Yellowstone's Northern Range

Where Nature Takes Its Course

Dear Yellowstone Neighbors:

1 urged my staff to prepare this newsletter because the conservation of park resources is too important an issue to be addrewed with anything less than the full attention of citizens like yourself Yellowstone's Northem Range has heen controvervial for most of this century, whether the debate is over elk numbers, bwon nanagement. predator control. or grassland ecology. The public is watching, and has important questions that deserve careful answers.

This newsletter introduces a wealth of new research about the Northern Range that has been done by respected scientists from a dozen universtites and many state and federal agencies. These research findings have been puhlished in the nation's leading scientific journals, which requre strict adherence to objective research and represent the highest scientific "cour"" in the land. Science has taught us that a wildland ecosystem cannot he judged hy the standards of commercial rangelands, and that the verdict on the Northern Range is to he tound in the ahundance of plant and animal life that continue to thrive there year after year.

It's also important to recognize that for Yellowstone, as for any wildand, science cannot provide all the answers. We treasure Yellowstone precisely because its landscape has been determined largely by natural processes rather than by human decisions. Questions about its management inevitably touch upon deep-reated values that are bared less upon facts than upon on how each of us helieves we should relate to our natural environment

Pleave give this newsletter some time. Although no amount of science can settle such debates, we in the National Park Service believe that only by understanding what we have learned through research can we move the discussion about the Northern Range forward.

Sincerely,

```
Mrturetqefinteviley
Yellowstone National Park
```


Too Many Elk at Home on the Range?

For decades it was commonly thought that the elk were "overgrazing" the Northern Range - that they were eaung the vegetation more quickly than it could recover and damaging the plant communities. including willow and aspen. From this point of view, in order to maintain "the night balance" hetween elk and their hahitat, the elk nust be reduced periodically, although bison and pronghorn have also been blamed for overgrazang. As a result of this belief, Yellowstone's grazers were once trapped and shipped to other ranges across North

America; some were simply shot. When control efforts resulted in the slaughter of thousands of elk in the 1960 s , a public outcry led to hearings held by U.S. Senator McGee (Wyoming) and reductions came to an end in 1968. At that time. the number of elk wintering on the Northern Range was down to about 4.500 .

Since then, wildlife managers at Yellowstone and throughout the United States have come to recognize each species" ability to "naturally" regulate its own number when we do not intervene unduly through our land use and other activtties. When the process of natural regulation is permitted to take place, there's no "nght" number of elk for the Northern Range. Instead, the elk population fluctuattes over time as its hirth and death rates are affected by a combination of factors, including winter seventy, the quantuly and quality of available forage. emigration, parasites, disease, and predation by other animals. Elk are also subject to hunting when they leave the park

Sometimes referred to as "America's Serengeti" becomse of the large herds of wildlife that graze on its rolling expanse, the Northem Range has also been the stomping gronnd for generutions. of wildlife experts. politicians, and concerned citneens who have wrangled over how to best "manage" this natnral treasure. What the controversy?

Whoush the efk popmbenon nitherngs on the Vorthern Rempe quadrupled after reductoons. stopped in 1968. the fluctuations hane beerme waller as fhe imer asmghs reflect metwrat peppulation comtrol rather than humen metererence The current poputatom lewels. which are determened be aeral same es. mas approvmate the nam her of clk present on the range before significont human intervention began in the teth centurs:

The Effect of Natural Regulation on the Northern Range

In a world where progrew is generally assoc rated with our ahility to control and shape our phywal envronment to wome ideal viston of the way we think thing whould he, the idea of accepting natural regulation has been controvernal it's ohvously not appropnate for all anmals in all parks. or in any situation where it is nece wary 10 protect human life or propery But three decadev of expenence have thoun that, comhened with regu lated hunting in the wurrounding national forevs. natural regulation has controlled the wize of the eith population. Although the number of elk wintenng on the Nortcern Range has increased in revpone to the eonverston of more than 10.000 aseres north of the park from livestock to wildile use and inereased migration to that land. it las also responded to weather tratuons and other envsonmental factors Elh increased dunng yean with mald winters and wel summers, and declaned atter the drought and fires of 1988 Since 1990, annual fall population estamate have fluc iuated hetween 16,000 and 20,000

Although the northern Yellow stone clk depend in pars upon puhlic and private lands north of the park. It appears that the cooperative eftor that has developed over the yean has sustamed a large, thriving elk herd that is valued hy Yellow stone visiton as uell is hy hunter and other wildife supporien. According to the Alontana Department of Fish. Wildlife and l'arks, this elk herd has the highest economic talue of any in the state

But how han natural regulaton ol elh aflected the range thelt and the other anmals who love there In reaponse to the continuing controversy over the condition of the range, in 1986 Congrew mandated a study on the resulte ol natural regulation. Thrs research matiative, one of the largest in the history of the Natsonal Parh Service (NPS), encomparing more than 40 projects by NPS biologisw, umbersity rewarchers, and werentist from other federal and state agencies, has made substantial progrew in clantying the complex evology of the range The reveare'h results densonstratc that the Northern Range
has contmued to provide a rohust wurce of nutniton for lange, healthy ungulate herds year alter year, and despite certan lecahzed inpacts, elh do not appear to have had any stgntficant long-term effects on the overall hodivervily ol native ammals and plants on the range. The changes in vegetation that have caused some observers to lase alarms ate enther not the revult of elk "overpopulation" or are part of long term ecological processes such as clamate and predation that we are only heginning to understand

Sone of the hey rescareh findings, which have heen summanzed in the recently puhbshed book Yellowstone is Northern Range: Complestry and Change in a Wildland tiosoystem. are reponed in the artce'v that tollow Athough there is still much that need to he vudied. and experts will contmue to divagree on some poums. this researeh hav fundamen tally ditered the nature of the grazing debate in Yellow tone and may influence the management of u ild land ranges throughout the world.

What is Wildlife For?

A Changing View

The vhit toward natural regulation of wildite to the extent feamble is part ol a long evolution in the puhlic " vieu ot the purpose ol a nation.al park and the role of wildlife When Yellowvone wivestahlashed 125 years ago, the primary goal wav to proted ecrain spectic natural wonders and hunteng was permilted The park was not vatted or equipped Juring its early year to pievent the widespread Waughier of wilditie that wept the Wewt in the 1870 s and early 1880s, and many ol Yellow stone's wildite populatons were nearly decimated Recognizing that the park could verve as a reservon to revtoch the surrounding area with game, sporsimen and other converationste gave uidespread support to the hunting han that went mite eftect in 1883

From then untul the 1930, wildile management wan largely a matter of protecting the "good antmals (elh, deer, and other gume ammals and elmunating the "had" ones (wolves, coyoter and other predators) But as the protected ammals be'came lew wary ol people and cavere to see. the park i widlife hecame valued not only as a source of game for hunters outside the park hut an an amportant astor attraction in the park, and hoth predators and there prey cante to be regarded as worthy of prever. vation

We now recognure that plant and anmal conmunitice may change signiticantly from one year (and century) to the next in response to changing environmental conditont But tor a long ume. brologists thought natural procestes tended tow ard a vatale vate that could be predicted, with the goal ot mantaming wome adeal "balance of nature" hetween predators and prey, grazers and therr lorage Consequemly. nצanagenxent of Yellowmione '4 Norhern Range wav expected to keep anmal numbers ateady and minmize umier monality. a goal that requared
deliherate reductroms in the eik population.
By the 1960), an incteasing number of ecolo. gist were thallenging the helef that the Northem Range was overgrazed They proposed to let the elh herds seeh therr oun population level so that thes numbers would he "naturally" regulated by their environment This weu, whech has been horre out by atual experence on the Northern Range since elt reductons ended. hav becone part of the anvwer 10 the larger queston. "What is a ildife for?" Invesud of focusing solely on the protection of undividaal plant and anımal species, the goal of w alditfe management has hecone to prenerve the whole set of complex natural procewe that whape an ecoss vent luherent in this appocach sat atceptance of the tact that vome years will hring heavy winter monalsty tor wome anmak. tollomed hy periods of population growth.

Just av fanchers and furmen see ye.rly vanatons in growing condtions and the succew of their crops, so must Yellowstone's wildite respond to changes in thenvironment, whech may include fire. floods, and dought. But where ammial monalty on a ranch may be convidered a"uste," athong wild anmale it is eructal tos the survital of many other plant and anmal yecrex

The natural resource policies of the National Park Service are aimed at providing the American people with the opportunity to enjoy and benefit from natural environments evolving through natural processes minimally influenced by human actions."

- National Park Service Managemenı Policies, 1988

What is Overgrazing?

When concern ahout overgrazing first surfaced in the 1920, opimons on how the Northem Range "should" look were based on the only avalable criteria: that used to evaluate ranges grazed hy domestic livestoch Scientists had no clear idea ol how unmanipulated wild land grazing aystems worked or what they typically looked like hecause hy that tome they were already gone in the United States, often replaced by domestic livestock operatoons which have entirely different goals and etfects on the landseape But wildlife are not livestock, which move primaty when and where humans move them. Wild ungulates have evolved with their range, which has adapted to survive their grafing

Consequenily, a wildland range doer look ditlerent from a conmercial range, its appearance depend entirely on environmental lactors, instead ot on close supervisuon by anmeone whose promary goal is to mantan the highest sustanahle level of livestock production What a wildland ecologist would consider normal grazing effects, a live whoch manager mught consider unacceptable. For example. ranchers view evidence of erosion with alarm because soll is an economic asset. But in a wildland area where natural processes are to function is much as possible without human interterence or economic considerations, eroston is an inherent part of the landwcape, whether caused by the movement of ammah or long-tcrm geological lorses

Instead of awewing a range based on its appearance, sctentific apprasak of both commercial and wildliand ranges depend on the measurement of eriteria such as plant productivity. In Northern Range research, these evaluations have been done hy companng grafed areas to areas minde plots that have heen tenced to prevent graeing.

Is the Grass Greener on the Other Side of the Fence?

Alihough plants on ungrazed plots are taller. research on the Nurthem Range haw whown that. except in drought years, grazing does not reduce the seasonal protein content or volume of grass, or the veedling evtablislament or growth of big sagebrush

How can this be" Fak move across the range as toraging condtions dictate, seldom graring lurbs and grasses during their nowt vulncrable period and generally moving to tigher elevation before the plants llower and seed. In addition, the eftect of procesing plants through an ungulate's digestive tract is very different trom plants being left to de as leaves and viems on the ground. Grazen enhance the cycling of nutrients by tilling the soil with their hooves and by speeding up the decompostion process, converting plant matter to feces and urine that are quichly cycled back into the system along with their own carcassos.

The appearance of the Northern Range is affected by grizing, hut ungulates are only one of many contrihuting factors; the prmary influence over the long term is climate.

What About Willows and Aspen?

Revearch has shown that about 83% of the elk; winter diet comev from grasses and forby, the rest from woody vegetation. Although some observers have attrihuted a decline in willows and aspen on the Northern Range to overhrowang hy elk, other lactors may he involved Where willowa grow in Yellou stone as almost enturely deternuned by alutude and precipitation: 99% of the park's willow communitier are found in areas that are above 7.0000 feet and/or receve more than 20 inchen ol annual precipitation, which excludes most of the Northem Range. Although old photos show that some Northern Range locations had much taller willows in the 1890s than they do now; most of the decline in the last century has been during droughts rather than period of large elk populations No significant decline in Northern Range willows hav occurred since 1959 despite a quadrupling of elk numbers.
L.lhe willows, aspen thrive in areas of the park where the climate is hetter vuited to them, including ungulate sunmer ranges and other places that receive more than 25 inches of precipitation a year A 1995 tree-ring study showed there's been only one penod unce the early 1800 s when Northern Range aspen were able to encape browsing and reach tree
"To me, the point is the ecosystem. Is the system functioning, or are things breaking down? Are we getting an invasion of unpalatable plants, or breaking down soils so that their rate of nutrient recycling is going to pot? That's what I'm looking at. And I don't see that in Yellowstone. Therefore, as a grazing system, this is a healthy one."

- 1995 interview with Sam MeNaughton. botany professor at Syracuse Univerity
height. Movt of the aspen that are growing old on the Northern Range now were just getting varted during the period from the 1870 s to the 1890 ,

Whale this evidence suggess that the vparseness of Northern Range's willows and aspens cannot be explained simiply by the stze of the elh population, it woody vegetation has heen studied far levs than its grasses and sagebnush. The park strongly support the need for more research on the relationship of willows and aupen to other plants and anumals on the range.

What Makes the Rivers Muddy?

An increase in elk numbers has also been blamed for erovion and heavy vedmentation in Northern Range nivers Io determine if there was any verentific bivis for this, a team of researcher Irom government agencies, and Trout Unlimited mapped erostve land in the Yellowsone River dranage from the park tol livington, Montana from 1985 to 1987 They found that most of the vediment that muddies park nivers comes from four wheep and geologeally unstable areas such as the Grand Canyon of the Yellowstone River and the higher elevations ol the Limar River watershed. In none of these place are ungulates significant soil movers

Consequently, even it the Northern Range were nd of all ungulates, its rivers would still become muddy, evpecially during spring snowmelt and intense thundervtorms, and following fires when vegetation is reduced These processes are part ol the natural functioning of a widdand ecosystem

Sediments in riven throughout the park are wthin the norimal range ohserved in other westem slreams, and the Lamar Valley is still considered a blue-ribbon trout fishery, companing favorahly with that of oher sport fisheries that have no wildife herds grazing nearhy Other Wildlife on the Range

The quadrupling of the northern Yellowitone elh herd since reductions stopped in 1968 has led some to question whether the increase in ell has come at the expense of certian other ammal But competttion N a lact of life and, on a "level" playmg field where human entervention doe nor give one speces an advantage over another, doev not mean that something is wrong The predominance ol elh in largely a result ol its ahility to survive on a greater variety of forage than other wild ungulates. But changing environmental conditions dictate that all plant and ammal populations will fluctuate over time and vary in different locationsin the park The range expansion and mald wet climate that contrihuted to the elh increave during inost of the 1980, aloo lavored most other ungulates on the Northern Range (and throughout the greater Yellowstone econytem) including bison, pronghom, highom sheep, mule deer, and white-tailed de'er Only moose declined during that period

Moose: [1nlthe elk, moose depend on woorly ripartan vegetatoon lor nost ol thetr dtet, and vilice they can survive in snow that is nuch deeper. they tend to winter at higher elevations than elh Thers ablitary hahis in forested areas inake population estimate difficult, hut there are thought to be several hundred moose on the Northern Range The
populaton does appear to have decreased vince the 1960s and. although compeltitive excluston by elh cannot be entircly ruled out an a fetor, the lires ol 1988 and hunting outvde the park may have also played a role

Pronghorm: Although once dhundint in the grasslands of greater Ycllowstone, pronghorn were heavily reduced hy setlement and hunting in the 19th century, and hecause of overgrazing concerns in the 20th century the only rendent herd in the park is that on the Northern Range, 4 here neither its rapid increase in the 1980 , to almovt 600 nor its more recent decline to 200 in 1906 appears related to the we of the elk population.

Beaver: Because the heaver's preterred foods. enpectally aupen, have been only marginally present in the area for thousands of years, most of Yellow stone is not good heaver habitat. Intensive heaver poaching in the late 19 th century may have contrihuted to a temporary apread ol' aspen, which after wildlite protection improved. permitted a temporary beaver boom hy the 1920 - at the name time the elh population was growing. But once the heaver had used up this food wource and began gorng atter the willows, the beaver population began to decline. Although there are few on the Northern Range, beaver colonci perwst elsewhere in the park

Predators: Ell provide crucial food for many predators and wavengers, including gnazlies, hlach hears, wolves, hald eagles, cougan, fuxes, ravens and many whall birds, mammals, and invects Each grizzly bear within the ealving range of the northem cll herd may hill an avcrage of 15 elh calven a year. Filk hulls are enpectally susceptible to grienly predation durmg the fall nut, and coyotes can take elk that are in poor condtion or whose movements are hampered by snow More rescarch will be needed to determined the illpact of the remtroduced wolf pache, which suhsisis primarily on elk

Why the Buffalo Can't Roam

The park's hison population was reduced from about 1.500 to less than 400 animals in response to overgrazing concerns in the 1950s and 1960s, and then grew to more than 3.900 by the mid-1990s. As they have for centunes, Yellowstone hison survived the winter by magrating to geothermal itreas and lower elevation ranges hoth in and outside the park Although some people sau the numher of hison outside the parh in the late 1980s and early 1990.s as evidence ol tond shortages caused hy overgrazing research haw shown that the increased migration is largely a renult ol the hison tahing advantage of trals now groomed for snow mobile use.

But because some carry brucelloss, a bactenal disease that also inlects domestic livestork, for ahout 30 years bison entering Montana from the park have had to be shipped to slaughter or shot. even if on publicly-owned land such as national forests. Unfortunately, the unprecedented snow and ice of the winter of 1997 drove an unusually large number of bison to leave the park, and more than 1.100 were killed in Montana by state and federal officers.

At present, a puhlic desire to have bison in the Yellowstone area, especially on puhlic lands intended for wildlife conservation, is pitted against the hypothetucal nisk of bison infecting cattle with brucellosss. The NPS and other Deparment of the Intenor agencies are committed to carrying out research that has been funded to increase our knowledge about the brucella organism in wildife and its possible threat to livestock, but wild brucellosis cannot be eliminated unlers an effective bison vaccine is developed

How Does Natural Regulation Work?

The natural regulation ol wildtife may involve hoth an anımal's internal physiology and is external environment To varying degrees, wildile populatuons exhihit "self regulatton," which metans their growth tends to slow down an the population heconces more dense and to increase il theis numbers declime - a hofeedhack response. For example, as nore elh inhabit the tame range, the cows carry less fat and produce fewer calves, and the calves that are born weigh less and are therelore lew likely to survive. As the northern Yellowstone elk population has grown, revearchers have documented a decline in pregnancy rates and inereases in the winter mortality of calves, yearlings, and older hulls

Envirommental tactors such as climati and predation also play a large role in controlling an anımal population. Durıng a predation study done Irom 1987 to 1990, ahout one thrd of the elk born on the Nortiem Range were lost withn one month to predation hy grizzly bears, hlach hears, coyotes, and golden eagles, and an average of 20% of the population died each winter, mostly from undernutntoo in the very young and very old

But while a policy of natural regulation may work for elk on the Northern Range, it's not appropnate in all wildhle management sttuations National Park Service policy and federal legislation will continue to require intervention in eentain circumstances - for example, to restore wolves and native fish, to suppressexotic plamts and ammals, to fight fire in ypecilied situations, and to cull bison. Hunting on public lands adjacent to the park can also he used to complemens natural regulation The challenge is to pay carelul attention to the conse quences of ecosystem processes while ressting the temptation to step in to "fix a problem" that may he more complex or of a ditterent type than first appears

If You'd Like to Comment or Obtain More Information

The changes that have taken place over the years in how Yellowstone manages its wildiands have reflected not only an increased undertanding of the ecological processes involved. but also the ongoing puhlic debate. National Park Service policy works best when it has the support of citizens who understand their stake in preserving these natural resources. If you would like to express your opinion on how the Northern Range should be managed, pleave send your comments to:

Forthem Range Comment
Yellow stone (enter tor Rexources
PO) Box 16K
Yellow vornc National Park.
ज) 82190
You can also wnte this address to request a summary of the research or a copy of the research report, Yellowstone's Northern Range Complexty' and Change in a Wildland Ecosystem (151 pages).

What Lies Ahead for the Northern Range?

Much has been leamed in the last 30 years ahout natural regulation and about the limitations such a policy faces in an ecosystem that is subject not only to the same natural forees that have been in place since the glaciers retreated more than 12,000 years ago, hut to the more recent jurisdicton by multuple government agencies and to increasingly intense use by provate landownern After decades of fursle attempts to improve upon nature, the National Park Service helieven that it's in Yellowstone's best interest to let the range's ecological processes determine the fate of its plant and ammal communities, insofar as this is possible

Th心 N not a "hands off" approach. On the contrary, as one of the few such expanses remaning with all of its onginal component parts. Yellowatone's Northern Range provides one of the world's most challenging laboratones for ctudying the complexituer of landscape ecology Despite the tremendous progress that has heen made in understanding how it functions as an ecosystem, the Northern Range has much more to teach us about the processes that shape wildlands and native grazing systems. The National Park Service's primary goal will therefore continuc to be to preverve its eomponents and prevent unnecessary interference with its natural procesies.

Throughout this century, the U.S Congress
and the public have supported the addition of rangelands outside Yellow stone to improve the integnty of migrating elk and other wildhfe These acquired rangelands and conservation easements. have helped restore migratory patterns and winter range for more than $5,000 \mathrm{elh}$ north of the park. This has proven to be ecologically benefictal to elk and other wildlife, and provided numerous puhlie benefits As future decisions are made about the use of public land outside of the park and ahout opportunities to acquire more land, the publie will need to consider what pronty it wishes to give to wildife hahtat

Ulimately, the question of whether natural regulation is right for the Northern Range is as much philosophical as scientific. In Yellowatone, as in many national parks, deeisions must often he made with only a parrial understanding of their pousible effect on liands held in trust for future generations. Because careful acrentists don't prevume to have all the answers, the debate over whether and how to intervene on the Northern Range will contınuc to be fueled by poltical processes and puhlic pressure But it is the hope and intent of the Natıonal Park Service that any resulting decivions will he steered by the beat available scientific information, and that this information will be shared with all those interested in participating in the discuision.
"The most important message from this study [which compares sites over time using photos dating back to the 1880s] is that the Yellowstone landscape is above all else magnificently dynamic - there is no "correct" or "pristine" fixed state to which the Park ecosystem should be held, even if this were possible... In this sense the past serves as only a limited guide to the future because the intensity and frequency of the processes driving ecosystem dynamics change."
From Yellowstone and the Biology of Time (in press), by Mary Meagher and Douglas Houston

