Skip to main content

Full text of "Forest resources of northeastern Florida"

See other formats


Historic, archived document 


Do not assume content reflects current 
scientific knowledge, policies, or practices. 


_ FOREST RESOURCES of 


Northeastern Florida 


FOREST SERVICE 


United States Department of Agriculture 


Miscellaneous Publication No. 313 


SUN Dr swt Ah Es “DEPARTMENT OF AGRIGULTURE 


MISCELLANEOUS PUBLICATION NO. 313 WASHINGTON, D.C; AUGUST 1938 


Forest Resources 


of Northeastern Florida 


97? ° KE 


by F. A. INESON, forest economist 


and 1. F. ELDREDGE, chief, Field Division, Forest Survey 


SOUTHERN FOREST EXPERIMENT STATION 


FOREST SERVICE 
77° KE 


Field work in charge of M. M. LEHRBAS, si/viculturist 


and E. B. FAULKS, associate forest economist 


Computations in charge of 


P. R. WHEELER, associate forest economist 


UNITED STATES GOVERNMENT PRINTING OFFICE . WASHINGTON . 1938 


FOR SALE BY THE SUPERINTENDENT OF DOCUMENTS, WASHINGTON, D. C., PRICE 20 CENTS 


The Forest Survey 


FFECTIVE rehabilitation and constructive management of this country’s forest 
E, resource require not only protection against neglect and destruction but, 
with equal urgency, provision for permanent and wise use of that resource. 
Wisdom in forest land-use planning must rest on a long-time economy backed up 
by reliable facts as to supply and requirements for wood and other forest prod- 
ucts, production and consumption, depletion and growth, and the location, 
area, and condition of existing and prospective forest lands. ‘This requirement 
for dependable and comprehensive technical information is now being trans- 
lated into action through the provisions of the McSweehey-McNary Forest 
Research Act of May 22, 1928, authorizing a Nation-wide forest survey. 

The Forest Survey, as constituted under that act, is obtaining essential field 
information and, through interpretation thereof, is aiding in the formulation of 
guiding principles and policies fundamental to a system of planned management 
and land use for each forest region and for the Nation. 

The five-fold purpose of the Forest Survey is: (1) To make a field inventory 
of the present supply of timber and other forest products, (2) to ascertain the rate 
at which this supply is being increased through growth, (3) to determine the rate 
at which it is being diminished through industrial and domestic uses, windfall, 
fire, disease, and other causes, (4) to determine the present consumption and the 
probable future trend in requirements for timber and other forest products, and 
(5) to interpret and correlate these findings with existing and anticipated economic 
conditions, as an aid in the formulation of both private and public policies for the 
effective and rational use of land suitable for forest production. 

It is planned to publish the results of this investigation as they become 
available. ‘These publications apply to large areas and should not be interpreted 
as portraying correctly the forest situation for small sections, the condition of 
which may be either better or poorer than the average for the entire unit. ‘They 
supply the general framework upon which to base intensive studies of critical 
situations. 

The investigation is conducted in the various forest regions by the forest 
experiment stations of the Forest Service, and in the South by the Southern 
Forest Experiment Station, with headquarters in New Orleans, La. 


II 


ele Omher i mls Re rs hOMmURR Cer Si Ock NWR Ut BA Sot ER IN BIO) RL DA 


Contents 


272 KE 
Page 
imtroduetionvand, explanation of terms used . . fyi ee ke ke a I 
General 
Land-use classes 
Forest types 
‘Topographic situations 
Forest conditions 
Turpentine tree conditions 
Species groups 
Tree classes 
Log rules 
Summary of findings ae 
Area and general conditions 
The forest 
Naval stores 
Wood products . 
Forestry measures essential 
General description . 
Land use 
Topography 
Climate 
Transportation 
Ownership . 
‘Taxation 
Agriculture 
BoOpulation ..6 4s. 2. 
Ocala National Forest . 
Forest description 
Forest types 
Forest conditions 
Stocking of forest stands 
Site quality 
Reproduction 
Fire damage 
Naval stores aspects 
Gum naval stores industry 
Gum naval stores resources . 
Future outlook for gum naval stores 


ee 
NYNovWnytannrhnoddwv @®woonrnntnnrnrarvrFH BPA AWHWWNN NY 


Wood naval stores industry and resources . 


bo 


b 


III 


Wood-products aspects 


Saw-timber volumes . 
Cordwood volumes 
Cubic-foot volumes 

Poles and piles . 

Pulpwood resources . 
Forest increment 
Wood-products industries 
Commodity drain. .... 


Comparison of increment with commodity drain 
Future needs Gt as Hee se, ee 
Dominant forest types in northeastern Florida (map) 


IV 


HOM Ret Salar SO URE YS: Ok 


N ORM eT E CA S 4 ER N 


1g ab, XO) RYAN IDE TAN 


Introduction and Explanation 


of Terms Used 


oe 
IN serene ont any Florida is distinctly dif 


ferent from any other section of similar size 
in the United States. As soon as one 
crosses the State line from Georgia, he finds owner- 
ship of land in larger tracts, a different tax situation, 
and less intensive management of forests. Over 
three-fourths of the survey unit is in forest, and 
most of the sites here are better than those to the 
south and west. 
usual in that the principal transportation systems 
focus on a single point, Jacksonville, to which tur- 
pentine, rosin, and the other forest products are 
brought for redistribution throughout the world. 
In planning for the development of northeastern 


Furthermore, this section is un- 


Florida, it must be recognized that forests have long 
been the most important source of its basic raw ma- 
terials. A knowledge of the kind, character, and 
quantity of these materials and of the industries en- 
gaged in their utilization is essential to the formula- 
tion of sound forest policies that will benefit both 
present and future generations. 
present knowledge of these factors is presented in 
this report, together with their significance and 
their relation to the industries and communities de- 
pendent upon the forest resources. Certain lines of 
action in regional planning can be suggested now, 
but the solution of the general problems of forest 
land use and industrial development must wait 
until the whole southern pine region, of which this 
survey unit forms a part, is analyzed. 

This report on northeastern Florida, or Florida 
Unit No. 1—one of several key units in the South 
covered by the Forest Survey—is based on a survey 
conducted between the latter part of November 
1933 and the end of July 1934. A number of 
trained three-man crews recorded the conditions on 
11,956 quarter-acre plots distributed at -mile in- 
tervals along lines 10 miles apart, running approxi- 


A summary of 


—_ 


KE 


mately east and west. 
corded the class of land use; and on forest plots they 
recorded the forest type and condition, tallied the 
trees by species and diameter classes, and deter- 
mined the rate of growth of the timber during the 
past 10 years. The data obtained, when used as a 
statistical sample, indicate that the larger figures 
for the major classifications are reliable to within 5 


For each plot the crews re- 


percent. For relatively small figures in a given 
classification the reliability may be less, however, 
and such figures should be regarded only as indica- 
tive. Also, data concerning industrial conditions 
and forest depletion were obtained on all of the 
naval stores still operations and on a large number 
of the wood-products industries. 


tion and probable future trends in national require- 


Present consump- 


ments for timber and other forest products are 
being studied on a Nation-wide basis and will be 
treated in a separate report. 

The following definitions of the technical and un- 
usual terms used in this report are given below to 
facilitate easy grasp of the forest situation discussed 
herein. 


General 


Forest Survey Unit.—The term “‘forest survey unit” means 
an area of 2 to 10 million acres in which forest, economic, 
and industrial conditions are reasonably homogeneous. The 
division of a State in this manner facilitates analysis and dis- 
cussion of the forest situation. 

Naval stores unit—This unit is equivalent to one 50-gallon 
barrel of turpentine and three and one-third 500-pound 
(gross) barrels of rosin. 


Land-use Classes 


Productive forest land—Forest land that has the qualities 
essential for the growth of commercial timber. 

Nonproductive forest land.—Forest land that does not have 
the qualities essential for the growth of commercial timber. 


Cultivated agricultural land.—Land being used for the pro- 
duction of farm or orchard crops, or that shows evidence of 
having been so used during the preceding 2 years. 

Idle agricultural land.—Cultivated land that has been idle 
for 2 years or more but has not reached the abandoned stage. 

Abandoned agricultural land.—Formerly cultivated land that 
shows distinct signs of having been abandoned for agricul- 
tural crop production; no attempt has been made to main- 
tain it as improved pasture. 

Improved pasture —Cleared or open land that is under fence, 
used primarily for grazing’ and upon which an attempt has 
been made to maintain a sod. 

Other areas —Areas included within the corporate limits 
and suburban or industrial sections of cities and communi- 
ties; power, rail, and highway rights-of-way; marsh; non- 
meandered waterways; and prairie. 


Forest Types 


Longleaf pine.—Longleaf pine constitutes at least 75 percent 
of the board-foot volume in sawlog-size stands and 75 percent 
or more of the dominant and codominant trees in under- 
sawlog-size stands. ‘This type is found on the drier soils of 
both the flatwoods and rolling uplands. Scrub oak areas 
that show promise of coming back to longleaf pine are in- 
cluded in the longleaf type. 

Longleaf-slash pine-—Longleaf and slash pine together con- 
stitute at least 75 percent of the board-foot volume in saw- 
log-size stands and 75 percent or more of the dominant and 
codominant trees in under-sawlog-size stands, neither 
species alone accounting for 75 percent. This type is found 
in a few areas in the flatwoods that are dry enough for long- 
leaf pine, and that have escaped fire for a sufficient length 
of time to permit the slash pine to become established. 

Slash pine.—Slash pine constitutes at least 75 percent of 
the board-foot volume in sawlog-size stands and 75 percent 
or more of the dominant and codominant trees in under- 
sawlog-size stands. This type is confined largely to the 
flatwoods and adjacent ponds and swamps—that is, to 
moist situations where sufficient time elapses between fires 
to permit the establishment of slash pine. Scrub oak areas 
that show promise of coming back to slash pine are included 
in the slash pine type. 

Slash pine—cypress.—Slash pine and cypress together con- 
stitute at least 75 percent of the board-foot volume in 
sawlog-size stands and 75 percent or more of the dominant 
and codominant trees in under-sawlogesize stands, neither 
species alone accounting for 75 percent. This type is found 
principally in low depressions in the flatwoods, and in 
deeper swamps and ponds than the pure slash pine type. 

Turpentine pine—hardwood.—Neither pines nor hardwoods 
alone constitute 75 percent of the board-foot volume in 
sawlog-size stands, nor 75 percent of the dominant and 
codominant trees in under-sawlog-size stands; but at least 
half of the pine consists of longleaf and slash pines. 

Nonturpentine pine.—Loblolly, shortleaf, pond, sand, or 
spruce pines, alone or in mixture, constitute at least 75 per- 
cent of the board-foot volume in sawlog-size stands, and 75 
percent or more of the dominant and codominant trees in 


under-sawlog-size stands. Scrub-oak areas that show 
promise of coming back to nonturpentine pines are included 
in the nonturpentine-pine type. 

Nonturpentine pine—hardwood.—Neither pines nor hardwoods 
alone constitute 75 percent of the board-foot volume in 
sawlog-size stands, nor 75 percent of the dominant and 
codominant trees in under-sawlog-size stands; but more 
than half of the pine consists of nonturpentine pines. 

Scrub pine.—Sand or other scrub pines constitute at least 
75 percent of the board-foot volume in sawlog-size stands, 
and 75 percent or more of the dominant and codominant 
trees in under-sawlog-size stands. 

Bottom-land and swamp hardwood—Hardwoods constitute 
at least 75 percent of the board-foot volume in sawlog-size 
stands, and 75 percent or more of the dominant and co- 
dominant trees in under-sawlog-size stands. This type is 
characteristic of the larger stream bottoms, and swamps, 
bays, and branch heads. 

Upland hardwood.—Hardwoods of good form and quality 
constitute at least 75 percent of the board-foot volume in 
sawlog-size stands, and 75 percent or more of the dominant 
and codominant trees in under-sawlog-size stands. 

Scrub oak—scrub hardwood.—Scrubby or stunted oaks and 
hardwoods that have come in after fire or cutting character- 
ize this type, which usually occupies areas originally stocked 
with longleaf pine and is ordinarily found in the rolling 
uplands. 

Cypress —Cypress constitutes at least 75 percent of the 
board-foot volume in sawlog-size stands, and 75 percent or 
more of the dominant and codominant trees in under- 
sawlog-size stands. 


Topographic Situations 


Flatwoods —Low, flat topography with resulting poor 
drainage; the soils are generally sandy and usually support 
a stand of mixed pines. 

Rolling uplands.—Rolling or hilly topography, well- 
drained, with light soils (a small sand-dune area is included 
with the rolling uplands in this report). 

Swamps, bays, ponds, river bottoms, branch heads.—These topo- 
graphic situations are grouped because of the similarity in 
their physical features and in the timber species they support. 
They are low, wet, poorly drained areas, frequently under 
water, or alluvial forest land subject to inundation, bordering 
rivers and their tributaries, supporting mixed stands of 
cypress, pine, and some hardwoods. 


Forest Conditions 


Old-growth uncut.—Old-growth stands from which less than 
10 percent of the volume has been cut. 

Old-growth partly cut.—Old-growth stands from which 10 
percent or more of the volume has been cut, but in which the 
remaining old-growth sawlog-size timber contains at least 
1,000 board feet of hardwood or hardwood and pine mixed, 
or 600 board feet of pine per acre. 

Second-growth sawlog-size uncut.—Second-growth stands from 
which less than 10 percent of the sawlog-size trees have been 


cut, and in which the remaining sawlog-size timber contains 
at least 600 board feet per acre. 

Second-growth sawlog-size partly cut.—Second-growth stands 
from which 10 percent or more of the sawlog-size trees have 
been cut, but in which the remaining sawlog-size timber 
contains at least 400 board feet per acre. 

Second-growth under-sawlog-size.—Second-growth stands com- 
posed predominantly of under-sawlog-size trees at least 1 
inch d.b.h. In uncut stands the sawlog-size timber present 
contains less than 600 board feet per acre. In partly cut 
stands there is less than 400 board feet per acre of sawlog-size 
timber. 

Reproduction.—Areas not falling into any of the other classi- 
fications and bearing per acre more than 80 seedlings less 
than 1 inch in diameter. 

Clear-cut.—Cut-over areas on which insufficient young 
growth has come in to classify as either second growth or 
reproduction. 


Turpentine Tree Conditions 


Round.—Longleaf and slash pine trees that have never been 
worked for naval stores. 

Working.—Longleaf and slash pine trees that are now being 
worked for naval stores. 

Front-faced (or front-cupped).—Longleaf and slash pine trees 
on which a first face is now being worked. 

Back-faced (or back-cupped).—Longleaf and slash pine trees 
on which at least one turpentine face has already been 
worked and on which a back (second or third, etc.) face is 
now being worked. 

Resting.—Previously worked longleaf and slash pine trees 
that are now resting prior to the working of back faces. 

Worked-out.—Longleaf and slash pine trees on which as 
many faces have been worked as the trees will stand. ‘These 
trees have served their purpose in the production of naval 
stores and are now available for other uses. 


Species Groups 


Pines.—Turpentine: Longleaf and slash pines. Nontur- 
pentine: Loblolly, shortleaf, pond, sand, and spruce pincs. 


Hardwoods.—Pulping: Red gum, black gum, bay, soft 
maple, magnolia, and associated minor species. Nonpulp- . 
ing: Red oaks, white oaks, ash, elm, hickory, holly,! per- 
simmon,! and associated minor species. 

Cypress.—Cypress only. 


Tree Classes 


Good tree. —Any sawlog-size tree that is, or an under sawlog- 
size tree that gives promise of becoming, a saw-timber tree. 

Sawlog-size tree.—A tree with the following minimum di- 
ameter outside of bark: Hardwood, 13 inches at 414 feet above 
ground; cypress, 9 inches at 214 feet above the butt swell; all 
pine except turpentined longleaf and slash pine, 9 inches at 
414 feet above ground; turpentined longleaf and slash pine, 
9 inches at 10 feet above ground. 

Saw-timber tree.—A sawlog-size tree 50-percent sound, that 
would produce at least one 12-foot usable log. 

Sound cull tree.—A sawlog-size tree that is not a saw-timber 
tree, owing to form, crook, knots, extreme limbiness, or other 
similar defects; or an under-sawlog-size tree that will not 
become a saw-timber tree for similar reasons. 

Rotien cull tree.—A sawlog-size tree less than 50-percent 
sound; or an under-sawlog-size tree sufficiently unsound to 
indicate the likelihood of its future loss from the stand. 


Log Rules 


Doyle log rule—The formula for a 16-foot log was used: 
V=(D—4)2. 

Scribner log rule-—Vhe formula for a 16-foot log, with allow- 
ance for a 14-inch saw kerf, was used: V=0.79D2— 2D—4. 
This formula was derived by Donald Bruce and Francis X. 
Schumacher from the values of the original Scribner log rule. 

International log rule-——The formula for a 4-foot log, with 
allowances for a 14-inch saw kerf and 4,-inch shrinkage was 
used: V=(0.22D2—0.71D) 0.904762. 


1 Since holly and persimmon are used primarily for special 
purposes, such as bobbins, shuttles, and handles of sporting 
goods, they were not included in the saw-timber estimate. 


FO OFRSE 2Ss 4 RES On UeRy Cer Sa. @l ce 


NT OER EUR ASS aly Eee 


Bi EriOn Rs Dir 


Summary of Findings 


=> 
ee 


in the following pages, it will be helpful to 

indicate briefly at this point some of the more 
significant of the survey findings, with references 
to the tables presented later in which more detailed 
figures are given. 


[: VIEW of the multiplicity of data presented 


Area and General Conditions 


The gross area surveyed in northeastern Florida 
is 9,515,600 acres, as shown in table 1 and the type 
map (last page). The principal land uses are: 


Acres 
Blores tase, ncieae omitoacn erste cnenens eneiens 7,378,900 (77.5 percent). 
Agricultural................. 1,442,800 (15.2 percent). 
@themarcasaaer seni eee 693,900 (7.3 percent). 


In August 1934 a large number of tracts totaling 
more than 4 million acres, or almost 42 percent of 
the survey unit, were tax delinquent. 


The Forest 


Almost 4 million acres, or over 50 percent of the 
forest area, are in flatwoods; the remainder is about 
evenly divided between rolling uplands and 
swamps, bays, river bottoms, and the like (table 2). 

Turpentine pine types are present on almost 70 
percent of the forest area. They dominate nearly 
90 percent of the flatwoods, 60 percent of the 
rolling uplands, and 35 percent of the swamps, 
bays, and river bottoms (table 2). 

More than 11% million acres of the forest area is 
classified as old growth (table 4). Of this area 63 
percent is in swamps, bays, river bottoms, etc., 26 
percent in flatwoods, and the remainder in the 
rolling uplands. 

Second growth covers over 4% million acres, of 
which 35 percent is in sawlog-size stands, 57 per- 


Ke 


cent in stands classified as under sawlog size, and 
8 percent as reproduction (table 4). 

Almost 15 percent of the forest area is clear cut 
and thus far has failed to restock (table 4). 


Naval Stores 


The 174 active turpentine stills in 1934 made up 
15 percent of the total number in the South. 

Production during 1933-34 amounted to 81,610 
naval stores units, or about 17 percent of the gum 
naval stores production of the entire country. 

The gross area classified as the field for continuing 
turpentine production is roughly 5 million acres. 
Over 63 percent of the turpentine area is in flat- 
woods, 21 percent in the rolling uplands, and 16 
percent in swamps, bays, branch heads, ponds, 
and river bottoms (table 6). 

More than 37 percent of the turpentine area 
during the 1934-35 season was in round timber, 
nearly 27 percent was being worked, and 36 percent 
worked out or_ resting (table 6). 

Of about 22 million cups worked during the 
1934-35 season, more than 60 percent were on 
front faces (table 8). 

Nearly 12 million tons of well-seasoned stumps 
suitable for the production of wood naval stores 
could be removed by blasting (table 10), with an 
additional 4 million tons available in the future. 


Wood Products 


About 58 percent of the 11 billion board feet 
(International \-inch rule) volume in 1934 was 
pine, 24 percent hardwood, and the remainder 
cypress (table 11). 

More than 85 percent of the saw-timber volume 
(Doyle rule) of hardwoods and cypress is still in 


old-growth stands, but only 47 percent of the pine 
‘ volume was so classified (table 12). 

Of nearly 37% million cords of material unsuited 
or at present too small for sawlogs, nearly 50 
percent was hardwood, 38 percent pine, and the 
remainder cypress (table 14). 

It is estimated that in 1934, under rather strict 
specifications, nearly 26 million trees were suitable 
for poles or piles. More than half of these were in 
the 20-foot length class; 3,343,000 sticks were in 
the 35-foot or longer classes (table 16).' 

There are more than 53 million cords of material 
of all sizes and quality in species suitable for pulp- 
ing; 55 percent is pine, the remainder hardwoods 
and cypress (table 17).! 

During 1934 the longleaf-slash pine forests, if 
they had not been turpentined, would have grown 
an additional 210 million board feet (table 19). 

The total increment of all species in 1934 
amounted to over 223 million board feet (Inter- 
national \-inch rule). The increment in old- 
growth stands was negative, but second-growth 
stands had an increment of nearly 240 million 
board feet (table 20). 

In 1934 there were 8 sawmills, each with a daily 
capacity of 40 M feet b. m. or more, 90 medium- 
sized mills (10 to 40 M feet), and 52 small mills 
with a daily capacity less than 10 M feet (table 21). 

Altogether more than 3% million 10-hour man- 
days of labor were required in the woods and at the 
plants in the production of naval stores and wood 
products in 1934 (p. 17 and table 22). 

The total commodity drain of saw-timber mate- 
rial in 1934, including incidental waste, was over 
425 million board feet (International j-inch rule). 
Approximately 47 percent of this drain was in 
lumber, 29 percent in cross ties, 10 percent each in 
veneers and fuel wood, and the remaining 4 per- 
cent in minor wood products (table 23). 

The saw-timber growing stock in this section was 
reduced 1.8 percent, or 202 million board feet in 
1934. The stock of hardwoods nearly held its own, 
but pine decreased 1.1 percent and cypress 5.9 per- 
cent (table 25). In 1934, 77 percent of the total 
commodity drain on saw-timber material was from 
old-growth stands which had a negative increment. 


1'These items represent volumes already included in 
previous paragraphs. 


61857°—38——2 


The net board-foot increment of second-growth 
pine, which is increasing yearly, already equals the 
total sawlog drain for wood products from both 
old-growth and second-growth pine. The old- 
growth cypress is being rapidly depleted and shows 
no promise of being replaced by second growth. 


Forestry Measures Essential 


Because northeastern Florida is so favorable for 
forest activities, there is not only an opportunity 
but also a strong justification for intensive efforts 
that will build up the growing stock to something 
approaching the maximum possibilities to assure 
the continuance of present forest industries and to 
provide for expansion. With the development of 
second-growth longleaf and slash pine forests, 
which yield adequate gum for naval stores but 
which do not yield the same high-quality wood 
products obtained from the original old growth, it 
seems inevitable that the main forest industry will 
continue to be the production of naval stores. 
Since the gum naval stores and wood-products 
industries are integrated, the future of the latter 
will depend principally upon the condition of the 
stands left by the turpentine operator. Deep chip- 
ping, hanging too many cups on the tree, cupping 
small trees, inserting tins too deeply, and failure to 
protect resting and worked-out turpentine trees 
from fire have not only materially retarded the 
diameter growth of the individual trees and reduced 
their volume of merchantable saw timber, but have 
in addition abnormally reduced the number of 
trees. ‘To remedy this situation and to build up 
(perhaps double) the growing stock to full capacity, 
the following measures appear essential: 

1. ‘The producers of gum naval stores should work 
their woods much more conservatively in order to 
decrease the susceptibility of turpentine pines to 
wind and fire damage, to increase their rate of 
growth, and to leave a higher quality of timber for 
the wood-products industries. 

2. Nearly a million acres of abandoned naval 
stores forest scattered throughout northeastern 
Florida, and now stagnating, should be logged 
off in order to remove the overburden of worked- 
out pines and allow a return to productivity. 

3. Immediate steps should be taken to assure 
the early reforestation of the larger clear-cut areas 


and the filling in of seriously understocked stands. 
The State and Federal Governments should co- 
operate in the regeneration of the scrub-oak area 
to pine. 

4. In order to increase the density of second- 
growth stands and to obtain larger trees, a large 
proportion of the present excess of increment 
over drain in these stands should be allowed to 
accumulate for a number of years. The growing 
stock of timber can be increased in volume and in 
value through intelligent action in the forest, but 
there can be no assurance of permanency unless 
the size of the industrial installation set up for its 
utilization is gaged to operate well within the 
growth possibilities. 

5. State legislation should be enacted which 
would give the State a clear title to tax-delinquent 
land, and wherever possible the forest land thus 
acquired should be placed under management 
designed to build up and protect the growing stock. 

6. Because of the favorable outlook for profitable 
returns from well-managed forest lands, forest- 


land owners should be encouraged, educated, and 
aided by public agencies to handle their lands 
wisely for timber production, so that they them- 
selves, the forest industries, and the communities 
may enjoy to the fullest possible extent the benefits 
of the forest. To this end the forest extension 
activities of the State should be materially in- 
creased. 

7. The outstanding need is more intensive and 
effective control of fires. Only 30 percent of north- 
eastern Florida forests was under organized fire 
protection “in 1933." "Phe “prevalence ‘of firey is 
mainly responsible for the open nature of the 
stands and their relatively low increment. Effec- 
tive control of fire is essential to reduce the exces- 
sive mortality rate which now exists. It will 
result quickly and certainly in the filling in of 
large tracts of understocked stands and in the 
natural regeneration of many of the clear-cut 
stands. Only with effective control of the fire 
situation can this area be expected to increase 
materially its annual output of forest wealth. 


WHOW RE) Seve eR oS OeUGR GE Si OoF 


N ORR OT HE A So TiEVR N 


PE OORT DVA 


General Description 


=> 


HE gross area surveyed in northeastern Flor- 

ida includes 21 counties and embraces 9,515,- 

600 acres.! It extends from the Georgia line 
on the north to the southern boundaries of Levy, 
Marion, and Volusia Counties; and from the Au- 
cilla River and the Gulf of Mexico on the west to 
the Atlantic Ocean on the east. (See map at end 
of report.) Jacksonville, the principal city, serves 
as a focal point to which the leading transporta- 
tion systems bring the products of this section for 
redistribution throughout the world. The chief 
industrial development has long been the produc- 
tion of primary forest products. Situated in the 
heart of the longleaf and slash pine region of the 
South, northeastern Florida ranks second only to 
southeastern Georgia in its yield of turpentine and 
rosin. 


Land Use 
Taste 1.—Land area of northeastern Florida, classified according 
to use 
Land use? Area 
Forest: Acres Percent 
BrOGUCtivie sesame 2 UN Sane SON CE Se se ie LS 7, 297, 700 76.7 
INOnproductiveue cas we Ue are ee 81, 200 .8 
Ao tal sewers ers ao ONT ye _| 7,378, 900 77.5 
Agricultural: 
ImvCul tivation] swe se ese el 950, 800 10.0 
Out of cultivation: 
OCOD ey Ses as Se Ae ep a 315, 400 3.3 
Athan Gone.) a0 & tS ie es ie ees a 128, 500 1.4 
imiprovedspastures = sive tis So kine 2 8s 48, 100 HO. 
Motales=2 oe fis Oe OEE oa 1, 442, 800 1552 
Oth erfarcas Meee Base a eRe Pa a 693, 900 7.3 
DOO Ln re A Rey Sp 9, 515, 600 100. 0 


1 Does not include 263,000 acres in the Ocala National Forest. 

2 For explanation of terms used see p. 1. 

1This does not include 263,000 acres within the former 
boundary of the Ocala National Forest, a description of 
which is given on p. 9. 


Today over 77 percent of the survey unit is still 
classified as forest land despite the demands of agri- 
culture, the growth of communities, and the expan- 
sion of transportation facilities (table 1). Agricul- 
ture has largely confined its inroads on the forest 
to the rolling uplands, which extend through the 
central portion from northwest to southeast, and 
to artificially drained portions of the flatwoods. 


Topography 


The general outline of the rolling uplands is 
roughly defined by the areas dominated by three 
distinct associations of forest species—longleaf- 
slash, loblolly pine-hardwood, and sand _ pine 
(see map at end of report). The area dominated 
by loblolly pine-hardwoods has proved better 
adapted for agriculture than either of the other 
areas. ‘The sand pine type has practically no 
agricultural value. Longleaf and slash pines and 
cypress (the last found principally in characteristic 
cypress ponds) dominate the flatwoods, the outline 
of which corresponds in general with that of the 
longleaf-slash-cypress area on the map. The rivers 
which traverse the flatwoods and rolling uplands 
are bordered by hardwood stands. ‘There are also 
appreciable tracts of lowland hammock and swamp 
dominated by hardwoods. Nearly 500,000 acres 
are in marsh and prairie. 


Climate 


Northeastern Florida has relatively mild, dry 
winters and long, warm summers with frequent 
rains. Usually the growing season, the period be- 
tween severe frosts, lasts from the first week in 
March until the middle of November. This in- 
fluences the activity of the gum naval stores in- 


dustry, which is dependent upon the flow of gum 
from the longleaf and slash pines. Extreme tem- 
peratures are rare, but a freeze during the winter 
of 1894-95 caused widespread damage to citrus 
groves, many of which were abandoned for lands 
farther south. ‘Today most of these abandoned 
groves have reverted to forest. 

Rainfall is generally well distributed, with the 
heaviest coming in the summer. The yearly 
average is approximately 50 inches. Extensive 
droughts, occurring usually once in 5 years, may 
bring about periods of high fire hazard in the 
forests; on the other hand, excessive rainfall may 
render woods work, especially logging, difficult in 
the poorly drained flatwoods for 3 months out of 
the year. Trees which have been weakened by 
excessive turpentining or fire are often easy victims 
of high winds which occur almost annually. Oc- 
casional severe hurricanes, like that of September 
1935, cause considerable damage locally. 


Transportation 


Northeastern Florida is well supplied with trans- 
portation facilities. Formerly the St. Johns, St. 
Marys, Nassau, and Suwannee Rivers were im- 
portant channels of trade, but today seven railroad 
lines, with approximately 2,500 miles of track, and 
a network of highways serve as the primary means 
of transportation. The harbors at Jacksonville 
and Fernandina accommodate large vessels, while 
shipments in small vessels can be made also from 
St. Augustine, New Smyrna, Palatka, and Cedar 
Keys. The route of the trans-Florida ship canal 
crosses this unit and the canal, if completed, will 
play an important role in its development. 


Ownership” 


Over 90 percent of the rural portion of the survey 
unit is in the hands of private owners. The Federal 
Government administers approximately 425,000 
acres in the Osceola and Ocala National Forests, 
and the State owns about 100,000 acres. Lumber- 
men own the largest proportion of the land in the 


western Gulf coast counties. Farm ownership is 


*The data in this paragraph are from the following: 
Craic, R. B. LAND OWNERSHIP IN SURVEY UNIT NO. 1, 
FLORIDA, 1934. Southern Forest Expt. Sta. Occas. Paper 
56. [Mimeographed. | 


most important through the central and north- 
western agricultural belt, and real-estate operators 
control most of the land along the east coast. The 
east coast resort counties and the forested counties 
of the Gulf coast are characterized by holdings of 
1,000 acres or larger. In the greater portion of the 
remaining counties ownership is broken up into 


smaller holdings. 


Taxation 


In August 1934, more than 4 million acres, or 
almost 42 percent of the survey unit, was in tax 
default for 3 or more years. Delinquency was 
greatest in heavily indebted counties along the 
east coast, where taxes were in default on over 60 
percent of the land. Tax delinquency on forest 
properties was relatively greatest in those counties 
with the smallest tracts of forest land. ‘The State 
does not actively prosecute trespass on tax-delin- 
quent properties, and most of them are still being 
operated by owners or tenants pending redemption, 
adjustment, or abandonment. : 


Agriculture 


Only about 950,000 acres, or 10 percent of north- 
eastern Florida, were in cultivation in 1934 (table 
1). More than 300,000 acres of agricultural land 
were standing idle, and almost 130,000 acres had 
been definitely abandoned for agricultural-crop 
production. Of this latter, 77 percent is suitable 
for pine, and the remainder for hardwoods. Based 
on nearby forest stands, it is estimated that more 
than 50 percent of the potential pine and over 70 
percent of the hardwood acres are poor forest sites. 
Less than 2 percent of all agricultural land and 
about 1 percent of the forest land show evidence of 
erosion. 

The value of farm products per farm ranged in 
1929, according to the agricultural census of 1930, 
from more than $6,000 in St. Johns County to less 
than $700 in Dixie County. ‘This variation reflects 
the concentrated production of potatoes, garden 
truck, strawberries, and citrus fruits on relatively 
small holdings and the scattered agricultural 
activities over the rest of the survey unit. For a 
relatively short season the specialty farmers employ 
a large body of laborers who are available for work 


in the forests or in other industries during the 
remainder of the year. Many small farmers sup- 
plement their production of food for home con- 
sumption with cash wages in forest work. Some 
dairying is carried on around the larger cities, and 
beef cattle, grazed in the open forests, are an 
important source of income. 

In recent years, agricultural expansion has been 
dependent on the development of specialty crops 
rather than on a larger production of staples. 
Owing to climatic factors, the specialty crops can 
reach the market when prices are high, but these 
crops do not require large acreages, and it is doubt- 
ful whether any great amount of forest land will be 
cleared for agriculture in the near future. Small 
tracts are being planted to tung trees (Aleurites fordit), 
but it will be several years before this trend can be 
appraised. 


Population 


With the exception of the East Coast resorts, the 
towns are supported by commerce and industry. 
The population is about 450,000, of which 63 per- 
cent is white. In 1930, approximately 48 percent 
of the people lived in towns and cities of 2,500 or 
more. Almost every town, as shown in figure 5, 
has one or more plants for the conversion of forest 
products—sawmills, planing mills, turpentine stills, 
and cooperage, veneer, and container plants. A 
large proportion of the rural population is directly 


or indirectly supported by employment in the 
woods, in turpentine and logging camps. 


Ocala National Forest 


The Ocala National Forest, a gross area of 
263,000 acres, was not included in the field survey, 
because of the existence of a recently completed 
management plan and inventory covering the 
greater part thereof. ‘The total area under Fed- 
eral administration in this forest on December 31, 
1936, was 245,000 acres. The management plan 
prepared by the Forest Service covers 183,800 
acres, of which 157,320 is timbered. An out- 
standing feature is the extensive stand of young 
sand pine which covers 151,700 sandy upland 
acres, or 96 percent of the timbered portion. ‘The 
20,000 acres and more of sand pine barren, which 
may be reforested by planting, are not included 
in the timbered portion. Scattered around the 
central block of sand pine occur stands of longleaf 
and slash pines and some bottom-land types total- 
ing 5,600 acres. The national forest is dotted with 
springs, lakes, and prairies, totalling nearly 6,400 
acres. ‘The plans for management provide for 
production of sand pine pulpwood on a 40-year 
rotation. When mature the stands will average 
10 inches in diameter and 30 to 40 feet in height 
and, it is estimated, will yield annually by 1942 
more than 35,000 cords. Protection is of great 
importance in the dense young stands of sand pine 
where fire may cause very serious losses. 


BF OCROEGS? Th teR ES (OP URC Ess Orr 


NOOR iri AY S oe hE Raa 


BL OmR) Da 


Forest Description 


HEN the first white men set foot in north- 
\\ eastern Florida, almost 95 percent of the 
land was in forest. For many decades this 
condition was undoubtedly a handicap to the 
pioneer settler, who had to destroy the forests in 
order to provide space for the cultivation of neces- 
sary food crops. ‘Today nearly 115 million acres 
of former forest land is cleared for agricultural 
use; and an additional 173,000 acres is in towns, 
villages, and transportation systems. Slightly more 
than 81,000 acres of the present forest area lacks 
the qualities essential for growth of commercial 
timber and is classified as nonproductive. ‘The 
remaining forest (7,297,700 acres) is the most 
valuable known natural resource in this survey 
unit. 


Forest Types 


In the forests of northeastern Florida certain 
species tend to dominate large sections (see map 
at end of report). Within these broad boundaries, 
however, other species occur groupwise on suf- 
ficient acreage to be recognizable as distinct forest 
types. Single forest species 
absolutely pure stands; usually several species 
intermingle. 

Because of the economic purpose of the Forest 
Survey, key species of known value were used to 
12 forest types 
general, the key species or groups of species con- 
stitute at least 75 percent of the board-foot volume 
in sawlog-size stands, or 75 percent of the dominant 
and codominant trees in under-sawlog-size stands. 
Furthermore, in the case of the pine-hardwood 
types, the pine species group which designates 
the type, makes up more than 50 percent of the 
pine component. 


seldom occur in 


designate the recognized. In 


sie) 


kk 


In order to simplify the description and correla- 
tion of data on area, volume, and turpentine 
history, the forest types and species have been 
assembled into four groups, namely, turpentine 
pines, nonturpentine pines, hardwoods, and cypress 
which represent distinctive economic and natural 
differences. 


TURPENTINE-PINE TYPES 


‘The turpentine-pine-type group consists of those 
types dominated by longleaf and slash pines. It 
includes the longleaf pine, longleaf-slash pine, slash 
pine, slash pine-cypress, and turpentine pine-hard- 
wood types. ‘These types are present on almost 70 
percent of the forest area and dominate nearly 90 
percent of the flatwoods, 60 percent of the rolling 
uplands, and 35 percent of the swamps, bays, 
ponds, and river bottoms (table 2). More than 
80 percent of the gross cubic-foot volume in the 
turpentine-pine-type group is in turpentine pines; 
almost 10 percent is in cypress; 7 percent is in 
hardwoods, and less than 3 percent is in nonturpen- 
tine pines (table 3). 

A century ago longleaf pine probably occurred 
in almost pure stands on more than 4 million acres 
of this section. The clearing of the forest for agri- 
culture, the development of fire protection that 
enabled slash and loblolly pines to encroach on 
the drier areas, and the failure of lumbermen to 
leave sufficient seed trees for restocking, have 
greatly reduced the longleaf-pine area. More than 
500,000 acres from which the longleaf pines were 
removed is today classified as scrub oak and scrub 
hardwood type and is not now restocking to pine 
(fig. 1); but the pure longleaf-pine type still occu- 
pies nearly 3 million acres, or 39 percent of the 
total forest area (fig. 2). 


Ficure 1.—Scrub oak type, Clay County, Fla. F255195 


Ficure 2.—Second-growth longleaf pine, Baker County, Fla. F249549 


rr 


TasBie 2.—Forest area of northeastern Elorida, classified according 


to forest type and topographic situation 1 


: Swamps 
Na eg pee ag Flat- Rolling speed nae Areca 
Forest type woods | uplands Daye: All situations 
Per- 
Turpentine pine: Acres Acres Acres Acres | cent 
Longleaf pine_________- 1, 962, 400} 894, 900 11, 800} 2, 869, 100} 39.3 
Longleaf-slash pine____- 273, 600 182900) eee 292,500} 4.0 
Slash\pine.. -- = 25. 222- 950, 900] 29, 100) 314, 600}4, 294, 600} 17.8 
Slash pine-cypress_____- 36; 800|--s <2 276, 700| 313, 000 4.3 
Turpentine pine-hard- 
WOOdsesse = fase wee 65, 500 34, 600 78, 100} 178, 200 2.4 
Totals = eee 8, 288, 700) 977, 500} 681, 200/4, 947, 400) 67.8 
Nonturpentine pine: 
Nonturpentine pine 249, 100 74, 100 57,600} 380, 800 iy) 
Nonturpentine pine- 
hard woodi_2 = 2222.22. 24, 400 48, 900 84, 400} 157, 700 2.2 
Serubspine-22=-2-=-2_—_ 5, 500 37, 100 38, 900 46, 500 26 
Mota a: stern =2e ee aoe 279, 000) 160,100) 145, 900} 585, 000 8.0 
Hardwood: 
Bottom land and 
swamp hardwood - _- 16:;600)-22.02 = _| 631,500} 648, 100 8.9 
Upland hardwood ___ 11, 800 86. 000|soc ee 97, 800 1.3 
Serub oak-serub hard- 
WOOdssee eee 144, 500} 428, LOO 23,700} 606, 800 8.3 
Mio talewes sss see eee 182,900] 514,100} 655, 200}1, 352, 200} 18.5 
Cypress. Sora 10, 200}_._______] 402,900] 413, 100 5.7 
3, 760, 800} 1, 651, 700)1, 885, 200}7, 297, 700} - - ~~ -- 
All types_.------__- ins 
Percent | Percent | Percent 
| 51. é Dict 2578 |e 100.0 
1 Data for areas less than 70,000 acres are indicative only. 
2 For explanation of terms used see p. 1. 
"TABLE 3.—Composition of forest type groups, by species 
[Expressed in percent of total cubie volume] ! 
Non- 
Tur- 
x tur- , All 
Species poe pen- Hard: Cypress| type 
d ae tine groups 
Pp pine 
Moncleafee = seseans esse eens, 35. 6 alee A 0.7 () 19.0 
plashte ose eseec sees 44.7 3.8 .9 5,4 24.8 
Loblolly___._ 1.6 52.4 1.2 ne: had 
Other pine -_- — 12 16.8 one mal 2.7 
Red sume. 225-52 75 6.5 11.6 .6 3.7 
Black gum _ 2.9 2.5 25: 5 8.6 8.8 
Other pulping hardwood .'2 4.2 17.6 2.4 5.4 
Red oak 9 On8 14.1 ap 4.4 
Whitevoaks. ..-_ +. 2-222--.. a2 1.9 3.1 () 1.0 
Other nonpulping — hard- 
WOO Sass seaeee wee eee 135) 4.1 16.4 105 ie} 
@vipneSS = se a eae eee gee 8 8.2 80.9 17.9 
All species:----2-—. <==: 100.0 100. 0 100. 0 100. 0 100. 0 


1 These figures are based on gross cubic volume outside bark and do not 
include volume of sound and rotten cull trees, turpentine butts, or tops 
and limbs of hardwoods and eypress, but do include sound scrub oak 
which is ordinarily considered sound cull. 

2 Negligible. 

The pure slash pine type is second in importance, 
occupying almost 18 percent of the forest area. 
Slash pine is also the most important component of 
the mixed types of this group, making up 52 percent 


of the longleaf-s!ash, 47 percent of the slash-cypress, 


and 40 percent of the turpentine pine-hardwood 
types. Unlike longleaf, which has withstood re- 
peated burning even in the ‘“‘grass’’ stage on the 
drier sites, slash pine is confined largely to moist 
situations, where a sufficient time elapses between 
fires to permit its establishment. 


NONTURPENTINE PINE TYPES 


‘Types composed principally of loblolly, shortleaf, 
pond, sand,’ or spruce pines characterized only 8 
percent of the forest area. Loblolly pine, which 
makes up 60 and 42 percent of the nonturpentine 
pine and nonturpentine pine-hardwood types, re- 
spectively, is the principal species. This pine is 
found throughout the survey unit on the more fer- 
tile soils and in swamps along streams and has taken 
over much of the abandoned farm land in the agri- 
cultural sections of the uplands. 


HARDWOOD TYPES 


‘The bottom land and swamp hardwood type is 
characteristic of the larger streams, the swamps, 
and the branch heads. In this type black gum, red 
gum, bay, red maple, magnolia, and other hard- 
woods make up 88 percent of the cubic-foot volume. 


The upland hardwoods have a larger proportion of 


mixed oaks—often of good quality and form—on 
the better sites. The scrub oak-scrub hardwood 
type occurs where blackjack and other unmer- 
chantable oaks and hardwoods occupy the land, 
which is not expected to restock with pine. Al- 
though found principally in the rolling uplands, this 
type also occurs in the drier ridges in the flatwoods 
(table 2). 


CYPRESS TYRE 


Only one type, the pure cypress type, is included 
within this group. It occurs almost entirely in the 
deeper swamps and ponds characteristic of the flat- 
woods area. Cypress makes up 81 percent of the 
volume of this type; black gum, with nearly 9 per- 


cent, is the second most abundant species. 


3 An almost pure sand pine type occupies more than 
150,000 acres within the former boundaries of the Ocala 
National Forest, which was not covered in this survey. 


Forest Conditions 


In order to describe adequately the appearance 
and condition of the forest stands, they have been 
classified according to their age, quality, size, and 
the degree to which they have been cut. 

Stands having the characteristics of the original 
mature forests of the section are called old growth. 
Young stands which have come in as a result of 
cutting or other causes are called second growth. 
Second-growth stands are classified as reproduc- 
tion, under-sawlog size, or sawlog size, depending 
upon their stage of development. If more than 10 
percent of the board-foot volume in sawlog-size 
stands has been removed, such stands are known 
as partly cut. ‘The lower limits of volume per acre 
of old-growth or sawlog-size second growth stands, 
as here classified, represent the lowest volume of 
each class which is in general included in com- 
mercial operations. ‘The lower limits used were 
1,000 board feet of hardwood or hardwood and 
pine mixed, and 600 board feet of pine in old- 
growth stands, and 600 and 400 board feet, re- 
spectively, for the uncut and partly cut second- 
growth stands. When the stands are cut below 
this minimum and no satisfactory stocking of young 
growth or reproduction is left, they are recorded as 
clear-cut. 

The old-growth stands are often quite open, ow- 
ing either to cutting or to natural factors. Young 
growth establishes itself in the openings and, when 
the old growth is removed, forms the nucleus of 
second-growth stands in various stages of develop- 
ment. Sawlog-size stands of second growth are 
usually cut into when a considerable body of the 
under-sawlog-size trees is still present. Clear-cut 
areas usually restock with sufficient seedlings. These 
become reproduction, reproduction grows into 
under-sawlog size, and under-sawlog size into 
saw-log size. There is, therefore, at all times a 
continuous and involved progression of forest 
conditions. 

More than 115 million acres, or almost 21 percent 
of the forest area, are still classified as old growth 
(table 4). Almost 58 percent of these stands have 
been partly cut; and 63 percent of the entire old- 
growth forest occurs in the swamps, bays, and river 
bottoms—notably in Taylor, Dixie, Lafayette, and 
Levy Counties, and in the vicinity of the St. Johns 


61857 °—38—— 


River—probably because of the difficulty and cost 
of logging in such situations. The early concentra- 
tion of logging in the flatwoods and rolling uplands 
has left only 10 percent of the present forest area of 
these situations in old growth. Almost 48 percent 
of the old-growth hardwoods and nearly 55 percent 
of the old-growth cypress stands have been partly 
cut. In most cases the cypress, red gum, and 
other valuable species were removed, leaving 


70 


60 


a 
fo} 


p 
fo} 


ow 
te} 


TOTAL TYPE-GROUP AREA (PERCENT) 
nm 
fo} 


TURPENTINE PINE NONTURPENTINE 
(4,947,400 ACRES) PINE (585,000 ACRES) —(1,352,200 ACRES) 


HARDWOOD CYPRESS 


(413,100 ACRES) 


Q Reproduction [:] cer 


FicureE 3.—Relative proportion of the different forest conditions 
in each type-group area. 


Old Second growth Second growth 
growth sawlog size tA under sawlog size 


only the swamp black gum and other species of 
low value. 

Almost 65 percent of the forest area has restocked 
to second growth. More than 70 percent of the 
second-growth stands are in the turpentine pine 
type group. Of these, about 40 percent have 
reached sawlog size and furnish the bulk of the 
longleaf and slash pines which are being worked 
for gum by the naval stores industry (fig. 3). 

Clear cutting has been practiced in the old- 
growth turpentine pine stands until today 20 per- 
cent of this type, or over a million acres, supports 
neither merchantable timber nor young growth. 
These clear-cut tracts are in general, however, 
scattered throughout the cut-over lands and if ade- 
quate attention is given to fire protection, most of 
them will restock naturally. Selective cutting is 


Tasie 4.—Forest area of northeastern Florida, classified according to forest condition and type group 


| 
e at | Turpentine | Nonturpen- 
Forest condition | ae tine ant Hardwood Cypress All type groups 
Old growth: Acres Acres Acres Acres Acres Percent 
JNCut ss fy ee oo Ae RN 2S ee ene bene oe | 174, 200 77, 300 261, 800 123, 800 637, 100 8.7 
Partly cuts 22. “2225922827 a eS ee eee tn) 429, 700 49, 600 240, 500 150, 600 870, 400 12.0 
Motalia 222 225 22st Sosa ao ee Ee ee ee 603, 900 126, 900 502, 300 274, 400 1, 507, 500 20.7 
Second growth: 
Sawlog size: 
Wnents ie ss. see eee tees. sees 1, 183, 400 191, 600 94, 600 43, 400 1, 513, 000 20.7 
IRartlyicute2 2225-22-20 91, 400 39, 400 7, 900 7, 900 146, 600 2.0 
Under-sawlog size__ 1, 849, 600 149, 000 622, 900 68, 600 2, 690, 100 36.9 
Reproduction____-------- 217, 700 44, 900 102, 500 8, 600 373, 700 fat 
otal 2: 22-252 222. Suse nooo eet ae ea eee eee ae Shoes 3, 342, 100 424, 900 827, 900 128, 500 4, 723, 400 64.7 
Clear. Cut a2 22 sree ee ee a eae ere a ee er eRe ee 1, 001, 400 33, 200 22, 000 10, 200 1, 066, 800 14.6 
(ADT CONnGItIONS S222 sae eae oe eee ee soorndcase 4, 947, 400 585, 000 1, 352, 200 413, 100 7, 297, 700 100. 0 


practiced to a larger degree in the mixed-type 
groups, and a relatively insignificant clear-cut area 
has resulted. The cypress type, which is usually 
clear-cut, generally restocks to hardwoods or slash 
pine soon after logging and thereby loses its earlier 
characteristics. 


Stocking of Forest Stands 


Although well-stocked second-growth stands occur 
on large tracts, principally in the north-central and 
northeastern portions, of the survey unit, the forests 
are generally open and poorly stocked. An analysis 
of the second-growth longleaf pine stands indicates 
that more than 60 percent are seriously under- 
stocked. Longleaf, however, often occurs in open- 


350 
HARDWOODS-CYPRESS PINES 
300 
H PIN 
BEBB Harowoons LONGLEAF ANO SLAS' [a 
BB Round 
EZ CYPRESS 
a TURPENTINED 
250 
NONTURPENTINE PINES 
200 = 


150 


TREES (MILLIONS) 


100 


50 


= 


4 6 8 10 12 14 16 18 20 
(INCHES ) 


2 4 6 8 10 12 14 16 18 20 2 
DIAMETER CLASSES 


Ficure 4.—Stand tables of hardwood and cypress and 
of pines for nortbeastern Florida 


14 


grown stands; and the other types show a better de- 
gree of stocking. 

The predominance of young second-growth 
stands is reflected in the number of small trees of all 
species. Trees that have been turpentined com- 
prise approximately one-fourth of the 8-inch long- 
leaf and slash pines, one-half of the 10-inch, and 
two-thirds of the larger sizes. Hardwoods are next 
to the longleaf and slash pines in point of numbers, 
followed by cypress and the nonturpentine pines 
(fig. 4). : 

The data of the Forest Survey show that, in the 
second-growth uncut stands of the pure longleaf 
type, both the under-sawlog-size and the sawlog- 
size stands support per acre on the average 123 
good trees 1-inch and larger of all species. 
addition, there are 48 cull trees in the under- 


In 


saw-log-size, and 31 cull trees in the sawlog-size 
stands, the removal of which would improve the 
stands. Only 5 longleaf pines in the under-sawlog- 
size stands are over 9 inches, in contrast to 27 in the 
sawlog-size stands. ‘The average ages of the domi- 
nant trees in these stands, based on measurements 
at breast height, are 27 and 40 years, respectively. 

The second-growth uncut stands of the pure 
slash pine type are more heavily stocked than the 
corresponding acres in the longleaf type. The 
average acre bears 165 and 187 good trees and only 
13 and 16 cull trees, respectively, in under-sawlog- 
and sawlog-size stands. Although only 7 slash 
pines are over 9 inches in the under-sawlog-size 
stands, 32 have reached that diameter in the saw- 
log-size stands. The average ages of the dominant 
trees in the slash pine stands are 29 and 44 years, 


respectively. 


. The average volume per acre of each principal 
species group and of the several forest conditions 
in each type group also give an indication of rela- 
tive stocking. ‘The volumes for such average acres 
are shown in table 5 for the turpentine pine type 
group, as representing a combination of many 
variations in site, age, and density that occur in 
the forest stands of this type group in northeastern 
Florida, and as by far the most extensive type 
group occurring on two-thirds of the forest area. 
The board-foot volumes given are net mill tally; 
that is, allowance has been made for material that 
would be left in the woods because of rot, fire-scar, 
crook, limbiness, and similar defects. Also allow- 
ance has been made for loss at the mill due to 
sweep and hidden defects. 


TABLE 5.—Average net volume per acre, by species group and forest 
condition for the turpentine pine type group 


BOARD-FOOT VOLUME (INTERNATIONAL 4-INCH RULE) 


Old growth Second growth 

| Aver- 

Forest type and species Sawlog size eG age, all 
group nder | condi- 

f Uncut Barly, sawlog| tions ? 

Gncut Partly | size ! 
eut 
Board | Board | Board | Board | Board | Board 
Turpentine pine: feet Jeet feet feet feet feet 

ounde ee Se 4, 108 706 811 717 111 461 
Wionked == 1,459 | 1,497 | 1,036 | 1,058 130 508 
Nonturpentine pine ____- 100 51 90 133 13 38 
Pulping hardwoods. -.__- 249 44 12 56 3 18 
Nonpulping hardwoods__ 46 34 16 19 1 9 
G@yPLeESSO ees wwe es 864 287 124 188 15, 94 
MG alles ete eho 6, 826 | 2,619 | 2,089 | 2,171 273 1, 128 


CORDWOOD VOLUME (OUTSIDE BARK) OF GOOD TREES 


Turpentine pine: Cords | Cords | Cords | Cords | Cords | Cords 
(OY bb aXe |= eee ees 10.9 2.3 4.9 3.6 Peal Patt 
Worked assay es 3.8 4.3 4.5 4.7 9 Py, il 
Nonturpentine pine___-_- .4 ay .3 4 wll wl: 
Pulping hardwoods______ 2.0 aah .4 1.0 zal :3 
Nonpulping hardwoods__ u5 72 aL nll .0 mal 
Cypresse eee ae Te Bee 12, 7 1.0 rat .4 
Mo talisoseeet er toa. 20.8 8.9 10.9 10.8 3.3 5.7 


1 Does not include areas of reproduction, clear-cut, and fire-killed 


forest conditions. 
2Includes areas of reproduction, clear-cut, and fire-killed forest 


conditions. 
Site Qualrty 


Within each forest type the rapidity of develop- 
ment of the stands depends to a large degree on the 
inherent quality of the site. The relative height 
growth of the dominant trees is a useful measure of 


15 


site quality. For southern pines, height at 50 years 
is the customary index in practice. Better sites 
produce merchantable stands at an earlier-than- 
average age and have, therefore, a special economic 
significance. 

The average site index of longleaf pine in north- 
eastern Florida is 65 feet; of slash pine, 67 feet; and 
of loblolly pine, 79 feet. Less than 13 percent of the 
land on which longleaf and slash pines occur quali- 
fies as site index 80 or better, whereas almost 58 
percent of the loblolly area is so classified. The 
poorest sites on which either longleaf or loblolly 
pines occurred were in the flatwoods. 

Three broad site classes based on the form, height, 
and general thriftiness of individual trees were used 
to rate the quality of the hardwood and cypress 
types. More than 40 percent of the hardwood 
sites along such larger rivers as the St. Johns and 
Suwannee were rated ‘“‘good” and 50 percent 
“fair.”’ Approximately 75 percent of the upland- 
hardwood sites are rated fair or good and over 90 
percent of the scrub oak-scrub hardwood as poor. 
Most of the cypress grows on fair to good sites with 
the slowest growth occurring in the poorly drained 
ponds scattered throughout the flatwoods. 


Reproduction 


The occurrence of reproduction is of greatest 
economic importance where the mature trees have 
been removed. In this section young seedlings of 
longleaf and slash pine and scrub oak occur most 
frequently. ‘The latter often forms dense stands on 
cut-over longleaf pine land and retards the develop- 
ment of young pine. 

About 30 percent of the reproduction area in the 
longleaf type and more than 35 percent in the slash 
pine type are stocked at a rate of 900 or more seed- 
lings per acre; while less than 35 percent of this area 
in the former type and less than 20 percent in the 
latter are stocked at 80 to 300 seedlings per acre. 
The clear-cut area supports less than 80 seedlings 
per acre, but prospects are fair for 53 percent of it 
that bears three or more pine seed trees per acre 
and an additional 30 percent with at least one or 
two. These trees, assisted by those on adjacent 
lands, should furnish sufficient seed to reclothe the 
major portion of these lands with pine seedlings if 
adequate fire protection is provided. 


The brown-spot needle fungus, which may seri- 
ously retard the growth and development of young 
longleaf under 18 inches in height, is serious on less 
than 1 percent of the survey unit. Hogs also dam- 
age longleaf by feeding on the roots of trees in the 
seedling and sapling stages. While hogs are a 
serious factor outside the palmetto and gallberry 
range, evidence of hog damage was present on only 
1 percent of the area of sapling stands and on 5 
percent of the reproduction area of northeastern 
Florida. 


Fire Damage 


The survival of pine reproduction depends to a 
large degree upon the prevention of fires. Visible 
evidence of forest fires, such as dead reproduction, 
charred stumps, and burned turpentine faces was 
present on 85 percent of the forest area. Many of 
the fires in the longleaf and slash pine types, 94 
percent of whose acreage showed evidence of fires, 
are due to the practice of raking and burning in the 
turpentine stands to protect turpentine trees with 


16 


working faces. Undoubtedly much of the damage 
to the other types is due to these fires proceeding 
unchecked into the bays and river bottoms. Dam- 
age to hardwoods is usually confined to the forma- 
tion of open wounds, through which rot-producing 
fungi enter and reduce the merchantable volume. 

Slightly over 3 percent of the entire forest area 
showed heavy damage from fire. Particularly 
heavy damage occurred during 1931 and 1932 
when a severe drought increased the fire hazard. 
The hardwood bottoms and bays and many cypress 
ponds dried out, with the result that they sustained 
a proportionately heavier damage than did the 
pine. Of all the heavy fire damage recorded, it is 
estimated that 19 percent occurred during 1931 
and 1932. 

Only 30 percent is now (1938) under organized 
fire protection, and large improvement is therefore 
possible. Progress has been made, but redoubled 
efforts are essential to preserve reproduction, 
accelerate growth, maintain satisfactory turpen- 
tine areas, and reduce the fire drain on merchant- 
able volume. 


(PROS ReE a Sela ei SOF URC. 3s OE 


NVOPRe Dh HE AS! PE RN 


HE OV Ral DA 


Naval Stores Aspects 


2 


HE gum naval stores industry obtains over 
three-fourths of the United States production 
of turpentine and rosin from the gum of long- 

leaf and slash pines. The remainder is produced 
by the wood naval stores industry through extrac- 
tion from pine stumps and lightwood and as a by- 
product of paper manufacture. During the latter 
half of the Nineteenth century the gum naval stores 
industry migrated south from the nearly exhausted 
turpentine orchards of the Carolinas and estab- 
lished its financial and export center at Savannah, 
Ga. Later, in 1905, Florida assumed the lead in 
production and maintained it for 18 years, devel- 
oping the port of Jacksonville as its marketing 
center. In 1923 Georgia regained the lead in pro- 
duction and still retains it. Research for the naval 
stores industry is conducted by the Southern Forest 
Experiment Station, which maintains a branch at 
Lake City specializing in gum naval stores prob- 
lems, and by the Bureau of Chemistry and Soils, 
which has a naval stores experiment station at 


Olustee, Fla. 


Gum Naval Stores Industry 


In 1934 more than 90 percent of the turpentine 
and approximately 80 percent of the rosin produced 
in northeastern Florida was produced by the gum 
This industry has been 
responsible for much of the physical development 
which has taken place. In 1933 gum naval stores, 
with a value of more than $3,000,000, ranked second 
among the products of the area. In number of 
wage earners (almost 7,500) the industry ranked 
first, and the total wages paid turpentine workers 
exceeded all but those paid in the lumber industry. 
In 1934 the industry required approximately 
1,400,000 10-hour man-days the 


naval stores industry. 


of labor in 


17 


Ke 


woods and nearly 80,000 man-days at the stills. 

Owing to the long periods over which loans are 
required and the risk involved, banks hesitate to 
serve the industry. As a result, the factorage sys- 
tem has developed, which in 1934 served 85 percent 
of the industry. ‘Three factorage houses in Jack- 
sonville serve practically all of the producers in 
this section—lending money, furnishing commis- 
sary supplies and equipment, and acting as com- 
mission merchants in the disposal of the turpentine 
and rosin to dealers. Since 1934 there has been 
an extensive development of central stilling, includ- 
ing the recently developed method known as “‘proc- 
essed oleoresin,”’ throughout the southeastern por- 
tion of the naval stores belt. Farmers with a few 
thousand trees of turpentine size need not now 
lease them to an operator with a still, for they can 
themselves produce gum and sell it to one of the 
central stills or processed oleoresin plants. ‘The 
processing plant at Jacksonville is already drawing 
heavily on northeastern Florida for the gum it re- 
quires. ‘This development tends to reduce the con- 
trol of factors and may result in several radical 
changes in the make-up of the gum naval stores 
industry. 

In 1934 the 174 active stills in northeastern Flor- 
ida made up 15 percent of the total number in the 
South, but the 30 gum producers without stills 
constituted less than 0.5 percent of their group.! 
All gum producers combined—less than 2 percent 
of the total in the South—worked 2,240 crops (1 


1The data in this paragraph and following are from a 
still-to-still canvass made during 1934, part of the results of 
which were issued informally in the following: SouTHERN 
Forrest EXPERIMENT STATION, STATISTICS OF GUM NAVAL 
STORES PRODUCTION. South. Forest Expt. Sta. Release 17. 
December 31, 1935. 


“PEG “Vpldo}.f Udajspayjiou ur Sjunjg Huisn-poom pun sppys aurquading fo W0yv207—G FANOILT 


S37IW -31NLWLS 


mi = 
bo Al ia 
w3n0@0b = GE-0Z_——I-O1 


41334 QYvVOB W ALIOVdVD YNOH-O1 
STIIWAVS 30 321S 3AlLVYYdWOo 


SiNVId 39vu3d000 B 


SINUId Y3HLO MB sTuw ding 
SINV1d Y33N3A BH  sTwavs y3HL0 FF) 
SINVId ONILW3NL W sTuwavs 3Nid FA 


SINV1d ONISN-GOOM 


SLINN 006 ¥Y3AO ONIONGONd & 
SLINN O06 Y3ONN ONIONGONd @ 
Seay 3 Z| : STULS 3NILNSdYNL 


S3IMLSNGNI S304 
AS 
Trannnady Laon 


se aNniisnony Ls 


EASae 


SONIMdS 
\\3A09 N3389 


VINOTS JO ALVIS OL 
4INN BHL JO NOILVI38 


=] 
@ Ee 
fa St 


ae ANN3T90VW 


3TUANS3Y9// i @ 
Neeser SOR 


J + i t : sae 
BK NVHV TIVO -—- = 
[/ Za a | \ : \ 
v5 WZ 9 4 ---L.. 
2 


oo 
WIA) y 


a ba 
CAV NIGNYNY3. \ @ 


18 


crop equals 10,000 cups), or 17 percent of the total 
working crops. Approximately 78 percent of the 
crops were on leased timber, as compared with the 
73-percent average for the South. Still operators, 
or processors, during the 1933-34 season, worked an 
average of 11.2 crops, from which 479 naval stores 
units were produced, an average yield per crop of 
43 units. 

Production during 1933-34 amounted to 81,610 
naval stores units—more than 60 percent of the 
Florida and about 16 percent of the total United 
States production of gum naval stores. About 20 
of the larger stills accounted for a third of the pro- 
duction (fig. 5). 


Gum Naval Stores Resources 


The activities of the gum naval stores industry 
in the forests are limited by the distribution and 
frequency of occurrence of longleaf and slash pines. 
The collection of gum is not economically feasible 
where the turpentine pines are widely scattered 
and infrequent over large tracts. In classifying 
the forest area as to its turpentining possibilitics, 


the area immediately surrounding each sample 
plot was taken into consideration. Clear-cut areas, 
reproduction areas, and nonturpentine pine and 
hardwood types intermingling with areas suitable 
for turpentining are therefore included in a gross 
turpentine-area figure—typifying the heterogene- 
ous area over which an active turpentining opera- 
tion is spread. The largest acreage not adapted 
to turpentining is in the hardwood and cypress 
types and in the nonturpentine pine types in the 
northwestern and south-central portions of north- 
eastern Florida. Altogether, slightly more than 
2 million acres of the forest land was classified as 
unsuited for turpentining (table 6). The rela- 
tively rapid development and spread of second- 
growth slash pine (fig. 6) is indicated by the fact 
that 55 percent of the working and resting trees 
were of this species. 

The gross area classified as the field for con- 
tinuing turpentine operations is more than 5 
million acres. Over 84 percent of the turpentine 
acreage is in the flatwoods and rolling uplands, 
and the remainder is in swamps, bays, ponds, 
branch heads, and river bottoms. Seldom will an 


Ficure 6.—Chipping and dipping in a slash pine stand, Bradford County, Fla. F247935 


operation be confined to a single topographic 
situation, for the river bottoms intersect both the 
flatwoods and rolling uplands; bays and branch 
heads are found principally in the uplands, and 
swamps and ponds in the flatwoods. 


TABLE 6.—Classification of forest area according to turpentining 
history and topographic situation in the 1934-35 season 


] 
« Swamps 
vats ope e Flat- Rolling u a Reon 
Turpentining history 1 ERR uplands pave All situations 
Acres Acres Acres Acres | Percent 
Roundiarea cea o esse sea 1, 069, 900} 481, 700) 389, 500/1, 941, 100 26.6 
Working area: 
Front-faced___....--- 320, 100} 112,000} 54,400] 486, 500 6.7 
Back-faced!_--*_._=2- 646, 500} 123,700) 124, 600) 894, 800 12.3 
Resting and worked-out - 
ArCaS@ ease son seeenee 1, 244, 200} 384,000} 239, 600}1, 867, 800 25. 5 
Total turpentining 
OlNCGsse-< aces eos 3, 280, 700/1, 101, 400} 808, 100/5, 190, 200 pala 
Unsuited for turpentin- 
Ing see Seen ron 480,100} 550, 300}1, 077, 100)2, 107, 500 28.9 
Total forest area___|3, 760, 800}1, 651, 700)1, 885, 200|7, 297, 700 100.0 


1 For explanation of terms used see p. 1. 


The incidence of turpentine operations has been 
used in classifying the turpentine acreage for 
descriptive purposes. Round-timber areas. still 
bearing unturpentined longleaf and slash pines in 
sufficient quantity to justify future working amount 
to almost 2 million acres, the stands ranging from 
reproduction to old-growth timber. Areas on 
which trees are being chipped are designated as 
2 lif ‘the trees) are. .cupped for. their 
first set of faces, the area is known as “‘front-faced”’; 
if a significant proportion of the trees are being 
worked for a second set of faces, itis known as ‘‘back- 
faced.’ In northeastern Florida there is about 
twice as much back-faced as front-faced area, 


‘“‘working. 


totaling almost 1} million acres. 

Areas which have been but are not now working, 
on which the indications are that a subsequent set 
of faces may be possible, are termed ‘“‘resting.”’ 
Where the present crop of trees has been exhausted 
and further production must await the growth 
of an adequate number of round trees, the area is 
designated as “worked out.” to the 
difficulty of determining what constitutes stocking 
sufficient to justify another operation in the near 
future, 


Owing 


the resting and worked-out areas are 
grouped together; but it is estimated that more than 
1 million acres of this class are in a resting condi- 
tion and that turpentining can be resumed there in 


The remainder of the area 
classified for continuing turpentine operations 
(about 850,000 acres) either bears a stagnating 
stand of worked-out trees, which must be removed 
before restocking can take place, or will require 
an extended period of waiting before sufficient 
round trees develop to justify another operation. 

Operations in second-growth timber conform 
in general to a fairly uniform pattern. The front- 
faced area is worked for 6 years and then allowed 
to rest for about 2 years. Cups are then hung on 
back faces of most of the trees previously worked, 
and front faces are started on round timber that 
during the 8-year period attained sufficient size 
for cupping. The second period of operation also 
lasts 6 years, and again the area is allowed to rest, 
this time usually for 4 years. A third period fol- 
lows, with cups being hung on turpentined trees 
with available space for back faces and on addi- 
tional round timber. After this third 6-year period, 
the area is often completely worked out, and when 
the worked-out trees are removed it must be set 
aside to grow a new stand of round timber. 


the next few years. 


ROUND-TIMBER AREA 


Round-timber areas, which bear in the main the 
reserve growing stock of the naval stores industry, 
are principally represented by large bodies of 
second growth in the northeastern counties and by 
the remaining old growth in the Gulf Coast coune 
ties. Not all of the round-timber area is readily 
accessible for turpentine operations. Small bodies 
of timber, principally in the rolling uplands, may 
be isolated by agricultural land. Also, under 
normal conditions many portions of the swamps 
are inaccessible. The flatwoods are apparently 
most available, for during the 1934-35 season only 
33 percent of the turpentine acreage in this topo- 
graphic situation remained in round timber, whereas 
44 percent of the rolling uplands, and 48 percent 
of the swamps, bays, etc., were so classified (table 6). 

With the exception of the round-timber areas 
still in old growth, practically all of the turpentine 
area has witnessed operations. The old-growth 
trees have usually been worked for.gum during at 
least 3 years prior to logging. Most of this acreage 
then restocked to young pines and now bears the 
bulk of the round timber. Small bodies of second 


growth have been completely worked out and the 
exhausted timber removed. Longleaf and slash 
pines are equally represented in the round timber. 
In addition to about 17% million round trees of 
turpentine species 9 inches and larger in diameter 
in the round-timber area (table 7), there are 110% 
million in the sizes between 1 and 9 inches, more 
than 15 million of which have already reached 7 
inches. All of these round trees constitute the re- 
serve growing stock, a large proportion of which 
should with good forest management reach a suit- 
able size for turpentining. Under current chipping 
practices some trees under 9 inches are chipped. 
Tt is believed, however, that the best general prac- 
tice would be to refrain from chipping trees smaller 
than 9 or 10 inches. 


Taste 7.—Round turpentine pines 9 inches or larger in diameter 
and turpentined pines in different conditions on the various areas 
aft Work- | Rest- | Work- 
purpen unin Hound ing ing | ed-out | All conditions 
ELOY : trees trees trees 
Mtrees | Mtrees | Mtrees | Mtrees | Mtrees | Percent 
Round-timber area _| 17, 431 |-_--__-- 432 176 | 18,039 23.9 
Working area: 
Front-faced_____ 801 7, 897 375 234 | 9, 307 12.3 
Back-faced - -___ 1,028 | 13,507 | 1,867 | 3,586 | 19, 988 26.5 
Resting and work- 
ed-out areas______ 5 S40N| sone ee 13, 690 8, 547 | 28,077 3753 
25) 100%) 21; 404:)))'16,:364: | 12,543 | 75,411 |22 2 
Motale-ssseLs 
| Percent | Percent | Percent | Percent 
33.3 28.4 Qe7. 16sGo|2s = 2282 100. 0 


WORKING TURPENTINE AREA 


The working turpentine area of nearly 11; million 
acres is well distributed. It is least concentrated in 
the developed agricultural areas, where only scat- 
tered blocks of timber remain. Several large opera- 
tions are confined to old-growth timber in the Gulf 
Coast counties for 3 or 4 years prior to logging, but 
the bulk of production already comes from second 
growth. Relatively few stands of old growth re- 
main, and it will not be long before all turpentine 
operations will be in second growth. 

On the working area, in addition to more than 20 
million working trees at the beginning of the 1934— 
35 season, more than 2 million were resting, and 
nearly 4 million worked out. ‘There were also more 
than 134 million round trees 9 inches in diameter or 
larger, over 1214 million 7 and 8 inches, and 8814 
million between 1 and 7 inches, all of which form 


21 


More 
than a third of the working trees were in front-faced 


the nucleus for future operations in this area. 


tracts, where they average 16 trees per acre as com- 
pared with 15 per acre in the back-faced tracts. As 
is to be expected, most of the resting (83 percent) 
and of the worked-out trees (94 percent) were in 
back-faced tracts (table 7). 

The number of cups hung on virgin or first-year 
faces each year reflects (1) the replacement of faces 
worked out in the previous season, and (2) the ex- 
pectations of producers as to the demands of con- 
sumers for the ensuing few years. After an area has 
been worked for two or more periods of 6 years each, 
the average number of potential faces per acre is 
greatly reduced. Only operators with little over- 
head, or small gum producers who handle only a 
few thousand cups, can work these areas profitably. 

Large producers are willing to pay the higher 
leasing costs necessary to operate in round timber, 
because of its higher productivity per acre and con- 
sequently lower unit cost of operation. The ac- 
tivities of these larger producers are reflected in 
the front-faced operations which are more sensitive 
to changes in market conditions, actual or antici- 
pated, than are back-faced operations. At the be- 
ginning of the 1932-33 season, only 65 crops were 
hung in front-faced areas as compared with nearly 
211 crops for the 1934-35 season (table 8). The 
former figure probably reflects anticipation of a 
poor market; the latter figure was undoubtedly 
influenced by the proposed program under the 
Agricultural Adjustment Administration, adopted 
in 1934, which resulted in limiting naval stores 
production to certain-sized trees for the purpose of 
promoting economic use and conservation of land 
and diminution of unscientific use of soil resources. 

Altogether, about 22% 
cent of which were on front faces, were worked 
during the season of 1934-35. ‘The proportion of 
front faces ranged from 94 percent in front-faced 
operations to only 40 percent in back-faced oper- 
tions. In spite of the fact that a 9-inch or larger 
diameter limit has been advocated for several 
years, 24 percent of the working trees were below 
this size. At the beginning of the 1934-35 season, 
cups were hung on 26 percent of the 7- and 8-inch 
round trees in the area converted into first-year 
crops; and on 83 percent of the 9- and 10-inch, 96 
percent of the 11- and 12-inch, and 100 percent of 


million cups, over 60 per- 


TasL_e 8.—Turpentine cups hung during the 1934-35 season, by year of working 1 


raxlei ee é 2 « First Second Third Fourth Fifth Sixth year 
Working area and manner of cupping year year year year year and later All years 
Front-faced areas: Crops Crops Crops Crops Crops Crops Crops Percent 
On front faces____ 198. 1 126. 1 61.5 135.9 106. 0 160. 2 787.8 35. 2 
On back faces__- 12.6 8.2 3.8 8.5 6.6 10.1 49.8 22) 
LOtAL sae Fee Peas POE Lee eae 210.7 134. 3 65.3 144. 4 112.6 170.3 837.6 37.4 
Back-faced areas: 
On front faces_ ___ 76.9 (BD 106.9 106.3 102.5 101.6 567.7 25.3 
On back faces_- 182.3 190.8 97.4 101.3 132.1 131.2 835.1 37.3 
otal P22 2a tt ess ooo cee ea eo ee eecoeeae es 259. 2 264.3 204. 3 207.6 234. 6 232.8 1, 402.8 62.6 
All working areas: ; 
On front faces_- 275.0 199.6 168. 4 242.2 208. 5 261.8 1, 355.5 60.5 
On back faces-_--_-- = 194.9 199.0 101.2 109.8 138.7 141.3 884.9 39.5 
469.9 398. 6 269. 6 352.0 347. 2 403. 1 2h 2A0T4Es | Eee eens 
Total______--_--_------------------------------ Percent Percent Percent Percent Percent Percent 
21.0 17.8 12.0 15st 15.5 1800) = Sees 100. 0 


1 Recorded in crops of 10,000 cups each, 


the larger round trees. Only 8 percent of the front- 
faced trees carry two cups. These practices are 
relatively conservative when compared with those 
in other naval stores sections in the Southeast. 


RESTING AND WORKED-OUT AREA 


Nearly 2 million acres, an area almost as large as 
that remaining in round timber, had been turpen- 
tined prior to 1934 but was not then working. 
Very little of this acreage is in old growth, which is 
usually turpentined up to a short time before log- 
ging. Most of it is scattered throughout the second 
growth as a portion of some turpentine farm. It is 
in large blocks only where an operator has thoroughly 
worked out and abandoned an entire turpentine 
place. 

It is estimated that 1 million acres resting or 
worked out bears adequate round trees of the 
necessary sizes and sufficient possibilities for new 
faces on trees previously worked to justify the start 
of a new operation in the next decade. This resting 
acreage bears approximately 10 million resting 
trees, almost 4 million round trees 9 inches in diam- 
eter and larger, and more than 20 million round 
trees between 5 and 9 inches in diameter. Some of 
this area is ready for immediate working; a large 
part of it, however, must wait several years for 
enough round trees to attain working size. 

The remaining 867,000 acres classified as resting 
and worked out is made up largely of land on which 
it is estimated that there are insufficient potential 


i) 
i) 


cups to justify working during the next decade. 
Much of this area has stagnated because of the 
presence of more than 7 million worked-out trees 
(fig. 7). Here are also nearly 4 million resting trees, 
2 million round trees 9 inches or larger in diameter, 
and more than 10 million round trees between 5 and 
9 inches, all forming a reserve growing stock for 
future working. After a decade or so of growth, a 
portion will again be ready for working; but at 
least half a million acres have been completely 
worked out and definitely abandoned. The worked- 
out trees must be removed if this area is to re- 
stock witha satisfactory stand of round timber 
and take its place in the cycle of turpentine 
operations. 


Future Outlook for 
Gum Naval Stores 


Since the naval stores industry is well established 
throughout this survey unit, practically all of the 
round turpentine pines, with the exception of those 
in parks, or on inaccessible islands in swamps, will 
sooner or later be available for naval stores opera- 
tions. During the next 20 years, some 4% million 
round trees will each year become 9 inches or 
larger (with allowance made for mortality in present 
stands), unless the supply of round trees is reduced 
for pulpwood or other purposes. Some areas of 
round trees must stand for several years after the 
first trees reach turpentine size before there is a 
sufficient concentration to justify working. 


La 


Ficure 7.—A stand rendered nonproductive by worked-out slash pines. F273052 


It is the common practice to hang cups on only a 
portion of the trees 9 inches in diameter and larger; 
but since the trees on which two or more cups are 
hung make up for the uncupped trees, the total 
number of incoming trees 9 inches and larger can 
be expected under current practices to yield more 
than 4% million cups each year if they are all dedi- 
cated to gum naval stores operation. An analysis 
of naval stores operations in northeastern Florida 
indicates that, in a continuous (or sustained-yield) 
operation, approximately 11! crops of 10,000 cups 
each must be hung each year on new round trees 
to maintain a total working body of 100 crops. 
The annual addition of new faces on round trees 
would, therefore, maintain a total working body of 
nearly 37! million cups, or 3,740 crops. Since an 
increase in cupping must start with virgin faces 
and is extended into the working body year by year, 
it would probably take about 15 years to arrive at 
the full working body justified by the annual sus- 
tained income of new faces. 

If it be assumed that production of naval stores 
will average 45 units per crop (in 1933-34 produc- 
tion averaged 43 units per crop when 24 percent 
of the cups were hung on trees under 9 inches 


d. b. h.), an annual sustained yield cf 168,000 
units appears possible. This figure may be com- 
pared with the 1933-34 production of 81,610 units. 
In 1934, less than 100,000 round turpentine pines 
were cut for wood products. An annual cut of 
this size from 9-inch and larger trees would reduce 
the attainable sustained yield by only 450 units. 
If the present practice of hanging cups on trees 
smaller than 9 inches is continued in the future, 
the number of cups that could be hung on fresh 
trees each year would be increased to about 4%; 
million. The inclusion of the smaller trees would, 
however, reduce the yield per crop and although 
an annual sustained yield of 168,000 units could be 
maintained, it would come from a larger number 
of trees. A much larger production than that indi- 
cated above could be maintained for several years, 
but this would probably result in a reduction in 
the sustained-yield possibilities for the area until the 
restocking of second growth could overcome the in- 
roads in the present growing stock. Insome sections, 
owing to the scattered nature of suitable timber, 
naval stores men will probably be hard pressed to 
maintain their operations at present levels without 
sacrificing a part of the basic growing stock. 


It is generally conceded that a relatively low 
market price for turpentine and rosin is essential to 
the wider use and distribution of naval stores. One 
solution of this problem lies in increasing the yield 
of gum per acre, thereby decreasing the unit cost 
of production. In order to do this, the growing 
stock should be built up and the density of existing 
stands increased. The accumulated worked-out 
turpentine timber should be removed, open areas 
assisted in restocking naturally or through planting, 
and the forest protected from uncontrolled fire. 
Better woods, producing, and marketing practices 
should be followed. ‘The naval stores industry as 
a whole suffers from periods of overproduction, 
during which returns from the sale of turpentine 
and rosin drop below costs of production. It might 
be well, therefore, to maintain naval stores produc- 
tion at its present level for some years and to re- 
serve the present surplus of round timber to build 
up the growing stock for use when increased markets 
or decreased supplies in other sections may justify 
a production more in line with the sustained-yield 
possibilities. 

Although the current local turpentining practices 
are relatively conservative when compared with 
those in other parts of the region, the naval stores 
industry exacts an excessive toll from the forest, 
even here. As a result of chipping small trees, 
placing too many cups on some trees, deep chip- 
ping, and carelessness with fire, turpentining has 
caused an excessive reduction in rate of growth 
and an increase in rate of mortality of turpentine 
pines, as well as an actual reduction in saw-timber 
volume due to the scars which result from the work. 
During 1934 the longleaf-slash pine forests in north- 
eastern Florida, if they had not been turpentined, 
would have produced 210 million board feet (lum- 
ber tally) more than they did. This is a part of the 
price paid for the naval stores industry. The signi- 
ficance of the loss in annual increment is shown by 
the fact that it equals the drain from the combined 
cut of pine for lumber, ties, poles, piles, and all 
other wood products during that year. It seems 
inevitable that the naval stores industry will con- 
tinue to be an important user of the forests, and 
that the outlook for other forest industries will be 
limited accordingly in scope, character, and volume 
of production. 


Wood Naval Stores Industry 


and Resources 


The wood naval stores industry in northeastern 
Florida is at present of minor importance and is 
confined to two plants which use the destructive- 
distillation process in the production of wood tur- 
pentine, pine tar with its derivatives, and charcoal. 
Old-growth longleaf and slash pine stumps along 
with lightwood (dead pine heartwood) are used as 
raw material. The 50,000 to 75,000 tons of stumps 
used annually make up 85 to 95 percent of the total 
consumption. ‘The industry employs more than 150 
men on a full-time basis in its plants and a large 
number of men in the woods. In 1934, the laborers 
at the plants and in the woods worked more than 
100,000 10-hour man-days. 

Suitable supplies of merchantable stumps are 
found mainly in the longleaf, longleaf-slash, and 
scrub oak types—the last-named occupying lands 
formerly in old-growth longleaf. Generally speak- 
ing, land that has been clear-cut and has not yet 
reforested is considered the best source of stumps, 
particularly if crawler-type stump-pulling machines 
are used. The difficulty and the cost of extracting 
stumps with stump pullers increase markedly as it 
becomes necessary to avoid reproduction, standing 
trees, and other obstacles, or to enter the rolling 
uplands. Also, landowners are generally hesitant 
about allowing the use of stump-pulling machines 
on land that bears well established young growth, 
since the damage to the stands often is greater than 
any possible return from the sale of stumps. The 
acreage from which stumps can be obtained readily 
(table 9) constitutes 42 percent of the total forest 


TasLe 9.—Merchantable stump-land area, classified according to 
abundance of stumps and topographic situation 


a , . Swamps, 
Stumps per acre Flat- Rolling ; Reet eee 
(number) woods | uplands bays, All situations 
Acres Acres Acres Acres Percent 
DiOnCssa jase tees _..| 818,000 | 197,100 |. 11,800 | 521, 900 171 
GLOW Bee ees eee 492, 000 | 314, 600 8, 600 | 815, 200 26.8 
14t0.25-.-2 2200. ___ 5) © 1633;,800' 2235900) 7,900 | 765, 600 25. 1 
26 or more___----------| 786,800 | 149, 000 9, 500 945, 300 31.0 


2, 125, 600 | 884,600 | 37,800 |3, 048,000 |----_-_- 


Total stump- 


land area__--- Percent | Percent | Percent 


69.7 29.0 1.3 


land of the survey unit. As the supply becomes 
locally less abundant, stumps from the more difficult 
situations will, no doubt, become merchantable. 

Because of the prevalent use of explosives in 
removing stumps, the estimates of stump volume 
are given here on a blasting basis (table 10). 
Since blasting leaves a larger proportion of the 
stumps in the ground, only 60 percent as much 
volume is obtained by this method as may be 
obtained with the use of pullers. Of the 12 million 
tons of well-seasoned merchantable stumps that 
could be blasted, about 85 percent is obtainable at 
Almost 
25 percent of the stump lands are clear-cut, and 
half of these lands bear 26 or more stumps per 
acre. Of the stump-land area nearly half is in 
sapling stands of second growth, the density of 
which is increasing each year. 


the rate of 14 or more stumps per acre. 


TasiE 10.—Volume of merchantable stumps (blasting basis), 
classified according to abundance of stumps and 
topographic situation 


Stumps per acre Flat- | Rolling] Swamps, 


All situations 


(number) woods Juplands} bays, etc. 
M tons} M tons| M tons M tons | Percent 
CLOTS CSS een ae = es ae 125 79 5 209 eed 
6 to 13__ 984 629 17 1, 630 13.6 
MAstOp2 bese 2, 135 895 32 3, 062 25:'5 
26 and over_______- 5, 901 1, 118 71 7, 090 59. 2 
9, 145 2, 721 125 11, 991 i 


Total stump-land 


Percent| Percent 
76.3 22.7 


Percent 
1.0 


An additional 3 million tons of stumps that might 
be removed with the use of explosives would come 
in part from the many advanced second-growth 
stands, where stumps cannot be pulled without 
damage to surrounding trees or because of high 
cost. Also, freshly cut old-growth stumps, which 
must season 8 to 10 years after cutting before 
becoming suitable for use, form another source of 
supply. A considerable volume of stump wood will 
also be available from the stumps of old-growth 
timber now standing—at a conservative estimate of 
3 tons per acre. ‘This would add another million 
tons, making the total additional supply 4 million 
tons. 


25 


With a present and future supply of nearly 17 
million tons of merchantable stumps, northeastern 
Florida has obviously a much greater tonnage than 
is needed to meet the annual requirements of its 
two plants that now use 50,000 to 75,000 tons per 
annum. ‘There are thus enough stumps to allow a 
very considerable expansion in the production of 
wood naval stores. It is probable that the use of 
stumps for naval stores production should be con- 
sidered from a mining rather than a renewable- 
crop standpoint, for present processes use only old- 
growth stumps, and only 12 percent of the turpen- 
tine pine stands are still old growth. If the utiliza- 
tion of the present and future stump supply were 
extended over the next 25 years, the annual yield 
would be about 700,000 tons or enough to support 
a number of large steam-solvent plants. It is inter- 
esting to contemplate that with a yield from the 
steam-solvent process of 6.6 gallons of turpentine, 
7.5 gallons of pine oils, and 348 pounds of rosin per 
ton of stumps, a full exploitation of the stump-wood 
resource during the next 25 years would produce 
80,000 barrels of turpentine and 650,000 barrels 
(500 pounds gross) of rosin per year. This may be 
compared with the production of the gum naval 
stores industry in this survey unit in 1933-34, which 
was about 82,000 barrels of turpentine and 270,000 
barrels of rosin. It is also of interest to note the 
possibility of a large production of pulping material 
from the spent-chip residue of the steam-solvent 
process. 

Regardless of the adequacy of the supply of 
stump wood, any considerable expansion of the 
wood naval stores industry in northeastern Florida 
must, in all likelihood, await a marked increase in 
the demand for turpentine and rosin. The gum 
naval stores situation in the naval stores belt as a 
whole indicates no probability of a prolonged re- 
duction of output due to scarcity of timber supply. 
Unless there is a marked increase in consumption, 
a full utilization of available and future supplies of 
both stump wood and turpentine timber would un- 
doubtedly bring about a chronic condition of over- 
production with its attendant demoralization of 
both the gum and wood naval stores industries. 


PROVRe ESS lae eRe SOs Ua Ren Cepia Smee @). EF 


N= OWRi i bar ae AGES 70 Shae Rae) 


IE ILO) IY Ih ID) AN 


Wood-Products Aspects 


HE group of manufacturing industries pro- 

ducing lumber and other wood products in 

northeastern Florida has exceeded all others 
in importance for many years. For several decades 
after 1880 extensive railroad building made the 
resources of the interior progressively more aces- 
sible and; through the development of agriculture, 
increased the demand for wood products. From 
1909 until 1929, lumber production in Florida ap- 
proximated a billion feet annually. Cross-tie pro- 
duction became second to lumber from the stand- 
point of volume of timber used. The growth of 
the naval-stores industry stimulated the production 
of rosin barrels; and the increase of area devoted 
to specialty crops made a market for fruit and vege- 
table containers and slack barrels. 


Saw-timber Volumes 


In estimating present saw-timber volumes, only 
live trees of commercial species were included. 
Pine and cypress trees 9 inches and larger and hard- 
wood trees 13 inches and larger in diameter at 
breast height, were considered merchantable if 
they were 50-percent sound and would produce 
one 12-foot usable log. Usable portions of tur- 
pentined butts are included in the inventory figures. 
All figures are net, deductions having been made 
for both woods and mill cull, i. e., portions of the 
tree which could not be made into lumber on 
account of rot, fire scars, crooks, bad knots, or 
other defects. 

The Doyle rule has been used in the tables here- 
with because it is commonly used in the South and 
is the statute rule of Florida. Even though com- 
monly used and although it approximates mill tally 
in logs of 25 to 35 inches in diameter, it is an inac- 
curate measure of volume in that it underestimates 


26 


Ke 


the lumber which may be cut from small logs and 
overestimates the contents of large logs. The 
Scribner rule in general underestimates mill tally, 
but is usually more accurate than the Doyle rule. 
Although the International (44-inch kerf) rule is 
not used commercially, it is of especial value in 
that it very closely approximates actual green- 
lumber tally and for all practical purposes may be 
so used. The entire saw-timber volume in this 
area as estimated by the Doyle rule is less than 60 
percent of that shown by the International rule and 
less than 70 percent of the Scribner-rule volume 
(table 11). 


Tasie 11.—Net board-foot volume expressed in Doyle, Scribner, 
and International (44-inch saw kerf) log rules 


t Seri a- 
Tree species group Doyle rule cebner saa 
Pines: M board feet | M board feet) M board fect 
Longleaf. 967, 500 1, 608, 900 1, 959, 500 
Slash=. 2: 1, 619, 300 2, 563, 300 3, 075, 800 
Loblolly_- 717, 000 985, 700 1, 133, 800 
Other_-___- 180, 300 279, 100 326, 600 
Totally. esse eee eit eres 3, 484, 100 5, 437, 000 6, 495, 700 
Hardwoods: 
Red igus“ 22.2 scseereseceses 395, 600 473, 900 517, 200 
Black eum ie sss: - 522-22 2- 467, 700 585, 200. 677, 400 
IRed/oaksins se ee Secee ee 412, 800 495, 600 537, 500 
Wihiteioaks 2.2 432-2222 -6 222 119, 900 140, 500 151, 500 
Others Se Coe eee eee 538, 400 690, 800 761, 700 
‘LT Otalu2 eee ee seas 1, 934, 400 2, 386, 000 2, 645, 300 
Cypress__.--------.-------------- 1, 154,700 | 1,687,400 | 2, 017, 800 
All species________- ce ae 6, 573, 200 9, 510, 400 11, 158, 800 


Practically all of the forest area in northeastern 
Florida is accessible for logging during some season 
of the year. The excellent network of railroads 
and highways (fig. 5) makes it possible to get within 
a few miles of any part of it with railway cars or 
trucks. In fact, more than 90 percent of it has been 
logged over in the removal of the original timber. 
Woods labor is usually plentiful at relatively low 


I 


Taste 12.—WNet board-foot volume (Doyle rule), by major species groups and forest conditions 


Old growth Second growth 
. Reproduc- 
Species group Sawlog size Waider tion and All forest conditions 
Partly = clear-cut 
Uncut ants oe sawlog 
artly size 
Uncut fants 
M board M board M board M board M board M board M board 

Pines feet feet Jeet feet feet feet feet Percent 
Longleaf 132, 500 274, 100 382, 200 20, 000 132, 500 26, 200 967, 500 4.7 
mlasheeeees oe 531, 900 292, 200 652, 000 61, 100 69, 400 12, 700 1, 619, 300 24.7 
Loblolly SS 234, 600 74, 200 333, 200 57, 900 14, 800 2, 300 717, 000 10.9 
© Gere ee eS oe ee tes se Se a 54, 500 28, 300 66, 100 5, 100 20, 700 5, 600 180, 300 Dil 
CNR EN Ua see ee Eee oe eee ee 953, 500, 668, 800 1, 433, 500 144, 100 237, 400 46, 800 3, 484, 100 53.0 

Hardwoods: 

Rede ue eee ee Mee ee ese ee oe 208, 800 127, 200 46, 600 8, 200 rte Lt | eet eae os 395, 600 6.0 
BIlECke ome wee oe asc Ao Cae Te aoe oe 210, 300 215, 800 29, 100 5, 100 7, 300 100 467, 700 Lest 
Redioakseessnk sk tae ye says gue Te eile 259, 700 97, 200 41, 700 7,100 6, 900 200 412, 800 6.3 
73, 000 33, 100 9, 700 1, 500 2000) bauer 119, 900 1.8 
290, 700 184, 100 48, 400 5, 400 9, 600 200 538, 400 8.2 
1, 042, 500 657, 400 175, 500 27, 300 31, 200 500 1, 934. 400 | 29. 4 
Gy pressanmeu ei are 5 bec 2 ot Soe. oSeeo-ts2 5-32 578, 800 411, 400 120, 200 14, 300 27, 000 8,000 | 1, 154,700 | _ 7.6 
(2,574, 800 | 1,737, 600 | 1,729, 200 185, 700 295, 600 50, 300 | 6,573,200 | 
TAU SSS ap eae ; Percent Percent Percent Percent Percent Percent ‘ a 
| 39. 2 26.4 26.3 2.8 4.5 OR Ss | boas en eee 100.0 
wages. Because of the accessibility of timber, the large blocks. In this study all areas bearing these 


ease of logging, and the availability of labor, the 
sawmill and other wood-products industries genér- 
ally find it feasible to log areas if they bear 600 
board feet or more per acre of pine or 1,000 board 
feet or more per acre of hardwoods in relatively 


minimum volumes per acre were included in saw- 
log-size stands, even though some of them were 
widely scattered or in fence corners and could not 
now be economically logged. In the survey unit as 
a whole, old-growth uncut stands averaged almost 


TABLE 13.—Diameter-class distribution of net board-foot volume (Doyle rule), by species groups and forest conditions 


Old-growth Second growth 
a Reproduc- 
Species group and tree diameter class (inches) Sawlog size . tion and All forest conditions 
Under clear-cut 
Uncut Partly cut sawlog ee 
Uncut Partly cut Be 
M board M board M board M board M board M board M board Percent 
feet feet feet feet feet feet feet 
137, 500 168, 500 673, 900 57, 000 161, 700 27, 200 1, 225, 800 35. 2 
274, 000 246, 500 506, 500 46, 700 62, 500 14, 700 1, 150, 900 33.0 
225, 300 147, 000 160, 000 26, 100 12, 100 4, 700 575, 200 16.5 
316, 700 106, 700 93, 000 14, 400 el OOn| bss asses see 531, 900 15:3 
953, 500 668, 700 1, 433, 400 144, 200 237, 400 46, 600 3, 483, 800 100.0 
258, 600 214, 600 89, 600 13, 700 21, 800 500 598, 800 30.9 
271, 500 208, 900 49, 800 8, 200 Sp FOOn Ee Len ees 547, 100 28.3 
512, 300 233, 900 36, 100 5, 400 (O0%| Sens anaes 788, 400 40.8 
ARO UEN LS deas Rane apie ee SO 1, 042, 400 657, 400 175, 500 27, 300 31, 200 500 1, 934, 300 100.0 
91, 600 114, 000 63, 500 7, 100 15, 900 1, 200 293, 300 25.4 
113, 000 121, 600 38, 400 4, 300 8, 100 1, 300 286, 700 24.8 
116, 800 51, 700 8, 900 1, 100 409 600 179, 500 15.5 
257, 400 124, 100 9, 400 1, 800 256009 aes oes 395, 300 34.3 
578, 800 411, 400 120, 200 14, 300 27, 000 38, 100 1, 154, 800 100.0 
: Percent Percent Percent Percent Percent Percent Percent 

PROLAIGM ING ero eR NG AN et aL 27.4 19.2 41.2 4.1 6.8 3 100. 0 

Total hardwood_ 53.9 34. 0 eal 1.4 1.6 () 100. 0 

mMotalicypresses seewe sens Te OP ae 50. 2 35. 6 10.4 1.2 223 0.3 100.0 


1 Negligible. 


27 


6,000 board feet per acre; partly cut old-growth 
stands, over 3,000; second-growth sawlog-size un- 
cut and partly cut stands, more than 2,000. Only 
7 percent of the total board-foot volume (Interna- 
tional \-inch rule) occurred in under sawlog-size, 
reproduction, and clear-cut stands, all of which had 
less than 600 board feet per acre. 

More than 50 percent of the volume of saw timber 
measured by the Doyle rule was in pine, nearly 30 
percent in hardwoods, and the rest in cypress (table 
12). Slash pine accounted for 46 percent of the 
pine volume. Black gum was the most important 
hardwood from the standpoint of volume, account- 
ing for 24 percent. Of the volume in longleaf and 
slash pine, approximately 50 percent was in trees 
that had been or were being turpentined. 

The pine in old-growth stands makes up almost 
47 percent of the pine saw-timber volume. 
Although some of this pine volume is in other than 
pine types, the proportion given contrasts signi- 
ficantly with the 13 percent of the pine types that 
is in old-growth stands. This is due mainly to 
the prevalence in this class of relatively large trees 
and heavy stands (table 13). More than 85 per- 
cent of the volume of hardwood and some 80 per- 
cent of the cypress is still in stands of old growth. 
Red oaks have the largest volume in the uncut 
old-growth stands and black gum in the partly 
cut. Almost half of the hardwood volume in the 
uncut old-growth and over a third in the partly 
cut stands are in trees 21 inches and over in diam- 


eter. The largest individual species volume in 
the old growth is in cypress, of which practically 
20 percent is in trees 29 inches and larger in diam- 
eter. Only 2 percent of the total pine volume 
(Doyle rule) is in trees 29 inches and larger in 
diameter. 


Cordwood Volumes 


‘There is a considerable additional volume in 
standing timber of such small size or poor quality 
that it must go, if utilized now, into such products 
as pulpwood, fuel wood, and fence posts. This 
volume is expressed in terms of standard cords 
(4 by 4 by 8 feet), which are measured and sold 
with the bark included. 

In addition to the cordwood volume in sound 
and rotten culls and in the tops and limbs of sawlog- 
size trees, all good trees below saw-timber size, but 
at least 5 inches in diameter, are included (table 
14). It does not follow that this latter material is 
available or should be cut for cordwood; on the 
contrary, a very considerable part of this class of 
trees must be held on the land as a source of con- 
tinuing supply for lumber, poles, ties, and similar 
wood products. ‘There is an ample supply of cord- 
wood material available for fuel and farm use in 
cull trees and in the tops and turpentined butts of 
sawlog-size trees. A discussion of the growing stock 
from the standpoint of pulpwood supply is given in 
the section on “‘Pulpwood Resources.” 


TABLE 14.—WNet cordwood volume of material unsuited for sawlogs by species groups and quality classes 4 


Good trees Tops and Rotten g 
Species group under saw- | limbs of saw- | Sound culls 3 culls 3 All quality classes 
log-size log trees ? 

Pines: Cords Cords Cords Cords Cords Percent 
Round_____ 6, 891, 900 1; 193, 500 43, 400 5, 200 8, 134, 000 PATE TE 
Turpentined__ 2, 233, 200 4 2, 032, 900 37, 400 5, 500 4, 309, 000 slG) 
Nonturpentin 922, 800 616, 100 115, 900 16, 300 1, 671, 100 4.4 

FRO Gace eee eet a sete nD rane ae OA RO ne SR oes 10, 047, 900 3, 842, 500 196, 700 27, 000 14, 114, 100 37.6 

Hardwoods: i 
A GABA op alley ee esa eh ee 8 ie SP an 5, 450, 000 2, 223, 500 1, 426, 600 670, 900 9, 771, 000 26. 1 
INO DU) pin esees ea Se eos Doe eee ee ners oe OS Peete ee 2 5 2, 589, 900 1, 339, 900 4, 031, 100 857, 300 8, 818, 200 23.5 

ETO al kere teres = ane ee ee 8, 039, 900 3, 563, 400 5, 457, 700 1, 528, 200 18, 589, 200 49. 6 
Cypress teeta aes ee ke 8 a ie ee! AP) eh 2, 689, 000 1, 581, 800 265, 500 249, 300 4, 785, 600 12.8 
20, 776, 800 f 8, 987, 700 5, 919, 900 1, 804, 500 37, 488, 900 |----+------- 

Total_...--.------------------------------------------------- Percent Percent Percent Percent 
55. 4 24.0 15.8 AA's Eee Te oe 100. 0 


1 Cordwood volume computed from cubic-foot volume including bark. 
2 Includes cordwood volume in top stems of pines to a 4-inch minimum top and in tops and limbs of hardwoods and cypress. 
3 Includes cordwood volume in top stems of pine culls and in tops and limbs of hardwood and cypress culls; sound culls also include all sound scrub- 


oak volume. 
4 Includes approximately 580,700 cords in turpentined butts. 


® Ineludes all sound special-use species to approximately a 4-inch top. 


28 


Tasie 15.—Net cubic-foot volume (inside bark), by species groups and quality classes 


Good sawlog-size trees Gooditreesi| oe Culls, sound 
S i ss 3 ere Total good- obi a PS 
Species group under saw- fines SN TTT and rotten All quality classes 
Sawlog Tops and log size ? ’ culls 3 
material limbs ! 
M cubic feet | M cubic feet | M cubic feet | M cubic feet | M cubic fzet | M cubic feet Percent 
Ie S Seasaie eae eee rere 2 ele eee eS 1, 165, 730 4 290, 690 701, 790 2, 158, 210 16, 540 2, 174, 750 48. 1 
ard woodsiie==225-222228 mes 5 449, 140 5 222, 730 § 502, 830 1, 174, 700 7 451, 960 1, 626, 660 36.0 
(ON OVENS eee 0 ee SS See 377, 970 111, 790 190, 020 679, 780 37, 720 717, 500 15.9 
1, 992, 840 625, 210 1, 394, 640 4, 012, 690 506, 220 A OlSs GLO) Passes ae 
All groups. _..-.----------------------------------- Percent Percent Percent Percent Percent 
44,1 13.8 30.9 88. 8 aa NDAs ee a er 100. 0 


1 Top stems to a 4-inch minimum for pines; tops and limbs for hardwoods and cypress. ; ; : , 
2 Includes trees 5.0 to 8.9 inches in diameter in case of pine and cypress, to a 4-inch top; 5 to 12.9 inches in diameter in the hardwoods, to a 4-inch top. 


3 Includes trees of diameter 5.0 inches or larger to a 4-inch minimum top; limb wood included only on hardwood and cypress trees of sawlog sizes 


4 Includes 52,270 M cubic feet in turpentined butts. 

5 Does not include special-use species or scrub oak. 

5 Includes all special-use species to approximately a 4-inch top. 
7 Includes all sound scrub oaks to approximately a 4-inch top. 


Cubtc- foot Volumes 


The cubic-foot measure for solid wood is used 
here only as a means of expressing the combined 
board-foot and cordwood contents of the forest 
stand 5 inches and larger in terms of a single unit. 
It constitutes the base used in determining the net 
result of changes which are occurring in the forest 
as a result of growth, natural mortality, and indus- 
trial drain. 

Less than 1 percent of the pine and only 5 per- 
cent of the cypress cubic-foot volume is in sound 
and rotten cull tress, but almost 28 percent of the 
hardwood cubic-foot volume is in this class of 
timber (table 15). Although 54 percent of the 
good-tree volume in pine is sawlog material, only 
38 percent of the hardwood good-tree volume is 
in this size and quality of material. 


Poles and Piles 3 


Because of the difficulty of judging the suit- 
ability of standing trees for poles and piles, the 
timber cruisers tended to apply the specifications 
rather strictly, and it is believed that the estimate 
of the number of qualified trees is correspondingly 
conservative. In the following estimates, only 
longleaf, slash, and loblolly pines are included. 

To meet pole and pile requirements, trees must 
have a uniform taper and be free from decay, 
injurious scars, and bird or insect holes. They 
must also be free from large knots or knots so 
located as to impair the strength of the pole, and 
from short crooks and excessive twist or spiral 
grain. ‘They may have a slight one-way sweep, but 


Does not include scrub oak. 


a straight line drawn from the center of the top to 
the center of the butt must not fall outside the bole, 


TasLe 16.—Pole and pile resources,! by tree-diameter classes and 
length of product 


40 50 
Tree-diameter 20 25 30 35 and | and . 
class (inches) | feet | feet | feet | feet | 45 | 55 | All lengths 
feet | feet 
M M M M M M M Per- 
sticks | sticks | sticks | sticks | sticks | sticks | sticks | cent 
URE eee ee 7,420 |1, 949 893 1263) Sees Dee 10, 388 40.1 
LO} oh ee 3, 885 |1, 772 |1, 044 565 BU0s||==es== 7, 569 29, 2 
| eee eee or A 1, 760 | 1, 104 693 558 448 38 | 4, 601 GE: 
1 ee ea 577 524 388 334 366 69 | 2, 258 8.7 
Gwe: wes oe ee 114 167 161 138 161 60 801 3.1 
TSiews 222 Se eee 13 57 72 67 72 38 319 alee 
13,769 |5, 573 |3, 251 |1, 788 }1, 350 205 |25, 936 |_----- 
Total zen" Per) ere ir eran Penas| Pere | Per= 
cent | cent | cent | cents} cent | cent 
63.15 20254] 12:5) 6.9 5.2 OFS EE = 2221 100k0 


1 Round and turpentined longleaf and slash pines and loblolly pine. 
Poles and piles of saw-timber size are also included in the saw-timber 
and cubic-foot volumes; those under sawlog size, in the cordwood and 
cubic-foot volumes. Material recorded here does not constitute additional 
volume. 

It is estimated that in 1934 there were nearly 
26 million potential poles and piles in northeastern 
Florida (table 16). 
20-foot class; 21 percent were in the 25-foot class. 
Inasmuch as the annual demand for poles is less 
than 50,000 and is principally for the 25-foot class, 
it is significant that over 12 million sticks were in 
this class or in classes of greater length. Con- 
sidering all lengths, approximately 62 percent of 
the qualified pole and pile trees are in round long- 
leaf or slash pines, 32 percent in pines that have 


Over half of these were in the 


been (or are being) turpentined, and the remainder 
in loblolly and other pines. 
Pole and pile trees are scattered singly and in 


groups throughout the pine stands. The relative 


occurrence of pole and pile lengths shown (table 16) 
should be of particular interest to the wood-treating 
industry and to large consumers of poles and piles, 
in that it indicates the run of lengths in the forest 
stands. It should be understood that the saw- 
timber, cordwood, and cubic volumes of the pole 
and pile trees given in table 16 have already been 
included in the previous tables and do not constitute 
an additional volume item. 


Pulpwood Resources 


From the standpoint of a prospective consumer 
of pulpwood for the manufacture of kraft paper and 
similar commodities, it is of interest to consider the 
total pulping resources expressed in standard cords. 
The following estimates include all trees of pulping 
species, such as pines, cypress, gums, magnolias, 
bays, maples, and other soft hardwoods, 5 inches 
in diameter and larger, regardless of their suitability 
for other use. As in the case of poles and piles, these 
estimates deal with volumes included in previous 
tables and are not to be added to them! 

It is obvious that not all of this material should be 
used for pulp. Much of it is in trees that are more 
valuable for saw timber, poles, ties, and other prod- 
ucts, either immediately, or in the form of growing 


1A detailed presentation of the volume of material in 
pulping species is given in the following: SOUTHERN Forest 
EXPERIMENT STATION. ADVANCE INFORMATION ON THE 
SUPPLY OF PULPWOOD IN SURVEY UNIT NO. 1—FLORIDA. 
Southern Forest Survey Release 9. 


EE IEEE a eee 


stock for future supplies. These younger trees 
should be left untouched except for improvement 
cuttings. Then, too, a considerable part of the 
volume is not immediately available for pulping 
because it is in round slash and longleaf pines that 
are likely first to be turpentined. Investigators of 
prospective pulp-mill sites must appreciate, there- 
fore, that only a part of the volume shown in table 
17 is free from the competitive requirements of 
other wood-using industries or can be used for 
pulpwood without seriously endangering the future 
timber supply of such industries. 

The most available source of pulpwood is the 
enormous volume of worked-out turpentined trees 
in the abandoned turpentine areas, of which there 
is in this section almost a million acres. These 
worked-out trees, except in old-growth stands, 
usually average less than 12 inches in diameter. 
Trees of this size bearing one face or more are of 
low value for saw timber, and only a small percent- 
age is valuable for poles and ties. A heavy propor- 
tion, therefore, of the timber volume in abandoned 
turpentine areas may be considered available for 
conversion into pulpwood. 

In 1934 there were more than 2% million cords in 
worked-out turpentine pines. It is estimated on a 
basis of the cups hung during the 6 years prior to 
1935-36 that the naval stores industry annually 
adds about 350,000 cords to the present accumula- 
tion. During 1934 the use of turpentined pines for 
saw timber, poles, ties, etc., amounted to nearly 
400,000 cords. More than 250,000 cords of this cut 


TABLE 17.—WNet cordwood volume of pulping species, by quality classes } 


Good trees, 13 inches and | 
larger 
- 5 Good trees, Sound and ; Soy me 
Pulping species group 5-13 inohee Pattoneculls All quality classes 
Sawlog ma- Tops and 
terial limbs ? 
Pines: Cords Cords Cords Cords Cords Percent 
Turpentine: 11, 137, 300 2, 361, 600 311, 100 48, 600 13, 858, 600 26. 1 
Round 5, 022, 300 2, 088, 600 600, 400 31, 300 7, 742, 600 14.6 
Working and res 1, 649, 400 939, 000 246, 900 11, 600 2, 846, 900 5.3 
Worked out 2, 382, 900 2, 140, 300 210, 800 132, 200 4, 966, 200 9.3 
INO ADOT AN oe Oe te ee ee ee ae a | 
aera 20, 191, 900 7, 529, 500 1, 469, 200 223, 700 29, 414, 30U Doe 
Aim GS Seems re eee he en ee ee 5, 450, 000 4, 201, 100 2, 223, 500 2, 097, 500 13, 972, 100 26.3 
Hardwoods 5, 535, 600 2, 717, 200 1, 025, 800 514, 800 9, 793, 400 | 18.4 
tes 7 | 31, 177, 500 14, 447, 800 4, 718, 500 2, 836, 000 53, 179, 800 | See 
All/pulping species. -- 22222222 sss2cu eee le ese se ng ese eae |) Percent Percent Percent Percent 
ies ages | 58. 6 Dhak 8.9 O23) |ssooeseeusaeee 100. 0 


1 These estimates cover volumes included in previous tables and are not to be considered as additional items. 
2 Top stems to a 4-inch minimum for pines; tops and limbs for hardwoods and cypress. 


30 


2 


came from stands of old-growth pine, which are 
rapidly being removed. The large quantity of 
second-growth turpentine pines coming in will en- 
able the naval stores industry to maintain its present 
production at least during the next 20 years, and 
possibly to increase it materially. Under a sus- 
tained-yield naval stores program, utilizing the full 
resources of the survey unit, about 485,000 cords in 
worked-out turpentine trees would be made availa- 
ble annually. If the wood-products industries which 
remain after the old growth has been cut out re- 
quire 200,000 cords, as is estimated, then a remain- 
der of 285,000 cords will also be available for wood 
products from this source of supply alone. 

The top stems of saw-timber pines are seldom used 
in lumber and similar operations, and in 1934 the 
greater part of more than 100,000 cords of such 
material was left in the woods in logged-over areas. 
Some tops were utilized for fuel, but a large propor- 
tion of the volume remained in the woods as waste 
and may be considered an additional source of 
pulpwood. The forest would be considerably im- 
proved if all sound and rotten cull trees were re- 
moved. Of the more than 2% million cords of sound 
material in such trees, nearly 8 percent is in pine 
and the remainder in pulping hardwoods and 
cypress. 

Wood-products industries already established 
utilized in 1934 a volume of nonturpentine pines 
equivalent to the annual increment in both the 
old-growth and second-growth stands. Any 
heavier cutting would mean a reduction in the 
growing stock of this species group; but on an 
area not covered by the field survey, the Ocala 
National Forest, it is estimated that by 1942 the 
sand pine stand will produce annually more than 
35,000 cords of wood not now used by other indus- 
tries. It does not appear likely that a pulpwood 
industry will compete seriously for old-growth 
cypress and pulping hardwoods. In 1934 there 
was a surplus of increment over use in second- 
growth pulping hardwoods of more than 80,000 
cords and in second-growth cypress of about 40,000 
cords. 

In 1934 there was, therefore, an accumulation 
of more than 3 million cords in sound and rotten 
cull pines and in worked-out turpentine pines, a 
large portion of which may be considered immedi- 
ately available for pulpwood. Looking into the 


QL 


future, it is estimated that more than 400,000 
cords of pine would be available for pulpwood 
annually from turpentine areas, tops and limbs, 
and the sand pine on the Ocala National Forest. 
In addition, there is now a surplus of increment 
over use of 120,000 cords in second-growth pulp- 
ing hardwood and cypress; and more than 2% 
million cords of culls in these species have accumu- 
lated. 

A steady market for pulpwood could materially 
benefit this survey unit. All classes of stands could 
be improved by a reduction in the number of 
sound and rotten cull trees and in some stands by 
the thinning of dense second growth (fig. 8). 
Worked-out turpentine timber, which is now 
stagnating large areas (fig. 7) and threatening to 
accumulate further, could be removed to make 
room for round turpentine pine. Turpentine 
operators, by supplementing their regular activi- 
ties with the cutting of pulpwood, could materially 
reduce the cost of their naval stores operations. 
The seasonal nature of agricultural activities 
would make it possible for farms and agricultural 
workers to obtain an additional cash income, and 
established communities could be further stabilized. 
If sound forest-management policies are adopted 
and practiced by pulp and paper manufacturers 
on their own lands and enforced through con- 
tracts on the lands of those from whom they pur- 
chase pulpwood, the pulpwood industry can 
become established in northeastern Florida and 
at the same time the growing stock can be built 
up. If, on the other hand, destructive methods 
are employed or permitted, the pulpwood industry 
can transform productive, rapidly growing stands 
of second-growth pine into nonproductive clear- 
cut lands or scrub oak stands. The removal of 
young pine at a time when rapid growth is taking 
place will be detrimental to established industries, 
cause a material loss to owners of land who could 
later sell their timber for higher priced products, 
and possibly drive into decadence established 
communities. 

A mill has already been erected at Fernandina 
and others are being constructed at Fernandina and 
Jacksonville. ‘The establishment of any new plant 
in this survey unit should be decided upon only 
after careful consideration has been given to the 
wood requirements of existing industries and to the 


=n ere 


Figure 8.—Longleaf pine stand immediately after thinning, 


sustained-yield possibilities of the tributary  terri- 
tory, since only thus can assurance be given that it 
will be a permanent installation and a genuine 
benefit. 


Forest Increment 


Individual trees increase in volume from year to 
year through growth in diameter and _ height, 
provided that they are sound and that any loss of 
volume due to rot, turpentining, or other damage 
does not offset growth. ‘Timber stands, made up of 
many thousands of individual trees, likewise show 
an increase in volume if the aggregate net growth of 
ihe constituent trees more than offsets the constant 
attrition caused by fire, windthrow, turpentining, 
natural crowding out, and other causes of tree 
mortality. Such increases or decreases in tree and 
stand volume constitute a plus or minus increment. 
The volume growth of an individual tree can be 
accurately measured, but computation of incre- 
ment, even for a year, of a forest area of several 
million acres, involving as it does many complicat- 
ing factors of species, density of stand, forest condi- 
tion, site, weather and the presence or absence of 
unfavorable utilization practices, cannot be precise. 


32 


Penne 


Clay County, Fla. 


PERIODIG ANNUAL INCREMENT 


It is estimated that trees are harvested each year 
from less than 250,000 acres of forest land in north- 
eastern Florida. The remainder is unaffected by 
utilization practices during any one year, and forest- 
land owners are, therefore, interested in the rate at 
which these forest stands are increasing in volume. 

The increment percent—that is, the rate at which 
timber bodies increase in volume—is principally 
_affected by the forest condition and by the rates of 
growth and mortality of the species making up the 
stand. The percents shown in table 18 can be used 
in approximating increment of the several species 
groups in average stands of the various forest condi- 
tions shown, provided that the area considered is 
large enough to smooth out the extremes of site, 
density of stand, and effects of utilization.? The 
board-foot increment rates include both the in- 
crease in volume of trees already of saw-timber size 
and the volume in trees that reach saw-timber size 
during the year. The cordwood rates include the 
increase in volume of all trees 5 inches and larger 


2 Note that these rates must be compounded for the period 
over which the user desires to compute increment. 


plus the volume of those reaching 5 inches during 
the year. Reproduction and clear-cut areas have 
an insufficient volume of trees 5 inches or larger to 
justify increment calculations. 


Taste 18.—Annual increment percent,! by species groups and 
Fforest conditions 


BOARD-FOOT INCREMENT (BASED ON INTERNATIONAL 
Y-INCH RULE) 


Old growth Second growth 
Species group 
Under 
Partly Sawlog 
Uncut . sawlog 
cut size she 
Turpentine pines: Percent | Percent | Percent | Percent 
COUT a aee eee ee —1.18 —0.95 8.12 15. 66 
Turpentined_____- out ire —6. 96 —6. 01 ST Sl ee eee 
Nonturpentine pine____---__- 1. 28 1.38 4.37 9. 52 
Hardwoodeses ene 2c se 1,97 1.92 4.76 7.18 
Gy presse ns Bs AE ae 96 . 22 2.16 . 68 
CORDWOOD INCREMENT 
Turpentine pines: 
Roum deste Mees eee —1.77 —2.18 4. 35 8.92 
Turpentined_____- —7. 58 —6. 94 —2. 28 —4.07 
Nonturpentine pine___ . 84 1. 40 3. 02 (bral 
Hardwood __-_-------- 1.38 .99 3. ol 7.05 
GOVT OSS Set ren ee ES 52 —.02 1.74 1.74 


1 The increment percents are periodic annual compound interest rates 
based on a 10-year period computed for good trees only. 


INFLUENCE OF TURPENTINING AND FIRE 
ON INCREMENT 


In northeastern Florida the natural conditions of 
soil and climate in general are favorable for tree 
growth, but there are several factors that have 
tended to restrict volume increment. Chief of 
these is an abnormally high mortality rate, es- 
pecially in the turpentine pines. This must be 
charged mainly to practices that have prevailed 
in the past in the production of gum turpentine 
and rosin and in woods burning. Deep chipping, 
hanging too many cups on the trees, cupping small 
trees, inserting tins too deeply, and failure to 
protect resting or worked-out turpentine trees 
from fire have not only materially retarded the 
diameter growth of the individual trees and reduced 
their volume of merchantable saw timber, but have 
in addition resulted in an abnormal loss of trees 
(fig. 9). Wholesale woods burning is most com- 
mon in longleaf and slash pine types. 

The reduction in rate of growth and the increased 
rate of mortality of turpentined trees accounts for 
the negative increment for that species group 
(table 18). The remaining round old-growth 


Wise 


F225643 


Figure 9.—Wind damage in second-growth slash pine stand, Union County, Fla. 


33 


turpentine pines do not put on sufficient growth 
annually to offset the losses due to fire, wind-throw, 
and other causes; this accounts for the negative 
rate of increment in such stands. During 1934 the 
loss in increment of longleaf and slash pines at- 
tributable to turpentining was as great as the drain 
on all species of pine for the production of wood 
products (table 19). 


Tas ie 19.—Loss in increment due to turpentining of longleaf and 
slash pines, 1934 


; Board-foot Cubic-foot 
Effect volume ! volume ? 

M board feet | M cubic feet 
Growth atlettirounds >. 2222 se ceeee sees ck 236, 200 35, 500 
Growth when turpentined____-____________ 122, 600 21, 180 
Toss im. prowtls 22202222 522-222 2 113, 600 14, 320 
Mortality if left roumd: 22222 Sees ee ea 113, 100 26, 580 
Mort lity when turpentined_____________- 187, 200 52, 890 
Increased loss in mortality —_-----__- 74, 100 26, 310 
imusableyvolumes2:.--s-e-2- eee se ease 22, 600 1, 560 
NotalWosstensss. wesnaasan eave ecee 210, 300 42, 190 


1 International }4-inch rule. 

3 Cubic-foot figures are for solid wood inside bark. 

Both in and out of the turpentine woods, the 
almost universal practice of uncontrolled woods 
burning has had a markedly unfavorable effect 
on the increment of the stands, and one that 
reaches back for many decades. This is due not 
only to a slowing down of the growth rate of the 
individual trees but also to the prevention of any 
approach to full stocking. If the effects of this 
factor, together with those of destructive turpen- 
tining, wind-throw, natural crowding out, and 
other causes of tree mortality, could be lessened 
appreciably, important increases could be made 
in the net increment. ‘These factors reduced net 
increment for all species nearly 400 million board 
feet (International 4-inch rule) in 1934, almost 
as great a reduction as the utilization of all wood 
products combined. ‘This tremendous waste can 
be materially lessened with more attention to 
good forest management, adequate control of fire, 
conservative turpentining, thinning of dense stands, 
and more complete utilization. 


NET INCREMENT FOR THE ENTIRE SURVEY 
UNIT 
The increment figures given in table 20 are an 
estimate of the net increases (growth less mortality) 
taking place in the stands during 1934. The 


34 


board-foot figures represent net increases in the 
volume of saw-timber material only; the cubic- 
foot figures include all good trees 5 inches in diame- 
ter and above. The influence of turpentining is 
reflected in the minus increment for turpentined 
pines. 


TABLE 20.—Total net increment, classified according to forest 
condition and species group 


BOARD-FOOT INCREMENT! (INTERNATIONAL 
4-INCH RULE) 


Turpentine 
pine Non- All 
Forest condition turpen-| Hard- | Cy- species 
a tine wood | press eroups 
urpen-| pine 
Round Srval 
M M M M M M 


board | board | board | board | board | board 
feet feet feet feet feet feet 


Old srowth-2-22-5-- —13, 000|—65, 800 7,000) 46, 900 9, 500) —15, 400 
Second growth: 
Sawlog size_______ 107, 400|—17, 800) 35,300) 16,300 7,000} 148, 200 
Under sawlog size_| 73, 400 —700| 10, 800 4, 800 800} 89, 100 
Reproduction and 
clear-cut: _<.2_- 22 4,000) —2, 700 (2) (?) —100 1, 200 
Hotaenseae. 4, 171, 800) —87, 000} 53,100} 68,000) 17, 200} 223, 100 


CUBIC-FOOT INCREMENT! (INSIDE BARK) 


M ‘M M M M M 
cubic cubic cubic cubic cubic cubic 
fect feet fect feet feet feet 
Old growth -2_2.-2 —65, 010) —15, 320 1, 030 9, 080 1, 240) —8, 980 
Second growth: 

Sawlog size______- 

Under sawlog size_ 
Reproduction and 

elesr-Cuts.ce-2=.- 110} —1, 300 80 10 20} —1, 080 


20, 320|—11, 240} 5,890] 6,180) 2,240 
30, 410) —5, 390; 3,120] 5, 790 970 


45, 830) —33, 250} 10,120) 21,060} 4,470} 48, 230 


1 Minus sign (—) indicates loss. 2 Negligible. 


The growing interest in better forest manage- 
ment, the spread of the use of fire-protection 
measures, and the opening of markets for material 
formerly unutilized, lend color to the belief that 
the annual increment can be doubled in a few 
decades if these movements grow to the extent 
that now seems possible. 


Wood-Products Industries 


In northeastern Florida the 
lumber is the most important of the wood-products 
industries; cross-tie production ranks second; the 


manufacture of 


making of veneer, third; and the cooperage indus- 
try, fourth. The larger sawmills are found prin- 
cipally in the rapidly disappearing old growth of 
Taylor, Dixie, and Levy Counties on the Gulf 
coast; the veneer industry is located within and 


adjacent to the agricultural belt that bisects the 
area from north to south; the cooperage plants are 
scattered throughout (fig. 5). According to the 
1931-32 Census of Crops and Manufactures of the 


State Department of Agriculture, the average — 


number of wage earners employed by the wood- 
products industries was 7,051, with wages of 
$3,183,605 for the year. Although the lumber in- 
dustry in general is very important, the cypress 
portion is of particular significance, for Florida 
ranks first in production of cypress and contains 
most of the remaining cypress saw timber in the 
United States. 


LUMBER 


Eight large sawmills with a daily capacity of 
over 40 M board feet each were active in 1934 in 
northeastern Florida (table 21), but three of these 
expect to cut out before 1944. The original log- 
ging operations were often of a selective nature, 
and smaller mills have moved into the partly cut 
old-growth stands to utilize the remaining timber. 
Attracted principally by second growth of saw- 
timber size were 126 small mills with an average 
daily production capacity of less than 20 M board 
feet each and 16 with a capacity of 20 to 39 M 
board feet. In 1936, the number of mills under 
20 M board feet daily capacity increased more 
than 20 percent; there was no change in the other 
classes of mills. The lumber cut in 1934 was 
204,600 M board feet lumber tally (table 22), 
almost 60 percent of which was pine. The logging 
and manufacture of this lumber required more 
than 700,000 man-days of labor. 


Taste 21.—Number of sawmills, classified according to species cut 
and capacity, 1934 


Daily (10-hour) capacity ; Hard- eel en ai LL Sspes 
(M board feet) Pine wood Cypress | Mixed! cies 

(Und ere! 0 Sseeee etalon is 41 23 | nes Seon te 9 52 

JN) {oy Ses 2 SN a a AQ\| ae a 6 19 74 

PA) Wa) BIE Se ay Aas 6 2 3 5 16 

40 lanidioversees suave ee 2 1 3 2 8 

JNM aha ea 5 12 35 150 


98 | 


1 Mills cutting less than 80 percent of any 1 of the species groups listed 
are classed as mixed mills. 


VENEER 


Altogether 13 rotary veneer plants, producing 
box stock, crate headings, and hamper bottoms, 
used during 1934 the equivalent of more than 36 


35 


million board feet (lumber tally), which was nearly 
equally divided between pine and hardwoods; 
practically no cypress was used. ‘These plants were 
operating at about 60 percent of capacity in 1934. 
Half of the companies own timber but, like the 
others, also buy logs. A large part of the produc- 
tion is consumed in Georgia and Florida; there is a 
small export to Cuba. Some 2,400 people are em- 
ployed for all or part of an 8- to 10-month season 
and in 1934 worked a total of more than 270,000 
man-days in the woods and in the veneer and as- 
sembly plants. Six package plants to the south use 
veneer logs, largely hardwood, from as far north as 
Alachua, Clay, and St. Johns Counties. Because 
of the requirements of the citrus and truck crops for 
containers, this industry is of particular local 
significance. 


COOPERAGE 


There are nine slack-cooperage plants, two 
making cooperage for produce barrels, five for 
rosin barrels, and two for both products. Produce 
barrels, which are principally used for potatoes 
and fish, are made in the southeast section. Most 
of the rosin-cooperage plants are closely associated 
with the gum naval stores industry in the north 
and central portions of the survey unit. These 
plants use material of small size, most of them 
taking bolts to a 6-inch minimum diameter. In 
1934 the slack-barrel plants operated at about 65 
percent capacity and the rosin-barrel plants at 
around 55 percent. ‘Together they employed 620 
persons during all or part of 6 to 10 months (55,000 
man-days) and used more than 25,000 cords of 
wood, nearly 90 percent of which was pine. 


PIECE PRODUCTS 


In addition, a large volume of material is utilized 
by the piece-products industries. Almost 2 million 
cross ties were produced in 1934, 56 percent from 
cypress, 41 percent from pine, and the remainder 
principally from gum. Nearly 40,000 pine and 
5,000 cypress poles and piles were also produced. 
Those produced from pine are marketed at creo- 
soting plants, from which they are distributed to 
consumers. The production of cross ties, poles, 
and piles required 285,000 man-days of labor in 
the woods. 


TABLE 22.—Production and employment in the wood-products 
industries, 1934 


Employment ! 
Units pro- 
Industry and use 
duced In the At the 
woods plant 
M board 
feet Man-days | Man-days 
(hum bere cccsaseea sansa ses cece aces 2 204, 600 261, 000 448, 000 
WenleeYc: ca.22 22 se.eceucteeeese oes 2 36, 300 72, 500 3199, 700 
Pieces 
Grossi ticS-2 == ness see eceaeese es 1, 974, 600 271, 900 
Fence posts _ 41,618, 200 428, 000 
Poles and piles __ 45, 400 13, 900 
Cords 
Cooperageses= se snseeeaeeeaeeeees 25, 800 29, 200 26, 500 
UIGIWMOOG 22 See 2 ena coseceeeeneae 6 536, 800 6 614,900 |z--..._-_--- 
9, 700 10, 400 6, 300 
Miscellaneous 7__--_---.---------- M board 
Jeet 
2700 200) 22a eens 
Total man-days of employ- 
mente 22 ses 5 ee oe ee cee s SS ees 1, 302, 000 724, 600 


1 In man-days of 10 hours. 

2 Lumber tally. 

3 Includes fabrication in crate and package plants. 

4 Includes 236,300 commercial fence posts on which 4,000 man-days of 
labor were expended. 

5 Labor in treating plant. 

6 Includes 83,900 cords of commercial fuel wood on which 116,700 man- 
days of labor were expended and 80,200 cords of nonforest fuel wood on 
which labor was not computed; also includes 12,500 cords of fuel wood 
used in stilling operations, but the labor for this (12,500 man-days) is 
accounted for in the section on Gum Naval Stores Industry. 

7 Shingle and excelsior plants, miscellaneous farm use, and export logs. 


In 1934 more than 1}, million fence posts were 
cut. Over 75 percent were of lightwood, almost 
20 percent of cypress, and the remainder of green 
pine and of oak and other hardwoods. It is esti- 
mated that almost 250,000 of these posts were pro- 
duced for sale, most of the others being used locally 
on the farms. 

Less than 100,000 of the 456,000 cords of fuel 
wood obtained from the forest were sold com- 
mercially. About one-quarter of all fuel wood 
produced was of lightwood, the quantity of which 
is rapidly diminishing through use. ‘The produc- 
tion of fence posts and fuel wood in 1934 required 
almost 650,000 man-days of labor, the greater 
proportion of which was expended by farm 
laborers. 

MISCELLANEOUS 


In addition to the industries and products already 
mentioned, there are a shingle mill, an excelsior 
plant, and a hamper-bottom plant. A few logs 
are exported each year and there is some miscel- 
laneous farm use other than for fence posts and 
fuel. Altogether these miscellaneous items require 
less than 20,000 man-days of labor each year. 


Commodity Drain 


Commodity drain includes the volume utilized 
from this survey unit by the several forest-prod- 
ucts industries located either within or without its 
boundaries, plus any additional unutilized volume 
of the trees cut which is included in the inventory 
estimates of the survey. The drain figures do not 
include that part of the cut of the wood-products 
industries shown in table 22 which was obtained 
from the forests outside the survey unit, but do 
include the drain on this unit by industries lo- 
cated outside its boundaries. The Forest Survey 
includes in its saw-timber volumes the entire 
stem that, in the opinion of its timber estimators, 
could be used with close utilization. Some of this 
material may be utilized and some may be wasted, 
depending upon local practices, i. e., upon the 
degree of utilization. 

The saw-timber commodity drain exceeded 
425 million board feet (International \;-inch rule) 
in 1934 (table 23). Almost 47 percent of this 


TABLE 23.—Commodity drain from saw-timber growing stock 
expressed in board feet (International 14-inch rule), 19341 


Commodity Pine ae Cypress All species 
M board | M board | M board | M board 
feet feet feet feet Percent 

bumber=s2sceses= 103, 600 36, 600 59, 100 | 199, 300 46.9 
Weneer______---.-- 18, 200 22, 200 100 40, 500 9.5 
Cooperage-_______-- 9, 400 () 1, 300 10, 700 2..5 
Cross tiesusss.= ae 46, 000 3, 700 74,600 | 124, 300 29.3 
Poles and piles____ 4, 800 (?) 800 5, 600 1.3 
Mence posts... eee esses 200u|E=2see- ee 200 (2) 
Buel Wood..2---2.. 26, 400 TSU) ee ee ee 42, 100 9 
Miscellaneous- -____ i 1, 600 400 500 2, 500 6 

ao faleeseaes= 210, 000 78,800 | 136,400 | 425, 200 100. 0 


1 The International }4-inch rule closely approximates lumber tally. 
2 Negligible. 


TaBLe 24.—Commodity drain of good trees 5 inches and larger 
expressed in cubic feet (inside bark), 1934 


Commodity Pine Hore: Cypress All species 
M cubic | Mecubic | M cubic | Af cubic 
feet feet fect feet Percent 
iumiberz-s---22-—= 18, 390 5, 260 8, 440 32, 090 42.8 
Weneer! = 2-2 i222 3, 200 3, 190 10 6, 400 8.5 
Cooperage_--.___-- 2, 270 10 210 2, 490 3.3 
Crossities__--.---_= 8, 700 570 11, 280 20, 550 27.4 
Poles and piles____ 960) |Saa=seee5 120 1, 080 1.4 
Fence posts_------- 20 30 250 300 4 
Fuel wood-_- ------ 7, 670 BA OB) lee 11, 200 15.0 
Miscellaneous-___-_- 720 80 90 890 1.2 
otalesesses 41, 930 12, 670 20, 400 75, 000 100. 0 


drain was occasioned by the manufacture of 
lumber, 29 percent by cross-tie production, and 
almost 10 percent each by fuel-wood and veneer 
uses. Pine composed nearly 50 percent and cy- 
press 32 percent. The total commodity drain in 
all trees 5 inches and larger, including saw-timber 
material, reduced to a common factor, amounted 
to 75 million cubic feet (table 24). 

It is recognized that the commodity drain calcu- 
lated for 1934 is below what may be expected during 
more prosperous years. Indications are that the 
drain due to lumber manufacture in 1936 exceeded 
that of 1934 by more than 50 percent, and it is 
likely that some increase has taken place in other 
commodities. It is difficult, if not impossible, to 
predict the drain during the next 10 years because 
of the difficulty of weighing the many factors 
involved; but it might not be unreasonable to as- 
sume that the average annual commodity drain 
during the next 10 years will be 25 percent greater 
_ than that in 1934, 


Comparison of Increment 


With Commodity Drain 


Data representing the many factors influencing 
the increment of the pines, hardwoods, and cypress 
(table 20) and the toll which the many wood-prod- 
ucts industries exact (tables 23 and 24) are here re- 


Es NET INCREMENT 
VZZZA COMMODITY DRAIN 


MILLION BOARD FEET 


LONGLEAF AND 
SLASH PINES 


LOBLOLLY AND 
OTHER PINES 


HARDWOODS CYPRESS 
Ficure 10.—Comparison of board-foot (International 14-inch rule) 


net increment and commodity drain in each forest condition, 
1934, 


37 


assembled for comparison and consideration of their 


net influence upon the growing stock of northeastern 
Florida (table 25, fig. 10). 


TABLE 25.—Comparison of increment } with commodity drain 


IN BOARD FEET (INTERNATIONAL %4-INCH RULE) 


. Hard- Beers All 
Item 1pale wood | CYPFESS | species 

M M M M 
board fect | board feet | board feet | board feet 
Growing stock, Jan. 1, 1934__] 2 6, 518, 300 |2, 645, 300 |2, 017, 800 |11, 181, 400 
Grow thewsseen ase 2 ee +470, 900 |-+-113, 900 | +52, 100 | +636, 900 
Mortality —310, 400 | —45, 900 | —34, 900 | —391, 200 
Unusable volume_-_-._- —— D2 G0 Ob [ia sae eee |e et ee —22, 600 
Net increment____....__-._ +137, 900 | +68, 000 | +17, 200 | +223, 100 
Commodity drain_____._--- —210, 000 | —78, 800 |—136, 400 | —425, 200 

Net change in grow- 
ing’ stock =. .2.2-.- —72,100 | —10, 800 |—119, 200 | —202, 100 
Growing stock, Jan. 1, 1935-| 6, 446, 200 |2, 634, 500 |1, 898, 600 |10, 979, 300 
IN CUBIC FEET (INSIDE BARK) 

M M M M 
cubic feet | cubic feet | cwbie feet | cubie feet 
Growing stock, Jan. 1, 1934_| 3 2, 159, 770 | 4 951, 320 | 5 567, 990 | 3, 679, 080 
+115, 810 | +42, 360 | +15, 080 | +173, 250 
—91, 550 | —21, 300°} —10,610 | —123, 460 
= OOO) | re ee ota are —1, 560 
-+22, 700 | +21,060 | +4,470| +48, 230 
—41, 930 | —12,670 | —20, 400 —75, 000 

Net change in grow- 

IN GuStock-=. 222 —= —19, 230 +8, 390 | —15, 930 —26, 770 
rrowing stock, Jan. 1, 1935_ b 2, 140, 540 b 959, 710 552, 060 | 8, 652, 310 


1 Plus sign (+) indicates increas; minus sign (—) indicates decrease. 

2 Includes 22.6 million board feet in the butts of newly cupped trees not 
shown in the inventory summarized in table 11. 

3 Includes 114 million cubic feet in the butts of newly cupped trees not 
shown in tne inventory summarized in table 15. 

4 Does not include over 223 million cubie feet of tops and limbs of 
hardwoods, of which 650,000 cubic feet is in special-use species included 
in table 15. 

5 Does not include over 111 million cubie feet in tops and limbs of 
sawlog trees included in table 15. 

In 1934 the total commodity drain on saw-timber 
material exceeded net increment by more than 202 
million board feet. On January 1, 1935, there 
was, therefore, 1.8 percent less saw-timber growing 
stock than on January 1, 1934. The correspond- 
ing decreases in growing stock for pines, hard- 
woods, and cypress were 1.1, 0.4, and 5.9 percent, 
respectively. 

The principal factors responsible for these de- 
creases—namely, inadequate stocking of the stands, 
low growth and high mortality rates, and the out- 
put of wood products—may vary greatly from 
decade to decade. It is incorrect, therefore, to 
project the present rate of decrease in growing 
stock into the future and to predict the wiping out 


of the forests by the end of some indicated period. 


The natural stocking of bare areas and the increased 
density of stands resulting from adequate fire pro- 
tection, aided by artificial reforestation measures 
where necessary, can increase materially the num- 
ber of trees upon which growth may occur. Ade- 
quate fire protection and conservative turpentining 
will do more than any other measures to increase 
the rate of growth and to decrease the rate of 
mortality in the forests. Results of the applica- 
tion of essential measures of sound forest manage- 
ment will become noticeable almost immediately. 

In northeastern Florida, 77 percent of the total 
commodity drain on saw-timber material is from 
old-growth stands. As already shown (table 20) 
the net increment in the old growth was negative 
for pines and relatively small for hardwoods and 
cypress. If the commodity drain on old-growth 
pine continues for 12 years at the 1934 rate, the 
volume of this timber will be reduced to a negli- 
gible quantity. Although this is a serious situa- 
tion, inasmuch as old growth cannot be replaced 
in a short time, a large industry has already 
developed to utilize the rapid-growing second- 
erowth pine, the increment of which exceeded 
commodity drain against it by more than 120 
million board feet in 1934. In the same year the 
volume of increment of old-growth hardwoods was 
sufficiently close to that of the cut to suggest the 
possibility that, through regulation of the cut, the 
industries dependent upon the hardwood old 
growth might their life. 
Repeated cutting, however, has greatly reduced 


indefinitely prolong 


38 


the quantity of high-quality old-growth hard- 
woods, and the increment is largely in material 
of lower quality. Only a small utilization is made 
of hardwood second-growth saw-timber material 


at this time, principally because it is of lower. 


quality than the old growth. There is, however, 
a surplus of increment over drain in second-growth 
hardwoods which may be utilized to supplement and 
maintain the old-growth stands. An analysis of the 
cut of old-growth cypress in 1934 shows that it was 
more than 14 times the increment. The growing 
stock of low-quality slow-growing second-growth 
cypress now amounts to less than 20 percent of the 
volume of old growth which is being rapidly dimin- 
ished by cutting. ‘The cypress industry in this survey 
unit, therefore, must be curtailed within the next two 
decades if utilization continues at its present rate. 


When the entire growing stock, including saw. 


timber and smaller material, is expressed in cubic 
feet, a more favorable relation appears to exist 
between increment and commodity drain. Pine 
growing stock decreased only 0.9 percent, hard- 
wood increased 0.9 percent, and cypress decreased 
2.8 percent. This better showing is due to the 
fact that logging outfits do not cut heavily into the 
tremendous number of small trees under sawlog 
size (fig. 4) that are growing up in the stands 
despite adverse conditions. It is this growing stock 
of young trees upon which the future of all forest 
industry depends, and every effort should be made 
to increase its quantity and quality and to reduce 
the prevailing high mortality. 


orm: i: 


SOR He Slee eRe S) OUR Gi Ee S 7 © F 


Future Needs 


>> 


ORTHEASTERN Florida is especially well 
situated for the continuous output of forest 
products. The large proportion of the area 

in forests, a climate that favors forest growth, the 
presence of important local markets for forest prod- 
ucts, an excellent local transportation system aug- 
mented by shipping facilities to northern centers, 
and a rural population of long experience in the 
forest industries, all combine to assure that the 
turning out of forest products will always be one of 
its major activities. Turpentine and rosin produc- 
tion and the associated cooperage industry have 
been active here for more than a century; and the 
manufacture of lumber, cross ties, poles and piles, 
and other piece products has been (and still is) of 
great importance. A large package-veneer indus- 
try has developed with the cultivation of citrus and 
truck crops. With the recent construction of pulp 
and paper mills, a new industry enters the picture. 

In discussing the outlook for all forest industries, 
it must be realized that the quantity of increment 
which annually accrues on the growing stock limits 
the forest use that can be sustained for any great 
length of time. In other words, the forest industries 
cannot reduce the amount of the growing stock 
without eventually paying for it with curtailed ac- 
With conditions so favorable for forest 
activities, there is not only a need and an oppor- 
tunity but also a strong justification for intensive 
efforts that will build up the growing stock to 
something approaching the possibilities cf the sec- 
tion, not only to assure the continuance of present 
forest industries but also to provide for expansion. 

It seems inevitable that the main forest industry 
will continue to be the production of naval stores, 
and the outlook for other forest industries will be 
limited thereby in scope, character, and volume of 


tivities. 


IN LOM ReMi EE: “ACS: TERN F 


9 


TOURS eA 


Ke 


production. This appears particularly probable 
with the development of second-growth longleaf and 
slash pine forests, which yield adequate gum but 
which do not yield the same high quality of wood 
products as that obtained from the original old 
growth. ‘The supply of naval stores timber is favor- 
able to an increasing production of turpentine and 
rosin, provided the growing competition of wood- 
products industries for the same timber does not 
seriously reduce the available supply. The limited 
supply of timber in some other sections of the naval 
stores belt may also cause an excessive expansion of 
the industry here. It appears essential that imme- 
diate steps be taken by naval stores operators to 
insure an adequate future supply of workable timber 
through increased ownership of forest land, longer 
leases, and the education of small landowners as to 
the returns possible from naval stores production 
prior to use for woods products. 

An outstanding feature of the gum naval stores 
industry is the unfavorable effect its activities have 
on the forest through a reduction in rate of growth, 
an increase in rate of mortality, and a degrading of 
residual lumber, pole, and tie trees. This excessive 
drain can be greatly reduced through more con- 
servative turpentining practices and by protecting 
from fire not only working trees but also those 
worked out or resting. The closer integration of 
wood-products requirements with the production of 
naval stores should bring about a fuller realization 
of the byproducts value of a turpentined tree and 
thus favor the application of better forest manage- 
ment. 

If the gum naval stores and the wood-products 
industries are integrated, the future of the latter will 
depend principally upon the condition of the stands 
left by the turpentine operator. In any case, a 


large volume of the timber discarded annually by 
the naval stores industry will have neither the size 
nor the quality for the production of lumber. With 
the diminishing supply of old-growth saw timber, 
lumber here appears to have a place in industry 
somewhat different from that in other parts of the 
South. The management of hardwoods and non- 
turpentine pines for high-grade products and an in- 
tensive use of worked-out turpentine pines, how- 
ever, can assure the continuance of a lumber indus- 
try of respectable size, but one made up principally 
of small plants. Conservative naval stores opera- 
tions should not appreciably reduce the quantity of 
poles, piles, and cross ties (particularly in the smaller 
sizes), and with proper attention to integrated 
use the available quantity of these products can 
certainly be maintained and possibly expanded. 

There is evidently a place for a pulp and paper in- 
dustry. All classes of stands could be improved by 
reducing the number of sound and rotten cull trees 
and by the removal of worked-out turpentine trees 
which are now preventing a large aggregate acre- 
age from returning to productivity. With adequate 
fire protection and forest management, including 
planting where natural reproduction fails, the land 
can grow more trees than can be brought to ma- 
turity. Trees which normally would be crowded 
out of developing stands, or which are hindering the 
normal development of others potentially more 
valuable, should be removed, and the thinnings (in 
pine) are well suited for pulpwood. ‘The Osceola 
National Forest located within the survey unit and 
the Apalachicola located just over the border to the 
west are excellent examples of the possibilities in 
proper forest management. 

Because of the increasing competition for raw 
material, the leaders of the larger industrial estab- 
lishments are seriously concerned for future sup- 
plies. This concern should result in action to safe- 
guard their interests through the purchase of lands 
upon which to grow the raw material needed for 
the future. The solution of this problem does not, 
however, lie entirely in their hands; a great many 
small owners together hold a large part of the forest 
land. These small owners must be encouraged, 


40 


pL 


educated, and aided to handle their forest lands 
wisely to the end that they themselves, the forest 
industries, and the communities will be benifited. 
In this section, where the people are becoming in- 
creasingly aware of the returns and benefits that can 
be realized through skillful forest management and 
integrated utilization, there is a great opportunity 
for the intensification of the educational work of the 
State and Federal forest services in fire protection 
and sound forest management. 

A very considerable area of potentially valuable 
forest land is covered with scrub oak and is making 
little or no economic contribution. It may be 
beyond the capacity of private enterprise to restore 
this land to productivity within any reasonable 
time, and consideration should be given to the 
possible participation of the Federal and State 
Governments in artificially restocking it to pine. 

The outstanding need is more intensive and 
effective control of fires. Only about 30 percent of 
northeastern Florida was under organized fire pro- 
tection in 1938. The prevalence of fire is mainly 
responsible for the open nature of the stands and 
their relatively low increment. Effective control of 
fire is essential to reduce the excessive mortality 
rate which now exists. It will result quickly and 
certainly in the filling in of large areas of under- 
stocked stands and in the natural regeneration of 
many of the clear-cut lands. Only with effective 
control of the fire situation can this part of Florida 
be expected to increase materially its annual output 
of forest wealth. 

Although the forests of northeastern Florida 
already support a considerable population, a fuller 
utilization and better management of the forest re- 
sources would appreciably increase the opportuni- 
ties for employment. ‘The logical combination of 
farm and forest activities, the growing need of 
industry for raw material, the development of 
forms of outdoor recreation most effective in forest 
settings, the desirability of bringing submarginal 
forest lands into economic use, the need for com- 
munity stabilization in order to offer adequate 
economic and social security to the present and ~ 
future populations, all justify the intensive develop- 
ment of these forests, 


Gd 


a 
ee 
) 

1m 


ae 
ee 
re NY: 7 


nate? 


THE STATE OF FLORIDA 


LOCATION OF AREA IN 


LEGEND 


LONGLEAF - SLASH 


TYPE PREOOMINATES, BUT THE FREQUENT LOCAL 
OCCURRENCE OF OTHER TYPES IS NOT PRECLUDED. 


(2) LONGLEAF - SLASH - CYPRESS 
G9 MIXED BOTTOM-LAND HARDWOODS 
GI CYPRESS - HARDWOODS 

[7] PRAIRIE, MARSH,OR SAND DUNES 
E22) NATIONAL FOREST AREAS 

TYPE SYMBOLS INDICATE AREAS WHERE THE GIVEN! 


LOBLOLLY - HARDWOODS 


(5) SCRUB PINE 


AREAS CHARACTERIZED BY 
MAJOR FOREST TYPES 
NORTHEASTERN FLORIDA 


. 


Hee 


ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE 


WHEN Tus PusBLicATIoN Was Last PRINTED 


Saat) Of AGIRUMTO 30 G00 6) 06 160. 6 O00 6) 6 6 nb 66 0%O 


(Oilar SAHA 6 6 ke OS OCS Joos ek Xo: 15 ON OMG ho NOL LO OG OND MO 


Assistant Secretary. . . Gace oid avoue 
Coordinator of Land Use Plaanine a Diyscior a infonncton Oy) Op So 8 
PD iregtoTmoj mia xtenstoneWVOT kite va iis ellie elon ete el Sei ste « ie 

WD RECLOTMO far TULLANG Eso ai tery elas) tale aryah ids ak Reval et lay Vie orien chines 
DUFQHG? Of IAGO 5 EEO BOND BAG: OURO ON OF GON Bone. Oy GLO 
DU dete Of LOGIE O38 Bi 8 POND 60 B00 ON Ost0O) Bo. Gabo.) 
Solicitor. . . . 51 Go OOP Oo OD Oo Gb Oa O 
Agricultural Maines Waginisietion Oyfowind oO MORI Tat ent ON ON aI MGISG 
Bureau of Agricultural Economics . SAO Guede es oiigi eos 
Bureau of Agricultural Hngineerng) . 9. . 3. es ew ww wt 
Bureau of Animal Industry 

Bureau of Biological Survey . Brad Ceol a tan (ein ab nmr aaoer 

Bureau of Chemistry and Soils . . 1 1. 1 1 1 ew we we we 
Commodity Exchange Administration . Some eee dso 

Bureau of Dairy Industry . . . boo Cua! od. 6 

Bureau of Entomology and Plant Oucianine or eae tale NEN Eh Ph Ara ara ae 

Office of Experiment Stations. . ....... 

Farm Security Administration . 

Food and Drug Administration . 

IEGESG SARHOZ & 0. BO BAG) Oo PR ROO OO OE 

Bureau of Home Economics . . ......-+.+.-+.4. 

LGB) 8 oes 

Bureau of Plant adustry 

Bureau of Public Roads . 

Soil Conservation Service seiamhven eens 

WVAEIOGT ICAL Be au A ERO OAS 


DIKE 
This publication is a contribution from 


POT CS HMSCUULCCH Mer NSE CSM tes cies eaCaRLN aes At hs ees 4 Mean calea abs SEA noha 
Forest Survey . . . BOAO ON BOO nOuIO a: Guana SG 
Southern Forest Peneriqent Station Re ANS RB anes On RIE ea Tre ON eames 


. Henry A. WALLACE. 


M. L. Witson. 
Harry L. Brown. 
M. S. EIsENHOWER. 
C. W. WarBuURTON. 


W. A. Jump. 


Roy F. HENDRICKSON. 


. James T. JARDINE. 


Mastin G. WHITE. 
H.R. Toiiey, Administrator. 


. A. G. Biack, Chief. 


S. H. McCrory, Chief. 


. Joun R. Mouter, Chief. 


Ira N. Gasrietson, Chief. 
Henry G. Knicur, Chief. 


. J. W. T. Duvet, Chief. 


O. E. REED, Chief. 


. . Lee A. Strone, Chief. 
. James T. JarpIne, Chief. 
W. W. ALEXANDER, Administrator. 


WALTER G. CAMPBELL, Chief. 
FERDINAND A. SILcox, Chief. 
Louise STANLEY, Chief. 


CLARIBEL R. BARNETT, Librarian. 


E. C. AucHTER, Chief. 


. Tuomas H. MacDonatp, Chief. 
H. H. Bennett, Chief. 


Wiis R. Greco, Chief. 


FERDINAND A. SILcox, Chief. 


RaymonpD D. Garver, Director. 


E. L. DEmmon, Director.