

Western Australian Naturalists' Club Inc.

ABN 97932293116
Level 2, The Beaufort Centre, 82 Beaufort St, Perth.
Postal Address: PO Box 8257, Perth Business Centre 6849 Telephone: (08) 92282495 email: wanats@iinet.net.au

Founded 1924
Mission:
To encourage the study and protection of the natural environment.

OFFICE BEARERS:

Patron:
Dr BARBARA YORK MAIN
President:
ROZ HART
Vice Presidents:
MARGARET LARKE
JOLANDA KEEBLE

Hon. Secretary:
ELAINE DAVISON

Hon. Librarian:
PHIL RHODES

Hon. Treasurer:
ALISON YOUNG

Journal Editor:
JOHN DELL

Council Members:
JOHN ABBOTT, PIA PARKER, MIKE GREGSON, NICHOLAS DUFTY, JOHN LUYER, PETER COYLE

Editor of Naturalists' News:
KATE CREED
PO Box 8257
Perth Business Centre, W.A. 6849

DARLING RANGE BRANCH
Chairperson:
DIANA PAPENFUS
P.O. Box 348

Kalamunda 6926
Telephone: 92931676

KWINANA - ROCKINGHAM MANDURAH BRANCH:

Chairperson:
CHRIS PUNTER
P.O. Box 479

Rockingham 6968
Telephone: 94193749

THE WESTERN AUSTRALIAN NATURALIST

Vol. 28
27th January 2012
No. 2

USE BY HONEYEATERS AND PARROTS OF A BROWN MALLET PLANTATION AND AN ARBORETUM AT DRYANDRA WOODLAND, WESTERN AUSTRALIA, AT A TIME OF YEAR WHEN FEW OTHER NECTAR RESOURCES WERE AVAILABLE

By WILLIAM E. DAVIS, JR.
Professor Emeritus, Boston University, 23 Knollwood Drive, East
Falmouth, MA 02536, USA. Email: wedavis11@gmail.com
and
HARRY F. RECHER
School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
Current address: P.O. Box 154, Brooklyn, NSW 2003, Australia. Email: hjrecher@bigpond.com

Abstract

We report on nectar foraging for five species of honeyeater and three species of parrots at a Brown Mallet (Eucalyptus astringens) plantation and an arboretum at Dryandra Woodland, Western Australia, during spring and compare these to nectar foraging on Dryandra spp. nectar in nearby shrublands. The arboretum and mallet plantations provide nectar when flowers are scarce in adjacent woodlands and shrublands and are therefore presently useful for the conservation of nectar-feeders in Dryandra Woodland.

INTRODUCTION

Many honeyeaters (Meliphagidae) and parrots (Psittacidae) use nectar and rely on a sequence of
nectar resources that differ in their spatial and temporal availability (Keast 1968; Ford 1977; Ford and Paton 1977). Because of the spatial and temporal
variability in nectar resources, identifying nectar resources in major habitat types is necessary to ensure that conservation of honeyeaters and parrots occurs on spatial and temporal scales large enough to accommodate the movements of the birds. The problem is that the incremental loss of even small nectar resources in the sequence may cause the progressive decline of nectar-feeders, regardless of the amount of nectar available at other times or locations (Recher 1999; Ford et al. 2001).
We studied the foraging ecology of honeyeaters in wandoo woodland and Dryandra shrublands in Dryandra Woodland in which we determined what honeyeaters were present during winter and spring, the nectar resources used by honeyeaters, and the temporal patterns of nectar availability and use (Recher and Davis 2011). We also monitored the use of nectar by nectar-feeders in an arboretum, dominated by Banksia, Hakea, and Eucalyptus species that are not native to Dryandra Woodland, and in a plantation of Brown Mallet (Eucalyptus astringens). Brown Mallet is native to Dryandra Woodland, but originally had a limited distribution within the reserve. However, extensive plantations of Brown Mallet were established in the 1920s and 1930s and these are now one of the most extensive habitats in Dryandra Woodland. Despite this, information on their use, if any, by
birds is limited. We report here on the use of nectar in the arboretum and a mallet plantation in August and October, 1997 by honeyeaters and parrots, and compare these to the use of nectar in naturally occurring Dryandra shrublands nearby.

METHODS

Dryandra Woodland is a Class A Conservation Reserve (centred on $32^{\circ} 45^{\prime} \mathrm{S}, 116^{\circ} 55^{\prime} \mathrm{E}$) near the town of Narrogin, Western Australia. The two plots were chosen because of a seasonal abundance of nectar-rich flowers. The arboretum is located on Tomingley Road at the intersection with Firetower Road in Dryandra Woodland. The mallet plantation studied is adjacent to the arboretum. The mallet plot was approximately 14 $400 \mathrm{~m}^{2}$, with an average canopy height of 11 m . Mallet plantations at Dryandra lack an understorey, with few shrubs and little ground vegetation. The arboretum plot consisted mostly of 35 m shrubs, and was about 1 ha in area. The mallet flowered from August through October. At the same time, there was an abundance of blossom in the arboretum (primarily Hakea and exotic eucalypts).
The mallet plantation was visited by WED for 48 minutes in August 1997 over two days, when flowering had commenced, and 160 minutes over six days in October, 1997 when
the Mallet was in full flower. He visited the arboretum for 143 minutes in October, 1997. Plots were visited between 0700-1200 h, with a few visits in the afternoon. WED recorded the bird species, a single foraging manoeuvre for each bird foraging on nectar, and the plant species. WED tried to avoid repeat observations by moving continually, but some birds may have been recorded more than once. Wandoo (Eucalyptus wandoo) and Powderbark (E. accedens), the dominant eucalypts at Dryandra Woodland outside of the mallet plantations, flower during summer and autumn. During our study, only individual trees or branches flowered, and produced meagre nectar resources.

RESULTS AND DISCUSSION

Data were recorded for five species of honeyeaters and three species of parrots on the arboretum and plantation plots: Brown Honeyeater (Lichmera indistincta), New Holland Honeyeater (Phylidonyris novaehollandiae), Singing Honeyeater (Lichenostomus virescens), Red Wattlebird (Anthochaera carunculata), Western Wattlebird (A. lunulata), and Port Lincoln Parrot (Barnardius zonarius), Redcapped Parrot (Purpureicephalus spurius), and Western Rosella (Platycercus icterotis).
During winter and spring in Dryandra Woodland, inflorescences of Dryandra species were
the primary source of nectar for honeyeaters (Recher and Davis 2011). Species came into blossom in sequence with D. nobilis the first to bloom in abundance, with the smaller D. sessilis and D. armata following. When D. nobilis was in heavy blossom, few honeyeaters used the arboretum or mallet plantation where nectar was limited in comparison. As the abundance of nectar from D. nobilis lessened, Red and Western Wattlebirds shifted to foraging in the arboretum and mallet plantation.
Mallet commenced flowering in early August and became a primary source of nectar for Red Wattlebirds ($\mathrm{n}=31 ; 48 \mathrm{~min}$), which had fed earlier largely on shrubland Dryandra nobilis, which had mostly finished blossoming by August (Recher and Davis 2011). By October, when D. sessilis and D. armata had largely finished flowering (Recher and Davis 2011), Red Wattlebirds foraged in the mallet, but in diminished numbers ($\mathrm{n}=11 ; 160 \mathrm{~min}$). No Western Wattlebirds foraged in the mallet in August, but were the dominant honeyeater in October utilizing mallet ($\mathrm{n}=35$; 160 min), and the arboretum ($\mathrm{n}=80 ; \mathrm{n}=143 \mathrm{~min}$). Port Lincoln Parrots foraged for mallet nectar in the plantation in August ($\mathrm{n}=13 ; 48 \mathrm{~min}$) and October ($\mathrm{n}=40$; $160 \mathrm{~min})$. Red-capped Parrots ($\mathrm{n}=3$) and Western Rosella ($\mathrm{n}=2$) took mallet nectar in October, but not August. Brown Honey-
eaters used the mallet in October ($\mathrm{n}=6$), but not in August, while continuing to forage in reduced numbers for nectar in the shrublands (Recher and Davis 2011). New Holland Honeyeaters also used the shrublands through October, but in October were recorded in the arboretum feeding on Hakea nectar ($\mathrm{n}=3$). They were not recorded in the mallet in either August or October. The arboretum was the primary place of concentration in Dryandra Woodland of Singing Honeyeaters in October $(\mathrm{n}=6)$. They were recorded by both WED and HFR at the arboretum, where they foraged mostly on Hakea spp. They were not recorded in the mallet in either August or October. Other honeyeaters were rarely seen in either the arboretum or mallet.
With few eucalypts in flower and Dryandra species completing their flowering cycle, the mallet plantation and the arboretum were a major source of nectar for honeyeaters and parrots, particularly in October. While there are sound ecological reasons to replace the mallet plantations with the original woodlands of Jarrah (E. marginata), Wandoo, and Powderbark this should be done incrementally to allow nectarfeeders time to adapt to seasonal changes in nectar availability. Retaining the arboretum, or even enhancing it with further
plantings of nectar-rich shrubs, such as Hakea, would assist in retaining a full complement of nectar-feeders in Dryandra Woodland.

REFERENCES

FORD, H.A. 1977. The ecology of honeyeaters in South Australia. South Australian Ornithologist 27: 199-203.
FORD, H.A. and PATON, D.C. 1977.
The comparative ecology of ten species of honeyeaters in South Australia. Australian Journal of Ecology 2: 399-407.
FORD, H.A., BARRETT, G., SAUNDERS, D.A., and RECHER, H.F. 2001. Why have birds in the woodlands of southern Australia declined? Biological Conservation 97: 71-88.
KEAST, A. 1968. Seasonal movements in the Australian honeyeaters (Meliphagidae) and their ecological significance. Emu 67: 159-209.
RECHER, H.F. 1999. The state of Australia's avifauna: a personal opinion and prediction for the new millennium. Australian Zoologist 31: 11-27.
RECHER, H.F. and DAVIS, W.E., JR. 2011. Observations of the foraging ecology of honeyeaters (Meliphagidae) at Dryandra Woodland, Western Australia. Amytornis: Western Australian Journal of Ornithology 3: 19-29.

VASCULAR FLORA OF DRYANDRA WOODLAND (LOL GRAY AND MONTAGUE STATE FORESTS)

By GREG KEIGHERY
Western Australian Conservation Science Centre, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery
Centre, Western Australia, 6983.
and
BRONWEN KEIGHERY
Office of the Environmental Protection Authority, Locked Bag 33,
Cloisters Square, Perth, Western Australia, 6850.

Abstract

A checklist of the vascular flora of Dryandra Woodland is presented for the first time. Dryandra Woodland contains a vascular flora of at least 928 taxa; 813 are natives and 115 are weeds. Of these taxa 10 are non-flowering plants (7 natives, 3 weeds), 256 are Monocotyledons (219 natives and 37 weeds) and 662 are Dicotyledons (587 natives and 75 weeds).

INTRODUCTION

Often referred to as Dryandra State Woodland or Dryandra Forest the Management Plan (CALM 1995) renamed the area comprising Lol Gray (State Forest number 52), Montague (number 53) and Highbury (number 52) State forests as Dryandra Woodland. In this paper we have studied the vascular flora of the first two blocks which are north of Narrogin (Map 1). Although these have always been historically referred to as Dryandra Forest (Roots et al. 2003), to avoid confusion we have used the name Dryandra Woodland.
Dryandra Woodland is located about 160 kilometres south-east
of Perth, and 22 kilometres north-east and north-west of Narrogin on the western margin of the Western Australian Wheatbelt, straddling the boundary between the Jarrah Forest and Avon-Wheatbelt Biogeographic regions (Department of the Environment and Water Resources 2007).
Dryandra Woodland comprises a total area of 27,947 hectares spread over 24 named forest blocks. Some of these are not contiguous, and there are 9 groups of discrete contiguous units (Department of Environment and Conservation, 1;50,000 Dryandra Map Sheet). The largest contiguous unit is formed by the

Map 1. Location of Dryandra Woodland and DEC Reserves and Forest (adapted from Department of Conservation and Land Management 1995).

Central Blocks of 12,192 hectares. The other eight units range in size from 87 hectares to 3,913 hectares. Prior to 1970 approximately 8,000 hectares of the woodland were converted to Mallet (Eucalyptus astringens) plantations to supply the tanning industry.
Dryandra Woodland experiences a typical Mediterranean climate receiving an annual rainfall of approximately $500-600 \mathrm{~mm}$. The woodland has a low relief ranging from 240-440 metres above sea level, with the major landforms being low lateritic plateaus, slopes, flat sandplains and valleys.
Despite the Woodland being a large remnant of native vegetation of very high faunal and cultural significance (Serventy 1970 and CALM 1995), there is little published on the flora of Dryandra Woodland. This paper documents and discusses for the first time the vascular flora of this major reserve of the Western Australian Agricultural Zone.

SURVEY METHOD

Survey work in Dryandra Woodland Blocks was performed over many flowering seasons from 1983 to 2008, some of the latter period in conjunction with regional quadrat based survey work on the Salinity Action Plan (Keighery et al. 2004).
Opportunistic plant collections, that is collections made outside set quadrats, were made during vehicle and foot traverse at
various times of the year, especially during 1996 and 2008. Over 800 voucher collections were made and most are deposited in PERTH or KPBG. Nomenclature generally follows that used that used in Florabase (Western Australian Herbarium 1998-), or in the most recent revisions. Conservation status of the flora is assigned in Smith (2010) as per Table 1.

GEOMORPHOLOGY AND SOILS

Dryandra Woodland lies on the Western Shield. The major landform units have been described by McArthur et al. (1977) as the Norrine and Noombling units. Norrine is a lateritic landform covering areas dominated by

Table 1. Catagories of Conservation Listed Flora according to the degree of perceived threat

Category / Definition

Pl (Poorly known Flora) Taxa with less than 5 populations, which are under threat
P2 (Poorly known Flora) Taxa with less than 5 populations, at least some of which are not believed to be under immediate threat
P3 (Poorly known Flora) Taxa with several populations (more than 5), at least some of which are not believed to be under immediate threat
P4 (Rare Taxa) Taxa which are considered to be adequately surveyed and which while being rare are not currently threatened by any identifiablg factors
lateritic duricrust, gravels and sand. Lateritic residuals are usually small and bounded by small escarpments. This unit occupies the upper landscape positions but occasionally extends as a spur to the lower slopes. The Noombling unit is an erosion surface covering areas stripped of lateritic materials, slopes are long and gentle and granite rock outcrops are common.
The other landform unit in the area, the Biberkine is a depositional landform which includes areas of alluvial valley fill and floors of major streams. This unit has been largely excised from the Woodland and is now cleared farmland.

VEGETATION

Beard (1979) described the original vegetation of the Dryandra area at a scale of $1: 250,000$ in six vegetation types:

1. Communities of granite rocks
2. Woodlands of Powderbark (Eucalyptus accedens) and Brown Mallet (Eucalyptus astringens) on lateritic uplands
3. Woodlands of Wandoo (Eucalyptus wandoo) on upper slopes
4. Woodlands of Marri and Wandoo on middle slopes
5. York Gum (Eucalyptus loxophleba) next to drainage channels
6. Flooded Gums (Eucalyptus rudis) lining creeks.
A detailed vegetation map at a
scale of $1: 12,500$ of Dryandra Woodland was completed by Coates (1993). Coates listed 11 vegetation associations:
7. Woodland of western lateritic plateaus (E. accedens with E. marginata, E. wandoo and Corymbia calophylla,)
8. Woodland of Eucalyptus wandoo (extensive)
9. Woodland of Eucalyptus accedens (extensive)
10. Woodland of Eucalyptus astringens (common, largely planted)
11. Woodland of Corymbia calophylla and Banksia (localised)
12. Woodland of Eucalyptus loxophleba (small areas)
13. Allocasuarina huegeliana low woodland often with E . wandoo (common but localised)
14. Acacia acuminata low forest to woodland (occasional)
15. Low, species diverse Kwongan (slopes below lateritic residuals)
16. Dryandra (now Banksia) and Petrophile tall Shrubland, > 2 metres (duplex soils, shallow gravely soils)
17. Lithic (granite) complex.

At both of these scales the vegetation reflects the dominant landforms.

1. On the plateau are woodlands of Jarrah, mixed JarrahMarri and Powderbark, Eucalyptus drummondii Mallee heaths or mixed tall Kwongan.
2. The slopes are dominated by Brown Mallet woodlands which grade into Wandoo and mixed Wandoo/Powder bark woodlands.
3. A few areas of flat sandy or duplex soils support Kwongan or Banksia woodlands.
4. The valley bottoms have low open woodlands of Jam, Marri or rarely York Gum and Flooded Gums.
5. Scattered through the woodlands are granite outcrops with their own distinctive flora usually edged by Rock She-oak low forests or woodlands.

FLORA

Results

The flora list (Appendix) places records of the vascular flora into the major vegetation/landform units following Beard and Coates:

1. Woodlands of the western lateritic plateaus (normally dominated by Jarrah), corresponds to Coates vegetation association 1
2. Wandoo woodlands, corresponds to Coates vegetation association 2
3. Sandy woodlands (Marri and Banksia), corresponds to Coates vegetation association 5
4. Lithic complex (includes Allocasuarina low forest), corresponds to Coates vegetation associations 7 and 11
5. Heath on deep or duplex sandy loam soils corresponds to Coates vegetation association 10
6. Lateritic uplands (Powderbark Wandoo, Eucalyptus drummondii mallee heathlands and some Mallet areas) corresponds to Coates vegetation associations 3, 4 and 9
7. Jam woodlands, wet flats and creeklines corresponds to Coates vegetation associations 6 and 8
8. Disturbed areas (Paddocks, tracks, plantations, water points), except for vegetation association 4 not mapped by Coates or Beard

Species Richness
Dryandra Woodland contains a vascular flora of at least 928 taxa (Appendix 1); 813 are natives and 115 are weeds. Of these taxa 10 are non-flowering plants (7 natives, 3 weeds), 256 are Monocotyledons (219 natives and 37 weeds) and 662 are Dicotyledons (587 natives and 75 weeds).
The Orchidaceae (73 natives, 2 weeds), Myrtaceae (70 natives), Proteaceae (66 natives, 2 weeds), Papillionaceae (65 natives, 12 weeds), Asteraceae (60 natives, 15 weeds), Stylidiaceae (37 natives), Mimosaceae (30 natives, 3 weeds), Epacridaceae (29 natives), Anthericaceae (29 natives), Goodeniaceae (29 natives) and Cyperaceae (29 natives, 2 weeds) are the most species rich families. These comprise over 60% of the known flora of Dryandra Woodland.

The above are the typical species diverse families of the kwongan (heathlands) of southern Western Australia. This was also demonstrated in the Salinity Action Plan Survey of the Western Australian Wheatbelt (Gibson et al. 2004) who found that the Myrtaceae, Proteaceae, Papillionaceae, Asteraceae, Mimosaceae, Cyperaceae, Orchidaceae, Epacridaceae, Poaceae and Stylidiaceae were the 10 most speciose families compromising 63% of the flora recorded. The herbaceous Monocotyledon families, which are species diverse in the higher rainfall Warren bio-region (Lyons et al. 2000); Haemodoraceae (13), Apiaceae (19) and Dasypogonaceae (10) are here reduced in diversity. The only exception being the Cyperaceae, containing genera which are diverse in sandy soils and wetlands and is therefore, diverse in both areas.
The largest genera are Stylidium (32 taxa), Acacia (30), Eucalyptus (23), Caladenia (22), Banksia (19), Hakea (16), Leucopogon (15), Gastrolobium (15), Petrophile (14) and Drosera (13). Again the Salinity Action Plan Survey recorded the largest genera as Acacia, Eucalyptus, Banksia, Stylidium, Leucopogon, Schoenus, Grevillea, Hibbertia, Caladenia and Daviesia.

Priority Flora
Dryandra Woodland contains no declared rare flora but has 18 species of priority flora (Smith 2010):

Acacia alata var platyptera (P4); scattered populations from Mogumber south to Dryandra.
Acacia deflexa (P4); scattered populations from Dryandra south-east to the Wittenoon Hills (NE Esperance)
Andersonia bifida (P2); spparently confined to duplex soils in heathland in Dryandra
Anigozanthos bicolor subsp. exstans (P3); Meckering to Dryandra
Asterolasia pallida subsp. hyalina (P2); apparently confined to lateritic soils in heathland in Dryandra
Banksia cynaroides (P4); occurs from Brookton to Harrismith
Banksia subpinnatifida var subpinnatifida (P2); occurs from Pingelly to Birdwhistle nature reserve
Chamelaucium croxfordiae (P2); recorded only from Boyagin \& Dryandra
Darwinia sp. Dryandra (GK 9295), (P4); occurs from Dryandra to Westdale
Darwinia thymoides subsp. bella (P4); occurs from York to Dryandra
Gastrolobium ovalifolium (P4); occurs from Boddington to Narrogin and Kojonup
Gastrolobium stipulare (P4); occurs from Brookton to Highbury
Gastrolobium tomentosum (P4); occurs from Willams to Dryandra to Darkan
Grevillea crowleyae (P2); occurs from Darradine to Dryandra to Jarrahdale

Hibbertia montana (P4); occurs from York to Dryandra
Marianthus dryandra (P2); Dryandra
Persoonia hakeiformis (P2); occurs from Dryandra to Newdegate
Xanthorrhoea brevistylis (P4); occurs from Dryandra to Albany There are three taxa that may be endemic to Dryandra woodland (Andersonia bifida, Asterolasia pallida subsp. hyalina and Marianthus dryandra).

Hybrids

Five naturally occurring interspecific hybrids were located in Dryandra Woodland, including: Lechenaultia formosa x tubiflora (GK 9327), Caladenia flava x reptans (GK 14987) and a series of hybrid eucalypts (E. accedens x incrassata (Brooker 9955), E. aspera x pluricaulis (Rose 621) and E. subangusta x wandoo (GK 9302). It is unknown whether this is unusual or a reflection of the intensive collecting within the study area. In this context Tutanning Nature Reserve has one recorded hybrid eucalypt.

Weeds

115 naturalised alien species (weeds) recorded for Dryandra Woodland, a higher percentage (12.4%) of the total flora than for the Avon-Wheatbelt IBRA, 9.1\% (Keighery and Longman 2004). However, Dryandra Woodland has a long history of settlement and management disturbance. As a consequence, 31 of the weeds (28% of the total) were only
recorded from highly disturbed sites such as tracks, fire breaks, Mallet plantations, old and current settlements and dam sites. Many of these species will never become major weeds of the bushland areas.
The presence of an arboretum in Dryandra Woodland has also added some very unusual non local native weeds to the list where these species have seeded into the surrounding bushland. These include several Callitris species, Hakea bucculenta, Hakea francisiana and hybrids of the last two species. Species obviously planted and not spreading were recorded, but are not listed in this paper.
Of the remaining weeds, approximately 17 (15% of the total) are the major weeds of Dryandra Woodland. Granites and Wandoo woodlands are the areas where weeds are having the greatest impacts. In these areas the most serious invasive weeds present are: Asparagus asparagoides, Monoculus monstrous, Brassica tournefortii, Moraea flaccida, Moraea collina, Freesia hybrid, Romulea rosea, Acacia pycnatha, Oxalis purpurea, Trifolium arvense, T. campestre, T. dubium, Lotus angustissimus, Avena barbata, Briza maxima, B. minor and Bartsia trixago.

DISCUSSION

We consider that over 90% of the known flora of Dryandra Woodland has now been recorded, and that new records will mainly be
recorded after sporadic events such as wildfires.
Since the woodland straddles the boundaries between the Jarrah Forest Bio-geographic region and the Avon-Wheatbelt it is perhaps not suprising that at least 60 taxa (ca. 7% of the total flora), normally components of the Jarrah Forest are at or near their eastern range limits,e.g.: Ptilotus stirlingii, Thysanotus multiflorus, Xanthosia cilata, Pithocarpa pulchella, Carex inversa, Astroloma ciliatum, Scaevola platyphylla, Jacksonia sternbergiana, Stirlingia simplex.
Another feature of interest as demonstrated by the priority flora list are the number of species, chiefly of the Wandoo woodlands that are at, or near, their northern or southern limits in Dryandra Woodland. It is probable that many of the species recorded in Dryandra Woodland from the heath and lateritic uplands are at, or near their Western range limits, but further surveys in the near-bye forest estate are required to quantify this observation.
In the Wheatbelt Salinity Survey (Gibson et al. 2004), 52% of species recorded were shrubs, 13.5% annuals, 11% perennial herbs, 7% geophytes and 4% sedges. At Dryandra Woodland, 48.4% of species were shrubs, 13.1% annuals, 12.6% perennial herbs, 15.8% geophytes and 7.1% sedges. This increase in geophytes and sedges is also reflected in the observed species richness of the predominately herbaceous families: Cyperaceae, Asteraceae,

Orchidaceae, Stylidiaceae and Goodeniaceae in Dryandra Woodland. This increase is a reflection of the higher rainfall, hence fresher wetlands that retain soil saturation for longer and hence have a longer growing period for Dryandra Woodland compared to the Wheatbelt as a whole.
With over 800 native taxa listed, the flora of Dryandra Woodland is diverse; however, since few comparable areas have been surveyed it is not possible to determine if this diversity is unusual at a quadrat, local area or regional scale.
There are some limited data at the quadrat scale in the Wheatbelt Salinity Survey (Gibson et al. 2004), which suggests that the western heaths are rich in shrub species (43-45 species $/ 100 \mathrm{~m}^{2}$) and the western Wandoo woodlands are species rich in herbaceous species. The Western woodlands were the richest of all Wheatbelt vegetation types with a mean of 52.3 species per site. Dryandra Woodland with a combination of both western heaths and western woodlands is species rich at the quadrat and reserve scale.
The only large near-bye reserve that has been intensively studied is Tutanning Nature Reserve (26 km . N.W. Pingelly and 25 km . east of Dryandra Woodland, Map 1). This reserve, with an area 5,200 hectares has a known flora of 697 species, including 35 weeds (Langley pers. com.) Unpublished surveys of Boyagin Nature

Reserve (Map 1) with an area of 6,700 hectares, by the authors have currently recorded 767 taxa, including 61 weeds.
These studies suggest that the plant communities at the western margins of the Wheatbelt are species diverse at the quadrat and local scale. At the regional scale, information suggests that Banksia woodlands of the Swan Coastal Plain and Whicher Scarp are richer at a quadrat scale (Gibson et al., 1994; Keighery et al., 2008). Heathland communities of the northern and southern sandplains are also richer, but all are highly variable.
A high rate of species turnover is also apparent. Comparison of the known native flora of Tutanning and Dryandra Woodland shows that 1,041 taxa were listed from both reserves, 609 taxa are shared between the areas, 304 are only found in Dryandra Woodland and 128 only in Tutanning. That is only 58.4% of their total floras are shared between the reserves. Although only partially surveyed similar differences are already apparent with the known floras of Boyagin nature reserve and Highbury Forest.
In summary the vascular flora of Dryandra Woodland reflects the bio-geographic position of the bushland, containing elements of the Jarrah Forest and AvonWheatbelt, with many species at their geographic margins, contributing to the high level of turnover noted between reserves. The plant communities them-
selves are species rich contributing to the floristic diversity recorded.

ACKNOWLEDGEMENTS

Kings Park and Botanic Gardens, The Department of Fisheries and Wildlife, the Forests Department and the Department of Conservation and Land Management supported and funded this work over many years. David Rose (son of the Caretaker of Dryandra Lions Village) greatly assisted the list in collecting many records for the woodland during the major survey period in the 1987/8.

REFERENCES

BEARD, J.S. 1979. The Vegetation of the Pinjarra Area, WA. Map and Memoir, Vegmap Publications, Perth.
COATES, A.M. 1993. Vegetation Survey of Dryandra Forest. Department of Conservation and Land Management. Map and Memoir, Como.
DEPARTMENT of CONSERVATION and LAND MANAGEMENT. 1995. Dryandra Woodland, Management Plan, 1995-2005. Department of Conservation and Land Management, Como.
DEPARTMENT of the ENVIRONMENT and WATER RESOURCES. 2007. IBRA Version 6.1. Available at http:// www.environment.gov.au/parks/ $\mathrm{nrs} / \mathrm{ibra} / \mathrm{version6-1/}$ index.html. GIBSON, N., KEIGHERY, B.J., KEIGHERY, G.J., BURBIDGE, A.H.
and LYONS, M.N. 1994. A Floristic Survey of the Southern Swan Coastal Plain. Report for the Australian Heritage Commission by the Department of Conservation and Land Management and the Conservation Council of Western Australia (Inc.).
GIBSON, N., KEIGHERY, G.J., M.N. LYONS, M.N.and WEBB, A. 2004. Terrestrial flora and vegetation of the Western Australian Wheatbelt. Records Western Australian Museum Supplement 67: 139-189.
KEIGHERY, G.J., HALSE, S.A., HARVEY, M.S., McKENZIE, N.L. (eds.) 2004. A biodiversity survey of the Western Australian agricultural zone. Records Western Australian Museum Supplement 67.
KEIGHERY, B.J., KEIGHERY, G.J., WEBB, A., LONGMAN, V., and GRIFFIN, E.A. 2008. A Floristic Survey of the Whicher Scarp. Department of Environment and Conservation, Kensington.
KEIGHERY, G.J. and LONGMAN, V. 2004. The naturalized vascular plants of Western Australia 1: Checklist, Environmental Weeds and Distribution in IBRA regions. Plant Protection Quarterly 19: 12-32.

LYONS, M.N., KEIGHERY, G.J., GIBSON, N. and WARDELLJOHNSON, G. 2000. The vascular flora of the Warren bioregion, south-west Western Australia: composition, reservation status and endemism. CALMScience 3: 181-250.
McARTHUR, W.M., CHURCHWARD, H.M. \& HICK, P.T. 1977. Landform and Soils of the Murray River Catchment Area of Western Australia. CSIRO Div. Land Resour. Mgmt. Ser. No. 3, 1-23.
ROOTS, E. DAWSON, B., BURGES, W., PENNY, C. and WHIFORD, J. 2003. Numbat Country; The Story of the Shire of Cuballing. Shire of Cuballing.
SERVENTY V. 1970. Dryandra The Story of an Australian Forest. Reed Publishers, Sydney.
SMITH, M.G. 25/3/2010 Declared Rare and Priority List for Western Australia. Department of Conservation and land Management, W.A.

WESTERN AUSTRALIAN HERBARIUM 1998-. FloraBase-The Western Australian Flora. Department of Environment and Conservation.
http://florabase.dec.wa.gov.au (accessed 20 July 2010).

Habitat Code: 1 - Woodlands of the western lateritic plateau (normally Jarrah dominated), 2 - Wandoo woodlands, 3 - Woodlands of sandy soils (Marri and/or Banksia), 4 - Lithic complex (Granite herbfield, heath, shrubland and Allocasuarina huegeliana low forest), 5 - Heath on sandy loam soils, 6 - lateritic upland (Powderbark woodlands, Mallee, Kwongan and Mallet) 7 -woodlands on wet flats and creeklines (normally Jam rarely York Gum), 8 - Disturbed areas (paddocks, tracks, roads, plantations and settlement area). * Naturalised species

Scientific name	1	2	3	4	5	6	7	8
Adiantaceae								
Cheilanthes austrotenuifolia				+			+	
Pleurosorus rutifolius				+				
Aizoaceae								
Carpobrotus modestus		+			+			
Alliaceae								
* Allium triquetrum								+
Amaranthaceae								
Ptilotus declinatus	+							
Ptilotus drummondii var drummondii	+				+		+	
Ptilotus humilis var humilis		+	+		+			
Ptilotus manglesii	+		+				+	
Ptilotus polystachyus			+					
Ptilotus spathulatus	+		+					
Ptilotus stirlingii var stirlingii	+							
Amaryllidaceae								
* Amaryllis belladonna								+
* Narcissus tazetta								+
Anthericaceae								
Agrostocrinum scabrum				+			+	
Arthropodium capillipes	+			+	+	+		
Arthropodium curvipes subsp. nov.				+				
Arthropodium preissii							+	
Borya constricta				+				
Borya laciniata							+	
Borya scirpioidea		+					+	
Borya sphaerocephala			+					
Caesia alfordii							+	
Caesia micrantha	+		+					
Caesia occidentalis						+		
Chamaescilla corymbosa var. corymbosa				+			+	
Chamaescilla spiralis		+	+		+			
Corynotheca micrantha	+		+					

Scientific name	1	2	3	4	5	6	7	8
Laxmannia grandiflora subsp. grandiflora		+				+		
Laxmannia omnifertilis					+			
Laxmannia ramosa subsp. ramosa	+	+					+	
Laxmannia squarrosa	+		+					
Sowerbaea laxiflora	+	+	+		+	+	+	
Thysanotus asper					+			
Thysanotus dichotomus	+		+					
Thysanotus manglesianus	+						+	
Thysanotus multiflorus		+	+					
Thysanotus patersonii	+	+					+	
Thysanotus pyramidalis		$+$						
Thysanotus sparteus	+		+					
Thysanotus tenellus	+							
Thysanotus thyrsoideus	+						+	+
Thysanotus triandrus			+		+			
Tricoryne elatior	+	+						
Tricoryne tenella			+					
Apiaceae								
Actinotus glomeratus							+	
Actinotus leucocephalus	+							
Daucus glochidiatus	+	+	+	+	+		+	
Eryngium pinnatifidum subsp. minor		+					+	
Homalosciadium homalocarpum		+		+			+	
Hydrocotyle alata				+			+	
Hydrocotyle diantha				+			+	
Hydrocotyle callicarpa	+	+			+			
Hydrocotyle pilifera var. glabrata		+						
Hydrocotyle rugulosa		+				+	+	
Platysace juncea						+	+	+
Trachymene cyanopetala		+					+	
Trachymene ornata		$+$				+	+	
Trachymene pilosa	+	+	+				+	
Xanthosia atkinsoniana	+	+			+			
Xanthosia candida							+	
Xanthosia ciliata	+							
Xanthosia huegelii	+							
Xanthosia singuliflora	+	+						
Apocynaceae								
* Vinca major								+
Araceae								
* Zantedeschia aethiopica							+	
Asparagaceae								
* Asparagus asparagoides		$+$						+

Scientific name	1	2	3	4	5	6	7	8
Asphodelaceae								
Bulbine semibarbata		+		+			+	
Asteraceae								
Actinobole uliginosa		+		+				
Angianthus tomentosus						+		
Argentipallium niveum		+				+		
* Arctotheca calendula		+		+			+	+
Asteridea nivea		+				+		
Blennospora drummondii			+	+		+	+	
Brachyscome glandulosa				+				
Brachyscome bellidoides		+						
Brachyscome iberidiifolia	+	+	+	+				
Brachyscome perpusilla var tenella							+	
Calocephalus angianthoides				+				
Calotis hispidula		+		+				
* Carduus pycnocephalus				+				+
* Centaurea melitensis		+				+	+	+
Ceratogyne obionoides		+						
Chrysocephalum semipapposum		+						
Chthonocephalus pseudevax				+				
* Cirsium vulgare		+		+				
* Conyza albida								
Cotula australis		+					+	
* Cotula bipinnata		+						+
Cotula coronopifolia				+			+	
Cotula cotuloides							$+$	
Cotula drummondii		+						
Craspedia variabilis	+					+		
* Dittrichia graveolens								+
Euchiton sphaericus		+						
Gnephosis drummondii		+						
Gnephosis tenuissima	+	+			+			
Helichrysum leucopsidum		+			+			
* Helichrysum luteo-album								+
Hyalosperma cotula				+			+	
Hyalosperma demissum						+		
* Hypochaeris glabra		+	+	$+$	+	+	+	+
Ixiolaena viscosa					+			+
Lagenophora huegelii	+	+	+		+		+	
Lawrencella rosea		+						
Millotia myosotidifolia	+	+	+		+		+	
Millotia tenuifolia		+			+		+	
* Monoculus monstrosus		+		+			+	+
Myriocephalus occidentalis		+						
Myriocephalus rhizocephalus							+	
Olearia elaeophila							+	
Olearia muricata	+						+	

Scientific name	1	2	3	4	5	6	7	8
Olearia rudis	+					+		
Pithocarpa pulchella var melanostigma	+							
Podolepis canescens	$+$	+						
Podolepis gracilis		+						
Podolepis lessonii		+				+		
Podotheca angustifolia	$+$	+				+		
Podotheca gnaphaloides			+					
Pterochaeta paniculata	+		+		+	+		
Quinetia urvillei	+	+	+		+	+	+	
Rhodanthe citrina	+	+			+	+		
Rhodanthe corymbosum		+	+	$+$				
Rhodanthe laevis		+						
Rhodanthe manglesii		+		$+$			+	
R hodanthe pygmaea		+					+	
Senecio glossanthus		+						
Senecio hispidulus	$+$	+						
Senecio pinnatifolius		+				+		
Senecio quadridentatus		+					+	
Siloxerus filifolius					+			
Siloxerus humifusus	+		+		+			
Siloxerus multiflorus		+			+			
* Soliva sessilis		+						+
* Sonchus asper							+	+
* Sonchus oleraceus		+	+	+		+	+	+
Trichocline spathulata	+							
* Ursinia anthemoides	+	+	+	+				+
* Vellereophyton dealbatum		+		$+$				+
Waitzia acuminata var acuminata	+	+			+	+		
Waitzia acuminata var albicans		+						
Waitzia nitida	+	+				+		
Waitzia suaveolens var suaveolens	+		+					
Boraginaceae								
Halgania anagalloides		+						
* Echium plantagineum		+						+
Brassicaceae								
* Brassica tournefortii								+
Lepidium rotundum		+						
Campanulaceae								
Wahlenbergia gracilenta	$+$	+	+	$+$	+	+		
Wahlenbergia multicaulis				$+$			+	
Wahlenbergia preissii				+				
Caesalpiniaceae								
Labichea lanceolata				+				

Scientific name	1	2	3	4	5	6	7	8

Caryophyllaceae

* Cerastium glomeratum
* Moenchia erecta
* Petrorhagia dubia
* Polycarpon tetraphyllum
* Silene gallica var gallica
* Silene gallica var quiquevulnera
* Spergula arvensis

Casuarinaceae

Allocasuarina campestris
Allocasuarina huegeliana
Allocasuarina humilis
Allocasuarina microstachya
Allocasuarina thuyoides
Centrolepidaceae
Aphelia brizula
Aphelia cyperoides
Aphelia drummondii
Aphelia nutans
Centrolepis aristata
Centrolepis drummondiana
Centrolepis inconspicua
Centrolepis glabra
Centrolepis pilosa
Centrolepis polygyna
Chenopodiaceae

* Chenopodium album +

Clusiaceae
Hypericum gramineum
Colchicaceae
Burchardia congesta
Burchardia multiflora
Wurmbea dioica subsp. alba
Wurmbea sinora
Wurmbea tenella
Convolvulaceae
Convolvulus angustissimus subsp. angustissimus

Crassulaceae
Crassula colorata var. colorata

* Crassula decumbens

$+\quad+\quad+$
$+\quad+$
$+$
$+$
$+\quad+$
$+\quad+$
$+\quad+\quad+\quad+$
$+$

Scientific name	1	2	3	4	5	6	7	8
Crassula exserta	+	+			+		+	
* Crassula natans var minus				+			+	
Crassula pedicellosa		+					+	
Crassula peduncularis				+				
Cupressaceae								
* Callitris columellaris								+
Callitris roei								+
* Callitris verrucosa								+
Cuscutaceae								
* Cuscuta epithymum						$+$		
Cyperaceae								
Carex inversa							+	
Carex preissii		+						
Caustis dioica		+			+	+		
Chorizandra enodis							+	
* Cyperus tenellus		+		+			+	+
Gahnia australis	+	+			+	+		
Gahnia drummondii						+		
Isolepis congrua								
Isolepis cyperoides								
* Isolepis marginata			+				+	
Isolepis stellata						+		
Lepidosperma leptostachyum	+				+	+		
Lepidosperma pubisquameum					+	+		
Lepidosperma resinosum				$+$				
Lepidosperma sp. Boorabbin (K.L. Wilson 2579)		+		+				
Mesomelaena preissii	+	+						
Mesomelaena stygia			+					
Schoenus armeria					+	$+$		
Schoenus ?clandestinus (G.Keighery 14984)		$+$						
Schoenus curvifolius	+		+					
Schoenus minutulus					+			
Schoenus nanus		+		+			+	
Schoenus odontocarpus				+				
Schoenus pleiostemoneus	+		+					
Schoenus subbulbosus			+					
Schoenus tenellus							+	
Schoenus trachycarpus		+						
Schoenus unispiculatus		$+$		$+$				
Tetraria octandra	$+$	+						
Tricostularia compressa						+		
Tricostularia neesii		+						

Scientific name	1	2	3	4	5	6	7	8
Dasypogonaceae								
Chaemaxeros serra	+		+			+		
Lomandra collina	+							
Lomandra effusa		+			+	+		
Lomandra micrantha subsp. micrantha	$+$	+					+	
Lomandra micrantha subsp. teretifolia						+		
Lomandra mucronata						+		
Lomandra nutans	+					+		
Lomandra preissii	+		+					
Lomandra purpurea	$+$							
Lomandra suaveolens			+					
Dilleniaceae								
Hibbertia acerosa		+						
Hibbertia commutata	+	+			+	+		
Hibbertia exasperata		+				+		
Hibbertia hemignosta		+			+	+		
Hibbertia hibbertioides var hibbertioides		+				+		
Hibbertia hibbertioides var pedunculata		+	+		+			
Hibberia hypericoides	+		+			+		
Hibberia microphylla				+		+		
Hibbertia montana	$+$					+		
Hibbertia polystachya		+				+		
Hibbertia rupicola		+						
Droseraceae								
Drosera androsace					+			
Drosera bulbosa subsp. bulbosa		+					+	
Drosera erythrorhiza subp. squamosa			+					
Drosera gigantea subsp. gigantea								
Drosera glanduligera	$+$	+	+	+		+	+	
Drosera hyperostigma						+		
Drosera macrantha subsp. macrantha	+	+	+					
Drosera menziesii subsp. menziesii	$+$	+					+	
Drosera purpurascens		+						
Drosera pallida	$+$							
Drosera spilos		+						
Drosera stolonifera		+	+				+	
Drosera subhirtella		+					+	
Epacridaceae								
Andersonia bifida					+			
Andersonia caerulea	+		+		+	+		
Andersonia lehmanniana subsp. pubescens					+	+		
Andersonia parviflora		+			+			
Astroloma cataphractum		+			+			
Astroloma ciliatum	$+$	+						

Scientific name	1	2	3	4	5	6	7	8
Astroloma compactum		+			+			
Astroloma drummondii	$+$	+						
Astroloma epacridis	+	+				+		
Astroloma pallidum	$+$		+					
Astroloma serratifolium		+			+	+		
Astroloma sp.Tutanning (A.S. George 7779)		+			+			
Leucopogon conostephioides	$+$							
Leucopogon dielsianus		+			+			
Leucopogon fimbriatus		+			+			
Leucopogon glabellus	$+$		+					
Leucopogon nutans						+		
Leucopogon obtusatus		+						
Leucopogon oxycedrus	$+$	+						
Leucopogon pendulus				+				
Leucopogon propinquus	$+$					+		
Leucopogon pubescens						+		
Leucopogon sp.Boddington(D. Halford 80746)	$+$	+						
Leucopogon sp.Darling Range(F.\&J.Hort 1804)	$+$					+		
Leucopogon sp.Great Southern(Cowan A586)						+		
Leucopogon sp.Wandering(F.Hort 419)						+		
Leucopogon strictus						+		
Lysinema pentapeltum	+		+		+			
Styphelia tenuiflora	$+$	+			+	$+$		
Euphorbiaceae								
Beyeria lechenaultii		+			+	+		
* Euphorbia peplus				+				+
Monotaxis grandiflora var grandiflora						+		
Phyllanthus calycinus	+							
Poranthera ericoides	+	+						
Poranthera microphylla	+	+			+		+	
Stachystemon virgatus	+							
Fumariaceae								
* Fumaria capreolata								+
* Fumaria muralis								+
Gentianaceae								
* Centaurium erythraea		+					+	+
* Cicendia filiformis		+					+	
* Cicendia quadrangularis		+					+	
Sebaea ovata				+			+	
Geraniaceae								
* Erodium botrys		+		+				+
* Erodium cicutarium		+						+
Erodium cygnorum	$+$				+		+	

Scientific name	1	2	3	4	5	6	7	8
Geranium retrorsum		+			+			
Pelargonium littorale							+	
Pelargonium havlasae		$+$						
Goodeniaceae								
Anthotium odontophyllum	+	$+$						
Dampiera eriocephala					+			
Dampiera juncea	+	$+$				+		
Dampiera lavandulacea	+							
Dampiera lindleyi	+	$+$			+			
Dampiera obliqua	+	+			+			
Dampiera sacculata			+					
Dampiera wellsiana					+	+		
Goodenia berardiana		$+$					+	
Goodenia coerulea						+		
Goodenia convexa						+		
Goodenia fasiculata	+					+		
Goodenia helmsii				+				
Goodenia incana		+						
Goodenia micrantha							+	
Goodenia scapigera subsp. scapigera				+		+		
Goodenia ?quasilibera (GK/JA 1539)					+			
Goodenia pulchella		+		+				
Goodenia watsonii subsp. glandulosa						+		
Lechenaultia biloba	+		+			+		
Lechenaultia formosa		$+$			+	+		
Lechenaultia tubiflora		$+$						
Scaevola calliptera						+		
Scaevola humifusa		$+$					+	
Scaevola platyphylla	+							
Scaevola repens			+					
Velleia cycnopotamica		$+$		$+$				
Velleia trinervis		+						
Verreauxia reinwardtii	+		+			+		
Gyrostemonaceae								
Gyrostemon subnudus				$+$				
Haemodoraceae								
Anigozanthos bicolor subsp. exstans		$+$						
Anigozanthos humilis subsp. humilis	+							
Anigozanthos manglesii subsp. manglesii	+							
Conostylis aculeata subsp. bromelioides	+	$+$	+					
Conostylis petrophiloides	+							
Conostylis serrulata	+							
Conostylis setigera subsp. setigera						+		
Haemodorum discolor	+	+				+		
Haemodorum laxum			+					

Scientific name	1	2	3	4	5	6	7	8
Haemodorum simplex				+			+	
Haemodorum sparsiflorum				+			+	
Haemodorum spicatum	+		+		+			
Tribonanthes longipetala		+					+	
Tribonanthes violacea				+			+	
Haloragaceae								
Glischrocaryon angustifolium	+							
Glischrocaryon aureum		+			+			
Glischrocaryon flavescens		+			+	+		
Gonocarpus cordiger	+	+	+		+			
Gonocarpus nodulosus		+		+			+	
Hydatellaceae								
Trithuria bibracteata							+	
Trithuria submersa							+	
Hypoxidaceae								
Hypoxis glabella var. glabella		+		+			+	
Hypoxis occidentalis var. quadrloba		+					+	
Iridaceae								
* Chasmanthe floribunda								+
* Freesia hybrid		+						+
* Gladiolus tristis								+
* Iris germanica								+
* Ixia maculata								+
* Moraea faccida		+					+	+
* Moraea collina		+					+	+
* Moraea setifolia		+					+	+
Orthrosanthus laxus var. gramineus	+					+		
Patersonia juncea					+	+		
Patersonia occidentalis var occidentalis	+		+					
Patersonia pygmaea					+	+		
* Romulea rosea var australis		+					+	+
* Romulea rosea var rosea		+		+	+		+	+
Juncaceae								
* Juncus bufonius		+					+	
* Juncus capitatus		+					+	+
Juncus pallidus							+	+
Juncus pauciflorus							+	
Luzula meridionalis	+	+						
Juncaginceae								
Triglochin calcitrapa		+					+	
Triglochin lineare							+	
Triglochin nana		+		+				

Scientific name	1	2	3	4	5	6	7	8
Lamiaceae								
Chloanthes coccinea	+				+			
Hemiandra incana		+				+		
Hemiandra pungens				+				
Hemigenia humilis		+				+		
Hemigenia incana		+				+		
Hemigenia rigida		+				+		
Hemigenia argentea		+				+		
Hemigenia wandooana		+						
Microcorys barbata						+		
Microcorys capitata						+		
Microcorys ericifolia						+		
Microcorys subcanescens						+		
* Stachys arvensis		+						+
Lauraceae								
Cassytha flava	+				+			
Cassytha glabella		+				+		
Cassytha racemosa		+		+			+	
Lentibulariaceae								
Polypompholyx multifida		+		+			+	
Polypomphylx tenella		+		+			+	
Utricularia menziesii				$+$				
Linaceae								
Linum marginale	$+$	+			+			
Lobeliaceae								
Isotoma hypocrateriformis	$+$	+	+			+		
Isotoma scapigera				+			+	
Lobelia cleistogamoides				+	+	+		
Lobelia gibbosa	+				+	+		
Lobelia rariflora		+						
Lobelia rhombifolia		+	+					
Lobelia rhytidosperma	+	+		+				
* Monopsis debilis							+	
Loganiaceae								
Logania campanulata	$+$							
Logania flaviflora					+			
Logania tortuosa					+			
Phyllangium sulcatum		+		+			+	
Loranthaceae								
Amyema miquelii	+	+						
Amyema preissii							+	
Nuytsia floribunda	+		+					

Scientific name	1	2	3	4	5	6	7	8
Lycopodiaeaceae								
Phylloglossum drummondii		+		+			+	
Lythraceae								
* Lythrum hyssopifolium							+	
Mimosaceae								
Acacia acuminata		+		+			+	
Acacia alata var. platyptera				+				
Acacia applanata		+						
* Acacia baileyana								+
Acacia celastrifolia						+		
Acacia chrysocephala						+		
Acacia browniana var intermedia		+			+			
* Acacia dealbata								+
Acacia deflexa					+	+		
Acacia dentifera		+						
Acacia drummondii subsp. candolleana		+						
Acacia drummondii subsp. drummondii		+						
* Acacia floribunda								+
Acacia gilbertii			+					
Acacia huegelii	+		+					
Acacia insolita subsp. insolita	+	+						
Acacia lanei		+				+		
Acacia lasiocarpa subsp. sedifolia		+			+	+		
Acacia latericola	+					+		
Acacia latipes subsp. latipes	+							
Acacia leptospermoides subsp. leptospermoides								
Acacia microbotrya		+					+	
Acacia pulchella var glaberrima	$+$	+	+		+			
Acacia pulchella var. goadbeyi						+		
* Acacia pyenantha		+				+		+
Acacia rigida		+						
Acacia sp. 174 (J. Brown 228)						+		
Acacia saligna	+	+		+				
Acacia sphacelata subsp. sphacelata						+		
Acacia squamata		+						
Acacia stenoptera	$+$							
Acacia subflexuosa subsp. subflexuosa	+	+						
Acacia willdenowiana	+	+	+					
Molluginaceae								
Macarthuria apetala							+	
Myrtaceae								
Baeckea camphorosmae		+			+	+		
Baeckea corymbulosa					+			
Baeckea crispiflora	+							

Scientific name	1	2	3	4	5	6	7	8
Beaufortia bracteosa						+		
Beaufortia incana						+		
Beaufortia micrantha var puberula								
Callistemon phoenicus							+	
Calothamnus planifolius var planifolius						+		
Calothamnus preissii						+		
Calothamnus quadrifidus	+				+	+		
Calothamnus sanguineus	+							
Calytrix angulata	+		+					
Calytrix flavescens			+					
Calytrix leschenaultii						+		
Calytrix simplex subsp. suboppositif olia		+						
Chamelaucium croxfordii		$+$				+		
Corymbia calophylla	+	+						
Darwinia sp. Dryandra (GK 9295)	+					+		
Darwinia thymoides subsp. bella		+				+		
Eremaea pauciflora	$+$				+			
Eucalyptus accedens		+				+		
Eucalyptus argyphea						+		+
Eucalyptus aspersa						+		
Eucalyptus astringens						+		+
Eucalyptus drummondii						+		
Eucalyptus falcata						+		
Eucalyptus gardneri subsp. gardneri						+		+
Eucalyptus hebetifolia						+		
Eucalyptus incrassata					+			
Eucalyptus latens	+					+		
Eucalyptus loxophleba		+					+	
Eucalyptus marginata subsp. marginata	$+$	+						
Eucalyptus pachyloma		+				+		
Eucalyptus patens							+	
Eucalyptus phenax	+							
Eucalyptus pluricaulis subsp. pluricaulis						+		
Eucalyptus rudis subsp. rudis							+	
Eucalyptus thamnoides subsp. megista						+		
Eucalyptus uncinata						+		
Eucalyptus wandoo	+	+				+		
Eucalyptus ? accedens (mallee, GK \& JA 1524)						+		
Eucalyptus x accedens (GK \& JA 1530)						+		
Eucalyptus sp (GK \& JA 1531)						+		
Hypocalymma angustifolium	+	+					+	+
Kunzea micromera					+			
Kunzea preissiana					+			
Kunzea ?recurva							+	
Leptospermum erubescens	+	+		+	+			
Leptospermum oligandrum			+					
Leptospermum spinescens	+				+			

Scientific name	1	2	3	4	5	6	7	8
Melaleuca acuminata							+	
Melaleuca hamata		+						
Melaleuca incana subsp. incana							+	
Melaleuca platycalyx					+			
Melaleuca pungens	+							
Melaleuca radula				+				
Melaleuca subtrigona		+						
Melaleuca tuberculata subsp. tuberculata						+		
Melaleuca undulata						+		
Regelia inops		+			+			
Rinzia fumana						+		
Thryptomene australis subsp. australis				+				
Verticordia bifimbriata	+							
Verticordia densiflora var caespitosa		+				+		
Verticordia grandiflora					+			
Verticordia huegelii var stylosa				+			+	
Verticordia insignis subsp. compta						+		
Verticordia insignis subsp. insignis	$+$							
Verticordia pennigera		+						
Verticordia serrata var serrata		+						
Olacaceae								
Olax benthamiana	+				+	+		
Onagraceae								
Epilobium billardierianum subsp. cinereum							+	+
* Oenothera stricta								+
Ophioglossaceae								
Ophioglossum lusitanicum		+		+			+	
Orchidaceae								
Caladenia barbarossa		+			+	+		
Caladenia cairnsiana			+		+			
Caladenia dimidia							+	
Caladenia discoidea	+		+					
Caladenia falcata				+				
Caladenia filifera		+						
Caladenia flava subsp. flava	$+$	+	+					
Caladenia footeana		+						
Caladenia hirta subsp. rosea		+		+				
Caladenia integra		+						
Caladenia latifolia				+				
Caladenia longicauda subsp. eminens	+	+						
Caladenia longiclavata		+						
Caladenia macrostylis	$+$							
Caladenia marginata				+				

Scientific name	1	2	3	4	5	6	7	8
Caladenia nana subsp. nana		+			+	+		
Caladenia pendens subsp. talbotii							+	
Caladenia polychroma		+					+	
Caladenia reptans subsp. reptans	+				+			
Caladenia uliginosa subsp. candicans		+						
Caladenia uliginosa subsp. uliginosa		+					+	
Caladenia xantha		+				+	+	
Calochilus stramenicola						+		
Cyanicula gemmata		+					+	
Cyanicula sericea		+			+			
Cyrtostylis huegelii				+				
* Disa bracteata		+						+
Diuris corymbosa	+	+		+	+			
Diuris laxiflora		+					+	
Diuris setacea		+						
Drakaea glyptodon			+					
Elythranthera brunonis	+	+	+		+			
Elythranthera emarginata		+	+					
Ericksonella saccharata		+						
Eriochilus dilatatus subsp. undulatus	+					+		
Eriochilus scaber subsp. scaber				+			+	
Leptoceras menziesii		+			+			
Leporella fimbriata	+	+						
Lyperanthus serratus	+							
Microtis alba							+	
Microtis media subsp. media		+		+				
Paracaleana triens	+							
Pheladenia deformis	+							
Prasophyllum cyphochilum		+						
Prasophyllum macrostachyum				+				
Prasophyllum parvifolium				+			+	
Prasophyllum sargentii	+							
Pterostylis aff. nana	+	+	+	+				
Pterostylis barbata	+	+	+	+				
Pterostylis dilatata				+				
Pterostylis hamiltonii		+						
Pterostylis recurva	+	+	+					
Pterostylis sanguinea	+	+	+	+				
Pterostylis sargentii		+						
Pyrorchis nigricans	+		+	+	+			
Spiculea ciliata				+				
Thelymitra antennifera				+			+	
Thelymitra benthamiana				+				
Thelymitra crinita	+		+					
Thelymitra flexuosa							+	
Thelymitra graminea						+		
Thelymitra latiloba		+						

Scientific name	1	2	3	4	5	6	7	8
Thelymitra petrophila		+		+				
Thelymitra villosa					+			
Orobanchaceae								
* Orobanche minor		+						+
Oxalidaceae								
Oxalis exilis	+	+		+			+	
* Oxalis pes-caprae								+
* Oxalis purpurea								+
Papilionaceae								
Bossiaea concinna		+						
Bossiaea eriocarpa	+	+	+			+		
Bossiaea spinescens				+	+	+		
* Chamaecytissus palmensis		+						+
Chorizema aciculare					+			
Chorizema dicksonii						+		
Daviesia articulata						+		
Daviesia cardiophylla					+	+		
Daviesia costata	+			+				
Daviesia decipiens						+		
Daviesia decurrens		+			+	+		
Daviesia hakeoides subsp. subnuda		+				+		
Daviesia incrassata subsp. incrassata	+							
Daviesia longifolia	+					+		
Daviesia nudiflora	+		+					
Daviesia preissii	+		+					
Daviesia rhombifolia		+				+		
Daviesia triflora								
Eutaxia microphylla					+			
Dillwynia laxiflora	+	+				+		
Gastrolobium bilobum				+				
Gastrolobium calycinum		+						
Gastrolobium hookeri		+					+	
Gastrolobium microcarpum		+				+		
Gastrolobium obovatum						+		
Gastrolobium ovalifolium		+						
Gastrolobium parviflorum								
Gastrolobium reticulatum	+		+					
Gastrolobium spathulatum		+						
Gastrolobium spinosum		+				+		
Gastrolobium stipulare	+	+						
Gastrolobium stowardii						+		
Gastrolobium trilobum						+		
Gastrolobium tomentosum	+							
Gastrolobium villosum	+			+				
Gompholobium burtonioides		+			+			

Scientific name	1	2	3	4	5	6	7	8
Gompholobium confertum	+		+					
Gompholobium cyaninum	+							
Gompholobium knightianum	+	+	+					
Gompholobium marginatum	+							
Gompholobium preissii	+				+	+		
Gompholobium scabrum	+	+				+		
Gompholobium tomentosum	+							
Goodia lotif olia	+			+				
Hardenbergia comptoniana	+							
Hovea chorizemifolia	+				+	+		
Hovea trisperma subsp. trisperma	+		+					
Isotropis cuneifolia subsp. cuenifolia	+	+	+		+			
Isotropis drummondii		$+$			+			
Jacksonia alata			+	+	+			
Jacksonia condensata			+		+			
Jacksonia epiphyllum						+		
Jacksonia floribunda	+	+	+					
Jacksonia furcellata	+	+	+					
Jacksonia racemosa					+			
Jacksonia restioides					+			
Jacksonia sternbergiana	+		+					
Kennedia coccinea	$+$	$+$	+		+			
Kennedia prostrata	+			+	+		+	
* Lotus angustissimus		+		+			+	
* Lotus suaveolens		+					+	+
* Medicago polymorpha								+
Mirbelia dilatata	+					+		
Mirbelia floribunda		+						
Mirbelia spinosa					+	+		
* Ornithopus compressus		+						+
* Ornithopus sativus								+
Pultenaea ericifolia						+		
Sphaerolobium medium		+						
Templetonia drummondii				+				
* Trifolium arvense		+						+
* Trifolium campestre				+				+
* Trifolium dubium		+						+
* Trifolium glomeratum		+						+
* Trifolium subterraneum		+						+
* Trifolium tomentosum var tomentosum								+
Viminaria juncea							+	
Philydraceae								
Philydrella pygmaea		+		+				
Phormiaceae								
Dianella brevicaulis	$+$	+				+		

Scientific name	1	2	3	4	5	6	7	8
Dianella revoluta var. revoluta		+	+	+	+	+		
Stypandra glauca				+				
Pinaceae								
* Pinus pinaster		+				+		+
Pittosporaceae								
Billardiera coriacea	+							
Billardiera erubescens		+				+		
Billardiera fraseri				+				
Billardiera fusiformis	+			$+$	+			
Billardiera variifolia					+	+		
Cheiranthera preissiana				+	+			
Marianthus bicolor	+				+			
Marianthus dryandra						+		
Pittosporum angustifolium							+	
Plantaginaceae								
Plantago debilis		+						
Poaceae								
* Aira cupaniana			+	$+$	+	+	+	
Amphibromus nervosus							+	
Amphipogon strictus	+			$+$				
Amphipogon turbinatus			+					
Aristida contorta		+						
Austrodanthonia caespitosa	$+$			$+$				
Austrodanthonia occidentalis	+			+				
Austrodanthonia setacea							+	+
Austrostipa compressa					+			
Austrostipa elegantissima	+			$+$	+		+	
Austrostipa flavescens				+				
Austrostipa semibarbata			+		+		+	+
Austrostipa trichophylla	+	+				$+$		
* Avena barbata		+		+			+	+
* Avena fatua		+						+
* Avena sativa								+
* Briza maxima		+					+	+
* Briza minor		+		+			+	+
* Bromus diandrus		+						+
Cymbypogon obtectus				+			+	
* Cynodon dactylon								+
* Digitaria sanguinalis								+
* Ehrharta longiflora		+	+	$+$			+	+
* Hordeum leporinum								+
Lachnagrostis filiformis							+	
* Lolium multiflorum		+		+				+

Scientific name	1	2	3	4	5	6	7	8
Microlaena stipoides	+	+					+	
* Molineriella minuta		+						+
Neurachne alopecuroidea	+		+		+			
* Paraphlois incurva							+	+
* Pentaschistis airoides		+	+	+				+
* Poa annua		$+$						+
Poa drummondiana	$+$			+	+			
Poa serpentum		+					+	
Spartochloa scirpoidea				+				
Themeda australis		+		+			+	
* Vulpia myuros	+	+	+	+		+		+
Polygalaceae								
Comesperma calymega	+	+	+					
Comesperma scoparium					+			
Comesperma volubile	+	+					+	
Comesperma virgatum							+	

Polygonaceae

* Acetosella vulgaris
* Emex australis

Muehlenbeckia adpressa
Persicaria prostrata

* Polygonum arenastrum
* Rumex crispus

Portulacaceae
Calandrinia calyptrata
Calandrinia corrigioloides
Calandrinia granulifera
Primulaceae

* Anagallis arvensis var. arvensis
* Anagallis arvensis var. caerulea

Proteaceae

Adenanthos cygnorum
Banksia acanthopoda
Banksia armata var. armata
Banksia attenuata
Banksia bipinnatifida subsp. bipinnatifida
Banksia columnaris
Banksia cynaroides
Banksia dallanneyi subsp. sylvestris
Banksia drummondii subsp. hiemalis
Banksia fraseri var. fraseri
Banksia grandis

Scientific name	1	2	3	4	5	6	7	8
Banksia nivea subsp. nivea	+	+				+		
Banksia nobilis subsp. nobilis	+	+				+		
Banksia proteoides						+		
Banksia sessilis var. sessilis	+					+		
Banksia sphaerocarpa var. caesia						+		
Banksia sphaerocarpa var. sphaerocarpa	+				+			
Banksia squarrosa subsp. squarrosa	+	+				+		
Banksia stuposa						+		
Banksia subpinnatifida var. subpinnatifida						+		
Conospermum amoemum subsp. cuneatum		+			$+$			
Conospermum densiflorum subsp. densiflorum	+				+			
Conospermum filifolium subsp. filifolium				+	+			
Conospermum stoechadis subsp. sclerophyllum		+		+	+			
Conospermum stoechadis subsp. stoechadis	+	+		+				
Grevillea crowleyae	+				+			
Grevillea integrifolia		+			+	+		
Grevillea hookeriana subsp. hookeriana					+	+		
Grevillea leptobotrys	+					+		
Grevillea pulchella	+	+						
Grevillea tenuifolia		+				+		
Grevillea umbellata					$+$			
Hakea amplexicaulis				+				
Hakea ?anadenia (Rose 659)						+		
Hakea brownii						+		
* Hakea bucculenta x francisiana		+						+
Hakea erinacea	+							
Hakea gilbertii					+	+		
Hakea incrassata		+						
Hakea lehmanniana		+				+		
Hakea lissocarpha	+	+	+			+		
* Hakea multilineata		+						+
Hakea petiolaris subp. petiolaris				+				
Hakea ?pritzelii (Rose 281)						+		
Hakea prostrata	+	+	+		+			
Hakea ruscifolia		+				+	+	
Hakea trifurcata	$+$	+	+	+		+	+	
Hakea undulata	+					+		
Isopogon crithmifolius	+	+			+	+		
Isopogon divergens	+	+						
Isopogon dubius		+			$+$	+		
Isopogon sphaerocephalus	$+$			+				
Isopogon teretifolius					+			
Lambertia illicifolia		+				+		
Persoonia elliptica	$+$	+						
Persoonia hakeiformis					+	+		

Scientific name	1	2	3	4	5	6	7	8
Persoonia quiquenervia					+	+		
Persoonia trinervis					+	+		
Petrophile brevifolia					+	+		
Petrophile circinata		+			+	+		
Petrophile divaricata		+				+		
Petrophile filifolia subsp. filifolia	+				+			
Petrophile heterophylla	$+$	+				+		
Petrophile imbricata						+		
Petrophile seminuda		+					+	
Petrophile serruriae		+				+		
Petrophile squamata	+	+			+	+		
Petrophile striata	$+$							
Stirlingia latifolia	$+$	+						
Stirlingia simplex				+				
Synaphea flabelliformis	+	+	+		+		+	
Synaphea interioris					+			
Synaphea obtusata		+						
Rafflesiaceae								
Pilostyles hamiltonii					+	+		
Ranunculaceae								
Ranunculus pumilio							+	
Ranunculus sessiliflorus		+						
Restionaceae								
Alexgeorgea nitens			+					
Desmocladus asper	+		+					
Desmocladus fasciculatus								
Desmocladus parthenicus	+							
Desmocladus flexuosus					+			
Harperia lateriflora	$+$	+						
Hypolaena exsulca	$+$		+					
Lepidobolus chaetacephalus	$+$	+				+		
Lepidobolus preissianus					+			
Loxocarya striata	$+$	+			+			
Lyginia barbata	$+$		+					
Rhamnaceae								
Cryptandra arbutiflora var. arbutiflora		+				+		
Cryptandra leucopogon					+			
Cryptandra myriantha					+			
Cryptandra nutans	$+$	+						
Cryptandra pungens					+			
Polianthion wichurae						+		
Stenanthemum coronatum						+		
Stenanthemum emarginatum						+		

Scientific name	1	2	3	4	5	6	7	8
Stenanthemum tridentatum	+	+						
Trymalium angustifolium		+						
Trymalium ledifolium var. lineare	+	$+$			+	$+$		
Rosaceae								
Acaena echinata		+				+		
Rubiaceae								
* Galium divaricatum								
* Galium murale		+		+				+
Opercularia apiciflora	+	+						
Opercularia vaginata	+		+		+			
Rutaceae								
Asterolasia pallida subsp. hyalina						+		
Asterolasia squameligerus		$+$				+		
Boronia busselliana					+		+	
Boronia capitata subsp. clavata			+		+			
Boronia crassifolia							+	
Boronia crenulata							+	
Boronia ramosa subsp. anethifolia					+			
Boronia scabra subsp. scabra							+	
Diplolaena graniticola				+				
Philotheca spicata	+			+				
Santalaceae								
Choretrum glomeratum		$+$						
Exocarpus sparteus	+				+			
Leptomeria ellytes	+		+		+			
Leptomeria pauciflora	+							
Santalum acuminatum		+						
Santalum murrayanum		+				+		
Santalum spicatum							+	
Sapindaceae								
Dodonaea bursariifolia		+				+	+	
Dodonaea ceratocarpa				+				
Dodonaea humifusa		+						
Dodonaea pinifolia					+	+		
Dodonaea viscosa subsp. angustissima				+				
Scrophulariaceae								
* Bartsia trixago		+		+				+
Glossostigma drummondii							+	
Gratiola pubescens							+	
Limosella australis							+	
* Parentucellia latifolia		+		+				
* Parentucellia viscosa				+				
* Veronica arvensis		$+$						+

Scientific name	1	2	3	4	5	6	7	8
Selaginellaceae								
Selaginella gracillima						+		+
Solanaceae								
Nicotiana rotundifolia				+				+
* Solanum nigrum		+		+			+	+
Solanum simile				+				+
Stackhousiaceae								
Stackhousia pubescens	+	+	+	+	+			
Stackhousia scoparia		+			+			
Tripterococcus brunonis	+	+			+			
Sterculiaceae								
Lasiopetalum bracteatum		+						
Lasiopetalum microcardium					+	+		
Thomasia foliosum		+			+	+		
Thomasia macrocalyx		+						
Stylidiaceae								
Levenhookia dubia	+	+		+		+		
Levenhookia leptantha					+			
Levenhookia octomaculata					+			
Levenhookia pusilla	+	+					+	
Levenhookia stipitata			+	$+$				
Stylidium adpressum						+		
Stylidium amoenum	$+$	+				+		
Stylidium androsaceum		+						
Stylidium brunonianum			+		+		+	
Stylidium calcaratum			+		+			
Stylidium caricifolium	$+$	+						
Stylidium carnosum		+						
Stylidium caricifolium	$+$	+			+			
Stylidium crassifolium							+	
Stylidium ciliatum		+				+		
Stylidium despectum		+						
Stylidium ecorne				+			+	
Stylidium emarginatum subsp. emarginatum				+				
Stylidium eriopodum						+		
Stylidium guttatum		+						
Stylidium hirsutum	+					+		
Stylidium inundatum				+			+	
Stylidium leptophyllum	+							
Stylidium lineatum	+					+		
Stylidium obtustatum	+	+						
Stylidium perula						+		
Stylidium petiolare	+							

Scientific name	1	2	3	4	5	6	7	8
Stylidium piliferum	+		+					
Stylidium pulchellum				+				
Stylidium pycnostachyum		+				+		
Stylidium repens			+					
Stylidium rhynchocarpum						+		
Stylidium roseo-alatum	+			+			+	
Stylidium roseo-nanum				+				
Stylidium schoenoides	+		+					
Stylidium uniflorum		+						
Stylidium zeicolor						+		
Thymelaeaceae								
Pimelea argentea				+			+	
Pimelea cilata subsp. ciliata				+				
Pimelea imbricata var imbricata				+				
Pimelea preissii						+		
Pimelea spectabilis	+					+		
Pimelea suaveolens subsp. suaveolens	+					+		
Pimelea sylvestris						+		
Tremandraceae								
Platytheca galioides				+				
Tetratheca hispidissima	+				+	+		
Tetratheca virgata	+	+		+				
Urticaceae								
Parietaria debilis				+				
Violaceae								
Hybanthus floribundus subsp. floribundus	+		+					
Xanthorrhoeaceae								
Xanthorrhoea drummondii		+			+	+		
Xanthorrhoea gracilis	+							
Xanthorrhoea brevistylis		+						
Zamiaceae								
Macrozamia riedlei	+	+	+					
Zanichelliaceae								
Lepilaena australis		+						

BEHAVIOURAL OBSERVATIONS ON AN UNNAMED SPECIES OF SKINK LIOPHOLIS (FORMERLY EGERNIA) "CAPE RANGE" FROM CAPE RANGE

By M.J. BAMFORD and A.R. BAMFORD
23 Plover Way, Kingsley, WA, 6026.

INTRODUCTION

Social behaviour, in which individuals of a species form a cohesive group and interact with each other over extended periods, is rare among reptiles. Among Australian skink lizards until recently assigned to the genus Egernia, however, such social behaviour is commonplace and well-documented (Hutchinson 1993). In many species, the social unit is a family group consisting of adults and young animals of one or more age cohorts, but the nature of interactions within such units is not well-known. From late 2004, the opportunity arose to observe social behaviour in a captive breeding colony of what was then an undescribed species similar to Egernia inornata, and this paper presents the results of these observations. In a revision of Egernia, E. inornata has been placed in the genus Liopholis (Gardner et al. 2008), and the undescribed species is referred to here as Liopholis "Cape Range".

ORIGIN OF STUDY ANIMALS

The study animals were collected in October 2004 on the Learmonth Air Weapons Range
on the North West Cape (ca. $22^{\circ} 30^{\prime} \mathrm{S}, 113^{\circ} 45^{\prime} \mathrm{E}$). The collection was carried out as part of an inventory fauna survey being conducted for the Department of Defence under a Licence to Collect Fauna for Scientific Purposes, and in 2009/2010 the specimens were maintained in captivity under SF006843, issued by the Department of Environment and Conservation.
Six specimens were caught from two locations in pitfall and funnel traps set along driftfences in open shrubland and hummock (spinifex) grassland on shallow red sand over limestone. The six specimens were kept because they were initially thought to represent a major range extension for E. inornata, and two of these were lodged with the WA Museum. The remaining four specimens, three from one location and one from a different location, were kept under observation when it was noted that a female was pregnant (members of the group are viviparous).

CAPTIVE HOUSING

The captive specimens were initially maintained in a 60 cm
vivarium on red sand taken from their collection location. The colony was moved to a 90 cm vivarium in April 2009. They had continuous access to a "hotrock", a shelter that simulated a burrow (two shelters provided from April 2009), water ad libitum, and were fed several times a week on commercial cat food (chicken), finely chopped apple and live food (termites, small crickets and small wood roaches). The vivarium was lit with a "repti-glow" light for approximately 10 hours a day. Heating and lighting were not varied over the year, but the artificial period of lighting was shorter than the summer daylength, so the lizards did experience seasonal variation in photoperiod. They also experienced seasonal variation in ambient temperature, with this varying from 22° to $30^{\circ} \mathrm{C}$ in summer and 16° to $20^{\circ} \mathrm{C}$ in winter.

DESCRIPTIONS OF CAPTIVE SPECIMENS AND BREEDING

Three specimens, collected on $8^{\text {th }}$ to $10^{\text {th }}$ October 2004, were still alive in March 2010. The fourth specimen died in April 2005 from injuries received during fighting. It is believed this specimen (a male) was from a different colony and was not accepted by the other animals. Based on subsequent observations on captive-bred animals, the three surviving specimens were adults (one male, two
females) at the time of collection and three or more years old. They displayed no growth in captivity: the male (lizard \#1) had a SVL of 62 mm in October 2004 and in February 2010. The two females (lizard \#2 and \#3) had SVLs of 56 and 57 mm in October 2004 and February 2010.
From 2005 to July 2011, breeding occurred in January of 2005, 2008, 2009, 2010 and 2011. Mating and courtship behaviour were never observed. Breeding events were as follows:
January 2005. Wild-caught female (lizard \#2), probably pregnant when collected, produced two young. One of these found dead in July. Second specimen (lizard \#5) survived and still alive in March 2011. Gestation was approximately 10 to 12 weeks.
$16^{\text {th }}$ January 2008. Lizard \#5 produced two young when just under three years of age. Therefore, sexual maturity in third year of life. She had an SVL of 56 mm and has displayed little subsequent growth. When measured at the age of 15 months (April 2009), these two young had SVLs of 41 mm and 44 mm .
$4^{\text {th }}$ and $14^{\text {th }}$ January 2009. Lizard \#5 produced two young; her second brood. When measured at the age of three months, these young had SVLs of 30 and 36 mm . At the age of 13 months, the larger of these had an SVL of 47 mm .
$12^{\text {th }}$ January 2010. Lizard \#5 produced one young, although it
is suspected that a second young was born and eaten. At this time there were four adults and four juveniles (one or two years old) in the colony. The colony was subsequently divided into separate vivaria, with Lizard \#1 (wild caught male), lizard \#2 (wild caught female) and lizard \#5 (captive born female) in one enclosure, and Lizard \#4 (wild caught male) and the surviving young of lizard \#5 in the other enclosure.
$3^{\text {rd }}$ January 2011. Lizard \#5 produced one young.
In summary, the wild-caught female, pregnant at the time of collection, produced two young
but did not breed again. Her captive-bred daughter bred for the first time at the end of her third year, and bred each year subsequently, bearing either one or two young on each occasion. The father is lizard \#1, the surviving wild-caught male.
Measurements indicate that adult males are slightly larger than females. They are also slightly brighter in colour. Young animals are also brighter in colour than adults, being orange with a distinctly dark cap, compared with the tawny and more uniformly-coloured adults (see Figure 1). This distinctive juvenile colouration fades by the

Figure 1. Juvenile Liopholis sp. "Cape Range" raising its forequarters in an agonistic display towards an approaching adult.
age of one year. Little or no growth occurs after sexual maturity is reached (at the end of the third year of life for one female). The three wild caught animals were adult-sized when collected so were presumably at least three years old. They therefore had a minimum age of 11 years by July 2011 and showed no signs of senescence.

OBSERVATIONS ON SOCIAL INTERACTIONS

Social interactions between adults were limited. Lizard \#4 died from injuries sustained in fights with lizard \#1. This death was almost certainly due to inadvertently mixing animals from different colonies. No other fighting was observed but some injuries were sustained amongst the captive animals, consisting of scars across the back and the loss (followed by regeneration) of the tail in some cases. One animal also lost a digit. This suggests that occasional fights did take place, although some injuries, such as the loss of a tail-tip, could have been inadvertent when the animals were being fed. At least one of the wild-caught adults had a missing digit. When feeding, particularly on live food, adults would try to steal food from each other and would run away with food to avoid confrontations. On one occasion, lizard \#5 (adult female) trembled when approached by lizard \#1 (adult male). This was in February 2010 so was post-breeding.

Adults appeared less inclined to steal food from juveniles less than one year old than from other adults.
Interactions between adults and juveniles were more complex than interactions observed between adults and included clear agonistic behaviour. Juveniles in their first year of life and still displaying the contrasting bright orange body and dark cap employed posturing when approached by an adult, including when food was present. This involved raising and laterally compressing the body, particularly the fore-quarters, arching the neck and tilting the head to display the dark cap towards the approaching adult (see Figure 1). This appeared to appease the adult, which would otherwise be quite capable of stealing the food or even eating a young juvenile, although the young juveniles would also sometimes run away. The possible disappearance and presumed death and consumption of one neonate in January 2010 suggests that the appeasement display was not always successful, although this may have been an artefact of captive conditions and excessive colony size. Juveniles over a year old and in which the distinctive colouration had faded did occasionally attempt the posturing display when approached by an adult, but also ran away. Posturing was not observed in juveniles over two years of age.
In addition to the agonistic display, juveniles in their first year
of life would approach feeding adults and appeared to taste the food they were eating. While juveniles recognised live insects as food readily, they did not immediately recognise cat-food or finely-chopped apple as edible. By licking the food being eaten by an adult, they appeared to "learn" that this material was edible. This licking of food held by an adult did not involve theft of the food by the juvenile, and the adult did not try to avoid the contact as it would do if approached by another adult. The agonistic display was not used by juveniles approaching adults, only by juveniles when approached by an adult.

CONCLUSIONS

The social skink Liopholis "Cape Range" has distinctive earlyjuvenile colouration and behaviour that ensures young animals are accepted within the group, are able to feed amongst adults without themselves being eaten, and may also assist them in learning about novel foods. The behaviour emphasises the earlyjuvenile colouration and is used when the early-juvenile is approached by an adult. Such agonistic behaviour is well-documented among social mammals but is not well-recorded among the generally asocial reptiles. Brighter colouration among juvenile compared with adult specimens is common among
reptiles even in largely solitary species, but the juvenile Liopholis "Cape Range" are not simply brighter, but also have a distinctly dark cap that is presented to adults as part of the agonistic display. It is not known if such colouration and displays are found in other Liopholis species, or in other social species formerly assigned to Egernia.
The loss of the early-juvenile colouration and behaviour results in immature lizards (more than about a year old and certainly more than two years old) having to run from adults more often, and it may be at this stage that young lizards may move to the periphery of a colony and even disperse. Sexual maturity is reached in the third year of life and at least in captivity longevity is in excess of 11 years.

REFERENCES

HUTCHINSON, M. 1993. Family Scincidiae. Pp 261-279. In: GLASBY, C.J., ROSS, G.J.B. and BEESLEY, P.L. (eds). Fauna of Australia Vol. 2A. Amphibia and Reptilia. Australian Govt Publishing Service: Canberra.
GARDNER, M.G., HUGALL, H.F., DONNELLAN, S.C., HUTCHINSON, M.N. and FOSTER, R. 2008. Molecular systematic of social skinks; phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae). Zoological Journal of the Linnaean Society 154: 791-794.

A FEEDING TECHNIQUE OF THE BROWN HONEYEATER (LICHMERA INDISTINCTA)

By KEVIN COATE
11 Peak View, Canning Vale 6155.

Brown Honeyeaters are one of the most widespread species of honeyeater in Australia and are common in the Kimberley region of Western Australia. In August 2011 while camped with my wife near a creek ($17^{\circ} 08^{\prime} 59^{\prime \prime} \mathrm{S}$ $125^{\circ} 12^{\prime} 12^{\prime \prime} \mathrm{E}$) off the Gibb River Road, we noticed Brown Honeyeaters coming into a Brachychiton viscidulus tree (commonly referred to as Sticky Kurrajong or Kimberley Rose) in bloom near our camp. These small deciduous trees endemic to the Kimberley, grow to about 7 m in height. Their inflorescence is cauliflorus with 10-40 flowers on each node providing spectacular shows of large pink to red bell-like flowers when leafless during winter and spring (Wheeler 1992). They prefer rocky areas associated with the Devonian Reef System and sandstone or basalt commonly found along the Gibb River Road. As we watched, I noticed Brown Honeyeaters appeared to be more interested in the base of the flowers rather than the top. On closer examination, I could see a number of flowers had a hole pierced in the calyx and Brown Honeyeaters, instead of accessing the nectaries at the base of the sepals in the conventional manner, were bypassing repro-
ductive parts of the flower and taking nectar through the pierced hole. The only other honeyeaters in the area attracted to the flowers of the brachychiton tree were Little Friarbirds Philemon citreogularis and Whitegaped Honeyeaters Lichenostomus unicolor. Both these species probed down the throat of the flowers in the style one usually associates with nectar seeking birds - and were not seen to use the pierced holes.
Intrigued by this discovery we spent some time (about 30 minutes) observing and taking photographs (see photos $1-4$). We found that three to four Brown Honeyeaters repeatedly came into the tree, flying directly to flowers with pierced holes in the calyx without attempting in any way to access other flowers. However we could not tell if they were the same birds.

Over a number of years I have been puzzled when seeing holes with scarring around them in older aged Brachychiton viscidulus flowers, and wondered at the cause. I erroneously speculated that insects, possibly caterpillars rather than birds, may have been responsible for the holes during the budding stage of the flower.

LEFT: The pierced calyx of a Brachychiton viscidulus flower and a Brown Honeyeater.

BELOW: A Brown Honeyeater accessing nectar through a hole pierced in the calyx of a Brachychiton viscidulus flower. A second hole can be seen on the same flower.

LEFT: A Brown Honeyeater probing into a Brachychiton viscidulus flower. Scarring around the hole in an earlier flower can be seen on the right of the stem.

RIGHT: A Brown Honeyeater approaching a flower with a hole pierced in it.

DISCUSSION

There have been other reports of flower piercing by honeyeaters in Australia. In the Argus newspaper in 1929, there was a delightful article by Edith Coleman, in which she told her readers of the visitations to her garden of Eastern Spinebills Acanthorhynchus tenuirostris, mentioning that they pierced the base of her Snap Dragons Antirrhinum sp. for nectar (Coleman 1929). In Fauna of Tasmania, Green (1995) also mentions Eastern Spinebills puncturing the base of tubular flowers. Anecdotally from other sources it would appear this feeding technique by Eastern Spinebills is relatively well known.
In other suburban gardens in Eastern Australia, Yellow-faced Honeyeaters, Lichenostomus chrysops, have been recorded piercing the base of garden flowers such as Foxgloves - and White-plumed Honeyeaters Lichenostomus penicillatus piercing the long blooms of Fuchias to reach nectar (Kloot and McCulloch 1980), in a manner similar to Eastern Spinebills.
There does not appear to be much information on how widespread the practise of flower piercing is by other species of honeyeaters. Most of the data available relates to Eastern Australia and long tubular flowers rather than bell shaped flowers. On referring to the information in Handbook of Australian, New Zealand \mathcal{E} Antarctic Birds (Higgins et al. 2001), we find White-eared

Honeyeater Lichenostomus leucotis when feeding on tubular flowers of Mountain Devil Lambertia formosa, have been observed to extract nectar by piercing the base of the perianth, not by inserting the bill into the perianth (Recher and Abbott 1970). White-plumed Honeyeaters Lichenostomus penicillatus sometimes pierce the base of tubular flowers such as Tecoma, Correa and Lachenalia or slit the flower from tip to base to access nectar (McCulloch 1977). Hindwood (1944) recorded Blackchinned Honeyeaters Melithreptus gularis piercing Tecoma and Crotalaria. Brown-headed Honeyeaters Melithreptus brevirostris and White-naped Honeyeaters Melithreptus lunatus have been known to peck slits at the base of the corolla of Mountain Correa to access nectar (Loyn 1985) and sometimes pierce bases of tubular flowers to reach nectar (Le Souef \& Macpherson 1920). In Central Australia Grey Honeyeaters, Conopophila whitei, sometimes feed on Eremophila sp. by puncturing a hole in the side, not mouth, of tubular flowers (Roberts 1981).

CONCLUSION

There appears to be no mention of this feeding technique by Brown Honeyeaters in HANZAB or by Johnstone and Storr in Birds of Western Australia and it would be interesting to know if others have observed species other than Brown Honeyeaters
piercing the flowers of Brachychiton viscidulus, how widespread the practise is in the North of Western Australia and if other flowering plants with bell shaped flowers are similarly accessed. On several occasions I have noticed an unexplained hole at the base of flowers in the Malvaceae family. While there were many flowers on the tree we examined on the Gibb River Road, not all had been pierced - I estimated about fifteen.

REFERENCES

COLEMAN, E. 3/8/1929. A Garden Wilderness, old fashioned favourites and familiar friends. The Argus p. 38.
GREEN, R.H. 1995. Fauna of Tasmania: Birds. Potoroo Publ., Launceston, Tas.
HIGGINS, P.J., PETER, J.M. and STEELE, W.K. (Eds) 2001. Handbook of Australian, New Zealand and Antarctic Birds, vol. 5, Oxford University Press, Melbourne.
HINDWOOD, K.A. 1944. Honeyeaters of the Sydney district. Aust. Zoologist. 10: 231-51.
JOHNSTONE, R.E. and STORR, G.M. 1998-2004. Handbook of Western Australian Birds. Vol. 2 Passerines. Western Australian Museum, Perth.

LOYN, R.H. 1985. Bird Populations in Successional Forests of Mountain Ash Eucalyptus regnans in Central Victoria. Emu 85(4): 213-230.
KLOOT, T. and McCULLOCH, E.M. 1980. Birds of Australian Gardens. Rigby
Le SOUEF, A.S. and MACPHERSON, J. 1920. The birds of Sydney. Emu 20(2): 82-91.
McCULLOCH, E.M. 1977. Adaptions by birds to feed at flowers, the nectar of which is not readily available. Aust Bird Watcher 7: 113-23.
RECHER, H.F. and ABBOTT, I.J. 1970. Some Differences in Use of Habitat by White-Eared and White-Cheeked Honeyeaters. Emu 70(3): 117-25.
ROBERTS, G.J. 1981. Field Observations of the Grey Honeyeater in Central Australia. South Australian Ornithologist 28: 190.
WHEELER, J.R., (Ed), RYE, B.L., KOCH, B.L. and WILSON, A.J.G. 1992. Flora of the Kimberley Region p.186. Department of Conservation and Land Management, Western Australia.

A NEW SPECIES OF DAR WINIA (MYRTACEAE) FROM WESTERN AUSTRALIA

By GREG KEIGHERY
Western Australian Conservation Science Centre, Department of Environment and Conservation. Locked Bag 104, Bentley Delivery Centre, Western Australia 6983.
Email: greg.keighery@dec.wa.gov.au

Abstract

A new species of Darwinia, Darwinia terricola Keighery (Myrtaceae) from the Blackwood Plateau, Western Australia is described.

INTRODUCTION

Over the past decade the Western Australian Department of Environment and Conservation and its predecessors has undertaken intensive floristic and reserve surveys of the Swan Coastal Plain (Gibson et al. 1994 and Keighery 1999). Currently these are being extended to the adjacent Blackwood Plateau and a detailed floristic survey of inter-zone between these areas, the Whicher Range, has been completed (Keighery et al. 2008).
A series of newly collected and newly recognised taxa are being located during these surveys and are currently being described. The Blackwood Plateau is no exception to the location of new taxa, especially in a series of very unusual shallow soil clay flats and seasonal ironstone wetlands. These habitats contain ap-
parently new taxa of Grevillea, Hovea, Logania and Darwinia. These taxa, like this new Darwinia, appear to have close relatives on the Whicher Scarp or Jarrah Forest.

TAXONOMY

Darwinia terricola Keighery species nova
Frutex effusus vel prostrates. Foliis linearis, rectis, $4-9 \mathrm{~mm}$ longi, minus quam 1 mm latus, corporae oleosa non prominens, marginalis ciliatus.
Typus: 2.7 kilometres along Crouch Road from Great North Road, $34^{\circ} 01.222^{\prime} \mathrm{S} 115^{\circ} 32.468^{\prime} \mathrm{E}$, 21-Nov.-2008, G.J. \& B.J. Keighery 1423 (Holotype: PERTH).
A low spreading to prostrate shrub to 20 cm tall by 30 cm wide, multi-stemmed from a woody base. Leaves linear,

Figure 1. Darwinia terricola. a: Leaf, b: cross section of leaf, c: outermost floral bract, d: outer floral bract, e: innermost floral bract, f: top view of inflorescence, g : inflorescence, $\mathrm{h}:$ flower. Scale bars: $\mathrm{a}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \& \mathrm{~h}=5 \mathrm{~mm}, \mathrm{~g}=10 \mathrm{~mm}$.
triangular in outline, green, crowded to scattered at ends of branches, not recurved, 4-9 mm long, less than 0.7 mm wide, oil glands not prominent, scattered cilia on sides. Inflorescence not nodding or erect, rather lying on the ground or on foliage to 17-18 mm wide and $10-12 \mathrm{~mm}$ long with 5-7(rarely 9) flowers. Inflorescence bracts at first leaf like, in outline and colour, although longer at $9-13 \mathrm{~mm}$ long, then in several rows, reddish green, linear to narrowly ovate, $13-20 \mathrm{~mm}$ long with an expanded base to 2 mm wide, and coarsely ciliate along the margins, enclosing the flowers. Each flower base enclosed by two floral bracteoles, narrowly-ovate, strongly keeled translucent, brown, margins fringed, linear, $4-5 \mathrm{~mm}$ long. Floral tube brown, ribbed, $3-4 \mathrm{~mm}$ long, with 5 ridges. Calyx lobes, white, translucent, ovate, margins erose, c. 1 mm long. Petals white, margin entire, ca 2 mm long. Stamens ca. 1.2 mm long, filament linear, scarcely adnate at base to adjacent staminodes. Staminodes similar to stamens but slightly shorter. Style curved, $11-12 \mathrm{~mm}$ long, white, sub-stigmatic hairs in a ring below stigma, 1.5 mm wide.
Collections examined. 13.9 km east of Great North road on Crouch Road, 27-Sept.-2009, G.J. \& B.J. Keighery 1623 (PERTH); 10 km east of Sues Road on Crouch road, 6-Dec.-2006, M. Spencer 149 (PERTH); Crouch Road, 19-Sept.2005, R.J. Cranfield \& B.G. Ward

891(PERTH); 5.4 km west of Jalbarragup Road on Crouch Road, 17-Jan.-1997, P. Ellery \& A. Annels B54.7 (PERTH).
Etymology. Terricola, dwelling on the ground, a reference to this species preference for an unusual soil type and an allusion to its habit of lying and flowering on the ground.
Habitat. Occurs on shallow sandy clay over granite, in winter damp flats under a Mallee shrubland dominated by Eucalyptus marginata. This community is probably confined to the Blackwood Plateau.
Conservation Status. The entire known range of the species is in State Forest and proposed National Park. However, it does occur in a very restricted specialised habitat.
Comments. Related to Darwinia oederoides, a widespread species of the Jarrah Forest. It differs from D. oederoides in the small thin ciliate leaves, small inflorescences, and the longer curved style.
Flowering Time. Flowers in late spring to early summer, November to December.
Common Name. Blackwood Bell.
Notes. Plants are killed by fire. Response to dieback disease (Phytophthora) is unknown.

REFERENCES

GIBSON, N., KEIGHERY, B.J., KEIGHERY, G.J., BURBIDGE, A.H. and LYONS, M.N. 1994. A Floristic

Survey of the Southern Swan Coastal Plain. Report for the Australian Heritage Commission by the Department of Conservation and Land Management and the Conservation Council of Western Australia (Inc.).
KEIGHERY, G.J. 1999. Conservation status of the vascular flora of the southern Swan Coastal Plain. Report
for Environment Australia. Department of Conservation and Land Management, Perth.
KEIGHERY, B.J., KEIGHERY, G.J., WEBB, A., LONGMAN, V. and GRIFFIN, E.A. 2008. A Floristic Survey of the Whicher Scarp. Department of Environment and Conservation, Kensington.

A CHECKLIST OF THE NATURALIZED VASCULAR PLANTS OF WESTERN AUSTRALIA II: CHANGES 1994-2004

By GREG KEIGHERY
Western Australian Conservation Science Centre, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Western Australia, 6983.

Abstract

Weed numbers continue to increase at a steady rate, but explanations of the causes are often lacking. Checklists of naturalised plants for Western Australia produced in 1994, 1999 and 2004 were used to collate the reasons for these new records. Between these checklists the number of recorded naturalised taxa rose from 1,073 to 1,234 . The major causes of these differences were increased survey effort which added 105 previously unrecorded weeds. Literature survey / taxonomic revisions added another 95, highlighting the importance of timely taxonomic studies of collections of weeds and the need to systematically incorporate this information into databases. During this period 47 species previously listed as naturalised were deleted, but 94 taxa on the verge of becoming naturalised were also added as garden escapes. Despite many "new" records being the result of increased taxonomic effort, the number of naturalised species continues to increase at a steady rate (the number of completely new records occurring at a rate of approximately 10 per year over the survey period). Approximately 70% of these new weeds were deliberately introduced as ornamentals or for agriculture.

INTRODUCTION

In 1994 I prepared a checklist of the naturalized weeds of Western Australia, with particular reference to environmental weeds (Keighery 1995). This list was used as the basic list for "Western Weeds", the State weed
field guide (Hussey et al. 1997). An interim updated list was prepared in 1999 (Keighery 1999) and a new checklist of weeds distributed in natural regions of Western Australia was prepared in 2003 (Keighery and Longman 2004).

The weed flora of any region is highly dynamic, with species previously recorded being shown not to be naturalised, being eradicated or failing to naturalise. However, the recorded weed flora of Australia continues to increase rapidly despite these corrections and deletions. This was also true for the decade between the checklists in Western Australia, where the number of recorded naturalised taxa recorded rose from 1,073 to 1,234 , a rate of nearly 20 new records per year.
The reasons for these increases are of considerable interest to managers of weeds as they can indicate where to target education and prevention campaigns to slow these increases.
One method of quantifying changes to the weed flora of Western Australia is to examine the causes of the differences between these checklists. I was requested by the Weed Society to attempt to undertake such an analysis and this paper documents the changes in the decade between the 1994 list and the 2004 list.
This is the second in a series of papers dealing with the naturalised vascular plants of Western Australia. The first produced a new checklist of Weeds distributed in natural regions for Western Australia (Keighery and Longman 2004).

RESULTS

Table 1 summarizes the three

Table 1. Summary of Checklists of Naturalized Vascular Plants of Western Australia

Keighery 1994

6 Ferns; 7 Conifers; 318
Monocotyledons; 701 Dicotyledons Total: 1,032
41 listed as doubtfully naturalized Garden Escapes not listed

Keighery 1999
6 Ferns; 12 Conifers; 342
Monocotyledons; 795 Dicotyledons Total: 1,155
41 still listed as doubtfully naturalized 81 "Garden Escapes"

Keighery and Longman 2004

12 Ferns; 15 Conifers; 345
Monocotyledons; 862 Dicotyledons Total: 1,234
47 deleted (13 no longer naturalized;
34 no evidence)
94 "Garden Escapes"
checklists of the naturalised vascular flora of Western Australia. In 1994 there were 1,032 naturalised plant taxa recorded for Western Australia. This number rose to 1,073 if one included the 41 species Keighery (1995) listed as doubtfully naturalised for which there was an old herbarium specimen in the Western Australian Herbarium (PERTH) with no additional information apart from an of ten general locality.
In order to increase accuracy a new category of garden escape (Keighery 1983, 1986) was also introduced in the 1999 checklist. This was to document those species either:

- recorded as present in management plans, reserve or
bushland checklists but lacking other information, or
- those which were known to be either spreading slowly via vegetative means or seed, or
- present as a single population or very localised.
Such species are either in the process of naturalizing but are easily eradicated either by chance or deliberate action. These species now numbering 94 in total have a large component of Australian natives (25 of 94 or 26.6%), suggesting these may form a potential reservoir of future weeds (Keighery 2002). Recent statements in significant horticultural literature (Clayton 2006 - "There is no such thing as a native weed in Australia; plants that cause problems all come from overseas") suggest that there is still a considerable need for public education in this area.
By 2004 the number of naturalised plants (species, subspecies and varieties) had risen from 1032 to 1234 (Table 1), an apparent increase of 19.6%, despite 47 species (4.6%) being deleted as no longer naturalized These were almost entirely the 41 species listed as doubtfully naturalized in 1994.
The greatest percentage changes occurred in the ferns (6 to 12; up 100%), the Gymnosperms (7 to 15; up 114%) and in the Dicotyledons (701 to 865; up 18.7\%).
Table 2 presents as an annotated list those taxa in family alphabetical order (following the checklist order) which were
added to the list of naturalized plants between 1994 and 2004, with details as to the source of the record (literature, field survey or a new record and the reference or voucher collection of that record). In order to have a complete checklist the 2004 list (Keighery and Longman 2004) should be read in conjunction with Table 2 presented here.
From these listings it is immediately apparent that the changes in the listings originated in two distinct categories, either
1: from survey work, or
2: from extensive review of taxonomic literature (revisions, Flora of Australia treatments, State and local Floras) and weed workers personal communications that occurred after the 1994 list was prepared.

NEW WEED RECORDS

There were 105 previously unrecorded weeds added to the list between 1994 and 2004 (Table 2), 27 of these were recorded in the tropical Kimberley, 5 in the deserts (ranging from the Tanami to the Nullarbor) and 73 from the Mediterranean southern Western Australia.
This paper also lists five new weed records (Freesia laxa, Lapeirousia anceps, Arabidopsis thaliana, Heliophila sp (Gunyidi) and Euphorbia chamaesyce) recorded for Western Australia since the publication of the 2004 checklist.
Table 2. Annotated List of changes to the Weed Flora of Western Australia 1994-2004. Key: A.P.B. Agriculture Protection Board; det. Determined by expert

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
Ferns			
SALVINIACEAE			
Azolla filiculoides	Weedy native	Literature/survey	Keighery \& Longman 2004
Azolla pinnata	Weedy native	Literature/survey	Keighery \& Longman 2004
DENNSTAEDIACEAE			
Histiopteris incisa	Ornamental	New record	Keighery \& Longman 2004
Hypolepis dicksonioides	Ornamental	Literature/survey	Brownsey 1998
Pteridium esculentum	Weedy native	Literature/ survey	Keighery \& Longman 2004
Gymnosperms			
CUPRESSACEAE			
Callitris rhomboidea	Timber	New record	Pemberton, 1997,Keighery 14587
Cupressus sempervirens	Ornamental	New record	Hamel, 1995, Keighery 14022
PINACEAE			
Pinus canariensis	Timber	New record	Pemberton, 2001, Turnbull 292
Pinus halepensis	Timber	New record	Perth, 1995, Keighery 14110
Pinus palustris	Timber	New record	Pemberton, 1997, Keighery 14588
Pinus pinea	Timber	New record	Reserve 32800, 1984, Burgmann 4272
Pinus ponderosa	Timber, food	New record	Hollyoake, 1/12/2001, Keighery s.n.
Monocotyledons			
AGAVACEAE			
Furcraea selloa	Ornamental	New record	Mosman Park, 1995, Lepschi \& Lally 1780
Yucca aloifolia	Ornamental	New record	Busselton, 1990, G. Keighery 9116

Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
ALISMATACEAE			
Sagittaria platyphylla	Ornamental	New record	Canning River, 1997, Vincent s.n.
AMARYLLIDACEAE			
Nerine bowdenii	Ornamental	New record	Mount Barker, 1997, Keighery 14607
Pancratium maritimum	Ornamental	New record	Woodmans Point, 12/1999, Lyons s.n.
AREACACEAE			
ASPARAGACEAE			
Asparagus plumosus	Ornamental	New record	Bunbury, 1995, Keighery 14013
Asparagus scandens	Ornamental	New record	Denmark, 2001, K.Brown et N. Gibson 601
COMMELINACEAE			
Murdannia nudiflora	Unknown	New record	Mitchell Plateau, 1980, Keighery 2705
Tradescantia albiflora	Ornamental	New record	Yagan Reserve, 2004, Keighery 16855
CYPERACEAE			
Cyperus laevigatus	Unknown	Prev. considered cosmopolitan native	Listed as native by Wilson 2000a. In WA listed as a weed by Paczkowska \& Chapman 2000
HYDROCHARITACEAE			
Elodea canadensis	Ornamental	Literature, no specimens in PERTH	listed as a weed by Paczkowska \& Chapman 2000
IRIDACEAE			
Dietes grandiflora	Ornamental	New record	Kalamunda, 2002, G \& B Keighery 201
Iris laevigata	Ornamental	New record	Lake Powell, 2002, B \& G Keighery 175
Freesia laxa	Ornamental		Canning Mills, 2003, Turton s.n.
Lapierousia anceps	Ornamental		Kalbarri, 2001, B \& D. Bellairs 6223

Wilson 2000b
Wilson 2000b
Mount Barker, 1979, ID 1994
Swan Valley, 1994, A. Worz 01
Wheeler et al. 2002

Proposed as eastern Australian introduction
(WA Herbarium, 1998-)
Gibb River Station, 1996, A.A. Mitchell 4441
Jacobs \& Hastings 1993
Jacobs \& Hastings 1993
Mitchell River Station, 1996, A.A. Mitchell 4350
Bullsbrook, 1995 , Lepschi \& Lally 2486
Lazarides 1997
Lazarides 1997
Lazarides 1997
Wheeler et al.2002
Wheeler et al.1992
Webster 1987
Webster 1987
Webster 1987
A.P.B. pers. com.
Wheeler et al.2002
Literature record
Literature record
Taxonomic and
New record
New record
Taxonomic.
Divided into 2
varieties prev. only at
species level
Literature
New record
Literature
Literature
New record
New record
Revision
Revision
Revision
Taxonomic review,
1996
Literature
Literature
Literature
Literature
Weed of irrigated
pastures
Literature
Unknown
Unknown
Unknown

Unknown
Unknown

Unknown
Lawn grass
Contaminant
Contaminant
Lawn grass
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
Unknown
?Weedy native
Unknown
Unknown
JUNCACEAE
Juncus effusus
Juncus geradii
Juncus imbricatus
JUNCAGINACEAE
Triglochin bulbosa
POACEAE
Agrostis capillaris var aristata
Agrostis capillaris
var capillaris
Aristida ramosa
Axonopus fissifolius
Bromus molliformis
Bromus tectorum
Cynodon nlemfuensis
var nlemfuensis
Digitaria aequiglumis
Eragrostis barrelieri
Eragrostis mexicana
Eragrostis tenuifolia
Glyceria declinata
Oryza rufipogon
Panicum coloratum
Paspalum plicatulum
Paspalum scrobiculatum
Sporobolus pyramidalis
Vulpia muralis
Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location /date/voucher/reference
POTAMOGETONACEAE Potamogeton crispus	Ornamental	Literature record Flora of Perth Region, 1986.	Mongers Lake, 1983, N. Marchant 83/1
Dicotyledons			
ACANTHACEAE Thunbergia alata	Ornamental	New record	Augusta, 1998, Keighery 15618
AIZOACEAE Trianthema portulaccastrum	Unknown Delosperma vinaceum	Literature record AMARANTHACEAE	?ew record

listed by Forster, 1992, not listed by Forster, 1996
Literature record, naturalised collections Broome, Kalumburu 2001
Boulder, 24/12/2002, P. Curry s.n.
PERTH collections sorted 1996
Bunbury, 1970, CV Cahill 01
Kings Park, 1995, Keighery 14109 Kings Park, 1995, Keighery \& Longman 2004 Keighery \& Longman 2004 Yule Brook, 3/1997, S. 1loyd s.n. Albany, 2000, Keighery 16029
Nornalup, 1999, Funk 12225 Nornalup, 1999, Funk 12225 Coorow, 23/9/1998, P. Stubbs s.n. Mitchell Freeway, 2003, G. Keighery 16775 A.P.B. pers. com.
Cowaramup, 1955, Royce 5177 Yalgorup, 1996, Keighery 14455 Gunyidi, 2003, R.Rees 42

Unknown Contaminant Unknown A. P. B. pers. com. \qquad New record 2005 record/survey Chrysocoma coma-aurea
Cotula australis
Cotula coronopifolia
Eclipta sp. Perth
(S. Lloyd s.n. 3/4/1998)
Gazania rigens
Leontodon hispidus
subsp. hispidus
Matricaria recutita
Senecio condylus

BORAGINACEAE Cynoglossum amabile Myosotis discolor

BRASSICACEAE Arabadopsis thaliana Cardamine sp Jandakot
 E
$-$
Calotropis gigantea
ASCELPIDACEAE Orbea variegata ASTERACEAE Ageratum conyzoides Chrysanthemum segetum Chrysocoma coma-aurea
Cotula australis
Cotula coronopifolia

路

Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
Raphanus sativus	Food	New record	Abrolhos, 1987, J.J. Alford 687
Rorippa palustris	Unknown	Unknown	Hewson 1982
CACTACEAE (Austrocylindropuntia cylindrica) Cylindropuntia fulgida var mamillata	Ornamental	New record	Quobba Station, 18/9/2000, L.Stace s.n.
Cylindropuntia rosea (tunicata)	Ornamental	New record	Menzies, 22/10/2002, S. Januszkiewcz s.n.
Opuntia lindheimeri	Ornamental	New record, redet 1998	Chapman Valley, 19/ 2/1990, R.L. Chant s.n.
Opuntia vulgaris	Ornamental	New record	Queens Park, 1999, G. Keighery 15868
CAESALPINACEAE			
Delonix regia	Ornamental	New record	Koolan Island, 1993, G. Keighery \& N. Gibson 59
Senna alata	Ornamental	New record	Koolan Island, 1993, G. Keighery \& N. Gibson 77
Senna barclayana	Ornamental	Literature record	Randall \& Barlow 1998
Senna tora	Ornamental	Literature record	Randall \& Barlow 1998
CAR YOPHYLLACEAE			
Cerastium comatum	Unknown	New record	Hillman N.R., 1999, Keighery \& Gibson 799
Cerastium pumilum	Unknown	Taxonomic review	Adams pers. com.
Cerastium vulgare	Unknown	Taxonomic review	Adams pers. com.
Illecebrum verticillatum	Unknown	New record	Dunsborough, 1996, Ohlemuller 252
Silene longicaulis	Unknown	Taxonomic review	Adams pers. com.
Stellaria multiflora	Unknown	Taxonomic review	Adams pers. com.
CASUARINACEAE Allocasuarina huegeliana	Ornamental	New record, weedy native	Kings Park, 1995, G. Keighery 13990
CHENOPODIACEAE Atriplex amnicola	Fodder, rehabilitation	Literature record	Wilson 1984

Wilson 1984
Wilson 1984
Wilson 1984
Wilson 1984
Wilson 1984
Wilson 1984
Wilson 1983
Wilson 1983
Ravensthorpe, 1999, E. Tink 361
Wilson 1983
Claremont, 1996, Keighery 14041
Woodvale Nature Reserve, 1992, Keighery 13522
Kununurra, 1993, A.A. Mitchell 2832
Lake Kununurra, 1995, A.A. Mitchell 3846 B
N.E. of Kununurra, 1992, A.A. Mitchell 2620
Kalumburu, 1992, A.A. Mitchell 2471
Oombulgurri, 1998, A.A. Mitchell 5561
Lake Kununurra, 1998, A.A. Mitchell 5572
Rat Island, 5/11/1999, Longman \& Harvey s.n.
City Beach, 1998, G. Keighery 15880
Kalgoorlie, 2002, G. \& B. Keighery 157
Keighery\& Longman, 2004
Keighery\& Longman, 2004
Keighery\& Longman, 2004
Literature record
New record
Literature record
New record
literature record
Literature record /
taxonomic revision
Literature record

Atriplex canescens Atriplex lentiformis Atriplex leptocarpa Atriplex limbata Atriplex semibaccata Atriplex undulata
 Chenopodium pumilio Scleroblitum atriplicinum Suaeda baccifera CONVOLVULACEAE Convolvulus sabatius subsp. mauritanicus Dichondra micrantha Evolvulus nummularius Ipomoea batatas Ipomoea carnea subsp. fistulosa Ipomoea pes-tigridis Ipomoea triloba CRASSULACEAE Operculina turpethum Bryophyllum delagoense Crassula arborescens (ovata) Portulacaria af ra EUPHORBIACEAE Euphorbia australis Euphorbia chamaesyce Euphorbia drummondii subsp. drummondii
Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
Euphorbia hirta	Unknown	Literature record	Wheeler et al. 1992
Euphorbia hyssopifolia	Unknown	New record	Howatharra, 2001, Annon
Euphorbia stevenii	Unknown	Literature record	Keighery\& Longman 2004
Phyllanthus amarus	Nursery weed	Literature record	Keighery\& Longman 2004
GERANIACEAE Erodium brachycarpum	Unknown	Literature record	Western Australian Herbarium1998-
LAMIACEAE Ocimum tenuiflorum	Herb	Literature record	Western Australian Herbarium1998-
LYTHRACEAE Ammannia auriculata	Crop weed	literature record	Hewson 1990
MALVACEAE			
Abutilon grandifolium	Ornamental	New record	Kenwick, 1999, G. Keighery 15867
Malva nicaeensis	Ornamental	Reviewed, 1996	Albany, 1992, Croxford 6740
Sida rhombifolia	Unknown	Reviewed, 1996	Burekup, 2/1981, D. Rose s.n.
Sida subcordata	Unknown	Reviewed, 1996	Cape Bouganville, 1989, G. Keighery 10707
MARTYNIACEAE Martynia annua	Ornamental	Literature record	Western Australian Herbarium1998-
MELIACEAE Azadirachta indica	Ornamental	New record	Kununnurra, 1995, A.A. Mitchell 4034
MIMOSACEAE Acacia nilotica subsp. indica Acacia saligna	Fodder /shelter Crop/salinity	New record Literature record/ survey	SE Wyndham, 2003, N. Wilson 0404

Cowan 1998 gives as naturalised, native in Paczkowska \& Chapman 2000
Perry 1998
Keighery\& Longman 2004

Two Rocks, K. Richardson 28

$$
\text { Bridgetown, 1981, Keighery } 4293
$$

Hovea, 1990, G. Keighery 11440
Brunswick, 1996, G. Keighery 14349
Toodyay, 23/7/1992, J. Dodd s.n.
Divided into 2 varieties prev. only at species level
Literature record,
Pilbara plants are
definitely not native
to area
Literature record
Literature record
New record,
previously Fraxinus sp
New record
New record
New record, det. 1997
Collections redeter-
mined by B. Lepschi,
1997
Ornamental
Albizia lebbeck
Prosopis glandulosa x velutina Fodder, Shelter

> Contaminant
?Ornamental
Ornamental
Wood
Ornamental Leptospermum rotundifolium Ornamental Melaleuca diosmifolia Ornamental Melaleuca linariifolia Ornamental Melaleuca nesophila Ornamental
Ornamental
Ornamental

Ornamental
Ornamental OLEACEAE
Fraxinus rotundifolia

Syringia vulgaris

 ONAGRACEAE Gaura lindheimeriOXALIDACEAE Oxalis compressa PAPAVERACEAE
Papaver somniferum subsp segiterum \& subsp.
somniferum
Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
PAPILLIONACEAE			
Aeschynomene americana	Unknown	New record, det. in PERTH by ST Reynolds 2001	Kununurra, 1992, A.A. Mitchell 2159
Aeschynomene villosa	Unknown	Revision, det. in PERTH, by ST Reynolds, 1988	
Alysicarpus ovalifolius	Unknown	New record, det. in PERTH by ST Reynolds, 1996	
Astragalus pelecinus	Crop	New record	Northampton, 10/2001, B. Shepherd s.n.
Canavalia ensiformis	Unknown	revision, det. in PERTH by R. Cowan, 1996	
Centrosema pascuorum	Crop	New Record	Kitto Station, 1999, A.A. Mitchell \& Brockway 5675
Desmodium scorpiurus	Unknown	literature record	Pedley 1999
Desmodium triflorum	Lawn weed	New record	Kununurra, 1995, A.A. Mitchell 4042
Indigofera glandulosa	Native crop weed	Herbarium search	Kununurra Sugar Cane Crop weed, 1978, Aplin 6285
Kennedia nigricans	Ornamental	New record	Waroona, 1996, G. Keighery 14413
Melilotus officinalis	?Fodder	revision, det. 1994 by AE Holland	Possibly not naturalised, last record 1964
Psoralea aff. graveolens	Fodder	Literature record	Possibly not naturalised, one old record in crop at Harvey
Retama raetum	Ornamental	Taxonomic change from R. monosperma	1991 collection determined 1999

Two varieties prev．one species，no varieties
Two varieties prev．one species，no varieties
3 subspecies，previously two
Blackwood River，1990，G．Keighery 11981

Garden Island，1994，G．Keighery 13138
revision，det．in
PERTH by AE Holland，
PERTH by AE Holland，
1998

966IpueIlOH 日V кq
＇HLyヨd＇วәр＇uo！̣s！̣ләу
て00て pueıfoH ヨV Ḱq
Ag Dept records 2001
Revision ，det．PERTH，
by AE Holland 1993
Revision，det．PERTH，
by AE Holland 1993
Literature record，new
record，prev．Garden
escape
Two varieties prev．
one species

1996
New record
Stylosanthes hamata
Stylosanthes scabra
Trifolium resupinatum
var majus
Trifolium vesiculosum
Vicia sativa subsp．cordata
Vicia villosa subsp．eriocarpa
PASSIFLORACEAE
Passiflora edulis
Crop
Crop
Crop

рәәм doIว
Crop weed
Crop
Weedy native
Contaminant
Contaminant
Unknown
Passiflora edulis
PLANTAGINACEAE
Unknown

Contaminant
Table 2 (cont.)

Taxon	Reason Introduced	Record Source	Location/date/voucher/reference
RANNUNCULACEAE Myosurus minimus var australis \& var minimus	Weedy native	Considered native 1994, Briggs \& Makin- son 2000 state that there are native (var australis) and intro- duced varieties.	 Chapman 2000
ROSACEAE Acaena echinata var subglabricalyx	Unknown	Species complex, 5 varieties naturalised not 4 rubus rugosus	Nrision,det. DE

South Perth, 1995, Lepschi et Lally 1837 Recorded only as K. elatine
Perth, 1995, Lepschi et Lally 1932 Wyndham, 1992, A.A. Mitchell 2146 Pingelly, 1998, G. Keighery 15361 Briggs et al. 1992
Briggs et al. 1992
Cowie et al. 2001
Symon 1997, Cowie et al. 2001
York, 2002, G. et B. Keighery 232
Kununurra, 2000, A.A. Mitchell 6159

New record
New record
New record
New record
New record
Literature record
Literature record
Prev. considered
native
Prev. considered
native
New record
revision, PERTH det.
I.Cowie1995
revision, PERTH det.
D.A. Halford, 1996
New record
revision, PERTH det.
DA Halford, 1994
New record, 2003
revision, det. 1996
New record
New record

Ornamental
Taxonomic
review
Ornamental
Lawn weed
Ornamental
Unknown
Unknown
Unknown
Unknown
Unknown
Ornamental
Unknown
Unknown

Unknown
Crop weed
Ornamental
Ornamental

SCROPHULARIACEAE Bacopa monnieri
Kickxia elatine into subsp. elatine \& subsp. crinita
Linaria marocccana Linaria marocccana Nemesia strumosa Veronica peregrina
 SOLANACEAE

TAMARICACEAE Tamarix pentaphylla TILIACEAE Melochia pyramidata

> Corchorus trilocularis

Grewia asiatica
Triumfetta pentandra

> VALERIANACEAE Valerianella locusta VERBENACEAE Phyla canescens Verbena officinalis

VITACEAE
Parthenocissus tricuspidata

LITERATURE/TAXONOMIC CHANGES

There were 95 weeds added to the list by reviewing taxonomic revisions, Flora of Australia treatments, State and local flora treatments throughout Australia (Table 2). Others were from personal communication with weed workers in Western Australia. Sixteen of these were recorded in the tropical Kimberley, 5 in the desert and 74 from southern Western Australia. A significant component of these records were native Western Australian species acting as weeds in agricultural sites.
Taxonomic changes include species previously recorded without infraspecific categories recorded that now have been recognised, for example 2 subspecies or 2 varieties are recognized in Agrostis capillaris, Acaena echinata and Papaver somniferum.
There were several species previously considered as native that are stated as weeds in taxonomic revisions, e.g.: Ammannia auriculata or a number of native Atriplex species (7 species naturalized via salinity plantings) deliberately introduced outside their native ranges that are documented in the Flora of Australia treatment of the genus.

REASONS INTRODUCED

Of the taxa listed in Table 2, 89 were introduced as ornamentals, 30 for agriculture (fodder, shelter
or wood), 12 are weedy Western Australian native species and for 51 methods of their introduction are unknown. The great majority of new weeds continue to result from deliberate introductions.

DISCUSSION

By 2005 there were 1,239 naturalized vascular plant taxa recorded for Western Australia, composed of 12 Ferns, 15 Gymnosperms, 347 Monocotyledons and 865 Dicotyledons.
This paper highlights the importance of taxonomic studies of Australia's native and naturalised flora at a State and Australia wide level in uncovering and documenting previously unrecorded weeds. At least half of the "new" weed records from the survey period were the result of scrutiny of the available literature or taxonomic revisions of previously collected material. This suggests that supporting timely taxonomic scrutiny of current and past weed collections is vital to keeping out new and emerging weeds.
However, the documentation of the weeds of Western Australia displays a considerable lag time between discovery, identification and listing of new weeds, often exceeding 5-10 years. There are still many cases where species are listed as weeds in taxonomic reviews and/or revisions where this information has not been transferred to electronic databases. For example

Ammannia auriculata was listed as a weed of rice crops by Hewson (1980), but is still listed as native in Western Australia. Weed researchers and Herbaria need to actively search revisions to locate potential new weeds and establish clear guidelines to add these records to State and national databases.
As well there are numerous differences between States on the native or naturalized status of certain species, eg: Helichrysum luteo-album or Cotula coronopiifolia. The continued development of Australia wide herbarium databases, especially the Australian Virtual Herbarium should reduce this problem. However, a national approach should not confer weedy or native status on difficult groups without caveats being transparent.
Increasing public awareness of all weeds, regular survey and the systematic survey of Northern Australia by the Australian Quarantine Inspection Service (AQIS) is leading to many new records. Unfortunately the number of new records is still increasing at approximately 10 per year over the survey period similar to past estimates Australia wide and shows little signs of slowing.
There is still a lack of awareness about the potential of both Australian and Western Australian natives to act as significant environmental weeds in Western Australia.

REFERENCES

BENNETT, E.M. 1995. Plant species of the Kings Park Bushland. Western Australian Naturalist 20: 97-118.
BRIGGS, B.G., WIENCEK, B. and WHALEN, A.J. 1992. Veronica. Pp. 578-582. In: G. Harden (ed) Flora of New South Wales.Volume 3. University of New South Wales Press, Sydney.
BRIGGS, B.G. and MAKINSON, R.O. 2000. Rannunculaceae. Pp. 157-167. In: G. Harden (ed) Flora of New South Wales. Volume 1. University of New South Wales Press, Sydney.
BROWNSEY, P.J. 1998. Dennstaedtiaceae. Pp. 214-240. In A.E. Orchard (ed) Flora of Australia. Volume 48. ABRS/CSIRO, Canberra.
CLAYTON, P. 2006. A living preservation. The Garden 131: 474475.

COWAN, R.S. 1998. Mimosaceae. Pp. 1-49. In A.E. Orchard (ed) Flora of Australia. Volume 12. ABRS/ CSIRO, Canberra.
COWIE, I.D., SHORT, P.S. and MADSEN OSTERKAMP, M. 2001. Floodplain Flora. Flora of Australia Supplementary Series 10. A.B.R.S., Canberra.
FORSTER, P.I. 1992. A taxonomic account of the genus Calotropis R.Br. (Ascelpidaceae) in Australia. Nuytsia 8: 201-208.
FORSTER, P.I. 1996. Ascelpidaceae. Pp. 197-283. In A.E. Orchard (ed) Flora of Australia. Volume 28. CSIRO, Melbourne.

HEWSON, H.J. 1981. The genus Lepidium (Brassicaceae) in Australia. Brunonia 4: 217-308.
HEWSON, H.J. 1982. Brassicaceae. Pp. 231-357. In: A.S. George (ed) Flora of Australia Volume 8. Aust. Govt. Pub. Service, Canberra.
HEWSON, H.J. 1990. Ammannia. Pp. 97-100. In: A.S.George (ed) Flora of Australia. Volume 18. Podostemaceae to Combretaceae. Australian Government Publishing Service, Canberra.
HILL, K.D. 1998. Cupressaceae. Pp. 569-588. In: A.E. Orchard (ed) Flora of Australia. Volume 48. Ferns, Gymosperms and Allied Groups. ABRS/CSIRO Canberra.
HUSSEY, B.M.J., Keighery, G.J., Cousens, R.D., Dodd, J. and Lloyd, S.G. (1997). Western Weeds. Plant Protection Society, Perth.
JACOBS, S.W.L. and HASTINGS, S.M. 1993. Bromus. Pp. 628-633. In: G. Harden (ed) Flora New South Wales. Volume 4. University of New South Wales Press, Sydney.
KEIGHERY, G.J. 1983. Garden escapes (When is a weed not a weed) in Western Australia. Australian Garden Journal 2:148151.

KEIGHERY, G.J. 1986. Garden escapes on Rottnest Island: An annotated Checklist. Landnote 3/ 86. (CALM).

KEIGHERY, G.J. 1991. Weeds of John Forrest National Park along Jane Brook. CALM Internal Report.
KEIGHERY, G.J. 1995. An annotated list of the naturalised vascular plants of Western

Australia. In: G.R. Burke (ed) Invasive Weeds and Regenerating Ecosystems in Western Australia. Institute of Science and Technology, Murdoch University, Murdoch.
KEIGHERY, G.J. 1997. Arum Lily as an environmental weed in Western Australia - overview of distribution and threat to natural systems. Pp. 17-19. In: J.K. Scott and B.J. Wykes (eds) Proceedings of a workshop on Arum Lily (Zantdeschia aethiopica). Plant Protection Quarterly, Melbourne. KEIGHERY, G.J. 1998. Weeds of Garden Island - An annotated list. Western Australian Naturalist 22 :61-76.
KEIGHERY, G.J. 1999. A Checklist of the naturalised Vascular Plants of Western Australia (Including Distribution in IBRA Regions and Garden Escapes). CALM unpublished report, 31 pages. KEIGHERY, G.J. 2002. The Enemy Within: Native Environmental Weeds of Western Australia. Pp. 93-95. In: Spafford-Jacob, H., Dodd, J. and Moore, J.H (eds) Proceedings 13th Australian Weeds Conference, Perth.
KEIGHERY, G.J. and LONGMAN, V. 2004. The naturalized vascular plants of Western Australia 1: Checklist, Environmental Weeds and Distribution in IBRA regions. Plant Protection Quarterly 19: 1232.

KILIA N, N. 1997. Revision of Launaea Cass. (Compositae:Lactuceae:Sonchinae). Englera 17. Botanischen Garten \& Botanischen Museum, Berlin.

LAZARIDES, M. 1997. A revision of Eragrostis (Eragrostideae: Eleusiniae: Poaceae) in Australia. Australian Systematic Botany 10: 77187.

McCOMB, J.A. 1974. Annual Medicago species with particular reference to those occurring in Western Australia. Journal of the Royal Society of Western Australia 57: 81-96.
MUNIR, A.A. 1993. A taxonomic revision of Phyla Lour. (Verbenaceae) in Australia. Journal Adelaide Botanic Gardens 15: 109128.

ORCHARD, A.E. 1969. Revision of Acaena ovina A. Cunn. complex in Australia. Transactions of the Royal Society of South Australia 93: 91-109.
PALMER, J. 1998. A taxonomic revision of Gomphrena (Amaranthaceae) in Australia. Australian Systematic Botany 11: 73161.

PACZKOWSKA, G. and CHAPMAN, A.R. 2000. The Western Australian Flora: A Descriptive Catalogue. Wildflower Society of Western Australia, Kings Park \& CALM, Nedlands.
PEDLEY, L. 1998. Chamaecrista. Pp 138-145. In: P.M. McCarthy (ed). Flora of Australia. Volume 12. Mimosaceae (excluding Acacia), Caesalpiniaceae. CSIRO/ABRS, Canberra.
PEDLEY, L. 1999. Desmodium Desv. (Fabaceae) and related genera in Australia: a taxonomic revision. Austrobaileya 5: 209-261.
PERRY, G. 1998. Prosopis. Pp 7-12. In: P.M. McCarthy (ed). Flora of

Australia. Volume 12. Mimosaceae (excluding Acacia), Caesalpiniaceae. CSIRO/ABRS, Canberra.
RANDELL, B.R. and BARLOW, B.A. 1998. Senna. Pp 89-138. In: P.M. McCarthy (ed). Flora of Australia. Volume 12. Mimosaceae (excluding Acacia), Caesalpiniaceae. CSIRO/ ABRS, Canberra.
ROMANOWSKI, N. 1998. Aquatic and wetland plants: A field guide to non tropical Australia. University of New South Wales Press, Sydney. RECHINGER, K.H. 1984. Rumex (Polygonaceae) in Australia: a reconsideration. Nuytsia 5: 75-122.
SYMON, D.E. 1997. Physalis micrantha (Solanaceae) recorded from the Northern Territory, Australian Systematic Botany Society Newsletter 10: 681-682.
THOMPSON, I.R. 2005. Taxonomic Studies of Australian Senecio (Asteraceae): 4. A Revision of Senecio glossanthus and recognition of an allied species with long ligules. Muelleria 21:3-21.
WARDELL-JOHNSON, G. 1999. A new record for the fern flora of south-western Australia: a single plant of Histiopteris incisa from Mount Lindesay. Nuytsia 13: 259260.

WEBSTER, R.D. 1987. The Australian Paniceae (Poaceae). Cramer, Berlin.
WESTERN AUSTRALIAN HERBARIUM 1998-. FloraBase - The Western Australian Flora. Department of Conservation and Land Management.
http://florabase.calm.wa.gov.au.
WHEELER, J.R., RYE, B.L., KOCH,
B.L. and WILSON, A.J.G. 1992. Flora of the Kimberley Region. Department of Conservation and Land Management, Perth.
WHEELER, J.R., MARCHANT, NG and LEWINGTON, M 2002. Flora of the South West. University of Western Australia Press, Nedlands. WILSON, P.G. 1983. A Taxonomic Revision of the Tribe Chenopodieae (Chenopodiaceae) in Australia. Nuytsia 4: 135-262.

WILSON, P.G. 1984. Chenopodiaceae. Pp. 81-317. In: A.S. George (ed) Flora of Australia. Volume 4. Phytolaccaceae to Chenopodiaceae. Australian Government Publishing Service, Canberra.
WILSON, K.L. 2000a. Cyperaceae. Pp. 293-395. In: G. Harden (ed) Flora of New South Wales. Volume 4. University of New South Wales Press, Sydney.
WILSON, K.L. 2000b. Juncaceae. Pp. 266-292. In: G. Harden (ed) Flora of New South Wales. Volume 4. University of New South Wales Press, Sydney.

CLUB NEWS

Programme

General Meetings and Branch Meetings are held at various venues in Nedlands, Kalamunda, Rockingham and North Beach.
The Retired and Leisured Group meets on alternate Wednesdays at 10a.m.
Excursions and field days are planned from time to time and will be advertised in the Club's monthly newsletter "The Naturalist News".

THE WESTERN AUSTRALIAN NATURALIST

(Journal of the W.A. Naturalists' Club)
Editor
MR JOHN DELL

The Western Australian Naturalist publishes original data on all branches of natural science pertaining to Western Australia. Originals and two copies of manuscripts should be submitted to the Editor for review by two referees. Authors are requested to follow current editorial style. If possible, manuscripts should be submitted in Word format. High quality illustrations suitable for some reductions in size are preferred.

DONATIONS TO THE CLUB

Members are reminded that they may make financial contributions to the club. This funding is very important from the Club's point of view, as it helps our publication activities, field station maintenance and other miscellaneous activities. Members are asked to remember the club and its needs when preparing their Wills and Testaments.
The WA Naturalists' Fund is entered in the register of Environmental Organisations. Donations of \$2.00 and over are tax deductible under item 1 Section 30-15 and Subsection 30B of the Income Tax Assessment Act 1997.

SUBSCRIPTIONS

Annual Membership: one adult, \$60; Double Membership: \$75; Family Membership: \$65; Young members (6-17 years): $\$ 30$. All Subscriptions include "The Western Australian Naturalist".
Further copies of "The Western Australian Naturalist" (or back copies) are available from the Treasurer.
Use by honeyeaters and parrots of a Brown Mallet plantation and an arboretum at Dryandra Woodland, Western Australia, at a time of year when few other nectar resources were available. By William E. Davis, JR and Harry F. Recher 69
Vascular Flora of Dryandra Woodland (Lol Gray and Montague State Forests). By Greg Keighery and Bronwen Keighery 73
Behavioural observations on an unnamed species of skink Liopholis (formerly Egernia) "Cape Range" from Cape Range. By M.J. Bamford and A.R. Bamford 107
A feeding technique of the Brown Honeyeater (Lichmera indistincta). By Kevin Coate 112
A new species of Darwinia (Myrtaceae) from Western Australia. By Greg Keighery 116
A checklist of the naturalized vascular plants of Western Australia II: Changes 1994-2004. By Greg Keighery. 120

HANDBOOKS

and back copies of

THE WESTERN AUSTRALIAN NATURALIST

Arange of Club Handbooks and back copies of the Journal are available. For availability and cost please check the Club's website or contact the Club at the address on the inside cover of this journal.

