

tangular Cartesian  coordinates 

gn  -  0        if  r  =t=  * 
=  1        if  r  =  * 

and  grt  =  /';   Vjj  =  1  so  that  A2w  takes  the  form 

dzu    .     d*u    .     dzu 
»    I     «i    /o^o    I 

dx(l)
2 

*  Larmor,  J.t  Transactions  Cambridge  Phil.  Soc.,  Vol.  14,  p.  121  (1885), 
obtains  this  transformation  in  the  case  n  =  3  by  the  application  of  the  Calculus 
of  Variations. 
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When  we  change  over  to  any  "  curvilinear "   coordinates  y 
WP  Viavft  i  in  Her  thft  form we  have  under  the  form 

the  expression  of  this  magnitude  in  a  form  suited  to  the  new 
coordinates. 

6.  GENERAL  ORTHOGONAL  COORDINATES 

Whenever  we  have,  in  any  space,  coordinates  x  such  that  the 

expression  (ds)z  involves  only  square  terms,  i.e.,  gr,  =  0  if  s  ̂   r, 
the  coordinates  are  said  to  be  orthogonal  (for  a  reason  to  be 
explained  later).  It  is  usual  to  write,  in  this  case, 

I  i 

accordingly 

so  that 

1 

11          1 

i 

9nn  ~  ft 

1 

*~W      A22            An2' 11           Z,  2              ~n»           Z,   5 
9      ==    «1     '  *  '   9               "* 

The  square  of  the  gradient  is 

/  du  \2 A   „,  —    J,  2  f      vu>     \    _1 

2  (     dll     \2
 

whilst  the 

A2w  =  AiA 

t-A\(A;                 '*'l      1       »        /i\       I           | 

\oa:a)  / 
quantity 

-JL(  d  (     hl 

du  W 

^lax^VA.--- 

Andz'V
1 

•      d     (        An          du 

The  reader  should  write  out  the  explicit  formulae  for  space  polar 
and  cylindrical  coordinates  in  ordinary  space  of  three  dimensions. 
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7.  THE  SPECIAL  OR  RESTRICTED  VECTOR  ANALYSIS 

In  the  form  given  to  the  theory  by  Heaviside  and  others  only 
those  coordinates  x  or  y  were  considered  in  which  the  fundamental 
metrical  form  is 

d**  =  (<&i(1))2  +  ----  h  (<&(n))2  s  (dyw)*  +  ----  h  (rfy00)8 

These  coordinates  we  call  rectangular  or  orthogonal  Cartesian 
coordinates  and  the  space  we  call  Euclidean.  It  is  true  that 

use  was  made  of  Stokes'  Lemma  to  find  expressions  for  important 
invariants  as  A2w  in  other  than  orthogonal  Cartesian  coordinates 
but  no  attempt  was  made  to  define  the  components  of  a  vector 
in  these  coordinates.  Now  when  we  restrict  ourselves  to  that 

subgroup  (of  all  the  continuous  transformations)  which  carries  us 
from  one  set  of  orthogonal  Cartesian  coordinates  to  another 
the  distinction  between  covariant  and  contravariant  tensors  com- 

pletely disappears.  The  transformations  are  necessarily  of  the 
linear  type 

x(r)  =  Myw     (s  umbral,  r  =  1  •  •  •  n) 

where  the  a's  are  constants.  Since  here  /=  g  =  !,•/*=  1* 
and  so  the  equations  just  written  have  a  unique  solution  for  the 

y's.  To  get  this  most  conveniently  note  that  dx(r)  =  (art)dy(t) 
and  squaring  and  adding  we  have 

(ar,)(orj)  =  0        t  ̂   s  (r  umbral) 
=  1        t  =  s 

Hence  multiplying  the  equations  for  x  by  art  and  using  t 
as  an  umbral  symbol  we  find 

(ar«)z(r)  =  (ar«)(ar.)y<->  (r,  *  umbral) 

Accordingly  the  equations  of  correspondence  defining  covariant 

*  We  shall  consider  only  direct  transformations;  those  for  which  J  =  +  1. 
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and  contra  variant  tensors  are,  for  this  restricted  set  of  trans- 
formations, identical.  Again  denoting  by  (Ars)  the  cof actor 

of  (art)  in  the  expansion  of  the  determinant  J  we  have  by  the 
usual  method  that 

and  since  the  solution  is  unique  we  must  have  (ar()  =  (Art)* 
Hence  since  g  =  1  we  have  that  the  n  distinct  components  of  an 

alternating  tensor  of  rank  n  —  1  form  a  tensor  of  rank  one.  It 
is  for  this  reason  that  when  n  —  3  it  was  found  necessary  to 
discuss  but  one  kind  of  tensor — that  of  the  first  rank  which  was 
called  a  vector.^  Still  some  writers  felt  a  distinction  between  the 

two  kinds;  that  of  the  first  rank  they  called  polar  and  the 

alternating  tensor  of  the  second  kind,  whose  three  distinct  com- 
ponents form  a  tensor  of  the  first  kind,  they  called  axial.  Thus 

a  velocity  or  gradient  are  polar  vectors  (the  first  being  properly 
contravariant,  the  latter  covariant)  whilst  a  curl  or  a  vector 

product  are  axial  vectors. 

When,  in  the  mathematical  discussion  of  the  Special  Rela- 

tivity Theory,  it  was  found  convenient  to  make  n  =  4  [the  trans- 
formations (Lorentz)  being  still  those  of  the  linear  orthogonal 

type],  a  new  kind  of  tensor  or  vector  is  introduced.  Here  it  is 

the  alternating  tensor  of  the  third  rank  which,  when  we  consider 

merely  its  four  distinct  components,  is  equivalent,  from  its 

definition  and  the  properties  of  the  transformation,  to  a  tensor 

of  the  first  rank  or  "  four-vector."  There  remains  the  alter- 
nating tensor  of  the  second  rank  and  the  six  distinct  components 

of  this  were  known,  for  want  of  a  better  name,  as  a  six-vector. 
As  an  example  of  the  general  theory  we  have  that 

dX(g)  . (a)  the  divergence  of  a  four-vector      , .  is  an  invariant. OX 

(s  umbral) 

*  This  is  merely  a  special  case  of  the  previous  result  that  J  -~-^  =  (/«r). 

f  Until  a  consideration  of  non-alternating  tensors  became  desirable. 
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(6)  From  any  six-vector  XTt  we  may  derive  a  four-vector 
(really  an  alternating  tensor  of  the  third  rank) 

Y     _  dX™  I  dX»t  i  dXtr 
~      (t)          (r)          (>) 

It  is  this  four-vector  that  was  written  lor  Xn  in  honor  of 
Lorentz. 

8.  GENERALIZATION  OF  THE  RECIPROCAL  RELATIONSHIP  be- 

tween an  alternating  tensor  of  rank  r  and  one  of  opposite  kind 

of  rank  n  —  r  from  the  case  r  =  I  already  treated  to  a  general 
value  of  r. 

We  have  already  seen  that" 

where  J  is  the  determinant of  the  transformation 

and  (J.p)  is  the  cofactor,  in  the  expansion  of  J,  of  the  element 

dx(t) 
(jlp)  =  ̂ -r:*  of  this  determ

inant.
 

Hence 

J* 

'•in 

•V, 

Now  the  determinant  of  the  minors  of  J  is  well  known  to  be 

equivalent  to  the  product  of  J  by  the  determinant  of  order  n  —  2 
obtained  by  erasing  the  *ith  and  *jth  rows  and  the  nth  and  f2th 
columns  of  J  affected  with  its  proper  sign  (the  determinant  of 

order  n  —  2  is  the  cofactor  of 
/(ri) 

dy(rt) 

in  the  Laplacian  ex- 
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pansion  of  /  in  terms  of  two  row  determinants  from  the  *ith 
and  s2th  rows  and  the  nth  and  r2th  rows).  Hence  we  have  the 

result  that  the  n(n  —  l)/2  distinct  components  of  an  alternating 
covariant  tensor  of  rank  n  —  2  when  divided  by  V<7  form  the 
distinct  components  of  an  alternating  contravariant  tensor  of 

rank  two.  And  so  in,  general.  Similarly  the  (  j  distinct  com- 

ponents of  an  alternating  contravariant  tensor  of  rank  n  —  r 
when  multiplied  by  V<7  form  an  alternating  covariant  tensor  of 
rank  r. 

Example.    Take  n  =  4,  r  =  2  and  consider  the  linear  orthog- 
onal transformations  of  the  Special  Relativity  Theory.    Here 

ZM  =  Z»<;        Zi,  =  X42;        Z14  =  X* 
Z23  =  Z";        Z24  =  Z»;        Z34  =  X12 

The  two  tensors  or  six  vectors  Xrt  and  Xrl  were  said  to  be 

reciprocal* 
*  Cf.  Cunningham,  E.,  The  Principle  of  Relativity,  Ch.  8,  Camb.  Univ. 

Press  (1914). 



CHAPTER  IV 

1.  GEOMETRICAL  INTERPRETATION  OF  THE  COMPONENTS  OF  A 
TENSOR 

DEFINITIONS 

(a)  Direction  of  a  curve  at  any  point  on  it. 

At  any  point  u  on  the  curve  V\  specified  by  the  equations 

z<«>  =  x<«>(w)  (,  =  1,  ...,w) 

whose  length  s  from  a  fixed  point  UQ  is  defined  by  the  integral 

:   f 

»/m 

j du     du 

we  may  form  the  n  quantities 

j      —  —  j        •    -J— as         du       du 
/      _    -i  \ 
V'         A>         >  n) 

We  exclude  from  consideration  here  the  "  minimal  "  curves 

along  which  ds  =  0.  Since  Xr  =  dx(r)  is  a  contravariant  tensor 
of  rank  one  and  ds  is  an  invariant  we  have  that  the  n  quantities 

l(r)  form  a  contravariant  tensor  of  rank  one  which  we  call  the 

"  direction  "  tensor  of  the  curve  at  the  point  in  question.  The 
n  components  we  call  direction  coefficients.  The  equation  of 
definition 

=  grtdx(T)dx(t)  (r,  s  umbral) 

shows  us  that  grtfir)l(t)  =  1  so  that  a  knowledge  of  the  mutual 
ratios  of  the  direction  coefficients  suffices  to  determine  their 

magnitudes  (save  for  an  indefiniteness  as  to  sign).  Otherwise 
expressed  the  magnitude  of  the  direction  tensor  is  unity.  Fixing 

the  indefiniteness  as  to  sign  by  a  particular  choice  is  said  to  fix 

54 
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a  sense  of  direction  on  the  curve  and  the  curve  may  be  then  said 
to  be  directed. 

2.   (6)  Metrical  Definition  of  Angle 

Consider  two  curves  with  a  common  point  and  let  their  direc- 

tion tensors  at  this  point  be  l(r)  and  m(r).  The  simple  product 
Xrt  =  l(r)m(l)  is  contra  variant  of  rank  two  (Rule  (c),  Ch.  2)  and 
so  the  expression  grtl(r)m(t)  is  invariant  (r,  s  umbral;  Rule 
(d),  Ch.  2).  This  we  call  the  -cosine  of  the  angle  0  between  the 
two  curves  (directed)  at  the  point.  If  the  quadratic  differential 

form  defining  (ds)*  is  supposed  to  be  definite,  i.e.,  if  it  is  supposed 
that  (ds)  cannot  be  zero,  for  real  values  of  the  variables  z(r) 
and  dx(r)  save  in  the  trivial  case  when  all  the  dx(r)  =  0,  it  can 
easily  be  shown  that  the  angle  defined  in  this  way  is  always  real 

for  real  curves.  Let  us  write  instead  of  dx(r)  the  expression 
XZ(r)  +  Mm(r)  and  thus  form  the  quadratic  expression  in  X  and  n 

This  is  not  to  vanish  for  real  values  of  X,  /*  save  when  X  =  0,  n  =  0 

(we  suppose  the  quantities  Z(r)  and  m(r)  all  real  and  the  two  direc- 
tions as  distinct).  Using 

gril(r)lM  =  1  =  gnm(r)mM 
we  have  that 

X2  +  2XM  cos  6  -f  M2  =  0 

must  have  complex  roots  when  regarded  as  an  equation  in 

X  :  M-  Hence  1  —  cos2  6  >  0  so  that  the  angle  as  defined  above 
is  always  real  for  real  directions  under  the  assumption  that  (ds) 
cannot  vanish  on  a  real  curve.  It  must  be  remembered  however 

that  this  assumption  is  not  always  made,  e.g.,  in  Relativity 
Theory. 

When  cos  6  =  0  the  curves  are  said  to  be  orthogonal  or  at 
right  angles  at  the  point  in  question. 
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EXAMPLES 

In  ordinary  space  with  the  z's  as  rectangular  Cartesian  co- 
ordinates we  have  the  usual  expression 

cos  6  =  Z<»ro<»  +  J<2>ro<2>  +  J<s>m<*> 

where  (J(1>,  J(2),  J(I)),  (m(1),  m(2),  m(3))  are  the  direction  cosines  of 

the  two  curves.  If  now  we  use  any  "  curvilinear  "  coordinates 
(yw,  y(2),  3/(l))  the  angle  between  two  curves  is 

COS  6  =  Jrt 

In  particular  if  we  use  orthogonal  coordinates 

Thus  for  a  curve  in  polar  coordinates  r,  0, 

It  will  now  be  clear  why  those  coordinates  in  terms  of  which 

(ds)*  has  no  product  terms  are  said  to  be  orthogonal. 
For 

QyJ   Qx(m) fr,  =  9im^-M^-7:r     (from  its  co  variant  character) 

dy(r> 

If  now  all  the  coordinates  y  but  one,  y(r)  say,  are  kept  constant 
we  have  a  curve  whose  equations,  in  the  x  coordinates,  may  be 

conveniently  specified  by  means  of  the  parameter  y(r) 

XM  =  z(->(yM)  (S=  1,  ...,n) 

Through  each  point  y  there  pass  n  curves  of  this  kind  which  we 
shall  call  the  n  coordinate  lines  y  through  that  point.  On  the 
rth  of  these  coordinate  lines  the  direction  tensor  is 

ds 
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and  so  the  vanishing  of  the  component  /r«  states  that  the  co- 

ordinate lines  y(r)  and  y(t)  are  orthogonal.  Hence  if  (ds)z  does 
not  contain  any  product  terms  the  coordinate  lines  are  everywhere, 
all  mutually  orthogonal  and  so  the  coordinates  are  said  to  be 

orthogonal.  In  ordinary  space,  i.e.,  where  the  a;'s  are  rectangular 
Cartesian  coordinates  and  where  the  y's  are  orthogonal  co- 
ordinates, 

/^p 

Ll  —   Zr 

and 

/n  = 

so  that 

- 

\dy(1>J 

(du
(l)

Y 

°y 
 
\ 

dx"
) 

a  result  which  is  sometimes  useful  in  the  calculation  of  the 

coefficients  /n,  /22,  /ss  •  •  •  of  the  form  (ds)2  in  the  curvilinear 
coordinates  y. 

3.  RESOLUTION  OF  TENSORS 

If  we  consider  any  covariant  tensor  Xr  of  rank  one  and  take  the 

inner  product  of  this  into  a  direction  tensor  l(r)  we  derive  the 
invariant  Xrl(r)  (r  umbral;  Rule  (d)).  This  we  call  the 

resolved  part  of  the  co  variant  tensor  along  the  direction  /(r). 
Let  us  now  make  a  transformation  of  coordinates  from  x  to  y 

and  consider  the  coordinate  line  y(>).  The  n  components  of  the 
direction  tensor  for  this  curve  are  proportional  to 

. 

To  determine  the  actual  values  of  these  components  we  must 
divide  through  by  the  positive  square  root  of 

yy  
(/,m  umbral) and  this  is  equivalent  to 
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The  equations  defining  the  covariant  correspondence  for  a 
tensor  of  the  first  rank  are 

Ft  I     *^~      1  »         *J  •      f    1 1  TY\  w\f*Q  1  ̂ 
J  —  -^'^TTn  "  ~  L>        »  n>  r  umorai; 

=  V/H  times  the  resolved  part  of  the  tensor  Xr  along  the  co- 

ordinate direction  yw 

EXAMPLE 

Space  polar  coordinates  y  in  ordinary  space  of  three  dimensions. 

The  x  are  rectangular  Cartesian  coordinates.  Denoting  the 

resolved  parts  of  the  covariant  tensor  X  in  the  directions 

2/(1)>  y(2)>  y(3)  by  R,  0,  $  respectively  we  have  since /n  =  1 ;  /22  =  r2; 

/M  =  r2  sin2  0 

FI  =  R;         Yz  =  r0;         y,  =  r  sin  0<t>. 

The  three  distinct  components  of  the  alternating  covariant  tensor 

of  rank  two,  curl  X,  in  polar  coordinates  are 

dR       o  .     .    f.,.. --  —  (r  sm  6$) 

d<t>      dr 

Similarly  for  cylindrical  coordinates  p,  <f>,  z  where  f\\  =  1; 

/22  =  p2;  /as  =  1  if  we  denote  the  resolved  parts  of  X  along  the 
three  coordinate  directions  by  R,  $,  Z  we  have  Y\  =  R; 

F2  =  p$;  Y3=  Z  and  the  components  of  the  curl  are  at  once 
written  down. 

Resolution  of  Contravariant  Tensors. 

To  define  what  is  meant  by  this  we  require,  not  as  before  the 

coordinate  lines  y(r)  along  each  of  which  all  the  coordinates  y  but 

one,  y(r\  are  constant,  but  the  coordinate  spreads  F»_i  along  each 
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of  which  all  the  variables  but  one,  y(r)  say,  vary.  The  parameters 
HI  -  •  •  ?/n_i  may  here  be  very  conveniently  chosen  to  be  the 

coordinates  y\  •  •  •  yn  themselves  omitting  y(r),  and  then  7/(r)  is  a 
constant  (a  particular  function  of  u\  •  •  •  un-i).  Now,  in  general, 
when  we  have  a  Vn-\  specified  by  equations 

XM  =  xW(Uli  ...f  Un_^          (s  =  i,  .  .  .,  n) 

we  obtain  on  the  spread,  through  each  point,  n  —  1  parameter 
lines  by  letting  in  turn  each  parameter  vary,  keeping  all  the  rest 
fixed.  Any  one  of  these,  ur  varying,  say,  has  at  the  point  in 
question  a  direction  tensor  whose  components  are  proportional  to 

. 

Let  us  look  for  a  direction  orthogonal  at  once  to  the  n  —  1 
directions  of  these  parameter  curves.  Such  a  direction  tensor 

has  components  n(1)  •  •  •  n(n)  say  and  is  said  to  be  normal  to  the 
spread  Vn-\  at  the  point  in  question.  To  express  the  required 

orthogonality  we  have  n  —  1  equations 

dx(m) 

gimn(l)       -  =  0     (/,  m  umbral;  r  =  1  •  •  •  n) 
dur 

homogeneous  in  the  n(1)  •  •  •  n(n)  and  thus  serving  to  determine 
then*  mutual  ratios.  To  actually  solve  divide  across  by  one  of 
the  unknowns  n(n)  say  and  we  have  n  —  1  linear,  non-homogene- 

ous equations  for  the  (n  —  1)  unknowns 

(1>  <n-»  * 

*  The  algebra  following  here  is  somewhat  complicated  and  so  it  may  be 
desirable  to  derive  the  expressions  for  the  components  of  the  normal  direction 

tensor  to  the  spread  y(n)  as  follows.  Working  with  the  coordinates  y  the  n  —  1 
parameter  curves  y(>)  varying  (s  =  1,  •••,»  —  !)  have  their  direction  coef- 

ficients proportional  to 
(1,    0  0)1 
(0,     1,0  0)f 

(0,    0  1,    0) 
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The  determinant  of  the  coefficients  has  as  the  element  in  the 
rth  row  and  *th  column 

(m  umbral;  r,  s  =  1,  •  •  •,  n  —  1) 
dur 

This  determinant  is  therefore  the  product  of  the  two  matrices 

9\\         <7i2     *  • '     ffi* du\        du\ 

0*-i,  i  <7»-i, 

each  of  n  —  1  rows  and  n  columns.     It  is  well  known  that  this 
product  can  also  be  written  as  the  sum  of  products  of  all  corre- 

respectively.    The  n  —  1  equations  expressing  that  n(r)  is  orthogonal  to  these 
n  —  1  directions  are 

/,rn(r>  =0       (t  -  1,  •  •  -,  n  -  1;  r  umbral) 
Hence  the  ratios 

the  actual  values  being  these  divided  by 

[one  must  be  warned  against  thinking  that  "^  («  «»  1,  •  •  •  ,  n)  are  contra- 
variant.  When  a  change  of  coordinates  from  y  to  x  is  made  the  spread 

y(»>  =  const,  does  not  become  x(">  =  const.]  If  now  we  wish  to  use  x  co- 
ordinates, the  normal  direction  tensor,  being  contravariant  of  rank  one,  has 

components  proportional  to 

nW  "fjjfi  (r  -  1,  •  •  -,  n;  «  umbral) 

ay"  dy<«>  dxr 

••aSnSSfr  a  «,«  umbral) 

-9**l£  (I  umbral) 

If  y<»)  =  F(xO)f  •  •  .,  x(>))  we  have  that  the  normal  direction  tensor  to  the  spread 

has  its  components  proportional  to  glr  r-    the  result  required. 
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spending  determinants  of  order  n  —  1  that  can  be  formed  from 
each  matrix.    Let  us  write  for  brevity 

2  n\ 

(  T  }  =   (—   1^i 

and  the  determinant  of  the  coefficients  becomes 

(£„.)(«/.)  (sumbral) 

whichsmay  be  written  g  gnt(Js}.    The  numerators  of  the  fractions 
furnishing  vi  •  •  •  vn-i  are  dealt  with  in  the  same  way  and  we  have 

(Since  the  (Ja)  are  really  the  n  distinct  components  of  an  alter- 
nating contravariant  tensor  of  rank  n  —  1  we  know  that 

X»  —  (Ja)  V^  is  a  covariant  tensor  of  rank  one  verifying  the 

contravariant  character  of  the  n(r)  (Rule  (d)))-  If  all  the  (J«) 
vanish  the  point  is  said  to  be  a  singular  point  of  the  spread  and 

the  determination  of  n(r)  becomes  impossible. 
Let  us  now  apply  these  generalities  to  the  spread  Fn_i  given 

by  a  single  equation 

F(*<»  •  •  •  *<»>)  =  0 

connecting  the  coordinates  x.  We  may  solve  for  one  of  the 

coordinates,  ar(n)  say,  in  terms  of  the  others  xw  •  •  •  x(n-1)  and 
these  others  we  use  as  the  n  —  1  independent  parameters  of  the 
spread: 

are  then  the  equations,  in  parametric  form,  of  the  spread  F«_I. 
Our  matrix 

dz(r) 

—  (r  =  1,  •  -^,  n-  s  =  1,  •  •  -,  n  -  1) 
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is  now 

1     0    0     •••     0 

0     1 

and  so 

0    0 

dx(n> 

But,  on  differentiating  the  equation  V(xw 
spread  F«_i  we  obtain 

so  that 

whence 

:  (J«)  :  •  •  •  :  (J.)  = 

dV  ̂   dV 

'  dxM 

dV     dV 

x(n))  =  0  of  our 

_ 

'dx™ 

In  particular,  if  the  spread  Vn-\  has,  in  the  y  coordinates,  the 

equation  y(r)  =  const.,  we  have  for  its  normal  direction  tensor 
d) 

...    j  n(n)   = 

The  actual  magnitudes  of  these  components  are  found  by  dividing 
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through  by  the  positive  square  root  of 

rh/r>          rhyW 

<""""  few  '"'Ilk  (r  «<><  umbral) 

Qy(r)  Qy(r) which  expression  is  =  </m'  T          -       0*  not  umbral) 

If  now  we  have  a  contravariant  tensor  X(r)  of  rank  one  it  is 

meaningless  to  call  J5T(r)/(r)  the  resolved  part  of  the  tensor  in  the 
direction  I  for  the  simple  reason  that  this  expression  is  not 

invariant  but  takes  on  different  values  in  different  systems  of 

coordinates.  However,  we  may  first  form  the  co  variant  tensor 

Xt  =  g.rX^        (r  umbral.    Rule  (d)} 

This  tensor  is  said  to  be  reciprocal  to  the  contravariant  tensor 

X(r)  with  respect  to  the  fundamental  metrical  quadratic  differ- 
ential form  and  its  resolved  part  in  any  direction  we  call  the 

resolved  part  of  the  contravariant  tenser  in  that  direction.  Thus, 

for  example,  the  res^lvcJ  part  of  the  contravariant  tensor  Xr 

in  the  direction  normal  to  the  coordinate  spread  y(r)  =  constant  is 

(s,  p,  t  umbral) 

yto 

Hence  any  component  Y(r)  of  a  contravariant  tensor  of  rank 

one  is  the  product  by  V/rr  of  the  resolved  part  of  the  contravariant 

tensor  normal  to  the  coordinate  spread  y(r)  =  constant.  It  is 
now  apparent  that  to  deal  with  covariant  and  contravariant 

tensors  of  the  first  rank  we  require  the  coordinate  lines  through 

each  point  and  the  normals  to  the  coordinate  spreads  through 

that  point.  When  the  coordinates  are  orthogonal,  and  only  then, 
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these  lines  and  normals  coincide  and  a  great  simplification  is  due 
to  this  fact.  This  explains  why  orthogonal  coordinates  have 
been  used,  almost  to  the  point  of  excluding  all  others,  in  the 
investigations  of  Theoretical  Physics. 

4.  EXAMPLE  (a) 

Space  polar  coordinates.  These  being  orthogonal  the  normals 

to  the  spreads  r  =  const.,  d  =  const.,  <£  =  constant  are  the 
coordinate  lines  r,  6,  <f>  respectively  and,  if  we  denote  the  resolved 

parts  of  the  contravariant  tensor  X(t)  in  these  directions  by 
R,  0,  $  the  three  components  are 

y(i)  _  p.         y(2)  _  §  .         y(s)  _      *** 1  /I  *  A  m  M  •        A r  r  sm  9 

In  general  for  orthogonal  coordinates  y  with 

we  have/""  =  l/frr  and  if,  as  usual,  we  write  frr  =  I/hS  we  have 

/  =  (hf  A,2  ...  An2)-1        and       /"•  =  hr* 

Here  F(1>  =  Ai(fli)  •  •  •  7(n)  =  hn(Rn)  where  we  denote  by 
(Ri)  •  -  -  (RJ  the  resolved  parts  of  the  contravariant  tensor  along 
the  coordinate  directions  1,2,  •  •  • ,  n  respectively.  The  divergence 
of  the  contravariant  tensor 

takes  the  form 

d 
h 

Thus,  for  space  polar  coordinates,  the  divergence  is 
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and  for  cylindrical 

p  [  dp  d<t>      dz         ] 

Example  (b) 

In  order  to  illustrate  the  distinction  between  covariant  and 

contravariant  tensors  we  now  consider  oblique  Cartesian  coordi- 
nates y  so  that 

where  the  constants  X,  JLI,  ?  are  the  cosines  of  the  angles  between 
the  oblique  directed  axes.    Here 

1  v  /x 
y  1  X 

M  X  1 
=  square  of  volume  of  unit  parallelepiped  with 

its  edges  along  the  three  axes. 

i.e.,  Vf  =  sin  X  cos  0i  =  sin  n  cos  Bz  =  sin  v  cos  03  where  0i  is  the 
angle  between  the  coordinate  line  y\  and  the  normal  n\  to  the 

coordinate  plane  y\  =  const,  with  similar  definitions  for  62  and  69  . 
Hence 

=  sec  0u  =sec02;  =  sec  03 

If  we  have  any  vector  whose  components  in  rectangular  Cartesian 

coordinates  (a:(1),  £(2),  x(3))  are  -X"i,  Zj,  ̂ 3  this  vector  may  be 
regarded  as  either  a  covariant  or  contravariant  tensor,  i.e., 

X\  =  Xw  ;  Xz  =  X(2)  ;  Xz  =  X  (3)  and  if  we  denote  the  resolved 
parts  of  this  vector  along  the  coordinate  lines  y  by  (X^,  X^,  XiJ 
and  along  the  normals  of  the  coordinate  planes  y  by  (Xni,  Xnt, 
Xnt)  we  have 

^  =  X^;         YZ  ̂   X^',         YS  =  Xit 
=  Vf1  Xni  =  Zni  sec  ̂ ;      F  «  =  X^  sec  02;      T3  =  Xnt  sec  03 



66  VECTOR  ANALYSIS  AND  RELATIVITY 

Hence  (Yi,  F2,  Y3)  are  the  resolved  parts  of  the  vector  along  the 

three  coordinate  lines  whilst  (Yw,  Y(Z),  y(3))  are  the  components 
of  the  vector  along  these  same  directions.  The  tensors  Yr  and 

Yr  are  reciprocal  with  respect  to  the  differential  form  (ds)*,  i.e., 

Yl  =  y<«  +  VY<*>  +  /iY(3>,        etc. 

Let  us  now  consider  the  contravariant  tensor  whose  components 
are 

y(1>  =  Ply<i>;      y<2>  =  P2y(2>;      y<3>  s  P3y<3> 
where  Pi,  Pj,  PS  are  scalar  or  invariant  numbers;  we  find  for  the 

components  in  the  rectangular  coordinate  system  x 

yd>  =  yd)  i±  __  i_  y(2)  rz  __  t- 

=  Pl    Z  +  Z2          +  jy  +  etc 
~Pl\       dx^         dx^         S&Bjdj®^ or 

Xr  =  P/Z«  (*  umbral) 
where 

r==  ,  , 
Pl     m     (t)      P*     ™     (t) 

Now  r—  TTT  is  a  contravariant  tensor  and  —-.  is  a  covariant  tensor 
dy(»  dx(t) 

if  we  regard  the  y's  as  fixed  and  consider  merely  transformations 

on  the  x's  so  that  P/,  being  the  sum  of  three  mixed  tensors,  is 
actually,  as  the  notation  implies,  a  mixed  tensor  of  rank  two. 

It  was  in  this  geometrical  way  that  Voigt  introduced  the  idea 

which  he  called  a  tensor.  The  mixed  tensor  P/  is  completely 

specified  by  the  three  directions  y  and  the  scalar  numbers  p\,  pz, 

p3.  If  the  mixed  tensor  is  to  be  symmetric  for  every  choice  of 

Pit  P2,  Ps  we  must  have 

These  equations  lead  to  the  conclusion  that  the  "  axes  "  y  of 
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the  tensor  are  mutually  at  right  angles  and  so  such  a  tensor  was 
called  symmetric. 

In  order  to  study  the  behavior  of  the  vector  X  as  X  changes 
direction,  keeping  its  magnitude  unaltered,  we  may  solve  the 
equations  for  X  and  obtain 

Xr  =  TT/Z-  (s  umbral) 

where  from  the  geometrical  construction  TT/  is  a  mixed  tensor 
with  the  same  axes  as  p»  but 

?TI  =  —  ,        etc., 

Pi 
so  that 

r_  ldx(r)dy(l)       ldx(r)dy™       Idx^dy™ 
~          mM  +          ̂ ^  ̂          <3>  ' 

Then  squaring  and  adding  the  equations  for  Xr  we  find  that  X 
traces  an  ellipsoid,  called  the  first  tensor  ellipsoid. 

For  a  symmetric  tensor  the  directions  y  are  orthogonal  so 

that  YI  =  F1,  etc.  A  simple  example  of  a  symmetric  tensor  is 
furnished  by  the  uniform  stretching  of  a  medium  along  three 
mutually  perpendicular  directions  successively.  It  was  from 

this  example  that  Voigt  originally  took  the  name  "  Tensor." 
Reference  may  be  made  to  any  treatise  on  the  Theory  of  Elas- 

ticity for  an  amplification  of  the  remarks  of  this  paragraph. 

5.   GENERAL  FORM  OF  GREEN'S  FUNDAMENTAL  LEMMA 

Starting  with  any  invariant  function  of  position  F(z(1)  •  •  •  z(n)) 
we  have  seen  how  to  form  its  covariant  tensor  gradient 

dV 

the  square  of  whose  magnitude  is  the  first  differential  parameter 
of  F 
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Now  the  normal  direction  tensor  to  F(x(1)  •  •  •  a;(n))  =  const,  has 
components  whose  ratios  are 

n<»  :  »»  :  •  •  •  :  »<">  =  f         :  .  .  .  :  g*"  (s  umbral) 

the  actual  magnitudes  of  these  being  found  on  division  through 
by  the  positive  square  root  of  AiF.  Hence  the  resolved  part  of 
the  covariant  tensor  gradient  along  the  normal  is 

i  - 

^^
  

(M  umbral
) 

and  this  is  =  VAiF.*    This  we  shall  call  the  normal  derivative 

cf  V  and  denote  by  the  symbol i 

gradient  along  any  direction  I  is 

dV cf  V  and  denote  by  the  symbol—  •     The  resolved  part  of  the on 

dV 
This  we  denote  by  -?r  and   call   the   directional   derivative  of    V ol 

along  the  direction  1.    The  angle  8  between  n  and  I  is  given  by 
1  dV 

cos  6  =  gJPn™  -  •=  f-PV"  ('.  «, *  umbral) 

az(r) 

Hence 

showing  that  the  maximum  directional  derivative  is  that  along 
the  normal.  (In  general,  if  we  say  that  any  covariant  tensor  XT 
has  a  direction  specified  by  the  reciprocal  contravariant  tensor 

X'  =  fXr  (r  umbral) 

*  If  we  define  the  "  direction  "  of  any  covariant  tensor  of  rank  one  as 
that  of  its  reciprocal  contravariant  tensor  we  may  say  that  the  gradient  of 
any  invariant  function  of  position  has  a  direction  normal  to  it. 
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the  resolved  part  of  Xr  along  any  direction  /  is  the  product  of  the 
magnitude  of  the  tensor  into  the  cosine  of  the  angle  between  I 
and  the  direction  of  the  tensor.) 

The  contravariant  tensor  reciprocal  to  the  gradient  of  V  is 

Accordingly,  on  multiplying  each  of  these  expressions  by  V0, 
we  derive  the  n  distinct  components  of  an  alternating  covariant 

tensor  of  rank  n  —  I  (cf  .  Ch.  3,  §  4)  and  so  we  can  form  the 
integral  /„_! 

I~-i  s  f 

over  any  spread  of  re  —  1  dimensions  given  by 

the  symbol  (Jr)  denoting  as  before 

(-  l)n-r
^ 

The  normal  contravariant  tensor  to  the  spread  of  re  —  1  dimen- 
sions has,  as  has  been  shown,  components  proportional  to 

grt(Jt)       (r  =  1,  •  •  •,  re;  s  umbral) 

the  actual  magnitudes  being  found  by  dividing  through  by  the 
positive  square  root  of 

gimgl'(J*)gmt(Jt)  (I,  m,  s,  t  umbral) 

=  0"(«^«)(«7*)  (s,  t  umbral) 
dV  dV 

Hence  /-(J.)  z-^y  =  product  of  V '(,/.)  (J«)by  fa  ̂   direc- 

tional  derivative  V  normal  to  the  spread  Vn-i  over  which 
is  being  extended.    Hence  we  may  write 
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where  by  dVn-.\  we  mean  the  invariant   V^m<(Jm)(t/t)  du\  ••• 
dun-\.     (That  this  is  invariant  follows  from  rule  (d)  since  V<7  (Jr) 
is  a  covariant  tensor  of  rank  one  (cf.  Ch.  3,  §  7).) 

Applying  Stokes'  Lemma  to  /»_!  we  have 

where  the  integral  7n_i  is  extended  over  any  Vn-i  which  is  closed 
and  the  integral  /„  on  the  right  is  extended  over  any  region  of 
space  Vn  bounded  by  Fn-i.  Here 

and  dVn  is  the  invariant  V<7  d(xm  •  •  •  z(n)). 

dV If,  instead  of  the  contra  variant  tensor  Xr  =  grt  ̂-7-5  >  we  start * 

out  with 

where  U  is  an  invariant  function  of  position  we  find 

On  interchanging  the  functions  U,  V  and  subtracting  we  have 

which  is  the  usual  form  of  Green's   Lemma.    The  previous 
equation  may  be  written 

where  A(C7,  F)  is  the  invariant  mixed  differential  parameter 

(r,Sumbral) 
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In  particular,  if  the  invariant  functions  U,  V  are  identical  we 
have 

- 
on 

The  last  identity  is  the  basis  of  various  uniqueness  theorems  of 
dJJ 

Theoretical  Physics.     If  we  know  the  values  of  U  or  —  -  over  a dn 

closed  Vn-i  as  well  as  the  values  of  A2I7  throughout  the  region 
bounded  by  Vn-i  the  function  U  is  unique,  save  possibly  to  an 
unimportant  additive  constant.  For,  applying  the  last  identity 

to  the  function  W  =  TJ\  —  U-t  where  U\  and  C72  satisfy  the  above 
conditions,  we  have 

-dVn  =  0 

Now  under  the  hypothesis  that 

is  a  definite  form  we  see  that  &\W  is  one  signed  and  vanishes  only 

dW 
when  all  —  r^are  zero.     Hence  since    fAiW-dVn  =  0  we  must 

dx(r) 
dW 

have  —  rr  =  0  throughout  the  region  of  integration  (r  =  1  •  •  •  n). 

OXV' Therefore,  W  is  a  constant  and  if  the  values  of  U  are  assigned 

W  =  Ui  -  Uz  =  0 

on  the  boundary  and  so  W  =  0  or  Ui  =  Uz- 

The  whole  argument  depends  on  the  definiteness  of  (ds)z. 
Suppose  we  wish  to  apply  the  theorem  to  solutions  of  the  wave 

equation 

dxz       dy* 

Here  we  have 
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and  so 

and  the  theorem  cannot  be  applied  since  AiF  can  vanish  without 
implying  the  vanishing  of  all  the  derivatives. 

6.  APPLICATION  TO  MAXWELL'S  EQUATIONS 
One  of  the  most  interesting  applications  of  the  algebra  of 

tensors  is  the  discussion  of  Maxwell's  Electromagnetic  Equations. 
These  consist  of  two  sets,  which  in  the  symbols  of  restricted 
vector  analysis  and  the  units  employed  by  Heaviside  are 

=  j;     div  D  =  p c  at 

(6)       ~  +  curl  E  =  0;     div  B  =  0 
C  at 

D  is  the  electric  displacement,  H  the  magnetic  force,  and  j  the 
current  vector;  B  is  the  magnetic  induction,  E  the  electric  force 

and  p  is  the  volume  density  of  electrification.  We  take  n  =  4 
and  as  coordinates,  in  the  above  form, 

xw  =  x.       xw  =  y.       xm  =  2.       x(4)  =  t 
If  we  assume  that 

XM  =  Bx;      Xti  =  Bv\      X\i  =  B,',     Xu  =  cEx;     Xu  =  cEy; 
Xu  -  cE. 

are  the  six  distinct  components  of  an  alternating  covariant  tensor 
of  rank  two,  the  four  equations  (6)  express  that 

V      _  dX\i  ,  6X23  i  dXii  _  dBt  ,  dBx  .  3BV         ..     D 
A  ui  =  —  ----  h  -z  --  H  -r—  =  -z-  +  ̂ —  +  -r-^   =  div  B  =  0, 02          ox         ay         az        ox        oy 

Y      —  &Xi*  i  dXu_^&Xn  _  dBt  ,      /  dEv     dEx\ 
A  114  =  —  ZT-  T  -3  --  T  -r  —  =  -rr  +  C  I  —  •  =  —  -—  =  0, dt          dx          dy         dt  \  dx        dy  ) 

Y      =  d^n  i  dXu  ,  8X41  _       6BV  •      /  d.E,      d£Jx  \       _  ft 
A  1M  —      a.  ~r  ~T  '  -r—    i     C  I    —  ---  -  —   I        —  U, dt          dx          dz  dt          \dx        dz  J 

Y      _  dXtt  .  dXu  .  dX&  _  dBx  i      (dEB      dEv  \  n 
A  M4  =  -r^-  +  -5  —  h  -3—  =-sr  +  c(-r  --  —  ?  =0 d<          dy          dz          dt          \  dy        dz  J 
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In  other  words  the  integral 

*  SBxd(y,  z)  +  Byd(z,  x)  +  B,d(x,  y)  +  c£^(;r,  0 
,    0    +    C£^(2,    0 

is  the  integral  of  an  exact  differential  —  its  value  when  extended 
over  any  closed  spread  Vz  is  identically  zero.  Hence  its  value 

when  extended  over  any  open  spread  Vz  can  be  expressed  as  a 

line  integral  J*Xrdx(r)  round  its  boundary.  On  writing 

X\  =  —  Ax',        Xz  =  —  Av\        Xa  =  —  At\        Xi  =  c0 
we  have 

72=7!==  f(c<l>dt  —  A,j(ly  —  A^dy 

and  an  application  of  Stokes'  Lemma  tells  us  that 

_  dXT      dXt 

or 

7?  =  Y    =       2  _  ̂-^3  =  dAf  _  dAy ~  ~""~'' 

dAx      dA,          n  _  dAv      dA 

dz        dx  '  dx        dy 
^r  --  Y     -dXi      dX4  _        dAx        d< c&x  =  A  14  = dt          dx 

The  covariant  tensor  of  the  first  rank  (Ax,  Av,  At,  —  c<f>)  is  the 

"  electromagnetic  covariant  tensor  potential "  of  which  the 

first  three  components  form  Maxwell's  vector  potential,  <£  being 
his  scalar  potential. 

Similarly,  if  we  assume  that  (—  Dx,  —  Dv,  —  Dg,  cHx,  cHv,  cHt) 
are  the  six  distinct  functions  of  an  alternating  covariant  tensor 

Xrt  of  rank  two  the  equations  (a)  say  that 
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and  we  have  Iz  =  Iz  where 

72  =  fcH^x,  0  +  cHJ(y,  t)  +  cH4(z,  <)  -  Dxd(y,  2) 
-  Dyd(z,  x)  —  D4(x,  y), 

h  =  fcj,d(y,  z,  f)  +  cjJL(z,  x,  f)  +  cjtd(x,  y,  t)  —  pd(x,  y,  2) 

72  being  taken  over  any  closed  spread  F2  of  two  dimensions  and 
73  being  taken  over  the  open  F3  bounded  by  V?.     Accordingly 

(jx,  jv>  j*>  ~~  P/c)  are  tne  f°ur  distinct  functions  of  an  alternating _  (j^r) 

tensor  of  rank  three  and  so,  on  writing  c(X\)  =  X  234,  etc.,  —  r^- 

form  a  contra  variant  tensor  of  rank  one  (Ch.  3,  §  7).  From  its 
definition  we  know  that  its  divergence  is  zero.  This  tensor  we 
may  call  the  current  contravariant  tensor  and  write 

fn  _  Ji  .  ™_  ~  P u    --  p  ,  o  --  p 
V0  c^g 

Let  us  now  apply  these  methods  to  the  problem  of  writing 

Maxwell's  equations  in  a  form  suitable  for  work  with  curvilinear 
coordinates  yw,  y(y),  yw  in  space  of  three  dimensions  —  the  time  t 
not  entering  into  the  transformation.  The  equations  connecting 
the  x  and  y  coordinates  are  of  the  type 

and  denoting  tensor  components  in  the  new  coordinate  system 

by  primes  we  have 

12 
the  terms  in  //i,  H2,  HZ  vanishing  since 
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\^      >  "^      '  -L.    fll  \      \^      '  ̂      '  _1_    /  Z7  N      ̂      >  ̂      / 

the  terms  in  (Di)  (D2)  (Z)3)  vanishing  since 

te^> 

Hence  in  the  three-dimensional  space  with  coordinate  systems 

(ar(1),  *'2),  o;(3))  and  (?/(1),  i/(2),  y(3))  the  variable  /  being  regarded 
merely  as  a  parameter  which  does  not  enter  into 

(ds)2  =  gradx^dx^  =  frJyVdyM  (r,  5=1,2,  3) 

the  three  quantities  (Di)  (Dz)  (#3)  are  the  three  distinct  members 

of  an  alternating  covariant  tensor  of  rank  two.  Hence  —  ̂   =  Xr 

iff 

/  n  \          _ 

is  a  contra  variant  tensor  of  rank  one;   similarlv  ̂ —  ̂-  =  Xr  is  a 
V0  _ 

contravariant  tensor  of  rank  one  whilst  Er  =  Xr  and  Hr  =  XT 
are  covariant  tensors  of  rank  one.  We  derive  by  our  rule  (d) 
of  composition  the  invariants 

(ED)  .        (EB)  .         (HP)  .         (HB) 
V?  V<7  Vsr  V^ 

where  as  in  the  usual  vector  notation 

(ED)  =  EiDi  +  EZDZ  +  E3D3 

and  similarly  for  the  others. 

Dividing  Maxwell's  equations,  as  usually  written,  across  by 
V<7  we  obtain 

-        z-  +  -curlr  (10  =  &       (r  =  1,  2,  3) cdt  V0 

(where  Cr  =  -^is  the  contravariant  current  vector). 
V? 



76  VECTOR  ANALYSIS  AND  RELATIVITY 

div  Z«  =  p 

where  p  is  the  invariant  charge  density  and  similarly  from  the 
second  set 

+  i|l'  +  J=ciirlrOE)-0 cdt  V0 

div  Xr  =  0 

Denoting,  then,  as  usual  resolved  parts  along  the  coordinate  lines 
by  subscripts  (li,  h,  /j)  and  along  the  normals  to  the  coordinate 
surfaces  by  the  subscripts  (n\,  n$,  n3)  we  have  the  three  equations 

The  equation  div  XT  =  p  becomes 

^  +  sps  (  ̂  ̂   I 
(by  D»,  is  meant  the  resolved  part  of  the  contravariant  tensor 
Z)/V?  along  the  direction  ni). 

The  equations  (6)  are  similar  and  are  simplified  by  the  fact 

that  there  C«,,  £*,,  Cw,,  p  are  all  zero.* 
*  When  the  coordinates  y  are  orthogonal 

(<fc)«  -  £-,  (dy<»)«  4-  ̂  (<¥*>)*  +  ̂  (rfy<»)f 

/  -  ......  ;  /"  -  hi*,  etc.,  and  Maxwell's  equations  become  since  ni  -  li,  etc. 
»i  "i  "a 

and  two  similar  equations  together  with 

Cf.  jRienumn-W«6«r,  Die  PartieUen  Differentialgleichungen  der  Mathemat- 
ischen  Physik,  Bd.  2,  p.  312  (Vieweg  &  Sohn)  (1919). 
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EXAMPLE 

In  space  polar  coordinates  Maxwell's  equations  are 

c  dt  r2  sin  6 

cdt  r  sin 

^^4^  lj-r  (r  sin  6Dr)  +  i  (r  sin  0D,)  +  ̂  (rD.)  I  =  p 

It  is  particularly  to  be  noticed  that  Maxwell's  Equations  are 
essentially  of  a  non-metrical  character.  No  real  simplification 
is  introduced  by  the  hypothesis  that  the  fundamental  space  is 
of  the  ordinary  Euclidean  character.  Another  point  to  which 
attention  should  be  directed  is  the  difference  in  character  of  the 

tensors  B  and  H  or  of  D  and  E.  A  relation  of  the  familiar  type 

H,  the  coefficient  of  permeability,  being  supposed  invariant  is 

not  the  proper  mode  of  statement  of  a  physical  law  if  we  under- 
stand by  B\,  52,  BZ  the  three  components  of  the  tensor  B.  The 

true  statement  of  the  law  is 

where  by  (B)i  we  mean  the  resolved  part  of  the  contra  variant 
tensor  CB)/V<7  along  the  direction  I  and  by  (H)i  we  mean  the 
resolved  part  of  the  covariant  tensor  H  along  the  same  direction. 

Thus  any  constitutive  equation  of  this  type  is  an  allowable  state- 
ment of  a  physical  law  not  because  it  is  a  tensor  equation  (since 

it  is  not  such),  but  because  it  is  an  equality  between  invariant 
magnitudes  or  a  scalar  equation.  The  true  tensor  equation  is 
found  by  equating  the  covariant  tensor  i*H  to  the  covariant 
tensor  reciprocal  to  the  contravariant  tensor 



CHAPTER  V 

1.  CONNECTION  OF  TENSOR  ALGEBRA  WITH   INTEGRAL  INVA- 
RIANTS AND  APPLICATION  TO  THE  STATEMENT  OF 

FARADAY'S  LAW  OF  MOVING  CIRCUITS* 

Suppose  for  example  we  have  a  curve  V\  whose  equations 

z<«>  =  x^(u,  T)  (»=  1,  ..-,n) 

involve  a  parameter  T.  This  curve  may  be  said,  adopting  the 

language  of  dynamics,  to  move  and  trace  out  a  Vi  whose  equa- 
tions are  those  given  above,  the  parameters  being  u  and  T. 

Any  one  of  the  curves  T  =  constant  will  then  be  a  position  of  the 
moving  curve.  We  shall  suppose  that  the  values  of  u  serve  to 
identify  the  various  points  on  the  moving  curve;  thus  if  u 
denotes  the  distance  along  the  initial  position  of  the  moving 
curve  from  a  certain  fixed  point,  or  origin,  the  curves  V\  obtained 

by  taking  u  =  constant  (wo)  in  the  equations 

x(.)  =  a.(.)(W)  T)  (5  =  1,  ..-,n) 

are  the  path  curves  of  the  definite  point  on  the  curve  V\  which 
initially  was  at  the  distance  w0  from  the  origin  on  V\.  It  will 

fix  our  ideas  to  Consider  V\  as  made  up  of  particles  of  a  fluid; 
then  the  curves  V\  are  the  paths  of  the  various  material  particles 
of  V\.  It  is  well  to  insist,  at  the  outset,  on  the  point  that  the 
parameters  u  and  r  are  independent.  Thus  if  the  moving  curve 
V\  were  rigid,  u  could  be  taken  as  the  arc  distance  along  V\  at 

•  An  elementary  presentation  of  the  theory  of  Integral  Invariants  is  given 
by  Goursat,  E.,  in  two  papers: 

(a)  Sur  les  invariants  int£graux.    Journal  de  Mathematiques,  6e   se>ie, 
t.  IV  (1908),  p.  331. 

(6)  Sur  quelques  points  de  la  the'orie  des  invariants  intdgraux.     Journal  de 
mathe'matiques,  7*  s6rie,  t.  1  (1915),  p.  241. 

78 
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any  time  r;  if,  however,  as  in  the  case  of  the  curve  made  up  of 
material  fluid  particles,  V\  is  not  rigid,  u  may  only  be  taken  as 
the  initial  identifying  arc  distance;  otherwise  u  would  vary  with 

T.  Let  us  now  consider  an  integral  I\  =  J*Xrdx(r)  extended 
over  V\  and  ask  the  conditions  that  l\  should  be  the  same  for 
all  the  curves  V\,  i.e.,  that  I\  should  not  vary  with  T.  If  this  is 
so,  /i  is  said  to  be  an  integral  invariant. 

Now  /i  is  in  general  a  function  of  r  defined  by 

X"'  /        rMr
>\ lxr~^
\du  

(rumbral) 

the  limits  UQ  and  u'  being,  however,  since  u  and  T  are  independent, 
quite  independent  of  T.  Hence 

dr         «0    dr  \       du 

The  coefficients  Xr  are  functions  of  position  and  therefore  involve 
r  indirectly;  it  is  somewhat  more  general  to  contemplate  the 
possibility  that  they  may  involve  r,  not  only  in  this  indirect 
manner  but  also  directly.  Then  for  any  one  of  the  coefficients 
Xr  we  have 

dr        dx(s'  dr 
It  is  now  convenient  to  denote  the  contravariant  tensor  of  rank 

dx(r) 
one   by  the  symbol  Xr  and  to  use  the  result or 

J     -\  _.<V^  1      *\  __(V\  *  VM  ft  VM    3 -.(*} f  umbral) 

dr  du       du  dr          du        dx(8)    du 
and  we  have 

dh  =      r  (dXrdx"  d_dx^\    ,  ,        ,, 

dr~~fdr"du~  VXrdr~d^dU 

dX'  \  dx(r)  -u 

^)-^r+'dx^-d^ 
(r,  s  umbral) 
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dr  dx(t)  dz(r)  J    du 
(on  modifying  suitably  the  umbral  symbols) 

Hence  if  dli/dr  is  to  vanish  identically  for  all  curves  V\  we  must 
have 

dXr    .      v   dXr     ,      v  dX'"'         n       /  1  U      1\ 

-dt+Xdx"+X'dx"^Q    (r»l,---,n,»  umbral). 

Sometimes  it  is  only  necessary  that  /i  should  be  unchanged  for 
all  closed  curves  V\\  in  this  case  1\  is  said  to  be  a  relative  integral 

invariant.  To  find  the  conditions  for  this  we  use  Stokes*  Lemma 
to  replace  the  I\  over  a  closed  curve  by  an  72  over  an  open  F» 
and  then  find  the  conditions  that  72  should  be  an  (absolute) 
integral  invariant. 

The  analysis  necessary  to  find  the  conditions  that  an 

extended  over  a  Vv  (moving)  whose  equations  are 

.  .  Up>  T)  (»  «  1  •  -  •  n) 

should  be  an  absolute  invariant  is  identical  with  that  given  for 

the  simplest  case  p  =  1.    Let  us  write  as  before 

dr 
 ' 

and 
 
deno

te  
by  the 

 
symb

ol  
F  the 

 
deri

vati
ve 

dF     oF  ,    dF   v(m\  ,        i     t\ 

T"  s  F~  +  F7S  ™  (*  umbral) 
dr      dr       dx(t> 

where  F  is  any  function  of  position  which  may  also  involve  r 
explicitly.    Then 

=f-  [Xtl....fd(x^  .  .  •  *•*>)}     («!<  *,<•••  umbral) 
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since  the  limits  of  integration  with  respect  to  the  variables  u  are 
independent  of  r.    This  we  write 

'   dr 

and  availing  
ourselves  

of  the  relation 

dr  dur       dur  da;(m)    dur 

we  arrive  at  the  conditions  expressed  in  the  form  that 

-  J-   Y  __ 

.,....  ^,...^^^-          A  „„„,..  ••f-fafij- 

dX(m) 

+  ̂ I—P-I
^^V  

"  0    («  umbral) 

An  especially  simple  case  is  that  in  which  p  =  n.    Here  there  is 
a  single  condition 

^  ,,       fdXV\  .        ,     n 
X  i...ft  +  Ai...n  (  —  ̂   j  (r  umbral) 

Since  Xi...n  is  the  single  distinct  member  of  an  alternating  co- 
variant  tensor  of  rank  n 

*i.».  =  TjgU 

where  U  is  an  invariant  function  of  position  and  writing  out 

.£,  _  \...n       ,          y,  l...n 

dr  6aP> 

our  condition  that  J'U-dVn  should  be  an  integral  invariant  may be  written  in  the  form 

or  on  dividing  out  by  V<7>  which  does  not  involve  r  explicitly, 
f)TT 
-  --  f-  div  (UX^)  where  as  usual  the  divergence  of  the  contra- OT 
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1         a 

variant  tensor  of  rank  one  UXT  is  the  invariant  -=  7—7-:  (V0  UX*"). 

V<7  dx(r) 

In  this  form  the  invariance  of  the  condition  for  an  integral 
invariant  is  apparent.  If  we  are  considering  a  moving  charged 
material  body  where  p  is  the  density  of  charge,  the  total  charge 

J*pdVn  remaining  constant  gives  us  that 

where  X(r)  is  the  contravariant  velocity  tensor  of  rank  one. 

Faraday's  Law  for  a  Moving  Circuit. 
We  have  seen  that 

the  integral  in  each  case  being  taken  over  the  position  of  the 
moving  curve  at  time  T.    The  expressions 

dXr    i      -v.dXr      i       - 

must  accordingly  form  a  covariant  tensor  of  rank  one.    In  fact 
we  ma    write  this  as 

dXr  .    Yt  \dXT      dXt 
"~dr"          \dx"      dx" 

when  the  covariant  character  is  apparent  by  rule  (d*),  Ch.  2,  §  4, since 
dXr  _  dX(t)  _  y 

dx"     dx"  " is  covariant  of  rank  two  and  XtX(t)  is  invariant. 
Let  us  now  write  down  the  expression  for  dl^/dr  where  /a  is 

any  surface  integral  and  transform  the  coefficients  as  above  so 
as  to  make  evident  their  tensor  character. 
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Writing 

/2 

we  get 

where 

~Y      —  dXrsj_    Yt®-^T8i      Y      ®Xm    -      Y      vX 

the  integrals  being  in  each  case  extended  over  the  position  of  the 

moving  spread  or  surface  V%  at  time  T.    We  may  write 

~Y        _  dXra    I       -rA    I  vXT8     ,     dXat     •     dX.tr :~" 

where  we  have  availed  ourselves  of  the  alternating  character  of 

XTS.     The  covariant  character  of  Xra  then  follows  from  rule  (d). 

We  shall  apply  this  result  to  the  surface  integral 

n  =  3 

so  that  (Z>i),  (Da),  (D3)  are  the  three  distinct  members  of  an 

alternating  covariant  tensor  of  rank  two.  Hence  Z)(r)  =  (Dr)/V<7 
is  a  contravariant  tensor  of  rank  one.  The  covariant  tensor  of 

rank  one  whose  curl  appears  in  the  expression  for  Xra  is 

XrmXm  (m  umbral) 

so  that  its  first  component  is 

It  accordingly  appears  as  that  derived  from  the  outer  product 

of  the  velocity  contravariant  tensor  and  the  displacement  contra- 
variant  tensor. 
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The  expression 

If  now  we  assume  as  Maxwell's  equations  for  the  moving  material 
medium 

|-(£)  =  ccurlff-(j);  divZK=  p at 

where  (j)  is  the  alternating  co  variant  current  tensor  of  rank  two, 

so  that  (j)Hg  is  the  contra  variant  current  tensor  of  rank  one  Cr, 
we  have  for  Xr»  the  equations 

Xa  =  V»  ~ 

etc. 

Using  Stokes'  Lemma  to  transform  the  surface  integral  of  the 
part  in  face  brackets  into  a  line  integral  as  well  as  that  involving 

curl  H  in  dD^jdt  we  find 

The  integrand  in  the  surface  integral  on  the  right  is  found  by 
writing  r,  s,  t  in  cyclic  order  and  summing  the  terms  corresponding 

tor  =  1,  2,  3  respectively.  (The  line  integral  is  to  be  taken  over 
the  boundary  of  the  moving  surface.)  The  contravariant  tensor 

pX(r)  is  called  the  convection  current.  In  exactly  the  same  way 

we  obtain,  on  making  a  similar  assumption  as  to  what  Maxwell's 
equations  should  be  for  moving  media, 
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there  being  now,  however,  no  surface  integral  on  the  right-hand 
side.  Accordingly  the  covariant  tensor 

Er  +  -  V0(^(8)#(0  -  Z('>5(8>)     (r  =  1,  2,  3;  r,  s,  t  cyclic) c 

is  taken  as  the  effective  electric  intensity  along  the  moving  curve; 
its  line  integral  being  called  the  effective  electromotive  force 

round  the  curve.  (X(r)  is  the  contravariant  velocity  tensor.) 
On  multiplication  by  charge  this  tensor  gives  the  mechanical  force 
tensor. 

Example.  In  space  polar  coordinates  the  mechanical  force 
tensor  per  element  of  length  on  a  moving  curve  with  linear  density 
a  is 

II  11 
{  ET  +  -  r2  sm  0(0flJ5,*  —  v^Bg)  -r-. — -  }  crds c  r  sm  6  J 

I  rEe  +  -  r2  sin  0(v+Br  -  vrBJ  — }-~ -  1  ads c  r  sin  0  J 

(r  sin  &EA  +  -  r2  sin  6(vrBe  —  vgBr)  -  \  ads c  r\ 

where  Er,  BT,  vr  are  the  resolved  parts  of  E,  B,  X  along  the  direc- 
tion r  and  so  on.  To  get  the  resolved  parts  of  the  mechanical 

force  along  the  three  coordinate  directions  multiply  these  by  1, 

- ,  — : — -  respectively  and  we  obtain  the  well-known  formula r  r  sm  0 

F  =  E+±[vB] c 

In  the  general  case  when  the  coordinates  y\,  y%,  y$  are  not  orthog- 
onal the  three  resolved  parts  of  the  mechanical  intensity  (covar- 
iant) tensor  along  the  coordinate  lines  y\,  y%,  z/3  respectively  are 

TJT          _ mr       JTT  |         -*•  IJJ       J  T  TTJ  TJ        I  . 

where  vni  vnt  vnt  denote  the  resolved  parts  of  the  velocity  along 

the  normals  to  the  coordinate  surfaces  y\  —  const.,  yz  =  const., 
3/3  =  const.,  respectively. 



CHAPTER  VI 

1.  THE  TENSOR  OR  ABSOLUTE  DIFFERENTIAL  CALCULUS 

Since  the  Calculus  of  Variations  deals  with  properties  of  curves 

and  surfaces  without  making  any  particular  reference  to  the 

special  coordinates  used  in  describing  the  curves  there  must  be 

a  close  relationship  between  that  subject  and  that  which  we 

are  discussing.  It  is  this  absolute  or  tensor  character  of  the 

calculus  of  variations  that  has  urged  writers  on  Theoretical 

Physics  to  express  the  laws  of  physics,  as  far  as  possible,  in  the 

language  of  the  Calculus  of  Variations.  However,  this  subject 

has  been  placed  on  a  clear  and  firm  basis  only  within  the  past  few 

decades  and  so  it  may  be  well  to  discuss  one  of  its  simpler  prob- 

lems— the  more  so  as  the  solution  of  this  problem  is  involved  in 

the  statement  of  Einstein's  fundamental  law  of  Inertia  in  the 
Theory  of  Relativity. 

Let  us  consider  a  curve  V\,  in  space  Sn  of  n  dimensions,  given 

by  the  equations 

*<«>  =  XM(U)  («  =  1  •••  n) 

and  in  connection  with  this  curve  a  function,  not  merely  of 

position,  but  of  the  coordinates  x  and  their  derivatives 

du 

The  integral  I\  over  the  curve  V\  where 

has  a  value  depending  on  the  curve  V\  as  well  as  on  the  particular 

function.  The  problem  we  wish  to  discuss  is:  What,  if  any,  are 

the  curves  V\  making,  for  a  given  function  F,  I\  a  minimum,  all 

the  curves  V\  being  supposed  to  have  the  same  end  points. 
86 
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To  answer  this  question  we  consider  a  new  curve  V\(a)  given  by 

the  equations 
x(s)  =  x(s)(u,  a)  (a  =  1  •  •  •  TO) 

where  a  is  quite  independent  of  u.  We  suppose  this  parameter 

a.  to  be  such  that  when  a  =  0,  Vi(a)  makes  /i  a  minimum. 
Vi(a)  is  now  completely  determined  by  the  equations  just  written 

when  a  is  given  and  so  I\  is  a  function  of  (a)  which  may,  we  sup- 

pose, be  expanded  by  Taylor's  Theorem  in  the  form 

(dT\          o?  (d*I\ I  (a)  =  7(0)  +  a(  —  )       +r^(^2J      +•" 
\da/a=0       l-2\daVtt=0 

This  is  written 

I  (a)  =  7(0)  +  57  +  627  + 

and  5/  is  called  the  first  variation  of  the  integral.  If  7(0)  is  to  be 

a  minimum  it  is  necessary  (although  not  always  sufficient)  that 

67  =  0  for  otherwise  A7  =  I(a)  —  7(0)  would  change  sign  with 
a  when  a  is  sufficiently  small.  Now  the  limits  of  the  integral 

for  7i  are  fixed  and  so  to  find  dl/da  we  have  merely  to  differen- 
tiate the  integrand  F  with  respect  to  a.  F  involves  a,  not 

directly,  but  indirectly  through  the  coordinates  x  and  their 

derivatives  x'. 
Thus 

dF       dF  dx<*  .     dF  dx^' —  =  J-T-.  —  --  h  -  777-5  —  (*  umbral) 
da      dx(s)  da        QX(»Y    da 

and  therefore 
dF 

a7=    p'  /  dF  dx<»  , da      Juo    \jM*  da 

, 

a         uo  a       dx^       a 
Now 

dx^'  ̂   a2a;(')  =  d_  ̂  dx^ da        dadu      du     da 

so  that,  on  integration  by  parts, 

6F  dxM'  ,          dF 

dx(t) 

"'        C 

— 
„„      J,,0 

'dx(9)     d    dF 

da 

du 
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Since  the  end  points  of  the  curve  are  fixed,  dx(t)/da  =  0  at  the 
limits  of  integration  and  so  the  integrated  part  vanishes  and, 
collecting  terms,  we  have 

dF        d    dF 

dl       r' 

—  = 
da      Juo 

, 
du       (s  umbral) 

If  (  —  )      is  to  be  zero  for  all  possible  varied  curves  F(a)  it  is \da:/a=o 
evidently  sufficient  and  can  be  shown  to  be  necessary  that  all  the 

/  ftf         /)    flV  \ 

coefficients  (  ^-77,  —  5  —  —  -r  )       in  this  integral  should   vanish \dx(t>      dudx(»)'Ja=o 

(s=  1,  "-,n). 
These  n  expressions  are  the  components  of  a  covariant  tensor 

of  rank  one  where  now,  however,  the  term  is  used  in  a  wider 
sense  than  hitherto.  F  is  now  not  merely  a  function  of  the 

coordinates  x  but  of  their  derivatives  x'  .  From 

x(.r)'  =  d_j^yw'  tfumbral) 
we  have 

,        ,     n 
(r  umbral) 

showing  that  --  -f=   Xr  is  a  covariant  tensor  of  rank  one. 

dx(r) 

Suppose  we  wish  to  find  the  geodesies  of  our  metrical  space  Sn. 
These  are  the  curves  for  which  the  first  variation  of  the  length 
integral  is  zero. 

so  that 
dF         dF . 

dx(T) 

dF  dx 

the  gim  being  functions  of  position.    We  shall  find  it  convenient 
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to  take  as  parameter  u  the  arc  distance  s  along  the  sought-for 

geodesic.*  Then  when  we  put  a  =  0  after  the  differentiations 
F  =  1,  from  the  definition  of  arc  distance  s,  and  we  have 

(dF\        _  1 
~ 

(d
xw
\ 

-  }   
   

so  that
  

X(r)
  
ss  (i00

)  
is  the as  /a,

0 

unit  contravariant  direction  tensor  along  the  sought-for  geodesic. 
Also 

\         =1.9/7,    (r<m>^ 

~'  /       9  ̂tm(-x  > /a=0          ̂  

and  our  equations  are 

(l)±(m)   _    <L_ ds 

(r,  w  umbral;  t  =  1  •  •  •  w) 

Multiply  through  by  gpt  and  use  <  as  an  umbral  symbol  so  as  to 
obtain  the  n  components  of  a  contravariant  tensor  of  rank  one 

Qfftm  _  J  ̂rm\          Q        ,  . 
w     2ft?«J 

pt±(r)+m 

It  is  now  convenient  to  introduce  the  Christoffel  three-index 
symbols  of  the  first  and  second  kinds  defined  as  follows: 

(6)  {rs,  t]  =  {sr,  t]  =  g^[rs,  p] 

*  However,  this  rules  out  those  minimal  geodesies  along  which  s  is  constant. 
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which  equations  imply 

gtq{rs,  t]  =  gtqgtp[rs,  p]  (t,  p  umbral)     , 
s  [rs,  q] 

Equations  (a)  give 

[rs,  t]  +  [rt,  s]  =  — ~ 

Then  we  may  write 

x(r)xm  (dffg  _  l^\  (f>  m  umbra,) 

t,  m]  +  [rm,  t]  -  %[rt,  m]  -  %[tm,  r]] 

t,  m]  +  [rm,  t]  -  %[mt,  r]} =  x(r)x(m)[rm,  t] 

since  an  interchange  of  the  umbral  symbols  r,  m  in  the  last 

three-index  symbol  leaves  the  summation  unaltered. 
Accordingly,  on  using  the  definition  (6),  the  differential  equa- 

tions of  the  geodesies  are 

x(p)  -f  {rm,  p}xrxm  =  0  (p  =  1  •  •  •  n) 

From  their  derivation  we  know  that  these  equations  are  contra- 
variant  of  rank  one.  We  proceed  now  to  obtain  a  general  rule 
which  makes  the  tensor  character  of  equations  of  this  type 

apparent  on  inspection. 

2.  THE  FORMULAE  FOR  COVARIANT  DIFFERENTIATION 

From  the  covariant  character  of  the  grt  we  have 

(/,m  umbral) 

.      dfr._  ̂ d^dx^dx^dx^  (   BW 

QyW  QX(n)   Qy(T)  Qy(t)      Qy(t)     -T     9lm    \Qy(r)Qy 

H"
 

)     \ ,n  I      (I,  m,  n  umbral) 
y(i)) 

*f  \  ,  ,  ̂   , 
dy(r)dy(t)dy( 

where  in  the  differentiation  we  have  remembered  that  gim  is  a 
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function  of  the  y's  only  indirectly  through  the  ar's.  We  easily 
obtain  two  other  similar  equations  by  merely  interchanging 
(r,  0  and  (*,  t)  in  turn.  We  are  careful  to  so  distribute  the 
umbral  symbols  I,  m,  n  as  to  facilitate  combination  of  the  three 
equations  obtained  in  this  way.  Thus 

.         (   dzx 

9lm  \dy^ 

dx(l)  dy(r)  dy(t) 
. 

dy(t)dy(r)  dy(t) 
Now  adding  the  first  two  of  the  equations  and  subtracting  the 
third  we  have,  on  writing 

etc 

v  _  dx(l)  dx(m}  dx(n)  •          &x™    dx(m) ln>  ml)M        t^gim" 

[I,  m,  n  umbral] 
Now 

from  its  covariant  character  (p,  q  umbral) 

dx(m)       ,    dy(p) 

To  remove  the  coeflScient  of  „  ,  .^  ...  multiply  across  by  fs    n  ... 
dy(r)oy(t)  oy(lc) 

and  make  s  and  k  umbral  when  we  get 

,  m 

1  dy(k) 
from  the  relation  (contravariant) 

,i  umbral) 
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Finally 

from  which  on  interchanging  the  role  of  the  x  and  y  coordinates 
we  have 

_  =  lrt  M_  i/n  ,r 
W  '    '      «»  '  Jl       « 

Suppose  now  we  have  a  covariant  tensor  of  rank  one  Xr  so  that 

Qx(r
) 

F.  =  ̂ ^-(7)  (r  umbral) 
Then 

O  it  __    Y       v  • 

1*1       /.\  
«\        ( ]\     f\       { m\  1  *\    \r H-r\~>  rtT^*'rlT^^'  I         ri  X 

[stf  k]'         —  {lm,  r\  [+ 

on  altering  suitably  the  umbral  symbols  Zm    to    rp.     These 
equations  state  that 

is  a  covariant  tensor  of  rank  two.     Consider  now  a  contra  variant 
tensor  of  rank  one  so  that 

p  "  *f£         (r  umbral) Then 

M 
dy(t)    ~  QX(P)  Qy(t)  Qx(r) 

,        , 

(r)^  (t)        {TP'    CJ 

.  nm  ,i' 
'    !      55 
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These  equations  state  that 

is  a  mixed  tensor  of  rank  two. 
These  tensors  of  rank  two  are  called  the  covariant  derivatives 

of  the  covariant  and  contra  variant  tensors  Xr  and  Xr  respectively. 
Similar  analysis  can  be  carried  out  to  obtain  the  covariant 
derivative  of  a  tensor  of  any  rank  and  character.  To  make  this 

perfectly  clear  let  us  take  the  case  of  a  mixed  tensor  X,T  of  rank 
two: 

yr=   Y 

dy(t)    ~  dx(l)  dyw  dy(t)  dx(p) 

whence 

expressing   that  -^-^   Xkp{ql,  k}  +  Xqk{kl,  p\    is   a   mixed 

tensor  of  rank  three  being  covariant  of  rank  two  and  contra- 
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variant  of  rank  one.     In  general,  the  covariant  derivative  of 

It  will  be  noticed  that  +  signs  go  with  the  contravariant  symbols 
and  negative  with  the  covariant.  Also  the  new  label  s  is  always 

second  in  the  three-index  symbols;  the  umbral  label  is  first  if 
taken  from  the  contravariant  and  third  if  taken  from  the  co- 

variant indices. 

3.  APPLICATIONS  OF  THE  RULE  OF  COVARIANT  DIFFERENTIATION 

(a)  Riemann's  four-index  symbols  and  Einstein's   Gravitational 
Tensor 

From  any  covariant  tensor  Xr  we  obtain  as  its  covariant 
derivative 

XT»  =  r-^jj  —  Xk{rs,  k}  (k  umbral) 

and  as  its  second  covariant  derivative 

dra  v
 

I     0 AT  v     ,  , 

Xr»t  = 

Y " 

From  this  by  the  elementary  rule  (6),  Ch.  2,  §  2,  of  tensor 
algebra  we  derive  a  new  covariant  tensor  Xrtt  =  Xrt9  and  the 
difference  of  these  is  a  covariant  tensor  of  rank  3  by  rule  (a), 
Ch.  2,  §1;  i.e., 
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whence 
—  r     a  •% 

Xnt  =  Xk  \          {rt,  k}  -         {rs,  k}  +  {ps,  k}  {rt,  p} 

-  {pt,  k}  [rs,  p} 

the  terms  involving  the  derivatives  of  the  Xr  cancelling  com- 
pletely out.  Now  Xk  is  an  arbitrary  covariant  tensor  of  rank 

one  and  so  by  the  rule  (e),  Ch.  2,  §  5  —  the  converse  of  the  rule 
(d)  of  composition  — 
a  a 

faM^t'  ̂   ~fa&{rs'  k^  +  lPs>k}{rt>P\  ~  {pt,k}{rs,p} 
=    Y     & 

—  -A-  rat 

is  a  mixed  tensor  of  rank  four  of  the  type  indicated  by  the 
positions  of  the  labels. 

If  we  write  k  =  t  and  use  t  as  an  umbral  symbol  we  derive  by 

rule  (d)  Einstein's  gravitational  covariant  tensor  of  rank  two 

Gr°  ̂  

The  mixed  tensor  Xrstk  is  usually  denoted  by  the  symbol  {rk,  ts] 
and  is  known  as  the  Riemann  four-index  symbol  of  the  second 
kind.  From  it  we  obtain  by  the  rule  of  composition  the  co- 

variant tensor  of  rank  four 

[rj,  **]  =  gjkXrst*  =  gjk(rk,  ts}  (k  umbral) 

which  is  known  as  the  Riemann  four-index  symbol  of  the  first 

kind.  From  Einstein's  tensor  of  rank  two  we  obtain  the  in- 
variant 

G  =  gr'Grs  (r,  s  umbral) 

which  has  been  called  the  Gaussian  or  total  curvature  of  the  space. 
This  name  is  given  since  G  is  regarded  as  a  generalization  of  the 
expression  given  by  Gauss  for  the  curvature  of  a  surface  (i.e., 
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n  =  2).  The  term  curvature  is  widely  used  in  the  literature  of 
Relativity  and  so  it  may  be  well,  in  order  to  avoid  a  possible 
confusion  of  ideas  on  the  subject,  to  discuss  briefly  what  is 
meant  by  the  curvature  of  a  metrical  space.  To  do  this  it  is 

necessary  to  say  a  few  words  about  the  four-index  symbols. 
We  have,  by  definition, 

[a
  

a ipgff***)  ~fa&{ps>  k\ 

+  {pr,  t}{ts,k}  -  {ps,t}{tr,k}'] Recalling  that 

\Pr>  ?]  =  9*k{pr,  k} 
we  have 

a  a  /)/7 
~ 

=  fa&  [pr,  g]~  ipr,k\  ([qs,  k]  -f  [ks,  q]) 

from  definition  of  [qa,  k]  so  that  on  operating  similarly  with 

and  wfang  gqk{ts,k\  =  [ts,  q]  we  find 

— 
a  a 

[pq,  rs]  3=  —  \pr,  q]  -          [ps,  q]  -  {pr,  k\[qs,  k] 
,  k] 

(the  terms  {pr,  t}[ts,  q]  and  —  {pr,  k}[ks,  q]  cancel  since  t  and  k 
are  merely  umbral  symbols)  .  Finally,  in  terms  of  the  three-index 
symbols  of  the  first  kind, 

Iw»wls^w^  d-^)b»'d 
+  9kj([p*,  j\[qr,  k]  -  [pr,  j][qs,  k])  (k,  j  umbral) 

Writing  out,  in  the  first  two  terms  of  this  expression,  the  values 
of  the  symbols,  e.g., 

,ird  a  d      ~] 
[pr>  q]  "=  2  [d^  9rq  +  d^  9pq  ~  e&  9pr\ 
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we  find 

,  =  i  r    a2  a2  a2 
m'n     - 

a2 

~\ 

r)  0«« 
From  this  formula  it  is  apparent  that 

(a)  An  interchange  of  the  indices  or  labels  p,  q  merely  changes 
the  sign  of  the  symbol. 

\pq,  rs]  +  [qp,  rs]  =  0 
(6)  Similarly 

[pq,  rs]  +  [pq,  sr]  =  0 

(c)  A  complete  reversal  of  the  order  of  the  labels  does  not 

alter.  the  symbol  [pq,  rs]  =  [sr,  pq].    This  depends  on  the  sym- 

metry relations  gki  =  gik. 
(d)  If  we  keep  the  first  label  fixed  and  permute  the  other  three 

cyclically  we  get  3  symbols  whose  sum  is  identically  zero,  i.  e., 

[pq,  rs]  +  [pr,  sq]  +  [ps,  qr]  =  0 

The  number  of  non-vanishing  symbols  which  are  linearly  distinct 
now  follows.  If  p  =  q  or  r  =  s  the  symbol  vanishes  on  account 
of  (a)  and  (6).  The  number  of  choices  for  the  first  pair  (p,  q)  is 

HZ  =  —  —  -  —  -  and  similarly  for  the  second  pair  (r,  s).    However & 

relation  (c)  shows  us  that  we  do  not  get  n22  symbols  by  combining 
the  two  choices  but 

n22  —  ̂ 2(^2  —  1)  =  ̂ 2(^2  +  1) 

The  relation  (d)  will  still  further  reduce  the  number  of  linearly 
distinct  symbols.  When  the  indices  or  labels  p,  q,  r,  s  have 
numerical  values  which  are  not  all  distinct  the  relation  (d)  merely 
reduces  to  a  combination  of  the  relations  (a),  (6),  (c).  There  are 

therefore  n(n  —  T)(n  —  2)(ra  —  3)  new  relations  in  (d).  How- 
ever since  there  are  three  letters  q,  r,  s  permuted  cyclically,  each 
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relation  will  occur  three  times.     Each  of  the  relations  (a),  (6),  (c) 

,      n(n  —  l)(n  -  2)(n  -  3)     ,  .  ,  .       . reduces  the  number  --  -±—  -  —  —  -  -  which  remains  in 
o 

half  and  so  there  are 

n4  =  n(n  —  l)(n  —  2)(n  —  3)  -5-  24  distinct  relations  (d). 

There  are  accordingly  but 

distinct  Riemann  four-index  symbols.  For  n  =  2  there  is  out 

one  which  we  may  write  [12,  12],  When  we  change  the  coordi- 
nates from  x  to  y  we  have 

, 
[12,  12],  =  (pq,  „] 

(from  covariant  character) 

Since  there  is  but  one  distinct  symbol  [pq,  rs]  it  will  factor  out 

on  the  right  and  we  get  (since  there  are  but  four  of  the  symbols 
which  do  not  vanish) 

[12,  12]y  =  [12,  12]  -J* 

d(z(1)z(2)) where  J  is  the  Jacobian    ,  '  -     We  have  already  seen  that 

[12  12] 
/  =  gJ2  and  on  division  we  obtain  the  invariant  K  =  —      -  • 9 

It  is  this  invariant  which  Gauss  called  the  total  curvature  of  the 

space  of  two  dimensions  under  discussion. 
In  order  to  compare  this  with  the  invariant 

gr'Grt  (r,  s  umbral;  n  =  2) 
we  have 

Grt  =  {rt,  ts}  (t  umbral) 

{since  if  p  =  I  or  t  =  1,  [Iptl]  =  0  by  relations  (a)  and  (6),} 

=  -  <7n[12,  12]  -r  g 
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from  definition  of  </22, 
=  -  gii-K 

Similarly 

Gu  =  012[12,  12]  =  -  gn-K  =  -  gn.K 

Gn  =  <721[21>  21]  =  —  giz-K  =  —  gzi'K 

from  relation  (c), 

£22  =  0n[21,  12]  =  -022-tf 
so  that 

/•<?„  =  -  Kfgn  =  -2K 
since 

-  2tf     (r  umbral) 

For  a  space  in  which,  in  some  particular  coordinate  system  x, 

the  coefficients  grs  are  constants  all  the  three-index  symbols 
[pr,  s]  and  in  consequence  all  the  symbols  {pr,  s\  and  also  the 

four-index  symbols  [pq,  rs]  and  {pq,  rs}  =  0.  On  account  of  the 
tensor  character  of  these  latter  symbols  we  know  that  the  Rie- 
mann  tensors  [pq,  rs]  {pq,  rs}  will  be  zero  no  matter  what  the 
coordinates  are.  Conversely  the  vanishing  of  the  tensor  [pq,  rs] 
expresses  the  fact  that  it  is  possible  to  find  coordinates  y  such 
that  the  fr»  defined  by  the  equations 

QX(l)   #£("*) 

t~m**yfiipS  (/,m  umbral) 

shall  be  constants.  We  may  now  apply  the  well-known  method 
of  reduction  of  a  quadratic  expression  to  a  sum  of  squares  (as  in 
the  determination  of  normal  vibrations  in  dynamics  where  the 
expression  for  the  kinetic  energy  is  reduced  to  a  sum  of  square 

terms)  ;  the  transformations  on  the  y's  are  linear  in  this  operation 
and  we  finally  get 

(If  we  restrict  ourselves  to  real  transformations  there  may  be  some 

negative  squares;  thus  in  the  relativity  theory  there  are  three  — 
and  one  +  term.)  A  space  of  this  character  is  said  to  be  Euclidean 
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and  the  y's  are  called  orthogonal  Cartesian  coordinates.  Rie- 
mann  defines  curvature  by  means  of  his  tensor  [pq,  rs].  When 
this  tensor  vanishes  the  curvature  of  the  space  is  said  to  be  zero 
so  that  Euclidean  space  is  one  of  Zero  Riemann  Curvature  and 
conversely.  If  the  ratio  of  the  component  [pq,  rs]  of  the  curvature 

tensor  to  the  two-rowed  determinant 

9p» 

is  the  same  for 

all  values  of  p,  q,  r,  s,  Riemann  says  the  space  is  of  constant 
curvature;  otherwise  the  curvature  will  be  different  for  different 

orientations  at  a  point:*  Gauss'  total  curvature,  on  the  other 
hand,  has  a  numerical  value  at  each  point  in  space  and  has 
nothing  to  do  with  the  different  orientations  at  that  point.  We 

may  sum  up  by  saying  that  a  gravitational  space  is,  at  points 

free  from  matter,  non-Euclidean,  i.e.,  it  has  a  Riemann  curvature 
but  its  Gaussian  curvature  is  zero. 

It  may  be  well  to  call  attention  to  the  fact  that  the  definition 

*  The  differential  equatic  ns  of  the  non-minimal  geodesies  of  any  space  are 

<Px"    .    ( lm\  rfz«>  dx<«> 

-df-  +  i  r  S'dr~dT  "  °        (f  "  *'  •"•  *l»1"*«D 

a  being  the  arc  length  along  the  geodesic.  It  is  known  that  the  solutions  i(r) 

of  these  equations  are  completely  determined  by  the  values  of  x(r>  and  —3— 

for  a  particular  value  of  «,  «  =  0  let  us  say.  This  is  stated  geometrically  by 
saying  that  through  any  point  in  space  there  passes  a  unique  geodesic  with  a 
given  direction.  If,  now,  through  a  definite  point  we  construct  the  geodesies 

with  the  distinct  directions  £(r)  and  »><r)  respectively  (r  —  1,  •  •  -,  n)  and  con- 
sider the  family  of  geodesies  through  the  point  in  question  obtained  by  assign- 

ing to  each  a  direction  tensor  whose  rth  component  is  proportional  to 

\%(r)  _|_  ̂ w  an(j  then  letting  the  ratio  X  :  M  vary,  we  obtain  a  geodesic  spread 
Vt  of  two  dimensions  which  at  the  point  in  question  has  the  orientation  deter- 

mined by  the  two  directions  £  and  »j  through  the  point.  It  is  the  curvature  of 
this  geodesic  Vi  that  Riemann  calls  the  curvature  of  the  space  relative  to  the 
orientation  determined  by  (  and  ij.  There  is  a  remarkable  theorem  due  to 
Schur  (Math.  Anualen,  Bd.  27.  p.  563,  1880)  which  says  that  if  at  every 
point  the  Riemann  curvature  of  space  is  independent  of  the  orientation  the 
curvature  at  all  points  is  the  same.  Such  a  space  is,  then,  properly  called 
a  space  of  constant  curvature. 
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of  Euclidean  space  given  above  is  a  "  differential  "  definition; 
spaces  which  are  Euclidean  according  to  this  definition  do  not 
necessarily  satisfy  the  postulate  that  one  can  proceed  indefinitely 
in  a  given  direction  without  coming  back  to  the  starting  point. 

The  simplest  example  is  the  well-known  one  of  a  cylinder  of  unit 
radius.  In  this  case  n  =  2,  ym  =  <f>,  the  longitudinal  angle 
measured  in  radians,  and  7/(2)  =  z,  the  distance  measured  parallel 
to  the  axes  of  the  cylinder: 

(<fe)2  s  (<Z0)»  +  (dzY  =  W>)2  +  W2))2 
If  the  cylinder  is  cut  along  a  generator  and  developed  on  a  plane 
it  will  cover  a  strip  of  breadth  2r  on  the  plane.  If  we  take 

rectangular  Cartesian  axes  in  the  plane,  with  the  x(l)  axis  parallel 
to  the  strip,  points  whose  z(2)  =  <£  differ  by  2ir  correspond  to  a 
unique  point  in  the  strip  (that  one  with  the  same  xw)  and  to  a 
unique  point  on  the  cylinder.  Hence  there  are  an  infinity  of 
straight  lines  (i.e.,  geodesies)  joining  any  two  points  (with 

different  z's)  on  the  cylinder.  They  develop  into  the  oo  l  straight 
lines  joining  the  points 

(1>,  x™  +  2nir)  (n  =  ±  1,  2,  •  •  •) 

on  the  plane.  It  is  evident  that  speculations  as  to  the  "  finite- 
ness  "  or  "  infiniteness  "  of  a  space  based  on  its  differential 
characteristics  must  be  regarded  with  distrust. 



CHAPTER  VII 

1.  In  this  final  chapter  we  shall  treat  in  a  brief  way,  as  an 
application  of  the  preceding  analysis,  the  classical  problems  of 
Relativity.  As  in  other  applications  of  the  methods  of  mathe- 

matical analysis  to  problems  in  physics  the  first,  and  here  the 
most  serious,  difficulty  is  that  of  giving  a  physical  significance 
to  the  coordinates.  All  systems  of  coordinates  are,  without 
doubt,  equally  valid  for  the  statement  of  the  laws  of  physics 
but  not  all  are  equally  convenient.  It  is  reasonable  to  suppose 
that  for  a  given  observer  of  phenomena  a  certain  coordinate 

system  may  have  a  direct  and  simple  relationship  to  the  measure- 
ments he  makes;  such  a  coordinate  system  is  called  a  natural 

system  for  that  observer.  It  is  necessary  to  define  this  natural 

system  and  to  find  by  experience,  or  otherwise,*  how  the  natural 
systems  of  different  observers  are  related.  This  has  been  well 

done  in  the  special  or  "  Restricted  Relativity  Theory  "  but  in 
the  more  general  theory,  which  we  propose  to  discuss  here, 
much  remains  to  be  done  in  this  part  of  the  subject.  In  what 
follows  we  shall  consider  (a)  the  problem  of  determining  the 

metrical  character  of  the  space-time  continuum  round  a  single 
gravitating  center  and  (6)  in  consequence  of  the  results  of  (a) 
the  nature  of  the  paths  of  a  material  particle  and  of  a  light  ray 
in  a  gravitational  field.  We  shall,  following  Einstein,  make  the 
fundamental  assumption  that  the  space  which  has  a  physical 
meaning  or  reality,  i.e.,  with  reference  to  which  the  laws  of 
physics  must  have  the  tensor  form  (cf.  Ch.  2,  §  1),  is  one  of  four 

dimensions  (commonly  referred  to  as  the  Space-Time  continuum). 

*  The  relationship  between  the  different  systems  may  be  arrived  at  by 
making  various  hypotheses  whose  truth  or  falsity  must  then  be  tested  in  the 
light  of  experience. 

102 
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2.  THE  METRICAL  SPACE  ATTACHED  TO  A  SINGLE  GRAVITATING 
CENTER 

We  assume  that  for  an  observer  attached  to  the  gravitating 

center  one  of  the  four  coordinates,  x(4)  say,  of  his  natural  system 
is  such  that  the  coefficients  gu,  gzt,  #34  of  the  quadratic  differential 

form  for  (ds)2  vanish  identically  whilst  those  remaining  are 
independent  of  z(4)  ;  z(4)  is  said  to  be  a  tune  coordinate  and  the 
field  is  said  to  be  statical.  Accordingly 

(ds)*  =  044(<fo(4))2  +  glmdxWdx™     (I,  m  =  1,  2,  3  uinbral) 

Now  in  any  space  of  three  dimensions  we  can  always  find  orthog- 

onal coordinate  systems;  for,  writing  the  metrical  (d$)2  in  its 

reciprocal  form  (ds)2  =  /ra7?rT7«,  we  have  merely  three  equations 

fr*  ==  -Q  (r  =J=  *)  —  or  explicitly 

aim 

9 

—  to  determine  the  three  unknown  functions  y  of  x  so  that  the 
coordinate  curves  y  may  be  orthogonal.  There  is  no  lack  of 

generality,  then,  in  writing  (ds)z  for  the  statical  field  in  the 
orthogonal  form 

where  we  have  dropped  the  double  labeling  as  unnecessary.  (In 
general  it  is  impossible  to  find  orthogonal  coordinates  in  space  of 
four  dimensions  since  there  are  now  six  differential  equations 

fr>  =0  (r  ̂   s)  for  the  four  unknown  functions  y  and  these 
equations  are  not  always  consistent.)  We  must  now  go  through 

the  details  of  evaluating  Einstein's  gravitational  tensor  (cf.  Ch. 
6,  §  3)  for  an  orthogonal  space. 

The  relations  grs  =  0;  grt  =  0  if  r  4=  s  make  matters  com- 
paratively simple.  We  shall  use  r,  s,  t  to  denote  distinct  numer- 

ical values  of  the  labels.  Then 
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•H(^>+i^-IfsH  by<Mnition {rs,t}  =  ̂ [rs,  k]  ss  g'^rs,  t]  =  Q        (k  umbral) 

,  r\  =  {sr,  r\  =  /*[«-,  *1  -  0rr,  r]  = 

being  the  only  umbral  label  here) 

similarly  and 

{rr,  3}  =  -  9~J17 

The  Riemann  four-index  symbol  of  the  second  kind  (cf.  Ch.  6, 

§  3)  is  defined  by 

t  \  ^         t  \  ™        I  iif 

—  [pa,  I]  {/r,  q]     (I  umbral) 

and  those  components  vanish  identically,  for  an  orthogonal 

coordinate  system,  where  the  pq,  rs  are  distinct;  [{pr,  1}  vanishes 

unless  /  =  p  or  r  in  which  case  {/»,  q\  vanishes].  To  evaluate 

the  remaining  symbols  write  r  =  q  without,  for  the  present, 
using  q  as  an  umbral  symbol 

1   dQa  \   .      1     d(ja   dg0 

T  ~r dgp   dgq  1      dg, 

4gtgqdx(p)dx(l) 
The  formulae  from  this  on  take  a  simpler  form  if  we  use  the 

symbols  H  defined  by  gr  z=  Hr2',  thus 

1       d*H*  1      dHp  dHq 
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Similarly  we  find 

{pq,qp}  =  — - 
1    d*Hq.Hpd*Hp      HpdHpdHq 

.  **.p  I   1   dHp  dHq 
+ 

. 

*" 

1   dHp 

where  r  and  s  are  the  two  labels  different  from  p  and  q.  The 
components  of  the  Einstein  tensor  are  now  found  by  summing 

with  respect  to  q.  It  will  be  recalled  that  [pp,  rs]  =  0  (p,  r,  s 
any  values  distinct  or  not,  cf.  Ch.  6,  §  3).  Hence 

{pp,  rs}  =  gpk[pk,  rs]  =  gpp[pp,  rs]  =  0     (k  umbral) 

Similarly  {pq,  ss]  =  0,  so  that  in  forming  Gu,  for  example, 
we  need  merely  write 

£12=  {13,32}+  {14,42} 
whilst 

<?us  {12,21}  +  {13,31}+  {14,41} 

It  will  be  observed  that  differentiation  with  respect  to  x(p)  and 

x(>)  occurs  in  every  term  of  {pq,  qs}  and  so  the  absence  of  the  time 
coordinate  z(4)  from  the  coefficients  makes  GU,  GU,  G&  all  iden- 

tically zero. 

We  shall  now  make  the  following  hypotheses  of  symmetry — (a) 
we  shall  suppose  that  the  coordinate  lines  z(1)  are  geodesies  of  the 
space  (all  passing  through  the  gravitating  center).  The  equa- 

tions of  the  non-singular  geodesies  have  been  found  to  be  (Ch.  6, 
§D 

x(r)  +  [lm,  r}x(I)x(m)  =  0     (r  =  1,  •  •  -,  4;  /,  m  umbral) 

where  dots  denote  differentiations  with  respect  to  the  arc  distance 

which  we  take  as  our  coordinate  x(1).  Writing 

4(8)  =  0  =  z(3>  =  i(4),      xi  =  1 
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(since  x(2),  x(8),  x(4)  are  constant  along  the  coordinate  lines  x(I)) 
we  find  {11,  r}  =  0  which — from  the  values  given  for  this  symbol 
— yields  g\  =  constant.  The  constant  is  in  fact  unity  since, 

by  hypothesis,  ds  =  dxm  along  the  curves  x(2)  =  const., 
£(3)  =  const.,  x(4)  =  const.  It  is  apparent  that  it  is  sufficient 

that  ̂ i  be  a  function  of  x(1)  alone  for  we  may  make  a  change  of 
variable  x(1)  =  x(1)(y(1))  leaving  the  other  coordinates  unaltered; 

the  argument  shows  conversely  that  if  g\  is  a  function  of  x(1) 
alone  the  coordinate  lines  x(1)  are  geodesies,  the  arc  length  along 

them  being  given  by  *  =  J°  V<7i  dx(l\ 
(6)  x(2)  and  x(a)  are  directional  coordinates  serving  to  locate  a 

point  on  the  geodesic  surface  x(1)  =  const.,  x(4)  =  constant.  We 
shall  suppose  that  the  arc  differential  on  this  surface  (which 
may  conveniently  be  called  a  geodesic  sphere)  cannot  involve  the 

"  longitude  "  coordinate  x(>)  nor  can  the  arc  differential  along  a 
given  "  meridian  "  x(8)  =  constant  depend  on  the  "  latitude  " 
coordinate  x(2).  Hence  gt  is  a  function  of  x(1)  alone  whilst  </3  is 
a  function  of  Xi  and  x>  alone. 

(c)  04  does  not  involve  the  directional  coordinates  x(2)  and  x(3) 
and  so  is  a  function  of  x(1)  alone. 

Accordingly,  then,  x(8)  does  not  appear  in  the  expression  for 
(<fo)2  and  so,  in  addition  to  Gu  =  0,  Gu  =  0,  (734  =  0  we  have 
GU  =  0,  (?23  =  0.  We  must  wiite  down  the  five  equations 
Gu  =  0,  Gu  =  0,  Gn  =  0,  £33  =  0,  Gu  =  0.  The  fact  that  H4 

is  a  function  of  x(1)  alone  and  HI  =  1  (x(1)  being  the  arc  distance 
along  the  geodesic  curves  x(1))  gives  {14,  42}  =  0  and  from 
(?»  =  {13,32}  =  Owe  get 

which  gives,  on  integration  with  respect  to  x(1), 

1   dH 

-=5-  s-ja  =  a  function  independent  of  Xi  (A) 

.a  2  ox' • ' 
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n  =  0  yields 

(?44  =  0  gives 

t      g  3ff4  [  1  dH2  3     _  Q * 

which  on  integration  with  respect  to  z(1)  gives 

independent  of  *«  (C) 

f 
Eliminating  —  -^  between  (C)  and  04)  we  get  Hz*  -r-^  independ- 2  ax(1) 

ent,  of  x(1).    Since  it  cannot  involve  any  variable  but  x(1>   we 
have 

H<?Hi  —  a  constant  a,  let  us  say;  (C") 

primes  denoting  differentiations  with  respect  to  xm. 
f)H  dd> 

Again  from  (-4)  —  -^  =  F2  X  a  function  of  a;(2)  =  H2  ̂ -^  say 

where  ̂ >  is  a  function  of  z(2)  alone.  Then  H3  =  ̂ ^  +  /  where 
1  f&i] 

/  is  a  function  of  z(1)  alone.  Now  (5)  shows  that  —  —  -«  is  a 
-  2 

function  of  z(1)  alone  so  that  its  derivative  with  respect  to 
vanishes.     Evaluating  this  derivative  we  find 

=  0 

We  can  now  proceed  in  various  ways;  either  make  <£  a  constant 

or  fHz'  —  f'Hz  (of  which  the  second  factor  is  the  derivative)  a 

constant   giving  /  =  const.  X  Htj  TTT^  •     We  choose  the  latter 

HZ 

alternative   and  make  the  constant  zero   so  that  /  =  0   giving 

H3  =  H2<j>  where  <J>  is  a  function  of  z(2)  alone. 
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<p  is  determined  by  means  of  the  equation  Gzz  =  0.     This  gives 

-2  HW  =  0      (D) 

#4 

On  substituting  H3  =  Hrf  in  (D)  we  find  that  -  -  -—  is  equal ' 

to  a  function  of  x(1)  alone;  but  from  its  form  and  the  definition 
of  0  it  cannot  involve  a:(1)  and  so  must  be  a  constant.  This 
constant  may,  by  a  proper  choice  of  unit  for  ar(2),  be  put  either 
1  or  zero.  We  choose  the  first  alternative  and  find,  by  suitably 

choosing  the  origin  of  measurement  for  z(2),  <£  =  sin  x(2). 
£33  =  0  gives 

1  dH,        1  dH< 
--     ---  ----  }   =   V 

and  on  substituting  <f>  =  sin  x(2),  ̂ 3  =  Hrf,  both  (D)  and 
yield  the  same  equation 

HW  +  HM  {  jjJjL'  +  jjj£  I  .  i (B)  gives 

On  difiFerentiating  (CO  and  eliminating  H^H^"  we  find 

//2"/l4  =   Hi'Ht 

which  gives  on  integration 
#«'  =  /3£T4 

where  0  is  an  arbitrary  constant. 

Eliminating  #4  between  (CO  and  (C")  we  have  tf," 

which  on  integration  gives 

where  7  is  an  arbitrary  constant. 
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Putting  #4  =  (Ht')fP  in  (#')  we  have 

2#2#2"  +  (//2')2  =  1 

so  that  1  =  2y  giving  7  =  1  and  hence  finally  H2  is  determined 
by  the  differential  equation 

and  then 

#22<fo<2>2  +  sin2 

It  is  usual  to  change  the  coordinate  z(1),  leaving  the  others 
unaltered.     We  write  x(1)  =  xw(yw)  where  y(l)  =  H2. 

and  we  have 

This  is  the  form  chosen  by  Einstein  (that  it  is  only  one  of  many 
is  evident  from  its  derivation).  If  aft  =  0  it  reduces  to  the 

well-known  Euclidean  form  where  y(l)  =  r,  z(2)  =  6,  x(3)  =•  $  are 
space  polar  coordinates.  It  remains  to  attach  some  physical 
significance  to  the  constant  a/3  and  to  take  up  the  problem  (6) 
stated  at  the  beginning  of  this  chapter.  In  order  to  conform 

to  the  usual  notation  we  write  henceforth  yw  =  ir;  z(2)  =  6; 
x™  =  <j>;  z(4)  =  t  where  i2  =  -  1. 

Choosing  the  unit  of  z(4)  or  t  so  that  /32  =  +  1  and  writing  ia 
=  —  a  we  have 

"' 

=  -    {  (  1  - sn 



110  VECTOR  ANALYSIS  AND  RELATIVITY 

3.  DETERMINATION  OF  THE  PATH  OF  A  FREELY  MOVING 
PARTICLE 

A  physical  law  of  inertia  is  postulated  to  the  effect  that  a 
freely  moving  material  particle  in  a  gravitational  field  mil  follow 

the  non-minimal  geodesic  lines  of  the  four-dimensional  space  time 
continuum  which,  for  the  single  gravitating  center,  has  the 
metrical  geometry  characterized  by  the  form  given  above  by 

A  second  postulate  is  that  rays  of  light  follow  the  minimal 

geodesies  —  those  for  which  ds  =  0.  In  the  ordinary  Euclidean 
space  these  lines  are  imaginary,  i.e.,  have  points  with  imaginary 

coordinates  but  the  occurrence  of  the  negative  signs  in  the  ex- 

pression for  (ds)*  gives  real  minimal  lines  in  our  problem.  For 
example,  the  light  rays  directed  towards  or  away  from  the  cen- 

ter, those  for  which  6  and  <£  are  constant,  are  characterized  by 
the  equation 

.(,.5)^.,  or  j- 
In  order,  then,  to  solve  the  problem  of  the  free  motion  of  a 

material  particle  we  have  merely  to  determine  the  non-minimal 
geodesies  whose  equations  are 

x(f)  +  {lm,  p}xwx(m)  =  0        (cf.  Ch.  6.  §  1) 

the  dots  denoting  differentiations  with  respect  to  the  arc  length 
along  the  geodesic.  For  an  orthogonal  space  of  four  dimensions 
these  simplify  to  four  equations  of  the  type 

x(1)+  {11,  l}z<1)2  +  {22,  l}(z<»)«  +  {33,  l}(z(8))z 
+  {44,  l}(z«>)*  +  2{12,  1  }*«>*<»  +  2(13,  l)z(1)z<8) 

+  2{14,  l}z(1)z«>  =  0 
However  we  need  use  only  three  of  these  equations,  replacing  the 

fourth  by  gr»x(r)x(t)  =  1  which  is  easily  seen  to  be  a  consequence 
of  the  differential  equations 

z(r>  +  {lm,  rJzWxO-o  =  0 
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(if  we  multiply  these  by  0r«  and  use  r  as  an  umbral  symbol  to 
obtain 

and  then  avail  ourselves  of  the  definition  of  the  symbols 

[lm,  s].  (Ch.  6,  §  1.)  j-  (grtXrXs)  is  found  to  be  zero).  In  our 

problem  it  is  convenient  to  omit  the  first  of  the  four  equations, 

the  other  three  simplifying,  on  using  the  values  for  the  three- 
index  symbols  given  (Ch.  7,  §  2),  to 

*   1_    /,v2^0J     ,     J[_d02    .a  _    n         ,,, 

202  vv          02  C/7" 
where  0i  =  —  ( 1   )    ; 

02  =    —   7-2; 03  =  —  r2  sin2  6; 

To  these  we  have  to  add  the  first  integral 

gii*  +  g*P  +  gw*  +  g*i*  =  1  (D) 
Equations  (5)  and  (C)  are  immediately  integrable  giving 

gzb  —  constant  =  —  h  say  (B1) and 

gd  =  constant  =  +  C  say 

or  on  substituting  the  values  of  gz  and  04 

r2  sin2  0^  =  h;        (l-~\i-C 

Equation  (^4)  may  be  written 

•    (r2^  -  r2  sin  0  cos  ̂ (<^2  =  0 

We  now  proceed  to  eliminate  the  parameter  s  and  find  a  relation 

connecting  6  and  0.  Assuming  that  <£  4s  0  (0  =  constant  is  a 
special  case  which  is  susceptible  to  the  analysis  given  below  on  a 
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mere  interchange  of  0  and  tp)  we  have 

6-  — 
so  that 

On  substituting  the  value  of  </>  from  (B)  we  have 
j 

=  {2rr'6'  +  rtf"}^2  -  r20'    -  r'<£2  +  2  cot  00'<£2 

where  we  denote  differentiations  with  respect  to  the  new  inde- 

pendent variable  <f>  by  primes.  Equating  this  to  r2  sin  8  cos  0(<£)2 
and  dividing  out  by  r2^2  we  obtain 

0"  -  2  cot  0(0')2  =  sin  6  cos  0 

If  now  we  choose  our  directional  coordinate  0  so  that  initially 

We  see  that  0"  =  0  and  then  on  differentiating  the  above  equa- 
tion with  respect  to  <f>,  B'"  =  0  and  so  for  all  the  other  derivatives, 

i.e.,  0  is  a  constant  as  <f>  varies.  Otherwise  expressed  the  general 
integral  of  the  equation  for  0  as  a  function  of  <p  is  found  by 

writing  z  =  cot  0  yielding  2"  +  z  =  0  to  be  cot  0  =  L  cos  (<f>  -f  M) 
where  L  and  M  are  arbitrary  constants.  We  choose  our  initial 

1P 

conditions  as  above  so  that  L  =  0  giving  0  =  -  .    Putting  in  this 
value  for  0  we  find 

1*4  =h  (BO 

(0") 

\  r  / 
and  from  (D) 
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Just  as  in  the  usual  Newtonian  treatment  of  planetary  motion, 

it  is  convenient  to  write  r  =  l/u  and  to  again  use  <p  as  the 
independent  variable.  We  have 

r  =  —  u/uz  =  —  u'<j>[u?  =  —  hu'  (from  J3') 

and  then  (Z)')  yields,  on  making  use  of  (C"), nz     1        Onu 

(u'Y  +  <u?  =  2au*  +  —g-  +  -£-  (£) 

Now,  in  the  Newtonian  treatment,  the  equation  giving  the  path 
of  a  particle  under  a  central  force  is 

u"  +  u  =  F/tfu? 

where  F  is  the  acceleration  towards  the  center  and  h=rz- dt 

is  the  constant  of  areas.  Instead  of  this  we  have  on  differen- 
tiating the  equation  (E)  just  obtained 

u"  +  u  =  3auz  +  ?L /r 

so  that  we  may,  in  a  general  manner,  express  Einstein's  modifica- 
tion of  the  Newtonian  law  of  gravitation  by  saying  that  there  is 

superimposed  to  the  inverse  square  law  attraction  an  inverse 
fourth  power  attraction,  the  relative  strength  of  the  attracting 

masses  being  as  1  :  3hz.  It  remains  to  determine,  at  any  rate 
approximately,  the  nature  and  magnitude  of  the  constants  a,  h 
and  C  which  arose  in  the  integration  of  our  differential  equations. 

For  large  values  of  r,  and  therefore  small  values  of  u,  the  New- 
tonian law  is  a  first  approximation  and  so  neglecting  the  term  in 

uz  in  the  equation  for  u",  a  =  F/uz  =  jura;  ju  being  the  gravita- 
tional constant  and  m  the  mass  of  the  sun.  Hence  if  we  choose 

our  unit  of  mass  so  that  n=l,a  =  m,  where  now  m  is  what  is  known 
as  the  gravitational  mass  of  the  attracting  center  (notice  that  we 
have  identified,  for  small  values  of  u,  our  r  and  <£  with  the  usual 
polar  coordinates  of  Euclidean  geometry).  The  velocity  of  light 

directly  towards  the  attracting  center  is  1   and  accordingly f 
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our  unit  of  time  is  such  that  for  small  values  of  u  the  velocity  of 
light  is  unity;  i.e.,  if  the  unit  of  length  be  1  cm.,  the  unit  of 

time  employed  is  1/c  seconds  where  c  =  3.1010.  In  the  theory 
of  relativity  there  is  no  absolute  distinction  between  space  and 
time  and  so  we  refer  to  our  time  unit  as  one  centimeter  (1  cm. 
being  the  distance  traversed  by  light  in  one  time  unit).  It  is 
to  be  observed  that  in  Newtonian  mechanics  gravitational  mass 

m  has  dimensions  L*T~Z  so  that  if  L  and  T  have  the  same  dimen- 
sions a  =  m  has  the  dimensions  of  a  length.  The  equation 

n  i  m 

«"+«-p 

of  the  Newtonian  theory  yields 

u  -  jz  =  P  cos  (<f>  -  00) 

where  P  and  fa  are  arbitrary  constants  of  integration. 
Comparing  this  with  the  polar  equation  of  a  conic 

lu  =  \-\-e  cos  <t>     (I  =  semi-latus  rectum,  e  =  eccentricity) 

h* 

we  have  —  =  I  =  A(l  —  e-)   where  A  is  the  semi-major  axis. m 

If  T  is  the  period  of  revolution 2  X 

whence 

m  =  W{A(\  -  r)  = 

where  o>  is  the  angular  velocity  of  the  planet.  This  gives  for  the 

sun  m  =  1.47  kilometers  or  1.47.106  cms.  For  the  planets  then 

m/r  is  a  small  quantity  of  the  order  10~*.  In  order  to  determine 
the  constant  C  we  differentiate 

m  ,-  ... 
u  =  rj  (1  +  e  cos  0) 

and  find 

(«')«  +  if  =  j£(l  +  2e  cos*  +  e2)  =  ?gu  -  g(l  -  **) 
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and  comparing  this  with  the  equation  (E)  we  have 

It  is  to  be  observed  that  the  values  of  m,  C  and  h  obtained  in 
this  way  are  found  from  the  Newtonian  theory  and  so  are  to  be 

regarded  as  first  approximations.  In  particular  we  have  iden- 

tified the  h  of  (J3')  with  r2  -j-  so  that  we  have  written  -^  —  -^ at  ds        at 

Accurately 

«         (fromC") ds       dt    ds      dt 
But 

Mz 

=  d-  -V 
\        A/ 

so  that  neglecting  quantities  of  the  order  10~8 
d<p      d<p 
ds       dt 

Substituting  the  expressions  just  obtained  in  (E)  we  have  to 
integrate  the  first  order  differential  equation 

f^Y  =  2mu*  -u?+  2mu/h*  -  m2(l  - 

This  equation  defines  u  as  an  elliptic  function  of  <f>;  or  inversely 
<f>  as  an  elliptic  integral.  It  simplifies  the  algebra  somewhat  to 

write  mu  —  v  and  to  put  ra2/A2  =  a.  We  have  already  seen 

that  ra2/F  =  —  —  -  -  so  that  if  e  is  not  very  nearly  equal  to 

unity  a  is  a  small  quantity  of  the  same  order  of  magnitude  as  m/A 

or  10~8.     Our  equation  is  now 

(/
/7
)\
2 

£M
  

= 
 
2tf

  
- 

Now  the  discriminant  of  the  literal  cubic 

tti*2  +  O2«  +  «3  =   0 
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is 

—  4ai3a3  —  27a02a32 

For  the  cubic  on  the  right-hand  side  of  the  equation  giving  (dv/d<fi)* 
this  is 

8o3(l  -  Oe2)  -  108a<(l  -  e2)2. 

On  account  of  the  small  magnitude  of  a  this  is  positive,  the  first 
term  being  the  dominant  one.  Hence  the  cubic  has  three  real 
roots  which  we  denote,  in  descending  order  of  magnitude,  by 

»i,  tfc,  *>»•  When  a  =  0  the  roots  are  £,  0,  0,  and  so  we  try  first 
«  =  ka  and  find  k  =  (1  —  e)  or  (1  +  e)  and  then  secondly 
«  —  i  +  fra  and  find  k  =  —  2.  Hence,  to  a  first  approximation, 
the  three  roots  of  the  cubic  giving  (dv/dpy  are  t>3  =  a(l  —  e); 

t»  =  a(l  +  «);  t>i  =  ̂   —  2a.  Further  since  (dv/d<f>)*  cannot  be 
negative  in  the  problem  t  must  lie  between  t>3  and  0j  or  between 
d  and  +  oo  .  As  r  does  not  tend  to  zero  v  does  not  tend  to  oo 
and  hence  t>  lies  between  Vt  and  0j.  We  have "•I 

*/», 
dv 

The  variable  t>  oscillates  between  the  values  r3  and  t>j;  at  these 

values  dv(d<f>  =  0,  so  that  v  has  an  extreme  value;  as  v  passes 
through  the  value  t>j  retracing  its  values  both  dv  and  the  radical 
change  signs  so  that  <f>  steadily  increases.  The  change  in  <p 

between  two  successive  extreme  values  of  v,  i.e.,  between  peri- 
helion and  aphelion  of  the  planet,  is 

p  dt 
&<f>=   I 

Jn 

It  is  convenient  to  make  a  simple  linear  transformation  of  the 

variable  of  integration.  Write  v  =  a  +  62  and  determine  the 
coefficients  a  and  6  of  the  transformation  so  that  to  the  roots  r» 
and  «2  of  the  cubic  will  correspond  values  0  and  1  of  2  respectively. 

The  values  are  a  =  r3;  6  =  vt  —  vt  and  then  the  third  root  v\ 
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goes  over  into  2  =  ̂   where  k2  =  -        -  •     The  cubic  2(v  —  Vi) 

(v  —  Vz)(v  —  vz)  transforms  into  2632(1  —  2)  [j-2—  2) 
so  that 

k     C1  dz 

This  simplifies  considerably  on  writing  2  =  sin2  6  when  in  fact 

2k    C'12  d6 

Now 

jo      02  —  ̂ 3  2ae 

(to  a  first  approximation)  is  a  small  quantity  of  the  same  order 

of  magnitude  as  a;  hence  we  can  expand  (1  —  kz  sin2  0)~1/2  in  a 
rapidly  convergent  series  and  a  mere  integration  of  the  initial 
terms  will  give  a  very  good  approximation  to  A<p.  The  multiplier 
of  the  integral  is 

2          =  x2M  -  «•  =  2[1  -  2a(3  -  e)]'1/2  =  2[1  +  a(3  -  e)] 

and  using  J*'/2  sin2  6  d8  =  x/4  we  find 

but  F  =  4ae  to  a  first  approximation  so 

A?>  =  7r{l  +  a(3  -e)}{!  +  ae]  = 

Hence  in  a  complete  revolution  the  perihelion  advances  by  an 
amount  equal  to 

„  mz  _        3m 
6<X  —  6  -rr  -- 

-  e2)      r2(l  -  e2) 

of  a  complete  revolution,  T  being  the  period  in  our  units.     If  we 
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wish  to  use  the  period  in  seconds  and  measure  A  in  kilometers 
then  the  unit  of  time  in  the  formula  given  is  the  time  it  takes 

light  to  travel  1  kilometer  =  1/3.  105  seconds;  hence  if  T  is  the 
period  in  seconds  the  fractional  advance  of  the  perihelion  per 

revolution  is     ,ftin<M/,  -  57  •     On  substituting  the   values  of 
9.10   1  (1  —  (,) 

A,  T,  and  e  for  Mercury's  path  this  works  out  to  be  an  advance 
of  43"  per  century.  For  the  other  planets  e  is  much  smaller  than 
for  Mercury  and  the  amount  of  advance  of  perihelion  is  much 
smaller;  save  in  the  case  of  Mars  the  predicted  advance  is  too 
small  to  be  detected  by  observation. 

4.  THE  PATH  OF  A  LIGHT  RAY  IN  THE  GRAVITATIONAL  FIELD 
OF  A  SINGLE  ATTRACTING  CENTER 

These  paths  satisfy  the  equation  (ds)2  =  0  or  ds  =  0;  they 
are  geodesies  since,  ds  being  the  non-negative  root  of  the  expres- 

sion for  (ds)2,  no  curve  can  have  a  negative  length.  The  method 
of  the  preceding  paragraph  does  not,  however,  immediately 
apply  since  the  arc  length  »  along  a  light  ray,  being  a  constant, 
cannot  be  used  as  an  independent  variable  or  parameter  in  terms 
of  which  the  coordinates  x  may  be  expressed.  Further  in  the 
discussion  of  Oh.  6,  §  1,  it  was  assumed  that  the  integral 

could  be  expanded  in  a  Taylor  series  in  powers  of  a  so  that  the 
existence  of  the  derivative  (d//da)a=,0  was  presupposed.  It  is 
apparent,  however,  on  differentiation  of 

ds  =  ̂ gtmdx(l)dx(m)  (I,  m  umbral) 
a 

that  if  ds  =  0  when  a  =  0,  —  (ds)   becomes  meaningless  when da 

a  —  0  on  account  of  the  zero  factor  (cfo)._o  which  occurs  in  the 
denominator.  These  difficulties  are  overcome  in  the  following 

manner.  If  we  investigate  those  curves  (non-minimal)  for  which 
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the  first  variation  of  the  integral  I  =  J*(ds)~*  is  zero  we  are  led 
to  exactly  the  same  differential  equations  as  those  of  Ch.  6,  §  1, 

which  express  the  fact  that  the  first  variation  of  /  =  fds  is  zero. 
Accordingly  we  now  derive  the  equations  of  the  minimal  geodesies 

from  the  fact  that  the  first  variation  of  I  =  S(ds)z  is  zero,  ds 
being  zero  along  the  curves.  The  coordinates  x  are  supposed 

expressed  in  terms  of  any  convenient  parameter  v  and  differentia- 
tions with  respect  to  this  parameter  are  denoted  by  primes. 

The  Euler-Lagrangian  equations  are  (cf.  Ch.  6,  §  1) 

dF  __  d  (  dF  \  _ 
I  ~i  I  \T  —   if   '  '  '  t   *) 

F  =  («fo)»  =  glmx^'x^'  (I,  m  umbral) 

=  2  —  (grix(l)t)  (I,  m  umbral) =  2 

or 
_(!)"       |        f]m       «.1^.(/)'/-(m)'          A  (1      tnt    ifm\\f.-i}\ 

ffrix       ~T~  [i  Tiit  f  T\X     «c  \i)  m  uiiiorai,/ 

Multiplying  by  g1"  and  using  r  as  an  umbral  symbol  we  obtain 

z<*>"  +  {lm,  p}x^'x^'  =  0     (p  =  1,  2,  3,  4) 

which  are  exactly  the  equations  of  Ch.  6,  §  1.  The  first  integral 
of  these  equations  which  has  already  been  mentioned  may  be 

very  briefly  obtained  as  follows.  Since  F  =  gimx(l)'x(m)'  is 
*  Attention  should,  however,  be  called  to  the  fact  that  this  integral  is  not, 

properly  speaking,  a  line  integral  at  all;  its  value  depends  not  only  on  the 
curve  over  which  it  is  extended  but  on  the  particular  parametric  mode  of 
representation  chosen  for  this  curve.  In  order  that  the  value  of  the  integral 
should  not  be  dependent  on  the  parametric  representation  the  integrand  should 

be  positively  homogeneous  of  degree  unity  in  the  derivatives  z'. 



120  VECTOR  ANALYSIS  AND  RELATIVITY 

homogeneous  of  degree  2  in  the  x'  we  have,  by  Eider's  theorem 
on  homogeneous  functions, 

a  result  immediately  verifiable  directly  (r  umbral).    On  multiply- 
ing the  equations 

by  x(r)/  and  using  r  as  an  umbral  symbol  we  obtain 

(r),  dF       d  f  (r),  dF  \,    dF     (r)/, 
x{r>   I  x(r)     — -  I  H   1  x(T>    =  0 

o«c          uD  V         dx      /       doc 

or 

^_2^=0 

r/r  '/r 

showing  that  F  is  constant  along  the  geodesies.  The  constant 

is  now  zero  instead  of  unity  as  it  was  in  the  case  of  the  non- 
minimal  geodesies. 

Before  proceeding  to  calculate  the  deflection  of  the  light  rays 
it  will  be  well  to  prove  an  often  quoted  property  of  them.  In  a 

statical  gravitational  field  the  time  coordinate  z(4)  does  not  enter 
into  F  =  (d*)2.  Hence 

d  f  dF  \  dF —  I      1=0  or    
\ 

.  1 

V 
0        or         -  .  =  const. 

If,  now,  in  the  discussion  of  Ch.  6,  §  1,  instead  of  keeping  both 

ends  of  the  "  varied  curve  "  C(a)  fixed,  we  had  allowed  the  ends 
to  vary  also,  the  part  of  81  which  came  outside  the  sign  of  integra- 

tion when  we  integrated  by  parts  would  not  vanish  automatically. 
Since  the  first  variation  is  to  vanish  when  the  end  points  are 

fixed  as  well  as  when  they  vary  the  part  under  the  sign  of  integra- 
tion vanishes  as  before  yielding  the  Eulerian  equations  but  in 



PROBLEMS  IN  RELATIVITY  121 

addition  we  have  the  end  condition 

2  "        =  0  (r  umbral) f 

d*«' 

If  now  all  the  coordinates  but  z(4)  are  kept  fixed 

ait and  we  find  since  -  .  is  constant  over  the  extremal  curve ' 

dF         |  =o        or        —  5/iW  =  0 

and  as 

dF 

we  have 

=  o 

which  is  known  as  the  Fermat  or  Huyghens'  Principle  of  Least 
Time.  It  is  an  immediate  consequence  of  the  absence  of  xw 

from  (<fo)2;  there  is  a  similar  theorem  for  the  symmetrical 
attracting  center: 

=  o 

but  this  has  no  special  utility.  The  Fermat  Principle  states  that, 
given  two  fixed  points  in  space  (by  fixed  is  meant  that  the  three 
space  coordinates  for  an  observer  attached  to  the  gravitating 
center  are  constant),  a  light  signal  passes  from  one  to  the  other 
in  such  a  way  that  the  first  variation  of  the  time  interval  is  a 
minimum. 

With  the  same  notation  as  that  employed  in  §  3  we  find 

g*v'  =  —  h;        git'  -  C 

where  h  and  C  are  constants  and  we  find  exactly  as  before  that  a 
proper  choice   of  our  initial    conditions   for    6  enables   us  to 
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write  6  =  r/2.    The  only  difference  is  that  (Z)')  is  replaced  by 

(1  -  2m/r)-1(r')8  +  rV)2  -  (1  -  2m/r)(O2  =  0 

whence  on  writing  r  =  l/u  and  using  rV'  =  A  we  find 

"A8 

In  order  to  get  an  idea  of  the  order  of  magnitude  of  the  constants 

C,  h  of  integration  we  make  a  first  trial-approximation.  The 
largest  value  that  u  can  have  is  IfR  where  R,  the  radius  of  the 

sun,  =  697,000,  the  units  being  kilometers.  Hence  we  neglect, 

for  the  moment,  the  u3  term  in  comparison  with  the  others  and 
find  at  once 

u  =  —sin  (<p  —  <po) 
h 

where  ̂ o  is  a  constant  of  integration.  Hence  Cfh  is  the  largest 

value  of  u  and  is  therefore  a  small  quantity  of  the  order  1/106. 
Denoting  this  small  quantity  by  a  (a  is  the  positive  square  root 

of  CVA2)  we  have 

The  discriminant  (cf.  Ch.  7,  §  3)  of  the  cubic  on  the  right  is 

4o2(l  —  27m2a2),  a  positive  quantity,  so  that  the  three  roots  are 
real.  When  a  =  0  they  reduce  to  l/2m,  0,  0,  so  that  trying  in 

turn  ka  and  (l/2m)  -H  ka  we  find  the  first  approximation  to  the 
three  roots  u9  =  —  a,  v*  =  a,  Ui  =  l/2m  where  we  have  ar- 

ranged the  roots  so  that  u%  <  Wj  <  u\.  For  a  second  approxi- 

mation, we  try  in  turn  —  a  +  fco2,  a  +  kc?,  (l/2m)  -f  kc?  for 
W|,  ut,  Ui  respectively  and  find 

w8  =  —  a  +  wio2;  ut  =  a  +  mo?;          u\  =  (l/2m)  —  2mot2. 

We  now,  as  before,  determine  a  linear  transformation  which 

sends  u  —  u3  into  z  =  0;   u  =  u*  into  z  =  1.     It  is  u  =  a  -f-  bz 
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where   0  =  2/3,   b  =  uz  —  w3  and  then  the   third   root  u—u\ 

goes  into  z  =  1/fc2  where 

Now  the  cubic  2mu3  —  w2  -f-  a2  cannot  be  negative  in  our  problem 
nor  can  u  itself.  At  remote  distances  from  the  sun  u  —  -  0  so 

that  initially  u  =  0  and  it  increases  to  u  =  uz  at  which  point  u 

has  a  maximum  value,  since  (  -y-  )  =  0  there.     Then  M-  begins  to 
\d<pj  _ 

decrease  and  the  radical  V2wm3  —  if  +  «2  in  the  expression  for 
d(f> 

,  du 

a2 

also  changes  sign  so  that  d<p  keeps  its  sign.    The  angle  <£  between 

a  point  at  a  remote  distance  and  the  perihelion  of  the  light  ray 

is  given  by  the  integral  I        ,.  •     The  excess  of 
Jo     V2mw3  -  w2  +  a2 

twice  this  over  TT  is  the  deflection  D  experienced  by  the  ray. 
Hence 

du =2  r Jo 

9      I  9 —  u  H-  or 

which  on  writing  u  =  a-\-  bz  becomes 
dz 

">(H 

On  making  the  final  substitution  2  =  sin2  6  this  becomes 

d0 nj 
D  -f  7T  = _ 

J_!9_  Vl  -  fc2  sin2  0 
V  «,—  M, 

Now 

=  4ma  -\-  higher  powers  in  a 
--  f-  a  — 2m 
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so  that,  m  being  1.47,  k2  is  a  small  quantity  of  the  same  order 

as  a.  Hence  (1  —  A^  sin2  0)~1/2  can  be  expanded  in  a  rapidly 
convergent  series  and  an  integration  of  the  initial  terms  of  this 
series  gives  a  high  approximation  to  D  +  TT.  On  substituting 
the  values  of  k  and  6  the  multiplier  of  the  integral  becomes 

   =  4(1  -f  2roa)-1/2  =  4(1  -  ma) 

whilst  the  lower  limit  of  the  integral  is 

.  _,     /I  —  ma        ._,!,,        i       v 
sin  1  ̂  — —     =  sm  l  -^  (1  --  £ma) 

Here  it  is  necessary  to  use  the  second  approximation  since  u^  is 

to  be  divided  by  w3  —  M?  itself  a  small  quantity  of  the  first  order. 
On  expanding 

by  Taylor's  theorem  we  have  for  the  lower  limit  (ir/4)  —  \ma 
so  that 

D  +  T  =  4(1  -  m 

In  the  term  multiplied  by 

it  is  sufficient  to  take  the  rough  approximation  r/4  to  the  lower 
limit  and  we  have 

gvng 
D  =  4ma 

a,  in  this  expression,  is  the  maximum  value  v*  of  u  (to  a  first 
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approximation),  i.e.,  is  the  reciprocal  of  the  radius  of  the  sun. 
An  idea  as  to  the  closeness  of  this  approximation  is  obtained 
by  using  the  second  approximation 

—  =  U2  =  a  +  mo? 
R 

The  positive  root  a  of  this  quadratic  is 

so  that  writing  a  =  l/R  is  equivalent  to  neglecting  m/R  in 

comparison  with  unity  or  to  a  neglect  of  1  part  in  5.105.  On 
substituting  m  =  1.47,  R  =  697,000  in  the  expression  D  =  4m/ R 
and  converting  this  radian  measure  into  seconds  of  arc  we  find 

the  value  1.73"  predicted  by  Einstein  for  a  light  ray  which  just 
grazes  the  sun.* 

*For  a  fuller  discussion  of  the  problems  dealt  with  in  this  chapter  reference 
is  made  to  two  papers  by  the  author  in  the  Phil.  Mag.  of  dates  Jan.  (1922) 
and  March  (1922)  respectively.  For  an  alternative  treatment  of  the  subject 
matter  of  §2  the  reader  should  consult  the  paper  Concomitants  of  Quadratic 
Differential  Forms  by  A.  R.  Forsyth  in  the  Proc.  Roy.  Soc.  Edin.  May  (1922) . 
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