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NOTATION 

With index, a coefficient 

Area 

Area of meridian section 

Sectional-area curve 

Dimensionless sectional-area curve 

Half length of distribution 

As index, antisymmetry 

Midship radius of body of revolution 

Form parameter coefficient (Reference 7) 

Constant 

Prismatic coefficient 

Wetted surface coefficient 

Midship diameter 

Froude number 

Depth Froude number 

Depth of immersion 

Wave amplityde 

Wave number 

Length of body 

Auxiliary integral 

Auxiliary integral 

Auxiliary integral 

Auxiliary integral 

Intermediate integral 

Intermediate integral 

Intermediate integral 

Intermediate integral 

Resistance, wave resistance 

Total Resistance 

Viscous resistance 

Wave resistance 

Resistance coefficient 

Resistance coefficient 



BB SS} tea ep) 

Wetted surface 

As index, symmetry 

Speed of advance 

Longitudinal coordinate 

Longitudinal distance of centroid 

Ordinate of the meridian contour 

Dimensionless ordinate of the sectional-area curve 

Dimensionless ordinate of the sectional-area curve 
fore and after body 

Dimensionless ordinate of the sectional-area curve 
even and odd part 

Variable of integration 

Doublet distribution 

Dimensionless longitudinal coordinate 

Dimensionless longitudinal distance of centroid 

Density 

Source-sink distribution 

Prismatic coefficient; afterbody 

Prismatic coefficient; forebody 



THE WAVE RESISTANCE OF BODIES OF REVOLUTION 

by 

Georg P. Weinblum, D.Eng. 

ABSTRACT 

Following a brief review of prior work on wave resistance of bodies of revo- 

lution carried out by Havelock and Weinblum a discussion is presented of the appro- 

ximate relations between the shape of sectional-area curves and of hydrodynamic 

irregularity distributions. The latter are expressed by polynomials, which lend them- 

selves to an evaluation of the basic resistance integrals by computing intermediate 

integrals. Values of the functions thus obtained are tabulated in an appendix. These 

functions are then used to calculate the resistance of some simple bodies of revolu- 

tion. Also investigated is how the resistance is influenced by asymmetry with respect 

to midship section. Distributions leading to bodies of least wave resistance are cal- 

culated, assuming rather severe restrictions. A rather complete set of resigtance 

curves is given for an important family of bodies. 

1. INTRODUCTION 

When a body moves uniformly and rectilinearly in an unbounded 

liquid the only resistance experienced by it is the viscous drag. Our 

knowledge as to how this drag depends upon the body form is very limited, 

but it is well-established that for streamlined, elongated hulls—with which 

we are only concerned—the drag is roughly proportional to the wetted sur- 

face and is rather insensitive to reasonable changes in the shape.?* The 

well-known airship form with a rather blunt forebody and finer tail appears 

to be close to the minimum resistance attainable, although it must be empha- 

sized that earlier resistance data obtained in wind tunnels at low Reynolds 

numbers are utterly unreliable. But that there is a slight advantage in 

introducing some asymmetry with respect to the midship section appears to 

be unquestioned, at least when larger end-radii are used. Matters become 

different when a body moves close to the free surface; see Figure 1. A 

wave pattern is then produced and therefore a wave resistance arises. The 

laws governing the wave resistance Rh are quite different from those valid 

+References are listed on page 58. 

*Problems of cavitation are not considered here. 



for the viscous drag RL: Henceymeain 

this case forms of least total resis- 

tance R, must be derived from addi- 

tional considerations and may differ, 

phy, at least in principle, from the fa- 

miliar streamlined forms. 

In the present report it 

is intended to analyze the wave re- 

sistance of a rather wide class of 

Figure 1 - Scheme of Submerged Body 

elongated bodies of revolution, using an integral relation based on the work 

of Havelock.? The first classical solutions for the circular cylinder 

(Lamb)?7 and the sphere (Havelock)?® have contributed much to the general 

understanding of the subject, but these solutions must be applied with great 

caution to problems connected with elongated bodies. The reason herein is 

the extreme simplicity of the cylinder and sphere; the resistance curves of 

these bodies do not show the characteristic interference effects which are 

peculiar for prolate bodies of revolution. From physical reasoning we infer 

at once that in the latter case two similarity parameters are involved: the 

common Froude number F = U/VgL referred to the length L and a parameter 

characterising the depth of immersion f, say f/L or the depth Froude number 

Fp = U/Vgf, while the shape of the wave-resistance curves for the circular 

cylinder and the sphere depend only upon Fe» and the parameter f/L appears 

as a scaling factor only. Thus, for instance, the peak of the resistance 

curve is located at Fp = 1 for the cylinder and just below Fe = 1 for the 

sphere. It can be easily shown that this unity value of the depth Froude 

number has no special significance for the wave resistance of a very elon- 

gated body of revolution. 

Solutions for the spheroid and general ellipsoid due to Havelock®’ + 

lead to results which admit of qualitative and even of quantitative esti- 

mates of the resistance of "normal" bodies of revolution. The importance 

of the spheroid for general research on the subject cannot be overemphasized. 

Using Havelock's general expression valid for a plane source-sink 

distribution,® formulas were obtained which represent the wave resistance 

of a rather wide class of bodies of revolution.° By these formulas the 

resistance of various forms has been investigated;® especially, some endea- 

vors were made to find forms of least wave resistance.° These forms vary 

Obviously with the Froude number and to a lesser degree with the depth 

parameter f/L. The rather striking results found in this way were checked 

experimentally and good agreement between theory and measurements was eS- 

tablished as to the general trend.° 



As with surface vessels, theoretical forms of least wave resis- 

tance are symmetrical with respect to the midship section. Any departure 

from symmetry causes an increase in wave resistance, and this increase can 

become appreciable in some ranges of Froude numbers when the asymmetry is 

pronounced. The degree of asymmetry can be described in the usual way, 

though roughly, by the location of the center of buoyancy X52 or the dif- 

ference of the prismatic coefficients oa Py of the fore and afterbody. 

For instance, a difference Pp - ?, = 0.2 means a large deviation from sym- 

metry. Again, the resistance results are qualitatively supported by experi- 

ments .° 

An extensive hydrodynamic study of bodies of revolution is under- 

way at the Taylor Model Basin. It is based on a systematic variation of 

analytically defined forms.?»**+ As an extension of this work it was decided 

to make a more comprehensive theoretical investigation on the wave resistance 

of bodies of revolution. This is the subject of the present report. 

In Section 1 of this report polynomials are discussed which are 

Suitable for the representation of hydrodynamic singularity distributions 

(doublets, sources and sinks); to the first approximation the equation of 

the doublet distribution coincides with the equation of the sectional-area 

48 A class of curves is selected which in- curve except for a scale factor. 

cludes the TMB Series® generalized by one additional arbitrary parameter. 

For this family a set of auxiliary integrals covering a large range of 

Froude numbers has been tabulated. The values of these integrals furnish 

immediately the variable part of the wave resistance of the simplest forms 

(parabolas of the type 1 - any. In the general case the wave resistance is 

given by a quadratic form of the parameters of the body in which the tabu- 

lated values appear as coefficients. Thus the computation of the wave re- 

sistance involves only some multiplications and an algebraic addition. 

The auxiliary integrals mentioned have been computed by the Bureau 

of Standards. A short description of the work involved, contributed by Mr. 

Blum of that Bureau, and tables of functions are found in Appendices II and 

TUT, 

As mentioned before, the resistance formula for a line distribution 

of singularities used throughout this report follows immediately from a more 

general expression due to Havelock®’> and therefore will be called Havelock's 

integral. 

Using the tables annexed, resistance curves are plotted for vari- 

ous basic forms of sectional-area curves (doublet distributions); they cover 

three depths of immersion ratios f/L except for the spheroid where a fourth 



f/L ratio has been added. Special investigations are made on the influence 

of asymmetry, and some examples of resistance curves refer to forms selected 

from the TMB Series. 

Following an earlier attempt distributions of least wave resistance 

are investigated.° Former results® are checked and refined. Particularly, 

the distributions obtained lead to rather peculiar "swan-neck" forms, for 

higher Froude numbers. Finally it is shown how systematic sets of resis- 

tance curves can be obtained for families of sectional-area curves (doublet 

distributions). 

2. THE REPRESENTATION OF SINGULARITY DISTRIBUTIONS 
AND SECTIONAL-AREA CURVES BY POLYNOMIALS 

2.1. CONNECTION BETWEEN BODY FORM AND GENERATING HYDRODYNAMIC SINGULARITIES 

In establishing a relationship between body form and generating 

hydrodynamic singularities two well-known problems can be formulated: 

a. Given a distribution, find the shape of the body (sectional-area 

curve A(x)). 

b. Given a body form (sectional-area curve A(x)), establish the appro- 

priate distribution. 

In the present report we disregard the complications connected 

with problem b and treat it in a very approximate way. The contemporary 

rudimentary state of knowledge on problems of wave resistance justifies this 

procedure to some extent; our investigation deals essentially with resistance 

properties of hydrodynamic distributions and merely some assumptions are made 

as to the probable shape of the bodies generated by these distributions. 

Thus two essential sources of error are involved when investigating 

the wave resistance of bodies of revolution: 

a. The approximate character of the wave-resistance theory, and 

bd. The generally admitted approximation that for a given body the 

deep-immersion distribution of singularities can be used instead of the 

actual distribution valid for near-surface conditions. 

The second assumption (b) appears to be a serious one when the 

body is close to the surface. It has been proved by Havelock® that it leads 

to inconsistent results with respect to added masses; however, by following 

numerous comparisons between theoretical and experimental results referring 

to surface ships it works reasonably well when applied to the resistance 

problem. 

In the present report the assumption will be made that the shape 

of the body generated by singularities moving close to the surface is 



identical with the shape of the corresponding body generated by the same 

singularities in an unbounded fluid. 

It is well known that in the latter case one can construct the 

contour of a body of revolution for any given singularity distribution along 

the axis; auxiliary tables for this work are available,?»° especially for 

eases in which the distribution is given by polynomials. Flat noses—as 

discussed by Weinstein*® — will not be dealt with in the present report, 

although it is possible that such forms are advantageous from a point of 

view of wave resistance at high Froude numbers. When dealing with "normal" 

shapes, the important approximation developed by Weinig’ and Munk® holds; 

i.e., for very elongated bodies the sectional-area curve of the generating 

body A(x) is affine to the doublet distribution w(x). This approximation 

will be used throughout the present report although its limitations should 

not be forgotten. 

Some explanation—if not definition—must be given as to.the concept 

of a "normal" shape of a doublet-distribution or a sectional-area curve. It 

means essentially a curve whose trend is similar to sectional-area curves of 

common ocean-going ships; these curves generally are monotonic with not more 

than one point of inflection in the fore and afterbody. 

Since for closed bodies the source-sink distribution o(x) is the 

derivative of the doublet distribution w(x) the latter is monotonic over the 

range of the forebody when o(x) consists only of sources in the same range. 

This condition (though not necessarily a required one) is sufficient to ob- 

tain bodies such that the circle of curvature at the nose lies inside of the 

meridian contour. 

We mention some conditions under which the affinity between the 

doublet and the sectional-area curve becomes strained: 

a. For larger values of the elongation D/L the divergence between the 

sectional-area curve A(x) and the doublet distribution u(x) becomes more 

pronounced even for "normal" shapes. This divergence can be roughly de- 

scribed. First, in the mutual relation of the prismatic (area) coefficients 

which are the decisive form parameters of the two curves—the one , $4, de- 

noting the prismatic or area coefficient of the distribution, and the other, 

Po» the corresponding one for the sectional-area curve—the following state- 

ment holds for a wide class of normal bodies:°> ?° 

for finite D/L 

¢, > ¢3 When ¢, < 2/3 

¢,<¢g When 9, > 2/3 



The equality %q = Pq is valid only 

for the ellipsoid; see Figure 2. 

Second, in the prismatics a differ- 

ence arises between the length of 

the body L and the distribution 2a, 

@ ——Ps—0 eel 2a being smaller than L. For the 

_— IE ‘spheroid the relative difference 

Figure 2 - Spheroid. Sectional-Area 
Curve A, Doublet and Source-Sink 

Distribution 

pa bn2a = De 
2a oH BigP Zeke 

where ¢ depends on the shape of the distribution, especially at the ends. 

(Since this problem is being thoroughly investigated by L. Landweber of the 

Taylor Model Basin, we confine ourselves to these brief remarks. ) 

b. When complicated "abnormal" distributions like "swan necks" or 

curves with very steep ends are investigated (for instance, Rankine's ovoid) 

the divergence between these distributions and the sectional-area curve can 

become appreciable even for smaller D/L. 

2.2. REPRESENTATION BY POLYNOMIALS 

2.2.1. General Remarks 

In former reports polynomials have been used for the representation 

of the generating doublet (source and sink) distribution along the axis>’®! 

The doublet and source-sink distributions u(x), o(x) can be split 

up into dimensional factors Hy, % and variable dimensionless parts w*(é), 

o*(&); u(x) = wou*(€) 

a(x) = a,0%*(&) 

with € = x/a; see Figure 3b. 

The dimensional factors will be established later; in the succeed- 

ing discussion the functions w*(é) and o*(&) will be treated in the same 

way as Ship lines and their derivatives. Generally following Munk and Weinig 

the doublet distribution u*(é) is identified with the sectional-area curve 

A*(é) and the symbol 7 is used for both of them. Actually the resistance 

computations refer to given distributions for which the corresponding 

sectional-area curves can be easily calculated?’?° when Munk's approximation 

is not accurate enough—as for instance in cases dealt with in Section 5. 

The first adequate representation of ship lines by polynomials is 

due to Taylor;**»+ the equations obtained are, however, suitable for a 

separate description of the fore or afterbody only. Taylor locates the 

i] 



Figure 3a - Landweber's Axes Figure 3b - Present Axes 

Figure 3 - Systems of Axes 

origin at the bow or stern. The present writer has proposed!?:?* other sets 

of polynomials referred to a system of axes with an origin located midships. 

This approach has definite advantages when investigating the wave resistance. 

Landweber* has generalized Taylor's equation by adding one more 

term and by introducing appropriate boundary conditions; he uses the ex- 

pression obtained as the equation of the sectional-area curve of a four- 

parameter form.* The parameters are interpreted geometrically as the pris- 

matic coefficient, the location of the maximum section along the axis and 

the nose and tail radii of curvature. It will be immediately shown that 

Landweber's equation transferred to an origin at the midship section can be 

split up into a two-parameter symmetrical and a two-parameter skew part with 

respect to this section; thus expressions are obtained for which the wave 

resistance can be calculated in a simple way. 

2.2.2. The TMB (Landweber) Class of Bodies and Some Generalizations 

The TMB (Landweber) class of bodies of revolution is given by the 

equation of the sectional-area curve 

We = BUR a alx® + a!x? + alx? + ax" + alx! [1] 

referred to axes, as shown in Figure 3. We transform the equation of the 

body by shifting the origin to the midship section x = 0.5, reversing the 

direction of the axes, and putting the length of the body equal to 2. 

Thus for 

as. 0 Rao | 

2 re 0.5 €=0 

XS a f=- 1 



The transformation is given by 

f= TEM 0.5) or 

2 dee 2 ees [2] 

The resulting equation is 

Vie ont Ae ee Geka A eo Ae ae [3] 

CUS IES 6 a! 6 na! 6 1 a 
= A = 2) $7 = nin = ams ee i ee 

Equation [3] can be split up into a symmetrical and an antisymmetrical part 

= 2 4 6 Maran ALé + Als IMG [4a] 

a = 
y =Ye= Y, oF vt 

i 3 5 Wo ag th Nee Ag [4b] 

The obtained form [3] has definite advantages when calculating the wave re- 

sistance since the latter is the sum of the wave resistance corresponding to 

the symmetrical and antisymmetrical part computed independently. 

Going further, we derive from [3] the following simple properties 

of the Landweber bodies: 

6 6 
ix? = x 

ons 2 Avs 

The coefficient Ay can be factored out and merged into a dimensional constant 

which defines the midship section. Thus, the normal form of our polynomial 

is obtained 

ta s n n=1 2 ag [4e ] 

-Ay 

With a, =—— 
al Ay 

The symmetrical part of [4c] is a two-parameter family 

— ia Choi ll Gui a Git ye! 2_ 46 we 4_ 26 LENG tage CO eG an UN me NG) ay (Gra?) 

because from the boundary condition 

el) 10 



Such families have been called "basic forms" by the present writer’? and 

designated by (2,4,6;¢;t) since the aubitrary parameters a, a, can be de- 

termined by the prismatic coefficient @ =|. ndé and by Taylor's tangent 

value t = -@n(1)/0E. 

It is thought that the Landweber Series [1] meets almost all 

reasonable requirements as to wave-resistance properties presented by prac- 

tice although only two arbitrary parameters ¢,t are at our disposal for the 

main symmetric part. The reason for this assumption is that from investi- 

gations on surface ships it is well known that area curves of fine ships, 

based on the basic family equation (2,4,6;¢;t) are advantageous in the range 

of high and medium Froude numbers. At low Froude numbers other polynomials 

are preferable but there the wave resistance of submerged podies becomes 

rather negligible. 

We have, however, introduced an additional term a,é* for which 

auxiliary wave-resistance functions are also tabulated in this report; thus 

more elaborate investigations can be performed using the polynomial 

a yy i 
Ne SJ ¢ a.é 

2,4,6,8 

The asymmetric (skew) part is the function 

UA Os CUS ae [4d ] 

factoring out as we write 

=a n* = ai(é ar BLES ce be) [Ye ] 

Obviously the resultant curve n = Ne + N, can have its maximum section out- 

side of & = 0 and the area of this section will generally differ from one. 

This slight complication does not involve any difficulties in actual work. 

Let us investigate 

oie aoe tube [4e] 

This trinomial has to comply with the conditions 

Palo) =. 0 

WEG). ttl es © 

whence 
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thus 

aes Gy Ihe | (RA [4g] 

The only arbitrary parameter ds can be fixed by one additional condition; as 

such we choose the tangent value te at the bow (at the stern the correspond- 

ing value is -t¥) 

On*(1 enn nz(1) 
a aroha i Gs 

hence 

aos ¥ b, 2+ oa 2 [4n] 

the corresponding tangent value te of nes Equation [4e], is obviously 

a ¥ t. ata 

The table below shows some examples of skew forms. The parameter 

oe = Wes dé is an area coefficient referred to the unit square. Plots of 

é - 8 , €- &° and some other "skew" forms used in the TMB Series are shown on 

Figure 5. The actual skew part No contains additionally the "strength para- 

meter" a; see Equation [4e]. 

Tee rar Be 

1/6. O21 G6s's¢ 

Our numeric evaluations are primarily based on Equations [4c] and 

[5]—which are stated below—but the theoretical treatment will be carried 

out along more general lines. J 

Extended investigations have been made by Landweber and Gertler@ 

on the influence of an additional term atx! on the form of the body when the 

geometric parameters are kept constant. 

Using our system of axes it is easy to perform similar investiga- 

tions for the symmetric and asymmetric part of [4c] 

+n, = 1 = Bae anil (Gap 9 Grice tye) 
2,4,6 
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Figure 4 - Dimensionless Sectional-Area Curves A*(é)(Doublet Distributions 
u*(é)) of Some Simple Bodies Symmetric with Respect to the Midship Section 
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Figure 5 - Examples of the Antisymmetrical (Skew) Parts of Sectional-Area 
Curves A¥(€) (Doublet Distributions w*(é)) Belonging 

to the Family é+ Da = (1 a b= 
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By adding to No terms with arbitrary parameters a,é" and ag 68 , a manifold 

ec ecg Bog) ar aé° is obtained. 

The polynomial [4¢] is completely defined by the four geometrical 

parameters 

Wea) 

On, (1) 
2) oat dé 

dn, (0) (5] 
3) ya a on 

i on, (1) : 
) Teer ar eh ca 

When 1, has to comply with the four equations [5] it can be ex- 

pressed by 

n= 1, + CiAn(é) + C4 n(6) [6] 

eG Ane) = @= 5 tye = 56° [6a] 

complies with the conditions 

1 fo ajnlelag = 0; 
0 3 

64, n(0) i 04 on(1 ) 
4,n(0) = 4on(1) = BE FY: = 0 

and 

AVG) SE) = GI [6b] 

satisfies 
OA (0) OA n(1) 

A n(0) = 4 n(1) aa MSE = 0 

Thus, an addition of the functions 4, A, to No does not influence the 

boundary conditions, [5]. The shape of the curves Ain(é) and A,n(é) is 

shown in Figure 13. The advantage of this representation is obvious. 

While in the equations 

ule ats 

or 

u¥(§) =mk(E) + uF (6) 



the symmetrical (even) terms Ne» MS are the main parts, obviously in 

On = Ons + Ona 

0€ 0g 0€ 
or 

CME) Som (et one) 
5 

the odd terms 0n,/8€, 0% become the main part. 

2.3. CONNECTION BETWEEN STRENGTH OF SINGULARITIES AND BODY SHAPE 

The next consideration is to establish the dimension factors H, 

and Fo: The flux through the midship section may be written as 

q = o(2, u*)mb2u [7] 

Here the coefficient C(b/a, u*) is, as indicated, a function of the elonga- 

tion ratio b/a = D/L and of the shape of the distributionw*. For very large 

elongations C(b/a, u*) +1, but for shapes and values b/a used in actual Op- 

eration C differs from one. 

A closer investigation of the coefficient C will be given elsewhere 

by L. Landweber; for the present purpose we introduce C as a correction fac- 

tor which improves the accuracy of Munk's or Weinig's approximate affinity 

theorem mentioned on page 5. The dependence of C upon u*, although apparent- 

ly negligible within the range of presently used submarine hull forms, shows 

some interesting features. Earlier brief investigations lead to the follow- 

ing table for C(b/a, w*) (Reference 5). 

b/a = D/L 

ee eS 
a eee areal 05 8 a 

ceo eho. fos 

From these results we gather that C(b/a, u*) values for normal 

submarine shapes apparently can be estimated from the spheroid; an empirical 

- 3.0825€° + 0.165@2° + 1.9175822|0.820 
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formula C(b/a) = 1 + 3b7/a® may fit the facts reasonably well. For fuller 

bodies lower values seem to be suitable. 

The constant 

aN shalt HO, = are 

is therefore obtained as 

Hy = yg w*)b7U [7a] 

The flux [7] or the strength of the doublet distribution at the 

midship section must be somewhat higher than the product of the cross section 

times the speed of advance. 

For the source, we have 

o,=% c(z, L*) ay [8] 

3. EVALUATION OF HAVELOCK'S INTEGRAL 

3.1. GENERAL CONSIDERATIONS 

The wave resistance experienced by a continuous doublet sheet wu, 

distributed over a vertical plane and moving uniformly on a straight hori- 

zontal path, has been calculated by Havelock.® Concentrating the distribu- 

tion w(x) along a horizontal straight line we obtain immediately 

“i PY yet a ae Sanju a oee R VémpKs | jee + oe} sec?ed0; K, = [9] 

with 

we 

P = exp(-K-f seca) | * a(x) cos (K_x sec 6)dx = exp(-K_f sec*6)p [9a ] 
1 oO a6 {@) [@) 1 

+ 

Q = exp(-K_f sec79) [ * u(x) sin (K_x sec 6)dx = exp(-K_f sec“@)q [9b] 
1 0 Bee fo) 0) il 

hence 

R= 16mpK* ies ~ a) exp(-2K f sec*@) sec?@d0 [9c ] ‘ 

Using a source-sink distribution we obtain similarly 

T/ R = 16mp Ke | * (p2 + a?) exp(-2K,f sec?@) sec°@de [10] 
0 

+a 
p= | o(x) sin (K,x sec 6)dx [10a ] 

ak CL 

q aa a(x) cos (K,x sec @)d6 [10b] 
-a 



VB) 

Introducing dimensionless coordinates x = aé and the expressions 

u(x) = uou*(é) 

o(x) = o,0*(&) 

various forms of the integral for R can be derived for purposes of numerical 

evaluation. 

We confine ourselves to the source-sink integral.*® Splitting up 

o*(&) into a main antisymmetrical and a symmetrical part 

o*(§) = o%(6) + o%(E) 

and remembering that an integral taken over an odd integrand between limits 

of equal absolute value but opposite sign vanishes, we obtain with the desig- 

nation 

= nn b* Ze it 2 3 R = 4C“mpg ih i, expl-4 + ¥, sec“@] sec°@. [11] 

| froxe sin(y, Esec ayachs {forte cos (a6 sec ayats|ac = 

Ve f 2 3 2 2 const exp [-4 = % Sec @| sec°@[p*= + q*=]d@ [12] 
0 

We introduce further polynomials for 

~ 
* 

wr 
i} 1 2 aa6 3] 

hence 

GAG) = Dyin eb [14] 

or 

ONG) = wile) a Gall) oy aie (amet je = (ia 
= 3 

with k, m as integers. 

For the main antisymmetrical part the intermediate integral p* becomes 

1 1 
= a 2k-1las p¥ = i o*(£) sin (y,€ sec 6 )dé = ees a, Jie sin (y,é secé)dé 

= 2, a, ul 1 lig Ee O) [15] 

with ° 

i Re pe al Se aeon 1(% sec 6) =H (7) = [e*  sin(y ¢ sec @)dg = | e**”tsin(ye)as 
[16] 
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Here for brevity the designation y = % sec @ has been introduced, [16]. 

For the symmetrical (even) part 

il 

q* = j o*(&) cos(y,§ sec @ )dg = - >" (2mt1 Ja La MU ye Se che) [17] 
™m™ 

with 

= = 2m 2m Meg (om sec 6) My (7) Me = | é cos(y, é sec 6 )dé =i é cos y dé 

[18] 

inserting [15] and [16] into [12] one obtains 

ing be ee f = F R = 40? mpeg A % | exp [-4 Tite eae a] (2% ai Mes) + 

+ (Ps (anal M! )=i sec°oda [19] 
2am 

This formula is suitable for numerical computations above in special cases, 

since tables of the functions My, a> M! (y) are available and will be 
m 

published in a TMB Report. 

3.2. TABULATION OF RESISTANCE INTEGRALS FOR A 
FIVE-PARAMETER CLASS OF BODIES 

As mentioned before, auxiliary integrals have been prepared for the 

three-parameter symmetric distributions of Equation [5], ux(é) (asymmetric 

in o3(§)). 

= n st -1 
MelG) Ss » a, é beth Gy e(G)) SS » na, §" 

2,4,6,8 2,4,6,8 

and the one-parameter skew distribution uX(é) (symmetric in o%(é)) 

WE(E) i= 6 DESY (HDs ylang image) eal ptt lO) Ga 

The computations are based on a slightly different form of R (see Appendix 

II). Substituting 

7 =) ynse cue sec @ = me es = V (7/%,)= -1 

one obtains 

(7/¥,)*dy 

Vays -1 

3 (y/ 
= 4c2 met | em[-4 ro] wees (2 ia (y))? + 

+ (2° (2m ase in) a} dy [20] 
Lie 

dys sec> @sin 6d6; ee sec? 9d@ = 

hence 
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putting for abbreviation 

4 ; 4p all : A= 6 I exp |- re] fly) Paes 2) iggy kaa 

+ & (ret) (2st Jay, 89M), ms bar [21 ] 

with i, j, s, r integers. R can be built up of terms of the type 

2g Til 2j71 36 Sil. aq So 
= Uf y® fe exp|- 7 2|f(y)M,._, (vIM, _, (v)ay =m [22] 
Y ie) 

for the symmetrical part of the sectional-area curve 

and 

2s 
em [- oF |ey My (IMs, (v)dy = my [23] 

for the skew part. The final result is therefore obtained as a quadratic 

form in the parameters a or, better, na, 

By : F : 

a 61 ee 2J ies aly Bq ma ig & (ert (asi NE cea 2s Mra 

with the tabulated integral TERE UD ss pet a. as main parts of the 

coefficients 2i Zi Moen oy ond IES 

We mention again the fortunate circumstance that the contributions 

to the wave resistance due to the symmetrical and antisymmetrical parts can 

be calculated independently and added. 

Returning now to a family of distribution curves given by Equation 

[4c] but generalized by one additional term a, é,: 

& n n-1 1 
npaid Ie DY abs be tae cee a - Dn af + 8a,§ [44] 

i 1 

The wave resistance can be calculated by the functions 

My, M5 ™ 5 ™ ; Moo Moe Moa 

33 ™ 35 ™ 37 Nee ™ 24 ™ 

vu 55 ™ 57 a 

™ 
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tabulated in the Appendix III. The integral R and the functions ™M and ™m 

depend upon the two parameters Ue 1/2F2 and f/L. The tables have been pre- 

pared for a range 0.5< Mes <€ 10 and f/L = 0.125, 0.25, 0.50. Additionally, 

for ms an intermediate depth of immersion ratio f/L = 0.1875 has been intro- 

duced. From the wave resistance integral it follows immediately that the 

ratio depth of immersion over length f/L is theoretically preferable to the 

more commonly used ratio f/D, since f/L appears explicitly as factor of the 

exponent of the e-function under the integral. With elongated bodies the 

ratio b/a or D/L influences primarily the constant Cia 4c? mpg b*/a only, 

though in a very decisive way. Although the lower speed limit Le: 10 

(F = 0.224)—up to which the auxiliary integrals have been computed—is 

rather high, it is thought that for normal hulls with g< 2/3 moving at greater 

depths than D, the wave resistance becomes unimportant when F <~ 0.224. The 

low-speed range may, however, be interesting in connection with other research 

problems. 

In principle the wave-resistance equation, [24], solves the problem 

for any sets of a, within the family following [4i]. Actually since the 

relative error of the tabulated functions is approximately 0.0001, a loss of 

accuracy may occur—when the coefficients an reach high absolute values with 

alternating signs. It is not probable that difficulties of this kind will be 

important in connection with submarine work; besides, they can be overcome 

to some extent by plotting suitable simpler resistance curves and by inter- 

polating. 

4, REPRESENTATION OF RESISTANCE CURVES 

4.1. THE DIMENSION FACTOR Co AND DIMENSIONLESS REPRESENTATIONS 

The dimension factor in Equation [20], Cie 4c? mpg b*/a, has a 

rather unusual form, but it will be widely used throughout this report 

because of its theoretical merits and the comparative ease with which it can 

be connected with more familiar expressions. We rewrite, in terms of the 

displacement A, 

2 2 

Gl =) grcbe apie ce Ae ce [25] 
a 

2 2n2 
aU. YO =i ga or t= Po eb C 

fe) 2bacs gaz 



19 

Hence we can immediately derive the resistance per unit displacement for a 

given b/a and shape when r, is known. 

The introduction of the displacement A in [20] is open to objection 

Since so far we have not distinguished between the length of the body and the 

distribution. We repeat the definitions: 

2a is the length of the distribution along the axis 

L is the length of the generated body 

2b = D is the diameter of the generated body 

Obviously for the displacement of the body we must use L = 2/. Then 

2C*b@a 

garl 

Further, the ratio b/J = D/L is technically more important than b/a; hence 

Car wimr pieNC= bs aed [25a] 

noo ea ; ils een pel [25d] 
ON: OCA be al 

or 

2 

Fee a % [25e] 

r =g-G4($)2 [26] 

One should not, however, overestimate the influence of the length correction. 

For the spheroid 

aril 1 

2 2 2 poe nee A iccalray 
i.e., influences the C* correction by less than 10 percent. Further, even 

the introduction of the more important C factor does not lead to an exhaustive 

correction since we know that not only the midship section but the whole 

trend of the curves changes with increasing b/a. Thus within the limited 

accuracy of the present wave-resistance theory we generally can put //a=1. 

It is of course important to use all approximations in a consistent and 

clearly defined way, so that fair comparisons can be made. 

We note particularly, that for the spheroid 

R = = Ino Cs Da /ee 
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For comparison with experiments the coefficients Cy referred to the wetted 

surface S is advantageous. 

We write 

2,2 2 

a. = lines Raa ry Ant“v"(2) [27] 
p/2 UPS SF? 

or introducing a surface coefficient S (Reference 17) 

Cy = S/nDL 

CIN CB NNT ab ee a C2 ab 
Cy = To C (a) Chee agitic ¢, (a) % [28] 

with », = 1/2F2. For elongated spheroids Cy = 0.79. 

The importance of the resistance coefficient Cy referred to the 

wetted surface S justifies a short digression on the calculation of S for 

bodies of revolution. Solutions of the exact expression (Equation [29]) can 

be obtained in a closed form in exceptional cases only, as for the spheroid. 

Of course it presents no difficulties to evaluate the integral numerically, 

but a simple approximate formula can be derived at least for the surface area 

of a restricted class of very elongated bodies of revolutions complying with 

the condition that the end tangents of their meridianal contour do not become 

vertical; it is similar to the well-known expression for the length of a 

slightly curved arc, see Appendix I. 

4.2 RESISTANCE CURVES OF SIMPLE SYMMETRICAL BODIES 

Since the presentation and the discussion of resistance curves is 

the main subject of the present report, various sets of such curves have been 

computed. Essentially, the resistance properties of the following three 

groups of body forms (distributions) have been investigated: 

(a) A set embracing a wide range of prismatic coefficients, which fur- 

nishes a general review of the resistance as function of the form (IV,2). 

(b) A set dealing with four TMB models. This raises the problem of 

the influence of asymmetry with respect to the midship section (IV,3). 

(c) A group consisting of systematically chosen forms belonging to the 

two-parameter family (2, 4, 6; ¢; t) (VI); for the same family some calcula- 

tions of shapes of least resistance are presented (V). 

The procedure adopted leads to repetitions which, having in view 

the importance of the subject, have been thought to be advisable. Because 

of the complicated dependencies involved the interested reader can more 
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Curve wa" represents the additional resistance function r) 

due a an asymmetric function é - e3, see Figure 5. 
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aed 

PS Tae 
R 

Figure 6 - Wave-Resistance Coefficients r 

easily 

WENT 6 

and at 

stance, Figures 6, 7 and 8. 

_ of Symmetrical 
Unc? og b*/a 

Bodies as Defined on Figure 4, f/L = 0.125 

draw conclusions from the rather comprehensive plots than from any 

We are mainly interested in the range of Froude numbers F below 

the maximum of the large hump in the resistance curve; see, for in- 

Above the maximum the absolute value of wave 

resistance decreases comparatively slowly with growing F, but the ratio wave 

resistance to frictional resistance drops quickly. Therefore, at high speeds 
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Prismatic No. form Coefficient Resistonce ENN 

(U=% oe (ony maori + 167, 
1- 1.567 + 0.564 9m,, - 12M, + 4am. 

4m, (f/L = 0.1875) 

Curve 7 represents the resistance coefficient lo 

for a distribution 1-€2 (spheroid) at f/L = 0.1875. 

ee a ed ee eee ee ee ee ee EE EEE Eee 
oo 0.707 0.500 0.408 0.354 0.316 0.288 0.267 0.250 0.236 0.224 

Figure 7 - Wave-Resistance Coefficients of Symmetrical 
Bodies as Defined on Figure 4, f/L = 0.25 

the wave resistance of elongated bodies such as torpedoes represents only a 

small part of the total drag. It has been shown in References 4 and 5 that 

in the limit of very large Froude numbers the wave resistance becomes pro- 

portional to the square of the displacement or eo Par 

In general, throughout the present report calculations have been 

extended to F=1 (y, = 0. ae and te F=1.58 (y, = 0.2) for the parabolic 

distributions 1 - hea - é4 - B® only. From an approximate investigation 



23 

0.07 oneeece (pire el Pep Bree 

AL eA iat 

os pepede gaia 
Resistance Coefficient ro 

- l2™;3 + 4735 

4 5 6 v 8 9 10 
2 | 

Mom ior? 

a) 0.707 0.500 C.408 0.354 0.316 0.288 0.267 0.250 0.236 0.224 
= u 

FO Yat 
Figure 8 - Wave-Resistance Coefficients of Symmetrical 

Bodies as Defined on Figure 4, f/L = 0.5 

it appears that the resistance curves R (y,) plotted over Me have a vertical 

tangent at en 0, but no attempt has been made to draw accurately the range 

of curves below 7, = 0.5. 

To obtain a general idea of the wave resistance for various symme- 

tric distributions w(é) (sectional-area curves A*(é)) graphs have been plot- 

ted for following simple cases:* 

*As before, by symmetry we mean symmetry with respect to the midsection. 
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0.533 

2) 0.6 1 

3) 2/3 2 

4) 0.8 yb 

5) 6/7 = 0.857 6 

6) 8/9 8 

Figure 4 shows these sectional-area curves and Figures 6, 7 and 

8 the corresponding resistance coefficients as functions of Vo = 1/2F?, with 

an additional non-equidistant scale for F. The choice of es as independent 

variable yields an appropriate picture of the wave-resistance values at high 

speeds. 

From the Figures 6, 7 and 8 a rather complete understanding of the 

wave-resistance properties of various symmetrical forms can be derived. hef- 

erence is also made to Figure 12 and the pertaining discussions in the text. 

The influence of the depths of immersion follows immediately from a comparison 

of Figures 6 through 8; also, cross curves can be plotted over f/L as the 

independent variable. Figure 11 shows this dependency for 4M? which is 

the resistance function of a spheroid A¥(€) = 1 - €*, with y, = 1/2F° as 

parameter. We note that with increasing depth the resistance drops more 

quickly at small than at large Froude numbers F. This is rather obvious; 

it will be discussed later more thoroughly that the most indicative parameter 

is the ratio f/A , where A the length of the free wave is A = 2nF*L. 

In Figures 9 and 10 the resistance curves for three depths of im- 

mersion have been reduced to approximately the same maximum ordinates. This 

rather artificial approach yields a clear idea about the shift of the last 

hump (of its steep rise as well as of the position of its maximum) to higher 

Froude numbers with increasing depth of immersion; it further emphasizes 

again that the rate of decay of the wave resistance with ‘increasing depth is 

much higher for low Froude numbers than for high ones. 

Figure 12 represents a coefficient r= RAV a= /2Cbe)— r/o. For 

approximately constant C® (very elongated bodies) and given a*/b® ratio, 

a R/A, i.e., the figure yields a comparison of the resistance per unit 

displacement for various forms. 

The discussion of the various graphs leads to the following summary 

results: 
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F = ee 

Figure 9 - Comparison of the Shape of Wave- Resistance 
Curves for the Spheroid n(é) = 1 - &é*; the Curves 

are Reduced to Approximately Equal Maxima 

A. Small depths of immersion 

1) Within reasonable limits, the peak value of the R/A curve does not 

depend too much on the shape of the body,* especially upon the prismatic co- 

efficient. 

2) The merits of full forms, over a wide and possibly important range 

of Froude numbers 0.35 < F €< 0.50, are clearly emphasized, as well as 

3) The heavy penalty which has to be paid for high prismatics at 

lower F. 

*If more elaborate results are desired they can be derived from Figures 28 through 35. 
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Resistance Functions .- 

16[m, + ™,,- 2%,| for f/L = 0.125 and ~3.48 x 16[m, + ™,,- 2%M,,] for f/L= 0.25 

PRA A Rete AN A 
0 0.707 0.500 0.408 0.354 0.316 0.288 0.267 0.250 0.236 0.224 

Fhe 
Figure 10 - Comparison of the Shape of Wave-Resistance 

Curves for n = (1 - &*)* Reduced as by Figure 9 

B. For larger depths of immersion the dependence of the peak values of 

R/A upon ¢ becomes more pronounced; the advantage of high prismatics in the 

range mentioned in A(2) is, on the average, reduced. 

4.3. RESISTANCE CURVES OF ASYMMETRICAL BODIES 

Further curves representing the wave-resistance coefficients of the 

four TMB models represented in Figures 14 and 15 are shown in Figures 16, 17 

and 18. Before discussing these particular asymmetric models, however, an 

investigation must be made of the influence of asymmetry on the resistance. 

Figure 5 represents examples of asymmetrical lines belonging to 

the family n¥ = ¢ + bie me (iliact bs) €°, Equation [Ug]. 
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Figure 11 - Wave-Resistance Coefficients of the Spheroid 
as Functions of f/L with Ue = 1/2F° as Parameter 

(Re A ee eee ee ee eee 
co 0.707 0.500 0.408 ssa 0.316 0.288 0.267 0.250 

Figure 12 - Wave-Resistance Coefficients Sere phar = 

of Symmetrical Bodies Shown on Figure 4, Ph = Ost25 
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0.10 

0.08 

0.06 

Figure 13 - Distribution Functions Following Equations [6a] and [6b] 

The curves I, to IV, have been derived from the TMB models (Figures 

14 and 15) by reducing the coefficient of & to unity. The procedure of ob- 

taining the symmetric and the skew part from graphs is obvious: The first 

one is the arithmetic mean of the fore and afterbody ordinates 7, = ER 

and the latter one the difference — or Tn la respectively. 

The computation of the wave resistance due to asymmetry is based 

on Equation [24]: 

For the trinomial 

= 3 5 Teas (agit ONG te Dias) 
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co 0.707 0.500 0.408 0.354 0.316 0.288 
F 

Figure 16 - Total Wave-Resistance Coefficients and Coefficients 
Due to Asymmetry of the Four TMB Models Shown 

in Figure 14 and Figure 15, f/L = 0.125 
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with the derivative 

oe AW see 
é 1 3 5 

we obtain 

= é (vas 2m + 2m™ i inet mm + ! 
4 Gos [™, a5 oe ou My a, ae ee Mi eee me, 

[33] 

Figure 19 shows the functions 

a Ra 1” -:- —___...... 

02“ Unpec? b*/a 
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= ae 

Figure 19 - Wave-Resistance Coefficients aaa Due to 

Antisymmetrical Distributions Following Figure 5 

corresponding to the distributions é - g> é- Be and Me shown in Figure 5, 

where curve i is derived from the TMB body, Figure 14. 

The "amount" of asymmetry which corresponds to the equation n, =é 

is very large, but by assuming the strength parameter a, < 1 (Equation [He]) 

more usual distributions are reached; for these asymmetric terms the wave- 

esistance curves are obtained simply by multiplying the ordinates of Figure 

== 
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19 by ae. 

The resistance curves in Figure 19 corresponding to é - Ee and IE 

are somewhat similar in the range of the large hump and the ratios of their 

absolute values are of the order of 0.5. In the range of the second hump the 

ordinates of both curves are small, but it is characteristic that here a much 

lower resistance corresponds to the finer line If, rather than to €- €°. 

We return now to the four TMB models designated by I, II, III, IV 

shown in Figures 14 and 15. In these figures the line Ax(§) shows the sym- 

metrical part of a body. The resistance results are plotted on Figures 16, 17 

and 18;* in them the lower set represents the contribution due to antisymmetry 

Ra 
Toa i UrpeC? bi/a ’ 

the upper set the total wave-resistance coefficient 

a R sti R, 

0 = Ugpgc? b47a 

The computations are made under the assumption that the doublet distribution 

u*(é) = A*(€). With the model number rising from I to IV the prismatic in- 

creases and the asymmetry decreases. In the important range of Froude numbers 

0.50 2 F 2 0.35 the finer models are extremely unfavorable because of the 

low prismatic as well as because of the very pronounced asymmetry. 

When comparing the total resistance values a slight departure from 

symmetry generally is advantageous because of viscous effects. It has also 

been pointed out that small asymmetric terms do not increase appreciably the 

wave resistance even in the most sensitive range of Froude numbers, say 

0.45 2 F 2 0.35; this is well supported by our present results, for instance 

by Curve IV. Further, the obvious fact must be once more emphasized that an 

immediate comparison between symmetrical and asymmetrical bodies—as to their 

wave-resistance properties—is only feasible when the sectional area of the 

former A*(E) is the even part of the sectional area of the latter 

A*(6) = AX(é) + aX(E) 
It is entirely possible to obtain asymmetrical forms with wave-resistance 

properties which are superior to the corresponding ones of a poorly chosen 

symmetrical form, equal prismatics and principal dimensions being assumed. 

Similar computations have been performed for other depths of im- 

mersion; some results are listed in Table 2 of Appendix III. Obviously it 

is not difficult to investigate the wave resistance corresponding to any 

curve of the family defined by Equation [4e] at the three depths of immersion 

for which the integrals have been tabulated. 

*There is a slight error in the resistance curves R of Model III due to inaccuracy in computations, 

but it does not invalidate the comparison. 



oo 0.707 0.500 0.408 0.354 0.316 0.288 0.267 

; arr, ape a R 
Figure 20 - Wave-Resistance Coefficients C= p/2 US Referred to the Wetted 

Area S for the Four TMB Models I-IV, f/L = 0.125 (For Comparison 
of Range Single Curves for f/L = 0.25 and f/L = 0.5 are Shown) 

To check the order of magnitude of the wave resistance and to en- 

able a comparison with experimental data, resistance coefficients C, of the 

four TMB models I to IV are shown in Figures 20 to 22, calculated for b/a=1/7 

and C = 1.07. In this case the depth of immersion ratios f/L correspond to 

the technically more familiar f/D ratios as follows: 

1B /AL 0.125 0.25 0.5 

f/D 0.875 1.75 3.5 

Assuming a rather high viscous-drag coefficient (c., = 0.003), the 

relative importance of the wave resistance at various depths of immersion 
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Referred to the Wetted Area 
S for the Four TMB Models 

Tomy ty le One 

and Froude numbers can be estimated for a comparatively wide span of prismatic 

coefficient 0.71 2¢ 2 0.59. Attention is drawn to the changes in the mutual 

relations between the curves in Figures 20 to 22. These changes are dependent 

upon f/L and upon the obvious shift of the peaks towards smaller Froude numbers 

as compared with Figures 16 to 18, because of the factor U* in the denomina- 

tor of Cie 

Considerations of wave resistance may play a significant role when 

fixing the optimum elongation ratio D/L as long as free-surface conditions 

are important. Assuming both ¥ and ¢ to be constant, the surface S and there- 

fore the viscous drag vary only with VL/D while the wave resistance varies 
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with (D/L)? multiplied by a complicated function ro of F. Restricting F to 

a range ~0.6 2F 2 0.35, oA is monotonically and, on the average, heavily 

decreasing with decreasing F. Thus any reduction of D/L heavily reduces the 

wave resistance. 

4.4, LIMTTING DEPTH OF IMMERSION 

It is important to know below what depths of immersion fy the wave 

resistance can be neglected. This limit can be established from such cross 

curves as shown on Figure 11; it obviously depends upon: 

a. The Froude number F or y, = 1/2R= 

b. The L/D ratio, and 

@o The dimensionless shape of the body, primarily its prismatic coef- 

ficient ¢, especially outside of the large hump. 

However, some additional simple reasoning may be helpful when curves 

R = R(f/L) are not available. We can consider the wave resistance as negli- 

gible either when 

a. It is a small percentage of a given standard resistance, or 

b. It is less than an absolute small value 6R. 

Some obvious differences in results due to the different approach 

have sometimes been overlooked. 

a. Assume that for f Zit the wave resistance becomes less than a 

given small fraction e« of the wave resistance Ry at a standard depth, for 

instance at the immersion of one diameter; to is derived from a ratio of the 

resistances in question. Comparing bodies of equal length, fo depends upon 

the Froude number and upon the dimensionless shape of the body, but only very 

slightly upon the elongation ratio D/L = b/a, since the latter influences 

only the constant UmC2og b*/a, which drops out in the comparison. 

b. Assume that the limiting depth fo is derived from the condition 

that the wave resistance is less than an absolute value 6R independent of 

the standard resistance Ro: Comparing again bodies of equal length fo now 

becomes highly sensitive to changes in D/L. 

A rough idea of the necessary limiting depth Lo of immersion can 

be obtained from the decline of the water disturbance with increasing depth 

in a plane sinusoidal wave; this estimate normally gives exaggerated values 

fo: 

Denoting the wave amplitude by ha and the amplitude of the distur- 

bance by h one obtains 
2 7. 

ba eis 
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putting further 

Ki = = 2nF°L Z WT. 

SA 

h=h. elF 

and prescribing h/h,, » for instance assuming h/h,, < 0.01, one obtains 

£5 2~0.15a 

or 

fo /u > 1.50? 

This estimate is superficial for many reasons: 

a. The resistance depends rather on the square of the generated wave 

amplitudes, 

b. The actual problem is three dimensional, and 

Os The body shape is neglected. 

However, it shows at least that in principle the limiting depth cannot be 

expressed as a fraction of the dimensions of the body alone, since it depends 

upon the length of the free wave A or the Froude number F. 

From practical considerations matters are somewhat different. As 

mentioned before, at very high Froude numbers the ratio of wave resistance 

to frictional drag is normally very small. Thus the problem of finding an 

accurate value of the limiting depth becomes rather unimportant since even 

grave errors in computing it do not lead to appreciable errors in the total 

resistance. : 

5. BODIES OF REVOLUTION OF LEAST WAVE RESISTANCE 

5.1. TWO-PARAMETER FORMS 

In an earlier paper? endeavors were made to determine distributions 

of least resistance for given Froude numbers. The results varied with Froude 

numbers and depths of immersion, which is quite natural in the light of such 

resistance graphs as represented by Figures 6, 7 and 8. 

An important feature is the peculiar "swan neck" form obtained for 

higher Froude numbers —equal to and above F = 0.35. Because of the limited 

accuracy of these former calculations the problem has been reconsidered here. 

The present investigation supports the earlier statements. 

The formalism needed is very simple. Some controversy arose as to 

how far the application of exact methods of the calculus of variation is 

consistent when dealing with surface ships;> the results obtained did not 
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lead to reasonable ship's forms. However, when we restrict ourselves to fam- 

ilies of curves expressed by polynomials with few arbitrary parameters, we 

really obtain an ordinary minimum problem and do not need to bother about the 

difficulties connected with the application of the calculus of variations. 

Take for instance the family (basic form) 

(ele Ge a tAlGs mG) ets cE) [34] 

with two arbitrary parameters. The wave resistance R is given as a second 

degree function in a, and a: 

R= 4B a®?+ 4B a? + 8B aa + 24Ba + 2UHBa +B [35] 
222 44 4 24.2 4 2.2 4 4 O 

where 

wo tt m,, - 6m. + 9m ae 1a 55 

Baa 5 Mh © Vai. % Hie 

Bon is ane % ze i: IM, fi 6M, | 

Be Sih Hi) 
2 15 55 

B =2m_ - 3m 
4 35 55 

5 z 50M | 

differentiating R partially with respect to el. and als one obtains the min- 

imum conditions 

OR aA al = a Bot. + B ts 3B 0 

2 [36] 
ORL = 
Oa, Bots i BBs + 22, : 

whence 

3(B B =) By Bie 
A ee 2.44 424 

= Bion Biceien Be 
2e 44 24 

[37] 
3(B. Bo - BB) :] 

orca e 4 22 2 24 

< BiB ieeBe 
22 44 24 

These equations lead to results which are not applicable to practice 

when Vise 1 and of restricted interest when oS 2 (f/L is assumed equal to 

O51 25})) 
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f/L=0.125,7 =1- 7.1462 + 18.9364 — 12.7966, 6 = 0.58, t= 15.30 
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Figure 23 - Doublet Distribution for Least Resistance, 
Two-Parameter Forms, F = 0.403, Uae 3 

When Mens 3 the distributions shown on Figure 23 are obtained. We 

note again the difference in the shapes when f/L = 0.125 and f/L = 0.25. Ex- 

tending the calculations to Piss 4 and ¥5 = 5» curves of more and more "rea - 

sonable" character are obtained as shown in Figures 24 and 25. 

The apparent failure of the theory to yield useful results in some 

cases, is often due to lack of suitable conditions imposed. There is no 

reason, for instance, to expect a solution which leads to a "normal" prismatic 

coefficient if no restrictions as to this coefficient are made. On the con- 

trary, it is rather fortunate that one obtains results which meet other re- 

quirements of practice (i.e., are "reasonable"), without this restriction in 

certain ranges of Froude numbers. | 

5.2. ISOPERIMETRIC PROBLEMS, ONE-PARAMETER FORMS 

Introducing a condition ¢ = const we obtain an isoperimetric pro- 

blem. Then Equation [34] retains only one arbitrary parameter. This can be 



f/L=0.125, n= 1- 3.1976 + 6.6676* - 4.4704°, ¢ = 0.628, t= 6.55 
=0.25, 7=1- 4.61767 + 10.915 ¢* — 7.2984°, d= 0.601, t = 8.36 

Figure 24 - Doublet Distribution for Least Resistance, 
Two-Parameter Forms, F = 0.3544, Ue 

1- 2.4476? + 3.46124 - 201466 

Figure 25 - Doublet Distribution for Least Resistance, 
Two-Parameter Form, F = 0.316, i  D 



42 

interpreted, for example, as Taylor's tangent value t. The resulting equation 

is of the type 

n(g) = nl) - go' [e2 - Set + Leel [38] 

Here n,(é) is a given polynomial complying with the condition ¢ = const; its 

tangent value to may be chosen in such a way that the equation No is as simple 

as possible. The function 

5) MUNG Satie, alent | ms - gfe? - ete te’ = 4.06) [38a] 

has the properties: 

dA, (1) ee 

0€ 

2 A, 7 (0) A,n(1) =0 

1 

Ba A. n(é)dé =0 Je 
t! is the variable tangent parameter, the resulting t of the Equation [38] 

being obviously t = t' + to: 

Assuming ¢ = 2/3, Pa Seale ee 

Sh- -2¢— pti [e - Bee + 70°] 

one obtains 

pat tre R= 2t A+ 3tia + 4m [39] 

al = 2 tA + 3A =0 [39a ] 

is 400 BAG, _ £0) 
“ LG 3 9 Mee 49M 3 Als 6 se Uivtes 3 Ines 

snipe 20 
ia ey somes eas allel ye 

hence 

Ses tl = +3 [39d] 

Another isoperimetric problem is given by t = const and ¢ variable. 

Although this problem looks somewhat artificial since there are no technical 

reasons to keep the tangent of the sectional-area curve rigidly fixed the 
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f/L = 0.125, n= 1—- 2 + 2.02442 — 264 + &°), gd = 0.821, t=2 
f/L = 0.25,n= 1-62 + 5.954 (e — 267 + 6°), g= 1.122, t=2 

Figure 26 - Doublet Distribution for Least Resistance, 
One-Parameter Forms, F = 0.408, 1 = 

eee t 
a ee SAS 2 6 4 6 = = Helis h, f/L = 0.125, n= 1- €° - o212(e? — e&) — 0576 (4% — 6), g= 0.783, t= 4 Wa 

f/L = 0.25, 7 = 1 6+ 3.134(6? — 6°) — 7.268 (6% — €°), 6 = 1.038, t= 4 Ne 

Figure 27 - Doublet Distribution for Least Resistance, 
One-Parameter Forms, F = 0.400, Ui 
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results are interesting. Figures 26 and 27 show that assuming rather differ- 

ent t values optimum ship lines with a similar trend may be obtained. 

We notice that the optimum area coefficient @ for a medium depth of 

immersion f/L = 0.25 is much higher than for a slight immersion f/L = 0.125. 

This might have been inferred from the shift of the resistance curves follow- 

ing Figures 6, 7 and 8. 

The necessary formalism is again very simple: assuming as before 

a curve 7, with the fixed t = ty value, for example as before, ie = 1 - foe 

ty = 2, and denoting ¢= Po coils 

Pens ei allay (= 2 Zi. ae 4) [40] 

Ais) = We eNGS |= 25> a 5") [40a ] 

complies with 

lho PMO) = A\c(0))) = 0 

1 : 

2 [4 .n(s)as = 1 

04 n(1) : 

og 

from 

se = -26 + 26.25g'[é - 4e9 + 36°] 

we obtain 

Bi 
o' = 36.25 At a] 

2 

with 

iz nl 3 + VO ele Caan Cele aus 

Al =m, - 4m, + 3m, 

6. RESISTANCE CURVES OF THE FAMILY (2, 4, 6; ¢; t) 

A systematic survey of resistance properties of ship forms can be 

obtained by a different approach, i.e., varying the parameters of a given 

family of ship lines and plotting the corresponding resistance curves. Re- 

stricting ourselves to a two-parameter equation 

(28s CaCH ear ic ee ee [34] 
2,4,6 
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r) 

Equation [35] can be used for calculating the resistance, or still simpler, 

eS 2 a 2 2 

5 ‘las as Hay mes i Be nes ty #28, en t 6a 2, ee ii Wee 2. Weed 

[42] 

The parameters a. a, and a, are connected with the basic form co- 

efficients gand t by the equations 

= 10 3 
a=9-oer+e t 

aS 15+ 1Pg-2t [43] 

ais 1 - a, - a, 

Table 3 contains wave-resistance coefficients Te bog eS OG a 25 5) Ehovel 

0.68 2¢ 2 0.56 with an interval of Ag = 0.02 within a range of Froude num- 

bers 12 F 20.25 (for t = 0 additionally = 0.50, 0.52, 0.54) at a depth of 

immersion ratio f/L = 0.125. 

The corresponding curves spaced Ad = 0.04 are shown on Figures 28 

to 35 grouped following t and @. The main purpose of these plots is to dem- 

onstrate the dependence of the wave resistance upon t for ¢@ = const; it is 

interesting to note that the peak values (cf page 24) differ as much as ~15 

percent for t = 0 and t = 3, in close agreement with results known from stu- 

dies of surface ships and the tendency exposed by the minimum calculations. 

One should, however, remember that theory tends to overestimate the favorable 

interference effects and that viscosity precludes the realization of excessive 

angles of run. On the other hand, for very high Froude numbers the relative 

importance of asymmetry decreases, so that forms with steep slopes at the bow 

and moderate slopes at the stern may be advantageous. 

SUMMARY 

Using Havelock's basic work and some former investigations by the 

present author, a systematic synopsis is made on the wave resistance of bodies 

of revolution. Tables evaluated by the Bureau of Standards and graphs are 

given which allow the investigator to estimate immediately the wave resistance 

of a wide class of bodies of revolution defined by doublet distributions along 

the axis expressed by polynomials. 

Some discussions refer to the relations between this distribution 

u*(é) and the sectional area of the body A*(é). For "normal" shapes of dis- 

tribution the usual assumption is made that there is affinity between u*(é) 
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% 

and A*(é). In extreme cases the shape of the body can be calculated by 

methods due to Landweber and Amtsberg; no corrections, however, are given for 

the influence of the free surface on the shape. 

Within the first-order theory the resistance can be split up into 

a main part due to a symmetric distribution with respect to the midship sec- 

tion and a part due to asymmetry, which can be investigated independently. . 

Large amounts of asymmetry can influence the resistance detrimentally in 

some ranges of the Froude number. 

The investigation of the resistance as a function of the body form 

leads to conclusions which sometimes are contrary to those derived for sur- 

face ships. The choice of appropriate prismatic coefficients varies deci- 

sively with the range of the Froude number, as is clearly illustrated by 

the numerous graphs. The same applies to the influence of. the tangent value 

t. Ceteris paribus the resistance is approximately proportional to the 

square of the midship section. 

The dependence of the resistance upon the depth of immersion is in- 

vestigated; this dependence is best explained by the ratio f/X, where pete 

is the length of the free wave. Thus for common prismatic coefficients the 

wave resistance decreases rapidly with increasing f except in the range of 

high Froude numbers (largeA values). In the range of high F the calculation 

of forms (distributions) of least resistance leads sometimes to results bare 

of practical applicability; by introducing suitable restrictions such diffi- 

culties are avoided. These investigations show important peculiarities of 

the distributions. 

A set of resistance diagrams calculated for the family (2,4,6;¢;t) 

gives a survey of the resistance properties of a class of normal bodies. 
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APPENDIX I 

APPROXIMATE CALCULATION OF THE SURFACE S OF 
A CLASS OF ELONGATED BODIES OF REVOLUTION 

From Guldin's rule 

S = 2m | yds = 2m {“y Vi + (y*")2 ax 
=a 

oe 

S = 2m | “yax + mf y yl? axe mA + af “y yl? ax [29] 
a —a Mm —a 

the main part of the surface is given by m times area of the meridian section 

An plus a correction term neglecting higher order terms. 

With y = bH 

b OH i 

Seria 10k 

the correction term becomes 

+a 2 +1 2 2 
12 = oes Ou = bf ei ae Ces mab L, Ble) & rab 7 [30] 

i.e., the correction term is equal to the area of an ellipse with the axes 

a, b multiplied by the square of the elongation ratio and a numerical value 

I dependent upon the equation of the curve. To get an idea, with obvious 

denotations, 

t= Wes H=1 - é 

i 280i Hi=sieres 

we 2n® Ly n 
Tt) > (@-1) Gn-1) Veet 

The next term in the expansion of S 

7 +a 4 im mab b* +1 4 

ote Vay Oe sie wl, Wad [31] 
with H' = @H/Ogé is obviously of the order b*/a*. However, taking H=1 - é” 

the factor 

gt eis aR SeeNeR Onn! 
( HAN Os = 5 ines(ones) 

grows with n° when n is large. Provided b/a is not too small, say ~1/7, the 

error in neglecting all terms except the first (Equation [29]) is only per- 

missible as long asn < ~5. 
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Using Equation [30], various changes in S can be easily estimated 

within the range of validity of the formula. For instance, the influence of 

an asymmetric term can be discussed as follows: 

Vales H, qr Hy 
t 

+1 2 +1 B +1 

y= I, (H, + H, ) (Hj + H) dé = i + [ HH} dé + ie ie lest aé 

[32] 

Where I, refers to the even part following [30]. When the meridian 

curve has vertical tangents at the bow and stern (or bow or stern) the pre- 

ceding reasoning can be applied in principle to a range 1 - en Z2éED-(1 - € 

and the remainder is calculated as the surface area of a segment of the 

sphere generated by the radius of curvature at the nose or stern. Such an 

approach is, however, only useful when the integrals involved are of simple 

ae 

type. 
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APPENDIX II 

EVALUATION OF THE AUXILIARIES INTEGRALS* 

The integral to be computed is given by: 

™ cell as palibisollinas (y)M,(y)d ae i= = e 0 M.(y¥)M.(yv)dy 

") ae VO /paieat | mk) 
ky? 

The functions e 7 and M; (y)M, (7) are well-behaved in the entire interval of 

integration. However, the algebraic function (v/y,) / Viv/yy—1 causes some 

difficulty at the lower limit of integration, i.e., at y= Moe In the neigh- 

borhood of y= Vo? the contribution of I is far from negligible and therefore 

an investigation was carried out to determine the asymptotic behavior of the 

integral as a function of the upper limit. Specifically, the following func- 

tion was examined: 

Y%) (1+ €) 

i) = IP M(y)f(p)dy € > 0 
% 

where _ ky? 

M(y) =e My (y)M,(y) 
and 

(ip) 
(i 

Op ea 

It was found that: 

“(Grae 6 M,(y)M,() ¥, vee {1 + fet ote?) 

This asymptotic expression was used to determine the interval of 

integration, Ay far a numerical integration. This interval was too small to 

be practicable, evén allowing for subsequent changes in Ay. 

A new approach to the problem was sought in a suitable transforma- 

tion. The following transformation very quickly presented itself: 

2 We Cad ised 

2Z AZ dy 

The original integral was transformed as given by: 

*By J. Blum, National Bureau of Standards 
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2 2 2 

2 (z+ ») (Z Ley 2 1-5 | e 7 oO (Maa oy OZ 
% Jo Vaeere : J e 

In this form, the integrand behaves properly, (there is no longer 

a singularity at » = oe) and the integral converges rapidly. 

The integral was actually computed by using the form in [5]. The 

numerical integration was performed once using Simpson's rule and a second 

time using the trapezoidal rule—for checking purposes. The interval AZ was 

taken as 0.1 and the range extended from 0.0 to approximately 3.5. The M 

functions were computed from previous tables by using 4-point Lagrangian in- 

terpolation. The exponential function was computed from tables and the use 

of the approximation e * =1 - x + x?/2, x <0.01. The algebraic function 

in the integrand was computed in straight form and fashion. All of this work 

was done on the IBM electronic calculator (type 604) and the auxiliary IBM 

punch card equipment. All the IBM operations were checked— independently 

wherever possible. 
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TABLE 2 

Resistance Coefficients Pop? Toa! LS and Cy of the 

Four TMB Models I, II, III, IV; see Figures 14 and 15 

fe [= | 
f/L = 0.125 f/L = 0.125 

0.002771 

Model IIT 

0.001409 0.001559 0.29452 

48255 004761 -009204 005006 

-54304 008349 016713 -008232 

48218 -01042 022700 -009354 

34676 01013 024644 -007916 

20136 007964 -021705 . 005026 

109112 -005110 «015373 002318 
- 008461 
003367 

02469 
01571 

002669 
+001131 

01623 

. 07254 

- 000837 
-000601 

02937 
-00572 
+007 84 000457 .02159 000940 | .02253 000955 
00335 + 000274 02589 - 000562 02645 -001233 

00370 000246 02129 -000997 .02229 001134 
00244 -000216 .01252 . 001286 - 07381. .000761 

0.00096 0.00500 0.001118 | 0.00612 0.000363 

Model IV f/L = 0.125 Model IT f/L = 0.125 

0.0000008 

-5 | 0.32962 | 0.006262 [re 0.001478 -5 | 0.40102 0.001320 | 0.40234 | 0.001643 | 

1.0 «53257 -019503 -552073 - 004858 1.0 . 62996 -003790 - 63375 - 005192 

1.5 -58729 034835 - 622125 -008211 1.5 67440 - 006386 . 68079 - 008367 

2.0 -50553 047328 552858 -009729 2.0 55349 - 008096 -56159 009202 

2.5 34728 -052235 399515, .008788 2.5 «35194 . 008092 -36003 007374 

3.0 18718 O47 ELS 234828 -006199 3.0 16756 006369 -17393 - 004275 

3.5 07449 035789 110279 003396 3.5 105549 003822 05931 001707 
4,0 +01955 .021718 041 268 007452 4.0 01863 001 663 02029 000665 

45 00552 010117 015637 000619 4.5 02534 000632 02597 000956 
5.0 «00855 «003285 -017835 -000521 5.0 - 04020 -000668 - 04087 001 674 

5.5 -01212 . 000792 .012912 -000625 5.5 - 04408 -001156 04524 002039 

6.0 01086 000731 011591 -000612 6.0 03429 001473 - 03576 001758 
6.5 . 00657 .001227 . 007797  OOO4LE 6.5 . 02006 = 001343 02740 -0017 40 

7-0 | 0,00261 0.001340 | 0.003950 | 0.0002K3 7.0 | 0.00803 0.000912 | 0.00894 | 0.000513 

f/L = 0.25 Model I f/L = 0.25 Model III 

5] 0.093464 | 0.0018 0.0952 0.000440 -5 | 0.117864 | 0.000380 | 0.178244} 0.000501) 

1.0 158660 0066 1652 -001526 1.0 196046 001796 197842 0016769 

1.5 - 163934 -0127 .1766 002448 1.5 .195792 -003625 -199417 0025354 

2.0 | 125729 .0167 42h 002632 2.0 -142235 004787 -147022 0024923 
2.5 . 075703 0168 -0925 - 002137 2.5 .078642 . 004667 - 083309 .0017653 

3.0 036196 +0134 0495 -001372 3.0 032522 -003527 036049 -00091 67 
355 013347 0088 0221 -000715 3.5 -009079 . 002087 -011166 0003312 

4,0 | 0.003449] 0.0046 0. 0080 0.000296 4.0 | 0.001301 CN | 0.002242} 0.0000760 

f/L = 0.25 Model II f/L = 0.25 Model IV 

0.105547 | 0.001054 | 0.106601 | 0.0004690 .5 | 0.130528] 0.000229 | 0.130757] 0.0005356 

177413 003961 -181374 | .0015959} | 1.0 . 214810 000823 -215633 - 0017667 
-180062 007542 - 187604 0024760 1.5 217405, 001496 212901 00267 64 

-134025 -009821 143846 -0025315 2.0 150538 . 001820 -152358 0024964 

077166 -009683 - 086849 0019105 2.5 . 080224 001621 081845 001 6764 

034261 -007564 041825 0017047 3.0 030995, 001086 032079 0007884 

-011006] .004751 015757 0004853} | 3.5 007526 000532}  .008058 . 0002311 

0.00211 8} 0.002371 0.004389 | 0.0001545 4.0 | 0.000940] 0.000173 | 0.001113) 0.0000365 
atk 

f/L = 0.5 Model I f/L = 0.5 Model III 

-5 | 0.025894 -5 | 0.032826] 0.000052 | 0.032878] 0.0001393 

0 033468 1.0 041753 -000254 -042007 0003561 

is) 023467 1.5 028431 000413 028844 . 0003667 

A) 011701 2.0 «013493 000385 013878 0002353 

5 004499 2.5 004794}  .000250 005044 0001 069 
.0 001366 3.0 001267 000122 001 389 0000353 

6) 000319 35 000226 000046 000272 - 0000081 

0 4.0 0.000052 0.000010} 0.000013 | 0.000023 sla 
f/L = 0.5 Model II f/L = 0.5 Model IV 

-5 | 0.029348] 0.000207 | 0.029555 | 0.0001300 5 | 0.036364} 0.000037 | 0.036401) 0.0001491 

+0 037590 000597 «038187 0003360} |1.0 046002 000128 046130 0003779 

“5 025958 - 000868 «026826 0003541 1.5 - 030924 -000178 031102 0003822 

0 -012605 . 000787 -013392 . 0002357, 2.0 014384 - 000151 «014535 . 0002382 

5 - 000513 -005163 . 0001136 2.5 - 004938 - 000090 .005028 - 0001030 

-0 000259 001574 3.0 001 223 -000039 | .001262}  .0000310 
a5 -0001 04 - 000373 heb -000188 - 000012 . 000200 - 0000057 

.0 0.000033 | 0.000066 4.0 | 0.000010) 0.000003 | 0.000013) 0.0000004 

9S 
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TABLE 3 

Resistance Coefficients r. = a of Symmetrical Bodies Belonging to the Class 
© Unc2pg b*/a an 

m=1 - ag? - ast - aes oe 70,4 + 20,69 + 3a, 6°) 
= 2 2 2 

> 4 (83 dln F ai ti yo oe nies y hee ire ii 2a, s 12,2...) 

0.482176 | 0.478585 | 0.399765 | 0.287017 | 0.177414 | 0.0931007 | 0.0399619 | 0.0130724 0.00291654 |} 0.000501923 | 0.0006541 86 | 0.000906827 | 0.000754301 | 0.000409008 

«241061 -501587 | .487737| .397167] .275175] .161702 0787014 0299938 00802265 00142954 -000915184 | .00153311 00154011 00101414 000444701 

256458 -5274u8 | 497324) .394953} .264013] .147151 0659474 0219018 00472942 00135409 00224750 00289584 00237037 00132932 - 000493900 

272409 541757 | .507347} .393122} .253531| .133762 0548385 0156858 . 00319270 .00269019 00449889 00474239 00339760 -001 69992 «000556605 
288913 -562515 | .517805} .391676) .243731 | .121534 0453746 «0113457 = 00341 247 -00543785 00766933 . 00707276 - 00462181 -00212591 - 000632815 

305971 -528699| .390614] .234610] .110468 +0375558 00888162 | .00538875 - 00959706 0117588 00988694 00604300 00260729 -000722531 

+323582 540029] .389936} .226170| .100563 | .0313821 00829351 | .00912153 | .0151678 0167674 0131849 00766116 | .00314406 | .000825753 
341747 551794} .389642] .218411 | .0918200] .0268536 | .00958139| .0146108 . 0221501 0226950 - 0169668 -00947630 | .00373623 | .000942480 
360465 .563994| .389732] .211332] .0842379] .0239701 .0127452 - 0218566 «0305440 -0295417 0212324 - 0174884 - 00438379 - 00107271 

0.379736 | 0.608993} 0.673040 | 0.576630 | 0.390207 | 0.204933 | 0.0778173 | 0.0227317 | 0.0177851 | 0.0308589 0. 0403404 0.0373074 0.0259818 0.0136975 0.00508674 | 0.00121645 

0.267895 | 0.446802] 0.515401 | 0.474195 | 0.358427 | 0.224501 | 0.114702 | 0.0456125 | 0.0126175 | 0.00194853 | 0.000726062 | 0.00116444 | 0.00106146 | 0.000538598 | 0.000167800 | 0.000108211 

- 284159 -470487} .536077] .484K20} .357237] .215331} .103345 . 0367938 -00833174 | .00157001 -00227915 - 00302235 00231546 . 00108809 -000313147 | .000156728 

.300976 | 494580) .557203} .495080} .356432]) .206841} .0931487| .0296200 00592792 | .00294800 00524380 | .00579932 00405329 | .00183479 | .000513887} .000218750 
31834 -519081 | .578777 | .506176] 2356011 | .199032| .0841138} .o240974 00540008 | _.00608246 -00962000 | .00949529 00627493 00277833 000770019 | _.000294278 
336271 -543990| .600799| .517707] .355974| .191904] .0762402] .0202079 00674822 | .0109735 «0154077 0741104 . 00898039 00391889 00108154 00038331 

354748 | .569307} .623271 | .529674) .356321 | .185456} 0695280] .0179695 | .00997234} .0176210 .0226071 0196446 .0121697 0052561 00144846 | .000485850 
0.373780 | 0.595031 | 0.646192 | 0.542075 | 0.357052 | 0.179688 | 0.0639773| 0.0173762 | 0.0150724 | 0.0260250 | 0.0312179 | 0.0260978 |0.0158427 | 0.00679090 | 0.00187077 | 0.000601895 

0.263667 

279690 

296267 

313397 

33108 

0.429466 

«453492 

477926 

502768 

528019 

0.489245 | 0.442482 | 0.325335 

509839} .452473| .324402 

530882} .462899] .323854 

-552374 | .473761 | .323690 

574315 | .485059| .323909 

0.000882234 | 0.00102788 

- 000746938 | .00104870 

.000667035 | .00108303 

000642525 | .00113087 
-000673406 | .00119221 

0.197385 

188846 

.180987 

0.0972121 | 0.0375030 | 0.0103302 
.0867242} .0293293 00611066 

-0773976} .0228007 -00376711 | .00130715, 

-173809 | .0692325| 0179172 | 00329953 | .00384335 
-167312 | .0622288} .0146788 - 00470793 | .0081 3606 

349318 -553677} .596705| .496792] .324513] .161495] .0563865] .0130855 -00799232 | .0147 853 0163319 0121886 .00602758 00189870 000759681 | .00126705 

0.368109 | 0.579743] 0.619544 | 0.508961 | 0.325501 | 0.156358 | 0.0517057| 0.0131373 | 0.0131527 }.0.0219910 | 0.0237482 | 0.0173292 | 0.00862431 | 0.00275892 | .0.000901347 | 0.00135540 

0.259724 | 0.410802] 0.463289 | 0.412207} 0.293847 | 0.172184. | 0.0812897] 0.0305101 | 0.00884174 | 0.00185989 | 0.00178332 | 0.00181881 |0.00246152 | 0.00344350 | 0.00384322 | 0.00331561 

0.00150426 

- 000527452 

0.000423770 | 0.000271083 | 0.000301165 | 0.000553898 

.000782298 | .000816457 | .000478817 | .000428905 

00255238 00228089 00114028 000500888 

00573401 00466439 00228557 000769848 

. 0103272 . 00796694 . 00391467 00123578 

-275507 ~435169| .483801 -421964} .293171 .164276| .0776716| .0229815 - 00468247 | .000284792 | .000947282 | .00105165 .00156282 00264391 00342728 - 00330874 

291843 -459945| .504762) .432158] .292880] .157049| .0632150] .0170980 -00239918 | .000466200] .00152280 001 20355 .00114793 . 002041 29 00306673 . 00331538 

308733 -485128]| .526172] .442786| .292972| .150501| .0559197| .0128596 -00199186 | .00240411 00350987 - 00227450 00121685 00163565 .00276158 00333552 

326176 | .510720| .548031 | .453850] .293449] .144635) .0497859} .0102663 00346053 | .00609853 00690849 00426453 00176959 00142698 | .00251182 | .00336916 
344173 -536719] .570338] .465349} .294310] .139449] .0448135} .00931806] .00680518| .0115494 0117187 00717361 00280615 00741529 00231745 00341 631 

0.362723 | 0.563126] 0.593095 | 0.477284 | 0.295555 | 0.134943 | 0.0410024} 0.0100149 | 0.0120258 |0.0187569 |0.0179404 ]0.0110018 | 0.00432652 | 0.00160058 | 0.00217848 | 0.00347697 
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