Skip to main content

Full text of "The Origin of Species by Means of Natural Selection: Or, The Preservation of ..."

See other formats


Google 



This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project 

to make the world's books discoverable online. 

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject 

to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books 

are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover. 

Marks, notations and other maiginalia present in the original volume will appear in this file - a reminder of this book's long journey from the 

publisher to a library and finally to you. 

Usage guidelines 

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the 
public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing tliis resource, we liave taken steps to 
prevent abuse by commercial parties, including placing technical restrictions on automated querying. 
We also ask that you: 

+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for 
personal, non-commercial purposes. 

+ Refrain fivm automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine 
translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the 
use of public domain materials for these purposes and may be able to help. 

+ Maintain attributionTht GoogXt "watermark" you see on each file is essential for in forming people about this project and helping them find 
additional materials through Google Book Search. Please do not remove it. 

+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just 
because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other 
countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of 
any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner 
anywhere in the world. Copyright infringement liabili^ can be quite severe. 

About Google Book Search 

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers 
discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web 

at |http: //books .google .com/I 



u \^. ^,1$-.^ 



J^arbarlt ColUge library 

THE GIFT OF 

SAMUEL ASBOTT OBEGN, H.D. 
OF BOSTON 

(CUHot 1851) 



;\ 






'\ 









L 



\ } 



\ 



M 



^^ 



^ 



7 



f 



t 



THE OEIGIN OF SPECIES. 



^ But with regard to the material world, we can at least go so far as 
this — we can perceive that events are brought about not by insulated 
interpositions of Divine power, exerted in each particular case, but hj the 
establishment of general laws." 

Whewell: Bridgewater Treatise. 

" The only distinct meaning of the word ' natural ' is stated, fixed, or 
settled; since what is natural as much requires and presupposes an intel- 
ligent agent to render it so, ». e., to effect it continually or at stated times, 
as what is supernatural or miraculous does to effect it for once." 

Butler : Analogy of Revealed Religion,' 

** To conclude, therefore, let no man out of a weak conceit of sobriety, 
or an ill-applied moderation, think or maintain, that a man can search too 
far or be too well studied in the book of God's word, or in the book of 
God's works ; divinity or philosophy ; but rather let men endeavour an 
endless progress or pi*oficience in both." 

Baoon : Advanoemeni of Learning. 



^ «^*»^»*»^i»^^s^^^^ ^^M%#*A«^ 



Down, Beckenham, Kent, 

First Edition, November 24«/», 1859. 
Sixth Edition, Jan. 1872. 





Ir 



5» 

THE 



I ORIGIN OF SPECIES 

K;. 

BY MEMS OF NATURAL SELECTION, 



OB THE 

PRESERVATION OP FAVOURED RACES IN THE STRUGGLE 

FOR LIFE. 



By CHAELES DARWIN, M.A., F.K.S^ &a 



SIXTH EDITION, "WITH ADDITIONS AND CORRECTIONa 



{^THIRTEENTH THOVSAXD.) 



> 



, LONDON: 

* JOHN MUERAY, ALBEMAELE STEEET. 
ik 1873. 

I 



7%e fight qf Trantiation it ruervtd. 



^ 7L^*H»H-"?^.7 




\ 



VI 



<- -.■" 13 :■' 



/ 



B^f the ^ame Author, ,■ ^^ , ^ 

' . a ... . ■■■^^Mfi^^- 

THE EXPRESSION OF -Tmr EMOTIONS IN MAN AND 

ANIMALS. Tm^ TlimiMf^i. With illustrations. .Crown 8vo. 12«. Mubray. 

THE DESCENT OP MAN AND SELECTION IN RELA- 

TION TO SEX. EigMk Thmuani. 2 vols. 8vo. 24i: Murrat. 

fc. 

THE VARIATION OF ANIMALS AND PLANTS UNDER 

DOMESTICATION. Third Thouxandi. Illiutrations. 2 vols. 8vo. 28«. 

Murrat. 

A NATURALIST'S VOYAGE ROUND THE WORLD ; or, 

A JODRNAI. OF KSSBARCHBS IMTO THE NATURAL HiSTORT kSD GbOLOOT OF THE 

CouBTRisB TiBiTRix M/ewnXh ThmuasnA, Post 8vo. 9<. Murray. 

THE VARIOUS CONTRIVANCES BY WHICH BRITISH 

AND FOREIQN ORCHIDS ARE FERTILISED BY INSECTS; and the 
QoOD Effects of CBOsisaro. Woodcuts. Poet Svo. 9«. Murbat. 

THE STRUCTURE AND DISTRIBUTION OF CORAL 

REEES. Suitr; Eldrr, & Ca "'^ 

GEOLOGICAL OBSERVATIONS ON VOLCANIC ISLANDS. 

Smith, Eldbb, h, Co. 

GEOLOGICAL OBSERVATIONS ON SOUTH AMERICA. 

Smith, Elder, he Co. 

A MONOGRAPH OF THE CIRRIPEDIA. Illustrations. 

2 vols. 8vo. Ray Society. Hardwickr. 

THE MOVEMENTS and HABITS of CLIMBING PLANTS. 

Woodcats. WiLUAMS & Noroatr. 



FACTS AND ARGUMENTS FOR DARWIN. By Fritz A 

MuLLXR. Firom the Glerman. with Additions by the Author. Translated by 
W. S. Dallas, F.L.S. Woodcuts. Post 8vo. 6«. Murray. 



Wm. otP 22 1911 



LONDON : PRIMTBO BY WILLIAM CLOWES AND 60V8, STAMFORD STBRST 

AND CHARIVd CROSS. 



^ 



CONTENTS. 



Additions and CoBXEcnosa, to the Sixth Edrioh .. Page xl-zil 

HiariosiCAL Sketch zlU-zii 

Intboduction 1-4 

CHAPTEB L 

YaBIATION Uin)KB DOMBSnCATIOK. 

Causes of Variability — Effects of Habit and the use or disuse of Parts — j 
Correlated Variation — Inheritance — Character of Domestic Varieties ' 
— DifficnHy of distingtushing between Varietiea and Species — Origin 
of Domestic Varieties from one or more Species ^Domestic Pigeons, 
their Differences and Origi^^ Principles of Selection, anciently foW 
lowed, their Effects — Methodical and Unconscions Selection — Un- 
known Origin of our Domestic Productions — Circumstances favour- 
able to Man's power of Selection 5-32 

CHAPTEB IL 

YaBIATION X7NDEB NaTUBB. 

Variability — Individual differences — Doubtful species — Wide ranging, 
much diffused, and common species, vary most — Species of the largei 
genera in each country vary more frequently than the species of the 
smaller genera — Many of the species of the larger genera resemble 
varieties in being very closely, but unequally, related to each other, 
and in having restricted ranges 33-47 

CHAPTEB III. 

Stbuggle fob Existence. 

Its bearing on natural selection — The term used in a wide sense — Geome- 
trical ratio of increase — Rapid increase of naturalised animals and 
plants — Nature of the checks to increase — Competition universal — 
Effects of climate — Protection from the number of individuals — 
Complex relations of all animals and plants throughout nature — 
Struggle for life most severe between individuals and varieties of the 
same species : often severe between species of the same genus — The 
relation of organism to organism the most important of all rela- 
tions -^s-si 



Tl CONTENTa 



1/ 



\ 



CHAPTEB IV. 

Natural Selection; ob the Survival of the Fittest. 

Natural Selection — its power compared with man's selection — its power 
on characters of trifling importance — its power at all ages and on both 
sexes — Sexual Selection — On the generality of intercrosses between 
individuals of the same species — Circumstances favourable and unfa- 
vourable to the results of Natural Selection, namely, intercrossing, 
isolation, number of individuals — Slow action — Extinction caused by 
Natural Selection — Divergence of Character, related to the diversity of 
inhabitants of any small area, and to naturalisation — Action of Natural 
Selection, through Divergence of Character and Extinction, on the 
descendants from' a common parent — Explains the grouping of all 
organic beings •— Advance in organisation — Low forms preserved 
— Convergence of character — Indefinite multiplication of species — 
Summary— Page 62-105 



CHAPTEB V. 

Laws of Variation. 

Effects of changed conditions — Use and disuse, combined with natural 
selection ; organs of flight and of vision — Acclimatisation — Correlated 
vai'iation — Compensation and economy of growth — False correlations 
— Multiple, rudimentary, and lowly organised structures variable — 
Parts developed in an unusual manner are highly variable : specific 
characters more variable than generic: secondary sexual characters 
variable — Species of the same genus vai*y in an analogous manner — 
Reversions to long-lost characters — Summary 106-132 



CHAPTER VI. 

Difficulties of the Theory. 

Difficulties of the theory of descent with modification — Absence or rarity 
of transitional varieties — Transitions in habits of life — Diversified 
habits in the same species — Species wit^h habits widely different 
from those pf their allies — Organs of extreme perfection — Modes of 
transition — Cases of difficulty — Natura non fecit saltum — Organs 
of small importance — Organs not in all cases absolutely perfect — 
The law of Unity of Type and of the Conditions of Existence embraced 
by the theory df Natural Selection 133-167 



i 



» I 

i 



1 



OQNTENTB. tU 



OHAPTEB VII. 

MUOELLAHBOUB ObJBOTIONB TO TBI ThIOBT OF NaTUB4L 

8ELECn05* 

Longerity — Modifications not neceitarilj limiiltaiMoiif — ModifintioM 
apparent! J of no direct Mrrioe — ^ProgieisiTe deTtlopment — Characten 
of small functional importance, the most constant — Supposed incom- 
petence of natural selection to account for the incipient stages ot 
usefal structures — Causes which interfere with the acquisition through 
natural selection of useful structures — Gradations of structure with 
changed functions — ^Widelj different organs in memhen of the same 
class, developed from one and the same source — Reasons for disbelieT- 
ng in great and abrupt modifications Page 168-204 



OHAPTEB VIIL 

IirSTIKOT. 

Instincts comparable with habits, but different in their origin — Instincts 
graduated — Aphides and ants — Instincts Tariable — Domestic in- 
stincts, their origin — Natural instincts of the cuckoo, molothrus, 
ostrich, and parasitic bees — Slave-making ants — Hive-bee, its cell- 
making instinct — Changes of instinct and structure not necessarily 
simultaneous — Difficulties of the theory of the Natural Selection of 
instincts — Neuter or sterile insects — Summary . . . . 205-234 



OHAPTEB IX. 

HTfiRIDIBM. 

Distinction between the sterility of first crosses and of hybrids — Sterility 
various in degree, not universal, affected by close interbreeding, re- 
moved by domestication — Laws governing the sterility of hybrids -^ 
Sterility not a special endowment, but incidental on other differences, 
not accumulated by natural selection — Causes of the sterility of first 
crosses and of hybrids — Parallelism between the effects of changed 
conditions of life and of crossing — Dimorphism and Trimorphism — 
Fertility of varieties when crossed and of their mongrel offspring not 
universal — Hybrids and mongrels compared independently of their 
tortiUty — Summary - 234-263 



JL 



Till CONTENTS. 

CHAPTEB X. 

On the IlCPEBFEOTION OF THE GEOLOGICAL BeCOBD. 

On the absence of intermediate varietieB at the present day — On the 
natare of extinct intermediate varieties ; on their number — On 
the lapse of time, as inferred from the rate of denudation and of 
deposition — On the lapse of time as estimated by years — On the 
poorness of our palseontological collections — On the intermittence of 
geological formations — On the denudation of granitic areas — On the 
absence of intermediate varieties in any one formation — On the sudden 
appearance of groups of species — On their sudden appearance in 
the lowest known fossiliferous strata — Antiquity of the habitable 
earth Page 264-289 

CHAPTEB XL 

On the Geological Succession of Obganio Beings. 




On the slow and successive appearance of new species — On their different 

rates of change — Species once lost do not reappear — Groups of species J^ 

follow the same general rules in their appearance and disappearance 
as do single species — On Extinction — On simultaneous changes in 
the forms of life throughout the world — On the affinities of extinct 
species to each other and to living species — - On the state of develop- 
ment of ancient forms — On the succession of the same types within 
the same areas — Summary of preceding and present chapter 290-315 

CHAPTER XIL 

Geogbaphical Distbibution. 

Present distribution cannot be accounted for by differences in physical 
conditions — Importance of barriers — Affinity of the productions of 
the same continent — Centres of creation — Means of dispersal, by 
changes of climate and of the level of the land, and by occasional means 
— Dispersal during the Glacial period — Alternate Glacial periods in 
the north and south 316-342 

CHAPTER XIII. 

Geogbaphical Distbibution — continued. 

Distribution of fresh-water productions — On the inhabitants of oceanic 
islands — Absence of Batrachians and of terrestrial Mammals -AOn 
the relation of the inhabitants of islands to those of the nearest main- 
land — On colonization from the nearest source with subsequent modi- 
fication — Summary of the last and present chapter .. .. 34^-362 



OOMTEMTS. IX 



CHAPTBB XIV. 

Mutual Affinitibs of Oboabio Bedvob: Hobpholoot: 
Embbtologt: Budimentabt Oboanb. 

CLASSiFiCATioir, groQps rabordinaie to groiip« — Katunl sjstem -^ Roles 
and difficulties in classification, explained on the theory of descent 
with modification — Classification of Tarieties — Descent always used 
in classification — Analogical or adaptive characten — Affinities, 
general, complex, and radiating — Extinction separates and defines 
groups — MoRPHOLoaT, between members of the same class, between 
parts of the same indiridnal — Embrtologt, laws o^ explained by 
rariations not superrening at an early age, and being inherited at a 
corresponding age — Rudzmezitabt oboabb ; their origin explained — 
Summary Page 363-403 



OHAPTEE XV. 

BeOAFTTULATION and Ck)NCLUSION. 

Becapitulation of the objections to the theory of Natural Selection — 
Recapitulation of the general and special circumstances in its favour 
— Causes of the general belief in the immutability of species — 
How far the theory of Natural Selection may be extended — 
Effects of its adoption on the study of Natural History — Con- 
cluding remarks 404-429 

Glossabt of Scientific Terms '. 430 

Index 443 



i 



INSTRUCTION TO BINDER. 



The Diagram to front page 90, and to face the latter part of thft Vnlumc. 



r 






L 



ADDITIONS AND CORRECTIONS 

TO THE SIXTH EDITION. 



NuMEROiTS small oorreotioiiB have been made in the last 
and present editions on varions subjects, aooording as the 
evidence has become somewhat stronger or weaker. The 
more important corrections and some additions in the pre- 
sent volume are tabulated on the following page, for the 
convenience of those interested in the subject, and who 
possess the fifth edition. The second edition was little 
more than a reprint of the first. The third edition was 
largely corrected and added to, and the fourth and fifth 
still more largely. As copies of the present work will 
be sent abroad, it may be of use if I specify the state of 
the foreign editions. The third French and second Ger- 
man editions were from the third English, with some few 
of the additions given in the fourth edition. A new fourth 
French edition has been translated by Colonel Moulini^ ; 
of which the first half is from the fifth English, and the 
latter half from the present edition. A third German 
edition, under the superintendence of Professor Victor 
Cams, was from the fourth English edition ; a fifth is now 
preparing by the same author from the present volume. 
The second American edition was from the English second, 
with a few of the additions given in the third; and a 
third American edition has been printed from the fifth 
English edition. The Italian is from the third, the Dutch 
and three Eussian editions from the second English edition, 
and the Swedish from the fifth English edition. 



Xll 



Additions and Corrections, 



Fifth 
Edition. 


Sixth 
Edition. 


Page 
100 
158 
220 
225 
230 


Page 
68 
101 
142 
145 
149 


231 
233 


150 
151 


234 


153 


248 
248 
255 


162 
163 
168 


268 


214 


270 
307 
319 


215 
240 
248 


326 
377 
402 
440 
463 


252 
284 
301 
328 
343 


505 
516 


373 
382 


518 
520 
521 
541 
547 
552 


384 

385 
387 
401 
405 
409 


568 


421 


572 


424 



1 



Chief Additions and OorrectionB. 



Influence of fortuitous destruction on natural selection. 

On the convergence of specific forms. 

Account of the Ground-Woodpecker of La Plata modified. 

On the modification of the eye. 

Transitions through the acceleration or retardation of the 
period of reproduction. 

The account of the electric organ of fishes added to. 

Analogical resemblance between the ejes of Cephalopods 

. and Vertebrates. 

Clapar^e on the analogical resemblance of the hair-olaspers 
of the Acaridffi. 

The probable use of the rattle to the Rattle-snake. 

Helmholtz on the imperfection of the human eje. 

The first part of this new chapter consists of portions, in a 
much modified state, taken from chap. iv. of the former 
editions. The latter and larger part is new, and relates 
chiefly to the supposed incompetency of natural selection, 
to account for the incipient stages of useful structures. 
There is also a discussion on the causes which prevent 
in many cases the acquisition through natural selection 
of useful structures. Lastly, reasons are given for dis- 
believing in great and sudden modifications. Gradations 
of character, often accompanied by changes of function, 
are likewise here incidentally considered. 

The statement with respect to young cuckoos ejecting their 
foster-brothers confirmed. 

On the cuckoo-like habits of the Molothrus. 

On fertile hybrid moths. 

The discussion on the fertility of hybrids not having been ac- 
quired through natural selection condensed and modified. 

On the causes of sterility of hybrids, added to and corrected. 

Pyrgoma found in the chalk. 

£ztinct forms serving to connect existing groups. 

On earth adhering to the feet of migratory biitbi. 

On the wide geographical range of a species of Galaxias, 
a fresh-water fish. 

Discussion on analogical resemblances, enlarged and modified. 

Homological structure of the feet of oertain marsupial 
animals. 

On serial homologies, corrected. 

Mr. E. Ray Lankester on morphology. 

On the asexual reproduction of Chironomus.- 

On the origin of rudimentary parts, corrected. 

Recapitulation on the sterility of hybrids, corrected. 

Recapitulation on the absence of fossils beneath the Cam- 
brian system, corrected. 

Natural selection not the exclusive agency in the modi- 
fication of species, as always maintained in this work. 

The belief in the separate creation of species generally held 
by naturalists, until a recent period. 



AN HISTORICAL SKETCH 

OF THE PBOGRESS OF OPINION ON THE ORIGIN OF SPECIES, 

FREVIOUBLT TO THE PUBUOATION OF THK FIB8T XDITlOir 

OF THIS WOBK. 



I WILL here a give a brief sketch of the progress of opinion on the 
Origin of Species. Until recently the great majority of nataralists 
believed that species were immntable productions, and had been 
separately created. This view has been ably maintained by many 
authors. Some few naturalists, on the other hand, have believed 
that species undergo modification, and that the existing forms of 
life are the descendants by true generation of pre-existing forms. 
Passing over allusions to the subject in the classical writers,* the first 
author who in modem times has treated it in a scientific spirit was 
Buffon. But as his opinions fluctuated greatly at difierent periods, 
and as he does not enter on the causes or means of the transforma- 
tion of species, I need not here enter on detaila 

Lamarck was the first man whose conclusions on the subject 
recited much attention. This justly-celebrated naturalist first pub- 
lished his views in 1801 ; he much enlarged them in 1809 in his 
' Philosophic Zoologique,' and subsequently, in 1815, in the Intro- 
duction to his * Hist. Nat. des Animaux sans Vert^bres.' In these 



* Aristotle, in his * Physics Anscultationes ' (lih. 2, cap. 8, s. 2), after 
remarking that rain does not fall in order to make the com grow, any 
more than it falls to spoil the farmer's com when threshed ont of doors, 
applies the same argument to organisation; and adds -(as translated by 
Mr. Clair Grece, who first pointed out the passage to me), ^ So what hinders 
the different parts [of the body] from having this merely accidental relation 
m nature ? as the teeth, for example, grow by necessity, the front ones 
sharp, adapted for dividing, and the grinders flat, and serviceable for mas- 
ticating the food ; since they were not made for the sake of this, but it 
was the result of accident. And in like manner as to the other parts in 
which there appears to exist an adaptation to an end. Wheresoever, there- 
fore, all things together (that is all the parts of one whole) happened like 
as if they were made for the sake of something, these were preserved, 
having been appropriately constituted by an internal spontaneity; and 
whatsoever things were not thus constituted, perished, and still perish." 
We here see the principle of natural selection shadowed forth, but how 
little Aristotle fully comprehended the principle, is shown by his remarks 
on the formation of ihe teeth. 



xiv Historical Sketch, 



works he Hipliol^s the doctrine that all species, including man, are 
descended from other species. He first did the eminent service of 
arousing attention to the probability of all change in the organic, as 
well as in the inoxganic world, being the result of law, and not of 
miraculous interposition. Lamarck seems to have been chiefly led 
to his conclusion on the gradual change of species, by the difficulty 
of distinguishing species and varieties, by the almost perfect gradation 
of forms in certain groups, and by the analogy of domestic produc- 
tions. With respect to the means of modification, he attributed 
something to the direct action of the physical conditions of life, 
something to the crossing of already existing forms, and much to use 
and disuse, that is, to the effects of habit. To this latter agency he 
seems to attribute all the beautiful adaptations in nature ; — such as 
the long neck of the giraffe for browsing on the branches of trees. 
But he likewise believed in a law of progressive development ; and 
as all the forms of life thus tend to progress, in order to account for 
the existence at the present day of simple productions, he maintains 
that such forms are now spontaneously generated.* 

Greofiroy Saint Hilaire, as is stated in his ' Life,' written by his 
son, suspected, as early as 1795, that what we call species are 
various degenerations of the same type. It was not until 1828 
that he published his conviction that the same forms have not been 
perpetuated since the origin of all things. Geoffroy seems to have 
relied chiefly on the conditions of life, or the '* monde amhiant " as 
the cause of change. He was cautious in drawing conclusions, and 
did not believe that existing «pecies are now undergoing modifica- 
tion ; and, as his son adds, '' O'est done un probleme k r^erver 
enticement k Taveuir, suppose m@me que Tavenir doive avoir prise 
sur lui." 



* I have taken the date of the first publication of Lamarck from Isid. 
Geofiroy Saint Hilaire's (' Hist. Nat. Geherale/ torn. ii. p. 405, 1859) excel- 
lent history of opinion on this subject. In this work a full account is given 
of Buffon's conclusions on the same subject. It is curious how largely my 
grandfather, Dr. £rasmus Darwin, anticipated the views and erroneous 
grounds of opinion of Lamarck in his ^Zoonomia' (vol. i. pp. 500-510), 
published in 1794. According to Isid. Geofiroy there is no doubt that 
Goethe was an extreme partisan of similar views, as shown in the Intro- 
duction to a work written in 1794 and 1795, but not published till long 
afterwards : he has pointedly remarked (* Goethe als Naturforscher,' yon 
Dr. Karl Meding, s. 34) that the future question for naturalists will be how, 
for instance, cattle got their horns, and not for what they are used. It is 
rather a singular instance of the manner in which similar views arise at 
about the same time, that Goethe in Geimany, Dr. Darwin in England, 
and Geoffrey Saint Hilaire (as we shall immediately see) in France, cnme 
to the same conclusion on the origin ot species, in the years 1794-5. 



Historical Sketch. xv 



i 



In 1813, Dr. W. C. WelU read before the Royal Society .' An 
Account of a White Female, part of whoee skin resembles that of 
a Negro ' ; bui his paper was not published nntil his famous ' Two 
Essays upon Dew and Single Vision ' appeared 1818. In this 
paper he distinctly recognises the principle of nat«4«al selection, and 
this is the first recognition which has been indicated ; bat he applies 
it only to the races of man, and to certain characters alone. After 
remarking tbat negroes and mulattoes enjoy an immnnity from 
certain tropical diseases, he. observes, firstly, that all AnimAlg tend to 
vary in some degree, and, secondly, that agriculturists improve tbeir 
domesticated animals by selection ; and then, he adds, but what is 
done in this latter case " by art, seems to be done with equal efficiicy, 
though more slowly, by nature, in the formation of varieties of 
mankind, fitted for the country which they inhabit Of the acci- 
dental varieties of man, which would occur among the first few and 
scattered inhabitants of the middle regions of Africa, some one 
would be better fitted than the others to bear the diseases of the 
country. This race would consequently multiply, while the others 
would decrease ; not only from their inability to sustain the attacks 
of disease, but from their incapacity of contending with their more 
vigorous neighbours. The colour of this vigorous race I take for 
granted, from what has been already said, would be dark. But the 
same disposition to form varieties still existing, a darker and a 
darker race would in the course of time occur : and as the darkest 
would be the best fitted for the climate, this would at length 
become the most prevalent, if not the only race, in the particular 
country in which it had originated." He then extends these same 
views to the white inhabitants of colder climates. I am indebted 
to Mr. Bowley, of the United States, for having called my atten- 
tion, through Mr. Brace, to the above passage in Dr. Well's work. 

Hie Hon. and Bev.' W. Herbert, afterwards Dean of Manchester, 
in the fourth volume of the ' Horticultural Transactions,' 1822, and 
in his work on the ' Amaryllidacese ' (1837, p. 19, 339), declares that 
'* horticultural experiments have established, beyond the possibility 
of refutation, that botanical species are only a higher and more per- 
manent class of varieties." He extends the same view to animals. 
The Dean believes that single species of each genus were created 
in an originally highly plastic condition, and that these have 
produced, chiefly by intercrossing, but likewise by variation, all 
our existing species. 

In 1826 Professor Grant, in the concluding paragraph in his 
well known paper Q Edinburgh Philosophical Journal,' vol. xiv. 
p. 283) on the Spongilla, clearly declares his belief that species are 



xvi Historical Sketch. 



descended from other species, and that t&ey become improved in 
the course of modification. This same view was given in his 55ih 
Lecture, published iu the ' Lancet ' in 1834. • 

In 1831 Mr. Patrick Matthew published his work on 'Naval 
Timber and Arboriculture,' in which he gives precisely the same 
view on the origin of species as that (presently to be alluded to) 
propounded by Mr. Wallace and myself in the ' Linnean JoumaV 
and as that enlarged in the present volume. Unfortunately the 
view was given by Mr. Matthew very briefi;^ in scattered passages 
in an Appendix to a work on a different subject, so that it remained 
unnoticed until Mr. Matthew himself drew attention to it in the 
* Gardeners* Chronicle,' on April 7th, 1860. The differences of Mr. 
Matthew's view from mine are not of much importance : he seems 
to consider that the world was nearly depopulated at successive 
periods, and then re-stocked ; and he gives as an alternative, that 
new forms may be generated " without the presence of foiy mould 
or germ of former aggregates." I am not sure that I \mderstand 
some passages ; but it seems that he attributes much influence to 
the direct action of the conditions of life. He clearly saw, how- 
ever, the full force of the principle of natural selection. 

l^e celebrated geologist and naturalist. Yon Bucb, in his ex- 
cellent * Description Physique des Isles Canaries ' (1836, p. 147), 
clearly expresses his belief that varieties slowly become changed 
into permanent species, which are no longer capable of inter- 
crossing. « 

Baflnesque, in his ' New Flora of North America,' published in 
1836, wrote (p. 6) as follows: — "All speeies might have been 
varieties once, and many, varieties are gradually becoming species 
by assuming constant and peculiar characters;" but farther on 
(p. 18) he adds, "except the original types or ancestors of the 
genus." 

In 1843-44 Professor Haldeman (* Boston Journal of Nat.* Hist 
U. States,' vol. iv. p. 468) has ably given the arguments for and 
against the hypothesis of the development and modification of 
species : he seems to lean towards the side of change. 

The 'Vestiges of Creation' appeared in 1844. In the tenth 
and much improved edition (1853) the anonymous author says 
(p. 155): — The proposition determined on after much considera- 
tion is, that the several series of animated beings, from the simplest 
and oldest up to the highest and most recent, are, under the provi- 
dence of God, the results, firsts of an impulse which has been 
imparted to the forms of life, advancing them, in definite times, by 
generation, through grades of organisation terminating in the 



Historical Sketch, xvii 



r 



r 



i 



highest dicotyledons and vertebrata, these grades being few in 
number, and generally marked by intervals of organic chancter, 
which we find to be a practical difficulty in ascertaining affinities ; 
9eoondy of another impulse connected with i«lie vital forces, tending, 
in the course of generations, to modify organic structures in accor- 
dance with external circumstances, as food, the nature of the 
habitat, and the meteoric agencies, these being the ' adaptations * 
of the natural theologian." The author apparently believes that 
organisation progresses by sudden leaps, but that the effects 
produced by the conditions of life are graduaL He argues with 
much force on general grounds that species are not immutable 
productions. But I cannot see how the two supposed ** impulses ** 
account in a scientific sense for the numerous and beautiful co- 
adaptations which we see throughout nature ; tPcannot see that we 
thus gain any insight how, for instance, a woodpecker has become 
adapted to its peculiar habits of life. The work, from its powerful 
and brilliant style, though displaying in the earlier editions little 
accurate knowledge and a great want of scientific caution, imme- 
diately had a very wide circulation. In my opinion it has done 
excellent service in this country in calling attention to the sub- 
ject, in removing prejudice, and in thus preparing the ground 
for the reception of analogous views. 

In 1846 the veteran geolc^t M. J. d*0maliu8 d'Halloy pub- 
lished in an excellent though short paper (' Bulletins de I'Acad. Roy. 
Bruxelles,' torn. xiii. p. 581), his opinion that it is more probable 
that new species have been produced by descent with modification 
than that they have been separately created: the author first 
promulgated this opinion in 1831. 

Professor Owen, in 1849 (* Nature of Limbs,' p. 86), wrote as 
Hlows : — " The archetypal idea was manifested in the flesh imder 
diverse such modifications, upon this planet, long prior to the 
existence of those animal species that actually exemplify it. To 
what natural laws or secondary causes the orderly succession and 
progression of such organic phenomena may have been conmxitted, 
we, as yet, are ignomnt*" In his Address to the British Association, 
in 1858, he speaks (p. li.) of "the axiom of the continuous 
operation of creative power, or of the ordained becoming of living 
things." Farther on (p. xc), after referring to geographical distri- 
bution, he adds, ** These phenomena shake our confidence in the 
conclusion that the Apteryx of New Zealand and the Red Grouse 
of England were distinct creations in and for those islands respec- 
tively. Always, also, it may be well to bear in mind that by the 
word 'creation' the zoologist means *a process he knows not 

6 



xviii Historical Sketch, 

what.' *' He amplifies this idea by adding, that when such cases 
as that of the Red Grouse are ** enumerated by the zoologist as 
evidence of distinct creation, of the bird in and for such islands, he 
chiefly expresses that he knows not how the Red Grouse came to 
be there, and there exclusively ; signifying also, by this mode of 
expressing such ignorance, his belief that both the bird and the 
islands owed their origin to a great first Creative Cause." If we 
interpret these sentences given in the same Address, one by the 
other, it appears that this eminent philosopher felt in 1858 his con- 
fidence shaken that the Apteryx and the Red Grouse first appeared 
in their respective homes, " he knew not how," or by some process 
" he knew not what." 

This Address was delivered after the papers, by Mr. Wallace and 
myself on the Origin of Species, presently to be referred to, had been 
read before the Linnean Society. When the first edition of this 
work was published, I was so completely deceived, as were many 
others, by such expressions as *' the continuous operation of creative 
power," that I included Professor Owen with other palaBontologists 
as being firmly convinced of the immutability of species ; but it 
appears (*Anat. of Vertebrates,' vol. iii. p. 796) that this was on 
my part a preposterous error. In the last edition of this work I 
inferred, and the inference still seems to me perfectly just, from a 
passage beginning with the words " no doubt the type-form," &c. 
(Ibid. voL i p. xxxv.), that Professor Owen admitted that natural 
selection may have done something in the formation of new 
species ; but this it appears (Ibid. vol. iii. p. 798) is inaccurate and 
without evidence. I also gave some extracts from a correspondence 
between Professor Owen and the Editor of the * London Review,' 
from which it £4)peared manifest to the Editor as well as to myself, 
that Professor Owen claimed to have promulgated the theory of 
natural selection before I had done so ; and I expressed my surprise 
and satisfJEUition at this announcement ; but as far as it is possible 
to understand certain recently published passages (Ibid. vol. iii. 
p. 798), I have either partially or wholly again fallen into error. 
It is consolatory to me that others find Professor Owen*s controver- 
sial writings as difficult to understand and to reconcile with each 
other, as I do. As fieir as the mere enunciation of the principle of 
natural selection is concerned, it is quite immaterial whether or 
not Professor Owen preceded me, for both of us, as shown in this 
historical sketch, were long ago preceded by Dr. Wells and Mr. 
Matthews. 

M. Isidore Geoffrey Saint Hilaire, in his Lectures delivered in 
1850 (of which a R^um^ appeared in the * Revue et Mag. de 



Historical Sketch, xix 



r 



Zoolog.,' Jan. 1851), briefly gives his reason for believing that 
specific characters **^ sont fix^, pour chaque esp^ce, tant qu'elle se 
Ijerpetue au milieu des mimes circonstances : iUi se modifient, si 
les circonstances ambiantes yiennent k changer." " En r^nmtf, 
Vohservation des animaox sanvages d^montre d^jk la yariabiliU 
limitee des esp^ces. Les expMences snr les animaox sanvages 
devenus domestiques, et snr les animaux domestiques redevenus 
sauvages, la d^montrent plus clairement encore. Ces mimes exp^ 
riences prouvent, de plus, que les diffidences produites penvent 6tre 
de vcUeur generique.'* In his ' Hist. Nat Gtfn^rale * (tom. ii. p 
430, 1859) he amplifies analogous conclusions. 

From a circular lately issued it appears that Dr. Freke, in 1851 
C Dublin Medical Press,' p. 322), propounded the doctrine that all 
organic beings have descended from one primordial form. His 
1^ grounds of belief and treatment of the subject are wholly different 

from mine ; but as Dr. Freke has now (1861) published his Essay 
on ' the Origin of Species by means of Organic Affinity,* the diffi- 
cult attempt to give any idea of his views would be superflnous 
on my part. 

Mr. Herbert Spencer, in an Essay (originally published in the 
* Leader,' March 1852, aud republished in his ' Essays ' in 1858), 
has contrasted the theories of the Creation and the Development 
of organic beings with remarkable skill and force. He argues 
from the analogy of domestic productions from the changes which 
the embryos of many species undergo, from the difficulty of dis- 
tinguishing species and varieties, and from the principle of general 
gradation, that species have been modified ; and he attributes the 
modification to the change of circumstances. The author (1855) 
f has also treated Psychology on the principle of the necessary 

1 acquirement of each mental power aud capacity by gradation. 

I In 1852 M. Naudin, a distinguished botanist, expressly stated, 

^ in an admirable paper on the Origin of Species (* Bevue Horticole,' 

p. 102 ; since partly republished in the * Nouvelles Archives du 
^ Museum,' tom. i. p. 171), his belief that species are formed in 

an analogous manner as varieties are under cultivation ; and the 
latter process he attributes to man's power of selection. But he 
does not show how selection acts under nature. He believes, like 
Dean Herbert, that species, when nascent, were more plastic than at 
present. He lays weight on what he calls the principle of finality, 
" puissance mystdrieuse, indetermin^e ; fatality pour les uns ; pour 
les autres, volont^ proyidentielle, dont Paction incessante sur les 
Stres vivants determine, k toutes les 6poques de I'existence du 
inonde, la forme, le volume, et la dur^e de chacun d'eux, en raison 

b 2 



XX Historical Sketch, 



de sa destin^ dans I'ordre de choses dont 11 fait partie. O^est cette 
puissance qui harmonise cbaque membre k I'ensemble en Tappro- 
priant a la fonction qu'il doit remplir dans Torganisme gdn^ral de 
la nature, fonction qui est pour lui sa raison d*§tre." * 

In 1853 a celebrated geologist, Count Keyserling ('Bulletin de 
la See. Goolog.,* 2nd Ser., torn. x. p. 357), suggested that as new 
diseases, supposed to have been caused by some miasma, have 
arisen and spread over the world, so at certain periods the germs 
of existing species may have been chemically affected by circum- 
ambient molecules of a particular nature, and thus have given 
rise to new forms. 

In this same year, l853. Dr. Schaaffhausen published an ex- 
cellent pamphlet (*Verhand. des Naturhist, Yereins der Preuss. 
Rheinlands,* &c.), in which he maintains the progressive develop- 
ment of organic forms on the earth. He infers that many species 
have kept true for long periods, whereas a few have become modi- 
fied. The distinction of species he explains by the destruction 
of intermediate graduated forms. " Thus living plants and animals 
are not separated from the extinct by new creations, but are to 
be regarded as their descendants through continued reproduction." 

A well-known French botanist, M. Lecoq, writes in 1854 
('Etudes sur G^ograph. Bot.,' tom. i. p. 250), " On voit que nos 
recherches sur la fixit^ ou la variation de Tesp^ce, nous conduisent 
directement aux id^ ^mises, par deux hommes justement c^l^bres, 
Geoffroy Saint-Hilaire et Goethe." Some other passages scattered 
through M. Lecoq's large work, make it a little doubtful how far he 
extends his views on the modification of species. 

The 'Philosophy of Creation* has been treated in a masterly 
manner by the Eev. Baden Powell, in his ' Essays on the Unity of 
Worlds,' 1855. Nothing can be more striking than the manner in 
which he shows that the introduction of new species is " a regular, 



* From references in Bronn's ' Untersnchungen iib«r die Entwidcelnn^gs- 
Gesetze/ it appears that the celebrated botanist and palaeontologist Unger 
published, in 1852, his belief that species undergo development and modifi- 
cation. D'Alton, likewise, in Pander and Dalton's work on Fossil Sloths, 
expressed, in 1821, a similar belief. Similar views have, as is well known, 
been maintained by Oken in his mystical * Natur-Philosophie.' From other 
references in Godron*s work * Sur TEspfece,* it seems that Bory Si. Vincent, 
Burdach, Poiret, and Fries, have all admitted that new species are continu- 
ally being produced. 

I may add, that of the thirty-four authors named in this Historical 
Sketch, who believe in the modification of species, or at least disbelieve in 
separate acts of creation, twentynseven have written on special branches of 
natural history or geology. 



Historical SkeUh. xxi 



]M)t a casual phenomenon," or, aa Sir John Herachel expresies it, 
^ a natural in contradistinction to a miracolona prooeM.* 

The third volnme of the ' Journal of the Linnean Society ' con- 
tains papers, read July 1st, 1858, by Mr. Wallace and myseU; in 
which, as stated in the introductory remarka to this Tolnme, the 
theory of Natural Selection is promnlgated by Mr. Wallace with 
admirable force and clearness. 

Yon Baer, towards whom all zoologists feel so profound a respect, 
expressed about the year 1859 (see Prof, Rudolph Wagner, * Zoolo- 
gisch-Anthropolc^ischd Untersuchungen,' 1861, s. 51) his convic- 
tion, chiefly grounded on the laws of geographical distribution, 
that forms now perfectly distinct have descended from a single 
parent-form. 

In June, 1859, Professor Huxley gave a lecture before the Royal 
Institution on the ' Persistent Types of Animal life.* Referring lo 
such cases, he remarks, '' It is difficult to comprehend the meaning 
of such facts as these, if we suppose that each species of animal 
and plant, or each great type of organisation, was formed and 
placed upon the surface of the globe at long intervals by a distinct 
act of creative power; and it is well to recollect that such an 
assumption is as unsupported by tradition or revelation as it is 
opposed to the general analogy of nature. I^ on the other hand, 
we view ' Persistent Types ' in relation to that hypothesis which 
supposes the species living at any time to be the result of the 
gradual modification of pre-existing species — a hypothesis which, 
though unproven, and sadly damaged by some of its supporters, 
is yet the only one to which physiology lends any countenance ; 
their existence would seem to show that the amount of modification 
which living beings have undergone during geological time is but 
very small Ia. relation to the whole series of changes which they 
have suffered." 

In December, 1859, Dr. Hooker published his * Introduction to 
the Australian Flora.' In the first part of this great work he admits 
the truth of the descent and modification of species, and supports 
this doctrine by many original observations. 

The first edition of this work was published on November 24th, 
1859, and the second edition on January 7th, 1860. 



OE 



iathelat 
iedby 

flithisn 



hv 



^ 



I tope 
aslg 



naiiy 



atal 
origi 
^1i 



vol 

18 



OBIGIN OF SPECIES. 



INTRODUCTION. 



When on board H.M.S. ' Beagle,' as naturalist, I was much strnck 
with certain facts in the distribution of the organic beings inhabit- 
ing South America, and in the geological relations of the present to 
the past inhabitants of that continent. These facts, as will be seen 
in the latter chapters of this volume, seemed to throw some light 
on the origin of species — that mystery of mysteries, as it has been 
called by one of our greatest philosophers. On my return home, it 
occurred to me, in 1837, that something might perhaps be made^^ut 
on this question by patiently accumulating and reflecting on all 
sorts of facts which could possibly have any bearing on it. After 
five years' work I allowed myself to speculate on the subject, and 
drew up some short notes ; these I enlarged in 1844 into a sketch 
of the conclusions, which then seemed to me probable : from that 
period to the present day I have steadily pursued the same object. 
I hope that I may be excused for enteang on these personal details, 
as I give them to show that I have not been hasty in coming to a 
decision. 

My work is now (1859) nearly finished ; but as it will take me 
many more years to complete it, and as my health is far from 
strong, I have been urged to publish this Abstract. I have more 
especially been induced to do this, as Mr. Wallace, who is now 
studying the natural history of the Malay archipelago, has arrived 
at almost exactly the same general conclusions that I have on the 
origin of species. In 1858 he sent me a memoir on this subject, 
with a request that I would forward it to Sir Charles Lyell, who 
sent it to the Linnean Society, and it is published in the third 
volume of the Journal of that Society. Sir C. Lyell and Dr. Hooker, 
who hotnknew of my work — the latter having read my sketch of 
1844— honoured me by thinking it advisable to publish, with Mr. 
Wallace's excellent memoir, some brief extracts from my manu- 
scripts. 

This Abstract, which I now publish, must necessarily be im- 
perfect. I cannot here give references and authorities for my 

B 



$ 



Introduction. 



several statements ; and I must trust to the reader reposing some 
confidence in my accuracy. No doubt errors will have crept in, 
though I hope I have always been cautious in trusting to good 
authorities alone. I can here give only the general conclusions at ^. 

which 1 have arrived, with a few facts in illustration, but which, 
I hope, in most cases will suffice. No one can feel more sensible 
than I do of the necessity of hereafter publishing in detail all the 
facts, with references, on which my conclusions have been grounded ; 
and I hope in a future work to do this. For I am well aware that 
scarcely a single point is discussed in this volume on which facts 
cannot be adduced, often apparently leading to conclusions directly 
opposite to those at which I have arrived. A fair result can be 
obtained only by fully stating and balancing the &cts and argu- 
ments on both sides of each question ; and this is here impossible. 

I much regret that want of space prevents my having the satis- 
faction of acknowledging the generous assistance which I have 
received from very many naturalists, some of them personally un- 
known to me. I cannot, however, let this opportunity pass without 
expressing my deep obligations to Dr. Hooker, who, for the last 
fifteen years, has aided me in every possible way by his large stores 
of knowledge and his excellent judgment. 

In considering the Origin of Species, it is quite conceivable that 
a naturalist, reflecting on the mutual affinities of organic beings, 
on their embryological relations, their geographical distribution, 
geological succession, and other such facts, might come to the con- 
. elusion that species had not been independently created, but had 
descended, like varieties, from other species. Nevertheless, such a 
conclusion, even if well founded, would be unsatisfactory, until it 
could be shown how the innumerable species inhabiting this world 
have been modified, so as to acquire that perfection of structure 
and coadaptation which justly excites our admiration. Naturalists 
continually refer to external conditions, such as climate, food, &c., 
as the only possible cause of variation. In one limited sense, as 
we shall hereafter see, this may be true ; but it is preposterous to 
attribute to mere external conditions, the structure, for instance, of 
the woodpecker, with its feet, tail, beak, and tongue, so admirably 
adapted to catch insects under the bark of trees. In the case of the 
mistletoe, which draws its nourishment from certain trees, which 
has seeds that must be transported by certain birds, and which has 
flowers with separate sexes absolutely requiring the agency of 
certain insects to bring pollen from one flower to the other, it is 
equally preposterous to account for the structure of this parasite, 
with its relations to several distinct organic beings, by the effects 



Introduction, 



of external conditions, or of habit, or of the volition of the plant 
itself. 

It is, therefore, of the highest importance to gain a clear insight 
into the means of modification and coadaptation. At the commence- 
[ ment of my observations it seemed to me probable that a careful 

^^ study of domesticated animals and of cultivated plants would o£fer 

3P^** the best chance of making out this obscure problem. Nor have 

^ I been disappointed ; in this and in all other perplexing cases I 

have invariably found that our knowledge, imperfect though it be, of 
variation under domestication, afforded the best and safest clue. I 
may venture to express my conviction of the high value of such 
studies, although they have been very conmionly neglected by 
naturalists. 

From these considerations, I shall devote the first chapter of this 
Abstract to Variation under Pomesticadon. We shall thus see that 
a large amount of hereditary modification is at least possible ; and, 
what is equ^Oly or more important, we shall see how great is the 
power of man in accumulating by his Selection successive slight 
1^ variations. I will then pass on to the variability of species in a 

pP""**" state of nature ; but I shall, unfortunately, be compelled to treat 

this subject far too briefly, as it can be treated properly only by 

giving long catalogues of facts. We shall, however, be enabled to 

'discuss what circumstances are most favourable to variation. In 

the next chapter the Struggle for Existence amongst all oi^anic 

beings throughout the world, which inevitably follows from the 

high geometrical ratio of their increase, will be considered. This is 

j the doctrine of Malthus, applied to the whole animal and vegetable 

I kingdoms. As many more individuals of each species are bom than 

j can possibly survive ; and as, consequently, there is a frequently 

recurring struggle for existence, it follows that any being, if it vary j 
however slightly in any manner profitable to itself, under the com- 
plex and sometimes varying conditions of life, will have a better 
chance of surviving, and thus be naturally selected. From the 
strong principle of inheritance, any selected variety wiU tend to 
propagate its new and modified form. 

This fundamental subject of Natural Selection will be treated at 
some length in the fourth chapter; and we shall then see how 
Natural Selection almost inevitably causes much Extinction of the 
less improved forms of life, and leads to what I have called Diver- 
gence of Character. In the next chapter I shall discuss the complex 
and little known laws of variation. In the five succeeding chapters, 
the most apparent and gravest difficulties in accepting the theory 
will be given : namely, first, the difficulties of transitions, or how a 

B 2 



\ 



t 



Introduction 



simple being or a simple organ <Jan be changed and perfected into 
a highly developed being or into an elaborately constructed organ - 
secondly, the subject of Instinct, or the mental powers of animals ; 
thirdly, Hybridism, or the infertility of species and the fertility of 
varieties when intercrossed ; and fourthly, the imperfection of the 
Geological Record. In the next chapter I shall consider the geo^ 
logical succession of organic beings throughout time ; in the twelfth 
and thirteenth, their geographical distribution throughout space ; in 
the fourteenth, their classification or mutual affinities, both when 
mature and in an embryonic condition. In the last chapter I shall 
give a brief recapitulation of the whole work, and a few concluding 
remarks. 

No one ought to feel surprise at much remaining as yet un- 
explained in regard to the origin of species and varieties, if he make 
due allowance for our profound ignorance in regard to the mutual 
relations of the many beings which live around us. Who can ex- 
plain why one species ranges widely and is very numerous, and 
why another allied species has a narrow range and is rare? Yet 
these relations are of the highest importance, for they determine the 
present welfare, and, as I believe, the future success and modification 
of every inhabitant of this world. Still less do we know of the- 
mutual relations of the innumerable inhabitants of the world during 
the many past geological epochs in its history. Although much 
remains obscure, and will long remain obscure, I can entertain no- 
doubt, after the most deliberate study and dispassionate judgment 
of which I am capable, that the view which most naturalists until 
recently entertained, and which I formerly entertained — namely, 
that each species has been independently created — is erroneous. 
\ I am fully convinced that species are not immutable ; but that | 
those belonging to what ' are called the same genera are lineal 
descendants of some other and generally extinct species, in the 
same manner as the acknowledged varieties of any one species are 
the descendants of that species. Furthermore, I am convinced 
that Natural Selection has been the most important, but not the 
exclusive, means of modification. 






Chap. I. Variation ufider DomesticatiofL 



CHAPTEE I. 

Vabiation under Domestication. 

Onuses of Variability — EfTects of Habit and the use or disuse of Parts — 
Correlated Variation — Inheritance — Character of Domestic Varieties 
— Difficulty of distinguishing between Varieties and Species — Origin 
of Domestic Varieties from one or more Species — Domestic Pigeons, 
their Differences and Origin — Principles of Selection, anciently fol- 
lowed, their Effects — Methodical and Unconscious Selection — Un- 
known Origin of our Domestic Productions — Circumstances farour- 
able to Man's power of Selection. 

Causes of Variability, 

When we compare the individuals of the same variety or sub- 
variety of our older cultivated plants and animals, one of the first 
points which strikes us is, that they generally differ more from 
each other than do the individuals of any one species or variety in 
a state of nature. And if we reflect on the vast diversity of tho 
plants and animals which have been cultivated, and which have 
varied during all ages under the most different climates and treat- 
ment, we are driven to conclude that this great variability is due 
to our domestic productions having been raised under conditions of 
life not. so uniform as, and somewhat different from, those to which 
the parent-species had been exposed under nature. There is, also, 
some probability in the view propounded by Andrew Knight, that 
this variability may be partly connected with excess of food. It \ 
seems clear that organic beings must be exposed during several : 
generations to new conditions to cause any great amount of varia- 
tion ; and that, when the organisation has once begun to vary, it. 
generally continues varying for many generations. No case is oiii 
record of a variable organism ceasing to vary under cultivation. 
Our oldest cultivated plants, such as wheat, still yield new varie- 
ties: our oldest domesticated animals are still capable of rapid 
improvement or modification. 

As far as I am able to judge, after long attending to the subject, 
the conditions of life appear to act in two ways,— directly, on the , 
whole organisation or on certain parts alonCj,, and. indirectly by 
affecting the reproductive system. With respect to the direct 



Variation under Domestication. Chap, l 



actioD, we must bear in mind that in every case, as Professor 
Weismann has lately insisted, and as I have incidentally shown in 
my work on 'Variation under Domestication,' there are Jwq^ 
factors : nam dy, the nature of the organis m, and jbhe nature of the 
cond itifim T he former seems to be muchl^he mo re" important ; 
for nearly similar variations sometimes arise imder, as far as we 
can judge, dissimilar conditions ; and, on the other hand, dissimilar 
variations arise under conditions which appear to be nearly imiform. | 

The effects on the offspring are either definite or indefinite. They 
may be considered as definite when all or nearly all the offspring of 
individuals exposed to certain conditions during several generations , 

are modified in the same manner. It is extremely difficult to come 
to any conclusion in regard to the extent of the changes which have 
been thus definitely induced. There can, however, be little doubt 
about many slight change s, — such a s siz e from th e amount of.&od^ 
colour from_ the nature^f Jhefood, thi ckness of the s kin and hair 
l^in climat e^ &c. Each of the endless variations which we see In 
the plumage of our fowls must have had some efficient cause ; and 
if the saine cause were to act uniformly during a long series of ....J 

generations on many individuals, all probably would be modified in 
the same manner. Such facts as the complex and extraordinary ' 

out-growths which invariably follow from the insertion of a minute 
drop of poison by a gall-producing insect, show us what singular 
modifications might result in the case of plants from a chemical 
change in the nature of the sap. 
f Indgfini tft -gariability is a much more common result of changed 
conditions than d efinite variability , and has probably played a more 
"Important part m the tormationof .pur domestic races. We see 
' indefijiite variability in the endless slight peculiarities which dis- 
tinguish the individuals of the same species, and which cannot be 
accounted for by inheritance from either parent or from some more 
remote ancestor. Even strongly-marked differences occasionally ^_^ 

appear in the young of the same litter, and in seedlings from the '^"^ 

same seed-capsule. At long intervals of time, out of millions ot 
individuals reared in the same country and fed on nearly the same 
food, deviations of structure so strongly pronounced as to deserve 
to be called monstrosities arise; but monstrosities cannot be 
separated by any distinct line from slighter variations. All such j 

changes of structure, whether extremely sUght or strongly marked, |j 

which appear a£aongst many" individuals living together, may be '^^k 

, considered as the indefinite effects of the conditions of life on each 
[individual organism, in nearly the' same manner as a chill affects 
'different men in an indefinite manner, according to their state : 







C?HAP. I. Variation under Domestication, 7 

of body or oonstitation, causing coughs or colds, rheumatism, or 
inflammations of yarious organs. 

With respect to what I have called the indirect action of changed/ 
conditions, namely, through the reproductive system being affected, I 
we may infer that variability is thus induced, partly from the &ct I 
of this system being extremely sensitive to any cluuige in the con- 
ditions, and partly from the similarity, as Ebireuter and others 
have remarked, between the variability which follows from the 
crossing of distinct species, and that which may be observed with 
plants and animals when reared under new or unnatural conditions. 
Many facts clearly show how eminently susceptible the reproduc-|^^ 
tive system is to very slight changes in the surrounding conditions] 
Kothing is more easy than to tame an animal, and few things more 
difficult than to get it to breed freely under confinement, even when 
the male and female unite. How many animals there are which 
will not breed, though kept in an almost free state in their native 
country ! This is generally, but erroneously, attributed to vitiated 
instincts. Many cultivated plants display the utmost vigour, and 
yet rarely or never seed ! In some few cases it has been discovered 
that a very trifling change, such as a little more or less water at 
some particular period of growth, will determine whether or not a 
plant will produce seeds. I cannot here give the details which 
I have collected and elsewhere published on this curious subject ; 
but to show how singular the laws are which determine the repro- 
duction of animals under confinement, I may mention that car- 
nivorous animals, even from the tropics, breed in this country 
pretty freely under confinement, with the exception of the planti- 
grades or bear family, which seldom produce young; whereas 
carnivorous birds, with the rarest exceptions, hardly ever lay fertile 
e^s. Many exotic plants have pollen utterly worthless, in the 
same condition as in the most sterile hybrids. When, on the one 
hand, we see domesticated animals and plants, though often weak 
and sickly, breeding freely under confinement ; and when, on the 
other hand, we see individuals, though taken young from a state of 
nature perfectly tamed, loi^-lived and healthy (of which I could 
give numerous instances), yet having their repro duc t ive system so 
seriously affecte d by unperceived causes as to fail to act, we need 
not be surpr^e dat tins sys te m, whe n it does acFmidej: confinement, 
a cting^ mre gulariy, and jroSHcing offspring SCTnewhat unlike fheir 
■parent^ I may add, that as some organisms breed freely under 
tEelmost unnatural conditions (for instance, rabbits and ferrets kept 
in hutches), showing that their reproductive organs are not easily 
affected ; so will some animals and plants withstand domestication 



8 Variation under Domestication, Chap. i. 

or cultivation, and vary very slightly — perhaps hardly more than in 
a state of nature. 

Some naturalists have maintained that all variations are con- 
nected with the act of sexual reproduction ; but this is certainly 
an error ; for I have given in another work a long list of " sporting 
plants," as they are called by gardeners ; — that is, of plants which 
have suddenly produced a single bud with a new and sometimes 
widely different character from that of the other buds on the same 
plant. These bud variations, as they may be named, can be pro- 
pagated by grafts, offsets, &c., and sometimes by seed. They occur 
rarely under nature,- but are far from rare under culture. As a 
single bud out of the many thousands, produced year after year on 
the same tree under uniform conditions, has been known suddenly 
to assume a new character ; and as buds on distinct trees, growing 
under different conditions, have sometimes yielded nearly the same 
variety — for instance, buds on peach-trees producing nectarines, 
and buds on common roses producing moss-roses — ^we clearly see 
that the nature of the conditions is of subordinate importance in 
comparison with the nature of the organism in determining each 
particular form of variation ; — perhaps of not more importance than 
the nature of the spark, by which a mass of combustible matter is 
ignited, has in determining the nature of the flames. ^-. ,. 

Effects of Habil and of the Use or Disiise of Parts; Correlated 

Variation; Inheritance. 

Changed habits produce an inherited effect, as in the period of the 
flowering of plants when transported from one climate to another. 
With animals the increased use or disuse of parts has had a more 
marked influence ; thus I find in the domestic duck that the bones 
of the wing weigh less and the bones of the leg more, in proportion 
to the whole skeleton, than do the same bones in the wild-duck ; 
and this change may be safely attributed to the domestic duck 
flying much less, and walking more, than its wild parents. The 
< geat and inherited develop ment* of the udders in cpw.s and^ats in 
countries _ where^ they are habitually milked, in comparison with 
these organs in other countries, is probably anothe r instance of the 
effects of_use. Not one of our domestic animals can be named 
• wtich has not in some country drooping ears ; and the view which 
has been suggested that the drooping is due to the disuse of the 
muscles of. the ear, from the animals being seldom much alarmed, 
seems probable. 
Many laws regulate variation, some few of which can be dimly 



Chap. I. Variation under Domestication. 9 

seen, and will hereafter be briefly discussed. I will here only 
allude to what may be called correla ted Tanation. Important 
changes in the embryo or larva will probably entail changes in the 
mature animal. In monstrosities, the correlations between quite 
distinct parts are very curious ; and many instances are given in 
Isidore GeofTroy St. Hilaire*s great work on this subject. Breeders 
believe that long limbs are almost always accompanied by an 
elongated head. Some instances of correlation are quite whimsical : 
thus cats which are entirely white and have blue eyes are generally * 
deaf; but it has been lately stated by Mr. Tait that this is confined ^\ 
to the males. Colour and constitutional peculiarities go together, 
of which many remarkable cases could be given amongst animals 
and plants. From facts collected by Heusinger, it appears that 
white sheep and pigs are injured by certain plants, whilst dark- 
coloured individuals escape: Professor Wyman has recently com- 
municated to me a good illustration of this fact ; on asking some 
farmers in Virginia how it was that all their pigs were black, they 
informed him that the pigs ate the paint-root (Lachnanthes), 
which coloured their bones pink, and which caused the hoofs of all 
but the black varieties to drop off; and one of the "crackers" 
(*. c. Virginia squatters) added, '* we select the black members of a 
litter for raising, as they alone have a good chance of living.'' Hair- 
less dogs have imperfect teeth: long-haired and coarse-haired 
animals are apt to have, as is asserted, long or many horns ; pigeons 
with feathered feet have skin between their outer toes; pigeons 
with short beaks have small feet, and .those with long beaks large 
feet. Hence if man goes on selecting, and thus augmenting, any 
peculiarity, he will almost certainly modify unintentionally other ' 
parts of the structure, owing to the mysterious laws of correlation. 

The results of the various, unknown, or but dimly imderstood 
laws of variation are infinitely complex and diversified. It is well 
worth while carefully to study the several treatises on some of 
our old cultivated plants, as on the hyacinth, potato, even the 
dahlia, &c.; and it is really surprising to note the endless points of 
structure and constitution in which the varieties and sub-varieties 
differ slightly from each other. The whole organisation seems to 
have become plastic, and departs in a slight degree from that of the 
parental type. 

Any variation which is not i nherited is unimport ant, for us. 
But the number and diversity of inherltalSTe deviations of structure, 
both those of slight and those of considerable physiological impor- 
tance, are endless. Dr. Prosper Lucas's treatise, in two large 
volumes, is the fullest and the best on this subject. No breeder 



lo Variation under Domestication, Chap, l 



doubts how strong is the tendency to inheritance ; that like pro- 
duces like is his fundamental belief: doubts have been thrown on 
this principle only by theoretical writers. When any deviation of 
structure often appears, and we see it in the father and child, we 
cannot tell whether it may not be due to the same cause having 
acted on both ; but when amongst individuals, apparently exposed 
to the same conditions, any very rare deviation, due to some 
extraordinary combination of circumstances, appears in the parent 
— say, once amongst several million individuals — ^and it reappears 
in the child, the mere doctrine of chances almost compels us to 
attribute its reappearance to inheritance. Every one must have 
heard of cases of albinism, prickly skin, hairy bodies, &c., appearing 
in several members of the same family. If strange and rare 
deviations of structure are really inherited, less strange and com- 
moner deviations may be freely admitted to be inheritable. 
Perhaps the correct way of viewing the whole subject would be, to 
look at the inheritance of every character whatever as the rule, and 
non-inheritance as the anomaly. 

The laws governing inheritance are for the most part unknown. 
Ko one can say why the same peculiarity in different individuals 
of the same species, or in different species, is sometimes inherited 
and sometimes not so; why the child often reverts in certain 
characters to its grandfather or grandmother or more remote ances- 
tor ; why a peculiarity is often transmitted from one sex to both 
sexes, or to one sex alone, more conmaonly but not exclusively to 
the like sex. It is a fact of some importance to us, that peculiarities 
appearing in the males of our domestic breeds are often transmitted, 
either exclusively or in a much greater degree, to the males alone. 
A much more important rule, which I think may be trusted, is 
that, at whatever period of life a peculiarity first appears, it tends 
to re-appear in the offspring at a corresponding age, though some- 
times earlier. In many cases this could not be otherwise ; thus 
the inherited peculiarities in the horns of cattle could appear only 
in the offspring when nearly mature; peculiarities in the silk- 
worm are known to appear at the corresponding caterpillar or 
cocoon stage. But hereditary diseases and some other £Eicts make 
me believe that the rule has a wider extension, and that, when 
there is no apparent reason why a peculiarity should appear at 
any particular age, yet that it does tend to appear in the offspring 
at the same period at which it first appeared in the parent. I 
believe this rule to be of the highest importance in explaining the 
laws of embryology. These remarks are of course confined to the 
first aip^^rancG of the peculiarity, and not to the primary cause 



Chap. I. Variation under Domestication, 1 1 

which may have acted on the ovules or on the male element ; in 
nearly the same manner as the increased length of the horns in the 
of&pring &om a short-homed cow hy a long-homed bull, thongh 
appearing late in life, is clearly dne to the male element. 

Having alluded to the subject of reversion, I may here refer to a 
statement often made by naturalists — ^namely, that our domestic 
varieties, when mn wild, gradually but invariably revert in charac- 
ter to their aboriginal stocks. Hence it has been argued that no 
deductions can be drawn from domestic races to species in ^ state of 
nature. I have in vain endeavoured to discover on what decisive 
facts the above statement has so often and so boldly been made. 
There would be great difficulty in proving its tmth : we may safely 
conclude that very many of the most strongly marked domestic varie- 
ties could not possibly live in a wild state. In many cases we do not 
know what the aboriginal stock was, and so could not tell whether 
or not nearly perfect reversion had ensued. It would be necessary 
in order to pretrent the effects of intercrossing, that only a single 
variety should have been turned loose in its new home. Neverthe- 
less, as our varieties certainly do occasionally revert in some of 
their characters to ancestral forms, it seems to me not improbable 
that if we could succeed in naturalising, or werlB to cultivate, 
during many generations, the several races, for instance, of the 
cabbage, in very poor soil (in which case, however, some effect 
would have to be attributed to the definite action of the poor soil), 
that they would, to a large extent, or even wholly, revert to tho 
wild aboriginal stock. Whether or not the experiment would 
succeed, is not of great importance for our line of argument ; for by 
the experiment itself the conditions of life are changed. If it could 
be shown that our domestic varieties manifested a strong tendency 
to reversion, — ^that is, to lose their acquired characters, whilst kept 
under the same conditions, smd whilst kept in a considerable body, 
so that free intercrossing might check, by blending together, any 
slight deviations in their structure, in such case, I grant that we 
could deduce nothing from domestic varieties in regard to species. 
But there is not a shadow of evidence in favour of this view : to 
assert that we could not breed our cart and race-horses, long and 
short-homed cattle, and poultry of various breeds, and esculent 
vegetables, for an unlimited number of generations, would be 
opposed to all experience. 



3 '- 



12 CItaracter of Domestic Varieties, Chap. i. 

Character of Domestic Varieties: difficulty of distinguishing 
between Varieties and Species; origin of Domestic Varieties 
from one or more Species. 

When we look to the hereditary varieties or races of our domestic 
animals and j)lants, and compare them with closely allied species, 
we generally perceive in each domestic race, as already remarked, 
less uniformity of charactei^ than in true'"species. Domestic races 
01 ten taye , a^ .SOiaSffiFaOftSaiprou^^cha^^^ ; by wEich T mean, 
thalTaithough differing from each other, and from oth er species of 
the same genus, in several trifling respects, they bftien^ififer in an 
extre me aegree in so me o ne part , both wEeii compared one with 
another, and more especially when compared with the species under 
nature to which they are nearest allied. With these exceptions 
(and with that of the perfect fertility of varieties when crossed, — a 
subject hereafter to be discussed), domestic races of the same species 
differ from each other in the same manner "asTd^o'fEe closely-allied 
species of the same genus In 'a state of nature, but the differences 
m most^ases areTeSyin- QBgiBe. -Tfaigmnst be admitted as true, 
ibr the doriiestic races'* of many animals and plants have been 
ranked by some competent judges as the descendants of aborigi- 
nally distinct species, and by other competent judges as mere 
varieties. If any well marked distinction existed between a 
domestic race and a species, this source of doubt would not so 
perpetually recur. It has often been stated that domestic races 
do not differ from each other in characters of generiF value. It can 
Ije shown that thi s statement' is [not icprrect g but naturalists differ 
much in determining what characters are of generic value ; all 
such valuations being at present empirical. When it is explained 
how genera originate under nature, it will be seen that we have 
no right to expect often to find a generic amount^of difference 
in our domesticated races. 

In attempting to estimate the amount of structural difference ' 
between allied domestic races, we are soon involved in doubt, 
from not knowing whether they are descended from one or several 
parent species. This point, if it could be cleared up, would be 
interesting ; if, for instance, it could be shown that the greyhound, 
bloodhound, terrier, spaniel, and bull-dog, which we all know 
propagate their kind truly, were the offspring of any single species, 
then such facts would have great weight in making us doubt about 
the immutability of the many closely allied natural species — for 
instance, of the many foxes — ^inhabiting different quarters of the 
world, I do not beUeve, as we shall presently see, that the whole 



Chap. I. Character of Domestic Varieties, 1 3 

amount of difference between the sev eral breeds of the dog has been 
'produced upder d omesticatio n; I^ believe tliat jk tfoall {mlcI ^ tlii: 
amerencels due to their being descendedfrom distinct fipccies. In 
"TftCT'case'^of strongly ' marl^ed races of some other domesticated 
species, there is presumptive or even strong evidence, that all are 
descended from a single wild stock. 

It has often been assumed that man has chosen for domestica- 
tion animals and plants having an extraordinary inherent tendency 
to vary, and likewise to withstand diverse climates. I do not dis[)iito 
that these capacities have added largely to the value of most of our 
domesticated productions ; but how could a savage possibly know, 
when he first tamed an animal, whether it would vary in succeeding 
generations, and whether it would endure other climates? Has 
the little variability of the ass and goose, or the small power of 
endurance of warmth by the reindeer, or of cold by the common 
camel, prevented their domestication? I cannot doubt that if 
other animals and plants, equal in number to our domesticated 
productions, and belonging to equally diverse classes and countries, 
were taken from a state of nature, and could be made to breed for 
an equal number of generations under domestication, they would 
on an average vary as largely as the parent species of our existing 
domesticated productions have varied. 

In the case of most of our ancientlv domesticated animals and 
plants, it is not possible to come to any definite conclusion, whether 
they are descended from one or several wild species. The argument 
mainly relied on by t hose who believe in the multiple origin of our 
ttoCaestTc "animals is, that we find in the most ancient times, on tbq 
monuments of Egypt, and in the lake-habitations of Switzerlaiidj 
much diversity in the breeds; t md that _some of these anclcni 
breeds closely resemble, or are even identical with, those still exist- 
ing: But ihis only throws far backwards the history of civnisatTon 
" and^sfiows ihat animals weFe'dbmestrcaled at a much earlier perioa 
. "th'ari "has "hitherto been supposed. The lake-inhabitants of Switt 
^zei land' cultivated several kinds of wheat and barley, the pea, the 
poppy for oil, and fiax; and they possessed several domesticated 
animals. They also carried on commerce with other nations. All 
this clearly shows, as Heer has- remarked, that they had at this 
early age progressed considerably in civilisation; and this again 
implies a long continued previous period of less advanced civilisation, 
during which the domesticated auimals, kept by different tribes in 
different districts, might have varied and given rise to distinct races. 
Since the discovery of fiint tools in the superficial formations of 
many parts of the world, all geologists believe that barbarian man 



14 CItaracter of Domestic Varieties. Chap. I. 

existed at an enormously remote period ; and we know that at the 
present day there is hardly a tribe so barbarous, as not to have 
domesticated at least the dog. 

The origin of most of our domestic animals will probably for 
ever remain vague. But I may here state, that, looking to the 
domestic dogs of the whole world, I have, after a laborious collection 
of all known facts, come to the conclusion that several wild species 
of OanidaB have been tamed, and that their blood, in some cases 
mingled together, flows in the veins of our domestic breeds. In 
regard to sheep and goats I can form no decided opinion. From 
facts commimicated to me by Mr. Blyth, on the habits, voice, con- 
stitution, and structure of the humped Indian cattle, it is almost 
certain that they are descended from a dififerent aboriginal stock 
from our European cattle ; and some competent judges believe that 
these latter have had two or three wild progenitors, — whether or not 
these deseive to be called species. This conclusion, as well as that 
of the specific distinction between the humped and conmion cattle, 
may, indeed, be looked upon as established by the admirable re- 
searches of Professor RUtimeyer. With respect to horses, from 
reasons which I cannot here give, I am doubtfully inclined to believe, 
in opposition to several authors, that all the races belong to the same 
species. Having kfept nearly all the English breeds of the fowl 
alive, having bred and crossed them, and examined their skeletons, 
it appears to me almost certain that all are the descendants of the 
wild Indian fowl, Gallus bankiva ; and this is the conclusion of 
Mr. Blyth, and of others who have studied this bird in India. In 
regard to ducks and rabbits, some breeds of which differ much from 
each other, the evidence _i^_ clear that they are all descended 
from, the common.wilTduck and rabbit. 

The doctrine of the origin of our several domestic races from 
several aboriginal stocks, has been carried to an absurd extreme by 
some authors. They believe that every race which breeds true, let 
the distinctive characters be ever so slight, has had its wild proto- 
type. At this rate there must have existed at least a score of 
species of wild cattle, as many sheep, and several goats, in Europe 
alone, and several even within Great Britain. One author believes 
thatjthereformerly existed eleven wild species of~ghfi£p peculiar, to. 
txreat Britain I When we bear in mind tHat Britain has now not 
one peculiar mammal, and France but few distinct from those of 
Germany, and so with Hungary, Spain, &c., but that each of these 
kingdoms possesses several peculiar breeds of cattle, sheep, &c., we 
must admit that many domestic breeds must have originated in 
Europe ; for whence otherwise could they have been derived ? So it is 



Chap. I. Domestic Pigeons. 1 5 

in India. Even in the case of the breeds of the domestic dog through- 
out the world, which I admit are descended from several wild spe- 
cies, it cannot be doubted that there has been an im&ense amount 
of inherited variation; for who will believe that animals closely 
resembling the Italian greyhound, the bloodhound, the bull-dog, 
pug-dog, or Blenheim spaniel, &c. — so unlike all wild Canid® — 
ever existed in a state of nature? It has often been loosely said 
that all our races of dogs have been produced by the cxossiii^ jo£ a 
lew aboriginal species ; but by crossmg we can only get forms in 
^^mXTSI^^ee "intermediate between their parents; and if we account 
for our several domestic races by this process, we must admit the 
former existence of the most extreme forms, as the Italian grey- 
hound, bloodhound, bull-dog, &c., in the wild state. Moreover, 
the poss ibility of making di stinct races by crossing^has been greatly 
ex ag^gera ted^ Many cases are on record, showing that a race may 
nSe modified by occasional crosses, if aided by the careful selection 
of the individuals which present the desired character; but to 
obtain a race intermediate between two quite distinct races, would 
be very difficult. Sir J. Sebright expressly experimented with this 
object, and failed. The offspring from the first cross between two 
)ure breeds is tolerlaB^T's^ii^ sometimes (as I have found with 



pigeons) quite u niform in character, and eve'ything seems simple 
enough ; but when these mongrels are crossed one with another for 
se veral generat ions, hardly two of them_are jalike, and then^ the 
cRfficulty of the task becomes manifest. 

Breeds of the Domestic Pigeon^ their Differences and Origin. 

Believing that it is always best to study some special group, I 
have, after deliberation, taken up domestic pigeons. I have kept 
every breed which I could purchase or obtain, and have been most 
kindly favoured with skins from several quarters of the world, more 
especially by the Hon. W. Elliot from India, and by the Hon. C. 
Murray from Persia. Many treatises in different languages have 
been published on pigeons, and. some of them are very important, 
as being of considerable antiquity. I have associated with several 
eminent fanciers, and have been permitted to join two of the London 
Pigeon Clubs. The diversity of the breeds is something astonishing. 
Compare the English carrier and the short-faced tumbler, and see 
the wonderful difference in their beaks, entailing corresponding 
differences in their skulls. The carrier, more especially the male 
bird, is also remarkable from the wonderful development of the 
carunculated skin about the head; and this is accompanied by 
greatly elongated eyelids, very large external orifices to the nostrils. 






j6 Domestic Pigemis, Chap. I. 

and a wide gape of mouth. The short-faced tumbler has a beak in 
outline almost like that of a finch ; and the common tumbler has 
the singular inherited habit of flying at a great height in a compact 
flock, and tumbling in the air head over heels. The runt is a bird 
of great size, with long massive beak and large feet ; some of the 
sub-breeds of runts have very long necks, others very long wings 
and tails, others singularly short tails. The barb is allied to the 
carrier, but, instead of a long beak, has a very short and broad one. 
The pouter has a much elongated body, wings, and legs ; and its 
enormously developed crop,' which it glories in inflating, may well 
excite astonishment and even laughter. Tlie turbit has a short and 
conical beak, with a line of reversed feathers down the breast ; and 
it has the habit of continually expanding, slightly, the upper part of 
the oesophagus. The Jacobin has the feathers so much reversed 
along the back of the neck that they form a hood ; and it has, pro- 
portionally to its size, elongated wing and tail feathers. The 
trumpeter and laugher, as their names express, utter a very different 
coo from the other breeds. The fantail has thirty or even forty 
tail-feathers, instead of twelve or fourteen — the normal number in 
all the members of the great pigeon family : these feathers are kept 
expanded, and are carried so erect, that in good birds the head and 
tail touch: the oil-gland is quite aborted. Several other less 
distinct breeds might be specified. 

In the skeletons of the several breeds, the development of the 
bones orthB face in length and "breadth and curvature differs enor- 
mously. The shape, as weiraTflie T)read£h and length of the ramus 
of the lower jaw, varies in a highly remarkable mannerT The 
'caiidSt'Siia sacral rerffebrseVary in number ; as does the number of 
"^e^ibs^ topther T^rlth 'T;heir relative "Breadth and the presence of 
processes. The size and shape of the apertures in the sternum are 
iughly variatTe j^'so is thedegfee of divergence and relative size of 
the two arms of the furcula. The proportional width of the gape 
of mouth, the proportional length of the eyelids, of the orifice of 
the nostrils, of the tongue (not always in strict correlation with the 
length of beak), the size of the crop and of the upper part of the 
oesophagus ; the development and abortion of the oil-gland ; the 
number of the primary wing and caudal feathers; the relative 
length of the wing and tail to each other and to the body ; the 
relative length of the leg and foot; the number of scutellse on 
the toes, tb^ development of skin between the toes, are all points 
of structure which are variable. The juried at which the perfect 
plumage is acquired varies, as does the state of the down with which 
the nestliug birds are clothed when hatched. The shape and size 



f 



Chap. I. Domestic Pigeons, \J 

of the eggs vary. The manner of flight, and in some breeds the 
voice and disposition, differ remarkably. Lastly, in certain breeds, 
the males and females have come to differ in a slight degree from 
■each other. 

Altogether at least a score of pigeons might be chosen, which, if 
£hown to an ornithologist, and he were told that they were wild 
birds, would certainly be ranked by him as well-defined species. 
Moreover, I do not believe that any ornithologist would in this 
case place the English carrier, the short-faced tumbler, the runt, the 
barb, pouter, and fantail in the same genus ; more especially as in 
«ach of these breeds several truly-inherited sub-breeds, or species, as 
he would call them, could be shown him. 

Gr eat as are the differences between th e breeds of the p igeon , 
I am tullv convinced that thft ^nmT^on opinion ot nafuralisis is 



"TCRrect, namely, that all are descended from' TKc "rffck-pij^dfi 
(ColUlUba llvlk), iilcludiug'unJer ~lhis~term 8ev'erar~*gebgra[>hlcar 
races or sub-species, which differ from each other in the most trifling 
respects. As several of the reasons which have led me to this 
belief are in some degree applicable in other cases, I will here briefly 
give them. I f the seve ral breeds are not varieties, and have not 
proceeded from the rock-pTgeon, they must have descended from at 
least seven or eig^t aboriginal stocks ; for it is impossible to make 
the present domestic breeds, by the erossing of any lesser number : 
how, for instance, could a pouter be produced by crossing two 
breeds unless one of the parent-stocks possessed the characteristic 
enormous crop? The supposed aboriginal stocks must all have 
been rock -pigeons , that is, they cGd nof breed or willingly perch on 
irees. j bui besides "C. livia, with its geographical sub-species, only 
tw o or tEfSe oth er species of rock-pigeons are known ; and tBese' 
liave not any o i the c naractcrs of th*e 'domestic "breeds. Hence the 
supposed" aboriginal stocH inust either * still ' exist in the countries 
where they were originally domesticated, and yet be unknown to 
ornithologists ; and this, considering iJieir size, habits, and remark- 
able characters, seems improbable ; or they must have become 
extinct in the wild state. But birds breeding on precipices, and 
good fliers, are unlikely to be exterminated ; and the common rock- 
pigeon, which has the same habits with the domestic breeds, has 
not been exterminated even on several of the smaller British islets, 
or on the shores of the Mediterranean. Hence the supposed exter- 
mination of so many species having similar habits with the rock*- 
pigeon seems a very rash assumption. Morever, the several above- 
named domesticated breeds have been transported to all parts of the 
world, and, therefore, some of them must have been carried back 

c 



• 



i8 Domestic Pigeofts, Chap, l 

again into their native country ; but not one has become wild or 
feral, thou^ the dovecot-pigeon, which is the rock-pigeon in a very 
slightly altered state, has become feral in several places. Again, 
all recent experience shows that it is difficult to get wild animals to 
breed freely under domestication ; yet, on the hypothesis of the 
multiple origin of our pigeons, it must be assumed that at least 
seven or eight species were so thoroughly domesticated in ancient 
times by half-civilised man, as to be quite prolific under con* 
£nement. 

An argument of great weight, and applicable in several other 
cases, is^ that the above-specified breeds, though agreeing generally 
with the wild rock-pigeon in constitution, habits, voice, colouring, 
and in most parts of their structure, yet are certainly highly abnor- 
mal in other parts ; we may look in vain through the whole great 
family of Oolimibidao for a beak like that of the English carrier, or 
that of the short-faced tumbler, or barb ; for reversed feathers like 
those of the Jacobin ; for a crop like that of the pouter ; for tail- 
feathers like those of the fantail. Hence it must be assumed not 
only that half-civilised man succeeded in thoroughly domesticating 
several species, but that he intentionally or by chance picked out 
extraordinarily abnormal species; and further, that these very 
species have since all become extinct or unknown. So many strange 
contingencies are improbable in the highest degree. 

Some facts in regard to the colouring of pigeons well deserve 
consideration. The rock-pigeon is of a slaty-blue, with white loins; 
but the Indian sub-species, 0. intermedia of Strickland, has thi& 
part bluish, llie tail has a terminal dark bar, with the outer 
feathers externally edged at the base with white. The wings have 
two black bars. Some semi-domestic breeds, and some truly wild 
breeds, have, besides the two black bars, the wings chequered with 
black. These several marks do not occur together in any other 
species of the whole family. Now, in every one of the domestic 
breeds, taking thoroughly well-bred birds, all the above marks, even 
to the white edging of the outer tail-feathers, sometimes concur 
perfectly developed. Moreover, when birds belonging to two or 
more distinct breeds are crossed, none of which are blue or have 
any of the above-specified marks, the mongrel offspring are very 
apt suddenly to acquire these characters. To give one instance out of 
several which I have observed : — I crossed some white fantails, which 
breed very true, with some black barbs — and it so happens that 
blue varieties of barbs are so rare that I never heard of an instance 
in England ; and the mongrels were black, brown, and mottled. I 
also crossed a barb with a spot, which is a white bird with a red 



Chap. I. Domestic Pigeons. 19 

tail and red spot on the forehead, and which notoriously breeds rery 
true ; the mongrels were dnsky and mottled. I then crossed one of 
the mongrel barb-fantails with a mongrel harb-spot, and they pro- 
duced a bird of as beantifnl a bine colour, with the white loins, 
double black wing-bar, and barred and white-edged tail-feathers, as 
any wild rock-pigeon 1 We c an nndere tend_these facts, on th e 
well-kno wn pr inciple of f5V5?§ionTo ancestral characters, if all 
the d omestic breeds are desce nded from the rock-pigeon. BuTif 
we aeny this, we must make'one of the two following liighly im- 
probable suppositions. Either, first, that all the several imagined 
aboriginal stocks were coloured and marked like the rock-pigeon, 
although no other existing species is thus coloured and marked, so 
that in each separate breed there might be a tendency to revert to 
the very same colours and markings. Or, secondly, that each 
breed, even the purest, has within a dozen, or at most within a 
score, of generations, been crossed by the rock-pigeon : 1 say within 
a dozen or twenty generations, for no instance is known of crossed 
descendants reverting to an ancestor of foreign blood, removed by a 
greater number of generations. In a breed which has been crossed 
only once, the tendency to revefTTo^ny character derived from 
S UCH a cf %s wiii naturally become less and less, as in each succeed- 
mg generation "there win be teSS of the foreign, blood i^ but when 
therti lias been~no cfo687 and fhere is a tendency in the "brSed to 
revert to a c haraci er which was lost during some former generation, 
thls jtendencyr for lill tliai we can see to {he "contrary, may be 
transmitted undiminished for an indefinite number of generations. "' 
TK«le two distinct cases of reversion are often confounded together 
by those who have written on inheritance. 

J^S^ly, t he hybrids or mongrels fro m between all the breeds of 
the pigeon are peri'ectiy lertile, as jL can's tale^from^iny own obser- 
vation s , purposely made, on the most distinct breeds." Now, hardly 
any cases nave been asceriainea with certMtit V 6f hybrids fromlwo 
quite distinct species of animals being penecHy lertile! Sbnie 
"aufhoTS Deheve that long-continued "domfiSWcatidn "elmiihates this 
strong tendency to sterility in species. From the history of the 
dog, and of some other domestic animals, this conclusion is pro- 
bably quite correct, if applied to species closely related to each 
other. But to extend it so far as to suppose that species, aborigi- ^^ 
nally as distinct as carriers, tumblers, pouters, and fantails now are, \ 
should yield offspring perfectly fertile inter se, would be rash in the 
extreme. 

From these several reasons, namely, — the improbability of man 
having formerly made seven or eight supposed species of pigeons to 

2 



20 Dofnestic Pigeons. Chap, l 



. breed freely under domestication; — these supposed species being 
f\ quite unknown in a wild state, and their not having become any- 
where feral; — these species presenting certain very abnormal cha- 
racters, as compared with all other Columbidae, though so like the 
rock-pigeon in most respects ; — the occasional re-appearance of 

V the blue colour and various black marks in all the breeds, both 
when kept pure and when crossed ; — and lastly, the mongrel off- 
spring being perfectly fertile; — from these several reasons, taken 
together, we may safely conclude that all our domestic breeds are 
descended from the rock-pigeon or Columba livia with its geogra- 
phical sub-species. 

In favour of this view, I may add, firstly, that the wild C. livia 
has been found capable of domestication in Europe and in India ; 
and that it agrees in habits and in a great number of points of struc- 
ture with all the domestic breeds. Secondly, that, although an 
English carrier or a short-faced tumbler differs immensely in certain 
characters from the rock-pigeon, yet that, by comparing the several 
sub-breeds of these two races, more especially those brought from 
distant countries, we can make, between them and the rock-pigeon, 
an almost perfect series ; so we can in some other cases, but not 
with all the breeds. Thirdly, those characters which are mainly dis- 
tinctive of each breed are in each eminently variable, for instance 
the wattle and length of beak of the carrier, the shortness of that 
of the tumbler, and the number of tail-feathers in the fantail ; and 
the explanation of this fact will be obvious when we treat of Selec- 
tion. Fourthly, pigeons have been watched and tended with the 
utmost care, and loved by many people. They have been domesti- 
cated for thousands of years in several quarters of the world ; the 
earliest known record of pigeons is in the f^fth Egyptian dynasty, 
about 3000 B.C., as was pointed out to me by Professor Lepsius ; 
but Mr. Birch informs me that pigeons are given in a bill of fare in 
the previous dynasty. In the time of the Romans, as we hear from 
Pliny, immense prices were given for pigeons ; " nay, they are come 
to this pass, that they can reckon up their pedigree and race." 
Pigeons were much valued by Akber Khan in India, about the year 
1600 ; never less than 20,000 pigeons were taken with the court. 
" The monarchs of Iran and Turan sent him some very rare birds ; " 
and, continues the courtly historian, " His Majesty by crossing the 
breeds, which method was never practised before, has improved them 
astonishingly." About this same period the Dutch were as eager 
about pigeons as were the old Romans. The paramount importance 
of these considerations in explaining the immense amount of vari- 
ation which pigeons have undergone, will likewise be obvious when 



Chap. I. Boffiestic Pigeofis, 21 

we treat of Selection, We shall then, also, see how it is that the 
several breeds so often have a somewhat monstrous character. It 
is also a most favourable circumstance for the production of dis- 
tinct breeds, that male and female pigeons can be easily mated for 
life; and thus dilTerent breeds can be kept together in the same 
aviary. 

I have discussed the probable origin of domestic pigeons at some, 
yet quite insufficient, length ; because when I first kept pigeons 
and watched the several kinds, well knowing how truly they breed, 
I felt fully as much difficulty in believing that since they had been 
domesticated they had all proceeded from a common parent, as any 
naturalist could in coming to a similar conclusion in regard to the 
many species of finches, or other groups of birds, in nature. One 
circumstance has struck me much ; namely^ that nearly all the 
breeders of the various domestic animals and the cultivators of 
plants, with whom I have conversed, or whose treatises I have read, 
are firmly convinced that the several breeds to which each has at- 
tended, are descended from so many aboriginally distinct species. 
Ask, as I have asked, a celebrated raiser of Hereford cattle, whether 
his cattle might not have descended from Long-horns, or both from 
a common parent-stock, and he will laugh you to scorn. 1 have 
never met a pigeon, or poultry, or duck, or rabbit fancier, who was 
not fully convinced that each main breed was descended from a dis- 
tinct species. Yan Mons, in bis treatise on pears and apples, shows 
how utterly he disbelieves that the several sorts, for instance a 
Ribston-pippin or Codlin-apple, could ever have proceeded from the 
seeds of the same tree. Innumerable other examples could be given. 
The explanation, I think, is simple: from long-continued study 
they arc strongly impressed with the differences between the several 
races ; and though they well know that each race varies slightly, 
for they win their prizes by selecting such slight differences, yet 
they ignore all general arguments, and refuse to sum up in their 
minds slight differences accumulated during many successive gene- 
rations. May not those naturalists who, knowing far less of the 
laws of inheritance than does the breeder, and knowing no more 
than he does of the intermediate links in the long lines of descent, 
yet admit that many of our domestic races are descended from the 
same parents— -may they not learn a lesson of caution, when they 
deride the idea of species in a state of nature being lineal descendants 
of other species ? 



22 Selection by Man, Chap. L 

Frinciples cf SdecHan cmcienUy followed^ and their Effects. 

Lei us now briefly consider the steps by which domestic races 
have been produced, either from one or from several allied species. 
Some effect may be attributed to the direct and definite action of 
the external conditions of life, and some to habit ;- but he would be 
a bold man who would account by such agencies for the differences 
between a dray and race horse, a greyhound and bloodhound, a car- 
rier and tumbler pigeon. One of the most remarkable features in 
our domesticated races is that we see in them a daptation , not indeed 
I to the animal's or plant's own good, but to' inan^s use or fanc y. 
Some variations useful to him have probably arisen suddenly, or by 
one step ; many botanists, for instance, believe that the fuller's teasel, 
with its hooks, whiq(i cannot be rivalled by any mechanical con- 
trivtince, is only a variety of the wild Dipsacus ; and this amount 
of change may have suddenly arisen in a seedling. So it has pro- 
bably been with the turnspit dog ; and this is known to have been 
the case with the ancon sheep. But when we compare the dray- 
horse and race-horse, the dromedary and camel, the various breeds 
of sheep fitted either for cultivated land or mountain pasture, with 
the wool of one breed good for one purpose, and that of another 
breed for another purpose ; when we compare the many breeds of 
dogs, each good for man in different ways ; when we compare the 
game-cock, so pertinacious in battle, with other breeds so little quar- 
relsome, with "everlasting layers" which never desire to sit, and 
with the bantam so small and elegant ; when we compare the host 
of agricultural, culinary, orchard, and flower-garden races of plants, 
most useful to man at different seasons and for different purposes, or so 
beautiful in his eyes, we must, I think, look further than to mere 
variability. We cannotsu ppose that all the breeds wer e ^T;^(^denly 
produced as p er fwt &n d as useful as we now s ee them ; indeed, in 

tmanycases7 we" know that this has not been their History. The 
key is man's power of accum ulative selection ; nature giv es su cces- 
sive variation s ; man adds tEem up in certain'^directions usefuTT;© 
him. In this sense he 'may*15e said' to" have made for himself useful 
Vfeeds. """ " '""'*'" 

The great power of this principle of selection is not hypothetical. 
It is certain that several of our eminent breeders have, even within 
a single lifetime, modified to a large extent their breeds of cattle and 
sheep. In order fully to realise what they have done, it is almost 
necessary to read several of the many treatises devoted to this sub- 
ject, and to inspect the animals. Breeders habitually speak of an 
animal's organisation as something plastic, which they can model 



cuAP. L Selection by Man, 23 

almofit as they please. If I had space I could quote nnmeroiui pa»- 
«ages to this effect from highly competent authorities. Yooatt^ 
who was probably better aoquamted with the works of agriculturists 
than almost auy other individual, and who was himself a very good 
judge of animals, speaks of the principle of selection as " that which 
enables the agriculturist, not only to modify the character of his 
flock, but to change it altogether. It is the magician's wand, by 
means of which he may summon into life whatever form and mould 
he pleases." Lord Somerville, speaking of what breeders have done 
for sheep, says : — " It would seem as if they had chalked out upon 
^ wall a form perfect in itself, and then had given it existence." In 
Saxony the impo rtance of the principle of selection in regard to 
mtirliio aliwp Itf flo luliy recognised, tEFmeh^J oITow'rt'as a tr ade; 
the sheep are placed on a table and are stuaiea, uice a picture by a 
connoisseur ; this is done three times at intervals of months, and the 
jsheep are each time marked and classed, so that the very best may 
ultimately be s elected for breeding . *""* 

What Engiisii breeders have actually effected is proved by the 
«normous prices given for animals with a good pedigree ; and these 
Lave been exported to almost every quarter of the world. The 
improvement is by no means generally duo to crossing different 
breeds ; all the best breeders are strongly opposed to this practice, 
except sometimes amongst closely allied sub-breeds. And when a 
cross has been made, the closest selection is far more indispensable 
even than in ordinary cases. If selection consisted merely in sepa- 
rating some very distinct variety, and breeding from it, the principle 
would be so obvious as hardly to be worth notice ; but its import- 
ance consists in the great effect produced by the accumulation in 
one direction, during successive generations, of differences absolutely 
inappreciable by an uneducated eye — differences which I for one 
have vainly attempted to appreciate. Not one man in a thousand 
has accuracy of eye and judgment sufficient to become an eminent 
breeder. If gifted with these qualities, and he studies hlEi subject 
for years, and devotes his lifetime to it with indomitable i)erse- 
Terance, he will succeed, and may make great improvements ; if he 
wants any of these qualities, he will assuredly fail. Few would 
Teadily believe in the natural capacity and years of practice requisite 
to become even a skilful pigeon-fancier. 

. The same principles are followed by horticulturists; but the vari- 
ations are here often more abrupt. No one supposes that our 
choicest productions have been produced by a single variation from 
the aboriginal stock. We have proofs that this has not been so in 
fioveral cases in which exact records have been kept ; thus, to give a 



24 Methodical Selection. Chap, i, 

Tery trifling instance, the steeuiily-increasing size of the commott 
gooseberry may be quoted. We see an astonishing improvement in 
many florists' flowers, when the flowers of the present day are com- 
pared with drawings made only twenty or thirty years ago. When 
a race of plants is once pretty well established, the seed-raisers da 
not pick out the best plants, but merely go over their seed-beds, 
and pull up the "rogues,** as they call the plants that deviate 
from the proper standard. With animals this kind of selection is, 
in fact, likewise followed ; for hardly any one is so carele ss as t o 
breed from his w orst anima ls.'**^ "" " " ' 

In regard to plants, there is another means of observing the 
accumulated effects of selection — namely, by comparing the diver- 
sity of flowers in the different varieties of the same species in the 
flower-garden ; the diversity of leaves, pods, or tubers, or whatever 
part is valued, in the kitchen-garden, in comparison with the 
flgwers of the same varieties ; and the diversity of fruit of the same 
species in the orchard, in comparison with the leaves and flowers 
of the same set of varieties. See how different the leaves of the 
cabbage are, and how extremely alike the flowers ; how unlike the 
flowers of the heartsease are, and how alike the leaves ; how much 
the fruit of the different kinds of gooseberries differ in size, colour, 
shape, and hairiness, and yet the flowers present very slight diffe- 
rences. It is not that the varieties which differ largely in some one 
point do not differ at all in other points ; this is hardly ever, — I 
speak after careful observation, — ^perhaps never, the case. The law 
^ of correlated variation, the importance of which should never be 
overlooked, will ensure some differences ; but, as a general rule, it 
cannot be doubted that the continued selection of slight variations, 
either in the leaves, the flowers, or the fruit, will produce races dif- 
fering from each other chiefly in these characters. 

It may be objected that the principle of selection has been 
reduced to methodical practice for scarcely more than three-quarters 
of a century ; it has certainly been more attended to of late years, 
and many treatises have been published on the subject ; and the 
result has been, in a corresponding degree, rapid and important. 
But it is very far from true that the principle is a modem discovery. 
I could give several references to works of high antiquity, in which 
the full importance of the principle is acknowledged. In rude and 
barbarous periods of English history choice animals were cften im- 
ported, and laws were passed to prevent their exportation: the 
destruction of horses under a certain size was ordered, and this may 
be compared to the " roguing '* of plants by nurserymen. The prin- 
ciple of selection I find distinctly given in an ancient Chinese ency- 



Chap, l Unconscious Selection. 25 



clopaedia. Explicit rales arc laid down by some of the Eoman 
classical writers. From passages in Genesis, it is clear that the 
colour of domestic animals was at that early period attended to. 
Savages now sometimes cross their dogs with wild canine animals, 
to improve the breed, and they formerly did so, as is attested by 
passages in Pliny. The savages in South Africa match their 
draught cattle by colour, as do some of the Esquimaux their teams 
of dogs. Livingstone states that good domestic breeds are highly 
valued by the negroes in the interior of Africa who have not associ^ 
ated with Europeans. Some of these facts do not show actual 
selection, but they show that the breeding of domestic animals was 
carefull y attended to in ancient thne s. and is' now at ten Jed to" ISj 
tne lowest savages. It would, indeed, have been a strange feet, had 
attention not been paid to breeding, for the inheritance of good and 
bad qualities is so obvious. *— — ^~"" ' 

Unconscious Selection, 

At the present time, eminent breeders try by methodical selection, 
with a distinct object in view, to make a new strain or sub-breed, 
superior to anything of the kind in the country. But, for our pur- 
pose, a form of Selection, which may be called Unconscious, and 
which results from every one trying to possess and breed from the 
best individual animals, is more important. Thus, a man who 
intends keeping pointers naturally tries to get as good dogs as he 
can, and afterwards breeds from his own best dogs, but he has no 
wish or expectation of permanently altering the breed. Neverthe- 
less we may infer that this process, continued during centuries, 
would improve and modify any breed, in the same way as Bake- 
well, Collins, &c., by this very same process, only carried on more 
methodically, did greatly modify, even during their lifetimes, the 
forms and qualities of their cattle. Slow and insensible changes of 
this kind can never be recognised unless actual measurements or 
careful drawings of the breeds in question have been made long ago, 
which may serve for comparison. In some cases, however, un- 
changed, or but little changed individuals of the same breed exist 
in less civilised districts, where the breed has been less improved. 
There is reason to believe that King Charleses spaniel has been un- 
consciously modified to a large extent since the time of that monarch. 
Some highly competent authorities are convinced that the setter is 
directly derived from the spaniel, and has probably been slowly 
altered from it. It is known that the English pointer has been 
greatly changed within the last century, and in this case the change 
has, it is believed, been chiefly effected by crosses with the foxhound ; 



26 Unconscious Selection, Chap. I. 

_^_^^ i " 

but what concerns us is, that the change has been effected uncon- 
sciously and gradually, and yet so effectually, that, though the old 
Spanish |)ointer certai nly came from Sp ain, Mr. Borrow has not seen, 
aiTajm-mfoTOeJ Jy.J^ a ny natiyejJQaLia^S paiii like., our pointer. 

Bv a ^ «iT|^il^r ff lifi fl^ fi^lMt^i^''"! ^^ ^y careful training, Engli sh 
racenofsS have come to surpass in fleetness and size the parent 
Arabs, so thai the l&tter, by tne regulations for the Goodwood Races, 
are fiivoured in the weights which they carry. Lord Spencer and 
others have shown how the cattle of England have increased in 
weight and in early maturity, compared with the stock formerly 
kept in this country. By comparing the accounts given in various 
old treatises of the former and present state of carrier and tumbler 
pigeons in Britain, India, and Persia, we can trace the stages through 
which they have insensibly passed, and come to differ so greatly 
from the rock-pigeon. 

Youatt gives an excellent illustration of the effects of a course of 
selection, which may be considered as unconscious, in so far that the 
breeders could never have expected, or even wished, to produce 
the result which ensued — ^namely, the production of two distinct 
strains. The two flocks of Leicester sheep kept by Mr. Buckley 
and Mr. Burgess, as Mr. Youatt remarks, " have been purely bred 
from the original stock of Mr. Bakewell for upwards of fifty years. 
There is not a suspicion existing in the mind of any one at all 
acquainted with the subject, that the owner of either of them has 
deviated in any one instance from the pure blood of Mr. Bakewell's 
flock, and yet the difference between the sheep possessed by these 
two gentlemen is so great that they have the appearance of being 
quite different varieties." 

If there exist savages so barbarous as never to think of the inherited 
(character of the of&pring of their domestic animals, yet any one 
animal particularly useful to them, for any special purpose, would 
be carefully preserved during famines and other accidents, to which 
savages are so liable, and such choice animals would thus generally 
leave more offspring than the inferior ones; so that in this case 
there would be a kind of unconscious selection going on. We see 
the value set on animals even by the barbarians of Tierra del Fuego, 
by their killing and devouring their old women, in times of dearth, 
as of less value than their dogs. 

In plants the same gradual process of improvement, through the 
occasional preservation of the best individuals, whether or not 
suf&ciently distinct to be ranked at their first appearance as distinct 
varieties, and whether or not two or more species or races have 
become blended together by crossing, may plainly be recognised in 




Chap. I. Uncoftscious Selection. 27 

the inoreased size and beauty which we now see in the varietieB of 
the heartsease, sose, pelargoziiam, dahlia, and other plants, when 
compared with the older yarietiea or with theix^parent-stocks. Ko 
one would ever expect to get a first-rate heanease or dahlia from 
the seed of a wild plant No one would expecv to raise a first-rate 
melting pear from the seed of the wild pear, though he might 
succeed from a poor seedling growing wild, if it had come from a 
garden-stock. The pear, though cultivated in classical times, 
appears, from Pliny's description, to have been a fruit of very 
inferior quality. I have seen great surprise expressed' in horti- 
cultural works at the wonderful skill of gardeners, in having pro- 
duced such splendid results from such poor materials ; but the art 
has been simple, and, as fisu* as the final result is concerned, has 
been followed almost unconsciously. It has consisted in always 
cultivating the best known variety, sowing its seeds, and, when a 
slightly better variety chanced to appear, 3glfr*'"g **| and so cm- 
wards. But the gardeners of the classical period, who cultivated 
the best pears which they could procure, never thought what 
splendid fruit we should eat ; though we owe our excellent fruit, 
in some small degree, to their having naturally chosen and preserved 
the best varieties they could anywhere find. 

A lai^e amount of change, thus slowly and unconsciously ac- 
cumulated, explains, as I believe, the well-known fact, that in a 
number of cases we cannot recognise, and therefore do not know, 
the wild parent-stocks of the plants which have been longest culti- 
vated in our flower and kitchen gardens. If it has taken centuries 
or thousands of years to improve or modify most of our plants up to 
their present standard of usefulness to man, we can understand how 
it is that neither Australia, the Gape of Good Hope, nor any other 
region inhabited by quite uncivilised man, has afforded us a single 
plant worth culture. It is not that these countries, so rich in species, 
do not by a strsuige chance possess the aboriginal stocks of any use- 
ful plants, but that the native plants have not been improved by 
continued selection up to a standard of perfection comparable with 
that acquired by the plants in countries anciently civilised. 

In regard to the d omestic animals kept by unci vilised man, it 
should not be overlooKea ihat they aimosFalway s Tiave to struggle 
for their own fo od, at least durint> WfCiim seasons. Aii3 ^n"two 
countries very dillerently circumstanced, mdividii als of the same 
^s pSies, navmg sligutiy amerent constitutions or struciure, would 
CIten succeed better in the one cotmlfy thail 111 the other ; an ? thus 
by a process of "natural seTec^oy^ as will hereaRer'be more lul^ 
explained, two sub-breeds inia:lit be lOfmwt'. — Tirte,"T)efEaps,' partly 






28 Unconscious Selection, Chap. L 

explains why the varieties kept by savages, as has been remarked 
by some authors, have more of the character of true species than the 
varieties kept in civilised countries. 

On the view here given of the important part which selection by 
man has played, it becomes at once obvious, how it is that our 
domestic races show adaptation in their structure or in their habits 
to man's wants or fancies. We can, I think, further understand the 
frequently abnormal character of our domestic races, and likewise 
their differences being so great in external characters, and relatively 
so slight in internal parts or organs. Man can hardly select, or 

^ only with much difficulty, any deviation of structure excepting such 
as is externally visible ; and indeed he rarely cares for what is 
internal. He can never act by selection, excepting on variations 

• which are first given to him in some slight degree by nature. No 
man would ever try to make a fantail till he saw a pigeon with 
a tail developed in some slight degree in an unusual manner, or a 
pouter till he saw a pigeon with a crop of somewhat unusual size ; 
and the more abnormal or unusual any character was when it first 
appeared, the more likely it would be to catch his attention. But 
to use such an expression as trying to make a fantail, is, I have no 
doubt, in most cases, utterly incorrect. The man who first selected 
a pigeon with a slightly larger tail, never dreamed what the descend- 
ants of that pigeon would become through long-continued, partly 
unconscious and partly methodical, selection. Perhaps the parent- 
bird of all fantails had only fourteen tail-feathers somewhat expanded, 
like the present Java fantail, or like individuals of other and distinct 
breeds, in which as many as seventeen tail-feathers have been 
counted. Perhaps the first pouter-pigeon did not inflate its crop 
much more than the turbit now does the upper part of its oeso- 
phagus, — a habit which is disregarded by all fanciers, as it is not 
one of the points of the breed. 

Nor let it be thought that some great deviation of structure 
would be necessary to catch the fancier's eye: he perceives ex- 
tremely small differences, and it is in human nature to value any 
novelty, however slight, in one's own possession. Nor must the 
value which would formerly have been set on any slight differences 
in the individuals of the same species, be judged of by the value 
which is now set on them, after several breeds have fairly been 
established. It is known that with pigeons many slight variations 
now occasionally appear, but these are rejected as faults or devia- 
tions from the standard of perfection in each breed. The common 
goose has not given rise to any marked varieties ; hence the Tou- 
louse and the common breed, which differ only in colour, that most 



Chap, l Circumstances favourable to Selection. 29 

fleeting of cliaracteis, have lately been exhibited as diBtinct at oar 
ponltry-shows. 

These yiews appear to explain what has sometimes been noticed 
--namely, that we know hardly anything about the origin or history 
of any of our domestic breeds. But, in fact, a breed, like a dialect 
of a language, can hardly be said to ha^ a distinct origin. A man 
preserves and breeds from an individual with some slight deviation 
of structure, or takes more care than usual in matching his best 
animals, and thus improves them, and the improved animals slowly 
spread in the immediate neighbourhood. But they will as yet 
hardly have a distinct name, and from being only slightly valued, 
their history will have been disregarded. When further improved 
by the same slow and gradual process, they will spread more widely, 
and will be recognised as something distinct and valuable, and will 
then probably first receive a provincial name. In semi-civilised 
countries, with little free communication, the spreading of a new 
sub-breed would be a slow process. As soon as the points of value 
are once acknowledged, the principle, as I have called it, of un* 
conscious selection will always tend, — perhaps more at one period 
than at another, as the breed rises or falls in fashion, — perhaps more 
in one district than in another, according to the state of civilisation 
of the inhabitants, — slowly to add to the characteristic features of 
the breed, whatever they may be. But the chance will be infinitely 
small of any record having been preserved of such slow, varying, 
and insensible changes. 

Circumstances favourcMe to MarCs Power of Selection. 

I will now say a few words on the circumstances, favourable, or 
the reverse, to man's power of selection, A high degree of vari^ 



abilit y is obviously favourable , as freely giving "l^e materials for 
selection to work on ; not that mere individual differences are not 
amply suflScient, with extreme care, to allow of the accumulation 
of a large amount of modification in ajmost any desired direction. 
But as variations manifestly useful or pleasing to man appear 
only occasionally, the chance of their appearance will be muchi 
increased by a large number^of individuals being kept. HenceJ 
numb er is of the highest importance for success. On this principle 
Marshall formerly remarked, with respect to the sheep of parts cf 
Yorkshire, " as they generally belong to poor people, and are mostly 
in small lots, they never can be improved." On the other hand, 
nurserymen, from keeping large stocks of the same plant, are gener- 
ally far more successful than amateurs in raising new and valuable 
varieties. A large number of individuals of an animal or plant can 



30 Circumstances favourable to Selection, Chap. I. 

be reared only where the conditions for it s propagation are favour* 
able. When the itidividuaU kte yuani^', filTwiU bo allowed to breed, 
whatever their quality may be, and this will effectually prevent 
selection. But probably the most important element is that the 
animal or plant should be so highly valued by man, that the closest 
attention is paid to even the slightest deviations in its qualities or 
structure. Unless such attention be paid nothing can be effected. 
I have seen it gravely remarked, that it was most fortunate that 
the strawberry began to vary just when gardeners began to attend 
to this plant. No doubt the strawberry had always varied since 
it was cultivated, but the slight varieties had been neglected. As 
soon, however, as gardeners picked out individual plants with 
slightly larger, earlier, or better fruit, and raised seedlings from 
them, and again picked out the best seedlings and bred from them, 
then (with some aid by crossing distinct species) those many 
admirable varieties of the strawberry were raised which have ap- 
peared during the last half-century. 

With animals, facility in preven ting crosses is an impor tant 
element in the fof m ation^o fne^TlSces^af 'least, in a country 
which is already stocked with other races. In this respect en- 
closure of the land plays a part. Wandering savages or the in- 
habitants of open plains rarely possess more than one breed of the 
same species. Pigeons can be mated for life, and this is a great 
convenience to the fancier, for thus many races may be improved 
and kept true, though mingled in the same aviary ; and this cir- 
cumstance must have largely favoured the formation of new breeds. 
Pigeons, I may add, can be propagated in great numbers and at a 
very quick rate, and inferior birds may be freely rejected, as when 
killed they serve for food. On the other hand, cats, from their 
nocturnal rambling habits, cannot be easily matched, and, although 
so much valued by women and children, we rarely see a distinct 
breed long kept up ; such breeds as we do sometimes see are almost 
always imported from some other country. Although I do not 
doubt that some domestic animals vary less than others, yet the 
rarity or absence of distinct breeds of the cat, the donkey, peacock, 
goose, &c., may be attributed in main part to^ selectio n not hg^mg 
been broug htjnto pl^ y : in cats, irom the^ifficulfcy m pairing them ; 
ind^nkeys, from only a few being kept by poor people, and little 
attention paid to their breeding ; for recently in certain parts of 
Spain and of the United States this animal has been surprisingly 
modified and improved by careful selection : in peacocks, from not 
being very easily reared and a large stock not kept : in geese, from 
being valuable only for two purposes, food and feathers, and more 



Chap. I. Circumstances favourable to Selection, 31 

especially fronx so pleasure having been felt in the display of distinct 
breeds ; but the goose, under the conditions to which it is exposed 
when domesticated, seems to have a singularly inflexible organisa- 
tion, though it has varied to a slight extent, as I have elsewhero 
described. 

Some authors have maintained that the amount of variation in 
our domestic productions is soon reached, and can never afterwards 
be exceeded. It would be somewhat rash to assert that the limit 
has been attained in any one case ; for almost all our animals and 
plants have been greatly improve d in many ways within a recent 
period ; and this implies variation . It would be equally rash to 
assert that characters now increased to their atmost limit, could 
not, after remaining fixed for many centuries, again vary under 
new conditions of life. No doubt, as Mr. Wallace has remarked 
with much truth, a limit will be at last reached. For instance, 
t here must be a limit to th e fleetness of any terrestrial animal, as 
this will be determined by the friction'to T)e~ overcome, tTie weight 
of body to be carried, and the power of contraction in the muscular 
fibres. But what concerns us is t hat the domestic varieties of tho^ 
same specie s diHer I'fetti feftCh ftth er m almost every cnaracter, which 
idSH MS attended to and selected, nioy e ihaXLd£Lihfi.di&£iG£i J!£^^^ 
of th e same g enera . Isidore Geoffiroy St. Hilaire has proved this in 
regard to size, and so it is w ith colou r and probably with the length 
<^hair. With respect to ^se^ess, which depends on many "BodDy 
characters. Eclipse was far fleeter, and a dray-horse is incomparably 
strong er than any two natural species belonging to the same 
genus. So with plants, the seeds of the different varieties of the 
bean or maize probably differ more in size, than do the seeds of 
the distinct species in any one genus in the same two families. 
The same remark holds good in regard to the fruit of the several 
varieties of the plum, and still more strongly with the melon, as 
\ysll as in many other analogous cases. 

^To sum up on the origin of our domestic races of animals and. 
plants. Changed con ditions of life are of the high est importance in 
causing variability, both by acting directly on the organisaHoD*, and 
" indirectly Iby affectmg^e' r eproductive" sygtemr It Is not probable 
tJiai variability is an inherent and necessary contingent, under all 
circumstances. The greater or less force of inheritance and rever- 
sion determine whether variations shall endure. Variability is \ 
gover ned by many unknow n laws , of which correlated growth is"!" 
p rooabiy the most impo rlant! SbmeiHTng, but how much we do i 
not know, may be attributed to the definite action of the conditions 1 
of life. Some, perhaps a great, effect may be attributed to the / 



'I 






32 



Summary of Selection. 



Chap. I. 



increased use or disuse of parts. Tlje final. result is thus rendered 
innmteiy complex. In sorde cases the inter crossing of aboriginally 
distinc t species app ears io have played an important" part*ln {he 
dngm of our breeosT When several breeds have^ ohcerBeehT formed 
m any country, their occasional intercrossing, with the aid of selec- 
tion, has, no doubt, largely aided in the formation of new sub- 
breeds ; but the importance of crossing has been much ex agge rated, 
both in regard to animals anT^ to' tUbse plants which are pro- 
pagated by seed. With plants which are temporarily propagated 
by cuttings, buds, &c., the importance of crossing is immense ; for 
the cultivator may here disregard the extreme variability both of 
hybrids and of mongrels, and the sterility of hybrids ; but plants 
not propagated by seed are of little importance to us, for their 
endurance is only temporary. QveLjlL these causes of Chang e, the 
accumulative action of Selection, whether applied methodically and 
quickly, or unconsciously and slowly out mofe*efficrenlly, ' seems'fc)"' 
I have been the predominant Power. 



w 



Nr 



I 



> 



Cttip. IL Variation under Nature. 33 



r 



CHAPTER IL 

Variation under Nature. 

Variability — Individual differences — Donbtful species — Wide ranginn^, 
much diffused, and common species, vary most — Species of the lai^er 
genera in each country vary more frequently than the species of the 
smaller genera — Many of the species of the larger genera resemble 
varieties in being very closely, bat unequally, related to each other, 
and in having restricted ranges. 

Before applying the principles arrived at in the last chapter to 
organic beings in a state of nature, we mnst briefly discuss whether 
these latter are subject to any yariation. To treat this subject 
properly, a long catalogue of dry &cts ought to be given ; but these 
I shall reserve for a future work. Nor shall I here discuss the 
various definitions which have been given of the term species. No 
one definition has satisfied all naturalists; yet every naturalist 
knows vaguely what he means when he speaks of a species. 
Generally the term inclu(deii the unbaown element of a oistmcl 
act o f creation. The term " variety " is almost equally difficult 
to denne fout here comjnuniiy of descent is alm os t uni versally 
implied , though, it can rarely be proved. We have also" wEat 
are called monstrosities; but they graduate into varieties. By 
a monstrosity 1 prei§M6 Ifl nregflTso me' cohsTJeratle deviation of 
structure, generally injurious^ or not "use ful to the s;^cies. Some^ 
authore use the term " variation " in a tecHmc^r sense, as implying 
a modification directly due to the physical conditions of life ; and 
" variations *' in this sense are supposed not to be inherited ; but 
who can say that the dwarfed condition of shells in the brackish 
waters of the Baltic, or dwarfed plants on Alpine summits, or the 
thicker fur of an animal from far northwards, would not in some 
cases be inherited for at least a few generations ? and in this case I 
presume that the form would be called a variety. 

It may be doubted whether sudden and considerable deviations 
of structure such as we occasionally s^ in our domestic productions, 
more especially with plants, aye ever permanently propagated in a 
state of nature. Almost every part of every organic being is so 
beautifully related to its complex conditions of life that it seems as 



34 Iftdividual Differences. Chap. IL 

\ improbable that any part should have been suddenly produced 

(perfect, as that a complex machine should have been invented by 
man in a perfect state. Under domestication monstrosities some- 
times occur which resemble normal structures in widely different 
animals. 'J'hus pigs have occasionally been bom with a sort of 
proboscis, and if any wild species of the same genus had naturally 
possessed a proboscis, it might have been argued that this had 
appeared as a monstrosity ; but I have as yet failed to find, after 
diligent search, cases of monstrosities resembling normal structures 
in nearly allied forms, and these alone bear on the question. If 
monstrous forms of this kind ever do appear in a state of nature and 
are capable of reproduction (which is not always the case), as they 
occur rarely and singly, their preservation would depend on 
unusually favourable circumstances. They would, also, during the 
first and succeeding generations cross with the ordinary form, and 
thus their abnormal character would almost inevitably be lost. 
But 1 shall have to return in a future chapter to the preservation 
and perpetuation of single or occasional variations. 

Individvud Differences. 

The many slight differences which appear in the offspring from 
the same parents^ or which it may be presumed have thus arisen, 
from. being observed in the individuals of the same species in- 
habiting the same confined locality, may be called individual 
differences. No one supposes that a}l the individuals of the same 
species are cast in the same actual mould. These individua l 
di fferences are of the highest importance for us, for they are ol'len 

[erite ii, as must be ^miliar to every one ; and they thus affor d 
m aterials for natural selection to ac t on and accumulate, m the 
same manner as man accumulates in any'given^ection individual 
differences in his domesticated productions. These individual 
differences generally affect what naturalists consider unimportant 
parts ; but I could show by a long catalogue of facts, that parts 
which must be called important, whether viewed under a physio- 
logical or classificatory point of view, sometimes vary in the 
individuals of the same species. 1 am convinced that the most 
experienced naturalist would be surprised at the n umber of t he^ 
case s of variab ility, even in important parts of stnicTiire, whicnhe 
could collect on good* authority, as Tliave collected, during a course 
of years. It should be remembered that systematists are far from 
being pleased at finding variability in important characters, and 
that there are not many men who will laboriously examine i n t ern al 
and important organs, and compare them in Djan^ specimens of 



Chap. II. Individual Differettces, 35 

the same species. It would never have been expected that the 
branching of th e main nerves close to the great central gjanglio n of 
\^ ilUUjCl would havre been variable in the same species ; u might 
have been thought that changes of this nature could have been 
effected only by slow degrees ; yet Sir J. Lubbock has shown a 
degree of variability in these main nerves in Coccus, which may 
almost be compared to the irregular branching of the stem of a tree. 
This philosophical naturalist, I may add, has also shown that the 
muscl es in the larvae of certain insects are far fronijyufjprm. 
Authors someTTmesargSeTn a circle when they state tliat important 
organs never vary ; for these same authors practically rank those 
parts as important (as some few naturalists have honestly confessed) 
which do not vary ; and, under this point of view, no instance will 
ever be found of an important part varying ; but under any other 
point of view many instances assuredly can be given. 

There is one point connected with individual differences, which is 
extremely perplexing : I refer to those fi[enera which have been ca lled 
** p rotean ** or " polymorphic ," in ^^tj^j t^ " species preae"^ m^ ^V fi^' 
dinate amo unt of variationu With respect to many of these forms, 
hardly two naturalists agree whether to rank them as species or as 
varieties. We may instance Bubus, Rosa, and Hieracium amongst 
plants, sev eral genera of insects and of BrachioTXHJ shells. In most 
polymorphic genera some of the species have fixed and definite 
characters. Genera which are polymorphic in one country seem to 
be, with a few exceptions, polymorphic in other countries, and like- 
wise, judging from Brachiopod shells, at former periods of time. 
TViPS ft fafit^ firft vf^ ry pprple xjng^ for thev seem to show that ib is 
k ind of variability is indepeT ^^^PfP^"- »f ^^** ^^^^H ions of^ life. I am 
inclined to sus^ct that we see, at least in some o f thes e polymorphic 
ge nera, variations which are of no servi ce iaLdisaervice C6_0ie_specks, 
sE&d which consequently have not been seized on and rendered definite 
by 'nat ural selection , as hereafter to be explained. 

ndividuals of the same species often present, as is known to 
every one, great differences of structure, independently of variation, 
as in the two sexes of various animals, in the two or three castes of 
sterile females or workers amongst insects, and in the immature and 
larval states of many of the lower animals. There are, also, cases 
of dimorphism and trimorphism, both with animals and plants. 
Thus^TSfi. Wmiaw, tvhu huy laUely called attention to the subject, 
has shown that the females of certain species of butterflies, in the 
Malayan archipelago, regularly appear under two or even three 
c onspicuously distinct form s, not connected by intermediate varieties. 
Fritz JMLiiller has described analogous but more extraordmATy cases 



D 2 



36 Doubtful Species, Chap. II. 

with the males of certain Brazilian Crustaceans: thus, the male 
of a Tanais r^ula-rly occurs under two distinct forms; one of 
these has strong and differently shaped pincers, and the other has 
antennas much more abundantly furnished with smel ling-hairs. 
Although in most of these cases, the two or three forms, both 
with animals and plants, are not now connected by inte rmedia te 
Lations, it is prob able that ' thev weire^once thus connecte d. 
Mr. vvaiiace,'"lbr' instance, descril)^ird8l1!Sl!riJ!i1?Eerfly which pre- 
sents in the same island a great range of varieties connected by 
intermediate links, and the extreme links of the chain closely 
resemble the two forms of an allied dimorphic species inhabiting 
another part of the Malay archipelago. Thus also with ants, the 
several worker-castes are generally quite distinct ; but in some cases, 
as we shall hereafter see, the castes are connected together by finely 
graduated varieties. So it is, as I have myself observed, with some 
dimorphic plants. It certainly at first appears a 'highly remarkable 
fact that the same female butterfly should have the power of pro- 
ducing at the same time three distinct female forms and a male ; 
and that an hermaphrodite plant should produce from the same 
seed-capsule three distinct hermaphrodite forms, bearing three 
dififerent kinds of females and three or even six different kinds 
of males. Nevertheless these cases are only exaggerations of the 
common fact that the female produces ofTspring of two sexes which 
sWSiefiinesdiner from each other in a wonderful manner. 



k > «. «» «M ^ 



DovbtfuL Species, 

The forms which poBsess in some considerable degree the cha- 
racter of species, but which are so closely similar to other forms, or 
are so closely linked to them by intermediate gradations, that 
naturalists do not like to rank them as distinct species, are in 
several respects the most important for us. We have every 
reason to believe that many of these doubtful and closely allied 
forms have permanently retained their characters for a long 
time; for as long, as far as we know, as have good and true 
species. Practicall y^ when a naturalist can unite by meaji g, of 
interme diate linE s ^anv two forms, he treats the one as a variety 
of the other : ^r anking the most common, bu t s ometimegT the o ne 
first descrj]^ , as tfie species, and the other as, ^e varie ty. 
But cases of great difficulty, which I will not here enumerate, 
sometimes arise in deciding whether or not to rank one form as a 
variety of another, even when they are closely connected by inter- 
mediate links; nor will the commonly-assumed hybrid nature of 



Chap, il Doubtful Species. 37 

the mtermediate forms always remove the difiOcolty. In very many 
.sea« however, o ne form is rank e d as a variety o ^ anothe r, not ^ 
Kaiuse the intelViMiate hnks^Iiave actually oeen f o und^ Tnt 



" IBecause "knalo^ leads the observer to suppose either, that thev do 
now somewLere exist, oT may tbnnerly' have existed j and here a 
wide doOT'fcr the entry of doubt and conjecture is opened. 

Hence, in determining whether a form should be ranked as a 
species or a variety, the opinion of naturalists having sound judg- 
ment and wide experience seems the only guide to follow. We 
must, however, in many cases, decide by a majority of naturalists, 
for few w ell-marked and well-known va rieties can be named which 
have noX'been ranked as species by at feast some competent 
juoges. 

mac varieties of this doubtful nature are far from uncommon 
cannot be disputed. Compare the several floras of Great Britain, of 
France, or of the United States, drawn up by different botamsts, 
and see what a surprising number of forms have been ranked by: 
one botanist as good species, ana by another as mere varieties. 
Mf. H. U.' Watson, to whom I lie under deep obligation for assistance 
of all kinds, has marked for me 182 British plants, which are 
generally considered as varieties, but which have all been ranked 
by botanists as species; and in making this list he has omitted 
many trifling varieties, but which nevertheless have been ranked 
by some botanists as species, and he has entirely omitted several 
highly polymorphic genera. Under genera, including the most 
polymorphic forms, Mr. Babington gives 251 species, whereas 
Mr. Bentham gives only 112, — ^a difference of 139 doubtful forms ! 
Amongst animals which unite for each birth, and which are highly 
locomotive, doubtful forms, ranked by one zoologist as a species and 
by another as a variety, can rarely be found within the same 
country, but are common in separated areas. How many of the 
birds and insects in North America, and Europe, which difier 
very slightly from each other, have been ranked by one eminent 
naturalist as undoubted species, and by another as varieties, or, as 
they are often called, gec^aphical races I Mr. Wallace, in several 
valuable papers on the various animals, especially on the Lepi- 
doptera, inhabiting the islands of the great Malayan archipelago, 
shows that they may be classed under four heads, namely, as vari- 
able forms, as local forms, as geographical races or sub-species, and 
as true representative species. The first or variable forms vary 
much within the limits of the same island. The local forms 
are moderately constant and distinct in each separate island ; but 
when all from the several islands are compared together, the dif- 



38 Doubtful Species, Chap. IL 

ferences are seen to be so slight and graduated, that it is impossible 
to define or describe them, though at the same time the extreme 
forms are sufficiently distinct. The geographical raices or sub-species 
are local forms completely fixed and isolated ; but as they do not 
differ from each other by strongly marked and important characters, 
" there is no possible test but individual opinion to determine 
which of them shall be considered as species and which as varieties.^ 
Lastly, representative species fill the same place in the natural 
economy of each island as do the local forms and sub-species ; but 
as they are distinguished from each other by a greater amount of 
difference than that between the local forms and sub-species, they 
are almost universally ranked by naturalists as true species. Never- 
theless, no certain criterion can possibly be given by which variable 
forms, local forms, sub-species, and representative species can be 
recognised. 

Many years ago, when comparing, and seeing others compare, the 
birds from the closely neighbouring islands of the Galapagos archi- 
pelago, one with another, and with those from the American main- 
land, I was mnch struck how entirely vague and arbitrary is the 
distinction between species and varieties. On the islets of the 
little Madeira group there are many insects which are charac- 
terized as varieties in Mr. WoUaston's admirable work, bu^ 
which would certainly be ranked as distinct species by many 
entomologists. Even Ireland has a few animals, now generally 
regarded as varieties, but which have been ranked as species 
by some zoologists. Several experienced ornithologists consider 
our British red grouse as only a strongly-marked race of a 
Norwegian species, whereas the greater number rank it as an 
undoubted species peculiar to Great Britain. A wide distance 
between the homes of two doubtful forms leads many naturalists to 
rank them as distinct species; but what distance, it has been well 
adked, will suffice ; if that between America and Europe is ample, 
will that between Europe and the Azores, or Madeira, or the 
Canaries, or between the several islets of these small archipelagos, 
be sufficient ? 

Mr. B. D. Walsh, a distinguished entomologist of the United 
States, has described what he calls Phytophagic varieties and Phy- 
tophagic species. Most vegetable-feeding insects live on one kind 
of plant or on one group of plants ; some feed indiscriminately on 
many kinds, but do not in consequence vary. In several cases, 
however, insects found living on different plants, have been observed 
by Mr. Walsh to present in their larval or mature state, or in both 
states, slight, though constant differences in colour, size, or in the 



CiiAP. u. Doubtful Spmes, 39 

nature of their secretioas. In some instances the males alone, in 
other instances both males and females, hare been observed thns 
to differ in a slight degree. When the differences are rather more 
strongly marked, and when both sexes and all ages are affected, the 
forms are ranked by all entomolc^sts as good species. But no 
obaerver can determine for another, even if he can do so for himself, 
which of these Phytophagic forms ought to be called species and 
which varieties. Mr. Walsh ranks th e forms which i t may be 
supposed would fieelV illleitiuu, iA V&iielies; and tbose w hich. 
app ear to nave lost tnis power, as spec ies. As the oiflerences depend 
on me insects having long fed on distinct plants, it cannot be 
expected that intermediate links connecting the several forms should 
now be found. The naturalist thus loses his best guide in deter^ 
mining whether to rank doubtful forms as varieties or species. This 
likewise necessarily occurs with closely allied organisms, which 
inhabit distinct continents or islands. When, on the other hand, 
an animal or plant mnges over the same continent, or inhabits many 
islands in the same archipelago, and presents different forms in the 
different areas, there is always a good chance that intermediate 
forms will be discovered which will link together the extreme 
states ; and these are then degraded to the rank of varieties. 

Some few naturalists maintain that animals never present varie* 
ties ; but then these same naturalists rank the slightest difference 
as of specific value ; and when the same identical form is met with 
in two distant countries, or in two geological formations, they 
believe that two distinct species are hidden under the same dress. 
The term species thus comes to be a mere useless abstraction, im- 
plying and assuming a separate act of creation. It is certain that 
many forms, considered by highly-competent judges to be varieties, 
resemble species so completely in character, that they have been thus 
ranked by other highly-competent judges. But to discuss whether 
they ought to be called species or varieties, before any definition of 
these terms has \m^ generally accepted, is vainly to beat the air. 

Many of the cases of strongly-marked varieties or doubtful species 
well deserve consideration ; for several interesting lines of argument, 
from geographical distribution, analogical variation, hybridism, &c., 
have been brought to bear in the attempt to determine their rank ; 
but space doei not here x)ermit me to discuss them. Close investi- 
gation, in many oases, will no doubt bring natumllsts to agree how 
to rank doubtful forms. Yet it must be confessed that it is in the 
best known countries that we find the greatest number of them. 
I have been struck with the fact, that if any animal or plant in a 
state of nature be highly useful to man, or from any cause closely 



40 Doubtful Species, Chap. IL 

attracts his attention, varieties of it will almost uniyersally be 
found recorded. These varieties, moreover, will often be ranked by- 
some authors as species. Look at the common oak, how closely it 
has been studied ; yet a German author makes more than a dozen 
species out of forms, which are almost univeraally considered by 
other botanists to be varieties ; and in this country the highest 
botanical authorities and practical men can be quoted to show that 
the sessile and pedunculated oaks are either good and distinct species 
or mere varieties. 

I may here allude to a remarkable memoir lately published by 
A. de Candolle, on the oaks of the whole world. No one ever had 
more ample materials for the discrimination of the species, or could 
have worked on them with more zeal and sagacity. He first gives 
in detail all the many points of structure which vary in the several 
species, and estimates numerically the relative frequency of the 
variations. He specifies above a dozen characters which may be 
found varying even on the same branch, sometimes according to 
age or development, sometimes without any assignable reason. 
Such characters are not of course of specific value, but they are, as 
Asa Gray has remarked in commenting on this memoir, such as 
generally enter into specific definitions. De Candolle then goes on 
to say that he gives the rank of species to the forms that differ by 
characters never varying on the same tree, and never found con- 
nected by intermediate states. After this discussion, the result of 
so much labour, he emphatically remarks : " They are mistaken, 
who repeat that the greater part of our species are clearly limited, 
and that the doubtful species are in a feeble minority. This seemed 
to be tnie, so long as a genus was imperfectly known, and its species 
were founded upon a few specimens, that is to say, were provisional. 
Just as we come to know them better, intermediate forms flow in, 
and doubts as to specific limits augment." He also adds that it is 
the best known species which present the greatest niunber of spon- 
taneous varieties and sub-varieties. Thus Quercus robur has twenty- 
eight varieties, all of which, excepting six, are clustered round three 
sub-species, namely, Q. pedunculata, sessiUfiora, and pubescens. 
The forms which connect ^ese three sub-species are comparatively 
rare ; and, as Asa Gray again remarks, if these connecting forms, 
which are now rare, were to become wholly extinct, the three sub- 
species would hold exactly the same relation to each other, as do 
the four or five provisionally admitted species which closely sur- 
round the typical Quercus robur. Finally, De Candolle admits 
that out of the 300 species, which will be enumerated in his Pro- 
dromus as belonging to the oak family, at least two-thirds are 



Chap, il Doubtful Species. 41 

pioyisionai species, that is, are not known strictly to fulfil the defi- 
nition above given of a trae species. It should be added that Da 
CandoUe no longer believes that species are immutable creations, but* 
concludes that the derivative theory is the most natural one, ^ and 
the most accordant with the known iiekcts in paleontology, geo* 
^phical botany and zoology, of anatomical structure and cUssifi-' 
cation.** 

When a young naturalist conmiences the study of a group of 
organisms quite unknown to him, he is at first, much per plexed in 
determining what differences to consider jm gpflnil^p^ wt\t\ whitr^ ^ 
vSIliJtal , lui hu khows notbing of the amount and kind of variation 
to wnich the group is subject ; and this shows, at least, how very 
generally there is some variation. But if he confine his attention 
to one class within one ootmtry, he will soon make up his mind 
how to rank most of the doubtfiil forms. His general tendency 
will be to make many species, for he will become impressed, just 
like the pigeon or poultry fancier before alluded to, with the amount 
of difference in the forms which he is continually studying ; and 
he has little general knowledge of analogical variation in other 
groups and in other countries, by which to correct his first impres- 
sions. As he extends the range of his observations, he will meet 
with more cases of difficulty; for he will encounter a greater 
number of closely-allied forms. But if his observations be widely 
extended, he will in the end generally be able to make up his own 
mind ; but he will succeed in this at the expense of admitting much 
variation, — and the truth of this admission will often be disputed 
by other naturalists. When he co mes to study allied formfi brought 
firom countries not now co ntinuous, in which,iy«A ^a cannot hope 
Id'fi&d l&t6i*faie<iiate links,1i"e wilTTe compelled to trust almost 
■"SntireTy to analogy, and'Ms difficultfes will rise to a climax* ^ 

C(3erSmIy^o Tsiear line oflTemarcation has as yet been drawn 
between species and sub-species — ^that is, the forms which in the 
opinion of some naturalists come very near to, but do not quite 
arrive at, the rank of species : or, again, between sub-species and 
well-marked varieties, or between lesser varieties and individual dif- 
ferences. These differences blond into each other by an insensible 
series ; and a series impresses the mind with the idea of an actual 
passaga^ 

Hence I look at individual differences, though of small interest to . 
the systematist, as of the highest importance for us, as being the / 1 
first steps towards such slight varieties as are barely thought worth I / 
recording in works on natural history. And' I look ac varieties r 1^*— 
which are in any degree more distinct and pennanent, as steps jj ^ 



^ 42 Dominant Species vary most 



Chap. CI. 



I I 



■^ 



I 



ii 



towards more steongly-marked and permanent varieties ; and at the 
latter, as leading to sub-species, and then to speci^^ The passive 
from one stage of difference to another may, in many cases, Ibe tne 
simple result of the nature of the organism and of the iflferent 
physicarcondillcilia tu which 11 liaBlohg15r^ exposed ; liut with 

TgpecfTo Che more important ^ a nd adaptive characters, the passag e 
froml)ne sLagS' ol dlJllJlence to' anoiher, maytJe "safely attributed to 
the ctPnu ktive action o f natural selec tion, h ereafter to be explained, 

I and to the effects of ,tho increased use or disuse of parts. 
marked variety may therefore be called an ipcipifint ftp^ ^^jgg^^nf. 
whethW tnis belief is justifiable must be judged by the we^ht 
of the various facts and considerations to be given throughout ^is 
work. 

It need not be supposed that all varieties or incipient species 
attain the rank of species. They may become extinct, or they may 
endure as varieties for very long periods, as has been shown to be 
the case by Mr. WoUaston with the varieties of certain fossil land- 
shells in Madeira, and with plants by Gaston de Saporta. If a 
variety were to flourish so as to exceed in numbers the parent 
species, it would them rank as the species, and the species as the 
variety ; or it might come to supplant and exterminate the parent 
species; or both might co-exist, and both rank as independent 
species. But we shall hereafter return to this subject. 

From these remarks it will be seen that I look at the term species 
as one arbitrarily given, for the sake of convenience, to a set of 
individuals closely resembling each other, and that it does not 
essentially differ from the term variety, which is given to less 
distinct and more fluctuating forms. The term variety, again, in 
comparison with mere individual differences, is also applied arbi- 
trarily, for convenience' sake. 

Wide-ranging, much-^ji{[u^i and common Species vary most. 

Guided by theoretical considerations, I thought that some in- 
teresting results might be obtained in regard to the nature and 
relations of the species which vary most, by tabulating all the 
vrarieties in several well-worked floras. At first this seemed a 
simple task ; but Mr. H. G. Watson, to whom I am much indebted 
for valuable advice and assistance on this subject, soon convinced 
me that there were many difSculties, as did subsequently Dr. 
Hooker, even in stronger terms. I shall reserve for a future work 
the discussion of these difficulties, and the tables of the proportional 
numbers of the varying species. Dr. Hooker permits me to add, 
that after having carefully read my manuscript, and examined the 



Chap. h. Dominant Species vary most 43 

tables, he thinks that the following statements are fairly well esta- 
blished. The whole subject, however, treated as it necessarily here 
is with mnch breyity, is rather perplexing, and allnsions cannot be 
aroided to the '' stniggle for existence," *' direigenoe of character,** 
^nd other questions, hereafter to be discussed. 

Alphonse de CandoUe and others have shown that plants which ^ 
have very wide ranges generally present varieties ; and this might 
have been expected, as they are exposed to diverto physical condi- 
tions, &nd as they come into competition (which* m we shall here- 
after see, is an equally or more important circumstance) with 
different sets of organic beings. But my tables further show that, 
in any limited country, the species which are the most common, 
that is abound most in individuals, and the species which are most 
widely diffused within their own country (and this is a different 
consideration from wide range, and to a certain extent from com- 
monness), oflenest give rise to varieties sufficiently we11*marked 
to have been recorded in botanical works. Hence it is the most 
flourishing, or, as they may be called, thg^dfimiiwintspecieSy — those 
which range widely, are the most diffdsed in their own country, and 
are the most numerous m individuals, — which oftenest produce! 
weU-marked varieties, or, as I consider them, incipient species. And/ 
this, perhaps, might have been anticipated; for, as varieties, ii/ 
order to become in any degree permanent, necessarily have to 
struggle with the other inhabitants of the country, the species which 
are already dominant will be the most likely to yield offspring, 
which, though in some slight degree modified, still inherit those 
advantages that enabled their parents to become dominant over 
their compatriots. In these remarks on predominance, it should be 
understood that reference is made only to the forms which come 
into competition with each other, and more especially to the mem- 
bers of the same genus or class having nearly similar habits of life. 
With respect to the number of individuals or commonness o\ 
species, the comparison of course relates only to the members 
of the same group. One of the higher plants may be said to be 
dominant if it be more numerous in individuals and more widely 
diffused than the other plants of the same country, which live under 
nearly the same conditions. A plant of this kind is not the less 
dominant because some conferva inhabiting the water or some 
parasitic fungus is infinitely more numerous in individuals, and more 
widely diffused. But if the conferva or parasitic fungus exceeds its 
allies in the above respects, it will then be dominant within its own 
class. 



44 Species of Larger Genera variable. Chap. IL 

Species of the Larger Genera in each Country vary more freguenUy 
than the Species <f the SmaUer Oenera, 

If the plants inliabiting a cotmtry, as described in any Flora, be 
divided into two equal masses, all those in the larger genera (i,e^ 
those including many species) being placed on one side, and all 
those in the smaller genera on the other side, the former will be 
found to include a somewhat larger number of the very common and 
much diffused or dominant species. This might have been antici- 
pated ; for the mere fact of many species of the same genus inhabit- 
ing any country, shows that there is something in the organic or 
inorganic conditions of that country favourable to the genus ; and, 
" consequently, we might have expected to have found in the larger 
genera, or those including many species, a larger proportional number 
of dominant species. But so many causes tend to obscure this 
result, that I am surprised that my tables show even a small majority 
on the side of the larger genera. I will here allude to only two 
causes of obscurity. Fresh-water and salt-loving plants generally 
have very wide ranges and are much diffused, but this seems to be 
connected with the nature of the stations inhabited by them, and 
has httle or no relation to the size of the genera to which the 
species belong. Again, plants low in the scale of organisation are 
generally much more widely diffused than plants higher in the scale; 
and here again there is no close relation to the size of the genera. . 
The cause of lowiy-organised plants ranging widely will be discussed 
in our chapter on Geographical Distribution. 

From looking at species as only strongly-marked and well-defined 
varieties, I was led to anticipate that the species of the larger genera 
in each country would oftener present varieties, than the species of 
the smaller genera ; for wherever many closely related species (i.e., 
species of the same genus) have been formed, many varieties or 
incipient species ought, as a general rule, to be now forming. 
Where many large trees grow, we expect to find saplings. Where 
many species of a genus have been .fomied through variation, cir- 
cumstances have been fiavourable for variation ; and hence we might 
expect that the circumstances would generally be still favourable 
to variation. On the other hand, if we look at each species as a 
special act of creation, there is no apparent reason why more 
varieties should occur in a group having many species, than in one 
having few. 

To test the truth of this anticipation I have arranged the plants 
of twelve countries, and the coleopterous insects of two districts, into 
two nearly equal masses, the species of the larger genera on one 



Chap. II. Species of Larger Genera variable. 45 

side, and those of the smaller genera on the other side, and it has 
inyariably proved to be the case that a larger proportion of the 
species on the side of the larger genera presented yarieties, than on 
^e side of the smaller genera. Moreover, the species of the large ^ 
genera which present any varieties, invariably {vesent a larger 
average number of varieties than do the species of the small genera. 
Both these results follow when another division is made, and when 
all the least genera, with from only one to four species, are altogether 
excluded from the tables. These facts are of plain signification on 
the view that species are only strongly-marked and permanent 
varieties ; for wherever many species of the same genus have been 
fonned, or where, if we may use the expression, the manufactory of 
species has been active, we ought generally to find the manufactory 
still in action, more especially as we have every reason to believe 
the process of manufacturing new species to be a slow one. And 
this certainly holds true, if varieties be looked at as incipient species ; 
for my tables clearly show as a general rule that, wherever many 
species of a genus have been formed, the species of that genus 
present a number of varieties, that is of incipient species, beyond 
the average. It is not that all large genera are now varying much, 
and are thus increasing in the number of their species, or that no 
small genera are now varying and increasing ; for if this had been 
so, it would have been fatal to my theory ; inasmuch as geology 
plainly tells us that small genera have in the lapse of time often 
increased greatly in size ; and that large genera have often come to 
their niaxima, declined, and disappeared. All that we want to show 
is, that, where many species of a genus have been formed, on an 
average many are still forming ; and this certainly holds good. 

Many of the Species included loithin the Larger Genera resemble 
Varieties in being very closely, but unequally, related to each 
other, and in having restricted ranges. 

There are other relations between the species of large genera and 
their recorded varieties which deserve notice. We have seen that 
there is no infallible criterion by which to distinguish species and 
well-marked varieties ; and when intermediate links have not been 
found between doubtful forms, naturalists are compelled to come to 
a determination by the amount of difference between them, judging 
by smslogy whether or not the amount sufBces to raise one or both 
to the rank of species. Hence the amount of difference is one very 
important criterion in settling whether two forms should be ranked 
«s species or varieties. Now Fries has remarked in regard to plants, 
&nd Westwood in regard to insects, that in large genera the amount 



I 

t 



46 Species of Larger Genera Chap, il 

I of difference between the species is often exceedingly small. I have 
endeavoured to test this numerically by averag<es, and, as far as my 
in^perfect results go, they confirm the view. I have also consulted 
some sagacious and experienced observers, and, after deliberation, 
they concur in this view. In this respect, therefore, the species ( 
of the larger genera resemble varieties, more than do the species of I 
che smaller genera. Or the case may be put in another way, and it 
may be said, that in the larger genera, in which a number of varie- 
ties or incipient species greater than the average are now maDufac«> 
turing, many of the species already manufactured still to a certain 
extent resemble varieties, for they differ from each other by less 
than the usual amount of difference. 

. Moreover, the* species of the larger genera are related to each 
other, in the same maiHter as thefvarieties of any one species are 
related to each other. No naturalist pretends that all the species of 
a genus are equally distinct from each other ; they may generally 
be divided into sub-genera, or sections, or lesser groups. As Fries 
has well remarked, little groups of species are generally clustered 
like satellites around other species. And what are varieties but 
groups of forms, unequally related to each other, and clustered round 
certain forms — ^that is, round their parent-species. Undoubtedly 
there is one most important point of difference between varieties 
and species ; namely, that the amount of difference between varie- 
ties, when compared with each other or with their parent-species, is 
much less than that between the species of the same genus. But when 
we come to discuss the principle, as I call it, of Divergence of 
Character, we shall see how this may be explained, aad how the 
lesser differences between varieties tend to increase into the greater 
differences between species. 

There is one other point which is worth notice. Varieties gene- 
rally have much restricted ranges: this statement is indeed 
scarcely more than a truism, for, if a variety were found to have a 
wider range than that of its supposed parent-species, their denomi- 
nations would be reversed. But there is reason to believe that the 
species which are very closely allied to other species, and in so far 
resemble varieties, often have much restricted ranges. For instance, 
Mr. H. C. Watson has marked for me in the well-sifted London 
Catalogue of plants (4th edition) 63 plants which are therein ranked 
as species, but which he considers as so closely allied to other 
species as to be of doubtful value : these 63 reputed species range 
on an average over 6'9 of the provinces into which Mr. Watsbn has 
divided Great Britain. Now, in this same Catalogue, 53 acknow- 
ledged varieties are recorded, and these range over 7*7 provinces ^ 



C^AP. 11. resemble Varieties, 47 

whereas, the species to which these yarieties belong range over 14*3 
provinces. So that the acknowledged varieties have nearlj the same 
restricted average range, as have the closely allied forma, maiked 
for me by Mr. Watson as doubtful species, but which are almoat 
universally ranked by British botanists as good and true species. 

Summary, 

Finally, vftriptiPA nann^t Iw di^jn^iiali^ frnm aponiA^— i>'r/H>|^_ 

first, by the A \s^x^^rf^ry Qf intp rnaediate linking forma ; and, secondly, 
by a certa iTi ipdp.finit.<> fimpi mt of difference betsreeaJthfiia ; for two 
forms, if differing very little, are generally ranked as varieties, not- 
withstanding that they cannot be closely connected; but the amount 
of difference considered neoedsary to give to any two forma the rank 
of species cannot be defined. I n ^genera having more than th^ ft Tfl tny 
number of species i" a^y om^ntr^^ the species of these gienera have . 
more than the average nimiber of varieties. In large genera the 
Species are apt to be closely, but unequally, allied together, forming 
little clusters round other species. Species very closely allied to 
other species apparently have restricted ranges. In all these respects 
the species of large genera present a strong analogy with varieties. 
And we can clearly understand these analogies, if aoeciea once 
existed as varieties , and thus o rigina ted ; whereas, these analogies 
are utterly inexplicable if species are independent creations. 

We have, also, seen that it is the most flourishing or '^'"JnflTit 
species of t hg Urg^^ K**-^!?"^ within each class which on an average 
yields the g;reate st n^ber of varieties ; and varieties, as we shall 
hereafter see, tend to become converted into new and distinct 
species. T]mg tlif} l arger ge nera tend to become larger ; and through- 
out nature the forms of life which are now dominant tend to become 
still more dominant by leaving many modified and dominant 
descendants. But by steps hereafter to be explained, the larger * 
genera also tend to break up into smaller genera. And thus, the 
forms of life throughout the universe become divided into groups 
subordinate to groups. 



48 Struggle for Existence. Chap. hi. 



CHAPTER III. 

Struggle for Existence. 

|1« bearing on natnral selection — The term used in a wide sense — Geome- 
trical ratio of increase — Rapid increase of naturalised animals and 
plants — Nature of the checks to increase — Competition univeraal — 
Effects of climate — Protection from the number of individuals — 
Complex relations of ail animals and plants throughout nature — 
Struggle for life mott severe between individuals and varieties of the 
s^e species : often severe between species of the same genus — The 
relation of organism to organism the most important of all relations. 

Before entering on the subject of this chapter, I must make a few 
preliminary remarks, to show how the struggle for existence bears 
on Natural ISelection. It has been seen in the last chapter that 
amongst organic beings in a state of nature there is some individual 
variability : indeed I am not aware that this has ever been disputed. 
It is immaterial for us whether a multitude of doubtful forms be 
called species or sub-species or varieties ; what rank, for instance, the 
two or three hundred doubtful forms of British plants are entitled 
to hold, if the existence of any well-marked varieties be admitted. 
But the mere existence of individual variability and of some few 
well-marked varieties, though necessary as the foundation for the 
work, helps us but little iii understanding how species ' arise in 
nature. How have all those exquisite adaptations of one part of 
the organisation to another part, and to the conditions of life, and 
of one organic being to another being, been perfected? We see 
these beautiful co-adaptations most plainly in the woodpecker and 
the misletoe ; and only a little less plainly in the humblest parasite 
which clings to the hairs of a quadruped or feathers of a bird ; in 
the structure of the beetle which dives through the water : in the 
plumed seed which is wafted by the gentlest breeze ; in short, we 
see beautiful adaptations everywhere and in every part of the 
organic world. 

Again, it may be asked, how is it that varieties, which I have 
called incipient species, become ultimately converted into good and 
distinct species, which in most cases obviously dififer from each 
other isx more than do the varieties of the same species ? How do 
those groups of species, which constitute what are called dlstincr~ 



Chaf. III. Struggle for Existence. 49 

genera, and which di ffer from each oth er m ore thanjdo^ejBTOCJes j 
•pi the same genus, anse V All these''fesult8, as we shall more fully I , 
8 ^ 111 ttie next chapter, fo ll ow iro m tEe struggle for lUe. Owinj^lo \ 
inis s hiiggie, variations, Eo wever stTglit^ and from whatever "cause T 
pro ceeding if tJiey be m any de gree profita^IFto tEe TncTividu als o M 
a species, in their infinitely complex^felations to otKer organic ) 
.'' heings and "tO thftlh physicaPcond itiQUg of life^. will * tend to tlie | 
preserv ation of such individuals, and will generally be inherited I 
by the ohs prmgr The offspring, also, will thus have a better \ 
ch&nce ot surviving, for, of the many individuals of any species 
which are periodically horn, but a small number can survive. 
I have ca lled thi s prin ciple, by which each slight variation, if 
pgelul, IS* preserved, by t^e term T^atural Selection, in order to 
mark itsle lation to m an^s power oT "selection. But th e expression 
o lten used by Mr. Herbert S pencer of the Survival of the Fittggt 
is more accur ate, a nd is s ometimes equally convenient. We have 
sMTi that man by seleclion can cerEainly' produce great results, and 
can adapt organic beings to his own uses, through the accumulation 
of slight but useful variations, given to him by the hand of Nature. 
But Natural Selection, as we shall hereafter see, is a power inces- 
santly ready for action, and is as immeasurably superior to man's 
feeble efforts, as the works of Nature are to those of Art. 

We will now discuss in a little more detail the struggle for 
existence. In my future work this subject will be treated, as it 
well deserves, at greater length. The elder De Candolle and Lyell 
have largely and philosophically shown that all organic beings are 
exposed to severe cpmpetition. In regard to plants, no one has 
treated this subject with more spirit and ability than W. Herbert, 
Dean of Manchester, evidently the result of his great horticultural 
knowledge. Nothing is easier than to admit in words the truth of 
the universal struggle for life, or more difficult — ^at least I have 
foimd it so — than constantly to bear this conclusion in mind. Yet 
unless it be thoroughly engrained in the mind, the whole economy 
of nature, with every fact on distribution, rarity, abundance, extinc- 
tion, and variation, will be dimly seen or quite misunderstood. 
We behold the face of nature bright with gladness, we often see 
superabundance of food ; we do not see or we forget, that the birds 
which are idly singing round us mostly live on insects or seeds, and 
are thus constantly destroying life ; or we forget how largely these 
songsters, or their eggs, or their nestlings, are destroyed by birds 
and beasts of prey ; we do not always bear in mind, that, though 
food may be now superabundant, it is not so at all seasons of each 
recurring year. 



50 ' Geometrical Ratio of Increase, Chap. Ill 



The Tervi^ Struggle for Existence, usect in a large sense. 

I should premise that 1 use ^sterm in a large and metaphorical 
«ense including dependence of STb eiSg on another, and includin g 
(which is more miportant) not only the life of the individuaU but 
success m leaving progeny. Two canme animals, m a time of 
dearth, may be truly said to struggle with each other which shall 
get food and live. But a plant on the edge of a desert is said to 
struggle for life* against the drought, though more properly it should 
be said to be dependent on the moisture. A plant which annually 
produces a thousand seeds, of which only one on an average comes 
to matmity, may be more truly said to struggle with the plants of 
the same and other kinds which already clothe the ground. The 
inisletoe is dependent on the apple and a few other trees, but can 
only in a far-fetched sense be said to struggle with these trees, for« 
if too many of these parasites grow on the same tree, it languishes 
and dies. But several seedling misletoes, growing close together on 
the same branch, may more truly be said to struggle with each 
other. As the misletoe is disseminated by birds, its existence 



--^ 



de pends on them j and it may inetaphoncally be sai3 ' f 6 struggle 
with other fruit-bearing plants, in tempting the birds to devour and 
thus disseminate its seeds. In these several senses, which pass into 
each other, I use for convenience' sake the general term of Struggle 
for Existence. 

Geometrical Batio of Increase, 

A struggle for existence inevitably follows from the high rate at 
which all organic beings tend to increase. Every being, which 
during its natural lifetime produces several eggs or seeds, must sti£fer 
destruction during some period of its life, and during some season 
or occasional year, otherwise, on the principle of geometrical increase, 
its numbere would quickly become so inordinately great that no 
I country could support the product. Hence, as more individuals 
are produced than can possibly survive, there must in every case 
be a s truggle fo r existen ce, either one individual with another of 
the same species, or with the individuals of distinct species, or 
with the physical conditions of life. It is the doctrine of Malthus 
ap plied with manifold force to the whole animai^aiid vegetable 
kingdoms ; for in this case there can be no artificial increase of food, 
and no prudential restramtT'rom marriage. Although some species 
ifiUy be now increasing, more or less rapidly, in numbers, all cannot 
do so, for the world would not hold them. 

There is no exception to the rule that every organic being 



Chap. III. Geometrical Ratio of Increase, . 5 1 



naturally increaseg at so high a rate, that, if not destroyed, th€ 
earth would soon be covered by the progeny of a single pair. Even 
slow-breeding man has doubled in t we nty-five years, and al this 
TaCe, til l^ss iKan a thousand years, there would literally not be 
standing-room for his progeny. Linnaeus has calculated that if an 
annual plant produced only two seeds — and there is no plant so 
unproductive as this — and their seedlings next year produced two, 
and so on, then in twenty years there would be a million plants. 
The elephant i s rec koned the slowest breeder of all known animals, 
and 1 have takeoTsome pams to estimate its probable minimum rate 
of natural increase; it will be safest to assume that it begins 
breeding when th irty years o ld, and goes on breeding till nmety 
y^W Al<T, Uf lliyillfe forth six young in the interval, and surviving 
till one hundred years old; if this be so, after a period of from 
740 to 750 year s there would be nearly n ineteen million elephants 
anve, descenaea irom i ke first pair. ""^ " "•-'"* — — - - — 
But we have better evidence on this subject than mere theoretical 
calculations, namely, the numerous recorded cases of the astonish- 
ingly rapid increase of various animals in a state of nature, when 
circumstances have been favourable to them during two or three 
following seasons. Still more striking is the evidence from our 
domestic animals of many kinds which have run wild in several 
parts of the world ; if the statements of the rate of increase of 
slow-breeding cAttle and horses in South America, and latterly 
in Australia, had not been well authenticated, they would have 
been incredible. So it is with plants; cases could be given of 
introduced plants which have become common throughout whole 
islands in a period of less than ten years. Several of the plants, 
such as the cardoon and a tall thistle, which are now the com- 
monest over the wide plains of La Plata, clothing square leagues 
of surface almost to the exclusion of every other plant, have been 
introduced from Europe ; and there are plants which now range in 
India, as I hear from Dr. Falconer, from Gape Gomorin to the 
Himalaya, which have been imported from America since its dis- 
covery. In such cases, and endless others could be given, no one 
supposes, that the fertility of the animals or plants has been suddenly 
and temporarily increased in any sensible degree. The obvious 
explanation is that the conditions of life have been highly favourable, 
and that there has consequently been less destruction of the old and 
young, and that nearly all the young have been enabled to breed. 
Their geometrical ratio of increase, the result of which never fails to 
be surprising, simply explains their extraordinarily rapid increase 
and wide diffusion in their new homes. 

£ 2 



5 2 Geometrical Ratio of Increase. Cm p. ill. 

In a state of nature almost every full-grown plant annually 
produces seed, and amongst animals there are very few whicli do 
not annually pair. Hence we may confidently assert, that all 
plants and animals are tending to increase at a geometrical ratio, — 
that all would rapidly stock every station in which they could any 
4how exist, — and that this geometrical tendency to increase must be 
'checked by destruction at some period of life. Our familiarity with 
the larger domestic animals tends, I think, to mislead us : we see 
no great destruction falling on them, but we do not keep in mind 
that thousands are annually slaughtered for food, and that in a state 
of nature an equal number would have somehow to be disposed of. 

The only difference between organisms which annually produce 
^gs or seeds by the thousand, and those which produce extremely 
few, is, that the slow-breeders would require a few more years to 
people, under favourable conditions, a whole district, let it be ever 
so large. The condor lays a couple of eggs and the ostrich a score, 
and yet in the same country the condor may be the more numerous 
of the two ; the Fulmar petrel lays but one egg, yet it is believed 
to be the most numerous bird in the world. One fly deposits 
hundreds of eggs, and another, like the hippobosca, a single one ; 
but this difference does not determine how many individuals of the 
two species can be supported in a district. A large number of eggs 
is of some importance to those species which depend on a fluctua- 
ting amount of food, for it allows them rapidly to increase in 
number. But the real importance of a large number of ^ggs or 
s eeds is t o make up for much destruction at some period of life ; 
and this period in the great majority of cases is an early oneT If 
an animal can in any way protect its own eggs or young, a small 
number may be produced, and yet the average stock be fully kept 
up ; but if many eggs or young are destroyed, many must be 
produced, or the species will become extinct. It would sufl&ce to 
keep up the full number of a tree, which lived on an average for a 
thousand years, if a single seed were produced once in a thousand 
years, supposing that this seed were never destroyed, and could be 
ensured to germinate in a fitting place. So that, in all cases, the 
average number of any animal or plant depends only indirectly on 
the number of its eggs or seeds. 

In looking at Nature, it is most necessary to keep the foregoing 
considerations always in mind — ^never to forget that every single 
organic being may be said to be striving to the utmost to increase 
in numbers ; that each lives by a struggle at some period of its life ; 
that heavy destruction inevitably falls either on the young or old, 
during each generation or at recurrent intervals. Lighten any 



Chap. III. Nature of tlie Checks to Increase. 53 

check, mitigate the destraction ever so little, and the number of / 
the species will almost instantaneously increase to any amount. 

Nature of the Checks to Increase, 

The causes which check the natural tendency of each species to 
increase are most obscure. Look at the most vigorous species ; by 
as much as it swarms in numbers, by so much will it tend to 
increase still further. We know not exactly what the checks are^ 
even in a single instance. Nor will this surprise any one who 
reflects how ignorant we are on this head, even in regard to mankind, 
although so incomparably better known than any other animaL This 
subject of the checks to increase has been ably treated by several 
authors, and I hope in a future work to discuss it at considerable 
length, more especially in regard to the feral animals of South 
America. Here I will make only a few remarks, just to recall to 
the reader's mind some of the chief points. Kggs or ver y young 
animals seem generally to suffer most, b ut this is not m variably the 
^ase. Vvith plants there is a vast destruction of see ds, but, from 
some observations which I have maae it appears that the seedlings 
suffer most from germinatinjg; in gound already thickly. stocKecT 
with other plants. SeedlingsTalso, are destroyed in vast numbers 
by vfl-rinna fiTigj^yps ;' for instance, on a piece of ground three feet 
long and two wide, dug and cleared, and where there could be no 
choking from other plants, I marked all the seedlings of our native 
weeds as they came up, and out of 357 no less than 205, were 
destroyed, chiefly by slugs and insects . If turf which has long been 
mown, and the case would be the same with turf closely browsed 
by quadrupeds, be let to grow, jj^A ipni-ft viprpY^na pl ants gradually^ 
MH_the less vis ^orous , though fully grown plants; thus out of 
twenty species growing on a little plot of mown turf (three feet by 
four) nine species perished, from the other species being allowed to 
grow up freely. 

The ffnount of food for each specie s of course gives the extreme 

Jimit to wluc K each can increase ; but very frequently it is not the 

obtaining food, but the serving a s prey to other animals, which 

determines the average numbers of a species. Thus, there seems to 

be little doubt that the stock of partridges, grouse, and har^ on 

any large estate depends chiefly on tKeTSest ruction of v ermii w. If 

not one head of game were shot during tne next twenty years in 

England, and, at the same time, if no vermin were destroyed, there 

. would, in all probability, be less game than at present, although 

. hundreds of thousands of game animals are now annually shot. On 

the other hand, in some cases, as with the elephant, none are 



54 Nature of the Checks to Increase. Cuap. ill, 

destroyed by beasts of prey ; for even the tiger in India most i*arely 
dares to attack a young elephant protected by its dam. 
' Climate plays an important part in determining the average 



ntifflDers of a species, and periodical seasons of extreme cold jtg 
dlrought seem to be the most"'etifective ~or art checks. 1 estimated 
chiefly from the greatly re3uced numbers'"of "nests in the spring) 
that the winter of 1854-5 destroyed four-fifths of the birds in my 
own grounds; and this is a tremendous destmction, when we 
remember that ten per cent, is an extraordinarily severe mortality 
from epidemics with man. The action of climate seems at first 
sight to be quite independent of the struggle for existence ; but in 
so far as climate chiefly acts in reduc i ng food, it brings on the most 
severe struggle between the individuals, wbeiher of the same or of 
distinct species, which subsist on the same kind of food. Even 
when climate, for instance extreme cold, acts directly, it will be 
the least vigorous individuals, or those which have got least food 
through the advancing winter, which will sufi'er most. When we 
travel from south to north, or from a damp region to a dry, we 
invariably see some species gradually getting rarer and rarer, and 
finally disapi)earing ; and the change of climate being conspicuous, 
we are tempted to attribute the whole efiect to its direct action. 
But this is a false view ; we forget that each species, even where it 
most abounds, is constantly suffering enormous destruction at some 
period of its life, from enemies or from competitors for the same 
place and food ; and if thes e enemies or c ompetitors bejn^^e least 
degree favoured by any slight change of cIimateT'tliey willlncreas? 
m numpertf^ l tllld ajTSacITareaTs' already fully stocked with inhabi- 
tants, the other species must decrease. When we travel south- 
ward and see a species decreasing in nunfBers, we inay feel sure 
fh'atjliebause IfeB (Jttife as much in other species being favoured, as 
ifi "thi sj)De being hurt. "^ So il is when we travel northward, but in 
a somewhat lesser degree, for the number of species of all kinds, 
and therefore of competitors, decreases northwards ; hence in going 
northwards, or in ascending a mountain, we far oftener meet with 
stunted forms, due to the direcUy injurious action of climate, than we 
do in proceeding southwards or in descending a mountain. When 
we reach the Arctic r^ions, or snow-capped summits, or absolute 
deserts, the struggle for life is almost exclusively with the elements. 
That climate acts i n mai n part indirectly by favouring other 
species, we clearly' see m the prodig^bllB tiumber oi pianis which 
in our gardens can perfectly well endure our climate, but which 
never become naturalised, for they cannot compete with our native 
plfvnts nor resist destruction by our native animals. 



Chap. IU. Struggle for Existcficc. 55 

When a speciesj^ owing to highly favourable ciicnmstances, 
ioCTeases inordinately in nmnbere in a small tract, enidemi^ — ati 
least, this seems generaily to occur with our game wSmaB^often 
ensue; and here we have a limitiTig check independent of the' 
struggle for life. But even some of these so-called epidemics 
appear to be due to parasitic worms, T gfcjgh tiave froffi som e caus e, 
(RjbbIIjI)' Ih pari ihrougn laciUty of diffusion amongst the crowded 
animals, been disproportiona lly favoured : and here comes in a sort 
of strugglelHJlwytili l&e pAfUlte and lis' prey. 

On the other hand, in many cases, a lar^e stock of individuals 
of the same species, relatively to the numbers of its enemies, is 
absolutely necessary for its preservation. Thus we can easily raise 
plenty of com and rape-seed, &c., in our fields, because the seeds 
are in great excess compared with the number of birds which feed 
cm them ; nor can the birds, though having a superabundance of 
food at this one season, increase in number proportionally to the 
supply of seed, as their numbers are checked during winter ; but 
any one who has tried, knows how troublesome it is to get seed 
from a few wheat or other such plants in a garden : I have in this 
case lost every single seed. This view of the necessity of a large 
stock of the 'same species for its preservation, explains, I believe, 
some singular facts in nature such as that of very rare plants being 
sometimes extremely abundant, in the few spots where they do 
exist ; and that of some social plants being social, that is abounding 
in individuals, even on the extreme verge of their range. For in 
such cases, we may believe, that a plant could exist only where the 
conditions of its life were so favourable that many could exist 
together, and thus save the species from utter destruction. I 
should add that the good effects of in tercrossing, and the ill effects 
of cl ose inte ftr^ft^^Pf- ^^ flnnht cairxR mto play in many of tKese* 
ises ; but i will not here enlarge on this subject. 

Complex Belations of aU Animals and Plants to each other in 

the Struggle for Existence, 

Many cases are on record showing how complex and unexpected 
are the checks and relations between organic beings, which have to 
struggle together in the same country. I will give only a single 
instance, which, though a simple one, interested me. In Stafford- 
shire, on the estate of a relation, where I had ample means of 
investigation, th^re was a large and extremely barren heath, which 
bad never been touched by the hand of man; but several hundred ' 
acres of exactly the same nature had been enclosed twenty-five 
years prbviously and planted with Scotch fir. The change in tht 



// 



$6 Struggle for Existence. Chap. Ill 

native vegetation of the planted part of the heath was most 
remarkable, more than is generally seen in passing from one quite 
different soil to another ; not only the proportional numbers of the 
heath-plants were wholly changed, but twelve species of plants (not 
counting grasses and carices) flourished in the plantations, which 
could not be found on the heath. The effect on the insects must 
have been • still greater, for six insectivorous birds were very 
common in the plantations, which were not to be seen on the 
heath ; and the heath was frequented by two or three distinct 
insectivorous birds. Here we see how potent has been J;he effect of 
the introduction of a single tree, nothing whatever else having been 
done, with the exception of the land having been enclosed, so that 
cattle could not enter. But how important an element enclosure is, 
I plainly saw near Farnham, in Surrey. Here there ttre oxton sive 
heaths, with a few clumps of old Scotch firs on the distant hill- 
tops: within the last ten years large spaces have been enclosed, 
and self-sown firs are now springing up in multitudes, so close 
together that all cannot live. When I ascertained that these 
young trees had not been sown or planted, I was so much sur- 
prised at their numbers that I went to several points of view, 
whence I could examine hundreds of acres of the unenclosed heath, 
and literally I could not see a single Scotch fir, except the old 
planted clumps. But on looking closely between the stems of the 
heath, I found a multitude of seedlings and little trees which had 
been perpetually browsed down by the cattle. In one square yard, 
at a point some hundred yards distant from one of the old clumps, 
I counted thirty-two little trees ; and one of them, with twenty- 
six rings of growth, had, during many years tried to raise its head 
above the stems of the heath, and had failed. No wonder that, as 
soon as the land was enclosed, it became thickly clothed with 
vigorously growing young firs. Yet the heath was so extremely 
barren and so extensive that no one would ever have imagined that 
cattle would have so closely and effectually searched it for food. 
I Here we see th at jsattle absolutely determine thje existence of 
I theScgifikfir ; but injeveraijiartpi,Qfthei world insects determine tibe 
/ existen ce of cattle., . Perhaps Paraguay offers the most curious 
' iflsraSce of this ; for here neither cattle nor horses nor dogs have 
ever run wild, though they swarm southward and northward in a 
feral state ; and Azara and Hengger have shown that this is caused 
by the greater number in Paraguay of a certain fly, which lays- its 
eggs in the navels of these animals when first bom. The increase 
of these flies, numerous as they are, must be habitually checked by 
some means, probably by other parasitic insects. Hence, if certain 



Chap, iil Struggle for Existence, 57 

insectivoroiis birds were to decrease in Paragnayy the parasitic 
insects would probably increase ; and this would lessen the number 
of the navel-frequenting flies — then cattle and horses would become 
feral, and this would certainly greatly alter (as indeed I have obser- 
ved in parts of South America) the y^etation : this again would 
largely affect the insects; and this, as we have just seen in Stafford- 
shire, the insectivorous birds, and so onwards in ever-increasing 
circles of complexity. Not that under nature the relations will 
ever be as simple as this. Battle within battle must be con- 
tinually recurring with varying success ; and yet in the long- 
run the forces are so nicely balanced, that the face of nature remains 
for long periods of time uniform, though assuredly the merest trifle 
would give the victory to one organic being over another. Never^ 
theless, so profound is our ignorance, and so high our presumption, ^ 
that we marvel when we hear of the extinction of an organic being; 
and as we do not see the cause, we invoke cataclysms to desolate the ^ 
world, or invent laws on the duration of the forms of life I / 

I am tempted to give one more instance showing how plants and 
animals, remote in the scale of nature, are bound together by a web 
of complex relations. I shall hereafter have occasion to show that 
the exotic Lobelia fulgens is never visited in my garden by insects, 
and consequently, from its peculiar structure, never sets a seed. 
Kearly all our orchidaceous plants absolutely require the visits of 
insects to remove their pollen-masses and thus to fertilise them. I 
find from experiments that humble-bees are almost indispensable to 
the fertilisation of the heartsease (Viola tricolor), for other bees do 
not visit this flower. I have also found that the visits of bees are 
necessary for the fertilisation of some kinds of clover : for instance^ 
20 heads of Dutch clover ('rrifolium repens) yielded 2,290 seeds, but 
20 other heads protected from bees produced not one. Again, 100 
heads of red clover (T. pratense) produced 2,700 seeds, but the same 
number of protected heads produced not a single seed. Humble-bees 
alone visit red clover, as other bees cannot reach the nectar. It has 
heen suggested that moths may fertilise the clovers ; but I doubt 
whether they could do so in the case of the red clover, from their 
weight not being sufficient to depress the wing-petals. Hence we 
may infer as highly probable that, if the whole genus of humble-bees 
became extinct or very rare in England, the heartsease and led 
clover would become very rare, or wholly disappear. The number 
of humble-bees in any district depends in a great measure on the 
number of field-mice, which destroy their combs and nests; and 
CoL Newman, who has long attended to the habits of humble-bees, ^ 



58 



Struggle for Existeme, 



Chap. III. 



/ 



l 



believes that " more than two-thirds of them are thus destroyed all 
over England.** Now the number of mice is largely dependent, as 
every one knows, on the number of cats ; and Col. Newman says, 
** Near villages and small towns I have found the nests of humble- 
bees more numerous than elsewhere, whidi I attribute to the num-^ 
ber of cats that destroy the mice." Hence it is quite credible that 
the presence of a feline animal in large numbers in a district might 
determine, through the intervention first of mice and then of bees, 
the frequency of certain flowers in that district I 

In the case of every species, many dif ferent checks, ^rlJ!^ ^^ 
different periods of life, and during different seasons or years, pro- 
bably come into play ; some one check or some few being generally 
the most potent ; but all ^ILccmgur in determining the av erage 
number or even the existence of the species. In some cases it can 
be shown that widely-different checks act on the same species 
in different districts. When we look at the plants and bushes 
clothing an entangled bank, we are tempted to attribute their pro- 
portional numbers and kinds to what we call chance. But l^ow false 
a view is this I Every one has heard that when an American forest 
is out down, a very different vegetation springs up ; but it has been 
observed that ancient Indian ruins in the Southern United States, 
which must formerly have been cleared of trees, now display the 
same beautiful diversity and proportion of kinds as in the surround- 
ing virgin forest What a struggle must have gone on during long 
centuries between the several kinds of trees, each annually scattering 
its seeds by the thousand ; what war between insect and insect — 
between insects, snails, and other animals with birds and beasts of 
prey — all striving to increase, all feeding on each other, or on the 
trees, their seeds and seedlings, or on the other plants which first 
clothed the ground and thus checked the growth of the trees ! Throw 
up a handful of feathers, and all fall to the ground according to 
definite laws ; but how simple is the problem where each shall fall 
compared to that of the action and reaction of the innumerable 
plants and animals which have determined, in the course of cen- 
turies, the proportional numbers and kinds of trees now growing on 
the old Indian ruins ! 4 

The dfipen^QD^Y f)f nnft nrg^T^ifi hp.ino nn anothfir^ as of a parasite 

on its prey, lies^enerally between beings remote in the. scale stl 
qature. This is likewise sometimes the case with those which may 
be strictly said to struggle with each other for existence, as in the 
case of locusts and grass-feeding quadrupeds. But t^tSJltrugglejadll 
4iimost invariably .heLjoaflfii^^fexere between^ the individuals of the 
same species, for they frequent the same districts, require the same 



Chap. III. Struggle for Existaice. 59 

food, and are exposed to' the same dangers. In the case of vaheties 
of the same species, tiie struggle will generally be almost equally 
severe, and we sometimes see the contest soon decided : for instance, 
if several varieties of wheat be sown together, and the mixed seed be 
tesown, some of the varieties which best suit the soil or climate, or are 
naturally the most fertile, will beat the others and so yield more 
seed, and will consequently in a few years supplant the other varie- 
ties. To keep up a mixed stock of even such extremely close varie> 
ties as the variously-coloured sweet-peas, they must be each year 
harvested separately, and the seed then mixed in due proportion, 
otherwise the weaker kinds will steadily decrease in number and 
disappear. 80 again with the varieties of sheep: it has been asserted 
that certain mountain-varieties will starve out other mountain- 
varieties, so that they cannot be kept together. The same result 
has followed from keeping together different varieties of the medicinal 
leech. It may even be doubted whether the varieties of any of oui 
domestic plants or animals have bo exactly the same strength, 
habits, and constitution, that the original proportions of a mixeil 
stock (crossing being prevented) could be kept up for half-a-dozen 
generations, if they were allowed to struggle together, in the same 
manner as beings in a state of nature, and if the seed or young were 
not annually preserved in due proportion. 

Struggle for Life mod severe hetween Individuals and Varieties / 

<f the same Species, ^ 

As the species of the same genus usc^Uy hay^ though by no 
means invariably, muctx^ nmilaritY in habits and constitution, and 
always in staictnie, theatniggle will generally be more severe 
T^|:w«^fm th^rn^ if they come into competition with each other, than 
between the species of distinct genera. We see this in the recent 
extension over parts of the United States of one species of swallow 
having caused the decrease of another species. The recent increase 
of the missel-thrush in parts of Scotland has caused the decrease of 
the song-thrush. How frequently we hear of one species of rat 
taking the place of another species under the most different climates ! 
In Bussia the small Asiatic cockroach has everywhere driven before 
it its great congener. In Australia the imported hive-bee is rapidly 
exterminating the small, stingless native bee. One species of char- 
lock has been known to supplant another species ; and so in other 
cases. We can dimly see why the competition should be most severe 
between allied forms, which fill nearly the same place in the economy 
of nature; but probably in no one case could we precisely say why 
one species has been victorious over another in the great battle of Uto. 



6o Struggle for Existence. Ohap. in. 

A corollary of the highest importance may be deduced from the 
foregoing remarks, namely, that the structure of eveij^ organi c being 
is related, in the most essential yet often hidden manner, to that, of 
all ^Folher'organic ^ings, with which it comes into comjjetitjgn 
for food or residence, or from which it has to escape, or on which it 
preys. This is obvious in the structure of the teeth and talons of 
the tiger ; and in that of the legs and claws of the parasite which 
clings to the hair on the tiger's body. But in the beautifully plumed 
seed of the dandelion, and in the flattened and fringed legs of the 
water-beetle, the relation seems at first confined to the elements of 
air and water. Yet the advantage of plumed seeds no doubt stands 
in the closest relation to the land being already thickly clothed with 
other plants ; so that the seeds may be widely distributed and fall 
on unoccupied ground. In the water-beetle, the structure of its 
legs, so well adapted for diving, allows it to compete with other 
aquatic insects, to hunt for its own prey, and to escape serving fts 
prey to other animals. 

The store of nutriment laid up within the seeds of many plants 
seems at first sight to have no sort of relation to other plants. But 
from the strong growth of young plants produced from such seeds* 
as peas and beans, when sown in the midst of long grass, it may be 
suspected that the chief use of the nutriment in the seed is to favour 
the growth of the seedlings, whilst struggling with other plants 
growing vigorously all around. 

Look at a plant in the midst of its range, why does it not doiojble 
or quadruple its numbers? We know that it can perfectly well 
withstand a little more heat or cold, dampness or dryness, for tise- 
where it ranges into slightly hotter or colder, damper or drier dis- 
tricts. In this case we can clearly see that if we wish in imagination 
to give the plant the power of increasing in number, we should have 
to give it some advantage over its competitors, or over the animaLs 
which prey on it. On the confines of its geographical range, a change 
of constitution with respect to climate would clearly be an advantage 
to our plant ; but we have reason to believe that only a few plants 
or animals range so far, that they are destroyed exclusively by the 
rigour of the climate. Not until we reach the extreme confines of 
life, in the Arctic regions or on the borders of an utter desert, will 
competition cease. The land may be extremely cold or dry, yet 
there will be competition between some few species, or between the 
individuals of the same species, for the warmest or dampest spots. 

Hence we can see that when a plant or animal is placed in a new 
country amongst new competitors, the conditions of its life will 
generally be changed in an essential manner, although the climata 



V 



CuAP. III. Struggle for Existence. ^v 

may be exactly the same as in its fonner home. If its average ntim- 
Jsers are to increase in its new home, we should have to modify it io 
^j^ifferent way to what we should have had to do in its native 
Ltry ; for we should have to give it some advantage over a different 
ipompetitors or enemies. 
Eood thus to try in imagination to give to any one species an 
f^ over another. Probably in no single instance should we 
,xxat to do. This ought to convince us of our ignorance on 
the mutual relations of all organic beings; a conviction as necessary, 
as it is difficult to acquire. All that we can do, is to keep steadily 
in mind that each organjcLbeiafiLis striving to increase in ageometri-_{ 
cal rati o ; that each at some period of its life, during some season of 
the year, during each^^^jiifiiatio]! or at intervals, has to struggle for 
\^ and t o suffer gre ^t d^truct^pi^. When we reflect on this struggle, 
we may console ourselves with the full belief, that the war of nature 
is not incessant, that no fear is felt, that death is generally prompt,- 
and that the vigorous, the healthy, and the happy survive and 
multiply. 



kAAVf «* <r* i 



Natural Selecttofu Chap. ir. 



CHAPTER IV. 

Natueal Selection; ob the Survival of the Fittest. 

Natural Selection — its power compared with man's selection — its power 
on characters of trifling importance — its power at all ages and on both 
sexes — Sexual Selection — On the generality of intercrosses between 
individaals of the same species — Circumstances favourable and unfa- 
vourable to the results of Natural Selection, namely, intercrossing, 
isolation, number of individuals — Slow action — Extinction caused by 
Natural Selection — ^Divergence of Character, related to the diversity of 
inhabitants of any small area, and to naturalisation — Action of Natural 
Selection, through Divergence of Character, and Extinction, on the de- 
scendants from a common parent — Explains the grouping of all organic 
beings — Advance in organisation — Low forms preserved — Convergence 
of character — Indefinite multiplication of species — Summary. 

How will the struggle for existence, briefly discussed in the last 
chapter, act in regard to variation ? Can the principle of selection, 
which we have seen is so potent in the hands of man, apply under 
nature ? I think we shall see that it can act most efficiently. Let 
the endless number of slight variations and individual differen ces 
occurnng in "oiif "doniesttc prMuctions, and,' in a lesser degree, in 
those under nature, be borne in mind ; as well as the strengt h of 
the hereditary tendency. Under domestication, it may be truly 
said that the whole"' organisation becomes in some degree plastic. 
But the variability, which we almost imiversally meet with in our 
domestic productions, is not directly produced, as Hooker and 
Asa Gray have well remarked, by man ; he can neither originatej 
varieties, nor prevent their occurrence ; he can only preserve andll 
accumulate such as do occur. Unintentionally he exposes organici 
beings to new and changing conditions of life, and variability! 
ensues ; but similar changes of conditions might and do occur under 
nature. Let it also be borne in mind how infinitely complex and 
close-fitting are the mutual relations of all organic beings to each 
other and to their physical conditions of life; and consequently 
what infinitely varied diversities of structure might be of use to 
each being under changing conditions of life. Can it, then, be 
thought improbable, seeing that variations useful to man have 



Chap, IV. Natural Selection, 63 



undoubtedly occurred, that other yariations useful in some way to 
each being in the great and complex battle of life, should occur in 
the course of many successive generations ? If such do occur, can we 
doubt (remembering that many more individuals are bom than can 
possibly survive) that individuals having any advantage, however 
slightj over others, would have the best chance of surviving and of 
procreating their kind ? On the other hand, we may feel sure that 
any variation in the least degree injurious would be rigidly de- 
stroyed. This preservatio n^ of favou rable individual differences 
variations, ana tne gestructlon of tliose wnich arelnjunous, I hav< 
called -Natural SelS Bon^nBi^^iv arof the Fittest. Variation 
neither useful nor mjurious would not be affected by natural sel 
tion, and would be left either a fluctuating element, as perhaps we 
see in certain polymorphic species, or would ultimately become 
fixed, owing to the nature of the organism and the nature of the 
conditions. 

Several writers have misapprehended or objected to the term 
Natural Selection. Some have even imagined that natural selection 
induces variability, whereas it implies only the preservation of such/ 
variations as arise and are beneficial to the being under its con^ 
ditions of life. No one objects to agriculturists speaking of tba 
potent effects of man's selection ; and in this case the individual 
differences given by nature, which man for some object selects, 
must of necessity first occur. Others have objected that the term 
selection implies conscious choice in the animals which become 
modified ; and it has even been urged that, as plants have do voli- 
tion, natural selection is not applicable to them! In the literal 
sense of the word, no doubt, natural selection is a false term ; but 
who ever objected to chemists speaking of the elective afSnities of 
the various elements ? — and yet an acid cannot strictly be said to 
elect the base with which it in preference combines. It has been 
said that I speak of natural selection as an active power or Deity ; j 
but who objects to an author speaking of the attraction of gravity \ 
as ruling the movements of the planets ? Every one knows what 
Is meant* and is implied by such metaphorical expressions; and 
they are almost necessary for brevity. So again it is difScult to 
avoid personifying the word Nature ; but I mean by Nature, only 
the aggregate action and product of many natural laws, and by laws 
the sequence of events as ascertained by us. With a little familiarity 
such superficial objections will be forgotten. 

We shall best understand the probable course of natural selection 
by taking the case of a country undergoing some slight physical 
chaise, for instance, of climate. The proportional numbers of its 



c> 



64 Natural Selectioft, Chap. IV. 

Inhabitants will almost immediately midergo a change, and some 
species will probably become extinct. We may conclude, from 
what we have seen of the intimate and complex manner in which 
the inhabitants of each country aie bound together, that any change 
in the numerical proportions of the inhabitants, independently of 
the change of climate itself, would seriously affect the others. If 
the country were open on its borders, new forms would certainly 
immigrate, and this would likewise seriously disturb the relations 
of some of the former inhabitants. Let it be rem embered how 
^ ^ powerful the influence of a single intr oduced tree^r ma mmal ha s 
^ been show ^ \c) he. But in the case oriinlsIanSi or of a country 

partly surrounded by barriers, into which new and better adapted 
forms could not freely enter, we should then have places in the 
economy of nature which would assuredly be better filled up, if 
some of the original inhabitants were in some manner modified ; 
for, had the area been open to immigration, these same places would 
have been seized on by intruders. In such cases, slight modifica- 

1 tions, which in any way favoured the individuals of any species, by 
better adapting them to their altered conditions, would tend to be 
preserved ; and natural selection would have free scope for the work 
of improvement. 

\ We have good reason to believe, as shown in the first chapter, 
that chang es, in titSJjQjiditions of life give a ten dency to increased 
variab ility ; and in the foregoing cases the c6n3ilions have cISanged, 
and this would manifestly be favourable to natural selection, by 
affording a better chance of the occurrence of profitable variations. 

I Unless such occur, natural selection can do nothing. Under the 

\ term of " variations,'* it must never be forgotten that mere indivi- 
dual differences are included. As man can produce a great result 
with his domestic animals and plants by adding up in any given 
i direction individual differences, so could natural selection, but far 
more easily, from having incomparably longer time for action. Kor 
do I believe that -any great physical change, as of climate, or any un- 
usual degree of isolation to check immigration, is necessary in order 
that new and unoccupied places should be left, for natural selec- 
tion to fill up by improving some of the varying inhabitants. For 
as all the inhabitants of each country are struggling together with 
nicely balanced forces, extremely slight modifications in the struc- 
ture or habits of one species would often give it an advantage over 

I others ; and still further modifications of the same kind would often 
still further increase the advantage, as long as the species continued 
under the same conditions of life and profited by similar means of 
subsistence and defence. No country can be named in which all 



Chap. IV. Natural Selection, 65 

the native inhabitants are now so perfectly adapted to each other \ 
and to the physical conditions under which they live, that none of 
them could be still better adapted or imtvoved ; for in all countries, 
the natives have been so fieur conquered by natiualised productions, 
that they have allowed some foreigners to take firm possession of 
the land. And as foreigners have thus in every country beaten 
some of the natives, we may safely conclude that the natives might 
have been modified with advantage, so as to have better resisted the 
intruders. 

As man can produce, and certainly has produced, a great result 
by his methodical and unconscious means of selection, what may not 
natural selection effect ? Man can act only on external and visible 
characters : Nature, if I may be allowed to personify the natural 
preservation or survival of the fittest, cares nothing for appearances, 
except in so far as they are useful to any being. She can act on 
every internal organ, on every shade of constitutional difference, i 
on the whole machinery of life. M g. selects only for _his own I 
good : Nature only for that of the l>em^ which she^tep ds. Every/ 
selectea cnaracter is luily exercised by her, as is implied by the fact! 
of their selection. Man keeps the natives of many climates in the 
same country ; he seldom exercises each selected character in some 
peculiar and fitting manner ; he feeds a long and a short beaked 
pigeon on the same food; he does not exercise a long-backed or 
long-legged quadruped in any peculiar manner ; he exposes sheep 
with long and short wool to the same climate. He does not allow 
the most vigorous males to stru^le for the females. He does not 
rigidly destroy all inferior animals, but protects during each varying^ 
season, as far as lies in his power, all his productions. He often 
begins his selection by some half-monstrous form ; or at least by 
some modification prominent enough to catch the eye or to be 
plainly useful to him. Under nature, the slightest differences of 
structure or constitution may well turn the tdcely-balanced scale in 
the struggle for life, and so be preserved. How fleeting are the 
wishes and efforts of man I how short his time ! and consequently 
how poor will be his results, compared with those accumulated by 
Nature during whole geological periods 1 Can we wonder, then, that 
Nat ure's productions s hould be far " truer ** in cha racter than man's 
productions; that tliey should be infinitely 1:)etter adapted to the 
most complex conditions of life, and should plainly bear the stamp 
of far higher workmanship ? 

It may metaphorically be said that natural selection is daily and 
hourly^ scnitinisipg, throughout the world, the slightest variations ; 
rejecting those that are bad, preserving and adding up all that axe 



\ 



66 Natural Selection. Ohap. IT. 

gpod; silently and insensibly working, wh^Mver and wherever 
oppcrtunit'y offers, at the improvement of each organic being in 
relation to its organic and inorganic conditions of li&. We see 
nothing of these slow changes in progress, until the hand of time 
has marked tbe lapse of ages, and then so imperfect is our view into 
long-past geological ages, that we see only that the forms of life are 
now different from what they formerly were. 

In order that any great amount of modification should be effected 
in a species, a variety when once formed must again, perhaps after 
a long interval of time, vary or present individual diflfetences of the 
same favourable nature as before ; and these muse be again pre- 
served, and so onwards step by step. Seeing that individual 
differences of the same kind perpetually recur, this can hardly be 
considered as an unwarrantable assumption. But whether it is 
true, we can judge only by seeing how far the hypothesis accords 
with and explains the general phenomena of nature. On the other 
hand, the ordinary belief that the amount of possible variation is a 
strictly limited quantity is likewise a simple assumption. 

Although natural selection can act only through and for the good 
of each being, yet characters and structures, which we are apt to 
consider as of very trifling importance, may thus be acted on. When 
we see leaf-eating insects green, and bark-feeders mottled-grey ; the 
alpine ptarmigan white in winter, the red-grouse the colour of 
heather, we must believe that these tints are of service to these 
birds and insects in preserving them from danger. Grouse, if not 
destroyed at some period of their lives, would increase in countless 
numbers ; they are known to suffer largely from birds of prey ; and 
hawks are guided by eyesight to their prey — so much so, that on 
parts of the Continent persons are warned not to keep white 
pigeons, as being the most liable to destruction. Hence natural 
selection might be effective in giving the proper colour to each 
kind of grouse, and in keeping that colour, when once acquired, 
true and constant. Kor ought we to think that the occasional 
destruction of an animal of any particular colour would produce 
little effect : we should remember how essential it is in a flock of 
A\hite sheep to destroy a lamb with the faintest trace of black. 
We have seen how the colour of the hogs, which feed on the 
" paint-root " in Virginia, determines whether they shall live or die. 
In plants, the down on the fruit and the colour of the flesh are con- 
sidered by botanists as characters of the most trifling importance : 
yet we hear from an excellent horticulturist. Downing, that in the 
United States smooth-skinned fruits suffer far more from a beetle, 
& Gurculio, than those with down ; that purple plums suffer far 



Chap. IV. Natural Selection, 67 



more from a certain disease than yellow plums ; whereas another 
disease attacks yellow-fleshed peaches far more than those with 
other coloured flesh. If, with all the aids of art, these slight difier- 
ences make a great difference in cultivating the several varieties, 
assuredly, in a state of nature, where the trees would have to 
struggle with other trees and with a host of enemies, such diffei^ 
ences would effectually settle which variety, whether a smooth or 
downy, a yellow or purple fleshed fruit, should succeed. 

In looking at many small points of difference between species, 
which, as far as our ignorance permits us to judge, seem quite 
unimportant, we must not forget that climate, food, &c., have no 
doubt produced some direct effect. It is also necessary to bear in 
mind that, ow ing to the l aw of corr elati on, when on e part varies, 
and the va nations are accumulated tE rou^h natural selection, other 
modilications, of ten of the most unexpe ct^ nature/wlTT ensue. 

As we see that those vanations which, under domeslicSiron'appear 
at any particular period of life, tend to reappear in the offspring at 
the same period ; — for instance, in the shape, size, and flavour of 
the seeds of the many varieties of our culinary and agricultural 
plants ; in the caterpillar and t^ocoon stages of the varieties of the 
silkworm ; in the eggs of poultry, and in the colour of the down of 
their chickens ; in the horns of our sheep and cattle when nearly 
adult ; — ^so in a state of nature, natural selection will be enabled to 
act on and modify organic beings at any age, by the accumulation 
of variations profitable at that age, and by their inheritance at a 
corresponding age. If it profit a plant to have its seeds more and 
more widely disseminated by the wind, I can see no greater diffi- 
culty in this being effected through natural selection, than in the 
cotton-planter increasing and improving by selection the down in 
the pods on his cotton-trees. Natural selection may modify and 
adapt the larva of an insect to a score of contingencies, wholly 
different from those which concern the mature insect ; and these 
modifications may affect, through correlation, the structure of the 
adult. So, conversely, modifications in the adult may affect 
the structure of the larva ; but in all cases natural selection will 
ensure that they shall not be injurious : for if they were so, the 
species would become extinct. 

Natural selection will modify the structure of the young in relation 
tcTthe parent, and gftiro pa re nt in relati o n to the young . In^social 
animals it will adapt the structure of each individual for the benefit ' 
of- the V/ h6le com munity ; If th(j cummuiitt^ profits by~the selected 
"Change. Wtat naturarselection cannot do, is to modify the struc-. 
ture of one species, without giving it any advantage, for the good of » 

F 2 



68 Natural Selection, Chap. IV. 



another species ; and though statements to this effect may be found 
in works of natural history, I cannot find one case which will bear 
investigation. A structure used only once in an animaPs life, if of 
^ high importance to it, might be modified to any extent by natural 
selection ; for instance, the great jaws possessed by certain insects, 
used exclusively for opening the cocoon — or the hard tip to the 
beak of unbatched birds, used for breaking the egg. It has been 
asserted, that of the best short-beaked tumbler-pigeons a greater 
number jperish in the egg than are able to get out of it ; so that 
fanciers assist in the act of hatching. Now if nature had to make 
the beak of a full-grown pigeon very short for the bird's own advan- 
tage, the process of modification would be very slow, and there 
wohM be simultaneously the most rigorous selection of all the 
young birds within the egg, which had the most powerful and 
hardest beaks, for all with weak beaks would inevitably perish ; or, 
more delicate and more easily broken shells might be selected, 
the thickness of the shell being known to vary like every other 
structure. 

It may be well here to remark that with all beings there must be 
much fortuitous destruction, which can have little or no influence 
on the course of natural selection. For instance a vast number of 
eggs or seeds are annually devoured, and these could be modified 
through natural selection only if they varied in some manner which 
protected them from their enemies. Yet many of these eggs or 
seeds would perhaps, if not destroyed, have yielded individuals 
better adapted to their conditions of life than any of those which 
happened to survive. So again a vast number of mature animals 
and plants, whether or not they be the best adapted to their con- 
ditions, must be annually destroyed by accidental causes, which 
would not be in the least d^ee mitigated by certain changes of 
structure or constitution which would in other ways be beneficial to 
the species. But let the destruction of the adults be ever so heavy, 
if the number which can exist in any district be not wholly kept 
down by such causes, — or again let the destruction of eggs or seeds 
be so great that only a hundredth or a thousandth part are developed, 
— yet of those which do survive, the best adapted individuals^ sup- 
posing that there is any variability in a favourable direction, will 
tend to propagate their kind in larger numbers than the less well 
adapted. If the numlBers be wholly kept down by the causes just 
indicated, as will often have been the case, natural selection will be 
powerless in certain beneficial directions; but this is no valid 
objection to its efficiency at other times and in other ways ; for we 
are far from having any reason to suppose that many species ever 



Chap. IV. Sexual Selection, 69 

undergo modification and improvement at the same time in the 
same area. 

Sexual Selection. 

Inasmnch as pecnliarities often appear iinder domestication in one 
sex and become hereditarily attached to that sex, so no doubt it will 
be under nature. Thus it is rendered possible for the two sexes to 
be modified through natural selection in relation to different habits 
of life, as is sometimes the case ; or for one sex to be modified in 
relation to the other sex, as commonly occurs. This leads me to 
say a few words on what I have called Sexual Selection . This form ot | 
select ion depends, not on a struggl e for existence in relalion tootSe T/ 
orgaiilC telngs or to external condiii ons, tuton a struggle between 1 
" ivJQuaiS^ol one^i^x, gfihera iiy the males, / offfiejposg^gionj^l 

i^^^^TfEeresmTlSTotaSt^TrTfi^insuccess^^ 
y u^few i)y ^ 10 o ffspring . ~"S6xu^ selection i8pthereIore,"Ie3/ 
ngorous than natural selection. Generally, the most vigorous males, 
those which are best fitted for their places in nature, will leave most 
progeny. But in many cases, victory depends not so much on 
general vigour, as on having special weapons, confined to the male 
sex. A hornless stag or spurless cock would have a poor chance of 
leaving numerous offspring. Sexual selection, by always allowing 
the victor to breed might surely give indomitable courage, length 
to the spur, and strength to the wing to strike in the spurred leg, in\ 
nearly the same manner as does the brutal cockfighter by the care- 
ful selection of his best cocks. How low in the scale of nature the 
law of battle descends, I know not;* male alligators have been 
described as fighting, bellowing, and whirling round, like Indians in 
a war-dance, for the possession of the females ; male salmons have 
been observed fighting all day long ; male stag-beetles sometimes 
bear wounds from the huge mandibles of other males ; the males 
of certain hymenopterous insects have been frequently seen by that 
inimitable observer M. Fabre, fighting for a particular female who 
sits by, an apparently unconcerned beholder of the struggle, and 
then retires with the conqueror. The war is, perhaps, severest 
between the males of polygamous animals, and these seem oftenest 
provided with special weapons. The males of carnivorous animals 
are already well armed; though to them and to others, special 
means of defence may be given through means of sexual selection, 
as the mane to the lion, and the hooked jaw to the male salmon ; ■ 
for the shield may be as important for victory, as the sword or * 



spear. 

Amongst birds, the contest is often of a more peaceful character^ 



yo Sexual Selection, Chap. IV* 

All those who have attended to the subject, believe that there is the 
severest rivalry between the males of many species to attract, by 
siDging, the females. The rock-thrush of Guiana, birds of paradise, and 
some others, congregate ; and successive males display with the most 
elaborate care, and show off in the best manner their gorgeous plu- 
mage; they likewise perform strange antics before the females, which, 
standing by as spectators, at last choose the most attractive partner. 
Those who have closely attended to birds in confinement well know 
that they often take individual preferences and dislikes : thus Sir E. 
Heron has described how a pied peacock was eminently attractive to 
all his hen birds. I cannot here enter on the necessary details ; but 
if man can in a short time give beauty and an elegant carriage to his 
bantams, according to his standard of beauty, I can see no good 
reason to doubt that female birds, by selecting, during thousands of 
generations, the most melodious or beautiful males, according to their 
standard of beauty, might produce a marked effect. Some well- 
known laws, with respect to the plumage of male and female birds, 
in comparison with the plumage of the young, can partly be ex- 
plained through the action of sexual selection on variations occurring 
at different ages, and transmitted to the males alone or to both sexes 
at corresponding ages ; but I have not space here to enter on this 
subject. 

Thus it is, as I believe, that when the males and females of an y 
animal have the same general habits of life, but differ in structure, 
cototiT, or ornament, sucb differences have been mainly caused Iby 
siexual selection : that is, by individual .males having bad, in suc^ 
cessivegeneratrons, some slight advantage over other males, in their 
weapons, means of defence, or charms, which they have transmitt ed 
to their male offspring alone. ^ Yet, I would not wish to attribute all 
sexual differences to this agency : for we see in our domestic animals 
peculiarities arising and becoming attached to the male sex, which 
apparently have not been augmented through selection by man. 
The tuft of hair on the breast of the wild turkey-cock cannot be of 
any use, and it is doubtful whether it can be ornamental in the eyes 
of the female bird ; — ^indeed, had the tuft appeared under domestica- 
tion, it would have been called a monstrosity. 

lllvMrations of the Action of Natural Selection, or the Survival 

of the Fittest. 

In order jfe) make it clear how, as I believe, natural selection acts, 
I iMjjIJnSeg permission to give one or two imaginary illustrations. 
JiSt us take the case of a wolf, which preys on various animals, 
securing some by craft, some by strength, and some by fleetness*; 



Chap. IT. Natural Selection, 71 

and let us suppose that the fleetest prey, a deer for instaoce, had 
&om any change in the country increased in numbers, or that other 
prey had decreased in numbers, during that season of the year when 
the wolf was hardest pressed for food. Under such circumstances the 
swiftest and slimmest wolves would have the best chance of surviv- 
ing, and so be preserved or selected, — ^provided always that they 
retained strength to master their prey at this or some other period of 
the year, when they were compelled to prey on other animals. I can 
see DO more reason to doubt that this would be the result, than that 
mian should be able to improve the fleetness of his greyhounds by 
careful and methodical selection, or by that kind of unconscious 
selection which follows from each man trying to keep the best dogs 
without any thought of modifying the Inreed. I may add, that, 
according to Mr. Fierce, there are two varieties of the wolf inhabiting 
the Oatskill Mountains in the United States, one with a light grey* 
hound-Uke form, which pursues deer, and the other more bulky, 
with shorter legs, which more frequently attacks the shepherd^s 
flocks. 

It should be observed that, in the above illustration, I speak of 
the slimmest individual wolves, and not of any single strongly- 
marked variation having been preserved. In former editions of this 
work I sometimes spoke as if this latter alternative had frequently 
occurred. I saw the great importance of individual differences, and 
this led me fully to discuss the results of unconscious selection by 
man, which depends on the preservation of all the more or less • 
valuable individuals, and on the destruction of the worst. I saw, 
also, that the preservation in a state of nature of any occasional 
deviation of structure, such as a monstrosity, would be a rare event ; 
and that, if at first preserved, it would generally be lost by subse- 
quent intercrossing vnth ordinary individuals. Nevertheless, until 
reading an able and valuable article in the ' North British Review ' 
(1867), I did not appreciate how rarely single variations, whether 
slight or strongly-marked, could be perpetuated. The author takes 
the case of a pair of animals, producing during their lifetime two 
hundred offspring, of which, from various causes of destruction, only 
two on an average survive to pro-create their kind. This is rather 
an extreme estimate for most of the higher animals, but by no means 
so for many of the lower organisms. He then shows that if a single 
individual were bom, which varied in some manner, giving it twice 
as good a chance of life as that of the other individuals, yet the 
chances would be strongly against its survival. Supposing it to 
survive and to breed, and that half its young inherited the favour- 
able variation ; still, as the Keviewer goes on to show, the young 



72 Illustrations of the Action of Chap. IV. 

would have only a slightly better chance of surviving and breeding ; 
and this chance would go on decreasing in the succeeding genera- 
tions. The justice of these remarks cannot, I think, be disputed. 
If, for instance, a bird of some kind could procure its food more 
easily by having its beak curved, and if one were bom with its beak 
strongly curved, and which consequently flourished, nevertheless 
there would be a very poor chance of this one individual perpetuat- 
ing its kind to the exclusion of the common form ; but there can 
, hardly be a doubt, judging by what we see taking place under 
domestication, that this result would follow from the preservation 
during many generations of a large number of individuals with more 
or less strongly curved beaks, and from the destruction of a still 
larger number with the straightest beaks. 

It should not, however, be overlooked that certain rather strongly 
marked variations, which no one would rank as mere individual 
differences, frequently recur owing to a similar organisation being 
similarly acted on, — of which fact numerous instances could be 
given with our domestic productions. In such cases, i f th e varying 
individual did not actually transmit to its offspring its newly-acquired! 
ctaraci^r, i^wouldjindoubtedly transmit to them, as long as the 
existing conditions remained the same, a^stijyLstrQngei:., tendency to 
vary JA^ttiLQ JSa-IT^c-JPapntPrj There can also be little doubt that the 
mdenc y to vary in the same manner has often been so strong that 
[e inaividuals of the same species have been similarly modified 
without the aid of any form of selection. Or only a third, fifth, or 
tenth part of the individuals may have been thus affected, of which 
fact several instances could be given. Thus Graba estimates that 
about one-fifth of the guillemots in the Faroe Islands consist of a 
variety so well marked, that it was formerly ranked as a distinct 
species under the name of Uria lacrymans. In cases of this kind, if 
the variation were of a beneficial nature, the original form would 
soon be supplanted by the modified form, through the survival of 
the fittest. 

To the effects of intercrossing in eliminating variations of all 
kinds, I shall have to recur; but it may be here remarked that 
most animals and plants keep to their proper homes, and do 
not needlessly wander about; we see this even with migratory 
birds, which almost always return to the same spot. Consequently 
each newly -formed variety would generally be at first local, as seems 
to be the common rule with varieties in a state of nature ; so that 
similarly modified individuals would soon exist in a small body 
together, and would often breed together. If the new variety were 
successful in its battle for life, it would slowly spread from a central 



Chap. IV. Natural Selection, 73 



district, competing with and conquering the unchanged iDdividnals 
on the mai^ins of an ever-increasing circle. 

It may be worth while to give another and more complex illns* 
tration of the action of natural selection. Certain plants excrete 
sweet juice, apparently for the sake of eliminating something in* 
jnrious from the sap : this is effected, for instance, by glands at the 
base of the stipules in some L^uminosse, and at the backs of the 
leaves of the common laurel. This juice, though small in quantity, 
is greedily sought by insects ; but their visits do not in any way 
benefit the plant. Now, let us suppose that the juice or nectar was 
excreted from the inside of the flowers of a certain number of plants 
of any species. Insects in seeking the nectar would get dusted with 
pollen, and would often transport it from one flower to another. 
The flowers of two distinct individuals of the same species would 
thus get crossed ; and the act of crossing, as can be fully proved, 
gives rise to vigorous seedlings, which consequently would have the 
best chance of flourishing and surviving. Tba planta which produced 
fl owers with the larges t glands or nectaries, excreting most nectar, 
would oftenest be visited by insects, and would oftenest be crossed : 
ai^-jp in the lo ng-run would gain the upper hand and form a local 
variety. The flowers, also, which liad their stamens and pistils 
placed, in relation to the size and habits of the particular insect 
which visited them, so as to favour in any degree the transportal of 
the pollen, would likewise be favoured. We might have taken the 
case of insects visiting flowers for the sake of collecting pollen in- 
stead of nectar; and as pollen is formed for the sole purpose of 
fertilisation, its destruction appears to be a simple loss to the plant ; 
yet if a little pollen were carried, at first occasionally and then 
habitually, by the pollen-devouring insects from flower to flower, 
and a cross thus effected, although nine-tenths of the pollen were 
destroyed, it might stiU be a great gain to the plant to be thus 
robbed ; and the individuals which produced more and more pollen, 
and had larger anthers, would be selected. 

When our plant, by the above process long continued, had been 
rendered highly attractive to insects, they would, unintentionally on 
tfteir part, regularly carry pollen from flower to flower ; and that 
they do this effectually, I could easily show by many striking facts. 
I will give only one, as likewise illustrating one step in the separa- 
tion of the sexes of plants. Some holly-trees bear only male flowers, 
which have four stamens producing a rather small quantity of 
pollen, and a rudimentary pistil ; other holly-trees bear only female 
flowers; these have a full-sized pistil, and four stamens with 
shrivelled anthers, in which not a grain of pollen can be detected. 



74 Illustrations of the Action of Chap. IV. 

Having found a female tree exactly sixty yards from a male tree- 1 
put the stigmas of twenty flowers, taken from different branches, 
under the microscope, and on all, without exception, there were a 
few pollen-grains, $knd on some a {»t>fusion. As the wind had set 
for several days frota the female to the male tree, the pollen could 
not thus have beeo carried. The weather had been cold and 
boisterous, and therefcure not favourable to bees, nevertheless every 
female flower which I e^camiued had been effectually fertilised by 
the bees, which had flowu from tree to tree in search of nectar. But 
to return to our imaginary case : as soon as the plant had been 
rendered so highly attractive to insects that pollen was regularly 
carried from flower to flower, another process might commence. No 
naturalist doubts the advantage of what has been called the " physio- 
logical division of labour ; " hence we may believe that it would be 
advantageous to a plant to produce stamens alone in one flower or 
on one whole plant, and pistils alone m another flower or on another 
plant. In plants under culture and placed under new conditions of 
life, sometimes the male organs and sometimes the female organs 
become more or less impotent ; now if we suppose this to occur in 
ever so slight a degree under nature, then, as pollen is already 
carried regularly from flower to flower, and as a more c(»nplete sepa- 
ration of the sexes of our plant would be advantageous on the prin- 
ciple of the division of labour, individuals with this tendency more 
and more increased, would be continually favoured or selected, 
until at last a complete separation of the sexes might be effected. 
It would take up too much space to show the various steps, 
through dimorphism and other means, by which the separation of 
the sexes in plants of various kinds is apparently now in progress ; 
but I may add that some of the species of holly i^ North America, 
are, according to Asa Gray, in an exactly intermediate condition, or, 
as he expresses it, are more or less dioeciously polygamous. 

Let us now turn to the nectar-feeding insects ; we may suppose 
the plant, of which we have been slowly increasing the nectar by 
continued selection, to be a common plant; and that certain 
insects depended in main part on its nectar for food. I could give 
many facts showing how anxious bees are to save time : for 
instance, their habit of cutting holes and sucking the nectar at 
the bases of certain flowers, which with a very little more trouble, 
they can enter by the mouth. Bearing such facts in mind, it may 
be believed that under certain circumstances individual differences 
in the curvature or length of the proboscis, &c., too slight to be 
appreciated by us, might profit a bee or other insect, so that 
certain individuals would be able to obtain their food more quickly 



Chap. IV. Natural Selection. 75 

than others ; and thus the communities to which they belonged 
would flourish and throw off many swarms inheriting the same 
peculiarities. The tubes of the corolla of the common red and 
incarnate clovers (Trifolium pratense and incamatum) do not on a 
hasty glance appear to differ in length ; yet the hive-bee can easily 
suck the nectar out of the incarnate clover, but not out of the 
common red clover, which is visited by humble-bees alone ; so that 
whole fields of the red clover offer in vain an abundant supply of ^ 
pirecious nectar to the hive-bee. That this nectar is much liked by 
the hive-bee is certain ; fgr I have repeatedly seen, but only in the 
autumn, many hive-bees sucking the flowers through holes bitten 
in the base of the tube by humble-bees. The difference in the 
length of the corolla in the two kinds of clover, which determines 
the visits of the hive-bee, must be very trifling ; for I have been 
assured that when red clover has been mown, the flowers of the 
seocoid crop are somewhat smaller, and that these are visited by 
many hive-bees. I do not know whether this statement is accu- 
rate; nor whether another published statement can be trusted, 
namely, that the Ligurian bee, which is generally considered a 
mere variety of the common hive-bee, and which freely crosses with 
it, is able to reach and suck the nectar of the red clover. Thus, in 
a country where this kind of clover abounded, it might be a great 
advantage to the hive-bee to have a slightly longer or differently i 
constructed proboscis. On the other hand, as the fertility of this 
clover absolutely depends on bees visiting the flowers, if humble- \ 
bees were to become rare in any country, it might be a great » 
advantage to the plant to have a shorter or more deeply divided 
corolla, so that the hive-bees should be enabled to suck its flowers. 
Thus I can understand how a flower and a bee might slowly 
become, either simultaneously or one after the other, modified and 
adapted to each other in the most perfect manner, by the con- 
tinued proservation of aU the individuals which presented slight 
deviations of structure mutually favourable to each other. 

I am well aware that this doctrine of natural selection, exempli- 
fied in the above imaginary instances, is open to the same objections 
which were first urged against Sir Charles Lyell*s noble views on 
" the modem changes of the earth, as illustrative of geology ; " but 
we now seldom hear the agencies which we see still at work, spoken 
of as trifling or insignificant, when used in explaining the excavation 
of the deepest valleys or the formation of long lines of inland 
cliffs. Natural selection acts only by the preservatiQiL,an^ _^ 

lation of small inherited modifications, each profitable to the pre- 
8efve3 being ; andas modSn geology has almost banished such 



^6 On the Intercrossing of Individuals, Chap. TV. 

views as tlie excavation of a great valley by a single diluvial wave, 
so will natural selection banish the belief of the continued creation 
of new organic beings, or of any great and sudden modification in 
t heir structure, ''^"^ 

On the Intercrossing of Individuals, 

I must here introduce a short digression. In the case of animals 
and plants with separated sexes, it is of course obvious that two 
individuals must always (with the exception of the curious and 
not well-understood cases of parthenogenesis) unite for each birth ; 
but in the case of hermaphrodites* this is far from obvious. 
Nevertheless there is reason to believe that with all hermaphrodites 
two individuals, either occasionally or habitually, concur for the 
reproduction of their kind. This view was long ago doubtfully 
suggested by Sprengel, Knight and K51reuter. We shall presently 
see its importance ; but I must here treat the subject with extreme 
brevity, though I have the materials prepared for an ample dis- 
cussion. All vertebrate animals, all insects, and some other large 
groups of animals, pair for each birth. Modem research has much 
diminished the number of supposed hermaphrodites, and of real 
hermaphrodites a large number pair; that is, two individuals 
regularly unite for reproduction, which is aU that concerns us. 
But still there are many hermaphrodite animals which certainly do 
not habitually pair, and a vast majority of plants are hermaphro- 
dites. What reason, it may be asked, is there for supposing in 
these cases that two individuals ever concur in reproduction ? As 
it is impossible here to enter on details, I must trust to some 
general considerations alone. 

In the first place, I have collected so large a body of facts, and 
made so many experiments, showing, in accordance with the almost 
universal belief of breeders, that with animals and plants a cross 
between diffe rent varieties, o r betw een Jindividualso f^ the 
vstf jety but ot another^s ^ml gives vifrorir^ ai\( \ fftrtilj ty to the off- 
«p pnp r » and on the other hand,"tEar~cZose interbreeding diminishes 
• vigour and fertility ; that these facts alone incline me to believe 
that it is a general law of nature that ftCjorgapic. bgiog. fej^tilissSL 
I itself for 3: jpgriK*ftiiiitiyj?f £PJpqrfttio PP ; but that a cross with anotJigr 
individual is occagionally — perhaps at long intervals of time — 
iadiapfiosabku 

On the belief that this is a law of nature, we can, I think, under- 
stand several large classes of facts, such as the following, which 
on any other view are inexplicable. Every hybridizer knows how 
unfavourable Exposure to wet is to the fertilisation of a flower, yet 




Chap. IV. On tJie Intercrossing of Individuals. jj 



ux 



what a multitude of flowera have their anthers and stigmas fully 

exposed to the weather ! If an occasional cross be indispensable, 

notwithstanding that the plant's own anthers and pistil stand so 

near each oliier as almost to ensure self-fertilisation, the fullest 

fireedom for the entrance of pollen from another individnal will- 

explain the above state of exposure of the organs. Many flowers, 

on the other hand, haye their organs of fructification closely 

enclosed, as in the great papilionaceous or pea-family ; but these 

almost invariably present beautiful and curious adaptations in 

' relation to the visits of insects. So necessary are the visits of bees 

to many papilionaceous flowers, that their fertility is greatly dimi- 

, nished if these visits be prevented. Now, it is scarcely possible for 

insects to fly from flower to flower, and not to carry pollen from 

one to the other, to the great good of the plant. Insects act like a 

camel-hair pencil, and it is sufficient, to ensure fertilisation, just to 

touch with the same brush the anthers of one flower and tiien the 

stigma of another ; but it must not be supposed that bees would 

thus produce a multitude of hybrids between distinct species ; for if 

a plant's own pollen and that from another species are placed on 

the same stigma, the former is so prepotent that it invariably and 

completely destroys, as has been shown by GMlrtner, the influence 

of the foreign pollen. 

When the stamens of a flower suddenly spring towards the pistil, 
or slowly move one after the other towards it, the contrivance 
seems adapted solely to ensure self-fertilisation ; and no doubt it is 
useful for this end : but the agency of insects is often required to 
cause the stamens to spring forward, as Kolreuter has shown to be 
the case with the barberry ; and in this very genus, which seems to 
have a special contrivance for self-fertilisation, it is well known 
that, if closely-allied forms or varieties are planted near each other, 
it is hardly possible to raise pure seedlings, so largely do they 
naturally cross. In numerous other cases, far from self-fertilisation 
being favoured, there are special contrivances which effectually 
prevent the stigma receiving pollen from its own flower, as I could 
show from the works of Spreugel and others, as well as from my 
own observations : for instance, in Lobelia fulgens, there is a really 
beautiful and elaborate contrivance by which all the infinitely 
numerous pollen-granules are swept out of the conjoined anthers of 
each flower, before the stigma of that individual flower is ready to 
receive them ; and as this flower is never visited, at least in my 
garden, by insects, it never sets a seed, though by placing pollen 
from one flower on the stigma of another, I raised plenty of seed- 
lings. Another species of Lobelia, which is visited by bees, seeds 



78 On the Intercrossing of Individuals. Chap. rv. 

— — — a—i»». I ^a ■ « ■ I M l ■■,■■■ —^— W^— — .111 I ■ ■■■ ■ ■■ ■ ■■ I ■^^^— 

freely in my garden. In very many other cases, though there is no 
special mechanical contrivance to prevent the stigma receiving- 
pollen from the same flower, yet, as Sprengel, and more recently 
Hildebrand, and others, have shown, and as I can confirm, either 
the anthers burst before the stigma is ready for fertilisation, or the 
stigma is ready before the pollen of that flower is ready, so that 
these so-named dichogamous plants have in fact separated sexes, 
and must habitually be crossed. So it is with the reciprocally 
dimorphic and trimorphic plants previously alluded to. How 
strange are these facts I How strange that the pollen and stigmatic 
surface of the same flower, though placed so close together, as if for 
the very purpose of self-fertilisation, should be in so many cases 
mutually useless to each other? How simply are these facts ex^ 

V plained on the view of an occasional cross with a distinct individual 

1 being advantageous or indispensable ! 

If several varieties of the cabbage, radish, onion, and of some 
other plants, be allowed to seed near each other, a large majority of 
the seedlings thus raised turn out, as I have found, mongrels : for 
instance, I raised 233 seedling cabbages from some plants of different 
varieties growing near each other, and of these only 78 were true to 
their kind, and some even of these were not perfectly true. Yet 
the pistil of each cabbage-flower is surrounded not only by its own 
six stamens, but by those of the many other flowers on the same 
plant ; and the pollen of each flower readily gets on its own stigma 
without insect-agency; for I have found that plants carefully 
protected from insects produce the full number of pods. H03E, 
then, jcomes it that- such a vast number of the seedlings are mon- 
grelized ? It must arise from the pollen of a distinct variety having 
a prepotent effect over the flower's own pollen ; and that this is 
part of the general law of good being derived from the intercroasiiig 
of distinct individuals of the same species. When distinct species 
are crossed the case is reversed, for a plant's own pollen is almost 
always prepotent over foreign pollen ; but to this subject we shall 
return in a future chapter. 

In the case of a large tree covered with innumerable flowers, it 
may be objected that pollen could seldom be carried from tree to 
tree, and at most only from flower to flower on the same tree ; and 
flowers on the same tree can be considered as distinct individuals 
only in a limited sense. I believe this objection to be valid, but 

^ that nature has largely provided against it by giving to trees a 
strong tendency to bear flowers with separated sexes. When the 
sexes are separated, although the male and female flowers may be 
produced on the same tree, pollen must be regularly carried frona 



Chap. IV. On the Intercrossing of Individuals. 79 

flower to flower ; and this will give a better chance of pollen being 
occasicHially carried from tree to txee. That trees belonging to all 
Orders haye their sexes more often separated than other plants, I 
find to be the case in this country ; and at my request Dr. Hooker 
tabulated the trees of New Zealand, and Dr. Asa Gray those of the 
United States, and the result was as I anticipated. On the other 
hand. Dr. Hooker informs me that the rule does not hold good in 
Australia ; but if most of the Australian trees are dichogamous, the 
same result would follow as if they bore flowers with separated 
sexes. I have made these few remarks on trees simply to call 
attention to the subject 

Turning for a brief space to animals : various terrestrial species 
are hermaphrodites, such as the land-moUusca and earth-worms ; 
but these all pair. As yet I have not found a s ingle terrestrial 
ani mal which can, fertilise itself . This remarkable fact, "which offers 
so strong a con trast with terrestrial pl ants, is intelligible on the view 
of an oocasicmal cross being indispensable ; for owing to the nature of 
the fertilising element there are no means, analogous to the action 
of insects and of the wind with plants, by which an occasional cross , 
could be effected with terrestrial animals without the concurrence of 
two individuals. Of aquatic animals, there are many self-fertilising 
hermaphrodites ; but here the currents of water offer an obvious 
means for an occasional cross. As in the case of flowers, I have as 
yet failed, after consultation with one of the highest authorities, 
namely, Professor Huxley, to discover a single hermaphrodite animal 
with the organs of reproduction so perfectly enclosed that access 
from without, and the occasional influence of a distinct individual, 
can be shown to be physically impossible. Girripedes long appeared 
to me to present, under this point of view, a case of great difficulty ; 
but I have been enabled, by a fortunate chance, to prove that two 
individuals, though both are self-fertilising hermaphrodites, do 
sometimes cross. 

It must have struck most naturalists as a strange anomaly that, 
both with animals and plants, some species of the same family and 
even of the same genus, though agreeing closely with each other in 
their whole organisation, are hermaphrodites, and some unisexual. 
But if, in fact, all hermaphrodites do occasionally intercross, the 
difference between them and unisexual species is, as far as function 
is concerned, very smalL 

From these several considerations and from the many special 
fiicts which I have collected, but which I am unable here to give, 
it appears that with animals a nd plantg.an occasional intercross, 
between distinct individuals is a very general, if not universal^, law 
of nature. 



8o Circumstances favourable to the Chap. iv. 

Circvmstances favourable for the prodtiction of new forms 

through Natural Selection, ~ 

This is aa extremely intricate sabject. A great amou nt of varia- 
i "bility, under which term individual differences are always ui^ciuaed, 
will eviden tlyJia- feQg rable, A large number of individu aia, by 
giving a better chance within any given period idr tLe appearance 
of profitable variations, will c ompensate for a lesser amount of 

i ' ^^^~*" „A I,....— - ~». -.uw^..,— . ► III ij. nil 1^ immmT—~ 

variability in each^ individually and is, I believe, a highly important 
element of success. Though Nature grants long periods of time for 
the work of natural selection, she does not grant an indefinite 
period ; for as all organic beings are striving to seize on each place 
in the economy of nature, if any one species does not become modi- 
fied and improved in a corresponding debtee with its competitors, it 
will be exterminated. Unless favourable variations be inherited by 
some at least of the offspring, nothing can be effected by natural 
selection. The tendency to reversion may often check or prevent the 
work; but as this tendency lias not prevented man from forming 
by selection numerous domestic races, why should it prevail against 
natural selectionT " - 

In the case of methodical selection, a breeder selects for some 
definite object, and if the individuals be allowed freely to intercross, 
his work will completely fail. But when many men, without 
intending to alter the breed, have a nearly common standard of 
perfection, and all try to procure and breed fi:om the best animals, 
improvement surely but slowly follows from this unconscious 
process of selection, notwithstanding that there is no separation of 
selected individuals. Thus it will be under nature; for ^thin a 
confined area, with some place in the natural polity not perfectly 
occupied, all the individuals varying in the right direction, though 
in different degrees, will tend to be preserved. BatA^ .thQ..ai:ea be 
large, its several districts will almost certainly present different 
conditions of life ; a^d then, if the same species undergoes modifi- 
cation in different districts, the newly-formed varieties will intercross 
on the confines of each. But we shall see in the sixth chapter that 
intermediate varieties, inhabiting intermediate districts, will in the 
long run generally be supplanted by one of the adjoining varieties. 
I Intercrossing will chiefly affect those animals which imite for each 

i birth and wander much, and which do not breed at a very quick 
rate. Hence with animals of this nature, for instance, birds, 
varieties will generally be confined to separated countries ; and this 
I find to be the case. With hermaphrodite organisms which cross 
only occasionally, and likewise with animals which unite for each 



Cfap. 17. Results of Natural Selection. 8 1 

bjrth, bat wh ich. w.a5dfiC^little_.^.^ can increase at a rapid rate, a 
pew and impro ved variety might be quickly formed on any one 
spot, and might there maintain itself in a body and afterwards 
l^ad, 80 that the individuals of the new variety would chiefly 
cross together. On this principle, nurser3rmen always prefer saving 
seed from a large body of plants, as the chance of intercrossing is 
thus lessened. 

Even with animals which unite for each birth, and which do not 
propagate rapidly, we must not assume that free intercrossing would 
always eliminate the effects of natural selection ; for I can bring 
forward a considerable body of facts showing that within the same 
area, two varieties of the same animal may long remain distinct, 
from haunting different stations, from breeding at slightly different 
seas(3n8, or from the individuals of each variety preferrinf to pair 
together. 

Int ercrossin g plays a very important part in nature by keeping 
the mdividuals ol the Baffin Spec ies, or 6f IL « sau iB vai'liJl^/Tme an^ 
Jinilonn in characterT It will obviously thus act lax more efficiently 
with those animals wTiich unite for each birth ; but, as ahready stated, 
we have reason to believe that occasional intercrosses take place with 
all animals and plants. Even if these take place only at long inter- 
vals of time, the young thus produced will gain so much in vigou^ 
and fertility over the offspring from long-continued self-fertilisationL 
that they vdll have a better chance of surviving and propagating^' 
their kind ; and thus, in the long run, the influence of crosses, evenj 
at rare intervals, will be great. With respect to organic beings 
extremely low in the scale, which do not propagate sexually, nor 
conjugate, and which cannot possibly intercross, uniformity of cha- 
racter can be retained by them under the same conditions of life, 
only through the principle of inheritance, and through natural selec- 
tion which will destroy any individuals departing from the proper 
type. If the conditions of life change and the form undergoes modifi- 
cation, uniformity of character can be given to the modified offspring, 
solely by natural selection preserving similar favourable variations. 

Isolation, also, is an important element in the modification of i 
jpftf^T^y |t^ Mlg^^ iiaii'It! "^^^^t!^"^ In a conAned or isolatecT area, if 
not very large, the organic and inorganic conditions of l ife will 
generally be almost uniform ; so that natur al selection will Tend to 
eodify ^all th evaryiBg jjttdlYJduaJifi of the. same species in thejsame 
SQanne r. Intercrossing with the inhabitants of the surrounding dis- 
^cts wi lCalBO, 136 tlms prevente(r.'"~HOTitz' Wagner has lately pub- 
iUshed an interesting esi^ay onlhis subject, and has shown that the 
service rendered by isolation in preventing crosses between newly* 

G 



« • 1^ *« •< « 



I 



82 Circumstances favourable to the Chap. rv. 

formed varieties is probably greater even than I supposed. But 

from reasons already assigned I can by no means agree with this 

naturalist, that migration and isolation are necessary elements for 

the formation of neV species. The importance of isolation is like- 

, wise great in preventing, after any physical change in the conditions 

such as of climate, elevation of the land, &c., the immigration of 

better adapted organisms; and thus new places in the natural 

economy of the district will be left open to be filled up by the 

t modification of the old inhabitants. Lastly, isolation will give time 

/ for a new variety to be improved at a slow rate ; ana tnis may som&- 

I TiUilUB be uf MUCll lliip6rtance."~n^ however, an isolated ar ea be ve^ 

smaU, either from being surrounded by barriers,"or from liavmg very 

peculiar physical conditions, the total number of the inhabitant s 

will be qpiall ; and this will retar d the production of new species 

through natural selection, by decreasmg the chances of iavburable 

> variations arising. 

» "TTKe'nQiere'Tapsc of time by itself does nothing, either for or against 

^, ^^ ^^„— ^^,T .^__jj^^.^,jJfcM»- ■■II— ■ | l.i»l.l III C"l«i' ■ W^«M *-' 

natui'Ul Selection. I state this because it has been erroneously 
asserted that the element of time has been assumed by me to play 
an all-important part in modifying species, as if all the forms of life 
were necessarily undergoing change through some innate law. Lapse 



of ti me is only so far impor^^i^, and its importance in this respect 
"is great, t hat it giv es a betterjih anc e of beneficial variations aris ing, 
and of their being selected^ accumulated, and fixed. It likewise 
feeds to increase the direct action of the pliysical conditions of life, 
in relation to the constitution of esuch. organism. 

If we turn to nature to test the truth of these remarks, and look 
at any small isolated area, such as an oceanic island, although tlie 
number of species inhabiting it is small, as we shall see in our 
chapter on Geographical Distribution ; yet of these species a very 
large proportion are endemic, — that is, have been produced there, 
and nowhere else in the world. Hence an oceanic island at first 
sight seems to have been highly favourable for the production of 
new species. But we may thus deceive ourselves, for to ascertain 
whether a small isolated area, or a large open area like a continent, 
has been most fiavourable for the production of new organic forms, 
we ought to make the comparison within equal times ; and this we 
are incapable of doing. 

Although isolation is of great importance in the production of new 

species, on the whole I am inclined to believe that largeness of area 

is still m ore important, especially for the production of specieTwliich 

prove capa'file of enduring for a long period, and of spreading 

widely. Throrighout a great and open area, not only will there be a 



Chap. IV. Results of Natural Selection, 83 

^voorable variationg. arising from the large nu mber 1 

of individuals of the same species there supported, but the conditions \ 
of life are much more c omplex from the lar ^ e jiumber of already I 
existing spec ies ; and if some of ihese many species become modffied \ 
a nd imp^ ^da others will "Eave £b' be improved in a corresponding I 
[egree, or they will be exterminated. Each new form, also, as soon \ 
as 11 has'BeeninucE' improved, will be able to spread over the open 
and continuous area, and will thus come into compet ition with 
many other forms. Moreover, great areas, though now continuous, 
will often, owing to former oscillations of level, have existed in a 
broken condition ; so that the good effects of isolation will generally, 
to a certain extent, have concurred. Finally, I conclude that, 
although s mall isolated areas have b een in some respects highly 
lavourabie lor tlie production of new species, /el Ihat the course of 
'^odihca^n wTirgenerSTryliave'been more rapid on large areas; 
ana wnat is more important, tnat tne hew forms produced on large 
y^p, which already have been victorious over manj^compefitors, 
will be th ose that wiij spread most widely , and will give rise to the 
greatest number ot new vaneties and species. Ttey wnilhus play I 
a"" more important par^ in the" clianging* history of the organic^ 
world. 

In accordance with this view, we can, perhaps, understand some 
facts which will be again alluded to in our chapter on Geographical 
Distribution ; for instance, the fact of the productions of the smaller 
continent of Australia now yielding before those of the larger 
Europseo- Asiatic area. Thus, also, it is that continental productions 
have everywhere become so largely naturalised on islands. On a 
small island, the race for life will have been less severe, and there 
will have been less modification and less extermination. Hence, we 
can understand how it is that the flora of Madeira, according to 
Oswald Heer, resembles to a certain extent the extinct tertiary flora 
of Europe. All fresh-water basins, taken together, make a small 
area compared with that of the sea or of the land. Consequently, 
the competition between fresh-water productions will have been less 
severe than elsewhere ; new forms will have been then more slowly 
produced, and old forms more slowly extenninated. And it is in 
fresh-water basins that we find seven genera of Ganoid fishes, 
remnants of a once preponderant order : and in fresh water we find 
some of the most anomalous forms now known in the world, as the 
Omithorhynchus and Lepidosiren, which, like fossils, connect to a 
certain extent orders at present widely sundered in the natural 
scale. These anomalous forms may be called living fossils ; they 
have endured to the present day, from having inhabited a confined 

6 2 

J 



84 Circumstances favourable to the Chap. IV. 

area, and from having been exposed to less varied, and therefore less 
severe, competition. 

To sjjja up, as far as the extreme intricacy of the subject permits, 
the circumstances favourable and unfavourable for the production of 
/ I new species through natural selection. I conclude that |gc~tftrrfiatriftl 

productions a large continental areajwMch.. lifts undergone many 
oscillations of level, wiU have been the most favourable for the-pro- 
duction of many new forms of life, fitted to endure for a long time 
and to spread widely. Whilst the area existed as a continent, the 
Inhabitants will have been numerous in individuals and kinds, and 
will have been subjected to severe competition. When converted 
by subsidence into large separate islands, there will still have existed 
many individuals of the same species on each island : intercrossing 
on the confines of the range of each new species will have been 
checked : after physical changes of any kind, immigration will have 
been pre^jented, so that new places in the polity of each island will 
have had to be filled up by the modification of the old inhabitants ; 
and time will have been allowed for the varieties in each to become 
well modified and perfected. When, by renewed elevation, the 
islands were reconverted into a continental area, there will again 
have been very severe competition : the most favoured or improved 
varieties will have been enabled to spread: there will have been 
much extinction of the less improved forms, and the relative propor- 
tional numbers of the various inhabitants of the reunited continent 
will again have been changed ; and again there will have been a fair 
field for natural selection to improve still further the inhabitants, 
and thus to produce new species. 

That natural selection generally acts with extreme slowness I fully 
admit. Qt can act only when there are places in the natural polity 
of a district which can be better occupied by the modification of 
some of its existing inhabitants^ llie occurrence of such places will 
often depend on physical changes, which generally take place very 
slowly, and on the immigration of better adapted forms being pre- 
vented. As some few of the old inhabitants become modified, 
the mutual relations of others will often be disturbed ; and this 
win create new places, ready to be filled up by better adapted forms; 
but all this will take place very slowly. Although all the indi- 
viduals of the same species diifer"iir^seme slight degree from each 
other, it would often be long before differences of the right nature 
in various parts of the organisation might occur. The result would 
often be greatly retarded by free intercrossing. Many will exclaim 
that these several causes are amply sufficient to neutralise the power 
of natural selection, I do not believe so. But I do believe that 



Chap. IV. Results of Natural Selection, 8 5 

gataral selection will generally act very slowly , only at long interval s 
of tiing, and only on a lew ot the iniiabitants of the same re gion, I 
kirther believe that these slow, intermittent results accord well 
with what geology tells ns of the rate and manner at which the in- 
habitants of the world have changed. 

Slow though the process of selection may be, if feeble man can 
do much by artificial selection, I can see no limit to the amount of 
change, to the beauty and complexity of the coadaptations between 
all organic beings, one with another and with their physical con- 
ditions of Ufe, which may have been efifected in the long course of 
time through nature's power of selection, that is by the survival 
of the fittest. 

Uxtinciion catised by Natural Selection, 

This subject will be more fally discussed in our chapter on 
Geology ; but it must here be alluded to from being intimately con- 
nected with natural selection. Natural selection acts solely through i 
the prese rvation of variations jSi ^ma..way advantageous, which 
consequently endure. Owing to the high geometrical rate olf increase 
of all organic beings, each area is already folly stocked with inhabit- 
ants ; and it follows from this, that as the favoured forms increase in 
number, so, generally, wiU the less favoured decr ease _and become 
rare^ Rarity, as geology tells us, is the precursor to extinction. Vv^e 
can see that any form which is represented by fewmdivicluals will I 
run a good chance of utter extinction, during great fluctuations in 
the nature of the seasons, or from a temporary increase in the number 
of its enemies. But we may go further than this ; for, as new forms 
are produced, unless we admit that specific forms can go on indefi- 
nitely increasing in number, many old forms must become extinct. 
That the number of specific forms has not indefinitely increased, 
geology plainly tells us ; and we shall presently attempt to show 
why it is that the number of species throughout the world has not 
become immeasurably great. 

We have seen that the species which are most numerous in indi- 
viduals have the best chance of producing favourable variations 
within any given period. We have evidence of this, in the facts 
stated in the second chapter, showing that it is the common and 
diffused or dominant species which offer the greatest number of 
recorded varieties. Hence, rare species will be less quickly modified 
or improved within any given period ; they will consequently be 
beaten in the race for life by the modified and improved descendants 
of the commoner species. 

From these several considerations I think it inevitably follows, 






86 Extinction by Natural Selection, Chap. iv. 

that as new species in the course of time are fonned through natural 
selection, others will become rarer and rarer, And finally extinct. 
The fonnswhich^a^dmclpseift competition with those undergoing 
modification and improvement, will naturally suffer most.' And wo 
have seen in the chapter on the Struggle for Existence that it is the 
most closely-allied forms, — ^varieties of the same species, and species 
of the same genus or of related genera, — ^which, from having nearly 
the same structure, constitution, and habits, generally come into 
the severest competition with each other ; consequently, each new 
variety or species, during the progress of its formation, will generally 
press hardest on its nearest kindred, and tend to exterminate them. 
We see the same process of extermination amongst our domesticated 
productions, through the selection of improved forms by man. 
Many curious instances could be given showing how quickly new 
breeds of cattle, sheep, and other animals, and varieties of flowers, 
take the place of older and inferior kinds. In Yorkshire, it is 
historically known that the ancient black cattle were displaced by 
the long-horns, and that these "were swept away by the short- 
horns " (I quote the words of an agricultural writer) " as if by some 
murderous pestilence.** 

Divergence of Ckarouster. 

The principle, which I have designated by this term, is of high 
importance, and explains, as I believe, several important facts. In 
\ the first place, yarieties, even strongly-marked ones, though having 
I somewhat of tiie character of species — as is shown by the hopeless 
I doubts in many cases how to rank them — yet certainly differ far 
Uess from each other than do good and distinct species. Keverthe- 
lless, according to my view, varieties are species in the process of 
formation, or are, as I have called them, incipient species. How, 
Ahen, does the lesser difference between varieties become augmented 
into the greater difference between species ? lliat this does habitu- 
ally happen, we must infer from most of the innumerable species 
throughout nature presenting well-marked differences ; whereas 
varieties, the supposed prototypes and parents of future well-marked 
species, present slight and ill-defined differences. Mere chance, as 
we may call it, might cause one variety to differ in some character 
' from its parents, and the offspring of this variety again to differ 
from its parent in the very same character and in a greater degree ; 
but this alone would never account for so habitual and large 
a degree of diffisrence as that between the species of the same 
genus. 
As has always been my practice, I have sought light on this 



§1 « c 

gj >» « . IV. Divergence of Character. 87 

I) .«2 from our domestic productions. We shall here find something 
^ B9 "^ gous. It will be admitted that the production of races so 
'*§*-* ent as short-horn and Hereford cattle, race and cart horses. 
3 S eg dyeral breeds of pigeons, &c., could never have been efifccted by 
i ^ £ Here chance accumulation of similar yariations during many 
•M u ^^^^ generations. In practice, a fancier is, for instance, struck 
>^ ,C • pigeon having a slightly shorter beak; another faemcier is 
•fi eo dc by a pigeon having a rather longer beak; and on the 
[J ^ iowledged principle that '' fanciers do not and will not admire 
u 3 fidium standard, but like extremes,** they both go on (as has 
(S • iftlly occurred with the sub-breeds of the tumbler-pigeon) 
§ osing and breeding from birds with longer and longer beaks, or 
«i> {i shorter and shorter beaks. Again, we may suppose that at an 
"* c iy period ef history, the men of one nation or district required 
.S n ifter horses, whilst those of another required stronger and bulkier 
♦; 'Z OBes. The early differences would be very sUgbt ; but, in the 
> Z ^se of time, from the continued selection of swifter horses in 
^ ) one case, and of stronger ones in the other, the differences would 
^ ^ X>me greater, and would be noted as forming two sub-breeds, 
timately, after the lapse of centuries, these sub-breeds would 
X>me converted into two well-established and distinct breeds. As 1 
\ differences became greater, the inferior animals with interme- 
te charact ers, being neither very swift nor very strong, would 
t Iiave l)een used for breeding, and will thus have tended to difr- 
peac Here, then, we see in man's productions the action of what 
iy be called the principle of divergence, causing differences, at 
it barely appreciable, steadily to increase, and the breeds to 
uxverge in character, both from each other and from their common 
parent. 

But how, it may be asked, can any analogous principle apply in 
nature ? I believe it can and does apply most efficiently (though it 
was a long time before I saw how), from the simple circumstance 
that the more diversified the descendants from any one specijes 
be<iflKe in str ucture7constitutioD,^dnKabit8, by soliftuch* will they 
b e better enabled to seize c^ niany and" widely diversi fied pla ces 
ifi the polity of nature, and so be enabled to increase iajinjjibers. j 
'We can 6i^fiy discern ihis"!]! the case of animals with simple 
habits. Take the case of a cafnivorous quadruped, of which the 
number that can be supported in any country has long ago arrived 
at its full average. If its natural power of increase be allowed to 
act, it can succeed in increasing (the country not undergoing any 
change in conditions) only by its varying descendants seizing on 
places at present occupied by other animals : some of them, for 



SS Divergence of C/iaracter, Chap. IV. 



instance, being enabled to feed on new kinds of prey, either dead 
or alive ; some inhabiting new stations, climbing trees, frequenting 
» water, and some perhaps becoming less carnivorous. J3lS^??ore 
\diversified in habits and structure the descendants of our carnivo- 
rous animals'become, the more, places Jthey will be enabled to occupy. 
What applies to one animal will apply throughout all time to all 
animals—that is, if they vary — for otherwise natural selection can 
effect nothing. So it will be with plants. It has been experi- 
mentally proved, that if a plot of ground be sown with one species 
of grass, and a similar plot be sown with several distinct genera of 
grasses, a greater number of plants and a greater weight of dry 
herbage can be raised in the latter than in the former case. The 
same has been found to hold good when one variety and several 
mixed varieties of wheat have been sown on equal spaces of ground. 
Hence, if any one species of grass were to go on varying, and the 
varieties were continually selected which differed from each other 
in the same manner, though in a very slight degree, as do the 
distinct species and genera of grasses, a greater number of individual 
plants of this species, including its modified descendants, would 
succeed in living on the same piece of ground. And we know that 
each species and each variety of grass is annually sowing almost 
countless seeds; and is thus striving, as it may be said, to the 
utmost to increase in number. Consequently, in the course of many 
thousand generations, the m ost distinct varieties of any one species 
of gra ss would have the best cl iance of succeeding and ot increasfng 
Tn numbers, and thus of supplantriigl;Tieless dislincVvarieties; and 
varieties, when rendered* verjrdistthct from each other, take the rank 

1 Of species. ^ ■"■" " - 

^ The Truth of the principle that the greatest amoimt of life c an be 
supported by great diversificatio n of structure, is seen under "many 
natural Cii'cumslances! In an extremely'small area, especially if 
freely open to immigration, and where the contest between indivi- 
dual and individual must be very severe, we always find great 
diversity in its inhabitants. For instance, I found that a piece of 
turf, three feet by four in size, which had been exposed for many 
years to exactly the same conditions, supported twenty species of 
plants, and these belonged to eighteen genera and to eight orders, 
which shows how much these plants differed from each other. So 
it is with the plants and insects on small and uniform islets : also 
in small ponds of fresh water. Farmers find that they can raise 
most food b;^a^ rotation of plantsHbelongmg' to tngjagg ^ am erent 
orders : nature follows what may1Bie~caIled a simultaneous rotation, 
ifiost of th«3 animals and plants which live close round any sni^ll 



Chap. IV. Divergence of Character, 89 

piece of ground, could live on it (supposing itd nature not to be in 
any way peculiar), and may be said to be fitriving to the utmost to 
live there ; but. it is seen, that where they come into the closest 
competition, the advantages of diversi^catipu, of ^tnifitux^i with the 
accompanying differences of habit and constitution, determine 
thgt the inhabitants, which thus jostle each other most closely* 
shall, as a general rule, bel ong to w hat wq call diff^rent^enera 
and ordeca. 

The same principle is seen in the naturalisation of plants through 
man*s agency in foreign lands. It might have been expected that 
the plants which would succeed in becoming naturalised in any 
land would generally have been closely allied to the indigenes ; for 
these are commonly looked at as specially created and adapted 
for their own country. It might also, perhaps, have been expected 
that natiualised plants would have belonged to a few groups more 
especially adapted to certain stations in their new homes. But the 
case is very different ; and Alph. de CandoUe has well remarked, in 
his great and admirable work, that floras gain by naturalisation, 
proportionally with the number of the native genera and species, 
far more in new genera than in new species. To give a single 
instance: in the last edition of Dr. Asa Gray's 'Manual of the 
Flora of the Northern United States,' 260 naturalised plants are 
enumerated, and these belong to 162 genera. We thus see that 
these naturalised plants are of a highly diversified nature. They 
differ, moreover, to a large extent, from the indigenes, for out of the 
162 naturalised genera, no less than 100 genera are not there indi- 
genous, and thus a largo proportional addition is made to the genera 
now living in the United States. 

By considering the nature of the plants or animals which have in 
any country struggled successfully with the indigenes, and have 
there become naturalised, we may gain some crude idea in what 
manner some of the natives would have to be modified, in order to 
gain an advantage over their compatriots; and we may at least 
infer that diversification of structure, amounting to new generic 
differences, would be profitable to them. 

The advantage of diversification of structure in the inhabitants 
of the same region is, in fact, the same as that of the physiological 
division of labour in the organs of the same individual body — a 
subject so well elucidated by Milne Edwards. No physiologist 
doubts that a stomach adapted to digest vegetable matter alone, or 
flesh alone, draws most nutriment from these substances. So in the 
general economy of any land, the more jvidelyand^jerfecjtly the 
animals and plants are diversifiedTor ditferen* habits of life, so will 



90 



Results of the Action of 



Chap. IV. 



a ffreatcr number of individuals be capable of there supporting 
themselves. A set of animals, with theu: organisation but uttle 
diversified, could hardly compete with a set more perfectly diversified 
in structure. It may be doubted, for instance, whether the Austra- 
lian marsupials, which are divided into groups dififering but little 
from each other, and feebly representing, as Mr. Waterhouse and 
others have remarked, our carnivorous, ruminant, and rodent mam- 
mals, could successfully compete with these well-developed orders. 
In the Australian mammals, we see the process of diversification in 
an early and incomplete stage of development. 

Tha Probable Effects of the Action of Natural Selection through 
Divergence of Character and Extin^tUm^ on the Descendants of 
a Common Ancestor, 



[ 



After the forgoing discussion, which has been much compressed, 
we may assume that the mo dified descendan ts of any one species 
will succeed so much the Be tter as th ey become more'^rvefsitied in 
structure, and are thu^enableA to encroach on places occupied by 
TJt!i6t l55tngs.'"TT6w let us see how this principle of benefit bemg 
aenvea irom divergence of character, combined with the principles 
of natural selection and of extinction, tends to act. 

The accompanying diagram will aid us in understanding this 

rather perplexing subject. Let A to L represent the species of a 

genus large in its own country ; these species are supposed to 

resemble each other in unequal degrees, as is so generally the ca^ 

in nature, and as is represented in the diagram by the letters 

standing at unequal distances. I have said a large genus, because 

as we saw in the second chapter, on an average more species vary in 

large genera than in small genera ; and the varying species of the 

large genera present a greater number of varieties. We have, also, 

seen that the species, which are the commonest and the most widely 

diffused, vary more than do the rare and restricted species. Let (A) 

be a common, widely-diffused, and varying species, belonging to a 

, genus large in its own country. The branching and diverging 

dotted lines of xmequal lengths proceeding from (A), may represent 

its varying offspring. The variations are supposed to be extremely 

slight, but of the most diversified nature ; they are not supposed all 

to appear simultaneously, but often after long intervals of time ; nor 

are they all supposed to endure for equal periods. O nly those 

\ variations which are in some way • profitable will be prggfiryed or 

\ naturally selected. And here the importance of the principle of 

I benefit derived from divergence of character comes in ; for this will 

1 generaliy lead to the most different or divergent variations (repre- 



Chap. IV. Natural Selection. 9 1 

sented by the outer dotted lines) being preserved and aocumnlated 
by natural select ion. When a dotted llU<i lUlUbliH Uiu uf lll<i 'tXSn-' 
zontal lines, and is there marked by a small numbered letter, a 
sufficient amount of variation is supposed to have been accumulated 
to form it into a fairly well-marked variety, such as would be 
thought worthy of record in a systematic work. 

The intervsds between the horizcmtal lines in the diagram, may 
represent each a thousand or more generations. After a thousand 
generations, species (A) is supposed to have produced two fairly 
well-marked varieties, namely a^ and m*. These two varieties will 
generally still be exposed to the same conditions which made ^eir 
parents variable, and the tendency to variability is in itself heredi- 
tary ; consequently they will likewise tend to vary, and commonly 
in nearly the same manner as did their parents. Moreover, these 
two varieties, being only slightly modified forms, will tend to inherit 
those advantages which made their parent (A) more numerous than 
most of the other inhabitants of the same country; they will alBO 
partake of those more general advantages which made the genus to 
which the parent-species belonged, a large genus in its own country. 
And all these circumstances are favourable to the production of new 
varieties. 

If, then, these two varieties be variable, the most divergent of 
their variations will generally be preserved during the next thousand 
generations. And after this interval, variety aS is supposed in the 
diagram to have produced variety a^, which will, owing to the prin- 
ciple of divergence, differ more from (A) than did variety a*. 
Variety tr^ is supposed to have produced two varieties, namely m* 
and ^y differing from each other, and more considerably from their 
common parent (A). We may continue the process by similar 
steps for any length of time; some of the varieties, after each 
thousand generations, producing only a single variety, but in a more 
and more modified condition, some producing two or three varieties, 
and some failing to produce any. Thus the varieties or modified 
descendants of the common parent (A), will generally go on 
increasing in number and diverging in character. In the diagram 
the process is represented up to the ten-thousandth generation, and 
under a condensed and simplified form up to the fourteen-thousandth 
generation. 

But I must here remark that I do not suppose that the process 
ever goes on so regularly as is represented in the diagram, though in 
itself made somewhat irregular, nor that it goes on continuously ; it 
is far more probable that each form remains for long periods unal- 
tered, and then again undergoes modification, ^or do I suppose 



92 Results of the Action of Chap. IV. 

that the most divergent varieties are invariably preserved: a 
medium form may often long endure, and may or may not produce 
more than one modified descendant; for natural selection will 
always act according to the nature of the places which are either 
Unoccupied or not perfectly OQCupied by other beings ; and this will 
depend on infinitely complex relations. But as a general rule, the 
more diversified in structure the descendants from any one species 
can be rendered, the more places they will be enabled to seize on, 
* and the more their modified progeny will increase. In our diagram 
the line of succession is broken at regular intervals by small num- 
bered letters marking the successive forms which have become 
sufficiently distinct to be recorded as varieties. But these breaks 
are imaginary, and might have been inserted anywhere, after inter- 
vals long enough to allow the accumulation of a considerable amount 
of divergent variation. 

As all the modified descendants from a common and widely- 
difi'used species, belonging to a large genus, will tend to partake 
of the same advantages which made their parent successful in 
life; they will generally go on multiplying in number as well as 
diverging in character : this is represented in the diagram by the 
several divergent branches proceeding from (A). The modified 
otfspring from the later and more highly improved branches in the 
lines of descent, will, it is probable, often take the place of, and so 
destroy, the earlier and less improved branches : this is represented 
in the diagram by some of the lower branches not reaching to the 
upper horizontal lines. In some cases no doubt the process of 
modification will be confined to a single line of descent, and the 
number of modified descendants will not be increased ; although ' 
the amount of divergent modification may have been augmented. 
This case would he represented in the diagram, if all th^ lines pro- 
ceeding from (A) were removed, excepting that from a* to a^**. In 
the same way the English race-horse and English pointer have appa- 
rently both gone on slowly diverging in character from their original 
stocks, without either having given off any fresh branches or races. 

After ten thousand generations, species (A) is supposed to have 
produced three forms, a",/^°, and w^, which, from having diverged 
in character during the successive generations, will have come to 
differ largely, but perhaps unequally, from each 9ther and from 
their common parent. If we suppose the amount of change be- 
tween each horizontal line in our diagram to be excessively small, 
these three forms may still be only well-marked varieties ; but we 
have only to suppose the steps in the process of modification to be 
more numerous or greater in amount, to convert these three forms 



Jy^^^^H 



Chap. IV. Natural Selection, 93 



into doubtfiil or at last into well-defined speciea. Thus the diagram 
illustrates the steps by which the small differences distinguishing 
varieties are increased into the larger differences diBtingaishing spe- 
cies. By continuing the same process for a greater number of gene- 
rations (as shown in the diagram in a condensed and simplified 
manner), we get eight species, marked by the letters between a*^ 
and m^^ all descended from (A). Thus, as I believe, species are 
multiplied and genera are formed. 

In a large genus it is probable that more than one species would 
vary. In the diagram I have assumed that a second species (I) has 
produced, by analogous steps, after ten thousand generations, either 
two well-marked varieties {%xf^ 4nd 7^) or two species, according to 
the amount of change supposed to be represented between the hori- 
zontal lines. After fourteen thousand generations, six new species, 
marked by the letters n'* to 2", are supposed to have been produced. 
In any genus, the species which are already very different in cha- 
racter from each other, will generally tend to produce the greatest 
number of modified descendants; for these will have the best 
chance of seizing on new and widely different places in the polity 
of nature : hence iu the diagram 1 have chosen the extreme species 
(A), and the nearly extreme species (I), as those which have largely 
varied, and have given rise to new varieties and species. The other 
nine species (marked by capital letters) of our original -genus, may 
for long but unequal periods continue to transmit unaltered de- 
scendants ; aud this is shown in the diagram by the dotted lines 
unequally prolonged upwards. 

But during the process of modification, represented in the dia- 
gram, another of our principles, namely that of extinction, will have 
played an important part. As in each fully stocked country natural 
selection necessarily acts by the selected form having some advan- 
tage in the struggle for life over other forms, there will be a constant 
tendency in the improved descendants of any one species to sup- 
plant and exterminate in each stage of descent their predecessors 
and their original progenitor. For it should be remembered that 
the competition will generally be most severe between those forms 
which are most nearly related to each other in habits, constitution, 
and structure. Hence all the intermediate forms between the earlier 
and later states, that is between the less and more improved states 
of the same species, as well as the original parent-species itself, will 
generally tend t») become extinct. So it probably will be with many 
whole collateral lines of descent, which will be conquered by later 
and improved lines. If, however, the modified offspring of a species 
get into some distinct country, or become quickly adapted to some 



( 



94 Results of the Action of Chap. IV. 

quite new station, in which offspring and progenitor do not come 
into competition, both may continue to exisi. 

If, then, our diagram be assumed to represent a considerable 
amount of modification, species (A) and all the earlier varieties will 
have become extinct, being replaced by eight new species (a^* to 
m") ; and species (I) will be replaced by six (w** to »**) new species. 

But we may go further than this. The original species of our 
genus were supposed to resemble each other in unequal degrees, as 
is so generally the case in nature ; species (A) being more nearly 
related to B, 0, and D, than to the other species ; and species (i) 
more to G, H, K, L, than to the others. These two species (A) and 
(I) were also supposed to be very common and widely diffused 
species, so that they must originally have bad some advantage over 
most of the other species of the genus. Their modified descendants, 
fourteen in number at the fourteen-thousandth generation, will 
probably have inherited some of the same advantages : they have 
also been modified and improved in a diversified manner at each 
stage of descent, so as to have become adapted to many related 
places in the natural economy of their country. It seems, therefore, 
extremely probable that they will have taken the places of, and 
thus exterminated, not only their parents (A) and (I), but likewise 
some of the original species which were most nearly related to their 
parents. Hence very few of the original species will have trans- 
mitted offspring to the fourteen-thousandth generation. We may 
suppose that only one (F), of thfe t|vo species (E and F) which were 
least closely related to the other nine original species, has trans- 
mitted descendants to this late stage of descent. 

The new species in our diagram descended from the original 
eleven species, will now be fifteen in number. Owing to the diver- 
gent tendency of n^^ral selection, the extreme amount of difference 
in character between species a" and ?^* will be much greater than 
that between the most distinct of the original eleven species. The 
new species, moreover, will be allied to each other in a widely dif- 
ferent manner. Of the eight descendants from (A) the three marked 
«*S V*» P**» will be nearly related from having recently branched off 
from a^° ; &^*, and /**, from having diverged at an earlier period from 
a*, will be in some degree distinct from the three first-named species ; 
and lastly, o'*, c", and m**, will be nearly related one to the other, 
but, from having diverged at the first commencement of the process 
of modification, will bo widely different from the other five species, 
and may constitute a sub-genus or a distinct genus. 

The six descendants firom (1) will form two sub-genera or genera. 
But as the original species (I) differed largely from (A), standing 



Chap. IV. Natural Selection, 95 



nearly at the extreme end of the original genus, the six descendants 
from (I) will, owii^ to inheritance alone, differ considerably from 
the eight descendants from (A) ; the two groups, moreover, are 
supposed to have gone on diverging in different directions. The 
intermediate species, also (and this is a very important considera- 
tion), which connected the original species (A) and (1), have all 
become, excepting (F), extinct, and have left no desoendantii. 
Hence the six new species descended from (I), and the eight de- 
scended from (A), will have to be ranked as very distinct genera, 
or even as distinct sub-families. 

Thus it is, as I believe, that two or more genera are produced 
by descent with modification, from two or more species of the same 
genus. And the two or more parent-species are supposed to be 
descend^ed from some one species of an earlier genus. In our dia- 
gram, this is indicated by the broken lines, beneath the capital 
letters, converging in sub-branches downwards towards a single 
point ; this point represents a species, the supposed progenitor of our 
several new sub-genera and genera. 

It is worth while to reflect for a moment on the character of the 
new species f^^ which is supposed not to have diverged much in 
character, but to have retain^ the form of (F), either unaltered or 
altered only in a slight degree. In this case, its affinities to the 
other fourteen new species will be of a curious and circuitous nature. 
Being descended from a form which stood between the parent-species 
(A) and (I), now supposed to be extinct and unknown, it will be 
in some degree intermediate in character between the two groups 
descended from these two species. But as these two groups have 
gone on diverging in character from the type of their parents, the 
new species (f^^) will not be directly intermediate between them, 
but rather between types of the two groups ; and every naturalist 
will be able to call such cases before his mind. 

In the diagram, each horizontal line has hitherto been supposed 
to represent a thousand generations, but each may represent a 
million or more generations ; it may also represent a section of the 
successive strata of the earth's crust including extinct remains. We 
shall, when we come to our chapter on Geology, have to refer again 
to this subject, and I think we shall then see that the diagram 
throws light on the affinities of extinct beings, which, though gene- 
rally belonging to the same orders, families, or genera, with those 
now living, yet are often, in some degree, intermediate in character 
between existing groups ; and we 6an imderstand this fact, for the 
extinct species lived at various remote epochs when the branching 
lines of descent had diverged less. 



96 Results of tlie Action of Ohap. iv 

I see no reason to limit the process of modification, as now ex- 
plained, to the formation of genera alone. If, in the diagram, we 
suppose the amount of change represented by each successive group 
of diverging dotted lines to be great, the fonns marked a" to p**, 
those marked &^* and /**, and those marked o" to m", will form 
three very distinct genera. We shall also have two very distinct 
genera descended from (I), differing widely from the descendants 
of (A). These two groups of genera will thus form two distinct 
families, or orders, according to the amount of divergent modifica- 
tion supposed to be represented in the diagram. And the two new 
families, or orders, are descended from two species of the original 
genus, and these are supposed to be descended fr:om some still more 
ancient and ur^known form. 

We have seen that in each country it is the species belonging 
to the larger genera which oftenest present varieties or incipient 
species. This, indeed, might have been expected ; for, as natural 
selection acts through one form having some advantage over other 
forms in the struggle for existence, it will chiefly act on those which 
already have some advantage; and the largeness of any group 
shows that its species have inherited from a common ancestor some 
advantage in common. Hence, the struggle for the production of 
new and modified descendants will mainly lie between the larger 
groups which are all trying to increase in number. One large group 
will slowly conquer another large group, reduce its numbers, and 
thus lessen its chance of further variation and improvement. 
Within the same large group, the later and more highly perfected 
sub-groups, from branching out and seizing on many new places in 
the polity of Nature, will constantly tend to supplant and destroy 
the earlier and less improved sub-groups. Small and broken groups 
and sub-groups will finally disappear. Looking to the future, we 
can predict that th^> groups of organic beings which are now large 
and triumphant, and which are least broken up, that is, which have 
as yet suffered least extinction, will, for a long period, continue to 
increase. But which groups will ultimately prevail, no man can 
predict ; for we know that many groups, formerly most extensively 
developed, have now become extinct. Looking still more remotely 
to the future, we may predict that, owing to the continued and 
steady increase of the larger groups, a multitude of smaller groups 
will become utterly extinct, and leave no modified descendants; 
and consequently that, of the species living at any one period, 
extremely few will transmit descendants to a remote futurity. I 
shall have to return to this subject in the chapter on Classification, 
but I may add that as, according to this view, extremely few of the 



^ 



Chap. IV. Natural Selection, 97 

more ancient species haye transmitted descendants to the present 
day, and, as all the descendants of the same species form a class, we 
can understand how it is that there exists so few classes in each 
main division of the, animal and vegetable kingdoms. Although 
few of the most ancient species have left modified descendants, yet, 
at remote geological periods, the earth may have been almost as 
well peopled with species of many genera, families, orders, and 
classes, as at the present time. 

On the Degree to which Organisation tends to advance, 

Natural Selection acts exclusively by the preservation and accu- 
mulation of variations, which are beneficial under the organic and 
inorganic conditions to which each creature is exposed at all periods 
of life. The ultimate result is that each creature tends to become 
more and more improved in relation to its conditions. I'his im- 
provement~lnevitably leads to the gradual advancement of the 
organisation of the greater number of living beings throughout the 
world. But here we enter on a very intricate subject, for naturalists 
have not defined to each other's satisfaction what is meant by an 
advance in organisation. Amongst the vertebrata the degree of 
intellect and an approach in structure to man clearly come into 
play. It might be thought that the amount of change which the 
various parts and organs pass through in their development from 
the embryo to maturity would suffice as a standard of comparison ; 
but there are cases, as with certain parasitic crustaceans, in which 
several parts of the structure become less perfect, so that the mature 
animal cannot be called higher than its larva. Yon Baer's standard 
seems the most widely applicable and the best, namely, the amount 
of_differe]}ti?^*'"" ^f the p arts of the same organic being, in. the 
adult state as I should be inclmed to acid, and their specialisa- 
tion for /different functions; or, as Milne Edwards would express i£, 
the completeness of the division of physiological labour. But we 
shall see how obscure this subject is if we look, for instance, to fishes, 
amongst which some naturalists rank those as highest which, like 
the sharks, approach nearest to amphibians ; whilst other naturalists 
rank the common bony or teleostean fishes as the highest, inasmuch 
as they are most strictly fish-like, and differ most from the other 
vertebrate classes. We see still more plainly the obscurity of the 
subject by turning to plants, amongst which the standard of intel- 
lect is of course quite excluded ; and here some botanists rank those 
plants as highest which have every organ, as sepals, petals, stamens, 
anid pistils, fully developed in each flower ; whereas other botanists, 



i; 



98 On the Degree to which Chap. IV 

probably with more truth, look at the plants which have their 
several organs much modified and reduced in number as the 
highest. 

If we take as the standard of high organisation, the amount of 
differentiation and specialisation of the several organs in each being 
when adult (and this will include the advancement of the brain for 
intellectual purposes), natural selection clearly leads towards this 
standard : for all physiologists admit tha t the spe cialisation oforgans, 
inasmuch as in this state they perforrn their, fi^nnt.inns h p.ff .^ ^, Ts ap 
adyjantage to^^eagt Ji^iig ; and h ence the accumulation of variations 
tending towards specialisation is. within the scope of natural selec- 
tion, On the other hand, we can see, bearing in mind that all 
organic beings are striving to increase at a high ratio and to seize on 
every unoccupied or less well occupied place in the economy of 
nature, that it is quite possible for natural selection gradually to fit 
a being to a situation in which several organs would be superfluous 
or useless : in such cases there would be retrogression in the scale of 
organisation. Whether organisation on the whole has actually 
advanced from the remotest geological periods to the present day 
will be more conveniently discussed in our chapter on Geological 
Succession. 

But it may be objected that if all organic beings thus tend to 
rise in the scale, how is it that throughout the world a multitude of 
the lowest forms still exist ; and how is it that in each great class 
some forms are far more highly developed than others? Why have 
not the more highly developed forms everywhere supplanted and 
exterminated the lower ? [Lamarck, who believed in an innate and 
inevitable tendency towards perfection in all organic beingsj seems 
to have felt this difficulty so strongly, that he was led to suppose 
that new and simple forms are continually being produced by spon- 
taneous generation. Science has not as yet proved the truth of 
this belief, whatever the future may reveal. On our theory Ihe 
conti nued existence of lowly organisms offers ao difficuliji^ for 
natural selection, or the survival of the fittest, does not necessarily 
include progressive clevelopment — it only takes advantage oFjjich, 
variations as arise and are beneficial to each creature under its com- 
plex relations of life. And it may be asked what advantage^^as tar' 
as we can see, would it be to an infusorian animalcule — ^to an in- 
testinal worm — or even to an earth-worm, to be highly organised. 
If it were no advantage, these forms would be left^ by^ natural je}( pp- 
tion, unimproved or but little improved, and might remain fiar 
indefinite ages in their present lowly condition. And geology tells 
OS that some of the lowest forms, as the infusoria and rhizopods, 



Chap. IV. Organisation tends to advance, 99 

have remained for an enonnoos period in nearly their present state. 
But to fluppose th at most of the many now existing low forms have 
got in the least" advan^d since the first dawn of life _wfiulsi.ift 
extreme ly rash ; for every naturalist who has dissected some of the 
iDeings now ranged as very low in the scale, must have been struck 
with their really wondrous and beautiful organisation. 

Nearly the same remarks are applicable if we look to the different 
grades of organisation within the same great group ; for instance, 
in the vertebrata, to the co-existence of mammals and fish— amongst 
mammalia, to the co-existence of man and the omithorhynchus — 
amongst fishes, to the co-existence of the shark and the lancelet 
(Amphioxus), Which latter fish in the extreme simplicity of its 
structure approaches the invertebrate classes. But mammals and 
fish hardly come into competition with each other ; the advance- 
ment of the wbole class of mammals, or of certain members in this 
class, to the highest grade would not lead to their taking the place 
of fishes. Physiologists believe that the brain must be bathed by 
warm blood to be highly active, and this requires a^al respiration ; 
so that warm-blooded mammals when inhabiting the water lie 
under a disadvantage in having to come continually to the sur- 
face to breathe. With fishes, members of the shark family would 
not tend to supplant the lancelet; for the lancelet, as I hear 
from Fritz Miiller, has as sole companion and competitor on the 
barren sandy shore of South Brazil, an anomalous annelid. The 
three lowest orders of mammals, namely, marsupials, edentata^ and 
rodents, co-exist in South America in the same region with nume- 
rous monkeys, and probably interfere little with each other. 
Although organisation, on the whole, may have advanced and be 
still advancing throughout the world, yet the scale will always 
present many degrees of perfection ; for the high advancement of 
certain whole classes, or of certain members of each class, does not 
at all necessarily lead to the extinction of those groups with which 
they do not enter into close competition, ^n^^some cases, as we\ 
•^hall hereafter see, lowlj^ganised forms appear to have been pre-\ 
serv ed to the_ £re8ent_4ayt from inhabiting confined or peculiar ] 
stations, wtiere they have been subjected to less severe competition, I 
and where their scanty numbers hav« retarded the chance of favour-/ 
able variations arising. 

Finally, 1 believe that many lowly organised forms now exist 
throughout the world, from various causes. In some cases varia- 
tions or individual differences of a favourable nature may never 
have arisen for natural selection to act on and accumulate. In no 
case, probably, has time sufficed for the utmost possible amount of 

H 2 



/" 



l(X) Convergence of Character, Chap. IV. 



development. In some few cases there has heen what we must call 
retrogression of organisation. But the main cause lies in the fact 
that under very simple conditions of life a high organisation would 
be of no service, — ^possibly would be of actual disservice, as being 
of a more delicate nature, and more liable to be put out of order 
and injured. 

Looking to the first dawn of life, when all organic beings, as we 
may believe, presented the simplest structure, how, it has been 
asked, could the first steps in the advancement or difierentiation of 
parts have arisen? Mr. Herbert Spencer would probably answer 
that, as soon as simple unicellular organism came by growth or 
division to be compounded of several cells, or became attached to 
any supporting surface, his law " that homologous units of any 
order become differentiated in proportion as their relations to inci- 
dent forces become different " would come into action. But as we 
have no facts to/guide us, speculation on the subject is almost useless. 
It is, however, an error to suppose that there would be no struggle 
for existence, and, consequently, no natural selection, until many 
forms had been produced : variations in a single species inhabiting 
an isolated station might be beneficial, and thus the whole mass of 
individuals might be modified, or two distinct forms might arise. 
But, as I remarked towards the close of the Introduction, no one 
ought to feel surprise at much remaining as yet unexplained on the 
origin of species, if we make due allowance for our profound igno- 
rance on the mutual relations of the inhabitants. of the world at the 
present time, and still more so during past ages. 

Convergence of Character. 

Mr. H. C. Watson thinks that I have overrated the importance 
of divergence of character (in which, however, he apparently 
believes), and that convergence, as it may be called, has likewise 
played a part. Ifjwo species, belonging to two distinct though 
allied genera, had both produced a large number of new and diver- 
gent forms, it is conceivable that these might approach each other 
so closely that they would have all to be classed liu^er' iEe same 
genjis ; and thus the descendants of two distinct genera wQiildcon- 
. verge into one. But it would in most cases be extremely rash to attri- 
bute to convergence a close and general similarity of structure in the 
modified descendants of widely distinct forms. The shape of a crystal 
is determined solely by the molecular forces, and it is not surprising 
that dissimilar substances should sometimes assume the same form; 
but with organic beings we should bear in mind that the form o^ 



Chap. IV. Convergence of Character, loi 

each depends on an infinitude of complex relations, namely on the 
variations which have arisen, these being due to causes far too 
intricate to be followed out,— on the nature of the Tariations which 
have been preserved or selected, and this depends on the surround- 
ing physical: conditions, and in a still higher degree on the sur- 
rounding organisms with which each being has come into competi- 
tion, — and lastly, on inheritance (in itself a fluctuating element) from 
innumerable prc^enitors, all of which have had their forms deter- 
mined through equally complex relations. It is incredible that the 
descendants of two organisms, which had originally differed in a 
marked manner, should ever afterwards converge so closely as to 
lead to a near approach to identity throughout their whole organi- 
sation. If this had occurred, we should meet with the same form, 
independently of genetic connection, recurring in widely separated 
geological formations ; and the balance of evidence is opposed to 
any such an admission. 

Mr. Watson has also objected that the continued action of natural 
selection, together with divergence of character, would tend to make 
an indefinite number of specific forms. As far as mere inorganic con- 
ditions are concerned, it seems probable that a sufficient number of 
species would soon become adapted to all considerable diversities 
of heat, moisture, &c. ; but I fully admit that the mutual relations 
of organic beings are more important ; and as the number of species 
in any country goes on increasing, the organic conditions of life 
mi^st become more and more complex. Consequently there seems 
at fijst si^ ht no lirqi ^ to the amou nt of £rofitablediyersiScation Joif 
•structure, and t herefo re no limit to the number ojf species which 

5Wgb^ ^. P?P4]ipSj» ^® ^^ "^^^ know that even the most prolific 
area is fully stocked with specific forms : at the Cape of Good Hope 
and in Australisk|^ which support such an astonishing number of 
species, many European plants have become naturalised. But 
geology shows us, that from an early part of the tertiary period the 
number of species of shells, and that from the middle part of this 
same period the number of mammals, has not greatly or at all 
increased. What then checks an indefinite increase in the number/ 
of species? The amount of life (I do not mean the number of 
specific forms) supported on an area must have a limit, depending 
BO largely as it does on physical conditions ; therefore, if an area be 
inhabited by very many species, each or nearly each species will be 
represented by few individuals ; and such species will be liable to 
extermination from accidental fluctuations in the nature of the 
seasons or in the number of their enemies. The process of extermi- 
nation in such cases would be rapid, whereas the production of new 



102 Natural Selection, Chap. IV. 

species must always be slow. Imagine the extreme case of as many 
species as individuals in England, and the first severe winter or 
very dry summer would exterminate thousands on thousands of 
species. Bare species, and each species will become rare if the 
number of species in any country becomes indefinitely increased, 
will, on the principle often explained, present within a given period 
few favourable variations ; consequently, the process of giving birth 
to new specific forms would thus be retarded. When any species 
^ becomes very rare, close interbreeding will help to exterminate it ; 
authors have thought that this comes into play in accounting for 
the deterioration of the Aurochs in Lithuania, of Red Deer in Scot- 
land, and of Bears in Norway, &c. Lastly, and this I am inclined 
to think is the most important element, a dominant species, which 
has already beaten many competitors in its own home, wil ^ , tend" t o 
spfead'antf supplant many others Alph. de CandoUe has shown 
that those" species whicli spread widely, tend generally to spread 
very widely ; consequently, they will tend to supplant and exter- 
minate several species in several areas, and thus check the inordinate 
increase of specific forms throughout the world. Dr. Hooker has 
recently shown that in the S.E. comer of Australia, where, appa- 
rently, there are many invaders from different quarters of the globe, 
the endemic Australian species have been greatly reduced in number. 
How much weight to attribute to these several considerations I 
will not pretend to say ; but conjointly they must limit in each 
country the tendency to an indefinite augmentation of specifio 
forms. 

Bammary of Chapter. 

If under changing conditions of life organic beings present indivi- 
dual differences in almost every part of their structure, and this 
cannot be disputed ; if there be, owing to their geometrical rate of 
increase, a severe straggle for life at some age, season, or year, and 
this certainly cannot be disputed; then, considering the infinite 
complexity of the relations of all organic beings to each other and to 
their conditions of life, causing an infinite diversity in structure, con- 
stitution, and habits, to be advantageous to them, it would be a most 
extraordinary fact if no variations had ever occurred useful to each 
being's own welfare, in the same manner as so many variations have 
occurred useful to man. But if variations useful to <^py orgftglig 
-beincr ever do occur, assuredly individuals thus characteris^|jQJd 
have the best chance of being preserved in the struggle fo r ij,fe : 
and from the strong principle of inheritance, these will tend t^ 
produce offspiing similarly characterised. This principle of pre- 



Chap. iv. Sumtnaty. 103 

servatioD, or the survival of the fittest, I have called Natunl 
slectioiL ILksukio tbfii improvement of each creature in relation 
^ |t.a nrgupjp. f\j\{\ inorgauic conditions of life ; jmd 5H*Ttff"|^y"tlyi in 
most cases, to what must be regarded as an advance in organisation. | 
Nevertheless, low and simple forms will long endure if well fitted f5r 
their simple conditions of life. 

Natural selec^kOB, oa^the^idAsiple of qnalitjea hfiins inherited at 
corresponding ages, can modify the egg, seed, or young, as easily 
lis tllfe"a3uIF.""" "Amongst many animals, ^sexual selection will have j 
given its aid to ordinary selection, by assuring to the most vigorous / 
an j^best adapted male s the g reatest number of offspring. Sexual / 
selection will also give characters useful to the males alone, in their 
struggles or rivalry with other males ; and these characters will be 
transmitted to one sex or to both sexes, according to the form of 
inheritance which prevails. 

Whether i^^iral selection has really thus acted in adapting the 
various forms of life to their several conditions and stations, must 
be judged by the general tenor and balance of evidence given in the 
following chapters. But we have already seen how it entails 
^tinctipn; and how largely extinction has acted in the world's 
history, geology plainly declares. Natural selection, also, leads to 
divergence of character; for the more organic beings diverge in 
structure, habits, and constitution, bj_so much the more can a large 
numbe flxe supported on the same area, — of which we see proof by 
looEmg to the inhabitants of any small spot, and to the productions 
naturalised in foreign lands. Therefore, during the modification of 
thedescendantsof any one species, and during the incessant struggle 
of all species to increase in numbers, th&^ppre diversified the de- 
scendants become, the better will be their chance of success in the 
battle fo^ Kfe. Thus the small differences distinguishiug varieties 
of the same species, steadily tend to increase, till they equal the 
greater differences between species of the same genus, or dven of 
distinct genera. 

We have seen that it is th e comp ion, the^widely-diffused, and 
widely-rang in g speci es, belonging to the larger genera within each 
class, which yary m ost ; and^thesg^tend t o tran smi t to the ir p^of^^fiefl 
offsgrin^ that superiority which now makes them dominant in 
fhew own countries. Satii ral selectio n^ as lEas" jusT been rem arked, 
leads to divergence o f chaTacfef and to much extinction of the lesa^ 
i mprov ed and intermediate lormFoT"!!!^. "' On these principles, the 
fSStet*^ tte'^affiiiiiresjlirid^t^e gcnefaFy well-defined distinctions 
between the innumerable organic beings in each class throughout ^ 



104 Natural Selection. Chap. IV. 



the world, may be explained. It is a truly wonderful fact — the 
wonder of which we are apt tct overlook from familiarity — that all 
animals and all plants throughout all time and space should be 
related to each other in groups subordinate to groups, in the manner 
which we everywhere behold — namely, varieties of the same species 
most closely related, species of the same genus less closely and 
unequally related, forming sections and sub-genera, species of 
distinct genera much less closely related, and genera related in 
different degrees, forming sub-families, families, orders, sub-classQS, 
and classes. The several subordinate groups in any class cannot be 
ranked in a single file, but seem clustered round points, and these 
round other points, and so on in almost endless cycles. If species 
had been independently created, no explanation would have been 
possible of this kind of classification ; but it is explained through 
inheritance and the complex action of natural selection, entailing 
extinction and divergence of character, as' we have seen illustrated 
in the diagram. 

The affinities of all the beings of the same class have sometimes 
been represented by a great tree. I believe this simile largely 
speaks the truth. The green and budding twigs may represent 
existing species; and those produced during former years may 
represent the long succession of extinct species. At each period of 
growth all the growing twigs have tried to branch out on all sides^ 
and to overtop and kill the surrounding twigs and branches, in the 
same manner as species and groups of species have at all times 
overmastered other species in the great battle for life. The limbs 
divided into great branches, and these into lesser and lesser branches^ 
were themselves once, when the tree was young, budding twigs ; 
and this connection of the former and present buds by ramifying 
branches may well represent the classification of all extinct and 
living species in groups subordinate to groups. Of the many twigs 
*j which flourished when the tree was a mere bush, only two or three, 
now grown into great branches, yet survive and bear the other 
branches ; so with the species which lived during long-past geolo- 
gical periods, very few have left living and modified descendants. 
From the first growth of the tree, many a limb and branch has 
decayed and dropped off; and these fallen branches of various sizes 
may represent those whole orders, families, and genera which have 
now no living representatives, and which are known to us only in 
a fossil state. As we here and there see a thin straggling branch 
springing from a fork low down in a tree, and which by some 
chance has been favoured and is still alive on its summiti so we 



Chap. IV. Summary, 1 05 

occasionally see an animal like the Omithorhynchus or Lepidosiren, 
which in some small degree connects by its affinities two large 
branches of life, and which has apparently been saved from fatal 
competition by having inhabited a protected station. As buds give 
rise by growth to fresh buds, and these, if vigorous, branch out and 
overtop on all sides many a feebler branch, so by generation I 
believe it has been with the great Tree of life, which fills with its 
dead and broken branches the crust of the earth, and covers the 
surface with its ever-branchiDg and beautiful ramifications. 



I 



io6 Laws of Variation. Chap. v. 



\ 



I 



CHAPTER V. 

Laws op Vabiation. 

Effects of changed conditions — Use and disuse, combined with natural 
selection ; organs of flight and of vision — Acclimatisation — Correlated 
variation — Compensation and economy of growth — False correlations 
— Multiple, rudimentary, and lowly organised structures variable — 
Parts developed in an unusual manner are highly variable : specific 
characters more variable than generic: secondary sexual characters <^ 
variable — Species of the same genus vary in an analogous manner — 
Reversions to long-lost chai'acters — Summary. 

I HAVE hitherto sometimes spoken as if the variations — so common 
and multiform with organic beings mider domestication, and in a 
lesser degree with those under nature — ^were due to chance. This, 
of course, is a wholly incorrect expression, but it serves to acknow- 
ledge plainly our ignorance of the cause of each particular variation. 
Some authors believe it to be as much the function of the repro- 
ductive system to produce individual differences, or slight deviations 
of structure, as to make the child like it's parents. But the fact of 
variations and monstrosities occurring much more frequently under 
domestication than under nature, and the greater variability of species 
having wide ranges than of those with restricted ranges, lead to 
the conclusion that variabil itaL is generally related to the condi - 
tions of life to which each species has been exj>osed during several 
successive generations. In the first chapter I attempted to showlCliat — • 
.cEangeS Qonditions act in two ways, directly on the whole organisa- 
/ tipn or on certain parts alone, and indirectly through the reproductive 
J system. In all cases there are two factors, the nature oTIg^e 
organism, which is much the most important of the two, a nd th e 
nature of the conditions. The direct action of changed conditions 
leads to definite or indefinite results. In the latter case the organi- 
sation seems to become plastic, and we have much fluctuating vari- 
ability. In the former case the nature of the organism is such 
that it yields readily, when subjected to certain conditions, and all, 
or nearly all the individuals become modified in the same way. 

It is very difficult to decide how far changed conditions, such as 
of climate, food, &c., have acted in a definite manner. There is 



Chap. V. Laws of Variation, 107 

reason to believe that in the course of time the effects have been 
greater than can be proved by clear evidence. Bat we may safely 
conclude that the innumerable complex co-adaptations of structure, 
which Tie see throughout nature between various organic beings, 
cannot be attributed simply to such action. In the following cases 
the conditions seem to have produced some slight definite effect : £. 
Forbes asserts that shells at their southern limit, and when living in 
shallow water, are more brightly coloured than those of the same 
species from further north or from a greater depth; but this 
certainly does not always hold good. Mr. Gould believes that birds 
of the same species are more brightly coloured under a clear atmos- 
phere, than when living near the coast or on islands; and Wollaston 
is convinced that residence near the sea affects the colours of insects. 
Moquin-Tandon gives a list of plants which, when growing near the 
sea-shore, have their leaves in some degree fleshy, though not else- 
where fleshy. These slightly varying organisms are interesting in 
as far as they present characters analogous to those possessed by the 
species which are confined to similar conditions. 

When a variation is of the slightest use to any being, we canuot tell 
how much to attribute to the accumulative action of natural selection, 
and how much to the definite action of the conditions of life. Thus, 
it is well known to furriers that animals of the same species have 
thicker and better fur the further north they live ; but who can tell 
how much of this difference may be due to the warmest-clad indivi- 
duals having been favoured and preserved during many generations, 
and how much to the action of the severe climate ? for it would 
appear that climate has some direct action on the hair of our domes- 
tic quadrupeds. 

Instances could be given of similar varieties being produced from 
the same species under external conditions of life as different as can 
well be conceived ; and, on the other hand, of dissimilar varieties 
being produced under apparently the same external conditions. 
Again, innumerable instances are known to every naturalist, of 
species keeping true, or not varying at all, although living under 
the most opposite climates. Such considerations as these incline me; 
to lay less weight on the direct action of the surrounding con-^j 
ditions, than on g . tendency to var y, due to causes of which we are; 
quite ignorant. * 

In one sense the conditio ns^flfJiie may be said, not only to cause 
variability, either direciiy or mdirectly, but likewise tq^jncla^e 
patural selection : for the conditions dgtermine lyjactheir this or th^^-t 
yariety sha ll survive. But when man is the selecting agent,, we 
clearly see ^Bat t^e two elements of change are distinct ; variabiHty 



io8 Effects of Use and Disuse, Chap. V. 

is in some manner excited, but it is the will of man which accumu- 
Jates the variations in certain directions ; and it is this latter agency 
which answers ijo the survival of the fittest under nature. 

Effects of the increased Use and Disuse of Parts, as controlled 

by Natural Selection, 

From the facts alluded to in the first chapter, I think there can. 
be no doubt that usein our domestic animals has strengthenoi 
and enlarged cert am parts^ ami^, rilsn-s ^fi riimimshori ^-tifym ; and that 
ai icii moaifilcati pir^^^'^ ^TJhff Pted . Under firee nature, we have no 
standard of comparison, by which to judge of the effects of long- 
continued use or disuse, for we know not the parent-forms ; but 
many animals poss ess structures which can be best e xplained by 
the effects of disuse. AsTProfessor Owen has remarked^ there is no ' 
greater anomaly in nature than a bird that cannot fly ; yet there are 
several in this state. The logger-headed duck of South America 
can only flap along the surface of the water, and has its wings in 
nearly the same condition as the domestic Aylesbury duck : it is a 
remarkable fact that the young birds, according to Mr. Cunning- 
ham, can fly, while the adults have lost this power. As the larger 
ground-feeding birds seldom take flight except to escape danger, it 
is probable that the nearly wingless condition of several birds, now 
inhabiting or which lately inhabited several oceanic islands, tenanted 
by no beast of prey, has been caused by disuse. The ostrich indeed 
inl^abits continents, and is exposed to danger from which it cannot 
escape by flight, but it can defend itself by kicking its enemies, as 
efficiently as many quadrupeds. We may believe that the proge- 
nitor of the ostrich genus had habits like those of the bustard, and 
that, as the size and weight of its body were increased during suc- 
cessive generations, its legs were used more, and its wings less, 
until they became incapable of flight. 

Kirby has remarked (and I have observed the same fact) that the 
anterior tarsi, or feet, of many male dung-feeding beetles are often 
broken off ; he examined seventeen specimens in his own collegtios^ 
and not one had even a relic left. In the Onites apelles the tarsi 
are so habitually lost, that the insect has been described as not 
having them. In some other genera they are present, but in a 
rudimentary condition. In the Ateuchus or sacred beetle of the 
Egyptians, they are totally deficient. The evidence that accidental 
mutilations can be inherited is at present not decisive ; but the 
remarkable cases observed by Brown-Sdquard in guinea-pigs, of the 
inherited effects of operations, should make us cautious in denying 



Chap. V. Effects of Use and Disuse, 109 

this tendency. Hence it will perhaps be safest to look at the entire 
absence of the anterior tarsi in Ateuchns, and their rudimentary 
condition in some other genera, not as cases of inherited mutilations, 
but as due to the effects of long-continued disuse ; for as many 
dung-feeding beetles are generally found with their tarsi lost, this 
must happen early in life ; therefore the tarsi cannot be of much 
importance or be much used by these insects. 

In some cases we might easily put down to disuse modifications 
of structure which are wholly, or mainly, dne to natural selection. 
Mr. Wollaston has discovered the remarkable fact that 200 beetles^ 
out of the 550 species (but more are now known) inhabiting 
Madeira, are so far deficient in wings that they cannot fly ; and 
that, of the twenty-nine endemic genera, no less than twenty-three 
have all their species in this condition I Several facts, — ^namely, 
that beetles in many parts of the world are frequently blown to sea 
and perish ; that the beetles in Madeira, as observed by Mr. 
Wollaston, lie much concealed, until the wind lulls and the sun 
shines ; that the proportion of wingless beetles is larger on the 
exposed Desertas than in Madeira itself ; and especially the extra- 
ordinary fact, so strongly insisted on by Mr. Wollaston, that certain 
large groups of beetles, elsewhere excessively numerous, which 
absolutely require the use of their wings, are here almost entirely 
absent; — these several considerations make me believe that the 
wingless condition of so many Madeira beetles is mainly due to 
the action of natural selection, combined probably with disuse. For < 
during many successive generations each individual beetle which 
flew least, either from its wings having been ever so little less perfectly 
developed or from indolent habit, will have had the best chance of 
surviving from not being blown out to sea ; and, on the other hand, 
those beetles which most readily took to flight would oftenest have 
been blown to sea, and thus destroyed. 

The insects in Madeira which are not ground-feeders, and which, 
as certain flower-feeding coleoptera and lepidoptera, must habitually 
use their wings to gain their subsistence, have, as Mr. Wollaston 
s^pects, their wings not at all reduced, but even enlarged. This is 
quite compatible with the action of natural selection. For when a 
new insect first ariived on the island, the tendency of natural 
selection to enlarge or to reduce the wings, would depend on 
whether a greater number of individuals Vere saved by successfully 
battling with the winds, or by giving up the attempt and rarely or 
never flying. As with mariners shipwrecked near a coast, it would 
have been better for the good swimmers if they had been able to 
swim still further, whereas it would have been better for the bad 



no Effects of Use and Disuse. Chap. v. 

swimmers if they had not been able to swim at all and had stuck 
to the wreck. 

The eyes of moles and of some burrowing rodents are rudimentary 
in size, and in some cases are quite covered by skin and fur. This 
state of the eyes is probably due to gradual reduction from disuse, 
but aided perhaps by natural selection. In South America, a bur- 
rowing rodent, the tuco-tuco, or Ctenomys, is even more subter- 
ranean in its habits than the mole; and I was assured by a 
Spaniard, who had often caught them, that they were frequently 
blind. One which I kept alive was certainly in this condition, the 
cause, as appeared on dissection, having been inflammation of the 
nictitating membrane. As frequent inflammation of the eyes must 
be injurious to any animal, and as eyes are certainly not necessary 
to animals having subterranean habits, a reduction in their size, 
with the adhesion of the eyelids and growth of fur over them, 
might in such case be an advantage ; and if so, natural selection 
would aid the effects of disuse. 

It is well known that several animals, belonging to the most 
different classes, which inhabit the caves of Camiola and of Ken- 
tucky, are blind. In some of the crabs the foot-stalk for the eye 
remains, though the eye is gone ; — the stand for the telescope is 
there, though the telescope with its glasses has been lost. ' As it is 
difficult to imagine that eyes, though useless, could be in any way 
injurious to animals living in darkness, their loss may be attributed 
to disuse. In one of the blind animals, namely, the cave-rat 
(Neotoma), two of which were captured by Professor Silliman at 
above half a mile distance from the mouth of the cave, and there- 
fore not in the profoundest depths, the eyes were lustrous and of 
large size ; and these animals, as I am informed by Professor Silli- 
man, after having been exposed for about a month to a graduated 
light, acquired a dim perception of objects. 

It is difficult to imagine conditions of life more similar than 
deep limestone caverns under a nearly similar climate ; so that, in 
accordance with the old view of the blind animals having been 
separately created for the American and European caverns, very 
close similarity in their organisation and affinities might have been 
expected. This is certainly not the case if we look at the two 
whole faunas ; and with respect to the insects alone, Schibdte has 
remarked, "We are accordingly prevented from considering tho 
entire phenomenon in any other light than something purely local," 
and the similarity which is exhibited in a few forms between the 
Mammoth cave (in Kentucky) and the caves in Camiola, otherwise 
than as a very plain expression of that analogy which subsists 



Chap. V. Effects of Use and Disuse, 1 1 1 

generally between the fsiuna of Enrope and of North America.** 
On my view we must suppoee that American animals, having in 
most cases ordinary powers of vision, slowly migrated by successive 
generations from the outer world into the deeper and deeper re- 
cesses of the Kentucky caves, as did European animals into the 
caves of Europe. We have some evidence of this gradation of 
habit ; for, as Schiodte remarks, '' We accordingly look upon the 
subterranean faunas as small ramifications which have penetrated 
into the earth from the geographically limited faunas of the adja- 
cent tracts, and which, as they extended themselves into darkness, 
have been accommodated to surrounding circumstances. Animals 
not far remote from ordinary forms, prepare the transition from 
light ta darkness. Next follow those that are constructed for twi- 
light ; and, last of all, those destined for total darkness, and whose 
formation is quite peculiar." Thpiw rgmftrka of Schibdte's, it should 
be understood, apply not to the same, but to distinct species^ By 
the time that an animal had reached, after numberless generations, 
the deepest recesses, disuse will on this view have more or less 
perfectly obliterated its eyes, and natural selection will often have 
effected other changes, such as an increase in the length of the 
antennas or palpi, as a compensation for blindness. Notwithstand- 
ing such "modifications, we might expect still to see in the cave- 
animals of America, affinities to the other inhabitants of that con- 
tinent, and in those of Europe to the inhabitants of the European 
continent. And this is the case with some of the American cave- 
animals, as I hear from Professor Dana ; and some of the European 
cave-insects are very closely allied to those of the surrounding 
country. It would be difficult to give any rational explanation of 
the affinities of the blind cave-animals to the other inhabitants 
of the two continents on the ordinary view of their independent 
creation. That several of the inhabitants of the caves of the Old 
and New Worids should be closely related, we might expect from 
the well-known relationship of most of their other productions. As 
a blind species of Bathyscia is found in abundance on shady rocks 
far from caves, the loss of vision in the cave-species of this one 
genus has probably had no relation to its dark habitation ; for it 
is natural that an insect already deprived of vision should readily 
become adapted to dark caverns. Another blind genus (Anoph- 
thalmus) offers this remarkable peculiarity, that the species, as 
Mr. Murray observes, have not as yet been found anywhere except 
in caTes ; yet those which inhabit the several caves of Europe and 
America are distinct ; but it is possible that the progenitors of these 
iieveral species, whilst they were furnished with eyes, may formerly 



112 A cclimatisation. Chap. V. 



have ranged over both continents, and then have become extinct, 
excepting in their present secluded abodes. Far from feeling sur- 
prise that some of the cave-animals should be very anomalous, as 
Agassiz has remarked in regard to the blind fish, the Amblyopsis, 
and as is the case with the blind Proteus with reference to the 
reptiles of Europe, I am only surprised that more wrecks of ancient 
life have not been preserved, owing to the less severe competition to 
which the scanty inhabitants of these dark abodes will have been 
exposed. 

Acclimatisation, 

Habit is hereditary with plants, as in the period of flowering, in 
the time of sleep, in the amount of rain requisite for seeds to germi- 
nate, &c., and this leads me to say a few words on acclimatisation* 
As it is extremely common for distinct species belonging to the same 
genus to inhabit hot and cold countries, if it be true that all the 
species of the same genus are descended from a single parent-form^ 
acclimatisation must be readily effected during a long course of 
descent. It is notorious that each species is adapted to the climate 
of its own home : species from an arctic or even &om a temperate 
region cannot endure a tropical climate, or conversely. So again, 
many succulent plants cannot endure a damp climate. But the 
/degree of adaptation of species to the climates under which they 
! live is often overrated. We may infer this from our frequent in- 
ability to predict whether or not an imported plant will endure our 
climate, and from the number of plants and animals brought from 
different countries which are here perfectly healthy. We have 
reason to believe that species in a state of nature are closely limited 
in their ranges by the competition of other organic beings quite as 
much as, or more than, by adaptation to particular climates. But 
whether or not this adaptation is in most cases very close, we have 
eyidgpce .with some few plants, of their becoming to a certain 
extent, naturally habituated to different temperature? ; that is, they 
become acclimatised : thus the pines and rhododendrons, raised from 
seed collected by Dr. Hooker from the same species growing at 
different heights on the Himalaya, were found to possess in this 
country different constitutional powers of resisting cold. Mr. 
Thwaites informs me that he has observed similar facts in Ceylon ; 
analogous observations have been made by Mr. H. 0. Watson on 
European species of plants brought from the Azores to England ; 
and I could give other cases. In regard to animals, several authentic 
instances could be adduced of species having largely extended, 
within historical times, their range from warmer to cooler latitudes^ 



Chap. V* Acclimatisation. 113 

iyi<^ ojr\r\\rf^^\y^ ; but we do not positively know that these animab 
were strictly adapted to their native climate, though in all ordinary 
cases we assume such to be the case ; nor do we know that they 
have subsequently become specially acclimatised to their new 
homes, so as to be better fitted for them than they were at first. 

As we may infer that our domestic animals were originally chosen 
by uncivilised man because they were nsefol and because they bred 
readily under confinement, and not because they were subsequently 
found capable of far-extended transportation, the conmion and ex* 
traordiuary capacity in our domestic animals of not only withstand- 
ing the most different climates, but of being perfectly fertile (a f&r 
severer test) under them, may be used as an argument that a large 
proportion of other animals now in a state of nature could easily 
be brought to bear widely different climates. We must not, how- 
ever, push the foregoing argument too far, on account of the pro- 
bable origin of some of our domestic animals from several wild 
stocks ; the blood, for instance, of a tropical and arctic wolf may 
perhaps be mingled in our domestic breeds. The rat and mouse 
cannot be considered as domestic animals, but they have been trans- 
ported by man to many parts of the world, and now have a far 
wider range than any other rodent ; for they live under the cold 
climate of Faroe in the north and of the Falklands in the south, 
and on many an island in the torrid zones. Hence adaptation to 
any special climate may b e looked at as a quality readily grafted on 
an innate wide flexibility of coDStitutionTcommon to most animalsr 
On this view, the capacity of enduring the most different climates 
by man himself and by his domestic animals, and the fact of the 
extinct elephant and rhinoceros having formerly endured a glacial 
climate, whereas the living species are now all tropical or sub- 
tropical in their habits, ought not to be looked at as anomalies, but 
as examples of a very common flexibility of constitution, brought, 
under peculiar circumstances, into action. 

How much of the acclima tisation of .spsgie^.to any peculiar 
climate is due to m ere habits a nd how much to the natural selection 
of varieties having diff erent innate constitutions, and how much to 
both means combined, is an oTbscufe'queiiron.' "Tliat habit or custom 
has some influence, I must believe, both from analogy and from the 
incessant advice given in agricultural works, even in the ancient 
Encyclopaedias of China, to be very cautious in transporting ani- 
mals from one district to another. And as it is not likely that man 
should have succeeded in selecting so many breeds and sub-breeda 
with constitutions specially fitted for their own districts, the result 
must, I think, be due to habit. On the other hand, natural selec« 

I 



1 14 Correlated Variation. Chap. V. 

tion would inevitably tend to preserve those individuals which were 
bora with constitutions best adapted to any country which they 
inhabited. In treatises on many kinds of cultivated plants, certain 
varieties are said to withstand certain climates better than others ; 
this is strikingly shown in works on fruit-trees published in the 
United States, in which certain varieties are habitually recom- 
mended for the northern and others for the southern States ; and as 
most of these varieties are of recent origin, they cannot owe their 
constitutional differences to habit. The case of the Jerusialem 
artichoke, which is never propagated in England by seed, and of 
which consequently new varieties have not been produced, has even 
been advanced, as proving that acclimatisation cannot be effected, 
for it is now as tender as ever it was ! The case, also, of the kidney- 
bean has been often cited for a similar purpose, and with much 
greater weight; but until some one will sow, during a score of 
generations, his kidney-beans so early that a very large proportion 
are destroyed by frost, and then collect seed from the few survivors, 
with care to prevent accidental crosses, and then again get seed 
from these seedlings, with the same precautions, the exx)eriment 
cannot be said to have been tried. Nor let it be supposed that 
differences in the constitution of seedling kidney-beans never 
appear, for an account has been published how much more hardy 
some seedlings are than others ; and of this fact I have myself 
observed strikii^ instances. 

On the whole, we may conclude that ha^it, or use and. d isuse ^ 
l^vcj in some cases, played a considerable part in thfi jnodification 
of the constitution and structure ; but that the effects hftvejoften 
been largely combined with, and sometimes overmastered bj^^ the 
natural selection of innate variations* 

Correlated Variation. 

I mean by this expression that t he whole organis ati on is so tied 
together during, its growth and development, that wh en slight 
variations in any one , part occur, and are accumulated through 
natural selection, other parts become modified. This is a very im- 
portant subject, most imperfectly understood, and no doubt wholly 
different classes of facts may be here easily confounded together. 
We shall presently see that simple inheritance often gives the false 
appearance of correlation. One of the most obvious real cases is, 
that variations of structure arising in the young or larvaB naturally 
tend to affect the structure of the mature animal. The gexecal 
^rts of thfi .body which are homologous, and which^ at an jead^ 
embryonic period^ are identical in structure, and which are npcea - 



Ohap. V. Correlated Variation, 1 1 S 

»trily ^itigOTfid *" £UJQUltf. ^^"^'*''^^fl, 8661X1 eminentlj] lia ble to var y_ 
in a like manner : we see this in the right and left sides of the 
body varying in the same manner ; in the front and hind legs, and 
even in the jaws and limbs, varying together, for the lower jaw 
is believed by some anatomists to be homologous with the limbs. 
These tendencies, I do not doubt, may be mastered more or less 
completely by natural selection : thus a family of stags once existed 
with an antler only on one side ; and if this had been of any great 
use to the breed, it might probably have been rendered permanent 
by selection. 

Homologous p arts, as has been remarked by some authors, tend 
to coher e ; this is often seen in monstrous plants: and nothing 
b more common than the union of homologous parts in normal 
structures, as in the union of the petals into a tube. Hard parts 
seem to afiect the form of adjoining sofE parts ; it is believed by 
some authors that with birds the diversity in the shape of the 
pelvis causes the remarkable diversity in the shape of their kidneys. 
Others believe that the shape of the pelvis in the human mother 
influences by pressure the shape of the head of the child. In 
snakesy according to Schlegel, the form of the body and the manner 
of swallowing determine the position and form of several of the 
most important viscera. 

The nature of the bond is frequently quite obscure. M. Is. 
Geofifroy St. Hilaire has forcibly remarked, that certain malcon* 
formations frequently, and that others rarely, co-exist, without our 
being able to assign any reason. What can be more singular than 
the relation in cats between complete whiteness and blue eyes with 
deafness, or between the tortoise-shell colour and the female sex ; 
or in pigeons between their feathered feet and skin betwixt the outer 
toes, or between the presence of more or less down on the young 
pigeon when first hatched, with the future colour of its plumage ; 
or, again, the relation between the hair and teeth in the naked 
Turkish dog, though here no doubt homology comes into play? 
With respect to this latter case of correlation, I think it can hardly 
be accidental, that the two orders of mammals which are most 
abnormal in their dermal covering, viz., Getacea (whales) and 
Edentata (armadilloes, scaly ant-eaters, &c.), are likewise on the 
whole the most abnormal in their teeth ; but there are so many 
exceptions to this rule, as Mr. Mivart has remarked, that it has 
little value. 

I know of no case better adapted to show the importance of the 
laws of correlation and variation, independently of utility and 
therefore of natural selection, than that of the difference between 

I 2 



Ii6 Correlated Variation, Chap. V. 



the outer and inner flowers in some Compositous and Umbelliferous 
plants. Every one is familiar with the difference between the ray 
and central florets of, for instance, the daisy, and this difference is 
often accompanied with the partial or complete abortion of the 
reproductive organs. But in some of these plants, the seeds also 
differ in shape and sculpture. These differences have sometimes 
been attributed to the pressure of the involucra on the florets, or 
to their mutual pressure, and the shape of the seeds in the ray- 
florets of some Compositae countenances this idea ; but with the 
UmbelliferaB, it is by no means, as Dr. Hooker informs me, the 
species with the densest heads which most frequently differ in 
their inner and outer flowers. It might have been thought that 
the development of the ray-petals by drawing nourishment from the 
reproductive organs causes their abortion ; but this can Hardly be 
the sole cause, for in some Cbmpositse the seeds of the outer and ' 
inner florets differ, without any difference in the corolla. Possibly 
these 'several differences may be connected with the different flow 
of nutriment towards the central and external flowers : we know, 
at least, that with irr^ular flowers, those nearest to the axis are 
most subject to peloria, that is to become abnormally symmetrical, 
I may add, as an instance- of this fact, and as a striking case of 
correlation, that in many pelargoniums, the two upper petals in 
the central flower of the truss often lose their patches of darker 
colour ; and when this occurs, the adherent nectary is quite aborted ; 
the central flower thus becoming peloric or regular. When the 
colour is absent from only one of the two upper petals, the nectary 
is not quite aborted but is much shortened. 

With respect to the development of the corolla, Sprengel's idea 
that the ray-florets serve to attract insects, whose agency is highly 
advantageous or necessary for the fertilisation of these plants, is 
highly probable ; and if so, natural selection may have come Into play. 
But with respect to the seeds, it seems impossible that their differ- 
ences in shape, which are not always correlated with any difference 
in the corolla, can be in any way beneficial : yet in the Umbelli- 
feras these differences are of such apparent importance — the seeds 
being sometimes orthospermous in the exterior flowers and coelo- 
spenhous in the central flowers, — that the elder De Candolle 
founded his main divisions in the order on such characters. Hence 
DQixliflcations of structure, viewed by systematists as of high value, 
may be wholly due to the laws of variation and correlatio n. T^-ithout ^ 
being, as far as we can judge, of the slightest service to t he species. 
We may often falsely attribute to correlated variation structures 
which are common to whole groups of species, and which in truth 



Chap. V. Compensation and Economy of Growth. 1 1 7 

iu:e simply dne to inheritance ; for an ancient progenitor may have 
acquired through natural selection some one modification in stmc* 
ture, and, after thousands of generations, some other and inde- 
pendent modification; and these two modifications, having been 
transmitted to a whole group of descendants with diyerae habits, 
would naturally be thought to be in some necessary manner cor- 
related. Some other correlations are apparently due to the mmingf 
in which natural selection can alone act» For instance, Alph. de 
Candolle has remarked that winged seeds are never found in fruits 
which do not open ; I should explain this rule by the impossibility 
of seeds gradually becoming winged through natural selection, unless 
the capsules were open ; for in this case alone could the seeds, which 
were a little better adapted to be wafted by the wind, gain an 
advantage over others less well fitted for wide dispersal* 

C<ymfen9ation and Economy of Growth^ 

The elder GeofEf oy and Goethe propounded, at about the same time 
their law of compensation or balancement of growth ; or, as Goethe 
expressed it, ^ in order to spend on one side, nature is forced to 
economise on the other side.*' I think this holds true to a certain 
extent with our domestic productions : if nourishment flows to one 
par t or organ in exc ess, it rarely flows, at least in excess, to another 
parti thus it is difficult to get a cow to give much milk and to 
£&tten readily. The same varieties of the cabbage do not yield 
abundant and nutritious foliage and a copious supply of oil-bearing 
seeds. When the seeds in our fruits become atrophied, the fruit 
itself gains largely in size and quality. In our poultry, a large 
tuft of feathers on the head is generally accompanied by a diminished 
comb, and a large beard by diminished wattles. With species in 
a state of nature it can hardly be maintained that the law is of 
universal application; but many good observers, more especially 
botanists, believe in its truth. I will not, however, here give any 
instances, for I see hardly any way of distinguishing between the 
effects, on the one hand, of a part being largely developed through 
natural selection and another and adjoining part being reduced by 
this same process or by disuse, and, on the other hand, the actual 
withdrawal of nutriment from one part owing to the excess of 
growth in another and adjoining part. 

I suspect, also, that some of the cases of compensation which 
have been advanced, an<riiEewise some other facts, may be merged 
UJftdgxJBU3PtPi9.g«D£ral. principle, namely, tfeat JoatlUJil selectjon ia. 
continaal ly try ing to economise every part of the organisation. I£ 
nn3er^ changed_oonditio Ds .of liiJe a struGtuxe, before useful, becomes. 



1 1 8 Multiple and Rudimentary Chap. v. 

less useful, its diminution will be favoured, for it wjll profit the 
individual not to have its nutriment wasted in building up an 
useless structure. I can thus only understand a fact wlHi whicS' 
I was much struck when examining cirripedes, and of which many 
analogous instances could be given: namely, that when a cirripede is 
parasitic within another cirripede and is thus protected, it loses more 
or less completely its own shell or carapace. This is the case with 
the male Ibla, and in a truly extraordinary manner with the Proteo- 
lepas : for the carapace in all other cirripedes consists of the three 
highly-important anterior segments of the head enormously deve- 
loped, and furnished with great nerves and muscles \ but in the 
parasitic and protected Proteolepas, the whole anterior part of 
the head is reduced to the merest rudiment attached to the bases 
of the prehensile antennsB. H^Qw the saving pf a lar^e and complex 
structure^, when rendered superfluous, would be a decided advantage 
to each successive individual of the species; (or in^ the struggfe for 
life to which every animal j^ , exposed, ^^ would have a lSette r 
chance of supporting itself, by less nutriment being wasted. "" 

Thus, as I believe, jga^aimLagkctigr will tend in the long run to 
. reduce any part of the organisation, as soon as it becomes, through 
changed habit^ superfluous, without by any means causing some 
other part to be largely developed in a corresponding degree. And, 
conversely, that natural selection may perfectly well succeed in 
largely developing an organ without requiring as a necess aiy^com - 
pensation the reduction of some adjoining part. 

Multiple, Rudimenta/ry, and Lowly-organised Structures are 

Variable. 

It seems to be a rule, as remarked by Is. Geoffroy St. Hilaire, 
both with varieties and species, that when any part or organ is 
repeated many times in the same individual (as the vertebras in 
snakes, and the stamens in polyandrous flowers) the number is 
variable ; whereas the same part or organ, when it occurs in lesser 
numbers, is constant. The same author as well as some botanists 
have further remarked that multiple parts are extremely liable to 
vary in structure. As " vegetative repetition," to use Prof. Owen's 
expression, is a sign of low organisation, the foregoing statements 
accord with the common opinion of naturalists, that beings which^ 
stand low injhe scale of jD.ature.arftJaQre variable thau those which 
are higher. I presume that lowness here means that the several 
parts of the organisation have been but little specialised for particular 
functions ; and as long as the same part has to perform diversified 
work, we can perhaps see why it should remain variable, that is. 



Chap. V Strtictures Variable. 119 

why natural selection should not have preserved or rejected each 
little deviation of form so carefully as when the part has to serve 
lor some one special purpose. In the same way that a knife which 
has to cut all sorts of things may he of almost any shape ; whilst 
a tool for some particular purpose must he of some particular 
shape. Natural selection, it should never be forgotten, can act 
solely through and for the advantage of each being. 

Rudimentary parts, as it is geuerally admitted, are apt to be 
highly variable. We shall have to recur to this subject ; and I will 
here only add that their variability seems to result from their use- 
lessness, and consequently from natural selection having had no 
power to check deviations in their structure. 

A Fart developed in any Species in an extraordinary degree or 
manner, in comparison with the same Fart in allied Species^ 
tends to he highly variatile. 

Several years ago I was much struck by a remark, to the above 
effect, made by Mr. Watorhouse. Professor Owen, also, seems to 
have come to a nearly similar conclusion. It is hopeless to attempt 
to convince any one of the truth of the above proposition without 
giving the long array of facts which I have collected, and which 
cannot possibly be here introduced. I can only state my conviction 
that it is a rule of high generality. I am aware of several causes of 
error, but I hope that I have made due allowance for them. It 
should be understood that j^q ru le by no means applies, to any 
part, how ever unusually developed, unless it be unusually developed 
in one spe ^jsfl f^^ in a few ffpp^i*»« i" P-nmpi^yifir^p with the siime jpact 
Jn n^gj^X.^^o^^^y allied species. Thus, the wing of a bat is a most 
abnormal structure in the class of mammals ; but the rule would 
not apply here, because the whole group of bats possesses wings ; it 
would apply only if some one species had wings developed in a 
remarkable manner in comparison with the other species of the 
same genus, ^h^ riil<^ afPPlJ^iP T.^'y ,"^^^"S^y in the case of secondary 

Lual characters, when displayed in any unusual manner. The term, 
£econdary sexual characters, used by Hunter, relates to characters 
w hich are attached to one sex, but are not directly connected with the 
act of reproduction. The rule applies to males and females ; but more 
rarely to the females, as they seldom offer remarkable secondary sexual 
characters. The rule being so plainly applicable in the case of secondary 
sexual characters, may be due to the great variability of these charac- 
ters, whether or not displayed in any unusual manner — of which fact I 
think there can be little doubt. But that our rule is not confined 
to secondary sexual characters is clearly shown in the case of 



1 20 Unusually developed Parts highly Variable, Chap. V. 

hermaphrodite cirripedes; I i>articularly attended to Mr. Water- 
house's remark, whilst investigating this Order, and I am fully con- 
vinced that the rule almost always holds good. I shall, in a future 
work, give a list of all the more remarkable cases ; I will here give 
only one, as it illustrates the rule in its largest application. The 
opercular valves of sessile cirripedes (rock barnacles) are, in every 
sense of the word, very important structures, and they differ 
extremely little even in distinct genera ; but in the several species 
Qf one genus, Pyrgoma, these valves present a marvellous amount 
of diversification; the homologous valves in the different species 
being sometimes wholly unlike in shape ; and the amount of varia- 
tion in the individuals of the same species is so great, that it is no 
exaggeration to state that the varieties of the same species differ 
more from each other in the characters derived from these impor* 
tant organs, than do the species belonging to other distinct genera. 

As with birds the individuals of the same species, inhabiting the 
same country, vary extremely little, I have particularly attended to 
them ; and the rule certainly seems to hold good in this class. I 
cannot make out that it applies to plants, and this would have 
seriously shaken my belief in its truth, had not the great vari- 
ability in plants made it particularly difficult to compare their 
relative degrees of variability. 

When we see any part or organ developed in a remarkable degree 
or manner in a species, the fair presumption is that it is of hi^ 
importance to that species ; nevertheless it is in this case_e min ently 
liable to variation. Why should this be so ? On the view that 
each species has been independently created, with all its parts as 
we now see them, I can see no explanation. But on the view that 
groups of species are descended from some other species, and have 
been modified through natural selection, I think we can obtain 
some light. First let me make some preliminary remarks. If, in 
our domestic animals, any part or the whole animal be neglected, 
and no selection be applied, that part (for instance, the comb in the 
Dorking fowl) or the whole breed will cease to have a uniform 
character ; and the breed may be -said to be degenerating. In 
rudimentary organs, and in those which have been but little 
specialised for any particular purpose, and perhaps in polymorphio 
groups, we see a nearly parallel case ; for in such cases natural selec- 
tion either has not or cannot have come into full play, and thus the 
organisation is left in a fluctuating condition. But what here more 
I particularly concerns us is, that those points in our domestic 
I animals, which at the present time are undergoing rapid change by 
\ continued selection, are also eminently liable to variation. Look at 



Chap. V. Untisualfy developed Parts highly Variable, 1 2 1 

the individualB of the same breed of the pigeon, and see what a 
prodigious amount of difference there is in the beaks of tumblers, in 
the beaks and wattle of carriers, in the carriage and tail of fantails, 
&c., these being the points now mainly attended to by English 
fanciers. Even in the same snb-breed, as in that of the fhort-faoed 
tumbler, it is notoriously difiBcnlt to breed nearly perfect birds, 
many departing widely from the standard. There may truly be 
said to be a constant struggle going o n between, on the one hand, 
bhetendency to reve rsion to a less perf ect state, as well as an.i|uuta. 
tendency to new variations, and, on the other hand, tl^e power ^ f 
steady se lection to keep tii e breed tr ue. In the long run select ion 
gains the (fay , and we do not expect to fail so completely as to breed 
bird as coarse as a common tumbler pigeon from a good short^flAced 
strain. But as long as selection is ranidlv yniny on^ m^ch variftbility 
in.iil^g r^]^* TiTiriftr^ning mndif jcation may a l ways be expected. 

Now let us turn to nature. When a x^art has been developed in 
an extraordinary manner in any one species, compared with the 
other species of the same genus, we may conclude that this part has 
undergone an extraordinary amount of modification since the period 
when the several species branched off from the common progenitor 
of the genus. This period will seldom be remote in any extreme 
degree, as species rarely endure for more than one geological period. 
An extraordinary amount of modification implies an unusually 
large and long-continued amoxmt of variability, which has con- 
tinually been accumulated by natural selection for the benefit of 

the species. But aaj-hft variahilj^y yf thfl_<-^JTft9|-(^^y|firijjr Hpvplnjwv^ 

part ^ organ has been .«Lgj:eat jftnd Jong-fiontinued within a period 
npt^xcegsively remote, we m ight, as a general rule, still expect to 
find more, variability in sucE ' parts than in other parts of the 
organisation. which have remained for a much longer period nearly 
constant. And this, I am convinced, is the case. That the struggle 
between natural selection on the one hand, and the tendency to 
reversion and variability on the other hand, will in the course of 
time cease ; and that the most abnormally developed organs may be 
niade constant, I see no reason to doubt. Hence, when an organ, 
however abnormal it may be, has been transmitted in approximately 
the same condition to many modified descendants, as in the case of 
the wing of the bat, it must have existed, according to our theory, 
for an immense period in nearly the same state ; and thus it has 
come not to be more variable than any other structure. It is only 
in those cases in which the modification has been comparatively 
recent and extraordinarily great that we ought to find the generative 
variability, as it may be called, still present in a high degree. For 



122 Specific Characters Chap. V. 

in this case the variability will seldom as yet have been fixed by 
the continued selection of the individuals varying in the required 
manner and degree, and by the continued rejection of those tending 
to revert to a former and less-modified condition. 

Bpecific Characters more Variahle than Generic Characters. 

The principle discussed under the last heading may be aipplied to 
our present subject. I t -is notoriou s that specific cha racters ar e 
more variable than geneiicl To explain by a simple example what 
is'ineantTirin a large genus of plants some species had blue 
flowers and some had red, the colour would be only a specific 
character, and no one would be surprised at one of the blue species 
varying into red, or conversely; but if all the species had blue 
flowers, the colour would become a generic character, and its varia- 
tion would be a more unusual circumstance. I have chosen this 
example because the explanation which most naturalists would 
advance is not here applicable, namely, that specific chara^^ters are 
more variable than generic, because they are taken from parts of less 
physiological importance than those commonly used for classing 
genera. I believe this explanation is partly, yet only indirectly, 
true ; I shall, however, have to return to this point in the chapter 
on Classification. It would be almost superfiuous to adduce evidence 
in support of the statement, that ordinary specific characters are 
more variable than generic ; but with respect to important charac- 
ters, I have repeatedly noticed in works on natural history, that 
when an author remarks with surprise that some important organ 
or part, which is generally very constant throughout a large group 
of species, differs considerably in closely-allied species, it is often 
variahle in the individuals of the same species. And this fact shows 
that a character, which is generally of generic value, when it sinks 
in value and becomes only of specific value, often becomes variably, 
though its physiological importance may remain the same. Some- 
thing of the same kind applies to monstrosities : at least Is. Greoffroy 
St Hilaire apparently entertains no doubt, that the more an organ ' 
normally difi'ers in the different species of the same group, the mora 
subject it is to anomalies in the individuals. 

On the ordinary view of each species having been independently 
created, why should that part of the structure, which differs from 
the same part in other independently-created species of the same 
genus, be more variable than those parts which are closely alike in 
the several species? I do not see that any explanation can be 
given. But on the view that species are only strongly marked and 
fixed varieties, we might expect often to find them still continuing 



Chap. V. more Variable than Generic. 123 

to viiry in those parts of their stmcture which have varied within a 
moderately recent period, and which have thus come to differ. Or 
to state the case in another manner : — t he ro inta in which all the 
s pecies of a genus resemhle each other, and in_which thej djfifcr 
from allied ge nera, are called generic characterg; and these characters 
may be attributed to inheritance from a common progenitor, for it 
can rarely have happened that natural selection will have modified 
several distinct spedes, fitted to more or less widely-dififerent habits, 
in exactly the same manner : and as these so-called generic charac- 
ters have been inherited from before the period when the several 
species first branched off from their common progenitor, and subse- 
quently have not varied or come to differ in any degree, or only in a 
slight degree, it is not probable that they should vary at the present 
V day. On the other hand, thejgointsin which species differ froP^ 
iAher species of the same gen us are caltecL specific characters ; an^^as. 
^ese sp gfijflfirJvtfaftPr^ havft varied and come to differ since the 
period when the species branched off from a common progenitor, it 
^g pr^haWA thaf t.Vipy ntiniii/^ af^'ii flftfTi^ be In some degree variable, — 
at least more variable than those parts of the organisation which 
have for a very long period remained constant. 

Secondary SeoMcd CTtaracters Variable, — I think it will be ad- 
mitted by naturalists, without my entering on details, that 
secondary sexual charact ers .are J^ghly^ variable. It will also be 
admitted that spfiifia^thesanifiL^gu^ differ from each other more 
^dely in their secondary sexual. characters, than in other parts of 
tiieir organ^satifiiU. compare, for instance, the amount of difference 
between the males of gallinaceous birds, in which secondary sexual 
characters are strongly displayed, with the amount of difference 
between the females. The cause of the original variability of these 
characters is not manifest ; but we can see why they should not 
have been rendered as constant and uniform as others, for they ^re^ 
aigffijmulated by sexual selection, which is less rigid in its action 
than ordinary selection, as it does not entail death, but only gives 
fewer offspring to the less favoured males. Whatever the cause may 
he of the variability of secondary sexual characters, as they, are 
highly variable, sexual selection will have had a wide scope for 
action, and may thus have succeeded in giving to the species of the 
same group a greater amount of difference in these than in other 
respects. 

It is a remarkable fact, that the secondary differences between 
t^e two sexes of the same species are generally displayed in the very 
same parts of the organisation in which the species of the same 
Tenus cfflSSFfrom each other. Of this fact I will give in illus- 



124 Secondary Sexual Chap. V. 

tratioQ the two first instances which happen to stand on my kst ; 
and as the dififerences in these cases are of a very unusual nature, the 
relation can hardly be accidental. The same number of joints iu 
the tarsi is a character common to very large groups of beetles, but 
in the EngidsB, as Westwood has remarked, the number varies 
greatly ; and the number likewise differs in the two sexes of the 
same species. Again in the fossorial hymenoptera, the neuration of 
the wings is a character of the highest importance, because common, 
'^o large groups ; but in certain genera the neuration differs in the 
different species, and likewise in the two sexes of the same species. 
Sir J. Lubbock has recently remarked, that several minute crusta* 
ceans offer excellent illustrations of this law. **In Fontella^ for 
instance, the sexual characters are afforded mainly by the anterior 
antennaa and by the fifth pair of legs : the specific differences also 
are principally given by these organs." This relation has a clear 
meaning on my view : I look at all the species of the same genus as 
having as certainly descended from a conmion progenitor, as have 
the two sexes of any one species. Consequently, whatever part of 

^e structure of the common progenitor, or of its early descendants, 
came variable, variations of this part would, it is highly probable, 
|be taken advantage of by natural and sexual selection, in order to fit 
/the several species to their several places in the economy of nature, 
and likewise to fit the two sexes of the same species to each other, 
I or to fit the males to struggle with other males for the possession of 
the females. 

Finally, then, I conclude that the greater variability of specific 
characters, or those which distinguish species from species, than of 
generic characters, or those which are possessed by all the fi9)ecies ; 
— that the frequent extreme variability of any part which is deve- 
loped in a species in an extraordinary manner in comparison with 
the same part in its congeners ; and the slight degree of variability 
in a part, however extraordinarily it may be developed, if it be 
common to a whole group of species ; — that the great variability of 
secondary sexual characters, and their great difference in closely 
allied species ; — that secondary sexual and ordinary specific differ-* 
ences are generally displayed in the same parts of the organisation, 
— are all principles closely connected togetherc All being mainly 
due to the species of the same group being the descendants of 
a common progenitor, from whom they have inherited much in 
common, — to parts which have recently and largely varied being 
more likely still to go on varying than parts which have long been 
inherited and have not varied — to natural selection having more or 



Chap. V. Characters Variable. 125 

less completely, accordiDg to the lapse of time, ovennastered the 
tendency to reyersion and to further variability, — to sexual selection 
being less rigid than ordinary selection, — and to variations in the 
same parts having been accumulated by natural and sexual selection, 
and having been thus adapted for secondary sexual, and for ordinary 
purposes. 

Distinct Species present CMuUogotu Variations^ so that a Variety 
of one Species oftep> assumes a Character proper to an aUi^ 
Species, or reverts to some of the Characters of an early Progenitor, 
— These propositions will be most readily understood by looking to 
our domestic races. The most distinct breeds of the pigeon, in 
countries widely apart, present sub-varieties with reversed feathers 
on the head, and with feathers on the feet, — characters not possessed 
by the aboriginal rock-pigeon ; these then are analogous variations 
in two or more distinct races. The frequent presence of fourteen 
or even sixteen tail-feathers in the pouter may be considered as a 
variation representing the normal structure of another race, the 
&ntaiL I presume that no one will doubt that all such analogous 
variations a re due to the several races of the pigeon having inh^rited^ 
from a common parent the same constitution and tendency to 
vanaiion, when acted on by similar unknown influences. In the 
vegetscMe £i&g(l(MU W& have a case of analogous variation, in the 
enlarged stems, or as commonly called roots, of the Swedish turnip 
and Ruta baga, plants which several botanists rank as varieties 
produced by cultivation from a common parent : if this be not so, 
the case will then be one of analogous variation in two so-called 
distinct species ; and to these a third may be added, namely, the 
common turnip. According to the ordinary view of each species 
having beei^ independently created, we should have to attribute 
this similarity in the enlarged stems of these three plants, not to 
the vera causa of community of descent, and a consequent tendency 
to vary in a like manner, but to three separate yet closely related 
acts of creation. Many similar cases of analogous variation have 
been observed by Naudin in the great gourd-family, and by various 
authors in our cereals. Similar cases occurring with insects under 
natural conditions have lately been, discussed with much ability by 
Mr. Walsh, who has grouped them under his law of Equable 
Variability. 

With pigeons, however, we have another case, namely, the occa- 
sional appearance in all the breeds, . of slaty-blue birds with two 
black bars on the wings, white loins, a bar at the end of the tail, 
with the outer feathers externally edged near their bases with 
white. As all these marks are characteristic of the parent rock- 



126 Distinct Species present Chap. V. 

pigeon, I presume that no one will doubt that this is a case of 
reversion, and not of a new yet analogous variation appearing in 
the several breeds. We may, I think, confidently come to this 
conclusion, because, as we have seen, these coloured marks are 
eminently liable to appear in the crossed offspring of two distinct 
and differently coloured breeds ; and in this case there is nothing 
in the external conditions of life to cause the reappearance of the 
slaty-blue, with the several marks, beyond the influence of the mere 
act of crossing on the laws of inheritance. 

, No doubt it is a very surprising fact that characters should re- 
appear after having been lost for many, probably for hundreds of 
generations. But when a breed has been crossed only once by some 
other breed, the offspring occasionally show for many generations a 
tendency to revert in character to the foreign breed — some say, for 
a dozen or even a score of generations. After twelve generations, 
the proportion of blood, to use a common expression, from one 
ancestor, is only 1 in 2048; and yet, as we see, it is genemlly 
believed that a tendency to reversion is retained by this remnant of 
foreign blood. In a breed which has not been crossed, but in which 
hoth parents have lost some character which their progenitor pos- 
sessed, the tendency, whether strong or weak, to reproduce the lost 
character might, as was formerly remarked, for all that we can see 
to the contrary, be transmitted for almost any number of gener- 
ations. When a character which has been lost in a breed, reappears 
after a great number of generations, the most probable hypothesis 
is, not that one individual suddenly takes after an ancestor 
removed by some hundred generations, but that in each successive 
generation the character in question has been lying latent, and at 
last, under unknown favourable conditions, is developed. With the 
barb-pigeon, for instance, which very rarely produces a blue bird, it 
is probable that there is a latent tendency in each generation to 
produce blue plumage. The abstract improbability of such a ten- 
dency being transmitted through a vast number of generations, is 
not greater than that of quite useless or rudimentary organs being 
similarly transmitted. A_mere te ndency to produce a ru diment is 

' As all the species of the same genus are supposed to be descended 
I from a common progenitor, it might be expected that they would 
occasionally vary in an analogous manner ; so that the varieties of 
: two or more species would resemble each other, or that a variety 
\ of one species would resemble in certain characters another and 
\ distinct species, — this other species being, according to our view, 
• only a well-marked and permanent variety. But charactOTS exclu- 



CHAP. V Analogous Varitiaons. 127 

sively due to analogous variation would probably be of an unim- 
portant nature, for the preservation of all functionally important 
characters will have been determined through natural selection, in 
accordance with the different habits of the species. It might 
further be expected that the species of the same genus would occsr 
sioually exhibit reversions to long lost characters. As, however, 
we do not know the common ancestor of any natural group, we 
cannot distinguish between reversionary and analogous characters. ' 
If^ for instance, we did not know that the parent rock*{Mgeon was 
not feather-footed or turn-crowned, we could not have told, whether 
such characters in our domestic breeds were reversions or only 
analogous variations ; but we might have inferred that the bluef 
colour was a case of reversion from the number of the markings, 
which are correlated with this tint, and which would not probably 
have all appeared together from simple variation. More especially \ 
we might have inferred this, from the blue colour and the several ] 
mark's" so often appearing when differently coloured breeds are / 
cr5ig863."" "Hence^ although, .under nature it must generally be left 
d oubtful, what cases are reversions to formerly existing characters, 
a nd what are new but analogou s variations, yet we ought, on our 
theory, sometimes to find the varying ofi'§pring of a species assuming 
cC^acters^ which are M^^^s^J ^x^sent in other members, of .the same 
grouju^ • -^^^ ^^is undoubtedly is the case. 

'*" The difQculty in distinguishing variable species is largely due to 
the varieties mocking, as it were, other species of the same genus. 
A considerable catalc^e, also, could be given of forms intermediate 
between two other forms, which themselves can only doubtfully be 
ranked as species ; and this shows, unless all these closely allied 
forms be considered as independently created species, that they 
have in varying assumed some of the characters of the others. But 
the best evidence of analogous variations is afforded by parts or 
organs which are generally constant in character, but which occa- 
sionally vary so as to resemble, in some degree, the same part or 
organ in an allied species. I have collected a long list of such 
cases ; but here, as before, I lie under the great disadvantage of not 
being able to give them. I can only repeat that such cases cer- 
tainly occur, and seem to me very remarkable. 

I will, however, give one curious and complex case, not indeed as 
affecting any important character, but from occurring in several 
species of the same genus, partly under domestication and partly 
under nature. It is a case almost certainly of reversion. The ass 
sometimes has very distinct transverse bars on its legs, like those 
on the legs of the zebra : it has been asserted that these are plainest 



128 Distinct Species present Chap. v. 

in the foal, and, from inquiries which I have made, I believe this 
to be true. The stripe on the should^ is sometimes double, and 
is very variable in length and outline. A white ass, but not an 
albino, has been described without either spinal or shoulder stripe : 
and these stripes are sometimes very obscure, or actually quite lost, 
in dark-coloured asses. . The koulan of Pallas is said to have been 
seen with a double shoulder-stripe. Mr. Blyth has seen a specimen 
of the hemionus with a distinct shoulder-stripe, though it properly 
has none ; and I have been informed by Colonel Poole that the 
foals of this species are generally striped on the legs, and faintly on 
the shoulder. The qui^ga, though so plainly barred like a zebra 
over the body, is without bars on the legs ; but Dr. Gray has figured 
one specimen with very distinct zebra-like bars on the hocks. 

With respect to the horse, I have collected cases in England of 
the spinal stripe in horses of the most distinct breeds, and of all 
colours : transverse bars on the legs are not rare in duns, mouse- 
duns, and in one instance in a chestnut : a faint shoulder-stripe may 
sometimes be seen in duns, and I have seen a trace in a bay horse. 
My son made a careful examination and sketch for me of a dun 
Belgian cart-horse with a double stripe on each shoulder and with 
1^-stripes ; I have myself seen a dun Devonshire pony, and a 
small dun Welsh pony has been carefully described to me, both 
with three parallel stripes on each shoulder. 

In the north-west part of India the Kattywar breed of horses is 
so generally striped, that, as I hear from Colonel Poole, who exa- 
mined this breed for the Indian Government, a horse without stripes 
is not considered as purely-bred. The spine is always striped ; the 
legs are generally barred ; and the shoulder-stripe, which is some- 
times double and sometimes treble, is common; the side of the 
face, moreover, is sometimes striped. The stripes are often plainest 
in the foal ; and sometimes quite disappear in old horses. Colonel 
Poole has seen both gray and bay Kattywar horses striped when 
first foaled. I have also reason to suspect, from information given 
me by Mr. W. W. Edwards, that with the English race-horse the 
spinal stripe is much commoner in the foal than in the full-grown 
animal. I have myself recently bred a foal from a bay mare (off- 
spring of a Turcoman horse and a Flemish mare) by a bay English 
race-horse; this foal when a week old was marked on its hinder 
quarters and on its forehead with numerous, very narrow, dark, 
zebra-like bars, and its legs were feebly striped : all the stripes soon 
disappeared completely. Without here entering on further details, 
I may state that I have collected cases of leg and shoulder stripes 
in horses of very different breeds in various countries from Britain to 



Chap. V. Aftalogous Variations. 129 

Eastern China ; and from Norway in the north to the Malay Archi- 
pelago in the sonth. In all parts of the world these stripes occur 
far oftenest in dons and moose-duns ; by the term dun a large range 
of cdoar is induded, from one between brown and black to a close 
approach to cream-colour. 

I am aware that Colonel Hamilton Smiths who has written on 
this subject, believes that the several breeds of the horse are 
descended from several aboriginal species^— one of which, the dun, 
was striped ; and that the above-described appearances are all due 
to ancient crosses with the dun stock. But this view may be safely 
rejected ; for it is highly improbable that the heavy Belgian cart- 
horse, Welsh ponies, Norwegian cobs» the lanky Kattywar race, &c., 
inhabiting the most distant parts of the world, should all have 
been crossed with one supposed aboriginal stock. 

Now let us turn to the effects of crossing the several species of 
the horse-genus. Bollin asserts, that the common mule from the 
ass and horse is particularly apt to have bars on its logs ; accord- 
ing to Mr. Gosse, in certain parts of the United States about nine 
out of ten mules have striped legs. I once saw a mule with its 
legs so much striped that any one might have thought that it was 
a hybrid-zebra ; and Mr. W. C. Martin, in his excellent treatise on 
the horse, has given a figure of a similar mule. In four coloured 
drawings, which I have seen, of hybrids between the ass and zebra, 
the legs were much more plainly barred than the rest of the body ; 
and in one of them there was a double Moulder-stripe. In Lord 
Morton's famous hybrid from a chestnut mare and male quagga, 
the hybrid, and even the pure offspring subsequently produced 
from the same mare by a black Arabian sire, were much more 
plainly barred across the legs than is even the pure quagga. 
Lastly, and this is another most remarkable case, a hybrid has been 
figured by Dr. Gray (and he informs me that he knows of a second 
case) from the ass and the hemionus ; and this hybrid, though the 
ass only occasipnally has stripes on his legs and the hemionus has 
none and has not even a shoulder-stripe, nevertheless had all four 
legs barred, and had three short shoulder-stripes, like those on the 
dun Devonshire and Welsh ponies, and even had some zebra-like 
stripes on the. sides of its face. With respect to this last fact, I was 
so convinced that not even a stripe of colour appears from what is 
G<Hnmonly called chance, that I was led solely from the occurrence 
of the face-stripes on this hybrid from the ass and hemionus to ask 
Colonel Poole whether such face-stripes ever occurred in the emi- 
nently striped Kattywar breed of horses, and was, as we have seen, 
answered in the afi^rmative. 

K 



130 Distinct Species present Chap. V. 



£ 



What now are we to say to these several facts ? We see several 
distmct species of the horse-genus becoming, by simple variation, 
(striped on the legs like a zebra, of striped on the shoulders like an 
lass. In the horse we see this tendency strong whenever a dun tint 
kppears — ^a tint which approaches to that of the general colouring 
of the other species of the genus. The appearance of the stripes is not 
accompanied by any change of form or by any other new character. 
We see this tendency to become striped most strongly displayed in 
hybrids from between several of the most distinct species. Now 
observe the case of the several breeds of pigeons : they are descended 
from a pigeon (including two or three sub-species or geographical 
races) of a bluish colour, with certain bars and other marks ; and when 
any breed assumes by simple variation a bluish tint, these bars and 
other marks invariably reappear ; but without any other change of 
form or character. When the oldest and truest breeds of various 
colours are crossed, we see a strong tendency for the blue tint and bars 
and marks to reappear in the mongrels. I have stated that the most 
probable hypothesis to account for the reappearance of very ancient 
characters, is — that there is a tendency in the young of each si^Qggs- 
sive generation to produce tlie long-lost character, and t hat thi s 
tendency, ftom unknown causes, sometimes prevails. And we have 
lust seen that In several species of the horse-genus the stripes are 
either plainer or appear more commonly in the young than in the 
old. Call the breeds of pigeons, some of which have bred true for 
(centuries, species ; and how exactly parallel is the case with that of 
j the species of the horse-genus 1 For myself, I venture confidently 
to look back thousands on thousands of generations, and I see an 
animal striped like a zebra, but perhaps otherwise very differently 
constructed, the common parent of our domestic horse (whether or 
not it be descended from one or more wild stocks) of the ass, the 
hemionus, quagga, and zebra. 

He who believes that each equine species was independently 
created, will, I presume, assert that each species has been created 
with a tendency to vary, both under nature and under domestication, 
in this particular manner, so as often to become striped like the 
other species of the genus ; and that each has been created with 
a strong tendency, when crossed with species inhabiting distant 
quarters of the world, to produce hybrids resembling in their 
stripes, not their own parents, but other species of the genus. To 
admit this view is, as it seems to me, to reject a real for an unreal, 
or at least for an unknown, cause. It makes the works of Qtod a 
mere mockery and deception ; I would almost as soon believe with 
the old and ignorant cosmogonists, that fossU shells had never lived. 



Chap. V. A fialogous Variations, 131 

bat had been created in stone so as to mock the shells liying on tha 
sea-shore. 

Summary, — Our ignorance of the laws of variation i» profound. 
Not in one case out of a hundred can we pretend to assign any 
reason why this or that part has varied. But> whenever we have 
. the means of instituting a comparision, the same, la ws %{2p6a£ ^ 
; have acted in pr( ^]^p(ing jthfijfifiger differences between varieties 0^ 
the same specie s, and thi^ grea^i f^r differ ena»l)etweea spe ci e^ of tj ^ e 
same genus . Changed conditions jjenerally induce mere fluctuating 
variability, but s ometimes they cause direct and definite effects; 
a nd these may b ecome strongly marked in the course of time, 
though we nave not suIBcient evidence on this head. Habit in 
producing c onstitutional jieculiarities and use iQij|t|;engthening 
d isuse in wj^iojji^ and diounitihiQg organs, appear in manyca 
to have been potent in their effects. QoiUQlQgons parts tend 
in the same manner^ and jbomplogous parts tend to cohere. Modifi- 
cations in hard parts and in external parts sometimes affect softer 
and internal parts. When one part is largely develoixxl, perhaps it 
tends to draw nourishment from the adjoining parts ; and every 
part of the structure which can be saved without detriment will be 
saved. Changes of structure at an early age may affect parts sub- 
sequently developed ; and many cases of correlated variation, the 
nature of which we are unable to understand, undoubtedly occur. 
Mnltjpl© parts_ar^, variable in number and in structure, perhaps 
arising from such parts not having been closely specialised for any 
particular function, so that their modifications have not been closely 
checked by natural selection. It follows probably from this same 
cause, that or ganic bein gs low in the scale are more variable than 
those standing higher in the scale, and which have their whole 
organisation more specialised. Rudimentary organs^ irom being 
useless, are not r^ulated by natural selection, and hence..ac& 
variabl e. ^^CJfirr 'iharff^*^"'*" — ^that is, the characters which have 
come to differ since the several species of the same genus branched 
off from a common parent — are more variable than generic cha- 
racters, or those which have long been "Inherited, aiid" have not 
differed within this same period. In these remarks we have re- 
ferred to special parts or organs being still variable, because they 
have recently varied and thus come to differ ; but we have also seen 
in the second chapter that the same principle applies to the whole 
individual ; for in a district where many species of a genus are 
found — that is, where there has been much former variation and 
differentiation, or where the manufactory of new specific forms has 
been actively at work — in that district and amongst tlu-sc species, 

£ 2 



1 32 Laws of Variation, Chap. v. 

we now find, on an average, most varieties. Sfronriary . jsgijial 
characters are highly variable, and such characters differ much in 
the specif of the same group. Variability in the same parts of the 
organisation has generally been taken advantage of in giving secon- 
dary sexual differences to the two sexes of the same species, and 
.specific differences to the several species of the same genus. Any 
part or oigaJX iijeveloped to an extraordiuary size or in an extra- 
ordinary manner, in comparison with the same part or organ in the 
allied species, must h&Yfi- gone through an extraordin ary amount of 
modification s^nce . tha genua asose ; and ihua- w« can im derstan d 
why it should often still be variable in a much higher degree than 
other parts ; for variation is a long-continued and slow process, and 
natural selection will in such cases not as yet havo had time to 
overcome the tendency to further variability and to reversion to a 
less modified state. But when a species with any extraordinarily- 
developed organ has become the parent of many modified descen- 
dants — ^whicb on our view must be a very slow process, requiring a 
long lapse of time — in this case, natural selection has succeeded in 
giving a fixed character to the organ, in however extraordinary a 
manner it may have been developed. Specie s inheri ting nearly th e 
same constitution from a common parent, and ei^^pgaec^ \f^ fii BUiJl^^ 
influences, naturally tend to present analogous v ariat ions, or these 
same species may occasionally revert to some of the characters of 
their ancient progenitors. Although new and important modifica- 
tions may not arise from reversion and analogous variation, such 
modifications will add to the beautiful and harmonious diversity of 
nature. 

Whatever the cause may be of each slight difference between the 
ofi&pring and their parents — and a cause for each must exist — ^we 
have reason to believe that it is the steady accumulation of bene- 
ficial diff'frences which has given rise to all the more important 
modifications of structure in relation to the habits of each species. 



Chap. VI. Difficulties of the Theory, 133 



CHAPTER VL 

Difficulties of the Theory. 

Difficulties of the theory of descent with modification — Absence or raritr 
of transitional yarietieB — Transitions in habits of life — Diversified 
habits in the same species — Species with habits widely different 
from those of their alHes — Organs of ezti'eme perfection — Modes of 
transition — Cases of difficulty — Natnra non fiicit saltum — Organs 
of small importance — Organs not in all cases absolutely perfect — 
The law of Unity of Type and of the Conditions of Existence embraced 
by the theory of Natural Selection. 

Long before the reader has arrived at this part of my work, a crowd 
of difficulties will have occurred to him. Some of them are so 
serious that to this day I can hardly reflect on them without being 
in some degree sta^ered ; but, to the best of my judgment, the 
number are only apparent, and those that are real are greater not, 
I think, fatal to the theory. 

These difficulties and objections may be classed under the follow- 
ing heads : — First, why, if species have descended from other species 
by fine gradations, do we not everywhere see innumerable tran- 
sitional forms ? Why is not all nature in confusion, instead of the 
species being, as we see them, well defined ? 

Secondly, is it possible that an animal having, for instance, the 
structure and habits of a bat, could have been formed by the modifi- 
cation of some other animal with widely-different habits and 
structure? Can we believe that natural selection could produce, 
on the one hand, an organ of trifling importance, such as the tail of 
a giraffe, which serves as a fly-flapper, and, on the other hand, an 
organ so wonderful as the eye ? 

Thirdly, can instincts be acquired and modified through natural 
selection ? What shall we say to the instinct which leads the bee 
to make cells, and which has practically anticipated the discoveries 
of profound mathematicians ? 

Fourthly, how can we account for species, when crossed, being 
sterile and producing sterile offspring, whereas, when varieties are 
crossed, their fertility is unimpaired ? 

The two first heads will here be discussed ; some miscellaneous 



134 Absence or Rarity Ciup. VI. 



objectioDs in the following chapter ; Instinct and Hybridism in the 
two succeeding chapters. 

On the Absence or Barity of Transitional Varieties. — As natnml 
selec tion acts solely by the preservation of profitable modifications, 
"each newlorm will tend in a fully-stooked country to take the placje 
of, and finally to exterminate, its own less improved parent-form 
a nd other l ess-favoured forms with which it comes into competition. 
\ Thus extinctioiTaird natural selection go hand in hanHJ^^Hence, If 
we look at each species as descended from some unknown form, 
both the parent and all the transitional varieties will generally have 
been, exterminated by the very process of the formation and per- 
iection of the new form. 

But, as by this theory innumerable transitional forms must have 
existed, why do we not find them embedded in countless numbers 
in the crust of the earth ? It will be more convenient to discuss 
this question in the chapter on the Imperfection of the Geological 
Record ; and I will here only state that I believe the answer mainly 
lies in the record being incomparably less perfect than is generally • 
supposed. The crust of the earth is a vast museum; but the 
natural collections have been imperfectlv made, and only at long 
intervals of time. 

But it may be urged that when several closely-allied species 
inhabit the same territory, we surely ooght to find iat the present 
time many transitional forms. Let us take a simple case : in 
travelling from north to south over a continent, we generally meet 
at successive intervals with closely allied or representative species, 
evidently filling nearly the same place in the natural economy of 
the land. These representative species often meet and interlock ; 
and as the one becomes rarer and rarer, the other becomes more and 
more frequent, till the one replaces the other. But if we compare 
these species where they intermingle, they are generally as Absolutely 
distinct from each other in every detail of structure as are specimens 
taken fi*om the metropolis inhabited by each. By my theory these 
allied species are descgided from a common parent ; and during the 
process of modification, each has become adapted to the conditions 
of life of its own region, and has supplanted and exterminated its 
^original parent-form and all the transitional varieties -between its 
past and present states. Hence we ought not to expect at the 
present time to meet with numerous transitional varieties in each 
region, though they must have existed there, and may be embedded 
there in a fossil condition. But in the intermediate region, having 
. intermediate conditions of life, why do we not now find closely- 
linking intermediate varieties? This difficulty for a long time 



Chap. VI. of Transitional Varieties. 135 

quite confounded me. But I think it can be in large part ex< 
plained. 

In the first place we should be extremely cautious in inferring, 
because an area is now continuous, that it has been continuous 
during a long period. Geology would lead us to believe that most 
continents have been broken up into islands even during the later 
tertiary periods ; and in such islands distinct species might have 
been separately formed without the possibility of intermediate 
varieties existing in the intermediate zones. By changes in the 
form of the land and of climate, marine areas now continuous must 
often have existed within recent times in a far less continuous and 
uniform condition than at present. But I will pass over this way 
of escaping from the difficulty ; for I believe that many perfectly 
defined species have been formed on strictly continuous areas; 
though I do not doubt that the formerly broken condition of areas 
now continuous, has played an important part in the formation of new 
species, more especially with freely-crossing and wandering animals. 

In looking at species as they are now distributed over a wide 
area, we generally find them tolerably numerous over a large 
territory, then becoming somewhat abruptly rarer and rarer on the i 
confines, and finally disappearing. Hence the neutral territory 
between two representative species is generally narrow in comparison 
with the territory proper to each. We see the same fact in 
ascending mountains, and sometimes it is quite remarkable how 
abruptly, as Alph. de Candolle has observed, a common alpine 
species disappears. The same fact has been noticed by E. Forbes 
in sounding the depths of the sea with the dredge. To those who 
look at climate and the physical conditions of life as the all- 
important elements of distribution, these fiEUSts ought to cause 
surprise, as climate and height or depth graduate away insensibly. 
But when we bear in mind that almost every species, even in its 
metropolis, would increase immensely in numbers, were it not for 
other competing species ; that nearly all either prey on or serve as 
prey for others ; in short, that each organic being is either directly 
or indirectly related in the most important manner to other organic 
beings, — we see that the range of the inhabitants of any country 
by no means exclusively depends on insensibly changing physical 
conditions, but in a large part on the presence of other species, on 
which it lives, or by which it is destroyed, or with which it comes 
into competition ; and as these species are already defined objects, ^ 
not blening one into another by insensible gradations, the range of 
any one species, depending; as it does on the range of others, will 
tend to be sharply defined. Moreover, each species on the confines 



136 Absence or Rarity Chap. VI. 

of its range, where it exists in lessened numbers, will, during fluctu- 
ations in the number of its enemies or of its prey, or in the nature 
of the seasons, be extremely liable to utter extermination ; and thus 
its geographical range will come to be still more sharply defined. 

As allied or representative species, when inhabiting a continuous 
area, are generally distributed in such a manner that each has a 
^yide range, with a comparatively narrow neutral territory between 
them, in which they become rather snddenly rarer and rarer ; then, 
as varieties do not essentially differ from species, the same rule will 
probably apply to both ; and if we take a varying species inhabiting 
a very large area, we shall have to adapt two varieties to two large 
Areas, and a third variety to a narrow intermediate zone. The 
/intermediate variety, consequently, will exist in lesser numbers 
^ from inhabiting a narrow and lesser area ; and practically, as far as 
I can make out, this rule holds good with varieties in a state of 
nature. I have met with striking instances of the rule in the case 
of varieties intermediate between well-marked varieties in the genus 
Balanus. And it would appear from information given me by Mr. 
Watson, Dr. Asa Gray, and Mr. WoUaston, that generally, when 
varieties intermediate between two other forms occur, they are much 
rarer numerically than the forms which they connect. Now, if we 
may trust these facts and inferences, and conclude that varieties 
linking two other varieties together generally have existed in lesser 
numbers than the forms which they connect, then we can understand 
why intermediate varieties should not endure for very long periods : 
— why, as a general rule, they should be exterminated and disappear, 
sooner than the forms which they originally linked together. 

For any form existing in lesser numbers would, as already 
remarked, run a greater chance of being exterminated than one 
existing in large numbers ; and in this particular case the inter- 
mediate form would be eminently liable to the inroads of closely- 
allied forms existing on both sides of it. But it is a far more 
important consideration, that during the process of further modifi- 
cation, by whicl^, two varieties are supposed to be converted and 
perfected into twdWistinct species, the two which exist in larger 
numbers, from inhlibitifig larger areas, will have a great advantage 
over the intermediate variety, which exists in smaller numbers 

fin a narrow and intermediate zone. For forms existing in larger 
numbers will have a better chance, within any given period, of 
presenting further favourable variations for natural selection to 
seize on, than will the rarer forms which exist in lesser numbers. 
Hence, the more common fotms, in the race for life, will tend to 
beat and supplant the less common forms, for these will be more 



Cbap. VI. of Transitional Varieties. 137 

slowly modified and improyed. It is the same principle which, as 
I believe, accounts for the common species in each conntry, as 
shown in the second chapter, presenting on an average a greater 
number of well-marked varieties than do the rarer species. I may 
illnstrate what I mean by supposing three varieties of sheep to be 
kept, one adapted to an extensive mountainous region ; a second 
to a comparatively narrow, hilly tract; and a third to the wide 
plains at the base ; and that the inhabitants are all trying with 
equal steadiness and skill to improve their stocks by selection ; the 
chances in this case will be strongly in favour of the great holders 
on the mountains or on the plains, improving their breeds more 
quickly than the small holders on the intermediate narrow, hilly 
tract ; and consequently the improved mountain or plain breed will 
soon take the place of the less improved hill breed ; and thus the 
two breeds, which originally existed in greater numbers, will come 
into close contact with each other, without the interposition of the 
supplanted, intermediate hill-variety. 

To sum up, I believe that gpAoioa nf>rc\'^ \^ y^ f^]pj^'(sTy well- 
definfiiC^jfiCta, and..dcL BOt at any one period present an inextricable 
c haos of varying and intermediate liuks : first, because new varie- 
ties are j;ery s lowly fonned, for variation is a slow process, and 
natural selection can do nothing until favourable individual 
differences or variations occur, and until a place in the natural 
polity of the country can be better filled by some modification of 
some one or more of its inhabitants. And such new places wUl 
depend on slow changes of climate, or on the occasional immigration 
of new inhabitants, and, probably, in a still more important degree, 
on some of the old inhabitants becoming slowly modified, with the 
new forms thus produced and the old ones acting and reacting on 
each other. So that, in any one region and at any one time, we 
ought to see only a few species presenting slight modifications of 
structure in some degree permanent ; and this assuredly we do see. 

fiw^ndly, jarf^" ^^^ mTitimimifl mi|i9ti pfkn.-hdye. .existed within 

the recent £eriod^ as isolated portions, injEhiclunany forms, more 
especially amongst the classes which unite for each birth and 
wander much, may have separately been rendered sufiiciently 
distinct, to. rank a5"TepSsentative species. In '"this case, inter- 
mediate varieties between the several represe'htative species and 
their common parent, must formerly have existed within each 
isolated portion of the land, but these links during the process of 
natural selection will have been supplanted and exterminated, so 
that they will no longer be found in a living state. 

Thirdly, when two or moxft yarifttifta have been formed m 4iff«i'«&t . 



I 



138 Transitions of Organic Beings, <^hap. vl 

jwrtions of a strictly cputiftlWUSAT^, intermedia t.fi vftrifiH^^/<Y^])^ it 
is probable,' at first have been fonDied in the intermediat e zones , but 
they wiUgeoeraUy have h^.a.^llfiJlL.dJ^ For these inter- 

mediate varieties will, from reasons already assigned (namely from 
what we know of the actual distribution of closely allied or repre- 
sentative species, aod likewise of acknowledged varietids), exist in 
ihe intermediate zones in lesser numbers than the varieties which 
they tend to connect. From this cause alone the intermediate 
varieties will bo liable to accidental extermination ; and during the 
process of further modification through natural selection, they will 
almost certainly be beaten and supplanted by the forms which they 
connect ; for these from existing in greater numbers will, in the. 
aorgregate, present more varieties, and thus be further improved 
through natural selection and gain further advantages. 

Xjaatly, looking not to any one time, but to all time, if my theory 
be true, numbexl^9..intemediate vane^es^ linking c losely together 
all the species of the same group, mustja ssuredly have existed ; but 
the very process q^ natural selection constantly tends, as has been 
80 often remarked, to exterminate the parent-forms and the inter- 
mediate links. Consequently evidence of their former existence 
could be found only amongst fossil remains, which are preserved, as 
we shall attempt to show in a future chapter, in an extremely im- 
perfect and intermittent record. 

On the Origin and Transitions of Organic Beings with peculiar 
JIahita and Structure. — It has been asked by the opponents of such 
views as I hold, how, for instance, could a land carnivorous animal 
have been converted into one with aquatic habits ; for how could, 
the animal in its transitional state have subsisted ? It would be 
easy to show that there now exist carnivorous animals presenting 
close intermediate grades from strictly terrestrial to aquatic habits r 
and as each exists by a struggle for life, it is clear that each must be 
well adapted to its place in nature. Look at the Mustela vison of 
North America, which has webbed feet, and which resembles an 
otter in its fur, short legs, and form of tail. During the summer 
this animal dives for and preys on fish, but during the long winter 
it leaves the frozen waters, and preys, like other pole-cats, on mice 
and land animals. If a different case had been taken, and it had. 
been asked how an insectivorous quadruped could possibly have been 
converted into a flying bat, the question would have been tar more 
difficult to answer. Yet I think such difficulties have little weight- ' 

Here, as on other occasions, I lie under a heavy disadvantage, for, ^ 
out of the many striking cases which 1 have collected, I can give 
only one or two instances of transitional habits and structures in 



Chap. VI, Transitions of Organic Beings. 1 39 

allied species ; and of diversiiied habit<«, either oonfltant or occa- 
sionaly in the same species. And it seems to me that nothing less 
than a long list of such cases is sufficient to lessen the difficulty in 
any particular case like that of the bat. 

Look at the fanuly of squirrels ; here we have the finest gra- 
dation from animals with their tails only slightly flattened, and 
from others, as Sir J. Bichardson has remarked, with the posterior 
part of their bodies rather wide and with the skin on their flanks 
rathor full, to the so-called flying squirrels ; and flying squirrels 
have their limbs and even the base of the tail united by a broad 
expanse of skin, which serves as a parachute and allows them to 
glide through the air to an astonishing distance from tree to tree. 
We cannot doubt that each structure is of use to each kind of 
squirrel in its own country, by enabling it to escape birds or beasts 
of prey, to collect food more quickly, or, as there is reason to 
believe, to lessen the danger from occasional falls. But it does not 
follow from this fact that the structure of each squirrel is the best 
that it is possible to conceive under all possible conditions. Let 
the climate and vegetation change, let other competing rodents or 
new beasts of prey immigrate, or old ones become modified, and all 
analogy would lead us to believe that some at least of the squirrels 
would decrease in numbers or become exterminated, unless they 
also became modified and improved in structure in a corresponding 
manner. Therefore, I can see no difficulty, more especially under 
changing conditions of life, in the continued preservation of indi- 
viduals with fuller and fuller flank-membranes, each modification 
being useful, each being propagated, until, by the accumulated.^; 
effects of this process of natural selection, a perfect so-called flying 
squirrel was produced. 

Now look at the Galeopithecus or so-called flying Iftirmr^ which 
formerly was ranked amongst bats, but is now believed to belong 
to the Insectivora. An extremely wide flank-membrane stretches 
from the comers of the jaw to the tail, and includes the limbs 
with the elongated fingers. This flank-membrane is furnished with 
an extensor muscle. Although no graduated links of structure, fitted 
for gliding through the air, now connect the Galeopithecus with 
the other Insectivora, yet there is no difficulty in supposing that 
such links formerly existed, and that each was developed in the 
same manner as with the less perfectly gliding squirrels ; each grade 
of structure having been useful to its possessor. Nor can I see 
any insuperable difficulty in further believing that the membrane 
connected fingers and fore-arm of the Galeopithecus might have 
been greatly lengthened by natural selection • and this, as far as the 



I40 Transitions of Organic Beings. Chap. VI. 

organs of flight are concerned, would have converted the animal 
into a bat. In certain bats in which the wing-membrane extends 
from the top of the shoulder to the tail and includes the hind-legs, 
we perhaps see traces of an apparatus originally fitted for gliding 
through the air rather than for flight. 

If about a dozen genera of birds were to become extinct, who 
would have ventured to surmise that birds might have existed 
which used their wings solely as flappers, like the logger-headed 
duck (Micropterus of Eyton) ; as fins in the water and as front-legs 
on the land, like the penguin ; as sails, like the ostrich ; and func- 
tionally for no purpose, like the Apteryx ? Yet the structure of 
each of these birds is good for it, under the conditions of life to 
which it is exposed, for each has to live by a struggle ; but it is not 
necesarily the best possible under all possible conditions. It must 
not be inferred from these remarks that any of the grades of wing- 
structure here alluded to, which perhaps may all be the result of 
disuse, indicate the steps by which birds actually acquired their 
perfect power of flight; but they serve to show what diversified 
means of transition are at least possible. 

Seeing that a few members of such water-breathing classes as 
the Crustacea and MoUusca are adapted to live on the land ; and 
seeing that we have flying birds and mammals, flying insects of the 
most diversified types, and formerly had flying reptiles, it is con- 
ceivable that flying-fish, which now glide far through the air, 
slightly rising and turning by the aid of their fluttering fins, might 
have been modified into perfectly winged animals. If this had 
been effected, who would have ever imagined that in an early 
transitional state they had been the inhabitants of the open ocean, 
and had used their incipient organs of fiight exclusively, as far as 
we know, to escape being devoured by other fish ? 

When we see any structure highly perfected for any particular 
habit, as the wings of a bird for flight, we should bear in mind that 
animals displaying early transitional grades of the structure will 
seldom have survived to the present day, for they will have been 
supplanted by their successors, which were gradually rendered more 
perfect through natural selection. Furthermore, we may conclude 
that transitional states between structures fitted for very difierent 
habits of life will rarely have been developed at an early period in 
great numbers and under many subordinate forms. Thus, to return 
to our imaginary illustration of the fiying-fish, it does not seem 
probable that fishes capable of true flight would have been developed 
under many subordinate forms, for taking prey of many kinds in 
many ways, on the land and in the water, until their organs of flight 



Chap. VX Transitions of Organic Beings. 141 

had come to a high stage of perfection, so as to have given them a 
decided advantage over other animals in the battle for life. Hence 
the chance of discovering species with transitional grades of struc- 
ture in a fossil condition will always be lees, from their having 
existed in lesser numbers, than in the case of species with fully 
developed structures. 

I will now give two or three instances both of diversified and of 
changed habits in the individuals of the same species. In either 
case it would be easy for natural selection to adapt the structure 
of the animal to its changed habits, or exclusively to one of its 
several habits. It is, however, difficult to decide, and immaterial 
for us, whether habits generally change first and structure after^ 
wards ; or whether slight modifications of structure lead to changed 
habits ; both probably often occurring almost simultaneously. Of 
cases of changed habits it will suffice merely to allude to that of the 
many British insects which now feed on exotic plants, or exclu- 
sively on artificial substances. Of diversified habits innumerable 
instances could be given : I have often watched a tyrant flycatcher 
(Saurophagus sulphuratus) in South America, hovering over one 
spot and then proceeding to another, like a kestrel, and at other 
times standing stationary on the margin of water, and then dashing 
into it like a kingfisher at a fish. In our own country the larger 
titmouse (Parus major) may be seen climbing branches, almost like 
a creeper ; it sometimes, like a shrike, kills small birds by blows 
on the head ; and I have many times seen and heard it hanmiering 
the seeds of the yew on a branch, and thus breaking them like a 
nuthatch. In North America the black bear was seen by Heame 
swimming for hours with widely open mouth, thus catching, almost 
like a whale, insects, in the water. 

As we sometimes see individuals following habits different from 
those proper to their species and to the other species of the same 
genus, we might expect that such individuals would occasionally 
give rise to new species, having anomalous habits, and with their 
structure either slightly or considerably modified from that of 
their type. And such instances occur in nature. Can a more 
striking instance of adaptation be given than that of a woodpecker 
for climbing trees and seizing insects in the chinks of the bark ? Tet 
in North America there are woodpeckers which feed largely on fruit, 
and others with elongated wings which chase insects on the wing. 
On the plains of La Plata, where hardly a tree grows, there is a 
woodpecker (Colaptes campestris) which has two toes before and 
iwo behind, a long pointed tongue, pointed tail-feathers, sufficiently 
stiff to support the bird in a vertical p*osition on a post, but not so 



142 Transitions of Organic Beings, Chap, vl 

stiff as in the typical woodpeckers, and a straight strong beak. Tho 
beak, however, is not so straight or so strong as in the typical 
woodpeckers, but it is strong enough to bore into wood. Hence 
this Golaptes in all the essential parts of its structure is a wood- 
pecker. Even in such trifling characters as the colouring, the 
harsh tone of the voice, and undulatory flight, its close blood- 
relationship to our common woodpecker is plainly declared; yet, 
as I can assert, not only from my own observations, but from those 
of the accurate Azara, in certaii^ large districts it does not climb 
trees, and it makes its nest in holes in banks ! In certain other 
districts, however, this same woodpecker, as Mr. Hudson states, 
frequents trees, and bores holes in the trunk for its nest. I may 
mention as another illustration of the varied habits of this genus, 
that a Mexican Colaptes has been described by De Saussure as 
boring holes into hard wood in order to lay up a store of acorns. 

Petrels are the most aerial and oceanic of birds, but in the quiet 
sounds of Tierra del Fuego, the Puffinuria berardi, in its general 
habits, in its astonishing power of diving, in its manner of swim- 
ming and of flying when made to take flight, would be mistaken 
by any one for an auk or a grebe ; nevertheless it is essentially a 
petrel, but with many parts of its organisation profoundly modified 
in relation to its new habits of life ; whereas the woodpecker of 
La Plata has had its structure only slightly modified. In the case 
of the water-ouzel, the acutest observer by examining its dead body 
would never have suspected its sub-aquatic habits ; yet this bird, 
which is allied to the thrush family, subsists by diving — ^using its 
wings under water, and grasping stones with its feet. All the 
members of the great order of Hymenopterous insects are terrestrial, 
excepting the genus Proctotrupes, which Sir John Lubbock has 
discovered to be aquatic in its habits ; it often enters the water and 
dives about by the use not of its legs but of its wings, and remains 
as long as four hours beneath the surface ; yet it exhibits no modi- 
fication in structure in accordance with its abnormal habits. 

He who believes that each being has been created as we now see 
it, must occasionally have felt surprise when he has met with an 
animal having habits and structure not in agreement. What can 
be plainer than that the webbed feet of ducks and geese are formed 
for swimming ? Yet there ai*e upland geese with webbed feet which 
rarely go near the water ; and no one except Audubon has seen the 
frigate-bird, which has all its four toes webbed, alight on the surface 
of the ocean. On the other hand, grebes and coots are eminently 
aquatic, although their toes are only bordered by membrane. What 
deems plainer than that the long toes, not furnished with membrane 



Chap. VI. Orgafis of extreme Perfection. 143 

of the Grallatores are formed for walking over swamps and floating 
plants? — ^the water-hen and landrail are members of this order, 
yet the first is nearly as aquatic as the coot, and the second nearly 
as terrestrial as the quail or partridge. In such cases, and many 
others could be given, habits have changed without a corresponding 
change of structure. The webbed feet of the upland goose may be 
said to have become almost rudimentary in function, though not 
iu structure. In the frigate-bird, the deeply scooped membrane 
between the toes shows that structure has begun to change. 

He who believes in separate and innumerable acts of creation 
may say, that in these cases it has pleased the Creator to cause a 
being of one type to take the place of oue belonging to another 
type ; but this seems to me only re-stating the fact in dignified 
language. He who believes iu the struggle for existence and in the 
principle of natural selection, will acknowledge that every organic 
being is constantly endeavouring to increase in numbers; and thai 
if any one being varies ever so little, either in habits or structure, 
and thus gains an advantage over some other inhabitant of the 
same cJoiinfiy^ it wHT seize on the place of that inhabitant, however 
difi^erent that may be from its own placa Hence it will cause him 
no surprise that there should be geese and Mgate-birds with webbed 
feet, living on the dry land and rarely alighting on the water; 
that there should be long-toed corncrakes, living in meadows in- 
stead of in swamps ; that there should be woodpeckers where hardly 
a tree grows ; that there should be diving thrushes and diving 
Hymenoptera, and petrels with the habits of auks. 

Organs of extreme Perfection and Complication, 

To suppose that the eye with all its inimitable contrivances for 
adjusting the focus to different distances, for admitting different 
amounts of light, and for the correction of spherical and chromatic 
aberration, could have been formed by natural selection, seems, 
I freely confess^, absurd in the highest degree. When it was first 
said that the sun stood still and the world turned round, the 
common sense of mankind declared the doctrine false ; but the old 
saying of Vox popiUif vox Dei^ as every philosopher knows, cannot 
be trusted in science. Reason tells me, that if numerous gradations 
from a simple and imperfect eye to one complex and perfect can 
be shown to exist, each grade being useful to its possessor, as is 
certainly the case ; if further, the eye ever varies and the variations 
be inherited, as is likewise certainly the case ; and if such varia- 
tions should be useful to any animal under changing conditions of 
life, then the difficulty of believing that a perfect and complex eye 



144 Organs of extreme Perfection, Chap, vl 



could be formed by natural selection, though insuperable by our 
imagination, should not be considered as subversive of the theory 
How a nerve comes to be sensitive to light, hardly concerns us 
more than how life itself originated ; but I may remark that, as 
some of the lowest organisms, in wMch nerves cannot be detected, 
are capable of perceiving light, it does not seem impossible that 
certain sensitive elements in their sarcode should become aggregated 
and developed into nerves, endowed with this special sensibility. 

In searching for the gradations through which an organ in any 
species has been perfected, we ought to look exclusively to its lineal 
progenitors ; but this is scarcely ever possible, and we are forced to 
look to other species and genera of the same group, that is to the 
collateral descendants from the same parent-form, in order to see 
what gradations are possible, and for the chance of some gradations 
having been transmitted in an unaltered or little altered condition. 
But the state of the same organ in distinct classes may incidentally 
throw light on the steps by which it has been perfected. 

The simplest organ which can be called an eye consists of an 
optic nerve, surrounded by pigment-cells and covered by translucent 
skin, but without any lens or other refractive body. We may, 
however, according to M. Jourdain, descend even a step lower 
and find aggregates of pigment-cells, apparently serving as organs 
of vision, without any nerves, and resting merely on sarcodic tissue. 
Eyes of the above simple nature are not capable of distinct vision, 
and serve only to distinguish light from darkness. In certain star- 
fishes, small depressions in the layer of pigment which surrounds 
the nerve are filled, as described by the author just quoted, with 
transparent gelatinous matter, projecting with a convex surface, like 
the cornea in the higher animals. He suggests that this serves not 
to form an image, but only to concentrate the luminous rays and 
render their perception more easy. In this concentration of the 
rays we gain the first and by far the most important step towards 
the formation of a true, picture-forming eye ; for we have only to 
place the naked extremity of the optic nerve, which in some of the 
lower animals lies deeply buried in the body, and in some near 
the surface, at the right distance from the concentrating apparatuis, 
and an image will be formed on it. 

In the great class of the Articulata, we may start firom an optic 
nerve simply coated with pigment, the latter sometimes forming a 
sort of pupil, but destitute of a lens or other optical contrivance. 
With insects it is now known that the numerous facets on the 
cornea of their great compound eyes form true lenses, and that 
the cones include curiously modified nervous filaments. But these 



Chap. VI. Organs of extreme Perfection, 145 

organs in the Articolata are so much diversified that Mllller formerly 
made three main classes with seven snbdivisions, hesides a fourth 
main class of ^gregated simple eyes. 

When we reflect on these £Eu;t8^ here given much too briefly, with 
respect to the wide, diversified, and graduated range of structure in 
the eyes of the lower animals ; and .when we bear in mind how 
small the number of all living forms must be in comparison with 
those which have become extinct, the difficulty ceases to be very 
great in bdieving that natural selection may have converted the 
simple apparatus of an optic nerve, coated with pigment and 
invested by transparent membrane, into an optical instrument as 
perfect as is possessed by any member of the Articulate Class. 

fie who will go thus £ar, ought not to hesitate to go one step 
further, if he finds on finishing this volume that large bodies 
of facts, otherwise inexplicable, can be exj^ined by the theory of 
modification through natural selection ; he ought to admit that a 
structure even as perfect as an eagle's eye might thus be formed, 
although in this case he does not know the transitional states. It 
^has been objected that in order to modify the eye and still preserve 
it as a perfect instrument, many changes would have to be effected 
simultaneously, which, it is assumed, could not be done through 
natural selection ; but as I have attempted to show in my work on 
the variation of domestic animals, it is not necessary to suppose 
that the modifications were all simultaneous, if they were extremely 
slight and gradual. Different kinds of modification would, also, 
serve for the same general purpose : as Mr. Wallace has remarked, 
** if a lens has too short or too long a focus, it may be amended 
either by an alteration of curvature, or an alteration of density ; if 
the curvature be irregular, and the rays do not converge to a point, 
. then any increased regularity of curvature will be an improvement. 
So the contraction of the iris and the muscular movements of the 
eye are neither of them essential to vision, but only improvements 
which might have been added and perfected at any stage of the 
construction of the instrument.*' Within the highest division of 
the animal kingdom, namely, the Vertebrata, we can start from an 
eye so simple, that it consists, as in the lancelet, of a little sack of 
transparent skin, furnished with a nerve and lined with pigment, 
but destitute of any other apparatus. In fishes and reptiles, as 
Owen has remarked, " the range of gradations of dioptric structures 
is very great." It is a significant fact that even in man, according 
to the high authority of Virchow, the beautiful crystalline lens is \ 
formed in the embryo by an accumulation of epidermic cells, lying 
in a sack-like fold of the skin ; and the vitreous body is formed 

L 



146 • Modes of Transition, Chap. vi. 

from embryonic sub-cutaneous tissue. To arrive, however, at a 
just conclusion regarding the formation of the eye, with all its mar- 
vellous yet not absolutely perfect characters, it is indispensable 
that the reason should conquer the imagination ; but I have felt 
the difficulty far too keenly to be surprised at others hesitating to 
extend the principle of natural selection to so startling a length. 

It is scarcely possible to avoid comparing the eye with a telescope. 
We know that this instrument has been perfected by the lon^- 
continued efforts of the highest human intellects ; and we naturally 
infer that the eye has been formed by a somewhat analogous 
process. But may not this inference be presimiptuous ? Have we 
any right to assume that the Creator works by intellectual powers 
like those of man ? If we must compare the eye to an optical 
instrument, we ought in imagination to take a thick layer of 
transparent tissue, with spaces filled with fluid, and with a nerve 
sensitive to light beneath, and then suppose every part of this layer 
to be continually changing slowly in density, so as to separate into 
lavers of different densities and thicknesses, placed at different 
distances from each other, and with the surfaces of each layer 
slowly changing in form. Further we must suppose that there is a 
power, represented by natural selection or the survival of the fittest, 
always intently watching each slight alteration in the transparent 
layers; and carefully preserving each which, under varied circum- 
stances, in any way or in any degree, tends to produce a distincter 
image. We must suppose each new state of the instrument to be 
multiplied by the million ; each to be preserved until a better one 
is produced, and then the old ones to be all destroyed. In living 
bodies, variation will cause the slight alterations, generation wiU. 
multiply them almost infinitely, and natural selection will pick out 
with mierring skill each improvement. Let this process go on for 
millions of years ; and during each year on millions of individuals 
of many kinds; and may we not believe that a living optical 
instrument might thus be formed as superior to one of glass, as the 
works of the Creator are to those of man ? 

Modes of Transition, 

If it could be demonstrated that any complex organ existed, 
which could not possibly have been formed by numerous, suc- 
cessive, slight modifications, my theory would absolutely break 
down. But 1 can find out no such case. No doubt many organs 
exist of which we do not know the transitional grades, more espe- 
cially if we look to much-isolated species, round which, according to 
the theory, there has been much extinction. Or again, if we take 



f 



Chap. VI. Modes of Transittoft, 147 

an organ common to all the members of a class, for in this latter 
case tho organ must have been originally formed at a remote period, 
since wjiich all the many members of the class have been developed ; 
and in order to discover the early transitional grades through which 
the organ has passed, we should have to look to yery ancient ances- 
tral forms, long since become extinct. 

We should be extremely cautious in concluding that an or«ian 
could not have been formed by transitional gradations of some kind. 
Numerous cases could be given anK>ng8t the lower animals of the 
same organ performing at the same time wholly distinct functions; 
thus in the larva of the dragon-f y and in the fish Gobites the 
alimentary canal respires, digests, and excretes. In the Hydra, the 
animal may be turned inside out, and the exterior surface will then 
digest and the stomach respire. In such cases natural selection 
might specialise, if any advantage were thus gained, the whole or 
part of an organ, which had previously perf(»ined two functions, for 
one fxmction alone, and thus by insensible steps greatly change its 
nature. Many plants are known which regularly produce at the 
same time differently constructed flowers; and if such plants were 
to produce one kind alone, a great change would be effected with 
comparative suddenness in the character of the species. It is, how- 
ever, probable that the two sorts of flowers^ borne by the same plant 
were originally differentiated by finely graduated steps, which may 
still be followed in some few cases. 

Again, two distinct organs, or the same organ under two very 
different forms, may simultaneously perform in the same individual 
the same function, and this is an extremely important means of 
transition: to give one instance, — there are fish with gills or 
branchise that breathe the air dissolved in the water, at the same 
time that they breathe free air in their swimbladders, this latter 
organ being divided by highly vascular partitions, and having a 
ductus pneumaticus for the supply of air. To give another instance 
from the vegetable kingdom : plants climb by three distinct means, 
by spirally twining, by clasping a support with their sensitive 
tendrils, and by the emission of aerial rootlets ; these three means 
are usually found in distinct groups, but some few species exhibit 
two of the means, or even all three, combined in the same indivi- 
dual. In all such cases one of the two organs might readily be 
modified and perfected so as to perform all the work, being aided 
during the progress of modification by the other organ ; and th^n 
this other organ might be modified for some other and quite distinct 
purpose, or be wholly obliterated. 

The illustration of the^swimbladder in fishes is a good one, 

L 2 



148 Modes cf Transition, Chap. Vi. 

because it shows us ckarly the highly important fact that an organ 
oiiginally constructed for one purpose, namely, flotation, may be 
converted into one for a widely different purpose, namely, respiration. 
The swimbladder has, also, been worked in as an accessory to the 
auditory organs of certain fishes. All physiologists admit that 
the swimbladder is homologous, or " ideally similar " in position and 
structure with the lungs of the higher yertebrate animals : hence 
there is no reason to doubt that the swimbladder has actually 
been converted into lungs, or an organ used exclusively lor 
respiration. 

According to this view it may be inferred that all vertebrate 
animals with true lungs are descended by ordinary generation from 
an ancient and unknown prototype, which was furuished with a 
floating apparatus or swimUadder. We can thus, as I infer from 
Owen's interesting description of these parts, understand the strange 
fact that eyery particle oi food and drink which we swallow has to 
pass over the oriflce of the trachea, with some risk of ialling into 
the lungs, notwithstanding the beautiful con^vance by whieli the 
glottis is closed. In the higher Vertebrata the branchiss have 
wholly disappeared — but ia the embryo the slits on the sides of the 
neck aod the loop-like course of the arteries still mark their former 
position. But it is conceivable that the now utterly lost branchias 
might have been gradually worked in by natural se^ction for some 
distinct purpose : for instance, Landois has shown that the win^^ 
of insects are developed from the trachess ; it is therefore highly 
probable that in this great class organs which once served for 
respiration have been actually converted into organs for flight. 

In considering transitions of organs, it is so important to bear in 
t mind the probability of conversion from one function to another, 
that I will give another instance. Pedunculated cirripedes have 
two minute folds of skin, called by me the ovigerous frena, which 
serve, through the means of a sticky secretion, to retain the e^s 
until they are hatched within the sack. These cirripedes have no 
branchise, the whole surface of the body and of the sack, together 
with the small frena, serving for respiration. The Balanidie or 
sessile cirripedes, on the other hand, have no ovigerous frena, the 
eggs lying loose at the bottom of the sack, within the well-enclosed 
shell ; but they have, in the same relative position with the frena, 
large, much-folded membranes, which freely communicate with the 
circulatory lacunar of the sack and body, and which have beea 
considered by all naturalists to act as branchiae. Now I think no 
one will dispute that the ovigerous frena in the one family are 
strictly homologous with the branchiae of the other family ; indeed, 



Chap. VI. Modes of Transition, 149 

they graduate into each other. Therefore it need not be doubted 
that the t\^o little folds of skin, which originAlly served as 
ovigerous frena, but which, likewise, very sligbtly aided in the 
act of respiration, have beeh gradually converted by natural 
selection into branchise, simply through an increase in their size 
and the obliteration of their adhesive glands. If all pedunculated 
cirripedes had become extinct, and they have suffered far more 
extinction than have sessile cirripedes, who would ever have 
imagined that the branchiaa in this latter family had originally 
existed as organs for preventing the ova from being washed out of 
the sack? 

There is another possible mode of transition, namely, through 
the acceleration or retardation of the period of reproduction. This 
has lately been insisted on by Prof. Cope and others in the United 
States. It is now known that some animals are capable of repro- 
duction at a very early age, before they have acquired their perfect 
characters ; and if this power became thoroughly well developed in 
a species, it seems probable that the adult stage of development 
would sooner or later be lost ; and in this case, especially if the 
larva differed much from the mature form, the character of the 
species would be greatly changed and degraded. Again, not a few 
animals, after arriving at maturity, go on changing in character 
during nearly their whole lives. With mammals, <for instance, the 
form of the skull is often much altered with age, of which Dr. 
Murie has given some striking instances with seals; every one 
knows how the horns of stags become more and more branched, 
and the plumes of some birds become more finely developed, as 
they grow older. Prof. Cope states that the teeth of certain lizards 
change much in shape with advancing years ; with crustaceans not 
only many trivial, but some important parts assume a new 
character, as recorded by Fritz MUller, after maturity. In all such 
cases, — ^and many could be given, — if the age for reproduction were 
retarded, the character of the species, at least in its adult state, 
would be modified; nor is it improbable that the previous and. 
earlier stages of development would in some cases be hurried 
through and finally lost. Whether species have often or ever been 
modified through this comparatively sudden mode of transition, I 
can form no opinion ; but if this has occurred, it is probable that 
the differences between the young and the mature, and between 
the mature and the old, were primordially acquired by graduated 
steps. 



1 50 Difficulties of the Theory Chap. VI. 



SpecicU Difficulties of the Theory of NaturcU Selection, 

Althongh we must be extremely cautious in concluding that any 
organ could not have been produced by successive, small, tran- 
sitional gradations, yet undoubtedly serious cases of difficulty occur. 

One of the most serious is that of neuter insects, which are often 
differently constructed from either the males or fertile females ; but 
this case will be treated of in the next chapter. The electric 
organs of fishes offer another case of special difficulty; for it is 
impossible to conceive by what steps these wondrous organs have 
been produced. But this is not surprising, for we do not even 
know of what use they are. In the Gymnotus and Torpedo they 
no doubt serve as powerful means of defence, and perhaps for 
securing prey; yet in the Ray, as observed by Matteucci, an 
analogous organ in the tail manifests but little electricity, even 
when the animal is greatly irritated; so little, that it can 
hardly be of any use for the above purposes. Moreover, in the 
Bay, besides the organ just referred to, there is, as Dr. H. McDonnell 
has shown, another organ near the head, not known to be electrical, 
but which appears to be the real homologue of the electric battery 
in the Torpedo. It is generally admitted that there exists between 
these organs and ordinary muscle a close analogy, in intimate 
structure, in the distribution of the nerves, and in the manner in 
which they are acted on by various reagents. It should, also, be 
especially observed that muscular coutraction is accompanied by an 
electrical discharge ; and, as Dr. Eadcliffe insists, '' in the electrical 
apparatus of the torpedo during rest, there would seem to be a 
charge in every respect like that which is met with in muscle aud 
nerve during rest, and the discharge of the torpedo, instead of being 
peculiar, may be only another form of the discharge which attends 
upon the action of muscle and motor nerve." Beyond this we can- 
not at present go in the way of explanation ; but as we know so 
little about the uses of these organs, and as we know nothing about 
the habits and structure of the progenitors of the existing electric 
fishes, it would be extremely bold to maintain that no serviceable 
transitions are possible by which these organs might have been 
gradually developed. 

These organs appear at first to offer another and far more serious 
difficulty ; for they occur in about a dozen kinds of fish, of which 
several are widely remote in their affinities. When the same organ 
is found in several members of the same class, especially if in 
membeis having very different habits of life, we may generally 
attribute its pret»ence to inheritance from a common ancestor ; and 



Chap. VI. of Natural Selection, 151 



its absence in some of the members to loss through disnse or 
natural selection. So that, if the electric organs had been 
inherited from some one ancient progenitor, we might have 
expected that all electric fishes would have been specially related 
to each other ; but this is far from the case. Nor does geology at 
all lead to the belief that most fishes formerly possessed electric 
organs, which their modified descendants have now lost. But 
when we look at the subject more closely, we find in the several 
fishes provided with electric organs, that these are situated in dif- 
ferent parts of the body, — that they differ in construction, as in 
the arrangement of the plates, and, according to Pacini, in the 
process or means by which the electricity is excited — and lastly, in 
being supplied with nerves proceeding from different sources, and 
this is perhaps the most important of all the differences. Hence in 
the several fishes furnished with electric organs, these cannot be 
considered as homologous, but only as analogous in function. Con- 
sequently there is no reason to su])pose that they have been inherited 
from a common progenitor ; for had this been the case they would 
have closely resembled each other in all respects. Thus the difficulty 
of an organ, apparently the same, arising in several remotely allied 
species, disappears, leaving only the lesser yet still great difficulty ; 
namely, by what graduated steps these organs have been developed 
in each separate gfoup of fishes. 

The luminous organs which occur in a few insects, belonging 
to widely different families, and which are situated in different 
parts of the body, offer, under our present state of ignorance, a 
difficulty almost exactly parallel with that of the electric organs. 
Other similar cases could be given ; for instance in plants, the very 
curious contrivance of a mass of pollen-grains, borne on a foot-stalk 
with an adhesive gland, is apparently the same in Orchis and 
Asclepias, — genera almost as remote as is xx)ssible amongst flowering 
plants ; but here again the parts are not homologous. In all cases 
of beings, far removed from each other in the scale of organisation, 
which are furnished with similar and peculiar organs, it will be 
found that although the general appearance and function of the 
organs may be the same, yet fundamental differences between them 
can always be detected. For instance, the eyes of cej)halopods 
or cuttle-fish and of vertebrate animals appear wonderfully alike ; 
and in such widely sundered groups no part of this resemblance can 
be due to inheritance from a common progenitor. Mr. Mivart has 
advanced this case as one of special difficulty, but I am unable to 
see the force of his argument. An oi^an for vision must be formed 
of transparent tissue, and must include some sort of lens for 



152 Difficulties of tJie TJteoiy Chap . vi. 

throwiDg an image at the back of a darkened chamber. Beyond 
this superficial resemblance, there is hardly any real similarity 
between the eyes of cnttle-fish and vertebrates, as may be seen by 
consulting Hensen's admirable memoir on these organs in the 
Cephalopoda. It is impossible for me here to enter on details, but 
I may specify a few of the points of difference. The crystalline lens 
in the higher cuttle-fish consists of two parts, placed one behind tbe 
other like two lenses, both having a very different structure and 
disposition to what occurs in the vertebrata. The retina is wholly 
different, with an actual inversion of the elemental parts, and with 
a large nervous ganglion included within the membranes of the 
eye. The relations of the muscles are as different as it is pos- 
sible to conceive, and so in other points. Hence it is not a little 
difficult to decide how far even the same terms ought to be employed 
in describing the eyes of the Cephalopoda and Vertebrata. It is, of 
course, open to any one to deny that the eye in either case could 
have been developed through the natural selection of successive, 
slight variations : but if this be admitted in the one case, it is 
clearly possible in the other ; and fundamental differences of struc- 
ture in the visual organs of two groups might have been anti- 
cipated, in accordance with this view of their manner of formation. 
As two men have sometimes independently hit on the same 
invention, so in the several foregoing cases it appears that natural 
selection, working for the good of each being, and taking advan- 
tage of all favourable variations, has produced similar organs, as 
far as function is concerned, in distinct organic beings, which 
owe none of ^eir structure in common to inheritance from a 
common progenitor. 

Fritz Mtiller, in order to test the conclusions arrived at in this 
volume, has followed out ^ith much care a nearly similar line of 
argument. Several families of crustaceans include a few Species, 
possessing an air-breathing apparatus and fitted to live out of the 
water. In two of these families, which were more especially 
examined by MtlUer, and which are nearly related to each other, 
the species agree most closely in all important characters ; namely 
in their sense-organs, circulating system, in the position of the 
tufts of hair within their complex stomachs, and lastly in the 
whole structure of the water-breathing branchiae, even to the 
microscopical hooks by which they are cleansed. Hence it might 
have been expected that in the few species belonging to both 
families which live on the land, the equally-important air-breathing 
apparatus would have been the same; for why should this one 
apparatus, given for the same purpose, have been made to differ. 



Chap. VI. of Natural Selection, 1 5 3 

whilst all the other important organs were closely similar or rather 
identical. 

Fritz Mtiller argues that this close similarity in so many points 
of structure must, in accordance with the views advanced by me, 
be accounted for by inheritance from a oommon progenitor. But 
AS the vast majority of the species in the above two families, as 
well as most other crustaceans, are aquatic in their habits, it is 
improbable in the highest degree, that their common progenitor 
should have been adapted for breathing air. MUller was thus led 
carefully to examine the apparatus in the air-breathing species; 
and he found it to differ in each in several important points, as in 
the position of the orifices, in the manner in which they are opened 
and closed, and in some accessory details. Now such differences 
are intelligible, and might even have been expected, on the suppo- 
sition that species belonging to distinct families had slowly become 
adapted to live more and more out of water, and to breathe the 
air. For these species, from belonging to distinct families, would 
have differed to a certain extent, and in accordance with the 
principle that the nature of each variation depends on two factors, 
viz. the nature of the organism and that of the surrounding con- 
ditions, -their variability assuredly would not have been exactly the 
sama Consequently natural selection would have had different 
materials or variations to work on, in order to arrive at the same 
functional result ; and the structures thus acquired would almost 
necessarily have differed. On the hypothesis of separate acts of 
creation the whole case remains unintelligible. This line of 
ai^ument seems to have had great weight in leading Fritz MUller 
to accept the views maintained by me in this volume. 

Another distinguished zoologist, the late Professor Clapar^e, has 
ai^ed in the same manner, and has arrived at the same result. 
He shows that there are parasitic mites (Acaridae), belonging to 
distinct sub-families and families, which are furnished with hair- 
claspers. These organs must have been independently developed, 
as they could not have been inherited from a common progenitor ; 
and in the several groups they are formed by the modification of 
the fore-legs, — of the hind-legs, — of the maxilke or lips, — and of 
appendages on the under side of the hind part of the body. 

In the foregoing cases, we see the same end gained and the same 
function performed, in beings not at all or only remotely allied, by 
organs in appearance, though not in development, closely similar. 
On the other hand, it is a common rule throughout nature that the 
same ^[idj Bhould be .gained, even sometimes in the case of closely- 
related beings, bg jbhe most diversified means . How differently 



1 54 Difficulties of tfie Theory Chap. VI. 

constructed is the feathered wing of a bird and the membrane- 
covered wing of a bat ; and still more so the four wings of a butter* 
fly, the two wings of a fly, and the two wings with the elytra of a 
beetle. Bivalve shells are made to open and shut, but on what a 
number of patterns is the hinge constructed, — from the long row of 
neatly interlocking teeth in a Nucula to the simple ligament of a 
Mussel! Seeds are disseminated by their minuteness, — by their 
capsule being converted into a light .balloon-like envelope, — by 
being embedded in pulp or flesh, formed of the most diverse parts, 
and rendered nutritious, as well as conspicuously coloured, so as to 
attract and be devoured by birds, — by having hooks and grapnels 
of many kinds and serrated awns, so as to adhere to the fur of 
quadrupeds, — and by being furnished with wings and plumes, as 
different in shape as they are elegant in structure, so as to be wafted 
by every breeze. I will give one other instance ; for this subject of 
the same end being gained by the most diversified means well 
deserves attention. Some authors maintain that organic beings 
have been formed in many ways for the sake of mere variety, 
almost like toys in a shop, but such a view of nature is incredible. 
With plants having separated sexes, and with those in which, 
though hermaphrodites, the pollen does not spontaneously fall on 
the stigma, some aid is necessary for their fertilisation. With 
several kinds this is effected by the pollen-grains, which are light 
and incoherent, being blown by the wind through mere chance on 
to the stigma ; and this is the simplest plan which can well be 
conceived. An almost equally simple, though very different, plan 
occurs in many plants in which a symmetrical flower secretes a few 
drops of nectar, and is consequently visited by insects ; and these 
carry the pollen from the anthers to the stigma. 

From this simple stage we may pass through an inexhaustible 
number of contrivances, all for the same purpose and effected in 
essentially the same manner, but entailing changes in every part of 
the flower. The nectar may be stored in variously shaped recep- 
tacles, with the stamens and pistils modified in many ways, some- 
times forming trap-like contrivances, and sometimes capable of 
neatly adapted movements through irritability or elasticity. From 
such structures we may advance till we come to such a case of 
extraordinary adaptation as that lately described by Dr. Griiger in 
the Coryanthes. This orchid has part of its labellum or lower lip 
hollowed out into a great bucket, into which drops of almost pure 
water continually fall from two secreting horns which stand above 
it; and when the bucket is half full, the water overflows by a 
spout on one side. The basal part of the labellum stands over the 
bucket, and is itself hollowed out into a sort of chamber with two 



Chap. VI. of Natural Seleciiofi. 1 5 J 

lateral entrances ; within this chamber there are curions fleshy 
ridges. The most ingenious man, if he had not witnessed what 
takes place, could never have imagined what purpose all these parts 
serve. But Dr. Crtiger saw crowds of large humble-bees visitina: 
the gigantic flowers of this orchid, not in order to suck nectar, but 
to gnaw off the ridges within the chamber above the bucket ; in 
doing this they frequently pushed each other into the bucket, and 
their wings being thus wetted they could not fly away, but were 
compelled to crawl out through the passage formed by the spout or 
overflow. Dr. Criiger saw a ** continual procession " of bees thus 
crawling out of their involuntary bath. The passage is narrow, and 
is roofed over by the column, so that a bee, in forcing its way out, 
first rubs its back against the viscid stigma and then against the 
viscid glands of the pollen-masses. The pollen-masses are thus 
glued to the back of the bee which first happens to crawl out 
through the passage of a lately expanded flower, and are thus 
carried away. Dr. Criiger sent me a flower in spirits of wine, with 
a bee which he had killed before it had quite crawled out with a 
pollen-mass still fastened to its back. When the bee, thus provided, 
flies to another flower, or to the same flower a second time, and is 
pushed by its comrades into the bucket and then crawls out by the 
passage, the pollen-mass necessarily comes first into contact with 
the viscid stigma, and adheres to it, and the flower is fertilised. 
Now at last we see the full use of every part of the flower, of the 
water-secreting horns, of the bucket half full of water, which ( 
prevents the bees fi"om flying away, and forces them to crawl out 
through the spout, and rub against the properly placed viscid pollen- 
masses and the viscid stigma. 

The construction of the flower in another closely allied orchid, 
namely the Catasetum, is widely different, though serving the same 
end ; and is equally curious. Bees visit these flowers, like those of 
the Coryanthes, in order to gnaw the labellum ; in doing this they 
inevitably touch a long, tapering, sensitive projection, or, as I have 
called it, the antenna. This antenna, when touched, transmits a 
sensation or vibration to a certain membrane which is instantly 
ruptured ; this sets free a spring by which the pollen-mass is shot 
forth, like an arrow, in the right direction, and adheres by its 
viscid extremity to the back of the bee. The pollen-mass of the 
male plant (for the sexes are separate in this orchid) is thus carried 
to the flower of the female plant, where it is brought into contact 
with the stigma, which is viscid enough to break certain elastic 
threads, and retaining the pollen, fertilisation is effected. 

How, it may be asked, in the foregoing and in innumerable other 



IS6 Organs of little Importance Chap. VI 

instances, can we nnderstand the graduated scale of complexity and 
the multifarious means for gaining the same end. The answer no 
doubt is, as already remarked, that when two forms vary, which 
already differ from each other in some slight degree, the variability 
.c-will not be of the same exact nature, and consequently the results 
obtained through natural selection for the same general purpose will 
not be the same. We should also bear in mind that ev ery highly 
developed organism has passed through many changes; and tha t 
each modified" slruGiiure tends to be inherited, so tha t eac h modi- 
fication will not readily be q^uite lost, but may be again and again 

.further altered. Hence the structure of each part of each species, 
for whatever purpose it may servej^ is "Ihe^ sum of ma ny inherited 

I changes, through which the species has passed during its successive 
a^laptations to changed habits and conditions of life. 

Finally then, although in many cases it is most difficult even to 
conjecture by what transitions organs have arrived at their present 
state ; yet, considering how small the proportion of living and known 
forms is to the extinct and unknown, I have been astonished how 
rarely an organ can be named, towards which no transitional grade 
is known to lead. It certainly is true, that new organs appearing 
as if created for some special purpose, rarely or never appear in any 
being ; — as indeed is shown by that old, but somewhat exaggerated, 
canon in natural history of " Natura non facit saltum." We meet 
with this admission in the writings of almost every experienced 
naturalist ; or as Milne Edwards has well expressed it, yatiirfe ia 
prodigal in variety, but nig ge d in innovation. Why, on the 
fHebfJTCf TJreation, should there be so much variety and so little 
real novelty? Why should all the parts and organs of many 
independent beings, each supposed to have been separately created 
for its proper place in nature, be so commonly linked together by 
graduated steps? Why should not Nature take a sudden leap 
from structure to structure ? On the theory of natural, selection, 
we can clearly understand why she should not; for natural 
selection acts only by taking advantage of slight successive varia- 
tions; she can never take a great and sudden leap, but must 
advance by short and sure, though slow' steps. 

Organs of little apparent Importance, as affected by Natural 

Selection, 

As natural selection acts by life and death, — by the survival of 
the fittest, and by the destruction of the less well-fitted indi- 
viduals, — 1 have sometimes felt great difficulty in understanding 
the origin or formation of parts of little importance; almost as 



Chap. VI. affected by Natural Selection. 1 57 



great, though of a very did'erent kind, as in the case of the most 
perfect and complex organs. 

In the first place, we are much too ignorant in regard to the 
whole economy of any one organic being, to say what slight modifi- 
cations would be of importance or not. In a former chapter I have 
^iyen instances (^ very trifling characters, such as the down on 
fruit and the oolour of its flesh, the colour of the skin and hair of 
quadrupeds, which, from being correlated with constitutional 
differences or from determining the attacks of insects, might 
assuredly be acted on by natural selection. The tail of the giraffe 
looks like an artificially constructed fly-flapper ; and it seems at 
first incredible that this could have been adapted for its present 
purpose by successive slight modifications, each better and better 
fitted, for so trifling an object as to drive away flias ; yet we should 
pause before being too positive even in this case, for we know that 
the distribution and existence of cattle and other animals in South 
America absolutely depend on their power of resisting the attacks 
of insects : so that individuals which could by any means defend 
themselves from these small enemies, would be able to range into 
new pastures and thus gain a great advantage. It is not that the 
larger quadrupeds are actually destroyed (except in some rare 
cases) by flies, but they are incessantly harassed and their strength 
reduced, so that they are more subject to disease, or not so well 
enabled in a coming dearth to search for food, or to escape from 
beasts of prey. 

Organs now of trifling importance have probably in some cases 
been of high importance to an early progenitor, and, after having 
been slowly perfected at a former period, have been transmitted to 
existing species in nearly the same state, although now of very 
slight use ; but any actually injurious deviations in their structure 
would of course have been checked by natural selection. Seeing 
how important an organ of locomotion the tail is in most aquatic 
animals, its general presence and use for many purposes in so 
many land animals, which in their lungs or modified swimbladders 
betoay their aquatic origin, may perhaps be thus accounted for. A 
well-developed tail having been formed in an aquatic animal, it 
might subsequently come to be worked in for all sorts of purposes, 
— as a fly-flapper, an organ of prehension, or as an aid in turning, as 
in the case of the dog, though the aid in this latter respect must be 
slight, for the hare, with hardly any tail, can double still more 
quickly. 

In the second place, we may easily err in attributing importance 
to characters, and in believing that they have been developed 



158 



Organs of little Importance 



Chap. VL 



through natural selection. We must by no means overlook the 
effects of the definite action of changed conditions of life,— of so- 
called spontaneous variations, which seem to depend in a quite 
subordinate degree on the nature of the conditions, — of the ten- 
dency to reversion to long-lost characters, — of the complex laws of 
growth, such as of correlation, compensation, of the pressure of one 
part on another, &c., — and finally of sexual selection, by which 
characters of use to one sex are often gained and then transmitted 
more or less perfectly to the other sex, though of no use to this 
sex. But structures thus indirectly gained, although at first of no 
advantage to a species, may subsequently have been taken advan- 
tage of by its modified descendants, under new conditions of life 
and newly acquired habits. 

If green woodpeckers alone had existed, and we did not know 
that there were many black and pied kinds, I dare say that we 
should have thought that the green colour wan a beautiful adapta- 
tion to conceal this tree-frequenting bird from its enemies; and 
consequently that it was a character of importance, and had been 
acquired through natural selection ; as it is, the colour is probably 
in chief part due to sexual selection. A trailing palm in the Malay 
Archipelago climbs the loftiest trees by the aid of exquisitely con- 
structed hooks clustered around the ends of the branches, and thifi 
contrivance, no doubt, is of the highest service to the plant ; but as we 
see nearly similar hooks on many trees which are not climbers, and 
which, as there is reason to believe from the distribution of the thorn- 
bearing species in Africa and South America, serve as a defence 
against bro\N sing quadrupeds, so the spikes on the palm may at 
fii*st have been developed for this object, and subsequently have been 
improved and taken advantage of by the plant, as it underwent 
further modification and became a climber. The naked skin on the 
head of a vulture is generally considered as a direct adaptation for 
wallowiiig in putridity ; and so it may be, or it may possibly be 
due to the direct action of putrid matter ; but we should be very 
cautious in drawing any such inference, when we see that the skin 
on the head of the clean-feeding male Turkey is likewise naked. 
The sutures in the skulls of young mammals have been advanced as 
a beautiful adaptation for aiding parturition, and no doubt they 
facilitate, or may be indispensable for this act; but as sutures 
occur in the skulls of young birds and reptiles, which have only to 
escape from a broken egg, we may infer that this structure has 
arisen from the laws of growth, and has been taken advantage o/ in 
the parturition of the higher animals. 

We are profoundly ignorant of the cause of each slight variation 



Chap. VL affected by Natural Selection, 1 59 

or indiyidiial dift'erenoe ; and we aie immediately made consciotis 
of this by reflecting on the differences between the breeds of onr 
domesticated *iTiiTr>Al« in different coimtries, — ^more especially in the 
less civilised countries where there has been but little methodical 
selection. Animals kept by savages in different countries often 
have to struggle for their own subsistence, and are exposed to a 
certain extent to natural selection, and individuals with slightly 
different constitutions would succeed best under different climates. 
With cattle susceptibility to the attacks of flies is correlated with 
colour, as is the liability to be poisoned by certain plants ; so that 
even colour would be thus subjected to the action of natural 
selection. Some observers are convinced that a damp climate 
affects the growth of the hair, and that with the hair the horns are 
correlated. Mountain breeds always differ from lowland breeds ; 
and a mountainous country would probably affect the hind limbs 
from exercising them more, and possibly even the form of the 
pelvis ; and then by the law of homologous variation, the front 
limbs and the head would probably be affected. The shape, also, 
of the pelvis might affect by pressure the shape of certain parts of 
the young in the womb. The laborious breathing necessary in 
high regions tends, as we have good reason to believe, to increase 
the size of the chest ; and again correlation would come into play. 
Tlie effects of lessened exercise together with abundant food on the 
whole organisation is probably still more important ; and this, as 
H. von Nathusius has lately shown in his excellent Treatise, is 
apparently one chief cause of the great modification which the 
breeds of swine have undergone. But we are far too ignorant to specu- 
late on the relative importance of the several known and unknown 
causes of variation ; aud I have made these remarks only to show 
that, if we are unable to account for the characteristic differences 
of our several domestic breeds, which nevertheless are generally 
admitted to have arisen through ordinary generation from one or a 
few parent-stocks, we ought not to lay too much stress on our 
ignorance of the precise cause of the slight analogous differences 
between true species. 

Utilitarian Doctrine, how far true : Beauty, how acquired. 

The foregoing remarks lead me to say a few words on the protest 
lately made by some natiiraliatfi. Against the ul^ili tarjan^ (tp^^f;.ri ^ e 
fl^j ll) ftvflrjr f^^tail of struclfUre has b een produced for the good of its 
possessor. They believe that many structures have teen created 
for the sake of beauty, to delight man or the Creator (but this 
latter point is beyond the scope of scientific discussion), or for the 



l6o Utilitarian Doctrine how far true: Chap. vj. 

■■ I . -^1 ■ _ _ _ 

sake of mere variety, a view already discusBed. Such doctrines, if* 
true, would be absolutely fatal to my theory. I fully admit that 
many structures are now of no direct use to their possessors, and 
may never have been of any use to their progenitors ; but this does 
not prove that they were formed solely for beauty or variety. Ko 
doubt the definite action of changed conditions, and the various 
causes of modifications, lately specified, have all produced an 
effect, probably a great effect, independently of any advantage thus 
gained. But a still more important consideration is that the chiel 
part of „the organisation of every l iving creature is due f^ inhAri^ 
ance ; a nd mnsftgiiftntfly/tlimig^i ' ^ Sip\ \u^\ry^ ft ffinrf^ilY f^^£lj■^jgi^ 
ibr itsjlace in natjLtfg^jjaaja^ nftV m Y ^ y Hns a in C 

di rect relation to pre sent hab it ^ ,, tf life. ITius, we can hardly 
befleve tliat tbe webbed feet of the upland goose or of the frigate- 
bird are of special use to these birds ; we cdnnot believe that the 
similar bones in the arm of the monkey, in the fore-leg of the 
horse, in the wing of the bat, and in the flipper of the seal, are of 
special use to these animals. We may safely attribute these 
structures to inheritance. But webbed feet no doubt were as 
useful to the progenitor of the upland goose and of the frigate-bird, 
as they now are to the most aquatic of living birds. So we may 
believe that the progenitor of the seal did not possess a flipper, but 
a foot with five toes fitted for walking or grasping ; and we may 
further venture to believe that the several bones in the limbs of 
the monkey, horse, and bat, were originally developed, on the 
principle of utility, probably through the reduction of more 
numerous bones in the fin of some ancient fish-like progenitor of 
the whole class. It is s^'ircely possible to decide how much 
allowance ought to be made for such causes of change, as the 
definite action of external conditions, so-called spontaneous varia- 
tions, and the complex laws of growth ; but with these important 
jBxceptions, we may conclude that the structure of every living 
creature either now is, or was formerly, of some direct or in- 
direct use to its possessor. 

With respect to the belief that organic beings have been createkl 
beautiful for the delight of man, — a belief which it has been pro- 
nounced is subversive of my whole theory, — I may first remark 
that t^ sense of beautjr obyjonaJjr jiepends qii .thei. nat ure of th e 
mind, irrespective of any real quality in the admired ^i^ect ; and 
tfi^ the^dea of what is beautiful, is not innate or unalterable. 
We see this, for instance, in the men of different races admiring an 
entirely different standard of beauty in their women. If beautiful 
objectii had been created solely for man*s gratification^ it ought to 



Chap. VI. Beauty how acquired. l6l 

be shown that before man appeared, there was less beauty onjthe 
face of the earth than since he came on the stage. Were the Txjau- 
tHtftTolute and cone shells of the Eocene epoch, and the gracefully 
sculptured ammonites of the Secondary period, created that man 
might ages afterwards admire them in his cabinet ? Few objects 
are more beautiful than the minute siliceous cases of the diato- 
mace83 : were, these created that they might be examined and 
admired under the higher powers of the microscope ? Thn baftirty 
in this latter case, and in many others, is apparer Hy Yrhftlly tll^*^ 
to sy mmetry of growth . Flowers rank amongst the most beautiful 
^qductions of nature ; but they have been rendered conspicuous 
in contrast with the green leaves, and in consequence at the same 
time beautiful, so that they may be easily observed by insects. I 
have come to this conclusion from finding it an invariable rule thatx 
when a flower is fertihsed by the wind it never has a gaily-coloured ' 
corolla. Several plants habitually produce two kinds of flowers; 
one kind open and coloured so as to attract insects; the other 
closed, not coloured, destitute of nectar, and never visited by insects. 
Hence we may conclude that, if insects had not been developed on the 
face of the earth, our plants would not have been decked with beau- 
tiful flowers, but would have produced only such poor flowers as we 
see on our flr, oak, nut and ash trees, on grasses, spinach, docks, and 
nettles, which are all fertilised through the agency of the wind. A 
similar line of argument holds good with fruits ; that a ripe straw- 
berry or cherry is as pleasing to the eye as to the palate, — that the 
gaily-coloured fruit of the spindle- wood tree and the scarlet berries 
of the holly are beautiful objects, — will be admitted by every one. 
But this beauty serves merely as a gui^e to birds and beasts, in 
order that the fruit may be devoured and the manured seeds dis- 
seminated : I infer that this is the case from having as yet found 
no exception to the rule that seeds are always thus disseminated 
when embedded within a fruit of any kind (that is within a fleshy 
or pulpy envelope), if it be coloured of any brilliant tint, or ren- 
dered conspicuous by being white or black. 

On the other hand, I willingly admit that a gr eat^number of 
male a nimals, a ^ all oor most g orgeous birds, some fishes, reptiles, 
and maimEals, and a Lost of magmScently coloured" Iriitterflies, 
have.been rendered beautiful for beauty's sake : butihisJiasJbeen 
effected jJaion ga sexual selection, that is, by the^ more beautiful 
males having been contmually preferred by the females, and not for 
the delight of man. So it is with the music of birds. We may 
infer from all this that a nearly similar taste for beautiful colours 
and for musical sounds runs through a large part of the animal 



ctrine how far true. Chap. VL 

s aa b«&atifull7 coloored as the male, 
irith. birds and bntterflies, the cause 
3 acquired through sexual selection 
lotb sexes, instead of to the nuales 
ity in its simpiest form — that is, the 
pleasure from certain colours, forms., 
iintiw mind of man and of the lower 
>ject. The same sort of difficulty ig 
t is that certain flavours and odours 
spleasuie. Habit ia all these cases 
ain extent into play ; but there must 
in the constitution of the neirons 



ossibly produce any modification in 
i good of another species ; though 
s incessantly takes advantage of, and 

others. But natural selection can 
otures for the direct injury of other 
g of the adder, and in the ovipositor 
its eggs are depouted in the living 
it could be proved that any part of 
nes had been formed for the exclusive 
;ould annihilate my theory, for such 
through natural selection. Although 
id in works on natural history to this 
! which seems to me of any weight, 
isnake has a poison-fang for its own 
ion of its prey ; but some authors 
it is furnished with a rattle for its own 
irey. I would almost as soon believe 

its tail when preparing to spring, in 
nouse. It is a much more prolmble 
: its rattle, the cobra expands its frill, 
ilst hissing so loudly and harshly, in 
ids and beasts which are knonu to 
lus species. Snakes act on the same 
en raffle her feathers aud expand her 
I her chickens ; bnt I have not space 
ways by which animals endeavour to 

er.produce in a '^'"^ ^"y struojure 
tL.to that being, for natumi selection 



Chap. VL Utilitarian Doctrine Jiow far true, 163 

acta gol^l y ^y afl^ % ^^^ gP^ ^^ f**^^ ^o organ will be fonned, 
as Faley has remarked, for the purpose of causing pain or for doing 

.an injury to its possessor. If a fair balance be struck between the 
good and evil caused by each part, each will be found on the whole 
advantageous. After the lapse of time, under changing conditions 
of life, if any part comes to be injurious, it will be modified ; or if it 
be not so, the being will become extinct as myriads have become 
extinct. 

N fttiiral fiftlftc^ion t^ijids only to make each organic being as 

;^ perfect as, or slightly mor e perfect t han, the other inhabitants of the 
{same country with which it comes ^intQ fi^aJ^petitipn. And we see 
tLat this is the standard of perfection attained under nature. The 
endemic productions of New Zealand, for instance, are perfect one 
compared with another ; but they are now rapidly yielding before 
the adyancing l^ons of plants and animals introduced from Europe, 
Katural selection will not produce absolute perfectian, nor do we 
always meet, as far as we 6an judge, with this high standard under 
nature. The correction for the aberration of light is said by Miiller 
not to be perfect even in that most perfect organ, the human eye. 
Helmholtz, whose judgment no one will dispute, after describing 
in the strongest terms the wonderful powers of the human eye, 
adds these remarkable words : *' That which we have discovered 
in the way of inexactness and imperfection in the optical machine 
and in the image on the retina, is as nothing in comparison with the 
incongruities which we have just come across in the domain of the 
sensations. One might say that nature has taken delight in accu- 
mulating contradictions in order to remove all foundation from the 
theory of a pre-existing harmony between the external and internal 
worlds." If our reason leads us to admire with enthusiasm a 
multitude of inimitable contrivances in nature, this same reason 
tells us, though we may easily err on both sides, that some other 
contrivances are less perfect. Can we consider the sting of the bee 
as perfect, which, when used against many kinds of enemies, 
cannot be withdrawn, owing to the backward serratures, and thus 
inevitably causes the death of the insect by tearing out its viscera ? 
If we look at the sting of the bee, as having existed in a remote 
progenitor as a boring and serrated instrument, like that in so many 
members of the same great order, and that it has since been modi- 
fied but not perfected for its present purpose, with the poison origi- 
nally adapted for some other object, such as to produce galls, since 
intensified, we can perhaps understand how it is that the use of the 
sting should so often cause the insect's own death: for if on 
the whole the power of stinging be useful to the social community, 

M 2 



164 Summary. Chap. va. 

it will fulfil all the requirements of natural selection, though it may 
cause the death of some few members. If we admire the truly 
wonderful power of scent by which the males of many insects find 
their females, can we admire the production for this single purpose 
of thousands of drones, which are utterly useless to the community 
for any other purpose, and which are ultimately slaughtered by 
their industrious and sterile sisters ? It may be difficult, but we 
ought to admire the savage instinctive hatred of the queen-bee-, 
which urges her to destroy the young queens, her daughters, as soon 
as they are bom, or to perish herself in the combat ; for undoubtedly 
this is for the good of the community ; and maternal love or ma- 
ternal hatred, though the latter fortunately is most rare, is all the 
same to the inexorable principle of natural selection. If we admire 
the several ingenious contrivances, by which orchids and many other 
plants are fertilised through insect agency, can we consider as 
equally perfect the elaboration of dense clouds of pollen by our 
fir-trees, so that a few granules may be wafted by chance on to the- 
ovules ? 

Summary: the Iaiw of Unity cf Type and of the Conditions of 
Existence embraced hy the Theory of Natural Selection. 

We have in this chapter discussed some of the difficulties and* 
objections which may be urged against the theory. Many of theuh 
are serious ; but I think that in the discussion light has been thrown 
on several facts, which on the belief of independent acts of creation 
are utterly obscure. We have seen that Rpftrjfi.<^ ^t. anyfinA^^jfyj 
ar e not indefini tel y vari^bl^ . a nd are not linked together by a 
multi tude of intermediate gradations, partl y because the process or 
1 natiir^l yfilfinti9^ ^ al^^ays very ^ow^ and at any one time acts onTy 
f ^^ a few forms ; and partly because the very proc ess ot n aturaF 
^^ selection implies the continnat ' "supplanting andextin ction ^jo f pre - 
ce ding and i ntermediate gra3ations:'*XIosely allied specTes, now 
living on a contUllLUUS Ui%&, miisToften have been formed when the 
area was not continuous, and when the conditions of life did not 
insensibly graduate away from one part to another. When two- 
varieties are formed in two districts of a continuous area, an inter- 
.mediate variety will often be formed, fitted for an intermediate 
jzone ; but from reasons assigned, the intermediate variety will 
usually exist in lesser numbers than the two forms which it 
connects ; consequently the two latter, during the course of further 

iciodification, from existing in greater numbers, will have a great 
dvantage over the less numerous intermediate variety, and wili 
hus generally succeed in supplanting and exterminating it. 



^f*J 



ciHAP. VI. Siimmary, 165 

We have seen in this chapter how cautious wo should be in con- 
cluding that the most different habits of life could not graduate 
into each other; that a bat, for instance, could not have beeu 
formed by natural selection from an animal which at first only 
glided through the air. 

W fi^have seen that a species under new co pditl^PS of life m ay 
change its habits; o r it may have dive rsiti ^ hab its, with some 
veiy iijilihy ihrise of its nearest congeners. Hence we can under- 
stand, bearing in mind that each organic being is trying to live 
wherever it can live, how it has arisen that there are upland geese 
with webbed feet, ground woodpeckers, diving thrushes, and petrels 
with the habits of auks. 

Although the belief that an organ so perfect as the c^c could 
have been formed by natural selection, is enough to stagger any 
one ; yet in the case of any organ, if we know of a long series of 
gradations in complexity, each good for its possessor, then, under 
changing conditions of life, t here is no l ogical impossibility in.the 
acqu irement of any conceiva ble d egree of perfection through natural 
selection, in ilie cases in which we 'Enowof^no intermediate or_ 
tran sitional, states, we should be exfrcmcly cautious in concluding 
that none can have existea, for flie metamorphoses of many orj5iis 
fihow what wonderful changes in function are at least possible. For 
instance, a swimbladder has apparently been converted into an air- 
breathing lung. The same organ having performed simultaneously 
very different fimctions, and then having been in part or in wholo 
specialised for one function ; and two distinct organs having per- 
ibrmed at the same time the same function, the one having been 
perfected whilst aided by the other, must often have largely facili- 
tated transitions. 

We have seen that in two beings widely remote from each other 
in th^ natural scale, organs serving for the same purpose and in 
external appearance closely similar may have been separately and 
independently formed ; but when such organs are closely examined, 
essential differences in their structure can almost always be detected; 
and this naturally follows from the principle of natural selection. 
On the other hand, th^common rule throughout nat ure js infi nite 
diversi ty of s tructure for gaining the same end ; and this ap:ain 
naturally follows from the same great principle. 

In many cases we are far too ignorant to be enabled to assert that 
a part or organ is so unimportant for the welfare of a species, that 
modifications in its structure could not have been slowly accumu- 
lated by means of natural selection. In many other cases, modifi- 



1 66 Summary, Chap, vi^ 

cations are probably the direct result of the laws of variation or of 
growth, independently of any good having been thus gained. But 
even such structures have often, as we may feel assured, been 
subsequently taken advantage of, and still further modified, for th& 
good of species under new conditions of life. We may, also, believe 
that a part formerly of high importance lias frequently been re- 
tained (as the tail of an aquatic animal by its terrestrial descend- 
ants), though it has become of such small importance that it co:uld 
not, in its present state, have been acquired by means of natural 
selection. 

N atural selection ca n produce nothing in one spec ies for th e 
e x^l^aive e^ood or injury ot another ; thougn it may well produce- 
parts, organs, and excretions highly useful or even indispensable, or 
again highly injurious to another species, but in all cases at the 
same time useful to the possessor. In each well-stocked .country 
natural selection acts through the competition of the inhabitants^ 
and consequently leads to success in the battle for life, only in 
accordance with the standard of that particular country. Hence 
the inhabitants of one country, generally the smaller one, often 
yield to the inhabitants of another and generally the larger country. 
For in the larger country there will have existed more individuals 
and more diversified forms, and the competition will have been 
severer, and thus the standard of perfection will have been rendered 
higher. Natural selection will not necessarily lead to absolute 
perfection ; nor, as far as we can judge by our limited faculties, can 
absolute perfection be everywhere predicated. 

On the theory of natural selection we can clearly understand the 
full meaning of that old eanon in natural history, *' Natura non 
facit saltum.** This canon, if we look to the present inhabitants 
alone of the world, is not strictly correct ; but if we include all 
those of past times, whether known or unknown, it must on this 
theory be strictly true. 

It is j[enerally acknow ^^'^fypfl fl^nt *"^^ ^^gorn-/* •hm'^pra ^^^rr^ hfip 
foi saed on tw o ^reat laws-^U nity of ^vp e- and the Con di tions^o f 
EsiatgQSe* B y unit y of type is meant thfrt fi^B^n^TnpnfQl agrp/^Tn^nf. 
in sl3:uctU£fiJBrhich 4Ke see In Q;;ganic2 beijsgs Qf the same class, and 
which, jflijuite independent of their, habita of. life. On mylEeory,. 
/u nity of type is explained by ^^ ^jy Qf dpgr^Tit. The expression of 
conditions of existence, so often insisted on by the illustrious 
Guvier, is folly embraced by the principle of natural selection. For 
natural selection acts by either now adapting the varying parts of 
each being to its organic and inorganic conditions of life ; or b^r 



Chap. VI. Summary. 167 

liaving adapted them during past periods of time : the adaptations 
being aided in many cases by the increased use or disuse of part^, 
being affected by the direct action of the external conditions of 
life, and subjected in all cases to the several laws of growth and 
Tariation. Hence, in iact, the law of the Conditions of Existence is 
the higher law ; as it includes, through the inheritance of former 
variations and adaptations, that of Unity of Type. 




p 

1 68 Miscellaneous Objections to the Ciup. Vir. 



CHAPTER VII. 

miscella^'eous objections to the theory of natural 

Selection. 

Longevity — Modifications not necessarily simultaneous — Modifications 
apparently of no direct service — Progressive development — Characters 
of small functional importance, the most constant — Supposed incom- 
petence of natural selection to account for the incipient stages of 
useful structures — Causes which interfere with the acquisition through 
natural selection of useful structures — Gradations of structure with 
changed functions — Widely different. organs in members of the same 
class, developed from one and the same source — Reasons for disbeliev- 
ing in great and abrupt modifications. 

I WILL devote this chapter to the consideration of various mis- 
cellaneous objections which have been advanced against my views, 
as some of the previous discussions may thus be made clearer ; but 
it would be useless to discuss all of them, as many have been made 
by writers who have not taken the trouble to understand the 
subject. Thus a distinguished German naturalist has asserted that 
the weakest part of my theory is, that I consider all organic beings 
as imperfect : what I have really said is, that all are not as perfect 
as they might have been in relation to their conditions ; and this is 
shown to be the case by so many native forms in many quarters of 
the world having yielded their places to intruding foreigners. N"or 
can organic beings, even if they were at any one time perfectly 
adapted to their conditions of life, have remained so, when their 
conditions changed, unless they themselves likewise changed ; and 
no one will dispute that the physical conditions of each country, as 
well as the numbers and kinds of its inhabitants, have undergone 
many mutations. 

A critic has lately insisted, with some parade of mathematical 
accuracy, that longevity is a great advantage to all species, so that 
he who believes in natural selection " must arrange his genealogical 
tree '* in such a manner that all the descendants have longer lives 
than their progenitors ! Cannot our critic conceive that a biennial 
jjlant or one of the lower animals might range into a cold climate 
and perish there every winter; and yet, owing to advantages 



CiiAP. VII. ■ Theory of Natural Selection. 169 

gained through natural selectiou, survive from year to year by 
means of its seeds or ova ? Mr. E. Bay Lankester has recently 
discussed this subject, and he concludes, as far as its extreme com- 
plexity allows him to form a judgment, that longevity is generally 
related to the standard of each species in the scale of organisation, 
as well as to the amount of expenditure in reproduction and in 
general activity. And these conditions have, it is probable, been 
largely determined through natural selection. 

It has been argued that, as none of the animals and plants of 
Egypt, of which we know anything, have changed during the last 
three or four thousand years, so probably have none in any part 
of the world. But, as Mr. G. H. Lewes has remarked, this line of 
argument proves too much, for the ancient domestic races figured 
on the Egyptian monuments, or embalmed, are closely similar or 
even identical with those now living ; yet all naturalists admit that 
such races have been produced through the modification of their 
original types. The many animals which have remained unchanged 
since the commencement of the glacial period, would have been an 
incomparably stronger case, for these have been exposed to great 
changes of climate and have migrated over great distances; whereas^ 
in Egypt, during the last several thousand years, the conditions of 
life, as far as we know, have remained absolutely uniform. The 
fact of little or no modification having been effected since the 
glacial period would have been of some avail against those who 
believe in an innate and necessary law of development, but is 
powerless against the doctrine of natural selection or the survival 
of the fittest, which implies that when variations or individual 
differences of a beneficial nature happen to arise, these will be 
preserved ; but this will be effected only under certain favourable 
circumstances. 

The celebrated palseontologist, Bronn, at the close of his German 
translation of this work, asks, how, on the principle of natural 
selection, can a variety live side by side with the parent-species ? 
If both have become fitted for slightly different habits of life or 
conditions, they might live together ; and if we lay on one side 
l^olymorphic species, in which the variability seems to be of a 
peculiar nature, and all mere temporary variations, such as size, 
albinism, &c., the more permanent varieties are generally found, as 
far as I can discover, inhabiting distinct stations, — such as high 
land or low land, dry or moist districts. Moreover, in the case of 
animals which wander much about and cross freely, their varieties 
seem to be generally confined to distinct regions. 

Bronn also insists that distinct species never differ from each other 



I/O Miscellaneous Objections to the Chap. vii. 

in single characters, but in many parts ; and he asks, how it always 
comes that many parts of the organisation should have been modi- 
fied at the same time through variation and natural selection? 
But there is no necessity for supposing that all the parts of any 
being have been simultaneously modified. The most striking 
modifications, excellently adapted for some purpose, might, as was 
formerly remarked, be acquired by successive variations, if slight, 
first in one part and then in another ; and as they would be trans- 
mitted all together, they would appear to us as if they hiad been 
simultaneously developed. The best answer, however, to the above 
objection is afforded by those domestic races which have been 
modified, chiefly through man's power of selection, for some special 
purpose. Look at the race and dray horse, or at the greyhound 
and mastiff. Their whole frames and even their mental characteristics 
have been modified ; but if we could trace each step in the history 
of their transformation, — and the latter steps can be traced, — we 
should not see great and simultaneous changes, but first one part 
and then another slightly modified and improved. Even when 
selection has been applied by man to some one character alone, 
* — of which our cultivated plants offer the best instances, — ^it will 
invariably be found that although this one part, whether it be the 
flower, fruit, or leaves, has been greatly changed, almost all the 
other parts have been slightly modified. This may be attributed 
partly to the principle of correlated growth, and partly to so-called 
spontaneous variation. 

A much more serious objection has been urged by Bronn, and 
recently by Broca, namely, that many characters appear to be of no 
service whatever to their possessors, and therefore cannot have been 
influenced through natural selection. Bronn adduces the length of 
the ears and tails in the different species of hares and mice, — the 
complex folds of enamel in the teeth of many animals, and a 
multitude of analogous cases. With respect to plants, this subject 
has been discussed by Nageli in an admirable essay. He admits that 
natural selection has effected much, but he insists that the families 
of plants differ chiefly from each other in morphological characters, 
which appear to be quite unimportant for the welfare of the species. 
He consequently believes in an innate tendency towards progressive 
and more perfect development. He specifies the arrangement of the 
cells in the tissues, and of the leaves on the axis, as cases in which, 
natural selection could not have acted. To these may be added 
the numerical divisions in the parts of the flower, the position 
of the ovules, the shape of the seed, when not of any use for dis- 
semination, &c. 



Chap. VII. Theory of Natural SeUction. 171 

There is much force in the above objection. Nevertheless, we 
ought, in the first place, to be extremely cautions in pretending 
to decide what stmctnres now are, or have formerly been, of nse to 
each species. In the second place, it should always be borne in 
mind that when one part is modified, so will be other parts, through 
certain dimly seen causes, such as an increased or diminished flow 
of nutriment to a part, mutual pressure, an early developed part 
affecting one subsequently developed, and so forth, — as well as 
through other causes which lead to the many mysterious cases 
of correlation, which we do not in the least understand* These 
agencies may be all grouped together, for the sake of brevity, under 
the expression of the laws of growth. In the third place, we have 
to allow for the direct and definite action of changed conditions of 
life, and for so-called spontaneous variations, in which the nature 
of the conditions apparently plays a quite subordinate part. Bud- 
variations, such as the appearance of a moss-rose on a common 
rose, or of a nectarine on a peach-tree, offer good instances of spon- 
taneous variations ; but ^ven in these cases, if we bear in mind the 
power of a minute drop of poison in producing complex galls, we 
ought not to feel too sure that the above variations are not the 
effect of some local change in the nature of the sap, due to some 
change in the conditions. There must be some e£Scient cause for 
each slight individual difference, as well as for more strongly 
marked variations which occasionally arise ; and if the unknown 
cause were to act persistently, it is almost certain that all the 
individuals of the species would be similarly modified. 

In the earlier editions of this work I under-rated, as it now seems 
probable, the frequency and importance of modifications due to 
spontaneous variability. But it is impossible to attribute to this 
cause the innumerable structures which are so well adapted to the 
habits of life of each species. I can no more believe in this, than 
that the well-adapted form of a raoo-horse or greyhound, which 
before the principle of selection by man was well understood, excited 
80 much surprise in the minds of the older naturalists, can thus be 
explained. 

It may be worth while to illustrate some of the foregoing remarks. 
With respect to the assumed inutility of various parts and organs, 
it is hardly necessary to observe that even in the higher and best- 
known animals many structures exist, which are so highly developed 
that no one doubts that they are of importance, yet their use has 
not been, or has only recently been, ascertained. As Bronn gives 
the length of the ears and tail in the several species of mice as 
instances, though trifling ones, of differences in structure which can 



1/2 Miscellaneous Objections to the Chap. vii. 



be of no special use, I may mention tliat, according to Dr. Schobl, 
the external ears of the common mouse are supplied in an extra- 
ordinary manner with nerves, so that they no doubt serve as tactile 
organs ; hence the length of the ears can hardly be quite unim- 
portant. Wo shall, also, presently see that the tail is a highly 
useful prehensile organ to some of the species ; and its use would 
be much influenced by its length. 

With respect to plants, to which on account of Nageli's essay 
I shall confine myself in the following remarks, it will be admitted 
that the flowers of orchids present a multitude of curious structures, 
which a few years ago would have been considered as mere morpho- 
logical differences without any special function ; but they are now- 
known to be of the highest importance for the fertilisation of the 
species through the aid of insects, and have probably been gained 
through natural selection. No one until lately would have imagined 
that in dimorphic and trimorphic plants the different lengths of the 
stamens and pistils, and their arrangement, could have been of any 
service, but now we know this to be the case. ^ 

In certain whole groups of plants the ovules stand erect, and in 
others they are suspended ; and within the same ovarium of some 
few plants, one ovule holds the former and a second ovule the latter 
position. These positions seem at first purely morphological, or 
of no physiological signification ; but Dr. Hooker informs me that 
within the same ovarium, the upper ovules alone in some cases, 
and in other cases the lower ones alone are fertilised ; and he 
suggests that this probably depends on the direction in which the 
pollen-tubes enter the ovarium. If so, the position of the ovules, 
even when one is erect and the other suspended within the same 
ovarium, would follow from the selection of any slight deviations in 
position which favoured their fertilisation, and the production of seed . 

Several plants belonging to distinct orders habitually produce 
flowers of two kinds, — the one open of the ordinary structure, the 
other closed and imperfect. These two kinds of flowers sometimes 
differ wonderfully in structure, yet may be seen to graduate into 
each other on the same plant. The ordinary and open flowers can 
be intercrossed ; and the benefits which certainly are derived from 
this process are thus secured. The closed and imperfect flowers are, 
however, manifestly of high importance, as they yield with the 
utmost safety a large stock of seed, with the expenditure of wonder- 
fully little pollen. The two kinds of flowers often differ much, as 
just stated, in structure. The petals in the imperfect flowers almost 
always consist of mere rudiments, and the pollen-grains are reduced 
in diameter. In Ononis columnse five of the alternate stamens are 



CuAP. VII. Theory of Natural Selection. 173 

rudimentary ; and in some species of Viola three stamens are in 
this state, two retaining their proper function, but being of very 
^mall size. In six out of thirty of the closed flowers in an Indian 
violet (name imknown, for the plants have never produced with me 
perfect flowers), the sepals are reduced from the normal number 
of Ave to three. In one section of the MalpighiaceaB the closed 
flov^ers, according to A. de Jussieu, are still further modified, for 
the five stamens which stand opposite to the sepals are all aborted, 
a sixth stamen standing opposite to a petal being alone developed ; 
and this stamen is not present in the ordinary flowers of these 
species ; the style is aborted ; and the ovaria are reduced from three 
to two. Now although natural selection may well have had the 
power to prevent some of the flowers from expanding, and to reduce 
the Amount of pollen, when rendered by the closure of the flowers 
superfluous, yet hardly any of the above special modifications can 
have been thus determined, but must have followed from the laws of 
growth, including the functional inactivity of parts, during the pro- 
gress of the reduction of the pollen and the closure of the flowers. 

It is so necessary to appreciate the important effects of the laws 
of growth, that I will give some additional cases of another kind, 
namely of differences in the same part or organ, due to differences 
in relative position on the same plant. In the Spanish chestnut, 
and in certain fir-trees, the angles of divergence of the leaves differ, 
according to Schacht, in the nearly horizontal and in the upright 
branches. In the common rue and some other plants, one flower, 
usually the central or terminal one, opens first, and has five sepals 
and petals, and five divisions to the ovarium ; whilst all the other 
flowers on the plant are tetramerous. In the British Adoxa the 
uppermost flower generally has two calyx-lobes with the other 
organs tetramerous, whilst the surrounding flowers generally have 
three calyx-lobes with the other organs pentamerous. In many 
Compositae and UmbelliferaB (and in some other plants) the circum- 
ferential flowers have their corollas much more developed than those 
of the centre ; and this seems often connected with the abortion of the 
reproductive organs. It is a more curious fact, previously referred 
to, that the achenes or seeds of the circumference and centre 
sometimc's differ greatly in form, colour, and other characters. In 
Carthamus and some other Compositae the central achenes alone 
are furnished with a pappus ; and in Hyoseris the same head yields 
achenes of three different forms. In certain Umbelliferae the ex- 
terior seeds, according to Tausch, are orthospermous, and the central 
one ccelospermous, and this is a character which was considered by 
Be Gandolle to be in other species of the highest systematic im- 



1/4 Miscellaneous Objections to the Chap. vii. 

portance. Prof. Braun mentions a Fumariaceous genus, in which 
the flowers in the lower part of the spike bear oval, ribbed, one* 
seeded nutlets ; and in the upper part of the spike, lanceolate, two- 
valved, and two-seeded siliques. In these several cases, \nth the 
exception of that of the well developed ray-florets, which are of service 
in making the flowers conspicuous to insects, natural selection can- 
not, as £[ir as we can judge, have come into play, or only in a quite 
subordinate manner. All these modifications follow from the relative 
position and inter-action of the parts ; and it can hardly bo doubted 
that if all the flowers and leaves on the same plant had been sub- 
jected to the same external and internal condition, as are the flowers 
and leaves in certain positions, all would have been modified in the 
same manner. 

In numerous other cases we find modifications of structure, which 
are considered by botanists to be generally of a highly import- 
ant nature, affecting only some of the flowers on the same plant, 
or occurring on distinct plants, which grow close together under the 
same conditions. As these variations seem of no special use to 
the plants, they cannot have been influenced by natural selection. 
Of their cause we are quite ignorant; we cannot even attribute 
them, as in the last class of cases, to any proximate agency, such 
as relative position. I will give only a few instances. It is so 
common to observe on the same plant, flowers indifferently tetra^ 
merous, pentamerous, &c., that I need not give examples; but as 
numerical variations are comparatively rare when the parts are 
few, I may mention that, according to De Candolle, the flowers of 
Papaver bracteatum offer either two sepals with four petals (which 
is the common type with poppies), or three sepals with six petals. 
The manner in which the petals are folded in the bad is in most 
groups a very constant morphological character ; but Professor Asa 
Gray states that with some species of Mimulus, the asstivation is 
almost as frequently that of the Ehinanthideaa as of the Antirrhi- 
nideae, to which latter tribe the genus belongs. Aug. St. Hilaire 
gives the following cases : the genus Zanthoxylon belongs to a 
division of the Eutaceae with a single ovary, but in some species 
flowers may be found on the same plant, and even in the same 
panicle, with either one or two ovaries. In Helianthemum the 
capsule has been described as unilocular or 3-locular; and in. 
H. mutabile, "Une lame, ^m ou moins large, s'^tend entre le 
pcricarpe et le placenta.'' In the flowers of Saponaria officinalis. 
Dr. Masters has observed instances of both marginal and free central 
placentation. Lastly, St. Hilaire found towards the southern ex- 
treme of the range of Gomphia oleasformis two forms which he did. 



Chap. VII. Theory of Natural Selection, 175 

not at first doubt were distinct species, but he subsequently saw 
tbem growing on the same bush ; and he then adds, " Yoilk done 
dans un meme individu des loges et un style qui se rattachent 
tantdt k un axe verticale et tantdt k un gynobase/' 

We thus see that with plants many morphological changes may 
be attributed to the laws of growth and the inter-action of parts, 
independently of natural selection. But with respect to Kageli's 
doctrine of an innate tendency towards perfection or progressive 
development, caii it be said in the case of these strongly pro- 
nounced variations, that the plants have been caught in the act of 
progressing towards a higher state of development ? On the con- 
trary, I should infer from the mere fact of the parts in question 
differing or varying greatly on the same plant, that such modi- 
fications were of extremely small importance to the plants them- 
selves, of whatever importance they may generally be to us for 
our classifications. The acquisition of a useless part can hardly 
be said to raise an organism in the natural scale ; and in the case 
of the imperfect, closed flowers above described, if any new prin- 
ciple has to be invoked, it must be one of retrogression rather than 
of progression ; and so it must be with many parasitic and degraded 
animals. We are ignorant of the exciting cause of the above 
specified modifications; but if the unknown cause were to act 
almost uniformly for a length of time, we may infer that the result 
would be almost unifonn ; and in this case all the individuals of the 
species would be modified in the same manner. 

From the fact of the above characters being unimportant for the 
welfare of the species, any slight variations which occurred in them 
would not have been accumulated and augmented through natural 
selection. A. structure which has been developed through long- 
continued selection, when it ceases to be of service to a species, 
generally becomes variable, as we see with rudimentary organs ; for 
it will no longer be regulated by this same power of selection. 
But when, from the nature of the organism and of the conditions, 
modifications have been induced which are unimportant for the^ 
welfare of the species, they may be, and apparently often have 
been, transmitted in nearly the same state to numerous, otherwise 
modified, descendants. It cannot have been of much importance 
to the greater number of mammals, birds, or reptiles, whether they 
were clothed with hair, feathers, or scales ; yet hair has been trans- 
mitted to almost aU mammals, feathers to all birds, and scales to 
all true reptiles. A structure, whatever it may be, which is com- 
mon to many allied forms, is ranked by us as of high systematic 
importance, and consequently is often assumed to be of high vital 



176 Misceilaneotis Objections to the Chap. VlL 

importance to the species. Thus, as I am inclined to believe, 
morphological differences, which we consider as important — such as 
the arrangement of the leaves, the divisions of the flower or of the 
ovarium, the position of the ovules, &c. — first appeared in many- 
cases as fluctuating variations, which sooner or later became con- 
stant through the nature of the organism and of the surroundin*;; 
conditions, as well as through the intercrossing of distinct indivi- 
duals, but not through natural selection ; for as these morphological 
characters do not affect the welfare of the species, any slight devia- 
tions in them could not have been governed or accumulated through 
this latter agency. It is a strange result which we thus arrive at, 
namely that characters of slight vital importance to the species, 
are the most important to the systematist ; but, as we shall here- 
after see when we treat of the genetic principle of classification, 
this is by no means so paradoxical as it may at first apj^ear. 

Although we have no good evidence of the existence in organic 
beings of an innate tendency towards progressive development, yet 
this necessarily follows, as I have attempted to show in the fourth 
chapter, through the continued action of natural selection. For the 
best definition which has ever been given of a high standard of 
organisation, is the degree to which the parts have been specialised 
or differentiated ; and natural selection tends towards this end, inas- 
much as the parts are thus enabled to perform their functions more 
efficiently. 

A distinguished zoologist, Mr. St. George Mivart, has recently 
collected all the objections which have ever been advanced by 
myself and others against the theory of natural selection, as pro- 
pounded by Mr. Wallace and myself, and has illustrated them with 
admirable art and force. When thus marshalled, they make a 
formidable array ; and as it forms no part of Mr. Mivart's plan to 
give the various facts and considerations opposed to his conclusions, 
no slight effort of reason and memory is left to the reader, who may 
wish to weigh the evidence on both sides. When discussing special 
cases, Mr. Mivart passes over the effects of the increased use and 
disuse of parts, which I have always maintained to be highly im- 
portant, and have treated in my ' Variation under Domestication ' 
at greater length than, as I believe, any other writer. He likewise 
often assumes that I attribute nothing to variation, independently 
of natural selection, whereas in the work just referred to I have 
collected a greater number of well-establi^ed cases than can be 
found in any other work known to me. My judgment may not be 
wustworthy, but after reading with care Mr. Mivart's book, and 



Chap. vu. Tlieory of Natural Selection. i 'j'j 

<x>inparmg each section with what I have said on the same head, 
I never before felt so strongly convinced of the general truth of the 
-conclusions here arrived at, subject, of course, in so intricate a 
subject, to much partial error. 

AH Mr. Mivart's objections will be, or have been, considered in 
•the present volume. The one new point which appears to have 
struck many readers is, '* that natural selection is incompetent to ^ 
•account for the incipient stages of useful structures." This subject 
is intimately connected with that of the gradation of characters, 
•often accompanied by a change of function, — for instance, the con- 
version of a swim-bladder into lungs, — ^points which were discussed 
in the last chapter under two headings. Nevertheless, I will here 
•consider in some detail several of the cases advanced by Mr. Mivart, 
:selecting those which are the most illustrative, as want of space 
prevents me from considering all. 

The giraffe, by its lofty stature, much elongated neck, fore-legs, 
head and tongue, has its whole frame beautifully adapted for 
l}rowsing on the higher branches of trees. It can thus obtain food 
beyond the reach of the other Ungulata or hoofed animals inhabiting 
the same country ; and this must be a great advantage to it during 
'dearths. The Niata cattle in S. America show us how small a 
difference in structure may make, during such periods, a great differ- 
ence in preserving an animal's life. These cattle can browse as well 
as others on grass, but from the projection of the lower jaw they 
•cannot, during the often recurrent droughts, browse on the twigs 
of trees, reeds, &c., to which food the common cattle and horses 
are then driven ; so that at these times the Niatas perish, if not fed 
by their owners. Before coming to Mr. Mivart's objections, it may 
be well to explain once again how natural selection will act in all 
ordinary cases. Man has modified some of his animals, without 
necessarily having attended to special points of structure, by simply 
preserving and breeding from the fleetest individuals, as with the 
race-horse and grtyhound, or as with the game-cock, by breeding 
from the victorious birds. So under nature with the nascent giraffe, 
the individuals which were the highest browsers and were able 
'during dearths to reach even an inch or two above the others, will 
-often have been preserved; for they will have roamed over the 
whole country in search of food. That the individuals of the same 
-species often differ slightly in the relative lengths of all their parts 
may be seen in many works of natural history, in which careful 
measurements are given. These slight proportional differences, due 
to the laws of growth and variation, are not of the slightest use or 
importance to most species. But it will have been otherwise with-^ 

N 



1/8 Miscellaneous Objections to the Chap. VII^ 

the nascent giraffe, considering its probable habits of life ; for those 
individuals which had some one part or several parts of their bodies 
rather more ebngated than usual, would generally have survived. 
These will have intercrossed and left offspring, either inheriting the 
same bodily peculiarities, or with a tendency to vary again, in the 
same manner; whilst the individuals, less favoured in the same 
respects, will have been the most liable to perish. 

We here see that there is no need to separate single pairs, as man 
does, when he methodically improves a breed : natural selection will 
preserve and thus separate all the superior individuals, allowing 
them freely to intercross, and will destroy all the inferior indivi- 
duals. By this process long-continued, which exactly corresponds 
with what I have called unconscious selection by man, combined no 
doubt in a most important manner with the inherited effects of the 
increased use of parts, it seems to me almost certain that an ordinary 
hoofed quadruped' might be converted into a giraffe. 

To this conclusion Mr. Mivart brings forward two objections. 
One is that the increased size of the body would obviously require 
an increased supply of food, and he considers it as ''very problemati- 
cal whether the disadvantages thence arising would not, in times of 
scarcity, more than counterbalance the advantages." But as the 
giraffe does actually exist in large numbers in S. Africa, and as 
some of the largest antelopes in the world, taller than an ox, abound 
there, why should we doubt that, as far as size is concerned, inter- 
mediate gradations could formerly have existed there, subjected as 
now to severe dearths. Assuredly the being able to reach, at each 
stage of increased size, to a supply of food, left untouched by the 
other hoofed quadrupeds of the country, would have been of some 
advantage to the nascent giraffe. Nor must we overlook the fact, 
that increased bulk would act as a protection against almost all 
beasts of prey excepting the lion ; and against this animal, its tall 
neck, — and the taller the better, — ^would, as Mr. Chauncey Wright 
has remarked, serve as a watch-tower. It is from this cause, as Sir 
S. Baker remarks, that no animal is more difficult to stalk than the 
giraffe. This animal also uses its long neck as a means of offence 
or defence, by violently swinging its head armed with stump-Uke 
horns. The preservation of each species can rarely be determined 
by any one advantage, but by the union of all, great and small. 

Mr. Mivart then asks (and this is his second objection), if natural 
selection be so potent, and if high browsing be so great an advan- 
tage, why has not any other hoofed quadruped acquired a long neck 
and lofty stature, besides the giraffe, and, in a lesser degree, the 
camel^ giianaco, and macrauchenia ? Or, again, why has not anjr 



Chap. vu. Tluory of Natural Selection. 179 

member of the group acquired a long proboscis ? With respect to 
S. Africa, which was formerly inhabited by numerous herds of the 
giraffe, the answer is not difficult, and can best be given by an 
illustration. In every meadow in England in which trees grow, 
we see the lower branches trimmed or planed to an exact level by 
the browsing of the horses or cattle ; and what advantage would it 
be, for instance, to sheep, if kept there, to acquire slightly longer 
necks? In every district some one kind of animal will almost 
certainly be able to browse higher than the others ; and it is almost 
equally certain that this one kind alone could have its neck 
elongated for this purpose, through natural selection and the effects 
of increased use. In S. Africa the competition for browsing on the 
higher branches of the acacias and other trees must be between 
giraffe and giraffe, and not with the other ungulate animals. 

Why, in other quarters of the world, various animals belonging 
to this same order have not acquired either an elongated neck 
or a proboscis, cannot be distinctly answered; but it is as un- 
reasonable to expect a distinct answer to such a question, as 
why some event in the history of mankind did not occur in one 
country, whilst it did in another. We are ignorant with respect to 
the conditions which determine the numbers and range of each 
species ; and we cannot even conjecture what changes of structure 
would be favourable to its increase in some new country. We can, 
however, see in a general manner that various causes might have 
interfered with the development of a long neck or proboscis. To 
reach the foliage at a considerable height (without climbing^ for 
which hoofed animals are singularly ill-constructed) implies greatly 
increased bulk of body; and we know that some areas support 
singularly few large quadrupeds, for instance S. America, though it 
is so luxuriant ; whilst S. Africa abounds with them to an un- 
paralleled degree. Why this should be so, we do not know ; nor 
why the later tertiary periods should have been much more favour- 
able for their existence than the present time. Whatever the 
causes may have been, we can see that certain districts and times 
would have been much more favourable than others for the develop- 
ment of so large a quadruped as the giraffe. 

In order that an animal should acquire some structure specially 
and largely developed, it is almost indispensable that several other 
parts should be modified and co-adapted. Although every part of 
the body varies slightly, it does not follow that the necessary parts 
should always vary in the right direction and to the right degree. 
With the cUfferent species of our domesticated animals we know 
that the parts vary in a different manner and degree; and that 

N 2 



i8o Miscellaneous Objections to the Chap. vil. 



some species are mucli more variable than others. Even if the 
fitting variations did arise, it does not follow that natural selection 
would be able to act on them, and produce a structure which ap- 
parently would be beneficial to the species. For instance, if the 
number of individuals existing in a country is determined chiefly 
through destruction by beasts of prey, — by external or internal 
parasites, &c., — ^as seems often to be the case, then natural selection 
will be able to do little, or will be greatly retarded, in modifying 
any particular structure for obtaining food. Lastly, natural selec- 
tion is a slow process, and the same favourable conditions must 
long endure in order that any matked effect should thus be' pro- 
duced. Except by assigning such general and vague reasons, we 
cannot explain why, in many quarters of the world, hoofed quadru- 
peds have not acquired much elongated necks or other means for 
browsing on the higher branches of trees. 

Objections of the same nature as the foregoing have been advanced 
by many writers. In each case various causes, besides the general 
ones just indicated, have probably interfered with the acquisition 
through natural selection of structures, which it is thought would be 
beneficial to certain species. One writer asks, why has not the 
ostrich acquired the power of flight ? But a moment's reflection 
will show what an enormous supply of food would be necessary to 
give to this bird of the desert force to move its huge body through 
the air. Oceanic islands are inhabited by bats and seals, but by no 
terrestrial mammals ; yet as some of these bats are peculiar species, 
they must have long inhabited their present homes. Therefore 
Sir C. Lyell asks, and assigns certain reasons in answer, why have 
not seals and bats given birth on such islands to forms fitted to 
live on the land ? But seals would necessarily be first converted 
into terrestrial carnivorous animals of considerable size, and bats into 
terrestrial insectivorous animals; for the former there would be 
no prey; for the bats ground-insects would serve as food, but 
these would already be largely preyed on by the reptiles or birdo, 
which first colonise and abound on most oceanic islands. Gradations 
of structure, with each stage beneficial to a changing species, will' 
be favoured only under certain peculiar conditions. A strictly 
terrestrial animal, by occasionally hunting for food in shallow 
water, then in streams or lakes, might at last be converted in^o an 
animal so thoroughly aquatic as to brave the open ocean. But seals 
would not find on oceanic islands the conditions favourable to their 
gradual reconversion into a terrestrial form. Bats, as formerly 
shown, probably acquired their wings by at first gliding through 
the air from tree to tree, like the so-called flying-squhrels, 



Chap. VII. Theory of Natural Selection, i8i 

for the sake of escaping from their enemies, or for avoidlDg falls ; 
but when tho power of true flight had once been acquired, it would 
never be reconverted back, at least for the above purposes, into the 
less efficient power of gliding through the air. Bats might, indeed, 
like many birds, hare had their wings greatly reduced in size, or 
completely lost, through disuse; but in this case it would be 
necessary that they should first have acquired the power of running 
quickly on the ground, by the aid of their hind legs alone, so as to 
compete with birds or other ground animals ; and for such a change 
a bat seems singularly ill-fitted. These conjectural remarks have 
been made merely to show that a transition of structure, with each 
step beneficial, is a highly complex affair ; and that there is nothing 
strange in a transition not having occurred in any particular case. 

Lastly, more than one writer has asked, why have some animals 
had their mental powers more highly developed than others, as such 
development would be advantageous to all ? Why have not apes 
acquired the intellectual powers of man ? Various causes could be 
assigned ; but as they are conjectural, and their relative probability 
cannot be weighed, it would be useless to give them. A definite 
answer to the latter question ought not to be expected, seeing that 
no one can solve the simpler problem why, of two races of savages, 
one has risen higher in the scale of civilisation than the other ; and 
this apparently implies increased brain-power. 

We will return to Mr. Mivart's other objections. Insects often 
resemble^ for the sake of protection, various objects, such as green or 
decayed leaves, dead twigs, bits of lichen, flowers, spines, excrement 
of birds, and living insects ; but to this latter point I shall here- 
after recur. The resemblance is often wonderfully close, and is not 
confined to colour, but extends to form^ and even to the manner in 
which the insects hold themselves. The caterpillars which project 
motionless like dead twigs from the bushes on which they feed, 
offer an excellent instance of a resemblance of this kind. The 
cases of the imitation of such objects as the excrement of birds, are 
rare and exceptional. On this head, Mr. Mivart remarks, "As, 
according to Mr. Darwin's theory, there is a constant tendency to 
indefinite variation, and as the minute incipient variations will be 
in all directions, they must tend to neutralize each other, and at 
first to form such unstable modifications that it is difficult, if not 
impossible, to see how such indefinite oscillations of infinitesimal 
beginnings can ever build up a sufficiently appreciable resemblance 
to a leaf, bamboo, or other object, for Natural Selection to seize 
upon and perpetuate." 



1 82 Miscellaneous Objections to the Chap, vil 

But in all tlie foregoing cases tlie insects in their original state 
no doubt presented some rude and accidental resemblance to an 
object commonly found in the stations frequented by them. Nor 
is this at all improbable, considering the almost infinite number of 
surrounding objects and the diversity in form and colour of the 
hosta of insects which exist. As some rude resemblance is neces^ 
aary for the first start, we can understand how it is that the larger 
and higher animals do not (with the exception, as far as I know, of 
one fish) resemble for the sake of protection special objects, but 
only the surface which commonly surrounds them, and this chiefly 
in colour. Assuming that an insect originally happened to resemble 
in some degree a dead twig or a decayed leaf, and that it varied 
slightly in many ways, then all the variations which rendered the 
insect at all more like any such object, and thus favoured its escape, 
would be preserved, whilst other variations would be neglected and 
ultimately lost ; or, if they rendered the insect at all less like the 
imitated object, they would be eliminated. There would indeed be 
force in Mr. Mivart's objection, if we were to attempt to account 
&r the above resemblances, independently of natural selection, 
tiiroiigh mere fluctuating variability ; but as the case stands there 
is none. 

Kor can I see any force in Mr. Mivart's difficulty with respect to 
" the last touches of perfection in the mimicry ;" as in the case 
given by Mr. Wallace, of a walking-stick insect (Ceroxylus 
laceratus), which resembles "a stick grown over by a creeping 
moss or jungermannia." So close was this resemblance, that a 
native Dyak maintained that the foliaoeous excrescences were really 
moss. Insects are preyed on by birds and other enemies, whose 
sight is probably sharper than ours, and every grade in resemblance 
which aided an insect to escape notice or detection, would tend 
towards its preservation ; and the more perfect the resemblance so 
much the better for the insect. Considering the nature of the differ- 
toces between the species in the group which includes the above 
Ceroxylus, there is nothing improbable in this insect having varied 
in the irregularities on its surface, and in these having become more 
or less green-coloured ; for in every group the characters which 
differ in the several species are the most apt. to vary, whilst the 
generic characters, or those common to all the species, are the most 
* constant. 

The Greenland whale is one of the most wonderful animals in the 
world, and the baleen, or whale-bone, one of its greatest pecu- 
liarities. The baleen consists of a row, on each side, of the upper 



Ohap. yii. Theory of Natural Selection. 183 

jaw, of about 300 plates or laminaB, which stand dose together 
transversely to the longer axis of the mouth. Within the main row 
there are some subsidiary rows. The extremities and inner margins 
■of all the plates are frayed into stiff bristles, whidi clothe the whole 
^gantic palate, and serve to strain or sift the water, and thus to 
■secure the minute prey on which these great animals subsist. The 
middle and longest lamina in the Greenland whale is ten, twelve, or 
•even fifteen feet in length ; but in the different species of Cetaceans 
there are gradations in length; the middle lamina being in one 
species, according to Scoresby, four feet, in another three, in 
^another eighteen inches, and in the Balaenoptera rostrata only about 
nine inches in length. The quality of the whale-bone also differs in 
the different species. 

With respect to the baleen, Mr. Mivart remarks that if it '^ had 
once attained such a size and development as to be at all useful^ 
then, its preservation and augmentation within serviceable limits 
would be promoted by natural selection alone. But how to obtain 
the beginning of such useful development ? *' In answer, it may 
be asked, why should not the early progenitors of the whales with 
baleen have possessed a mouth constructed something like the 
lamellated beak of a duck ? Ducks, like whales, subsist by sifting 
the mud and water; and the &mily has sometimes been called 
'CHUatores^ or sifters. I hope that I may not be misconstrued into 
«aying that the progenitors of whales did actually possess mouths 
iamellated like the beak of a duck. I wish only to show that this 
is not incredible, and that the immense plates of baleen in the 
Greenland whale mi^ht have been developed from such lamellsB by 
iinely graduated steps, each of service to its possessor. 

The beak of a shoveller-duck (Spatula clypeata) is a more beau- 
tiful and complex structure than the mouth of a whale. The upper 
mandible is furnished on each side (in the specimen examined by 
me) with a row or comb formed of 188 thin, elastic lamellasy 
-obliquely bevelled so as to be pointed, and placed transversely to 
the longer axis of the mouth. They arise from the palate, and are 
iittached by flexible membrane to the sides of the mandible. Those 
standing towards the middle are the longest^ being about one-third 
■of an inch in length, and they project • 14 of an inch beneath the 
odge. At their bases there is a short subsidiary row of obliquely 
transverse lamellae. In these several respects they resemble the 
plates of baleen in the mouth of a whale. But towards the 
extremity of the beak they differ much, as they project inwards, 
instead of straight downwards. The entire head of the shoveller, 
though incomparably less bulky, is about one-eighteenth of the 



184 Miscellaneous Objections to tJie Chap. VIK 

length of the head of a moderately large Babenoptera rostrata, in 
which species the baleen is only nine inches long ; so that if we 
were to make the head of the shoveller as long as that of the 
Balaenoptera, the lamellae would he six inches in length, — ^that is^ 
two-thirds of the length of the baleen in this species of whale. The 
lower mandible of the shoveller-duck is furnished with lamellas of 
equal length with those above, but finer ; and in being thus fur- 
nished it differs conspicuously from the lower jaw of a whale, which 
is destitute of baleen. On the other hand, the extremities of these- 
lower lamellae are frayed into fine bristly points, so that they thus- 
curiously resemble the plates of baleen. In the genus Prion, a 
member of the distinct family of the Petrels, the upper mandible 
alone is furnished with lamellae, which are well developed and 
project beneath the margin ; so that the beak of this bird resembles 
in this respect the mouth of a whale. 

From the highly developed structure of the shoveller's beak we 
may proceed (as I have learnt from information and specimens sent 
to me by Mr. Salvin), without any great break, as far as fitness for 
sifting is concerned, through the beak of the Merganetta armata, and 
in some respects through that of the Aix sponsa, to the beak of the 
common duck. In this latter species, the lamellae are much coarser 
than in the shoveller, and are firmly attached to the sides of the 
mandible ; they are only about 50 in number on each side, arid do not 
project at all beneath the margin. They are square-topped, and are 
edged with translucent hardish tissue, as if for crushing food. The 
edges of the lower mandible are crossed by numerous fine ridges^ 
which project very little. Although the beak is thus very inferior 
as a sifter to that of the shoveller, yet this bird, as every one knows,, 
constantly uses it for this purpose. There are other species, as I 
hear from Mr. Salvin, in which the lamellae are considerably less- 
developed than in the common duck ; but I do not know whether 
they use their beaks for sifting the water. 

Turning to another group of the same family. In the Egyptian 
goose (Chenalopex) the beak closely resembles that of the common 
duck ; but the lamellae are not so numerous, nor so distinct from 
each other, nor do they project so much inwards ; yet this goose, as 
I am informed by Mr. E. Bartlett, " uses its bill like a duck by 
throwing the water out at ihe corners." Its chief food, however, ia 
grass, which it crops like the common goose. In this latter bird, 
the lamellae of the upper mandible are much coarser than in tha 
common duck, almost confluent, about 27 in number on each 
side, and terminating upwards in teeth-like knobs. The palate is 
also covered with hard rounded knobs. The edges of the lowei 



Chap. vii. Theory of Natural Selection, 1 85 

mandible are serrated with teeth much more prominent, coarser, 
and sharper than in the duck. The common goose does not sift the 
water, but uses its beak exclusively for tearing or cutting herbage, 
for which purpose it is so well fitted, that it can crop grass closer 
than almost any other animal. There are other species of geese, as 
I hear from Mr. Bartlett, in which the lamellas are less developed 
than in the common goose. 

We thus see that a member of the duck family, with a beak 
constructed like that of the common goose and adapted solely for 
grazing, or even a member with a beak having less well-developed^^ 
lamellas, might be converted by small changes into a species like 
the Egyptian goose, — this into one like the common duck, — and, 
lastly, into one like the shoveller, provided with a beak almost 
exclusively adapted for sifting the water ; for this bird could hardly 
use any part of its beak, except the hooked tip, for seizing or tearing 
solid food. The beak of a goose, as I may add, might also be con- 
verted by small changes into one provided with prominent, recurved 
teeth, like those of the Merganser (a member of the same family), 
serving for the widely different purpose of securing live fish. 

Returning to the whales. The Hyperoodon bidens is destitute of 
true teeth in an efficient condition, but its palate is roughened, 
according to Lacep^de, with small, imequal, hard points of horn. 
There is, therefore, nothing improbable in supposing that some 
early Cetacean form was provided with similar points of horn on the 
palate, but rather more regularly placed, and which, like the knobs 
on the beak of the goose, aided it in seizing or tearing its food. If 
so, it will hardly be denied that the points might have been con- 
verted through variation and natural selection into lamellse as well- 
developed as those of the Egyptian goose, in which case they would 
have been used both for seizing objects and for sifting the water ; 
then into lamellaa like those of the domestic duck ; and so onwards, 
until they became as well constructed as those of the shoveller, in 
which case they would have served exclusively as a sifting appa- 
ratus. From this stage, in which the lamellae would be two-thirds 
of the length of the plates of baleen in the Balaenoptera rostrata, 
gradations, which may be observed in still-existing Cetaceans, lead 
us onwards to the enormous plates of baleen in the Greenland 
whale. Nor is there the least reason to doubt that each step in 
this scale might have been as serviceable to certaiu ancient Ceta-> 
ceans, with the functions of the parts slowly changing during the 
progress of development, as are the gradations in the beaks of 
the dijBferent existing members of the duck-family. We should 
bear in mind that each species of duck is subjected to a severe 



1 86 Miscellaneous Objections to the Chap, vil 

struggle for existence, and that the structure of every part of ita 
frame must be well adapted to its conditions of life. 

The Pleuronectid£e, or Flat-fish,' are remarkable for their asym- 
metrical bodies. They rest on one side, — ^in the greater number of 
species on the left, but in some on the right side ; and occasionally 
reversed adult specimens occur. The lower, or resting-surface, re» 
sembles at first sight the ventral surface of an ordinary fish : it is of 
a white colour^ less developed in many ways than the upper side, 
with the lateral fins often of smaller size. But the eyes offer the 
most remarkable peculiarity ; for they are both placed on the upper 
side of the head. During early youth, however, they stand oppo- 
site to each other, and the whole body is then symmetrical, with 
both sides equally coloured. Soon the eye proper to the lower side 
begins to glide slowly round the head to the upper side ; but does 
not pass right through the skull, as was formerly thought to be 
the case. It is obvious that unless the lower eye did thus travel 
round, it could not be used by the fish whilst lying in its habitual 
position on one side. The lower eye would, also, have been liable 
to be abraded by the sandy bottom. That the Pleuronectidae are 
admirably adapted by their flattened and asynmietrical structure 
for their habits of life, is manifest from several species, such as 
soles, flounders, &c., being extremely common. The chief ad- 
vantages thus gained seem to be protection fi-om their enemies, 
and facility for feeding on the ground. The different members, 
however, of the family present, as Schickite remarks, " a long series 
of forms exhibiting a gradual transition from Hippoglossus pinguis, 
which does not in any considerable degree alter the shape in which 
it leaves the ovum, to the soles, which are entirely thrown to one 
side." 

Mr. Mivart has taken up this case, and remarks that a sudden 
spontaneous transformation in the position of the eyes is hardly 
conceivable, in which I quite agree with him. He then adds : ** if 
the transit was gradual, then how such transit of one eye a minute 
fraction of the journey towards the other side of the head could 
benefit the individual is, indeed, far from clear. It seems, even, 
that such an incipient transformation must rather have been inju- 
rious." But he might have found an answer to this objection in 
the excellent observations published in 1867 by Malm. The" 
Pleuronectidae, whilst very young and still symmetrical, with their 
eyes standing on opposite sides of the head, cannot long retain 
a vertical position, owing to the excessive depth of their bodies, the 
small size of their lateral fins, and to their being destitute of a 



Chap. vh. Theory of Natural Selection. i Zj 

swimbladder. Hence soon growing tired, they fall to the bottom 
on one side. Whilst thus at rest they often twist, as Malm 
observed, the lower eye upwards, to see above them; and they 
do this so vigorously that the eye is pressed hard against the 
upper part of the orbit. The forehead between the eyes conse- 
quently becomes, as could be plainly seen, temporarily contracted 
in breadth. On one occasion Malm saw a young fish raise and 
depress the lower eye through an angular distance of about seventy 
degrees. 

We should remember that the skull at this early age is cartila- 
ginous and flexible, so that it readily yields to muscular action. 
It is also known with the higher animals, even after early youth, 
that the skull yields and is altered in shape, if the skin or muscles 
be permanently contracted through disease or some accident. With 
long-eared rabbits, if one ear lops forwards and downwards, its 
weight drags forward all the bones of the skull on the same side, of 
whichL I have given a figure. Malm states that the newly-hatched 
young of perches, salmon, and several other synmietrical fishes, 
have the habit of occasionally resting on one side at the bottom ; 
and he has observed that they often then strain their lower eyes 
so as to look upwards; and their skulls are thus rendered rather 
crooked. These fisTies, however, are soon able to hold themselves 
in a vertical position, and no permanent effect is thus produced. 
With the Pleuronectidas, on the other hand, the older they grow 
the more habitually they rest on one side, owing to the increasing 
flatness of their bodies, and a permanent effect is thus produced on 
the form of the head, and on the position of the eyes. Judging 
from analogy, the tendency to distortion would no doubt be 
increased through the principle of inheritance. Schibdte believes, 
in opposition to some other naturalists, that the PleuronectiddB are 
not quite symmetrical even in the embryo ; and if this be so, wo 
could understand how it is that certain species, whilst young, 
habitually fall over and rest on the left side, and other species on 
the right side. Malm adds, in confirmation of the above view, that 
the adult Trachypterus arcticus, which is not a member of the 
Pleuronectidas, rests on its left side at the bottom, and swims 
diagonally through the water ; and in this fish, the two sides of the 
head are said to be somewhat dissimilar. Our great authority on 
Fishes, Dr. GUnther, concludes his abstract of Mahn's paper, by 
remarking that " the author gives a very simple explanation of the 
abnormal condition of the Pleuronectoids." 

We thus see that the first stages of the transit of the eye from 
one side of the head to the other, which Mr. Mivart considers would 



1 88 Miscellaneous Objections to the Chap. vix. 

be injurious, may be attributed to the habit, no doubt bene- 
ficial to the individual and to the species, of endeavouring to 
look upwards with both eyes, whilst resting on one side at the 
bottom. We may also attribute to the inherited effects of use 
the fact of the mouth in several kinds of flat-fish being bent 
towards the lower surface, with the jaw bones stronger and more 
effective on this, the eyeless side of the head, than on the other, 
for the sake, as Dr. Traquair supposes, of feeding with ease on the 
ground. Disuse, on the other hand, will account for the less deve- 
loped condition of the whole inferior half of the body, including the 
lateral fins ; though Yarrell thinks that the reduced size of these 
fins is advantageous to the fish, as " there is so much less room for 
their action, than with the larger fins above." Perhaps the lesser 
number of teeth in the proportion of four to seven in the upper 
halves of the two jaws of the plaice, to twenty-five to thirty in the 
lower halves, may likewise be accounted for by disuse. From the 
colourless state of the ventral surface of most fishes and of many 
other animals, we may reasonably suppose that the absence of 
colour in flat-fish on the side, whether it be the right or left, 
which is undermost, is due to the exclusion of light. But it can- 
not be supposed that the peculiar speckled appearance of the upper 
side of the sole, so like the sandy bed of the sea, or the power in 
iBome species, as recently shown by Pouchet, of changing their 
colour in accordance with the surrounding surface, or the presence 
of bony tubercles on the upper side of the turbot, are due to the 
action of the light. Here natural selection has probably come into 
play, as well as in adapting the general shape of the body of these 
fishes, and many other peculiarities, to their habits of life. We 
should keep in mind, as I have before insisted, that the inherited 
effects of the increased use of parts, and perhaps of their disuse, will 
be strengthened by natural selection. For all spontaneous varia- 
tions in the right direction will thus be preserved ; as will those 
individuals which inherit in the highest degree the effects of the 
increased and beneficial use of any part. How much to attribute in 
each particular case to the effects of use, and how much to natural 
selection, it seems impossible to decide. 

I may give another instance of a structure which apparently owes 
its origin exclusively to use or habit. The extremity of the tail in 
some American monkeys has been converted into a wonderfully 
perfect prehensile organ, and serves as a fifth hand. A reviewer 
who agrees with Mr. Mivart in every detail, remarks on this struc- 
ture : " It is impossible to believe that in any number of ages the 
first slight incipient tendency to grasp could preserve the lives of 



CiiAP. VII. Theory of Natural Selection, 1 89 

the individuals possessing it, or favour their chance of having and 
of rearing ofifspring.*' But there is no necessity for any such belie£ 
Habit, and this almost implies that some henefit great or small \a 
thus derived, would in all probability suffice for the work. Brehm 
saw the young of an African monkey (Cercopithecus) clinging to 
the under surface of their mother by their hands, and at the same 
time they hooked their little tails round that of their mother. 
Professor Henslow kept in confinement some harvest mice (Mus 
messorius) which do not possess a structurally prehensile tail ; but 
he frequently observed that they curled their tails round the 
branches of a bush placed in the cage, and thus aided themselves 
in climbing. I have received an analogous account from Dr. 
Giiiither, who has seen a mouse thus suspend itself. If the harvest 
mouse had been more strictly arboreal, it would perhaps have had 
its tail rendered structurally prehensile, as is the case with some 
members of the same order. Why Cercopithecus, considering its 
habits whilst young, has not become thus provided, it would be 
difficult to say. It is, however, possible that the long tail of this 
monkey may be of more service to it as a balancing organ in 
making its prodigious leaps, than as a prehensile organ. 

The mammary glands are common to the whole class of mam- 
mals, and are indispensable for their existence ; they must, there- 
fore, have been developed at an extremely remote period, and we 
can know nothing positively about their manner of development. 
Mr. Mivart asks : .'* Is it conceivable that the young of any animal 
was ever saved from destruction by accidentally sucking a drop of 
scarcely nutritious fluid from an accidentally hypertrophied cuta- 
neous gland of its mother? And even if one was so, what chance 
was there of the perpetuation of such a variation ?*' But the case 
is not here put fairly. It is admitted by most evolutionists that 
mammals are descended from a marsupial form; and if so, the 
mammary glands will have been at first developed within the mar- 
supial sack. In the case of the fish (Hippocampus) the eggs are 
hatched, and the young are reared for a time, within a sack of this 
nature ; and an American naturalist, Mr. Lockwood, believes from 
what he has seen of the development of the young, that they are 
nourished by a secretion from the cutaneous glands of the sack. 
Now with the early progenitors of mammals, almost before they 
deserved to be thus designated, is it not at least possible that the 
young might have been similarly nourished ? And in this case, 
the individuals which secreted a fluid, in some degree or manner 
the most nutritious, so as to partake of the nature of milk, would 



igo Miscellaneous Objections to the Chap. VI J. 

in the long run have reared a larger number of well-nourished off- 
spring, than would the individuals which secreted a poorer fluid ; 
and thus the cutaneous glands, which are the homologues of the 
mammary glands, would have been improved or rendered more 
effective. It accords with the widely extended principle of speciali- 
sation, that the glands over a certain space of the sack should have 
become more highly developed than the remainder ; and they would 
then have formed a breast, but at first without a nipple, as we see in 
the Ornithorhyncus, at the base of the mammalian series. Through 
what agency the glands over a certain space became more highly 
specialised than the others, I will not pretend to decide, whether 
in part through compensation of growth, the effects of use, or of 
natural selection. 

The development of the mammary glands would have been of no 
service, and could not have been effected through natural selection, 
unless the young at the same time were able to partake of the 
secretion. There is no greater difficulty in understanding how 
young mammals have instinctively learnt to suck the breast, than 
in understanding how unliatched chickens have learnt to break the 
egg-shell by tapping against it with their specially adapted beaks ; 
or how a few hours after leaving the shell they have learnt to pick 
up grains of food. In such cases the most probable solution seems 
to be, that the habit was at first acquired by practice at a more 
advanced age, and afterwards transmitted to the offspring at an 
earlier age. But the young kangaroo is said not to suck, only to 
cling to the nipple of its mother, who has the power of injecting 
milk into the mouth of her helpless, half-formed offspring. On this 
head Mr. Mivart remarks : " Did no special provision exist, the 
young one must infallibly be choked by the intrusion of the milk 
into the windpipe. But there U a special provision. The larynx 
is so elongated that it rises up into the posterior end of the nasal 
passage, and is thus enabled to give free entrance to the air for the 
lungs, while the milk passes harmlessly on each side of this elon- 
gated larynx, and so safely attains the gullet behind it.'* Mr. Mivart 
then asks how did natural selection remove in the adult kangaroo 
(and in most other mammals, on the assumption that they are 
descended from a marsupial form), '* this at least perfectly innocent 
and harmless structure?" It may be suggested in answer that the 
voice, which is certainly of high importance to many animals, could 
hardly have been used with full force as long as the larynx entered 
the nasal passage ; and Professor Flower has suggested to me that 
this structure would have greatly interfered with an animal swallow- 
ing solid food. 



Chap. VII. Theory of Natural Selection, 191 

We will now turn for a short space to the lower divisions of the 
animal kingdom. The Echinodermata (star-fishes, sea-urchins, &c.> 
are furnished with remarkable organs, called pedicellarite, which 
consist, when well developed, of a tridactyle forceps — that is^ of one 
formed of thi^ serrated arms, neatly fitting together and placed on 
the summit of a flexible stem, moved by muscles. These forceps 
can seize firmly hold of any object ; and Alexander Agassiz has 
seen an Echinus or sea-urchin rapidly passing particles of excrement 
from forceps to forceps down certain lines of its body, in order that 
its shell should not be fouled. But there is no doubt that besides 
xemoving dirt of all kinds, they subserve other functions ; and one 
of these apparently is defence. 

With respect to these organs, Mr. Mivart, as on so many pre- 
vious occasions, asks : '' What would be the utility of the first 
rtidimentary beginnings of such structures, and how could sucli 
incipient buddings have ever preserved the life of a single Echinus ? '' 
He adds, *' not even the ivdden development of the snapping action 
could have been beneficial without the freely moveable stalk, nor 
could the latter have been efficient without the snapping jaws, yet 
no minute merely indefinite variations could simultaneously evolve 
these complex co-ordinations of structure ; to deny this seems to do 
no less than to affirm a startling paradox.*' Paradoxical as this 
may appear to Mr. Mivart, tridactyle forcepses, immovably fixed 
at the base, but capable of a snapping action, certainly exist on 
some star-fishes ; and this is intelligible if they serve, at least in 
part,, as a means of defence. Mr. Agassiz, to whose great kindness 
I am indebted for much information on the subject, informs me 
that there are other star-fishes, in which one of the three arms of 
the forceps is reduced to a support for the other two ; and again, 
other genera in which the third arm is completely lost. In Echino- 
neus, the shell is described by M. Perrier as bearing two kinds of 
pedicellariae, one resembling those of Echinus, and the other those 
of Spatangus; and such cases are always interesting as affording 
the means of apparently sudden transitions, through the abortion of 
one of the two states of an organ. 

With respect to the steps by which these curious organs have 
been evolved, Mr. Agassiz infers from his own researches and those 
of MUller, that both in star-fishes and sea-urchins the pedicellaria^ 
must undoubtedly be looked at as modified spines. This may be 
inferred from their manner of development in the individual, as 
well as from a long and perfect series of gradations in different 
sp^ies and genera, from simple granules to ordinary spines, to 
perfect tridactyle pedicellarise. The gradation extends even tc 



192 Miscellaneous Objections to the Chap. vn. 

the manner in which ordinary spines and the pedicellariaB with 
their supporting calcareous rods are articulated to the shell. In 
certain genera of star-fishes, "the very combinations needed to 
show that the pedicellariae are only modified branching spines** 
may be found. Thus we have fixed spines, with three equi-distant, 
serrated, moveable branches, articulated to near their bases ; and 
higher up, on the same spine, three other moveable branches. 
Now when the latter arise from the summit of a spine they form 
in fact a rude tridactyle pedicellaria, and such may be seen on the 
same spine together with the three lower branches. In this case 
the identity in nature between the arms of the pedicellarias and the 
moveable branches of a spine, is unmistakeable. It is generally 
admitted that the ordinary spines serve as a protection ; and if so, 
there can be no reason to doubt that those furnished with serrated 
and moveable branches likewise serve for the same purpose ; and 
they would thus serve still more effectively as soon as by meeting 
together they acted as a prehensile or snapping apparatus. Thus 
«very gradation, from an ordinary fixed spine to a fixed pedicellaria, 
would be of service. 

In certain genera of star-fishes these organs, instead of being 
fixed or borne on an immovable support, are placed on the summit 
of a flexible and muscular, though short, stem ; and in this case 
they probably subserve some additional function besides defence. 
In the sea-urchins the steps can be followed by which a fixed spine 
becomes articulated to the shell, and is thus rendered moveable. 
I wish I had space here to give a fuller abstract of Mr. Agassiz's 
interesting observations on the development of the pedicellariae. 
All possible gradations, as he adds, may likewise be found between 
the pedicellariae of the star-fishes and the hooks of the Ophiurians, 
another group of the Echinodermata ; and again between the pedi- 
cellariae of sea-urchins and the anchors of the Holothuriae, also 
belonging to the same great class. 

Certain compound animals, or zoophytes as they have been 
termed, namely the Polyzoa, are provided with curious organs 
caUed avicularia. These differ much in structure in the different 
species. In their most perfect condition, they curiously resemble the 
head and beak of a vulture in miniature, seated on a neck and cap- 
able of movement, as is likewise the lower jaw or mandible. In one 
species observed by me all the avicularia on the same branch often 
moved simultaneously backwards and forwards, with the lower 
jaw widely open, through an angle of about 90°, in the course of 
five seconds ; and their anovement caused the whole polyzoary to 



Chap. VII. Theory of Natural Selection, 193 

tremble. When the jaws are touched with a needle they seize it 
so firmly that the branch can thus be shaken. 

Mr. Mivart adduces this case, chiefly on account of the supposed 
difficulty of organs, namely the avicularia of the Polyzoa and the 
pedicellariaa of the Echinodermata, which he considers as '' essen- 
tially similar," having been developed through natural selection in 
widely distinct divisions of the animal kingdom. But, as far as 
structure is concerned, I can see no similarity between tridactyle 
pedicellaiia3 and avicularia. The latter resemble somewhat more 
closely the chelas or pincers of Crustaceans ; and Mr. Mivart might 
have adduced with equal appropriateness this resemblance as a 
special difBculty ; or even their resemblance to the head and beak 
of a bird. The avicularia are believed by Mr. Busk, Dr. Smitt, and 
Dr. Xitsche — naturalists who have carefully studied this group — to 
be homologous with the zooids and their cells which compose the 
zoophyte ; the moveable lip or lid of the cell corresponding with the 
lower and moveable mandible of the avicularium. Mr. Busk, how- 
ever, does not know of any gradations now existing between a zooid 
and an avicularium. It is therefore impossible to conjecture by 
' what serviceable gradations the one could have been converted into 
the other : but it by no means follows from this that such grada- 
tions have not existed. 

As the chelse of Crustaceans resemble in some degree the avicu- 
laria of Polyzoa, both serving as pincers, it may be worth while to 
show that with the foimer a long series of serviceable gradations 
still exists. In the first and simplest stage, the terminal segment 
of Zs limb shuts down either on the square summit of the broad 
penultimate segment, or against one whole side ; and is thus enabled 
to catch hold of an object ; but the limb still serves as an organ 
of locomotion. We next find one corner of the broad penultimate 
segment slightly prominent, sometimes furnished with irregular 
teeth ; and against these the terminal segment shuts down. By an 
increase in the size of this projection, with its shape, as well as that 
of the terminal segment, slightly modified and improved, the pincers 
are rendered more and more perfect, until we have at last an instru- 
ment as efficient as the chelas of a lobster ; and all these gradations 
can be actually traced. 

Besides the avicularia, the Polyzoa possess curious organs called 
yibracula. These generally consist of long bristles, capable of 
movement and easily excited. In one species examined by me 
the vibracula were slightly curved and serrated along the outer 
margin ; and all of them on the same polyzoary often moved simul- 
taneously ; 80 that, acting like long oars, they swept a branch rapidl)' 





194 Miscellaneous Objections to the Chap. Vli. 

across the object-glass of my microscope. When a branch was 
placed on its face, the vibracula became entangled, and they made' 
violent efforts to free themselves. They are supposed to -erve as 
a defence, and may be seen, as Mr. Busk remarks, "to sweep 
slowly and carefully over the surface of the polyzoary, removing 
what might be noxious to the delicate inhabitants of the cells when 
their tentacula are protruded." The avicularia, like the vibracula, 
probably serve for defence, but they also catch and kill small living 
animals, which it is believed are afterwards swept by the currents 
within reach of the tentacula of the zooids. Some species are 
provided with avicularia and vibracula ; some With avicularia alone, 
and a few with vibracula alone. 

It is not easy to imagine two objects more widely different in 
appearance than a bristle or vibraculum, and an avicularium like 
the head of a bird ; yet they are almost certainly homologous and 
have been developed &om the same common source, namely a zooid 
with its cell. Hence we can understand how it is that these 
organs graduate in some cases, as 1 am informed by Mr. Busk, 
into each other. Thus with the avicularia of several species of 
Lepralia, the moveable mandible is so much produced and is so like 
a bristle, that the presence of the upper or fixed beak alone serves 
to determine its avicularian nature. The vibracula may have been 
directly developed from the lips of the cells, without having passed 
through the avicularian stage ; but it seems more probable that 
they have passed through this stage, as during the^^ early stages of 
the transformation, the other parts of the cell with the included 
zooid could hardly have disappeared at once. In many cases the 
vibracula have a grooved support at the base, which seems to repre- 
sent the fixed beak ; though this support in some species is quite 
absent. This view of the development of the vibracula, if trust- 
worthy, is interesting ; for supposing that all the species provided 
with avicularia had become extioct, no one with the most vivid 
imagination would ever have thought that the vibracula had originally 
existed as part of an organ, resembling a bird's head or an irregular 
box or hood. It is interesting to see two such widely different 
organs developed from a common origin ; and as the moveable lip 
of the cell serves as a protection to the zooid, there is no difficulty 
in believing that all* the gradations, by which the lip became con- 
verted first into the lower mandible of an avicularium and then 
into an elongated bristle, likewise served as a protection in different 
ways and under different circumstances. 

In the vegetable kingdom Mr. Mivart only alludes to two cases, 



CuAP. VII. Tfieory of Natural Selection, 195 

namely the structure of the flowers of orchitis, and the movements 
of climhing plants. With respect to the former, he says, " the 
explanation of their origin is deemed thoroughly unsatisfactory — 
utterly insufficient to explain the incipient, infinitesimal heginninzs 
of structures which are of utility only when they are considerably 
developed." As I have fully treated this subject in another work, 
1 will here give only a few details on one alone of the most striking 
X)eculiarities of the flowers of orchids, namely their pollinia. A 
}X)llinium when highly developed consists of a mass of pollen-grains, 
affixed to an elastic foot-stalk or caudicle, and this to a little mass 
of extremely viscid matter. The pollinia are by this means trans- 
ported by insects from one flower to the stip^ma of another. In 
some orchids there is no caudicle to the pollen-masses, and the 
grains are merely tied together by fine threads ; but as these are 
not confined to orchids, they need not here be considered ; yet I 
may mention that at the base of the orchidaceous series, in Cypri- 
pedium, we can see how the threads were probably first developed. 
In other orchids the threads cohere at one end of the pollen-masses ; 
and this forms the first or nascent trace of a caudicle. That this 
is the origin of the caudicle, even when of considerable length and 
highly developed, we have good evidence in the aborted pollen- 
grains which can sometimes be detected embedded within the 
central and solid parts. 

With respect to the second chief peculiarity, namely the little 
mass of viscid matter attached to the end of the caudicle, a long 
series of gradations can be specified, each of plain service to the 
plant. In most flowers belonging to other orders the stigma se- 
cretes a little viscid matter. Now in certain orchids similar viscid 
matter is secreted, but in much larger quantities by one alone of 
the three stigmas ; and this stigma, perhaps in consequence of the 
copious secretion, is rendered sterile. When an insect visits a flower 
of this kind, it rubs off some of the viscid matter and thus at the 
same time drags away some of the pollen -grains. From this simple 
condition, which differs but little from that of a multitude of 
coDttmon flowers, there are endless gradations, — to species in which 
the pollen-mass terminates in a very short, free caudicle, — ^to others* 
in which the caudicle becomes firmly attached to the viscid matter, 
with the sterile stigma itself much modified. In this latter case 
we have a pollinium in its most highly developed and perfect con- 
dition. He who will carefully examine the flowers of orchids for 
himself will not deny the existence of the above series of gradations 
— from a mass of pollen-grains merely tied together by threads, 
with the stigma difiering but little from that of an ordinary flower, 

o 2 



196 Miscellaneous Objections to the Chap. vii. 

to a highly complex pollinium, adsairably adapted for transportal 
by insects ; nor will he deny that all the gradations in the several 
species are admirably adapted in relation to the general structure 
of each flower for its fertilisation by dififerent insects. In this, and 
in almost every other case, the enquiry may be pushed further 
backwards ; and it may be asked how did the stigma of an ordinary 
flower become viscid, but as we do not know the full history of any 
one group of beings, it is as useless to ask, as it is hopeless to 
attempt answering, such questions. 

We will now turn to climbing plants. These can be arranged in 
a long series, from those which simply twine round a support, to 
those which I have called leaf-climbers, and to those provided with 
tendrils. In these two latter classes the stems have generally, but 
not always, lost the power of twining, though they retain the power 
of revolving, which the tendrils likewise possess. The gradations 
from leaf-climbers to tendril-bearers are wonderfully close, and 
certain plants may be indifferently placed in either class. But in 
ascending the series from simple twiners to leaf-climbers, an impor- 
tant quality is added, namely sensitiveness to a touch, by which 
means the foot-stalks of the leaves or flowers, or these modified 
and converted into tendrils, are excited to bend round and clasp 
the touching object. He who will read my memoir on these plants 
will, I think, admit that all the many gradations in function and 
structure between simple twiners and tendril-bearers are in each 
case beneficial in a high degree to the species. For instance, it 
is clearly a great advantage to a twining plant to become a leaf- 
climber; and it is probable that every twiner which possessed 
leaves with long foot-stalks would have been developed into a leaf- 
climber, if the foot-stalks had possessed in any slight degree the 
requisite sensitiveness to a touch. 

As twining is the simplest means of ascending a support, and 
forms the basis of our series, it may naturally be asked how did 
plants acquire this power in an incipient degree, afterwards to be 
improved and increased through natural selection. The power of 
twining depends, firstly, on the stems whilst young being extremely 
flexible (but this is a character common to many plants which are 
QOt climbers) ; and, secondly, on their continually bending to all 
points cf the compass, one after the other in succession, in the same 
order. By this movement the stems are inclined to all sides, and 
are made to move round and round. Aa soon as the lower part of 
of a stem strikes against any object and is stopped, the upper part 
still goes on bending and revolving, and thus necessarily twines 
round and up the support. The revolving movement ceases after 



Chap. VII. Theory of Natural Selection. 197 

the ep.rly growth of each shoot As in many widely separated 
families of plants, single species and single genera possess the power 
of revolving, and have thus become twiners, they must have 
independently acquired it, and cannot have inherited it from a 
common progenitor. Hence I was led to predict that some slight 
tendency to a movement of this kind would be found to be far from 
uncommon with plants which did not climb ; and that this had 
afforded the basis for natural selection to work on and improve. 
When I made tfiis prediction, I knew of only one imperfect case, 
namely of the young flower-peduncles of a Maurandia which 
revolved slightly and irregularly, like the stems of twining plants, 
but without making any use of this habit. Soon afterwards Fritz 
Miiller discovered that the young stems of an Alisma and of a 
Linum, — plants which do not climb and are widely separated in 
the natural system, — revolved plainly, though irregularly ; and he 
states that he has reason to suspect that this occurs with some other 
plants. These slight movements appear to be of no service to the 
plants in question ; anyhow, they are not of the least use in the way 
of climbing, which is the point that concerns us. Nevertheless we can 
see that if the stems of these plants had been flexible, and if under 
the conditions to which they are exposed it had profited them to as- 
cend to a height, then the habit of slightly and irregularly revolving 
might have been increased and utilised through natural selection, 
until they had become converted into well-developed twining species. 
With respect to the sensitiveness of the foot-stalks of the leaves 
and flowers, and of tendrils, nearly the same remarks are applicable 
as in the case of the revolving movements of twining pkmts. As 
a vast number of species, belonging to widely distinct groups, are 
endowed with this kind of sensitiveness, it ought to be found in a 
nascent condition in many plants which have not become climbers. 
This is the case: I observed that the young flower-peduncles of 
the above Maurandia curved themselves a little towards the side 
which was touched. Morren found in several species of Oxalis that 
the leaves and their foot-stalks moved, especially after exposure 
to a hot sun, when they were gently and repeatedly touched, or 
when the plant was shaken. I repeated these observations on some 
other species of Oxalis with the same result ; in some of them the 
movement was distinct, but was best seen in the young leaves ; in 
others it was extremely slight. It is a more important fact that 
according to the high authority of Hofmeister, the young shoots and 
leaves of all plants move after being shaken ; and with climbing 
plants it is, as we know, only during the early stages of growth that 
the foot-stalks and tendrils are sensitive. 



198 Miscellaneous Objections to the Chap. VlL 

It is scarcely possible that the above slight movements, due to 
a touch or shake, in the young and growing organs of plants, can 
be of any functional importance to them. But plants possess, in 
obedience to various stimuli, powers of movement, which are of 
manifest importance to them ; for instance, towards and more rarely 
from the light, — in opposition to, and more rarely in the direction 
of, the attraction of gravity. When the neiTes and muscles of an 
animal are excited by galvanism or by the absorption of strychnine, 
the consequent movements may be called an incidental result, for 
the nerves and muscles have not been rendered specially sensitive to 
these stimuli. So with plants it appears that, from having the 
power of movement in obedience to certain stimuli, they are excited 
in an incidental manner by a touch, or by being shaken. Hence 
there is no great difficulty in admitting that in the case of leaf- 
climbers and tendril-bearers, it is this tendency which has been 
taken advantage of and increased through natural selection. It is, 
however, probable, from reasons which I have assigned in my 
memoir, that this will have occurred only with plants which had 
already acquired the powet of revolving, and had thus become 
twiners. 

I have already endeavoured to explain how plants became twiners, 
namely, by the increase of a tendency to slight and irregular 
revolving movements, which were at first of no use to them ; this 
movement, as well as that due to a touch or shake, being the inci- 
dental result of the power of moving, gained for other and bene- 
ficial purposes. Whether, during the gradual development of 
climbing plants, natural selection has been aided by the inherited 
effects of use, I will not pretend to decide; but we know that 
certain periodical movements, for instance the so-called sleep of 
plants, are governed by habit. 

I have now considered enough, perhaps more than enough, of tho 
cases, selected with care by a skilful naturalist, to prove that natural 
selection is incompetent to account for the incipient stages of useful 
structures ; and I have shown, as I hope, that there is no great 
difficulty on this head. A good opportunity has thus been afforded 
for enlarging a little on gradations of structure, often associated 
with changed functions, — an important subject, which was not 
treated at sufficient length in the former editions of this work. I 
will now briefly recapitulate the foregoing cases. 

With the giraffe, the continued preservation of the individuals of 
gome extinct high-reaching ruminant, which had the longest necks, 
legs, &c., and could browse a. little above the average height, and 



Chap. VII. Theory of Natural Selection. 199 

the contiQued destniction of those which oould not browse so high, 
would have sufficed for the production of this remarkable quad- 
ruped ; but the prolonged use of all the parts together with inherit- 
ance will have aided in an important manner in their co-ordination. 
With the many insects which imitate various objects, there is no 
improbability in the belief that an accidental resemblance to some 
common object was in each case the foundation for the work of 
natural selection, since perfected through the occasional preservation 
of slight variations which made the resemblance at all closer ; and 
this will have been carried on as long as the insect continued to 
vary, and as long as a more and more perfect resemblance led to its 
escape from sharp-sighted enemies. In certain species of whales 
there is a tendency to the formation of irregular little points of horn 
on the palate ; and it seems to be quite within the scope of natural 
selection to preserve all favourable variations, until the points were 
converted first into lamellated knobs or teeth, like those on the 
beak of a goose, — ^then into short Ibmellaa, like those of the domestic 
ducks, — and then into lamellsB, as perfect as those of the shoveller- 
duck, — and finally into the gigantic plates of baleen, as in the mouth 
of the Greenland whale. In the family of the ducks, the lamellae 
are first used as teeth, then partly as teeth and partly as a sifting 
apparatus, and at last almost exclusively for this latter purpose. 

With such structures as the above lamellas of horn or whale- 
bone, habit or use can have done little or nothing, as far as we 
can judge, towards their development On the other hand, the 
transportal of the lower eye of a flat-fish to the upper side of 
the head, and the formation of a prehensile tail, may be attributed 
almost wholly to continued use, together with inheritance. With 
respect to the mammas of the higher animals, the most probable 
conjecture is that primordially the cutaneous glands over the whole 
8ur£8u;e of a marsupial sack secreted a nutritious fluid ; and that 
these glands wete improved in function through natural selection, 
and concentrated into a confined area, in which case they would 
have formed a mamma. There is no more difficulty in under- 
standing how the branched spines of some ancient Echinoderm, 
which served as a defence, became developed through natural selec- 
tion into tridactyle pedicellarias, than in understanding the develop- 
ment of the pincers of crustaceans, through slight, serviceable modi- 
fications in the ultimate and penultimate segments of a limb, 
which was at first used solely for locomotion. In the avicularia 
and vibracul^ of the Polyzoa we have organs widely different in 
appearance developed from the same source ; and vith the vibracula 
we can understand how the successive gradations might have been 



200 Miscellaneous Objections to the Chap. vn. 



of service. With the pollinia of orchids, the threads which originally 
served to tie together the pollen-grains, can be traced cohering into 
caudicles ; and the steps can likewise be followed by which viscid 
matter, such as that secreted by the stigmas of ordinary flowers, and 
Btill subserving nearly but not quite the same purpose, became 
attached to the free ends of the caudicles; — all these gradations 
being of manifest benefit to the plants in question. With respect 
to climbing plants, I need not repeat what has been so lately said. 

It has often been asked, if natural selection be so potent, why has 
not this or that structure been gained by certain species, to which it 
would apparently have been advantageous ? But it is unreasonable to 
expect a precise answer to such questions, considering our ignorance 
of the past history of each species, and of the conditions which at 
the present day determine its numbers and range. In most cases 
only general reasons, but in some few cases special reasons, can be 
assigned. Thus to adapt a species to new habits of life, many co- 
*ordinated modifications are almost indispensable, and it may oft^n 
have happened that the requisite parts did not vary in the right 
manner or to the right degree. Many species must have been 
prevented from increasing in numbers through destructive agencies, 
which stood in no relation to certain structures, which we imagine 
would have been gained through natural selection from appearing 
to us advantageous to the species. In this case, as the stru^le 
for life did not depend on such structures, they could not have 
been acquired through natural selection. In many cases complex 
and long-enduring conditions, often of a peculiar nature, are neces- " 
sary for the development of a structure ; and the requisite con- 
ditions may seldom have concurred. The belief that any given 
structure, which we think, often erroneously, would have been 
beneficial to a species, would have been gained under all circum- 
stances through natural selection, is opposed to what we can under- 
stand of its manner of action. Mr. Mivart does not deny that 
natural selection has effected something ; but he considers it as 
" demonstrably insufficient " to account for the phenomena which I 
expalin by its agency. His chief arguments have now been con- 
sidered, and the others will hereafter be considered. They seem to 
me to partake little of the character of demonstration, and to have 
little weight in comparison with those in favour of the power of 
natural selection, aided by the other agencies often specified. I am 
bound to add, that some of the facts and arguments here used by 
me, have been advanced for the same purpose in an able article 
lately published in the * Medico-Chirurgical Review.' 



Chap. VII. Theory of Natural Selection. 20i 

At the present day almost all naturalists admit evolution under 
some form. Mr. Mivart believes that species change through ** an 
internal force or tendency," about which it is not pretended that 
anything is known. That species have a capacity for change will 
be admitted by all evolutionists ; but there is no need, as it seems 
to me, to invoke any internal force beyond the tendency to ordi- 
nary variability, which through the aid of selection by man has 
given rise to many well-adapted domestic races, and which through 
the aid of natural selection would equally well give rise by gradu- 
ated steps to natural races or species. The final result will gene- 
rally have been, as already explained, an advance, but in some few 
cases a retrogression, in organisation. 

Mr. Mivart is further inclined to believe, and some naturalists 
agree with him, that new species manifest themselves '* with sud- 
denness and by modifications appearing at once.** For instance, 
he supposes that the differences between the extinct three-toed 
Hipparion and the horse arose suddenly. He thinks it difficult to 
believe that the wing of a bird " was developed in any other way 
than by a comparatively sudden modification of a marked and 
important kind;" and ap'parently he would extend the same view 
to the wings of bats and pterodactyles. This conclusion, which 
implies great breaks or discontinuity in the series, appears to me 
improbable in the highest degree. 

Every one who believes in slow and gradual evolution, will of 
course admit that specific changes may have been as abrupt and as 
. great as any single variation which we meet with under nature, 
or even under domestication. But as species are more variable 
when domesticated or cultivated than under their natural con- 
ditions, it is not probable that such great and abrupt variations 
have often occurred under nature, as are known occasionally to 
arise under domestication. Of these latter variations several may 
be attributed to reversion ; and the characters which thus reappear 
were, it is probable, in many cases at first gained in a gradual 
manner. A still greater number must be called monstrosities, such 
as six-fingered men, porcupine men, Ancon sheep, Niata cattle, &c. ; 
and as they are widely difl'erent in character from natural species, 
they throw very little light on our subject. Excluding such cases 
of abrupt variations, the few which remain would at best constitute, 
if found in a state of nature, doubtftd species, closely related to 
their parental types. 

My reasons for doubting whether natural species have changed 
as abruptly a&«45ave occasionally domestic races, and for entirely 
disbelieving that they have changed in the wonderful manner 



202 Miscellaneous Objections to the Chap, vil 

indicated by Mr. Mivart, are as follows. According to our expe- 
rience, abrupt and strongly marked variations occur in our domesti- 
cated productions, singly and at rather long intervals of time. If 
such occurred under nature, they would be liable, as formerly 
explained, to be lost by accidental causes of destruction and by 
subsequent inter-crossing ; and so it is known to be under domesti- 
cation, unless abrupt variations of this kind are si^cially preserved 
and separated by the care of man. Hence in order that a new 
species should suddenly appear in the manner supposed by Mr. 
Mivart, it is almost necessary to believe, in opposition to all ana- 
logy, that several wonderfully changed individuals appeared simul- 
taneously within the same district. This difficulty, as in the case of 
unconscious selection by man, is avoided on the theory of gradual 
evolution, through the preservation of a large number of individuals, 
which varied more or less in any favourable direction, and of the 
destruction of a large number which varied in an opposite manner. 

That many species have been evolved in an extremely gradual 
manner, there can hardly be a doubt. The species and even the 
genera of many large natural families are so closely allied together, 
that it is difficult to distinguish not a few of them. On every con- 
tinent in proceeding from north to south, from lowland to upland, 
&c., we meet with a host of closely related or representative species ; 
as we likewise do on certain distinct continents, which we have 
reason to believe were formerly connectoo. But in making these 
and the following remarks, I am compelled to allude to subjects 
hereafter to be discussed. Look at the many outlying islands round 
a continent, and see how many of their inhabitants can be raised 
only to the rank of doubtful species. So it is if we look to past 
times, and compare the species which have just passed away with, 
those still living within the same areas ; or if we compare the fossil 
species embedded in the sub-stages of the same geological formation. 
It is indeed manifest that multitudes of species are related in the 
closest manner to other species that still exist, or have lately 
existed ; and it will hardly be maintained that such species have 
been developed in an abmpt or sudden manner. Nor should it be 
forgotten, when we look to the special parts of allied species, instead 
of to distinct species, that numerous and wonderfully fine grada- 
tions can be traced, connecting together widely dififerent structures. 

Many large groups of facts are intelligible only on the principle 
that species have been evolved by very small steps. For instancy, 
the fact that the species included in the larger genera are more closely 
related to each other, and present a greater number of varieties 
than do the species in the smaller genera. The former are also 



Chap. VII. Theory of Natural Selection. 203 

grouped in little clusters, like varieties round species; and they 
present other analogies with varieties, as was shown in our second 
chapter. On this same principle we can understand how it is that 
specific characters are more variable than generic characters ; and 
how the parts which are developed in an extraordinary degree 
or manner are more variable than other parts of the same species. 
Many analogous facts, all pointing in the same direction, could be 
added. 

Although very many species have almost certainly been pro- 
duced by steps not greater than those separating fine varieties ; yet 
it may be maintained that some have been developed in a different 
and abrupt manner. Such an admission, however, ought not to be 
made without strong evidence being assigned, llie vague and in 
some. respects false analogies, as they have been shown to be by 
Mr. Chauncey Wright, which have been advanced in favour of this 
view, such as the sudden crystallisation of inorganic substances, or 
the falling of a facetted spheroid from one facet to another, hardly 
deserve consideration. . One class of facts, however, namely, the 
sudden appearance of new and distinct forms of life in our geological 
formations supports at first sight the belief in abrupt development. 
But the value of this evidence depends entirely on the perfection of 
the geological record, in relation to periods remote in the history 
of the world. If the record is as fragmentary as many geologists 
strenuously assert, there is nothing strange in new forms appear- 
ing as if suddenly developed. 

Unless we admit transformations as prodigious as those advocated 
by Mr. Mivart, such as the sudden development of the wings of 
birds or bats, or the sudden conversion of a Hipparion into a horse, 
hardly any light is thrown by the belief in abrupt modifications on 
the deficiency of counecting links in our geological formations. But 
against the belief in such^brupt changes, embryology enters a strong 
protest. It is notorious that the wings of birds and bats, and the legs 
of horses or other quadrupeds, are undistinguishable at an early em- 
bryonic period, and that they become differentiated by insensibly 
fine steps. Embryological resemblances of all kinds can be ac- 
counted for, as we shall hereafter see, by the progenitors of our 
existing species having varied after early youth, and having trans- 
mitted their newly acquired characters to their offspring, at a 
corresponding age. The embryo is thus left almost unaffected, and 
serves as a record of the past condition of the species. Hence it 
is that existing species during the early stages of their develop- 
ment so often resemble ancient and extinct forms belonging to the 
same class. On this view of the meaning of embrj'ological resem- 



204 Miscellaneous Objections, &c. Chap. Vll. 

blances, and iDdeed on any view, it is incredible that an animal 
should have undergone such momentous and abrupt transforma- 
tions, as those above indicated ; and yet should not bear even a 
trace in its embryonic condition of any sudden modification ; every 
detail in its structure being developed by insensibly fine steps. 

He who believes that some ancient form was transformed sud- 
denly through an internal force or tendency into, for instance, one 
furnished with wings, will be almost compelled to assume, in oppo- 
sition to all analogy, that many individuals varied simultaneously. 
It cannot be denied that such abrupt and great changes of struc- 
ture are widely different from those, which most species apparently 
have undergone. He will further be compelled to believe that 
many structures beautifully adapted to all the other parts of the 
same creature and to the surrounding conditions, have been sud- 
denly produced; and of such complex and wonderful co-adapta- 
tions, he will not be able to assign a shadow of an explanation. 
He will be forced to admit that these great and sudden transfor- 
mations have left no trace of their action on the embryo. To 
admit all this is, as it seems to me, to enter into the realms of 
miracle, and to leave those of Science. 



Chap. VIll. Instinct, 20$ 



CHAPTEK VIII. 

Instinct. 

Instincts comparable with habits, but different in their origin — Instincts 
graduated — Aphides and ants — Instincts variable — Domestic in- 
stincts, their origin — Natural instincts of the cuckoo, molothrus, 
ostrich, and parasitic bees — Slave-making ants — Hive-bee, its cell- 
making instinct — Changes of instinct and structure not necessarily 
simultaneous — Difficulties of the theory of the Natural Selection of 
instincts — Neuter or sterile insects — Summary. 

Many instincts are so wonderful that their development will pro- 
bably appear to the reader a difficulty sufficient to overthrow my 
ivhole theory. I may here premise, that I have nothing to do with 
the origin of the mental powers, any more than I have with that of 
life itself. We are concerned only with the diversities of instinct 
and of the other mental faculties in animals of the same class. 

' I will not attempt any definition of instinct. It would be easy to 
show that several distinct mental actions are commonly embraced 
by this term ; but every one understands what is meant, when it is 
said that instinct impels the cuckoo to migrate and to lay her eggs 
in other birds' nests. An action, which we ourselves require expe- 
rience to enable us to perform, when performed by an animal, more 
especially by a very young one, without experience, and when per- 
formed by many individuals in the same way, without their knowing 
for what purpose it is performed, is usually said to be instinctive. 
But I could show that none of these characters are universal. A 
little dose of judgment or reason, as Pierre Huber expresses it, often 
comes into play, even with animals low in the scale of nature. 

Frederick Cuvier and several of the older metaphysicians have 
compared instinct with habit. This comparison gives, I think, an 
accurate notion of the frame of mind under which au instinctive 
action is performed, but not necessarily of its origin. How uncon- 
sciously many habitual actions are performed, indeed not rarely in 
direct opposition to our conscious will ! yet they may be modi- 
fied by the will or reason. Habits easily become associated with 
other habits, with certain periods of time, and states of the body. 
When once acquired, they often remain constant throughout life. 



206 Instinct. Chap. VIII. 

Several other points of resemblance between instincts and habits 
could be pointed out. As in repeating a well-known song, so in 
instincts, one action follows another by a sort of rhythm ; if a person 
be interrupted in a song, or in repeating anything by rote, he is 
generally forced to go back to recover the habitual train of thought : 
so P. Huber found it was with a caterpillar, which makes a very com- 
plicated hammock ; for if he took a caterpillar which had completed 
its hammock up to, say, the sixth stage of construction, and put it 
into a hammock completed up only to the third stage, the caterpillar 
simply re-performed the fourth, fifth, and sixth stages of construction. 
If, however, a caterpillar were taken out of a hammock made up, 
for instance, to the third stage, and were put into one finished up to*^ 
the sixth stage, so that much of its work was already done for it, 
far from derivin^^ any benefit from this, it was much embarrassed, 
and in order to complete its hammock, seemed forced to start from 
the third stage, where it had left off, and thus tried to complete the 
already finished work. c. 

If we suppose any habitual action to become inherited — and it 
can be shown that this does sometimes happen — then the resem- 
blance between what originally was a habit and an instinct becomes 
so clojse as not to be distinguished. If Mozart, instead of playing 
the pianoforte at three years old with wonderfully little practice, 
had played a tune with no practice at all, he might truly be said 
to have done so instinctively. But it would be a serious error to 
suppose that the greater number of instincts have been acquired by 
habit in one generation, and then transmitted by inheritance to 
succeeding generations. It can be clearly shown that the most 
wonderful instincts with which, we are acquainted, namely, those 
of the hive-bee and of many ants, could not possibly have been 
acquired by habit. 

It will be universally admitted that instincts are as important as 
corporeal structures for the welfare of each species, under its present 
conditions of lifei/ Under changed conditions of life, it is at least 
possible that slight modifications of instinct might be profitable to 
a species ; and if it can be shown that instincts do vary ever so 
little, then 1 can see no difficulty in natural selection preserving 
and continually accumulating variations of instinct to any extent 
that was profitable. It is thus, as I believe, that all the most 
complex and wonderful instincts have originated. As modifications 
of corporeal structure arise from, and are increased by, use or habit, 
and are diminished or lost by disuse, so I do not doubt it has been 
with instincts. But I believe that the effects of habit are in many 
cases of subordinate importance to the effects of the natural selection 



Chap. VIIL Instinct 207 

of what may be called ftpontaneouB variatioDB of iniLtiDcts ; — tliat 
is of variations produced by the same unknown causes which pro- 
duce slight deviations of bodily structure. 

No complex instinct can possibly be produced through natural 
selection, except by the slow and gradual accumulation of numerous 
slight, yet profitable, variations, ^^ence, as in the case of corporeal 
stioictures, we ought to find in nature, not the actual transitional 
gradations by which each complex instinct has been acquired — for 
these could be found only in the lineal ancestors of each species — 
but we ought to find in the collateral lines of descent some evidence 
of such gradations ; or we ought at least to be able to show that 
gradations of some kind are possible ; and this we certainly can do. 
I have been surprised to find, making allowance for the instincts of 
animals having been but little observed except in Europe and North 
America, and for no instinct being known amongst extinct s[)ecics, 
how very generally gradations, leading to the most complex instincts, 
can be discovered. Changes of instinct may sometimes be facilitated 
by the same species having different instincts at different periods 
of life, or at different seasons of the year, or when placed under 
different circumstauces, &c. ; in which case either the one or the 
other instinct might be preserved by natural selection. And such 
instances of diversity of instinct in the same species can be shown 
to occur in nature. 

Again, as in the case of corporeal structure, and conformably to 
my theory, the instinct of each species is good for itself, but has 
never, as far as we can judge, been produced for the exclusive good 
of others. One of the strongest instances of an animal apparently 
performing an action for the sole good of another, with which I am 
acquainted, is that of aphides voluntarily yielding, as was first 
observed by Huber, their sweet excretion to ants : that they do so 
voluntarily, the following facts show. I removed all the ants from 
a group of about a dozen aphides on a dock-plant, and prevented 
their attendance during several hours. After this interval, I felt • 
sure that the aphides would want to excrete. I watched them for 
some time through a lens, but not one excreted ; I then tickled and 
stroked them with a hair in the same manner, as well as I could, 
as the ants do with their antennae ; but not one excreted. After- 
wards I allowed an ant to visit them, and it immediately seemed, 
by its eager way of running about, to be well aware what a rich 
flock it had discovered ; it then began to play with its antennae on 
the abdcMnen first of one aphis and then of another ; and each, as 
soon as it felt the antennae, immediately lifted up its abdomen and 
excreted a limpid drop of sweet juice, which was eagerly devoured 



2o8 Instinct Chap. VIU. 



by the ant. Even the quite young aphides behaved in this nianner, 
showing that the action was instinctive, and not the result of 
experience. It is certain, from the observations of Huber, that the 
aphides show no dislike to the ants : if the latter be not present 
they are at last compelled to eject their excretion. But as the 
excretion is extremely viscid, it is no doubt a convenience to the 
aphides to have it removed ; therefore probably they do not excrete 
solely for the good of the ants. Although there is no evidence that 
any animal performs an action for the exclusive good of another 
species, yet each tries to take advantage of the instincts of others, 
as each takes advantage of the weaker bodily structure of other 
species. So again certain instincts cannot l^ considered as abso- 
lutely perfect ; but as details on this and other such points are not 
indispensable, they may be here passed over. 

As some degree ^of variation in instincts under a state of nature, 
and the inheritance of such variations, are indispensable for the 
action of natural selection, as many instances as possible ought to 
be given ; but want of space prevents me. I can only assert that 
instincts certainly do vary — for instance, the migratory instinct, 
both in extent and direction, and in its total loss. So it is with the 
nests of birds, which vary partly in dependence on the situations 
chosen, and on the nature and temperature of the country inhabited, 
but often from causes wholly unknown to us : Audubon haf* given 
several remarkable cases of differences in the nests of the same 
species in the northern and southern United States. Why, it ha* 
been asked, if instinct be variable, has it not granted to the bee 
" the ability to use some other material when wax was deficient ** ? 
But what other natural material could bees use ? They wiU work, 
as I have seen, with wax hardened with vermilion or softened 
with lard. Andrew Knight observed that his bees, instead ot 
laboriously collecting propolis, used a cement of wax and turpentine, 
with which he had covered decorticated trees. It has lately been 
shown that bees, instead of searching for pollen, will gladly use a 
very different substance, namely oatmeaL Fear of any particular 
enemy is certainly an instinctive quality, as may be seen in nestling 
birds, though it is strengthened by experience, and by the sight of 
fear of the same enemy in other animals. The fear of man is slowly 
acquired, as I have elsewhere shown, by the various animals which 
inhabit desert islands; and we see an instance of this even in 
England, in the greater wildness of all our large birds in comparison 
with our small bu*ds ; for the large birds have been most persecuted 
by man. We may safely attribute the greater wildness of our 
large birds to this cause ; for in uninhabited islands large birds are 



Chap, viil Changes of Habit or Instinct 209 

not more fearfril than small ; and the magpie, so wary in England, 
is tame in Norway, as is the hooded crow in Egypt. 

That the mental qualities of animals of the same kind, bom in a 
state of nature, vary much, could be shown by many facts. Several 
cases could also be adduced of occasional and strange habits in 
wild animals, which, if advantageous to the species, might have 
given rise, through natural selection, to new instincts. But I am 
well aware that these general statements, without the facts in 
detail, will produce but a feeble effect on the reader's mind. I 
can only repeat my assurance, that I do not speak without good 
evidence. 

Inherited Changes of Habit or Instinct in Domesticate 

AnimcUs. 

The possibility, or even probability, of inherited variations of 
Instinct in a state of nature will be strengthened by briefly consider- 
ing a few cases under domestication. We shall thus be enabled to 
see the part which habit and the selection of so-called spontaneous 
variations have played in modifying the mental qualities of our 
domestic animals. It is notorious how much domestic animals vary 
in their mental qualities. With cats, for instance, one naturally 
takes to catching rats, and another mice, and these tendencies are 
known to be inherited. One cat, according to Mr. St. John, always 
brought home game-birds, another hares or rabbits, and another 
hunted on marshy ground and almost nightly caught woodcocks or 
snipes. A number of curious and authentic instances could be 
^ven of various shades of disposition and of taste, and likewise of 
the oddest tricks, associated with certain frames of mind or periods 
of time, being inherited. But let us look to the familiar case of 
the breeds of the dog : it cannot be doubted that young pointers (I 
have myself seen a striking instance) will sometimes point and even 
back other dogs the very first time that they are taken out ; 
retrieving is certainly in some degree inherited by retrievers ; and a 
tendency to run round, instead of at, a flock of sheep, by shepherd- 
dogs. 1 cannot see that these actions, performed without experience 
by the young, and in nearly the same manner by each individual, 
performed with eager delight by each breed, and without the end 
being knoi/^ — for the young pointer can no more know that he 
points to aia his master, than the white butterfly knows why she 
lays her eggs on the leaf of the cabbage — I cannot see that these 
actions differ essentially from true instincts. If we were to behold 
one kind of wolf, when young and without any training, as soon as 
it scented its prey, stand motionless like a statue, and then slowly 

P 



210 Changes of Habit or Instinct Chap. viu. 

crawl forward with a peculiar gait ; and another kind of wolf 
rushing round, instead of at, a herd of deer, and driving them to a 
distant point, we should assuredly call these actions instinctive. 
Domestic instincts, as they may be called, are certainly far less 
nxed than natural instincts ; but they have been acted on by far 
less rigorous selection, and have been transmitted for an incompar- 
ably shorter period, under less fixed conditions of life. 

How strongly these domestic instincts, habits, and dispositions 
are inherited, and how curiously they become mingled, is well 
shown when difierent breeds of dogs are crossed. Thus it is known 
that a cross with a bull-dog has affected for many generations the 
courage and obstinacy of greyhounds ; and a cross with a greyhound 
has given to a whole family of shepherd-dogs a tendency to hunt 
hares. These domestic instincts, when thus tested by crossing, 
resemble natural instincts, which in a like manner become curiously 
blended together, and for a long period exhibit traces of the instincts 
of either parent : for example, Le Roy describes a dog, whose great- 
grandfather was a wolf, and this dog showed a trace of its wild 
parentage only in one way, by not coming in a straight line to his 
master, when called. 

Domestic instincts are sometimes spoken of as actions which 
have become inherited solely from long-continued and compulsory 
habit ; but this is not tme. No one would ever have thought of 
teaching, or probably could have taught, the tumbler-pigeon to 
tumble, — an action which, as I have witnessed, is performed by 
young birds, that have never seen a pigeon tumble. We may 
believe that some one pigeon showed a slight tendency to this 
strange habit, and that the long-continued selection of the best 
individuals in successive generations made tumblers what they now 
are ; and near Glasgow there are house-tumblers, as I hear from 
Mr. Brent, which cannot fly eighteen inches high without going 
head over heels, yit may be doubted whether any one would have 
thought of training a dog to point, had not some one dog naturally 
shown a tendency in this line ; and this is known occasionally to 
happen, as I once saw, in a pure terrier : the act of pointing is pro- 
bably, as many have thought, only the exaggerated pause of an 
animal preparing to spring on its prey. When the first tendency 
to point was once displayed, methodical selection and the inherited 
effects of compulsory training in each successive generation would 
soon complete the work ; and unconscious selection is still in 
progress, as each man tries to procure, without iatending to improve 
the breed, dogs which stand and hunt best. '*^0n the other hand, 
habit alone in some cases has sufficed ; hardly any animal is more 



Chap. viii. in Domesticated Animals. 211 



difficult to tame than the young of the wild rabbit ; scarcely any 
animal is tamer than the young of the tame rabbit; but I can 
hardly suppose that domestic rabbits have often been selected for 
tameness alone ; so that we must attribute at least the greater part 
of the inherited change from extreme wildness to extreme tame- 
ness, to habit and long-continued close confinement. 

Natural instincts are lost under domestication: a remarkable 
inHtance of thi8*is seen in those breeds of fowls which very rarely 
or never become " broody," that is, never wish to sit on their eggs. 
Familiarity aloue prevents our seeing how largely and how perma- 
nently the minds of our domestic animals have been modified. It 
is scarcely possible to doubt that the love of man has become 
instinctive in the doL!;. All wolves, foxes, jackals, and species of 
ihe cat genus, when kept tame, are most eager to attack poultry, 
»heep, and pigs; and this tendency has been found incurable in 
dogs which have been brought home as puppies from countries such 
as Tierra del Fuego and Aiistralia, where the savages do not keep 
these domestic animals. How rarely, on the other hand, do our 
civilised dogs, even when quite young, require to be tau^'ht not to 
attack poultry, sheep, and pigs ! No doubt they occasionally da 
make an attack, and are then beaten ; and if not cured, they are 
destroyed; so that habit and some degree of selection have pro- 
bably concurred in civilising by inheritance our dogs. On the 
other hand, young chickens have lost, wholly by habit, that fear of 
the dog and cat which no doubt was originally instinctive in them ; 
for I am informed by Captain Button that the young chickens of 
the parent-stock, the Gallus bankiva, when reared in India under a 
hen, are at first excessively wild. So it is with young pheasants 
reared in England under a hen. It is not that chickens have lost 
all fear, but fear only of dogs and cats, for if the hen gives the 
danger-chuckle, they will run (more especially young turkeys) from 
under her, and conceal themselves in the surrounding grass or 
thickets ; and this is evidently done for the instinctive purpose of 
allowing, as we see in wild ground-birds, their mother to fly away. 
But this instinct retained by our chickens has become useless under 
domestication, for the mother-hen has almost lost by disuse the 
power of flight. 

V Hence, we may conclude, that under domestication instincts have 
been acquired, and natural instincts have been lost, partly by habit, 
and partly by man selectinjg and accumulating, during successive 
generations, peculiar mental habits and actions, which at first 
appeared from what we must in our ignorance call an accident. In 
some cases compulsory habit alone has sufiiced to produce inhe- 

p 2 



212 Special Instincts. Chap, viil 

rited mental changes; in other cases compulsory habit has done 
nothing, and all has been the result of selection, pursued both 
methodically and unconsciously: but in most cases habit and 
selection have probably concurred. 

Special Instincts, *^ 

We shall, perhaps, best understand how instincts in a state of 
nature have become modified by selection, by considering a few 
cases. 1 will select only three, — namely, the instinct which leads 
the cuckoo to lay her eggs in other birds' nests ; the slave-making 
instinct of certain ants; and the cell-making power of the 
hive-bee. These two latter instincts have generally and justly 
been ranked by naturalists as the most wonderful of all known 
instincts. l^ 

Instincts of the Cuckoo. — Tt is supposed by some naturalists that 
the more immediate cause of the instinct of the cuckoo is, that she 
lays her eggs, not daily, but at intervals of two or three days ; so 
that, if she were to make her own nest and sit on her own eggs, 
those first laid would have to be left for some time unincubated, or 
there would be eggs and young birds of different ages in the same 
nest. If this were the case, the process of laying and hatching 
might be inconveniently long, more especially as she migrates at a 
very early period ; and the first hatched young would probably 
have to be fed by the male alone. But the American cuckoo is in 
this predicament ; for she makes her own nest, and has eggs and 
youtig successively hatched, all at the same time. It has been both 
asserted and denied that the American cuckoo occasionally lays her 
eggs in other birds' nests ; but I have lately heard from Dr. Merrell, 
of Iowa, that he once found in Illinois a young cuckoo together 
with a young jay in the nest of a Blue jay (Garrulus cristatus) ; 
and as both were nearly fully feathered, there could be no mistake 
in their identification. I could also give several instances of various 
birds which have been known occasionally to lay their eggs in other 
birds' nests. Now let us suppose that the ancient progenitor of our 
European cuckoo had the habits of the American cuckoo, and that 
she occasionally laid an egg in another bird's nest. If the old bird 
profited by this occasional habit through being enabled to migrate 
earlier or through any other cau^e ; or if the young were made more 
vigorous by advantage being taken of the mistaken instinct of 
another species than when reared by their own mother, encum- 
bered as she could hardly fail to be by having eggs and young of 
different ages at the same time ; then the old birds or the fostered ' 
young would gain an advantage. And analogy would lead us to 



Chap. VIII. Instincts of tlie Cuckoo, 2 1 3 

believe, that the young thus reared would be apt to follow by inhe- 
ritance the occasional and aberrant habit of their mother, and in 
their turn would be apt to lay their eggs in other birds' nests, and 
thus be more successful in rearing their young. By « continued 
process of this nature, I believe that the strange instinct of our 
cuckoo has been generated. It has, also, recently been ascertained 
on sufficient evidence, by Adolf Miiller, that the cuckoo occasionally 
lays her eggs on the bare ground, sits on them, and feeds her young. 
This rare event is probably a case of reversion to the long-lost, 
aboriginal instinct of nidification. 

It has been objected that I have not noticed other related instincts 
and adaptations of structure in the cuckoo, which are spoken of as 
necessarily co-ordinated. But in all cases, speculation on an instinct 
known to us only in a single s))ecies, is useless, for we have hitherto 
had no facts to guide us. Until recently the instincts of the Euro- 
pean and of the non-parasitic American cuckoo alone were known ; 
now, owing to Mr. Bamsay's observations, we have learnt something 
about three Australian species, which lay their eggs in other birds* 
nests. The chief points to be referred to are three : first, that the 
common cuckoo, with rare exceptions, lays only one egg in a nest, 
so that the large and voracious young bird receives ample food. 
Secondly, that the ^gs are remarkably small, not exceeding those 
of the skylark, — ^a bird about one-fourth as large as the cuckoo. 
That the small size of the egg is a real case of adaptation we may 
infer from the fact of the non-parasitic American cuckoo laying 
full-sized eggs. Thirdly, that the young cuckoo, soon after birth, 
has the instinct, the strength, and a properly shaped back for 
ejecting its foster-brothers, which then perish from cold and hunger. 
This has been boldly called a beneficent arrangement, in order that 
the young cuckoo may get sufficient food, and that its foster-brothers 
may perish before they bad acquired much feeling ! 

Turning now to the Australian species ; though ^hese birds gene- 
rally lay only one egg in a nest, it is not rare to find two and even 
three eggs in the same nest. In the Bronze cuckoo the eggs vary 
greatly in size, from eight to ten lines in length. Now if it had 
been of an advantage to this species to have laid eggs even smaller 
than those now laid, so as to have deceived certain foster-parents, 
or, as is more probable, to have been hatched within a shorter period 
(for it is asserted that there is a relation between the size of eggs 
and the period of their incubation), then there is no difficulty in 
believing that a race or species might have been formed which 
would have laid smaller and smaller eggs ; for these would have 
been more safely hatched and reared. Mr. Ramsay remarks that 



2 14 Instinct of the Cuckoo. Chap. viil. 

two of the Australian cuckoos, when they lay their eggs in an open 
nest, manifest a decided preference for nests containing eggs similar 
in colour to their own. The European species apparently manifests 
some tendency towards a similar instinct, but not rarely departs 
from it, as is shown by her laying her dull and pale-coloured eggs 
in the nest of the Hedge-warbler with bright greenish- blue eggs. Had 
our cuckoo invariably displayed the above instinct, it would assu- 
tedly have been added to those which it is assumed must all have 
been acquired together. The eggs of the Australian Bronze cuckoo 
vary, according to Mr. Hamsay, to an extraordinary degree in colour; 
so that in this respect, as well as in size, natural selection might 
have secured and fixed any advantageous variation. 

In the case of the European cuckoo, the offspring of the foster- 
parents are commonly ejected from the nest within three days after 
the cuckoo is hatched ; and as the latter at this age is in a most 
helpless condition, Mr. Gould was formerly inclined to believe that 
the act of ejection was performed by the foster-parents themselves. 
But he has now received a trustworthy account of a young cuckoo 
which was actually seen, whilst still blind and not able even ta 
hold up its own head, in the act of ejecting its foster-brothers. One 
of these was replaced in the nest by the observer, and was again 
thrown out. With respect to the means by which this strange and 
odious instinct was acquired, if it were of great importance for the 
young cuckoo, as is probably the case, to receive as much food as 
possible soon after birth, I can see no special difficulty in its having 
gradually acquired, during successive generations, the blind desire, 
the strength, and structure necessary for the work of ejection ; for 
those young cuckoos which had such habits and structure best deve- 
loped would be the most securely reared. The first step towards 
the acquisition of the proper instinct might have been mere unin- 
tentional restlessness on the part of the young bird, when somewhat 
advanced in age ^nd strength ; the habit having been afterwards 
improved, and transmitted to an earlier age. I can see no more 
difficulty in this, than in the unbatched young of other birds ac- 
quiring the instinct to break through their own shells ; — or than in 
young snakes acquiring in their upper jaws, as Owen has remarked, 
a transitory sharp tooth for cutting through the tough egg-shell. 
For if f'ach part is liable to individual variations at all ages, and the 
variations tend to be inherited at a corresponding or earlier age, — 
propositions which cannot be disputed, — then the instincts and 
structure of the young could be slowly modified as surely as those of 
the adult ; and both cases must stand or fall together with the whole 
theory of natural selection. 



Chap. VIII. Instincts of the Molothrus, 2 1 S 

Some species of Molothrus, a widely distinct genus of American 
birds, allied to our starlings, have parasitic habits like those of the 
cuckoo ; and the species present an interesting gradation in the per- 
fection of their instincts. The sexes of Molothrus badius are stated 
by an excellent observer, Mr. Hudson, sometimes to live promis- 
cuously together in flocks, and sometimes to pair. They either 
build a nest of their own, or seize on one belonging to some other 
bird, occasionally throwing out the nestlings of the stranger. They 
either lay their eggs in the nest thus appropriated, or oddly enough 
build one for themselves on the top of it. They usually sit on 
their own eggs and rear their own young ; but Mr. Hudson says 
it is probable that they are occasionally parasitic, for he has seen 
the young of this species following old birds of a distinct kind 
and clamouring to be fed by them. The parasitic habits of another 
s}:)ecies of Molothrus, the M. bonariensis, are much more highly 
developed than those of the last, but are still far from perfect. 
This bird, as far as it is known, invariably lays its eggs in the 
nests of strangers; but it is remarkable that several together 
sometimes conmience to build an irregular untidy nest of their 
own, placed in singularly ill-adapted situations, as on the leaves 
of a large thistle. They never, however, as far as Mr. Hudson 
has ascertained, complete a nest for themselves. They often lay 
so many eggs — from fifteen to twenty — in the same foster-neat, 
that few or none can possibly be hatched. They have, moreover, 
the extraordinary habit of pecking holes in the eggs, whether of 
their own species or of their foster-parents, which they find in the 
appropriated nests. They drop also many eggs on the bare ground, 
which are thus wasted. A third species, the M. pecoris of North 
America, has acquired instincts as perfect as those of the cuckoo, 
for it never lays more than one egg in a foster-nest, so that the 
young, bird is securely reared. Mr. Hudson is a strong disbeliever 
in evolution, but he appears to have been so much struck by the 
imperfect instincts of the Molothrus bonariensis that he quotes my 
words, and asks, " Must we consider these habits, not as especially 
endowed or created instincts, but as small consequences of one 
general law, namely, transition?" 

Various birds, as has already been remarked, occasionally lay 
their eggs in the nests of other birds. This habit is not very 
uncommon with the GallinacesB, and throws some light on the 
singular instinct of the ostrich. In this family several hen-birds 
unite and lay first a few eggs in one nest and then in another ; and 
these are hatched by the males. This instinct may probably be 
accounted for by the fact of the hens laying a large number of eggs, 



2l6 special Instincts, Chap. VIII. 

but, as with the cuckoo, at intervals of two or three days. The 
instinct, however, of the American ostrich, as in the case of the Mol- 
othrus bonariensis, has not as yet been perfected"; for a surprising 
number of eggs lie strewed over the plains, so that in one day's 
hunting I picked up no less than twenty lost and wasted eggs. 

Many bees are parasitic, and regularly lay their eggs in the nests 
of other kinds of bees. This case is more remarkable than that of 
the cuckoo ; for these bees have not only had their instincts but 
their structure modified in accordance with their parasitic habits ; 
for they do not possess the pollen-collecting apparatus which would 
have been indispensable if they had stored up food for their own 
young. Some species of Sphegidaa (wasp-like insects) are likewise 
parasitic ; and M. Fabre has lately shown good reason for believing 
that, although the Tachytes nigra generally makes its own burrow 
and stores it with paralysed prey for its own larvae, yet that, when 
this insect finds a burrow already made and stored by another 
spbex, it takes advantage of the prize, and becomes for the occasion 
parasitic. In this case, as with that of the Molothrus or cuckoo, T 
can see no difficulty in natural selection making an occasional habit 
permanent, if of advantage to the species, and if the insect whose 
nest and stored food are feloniously appropriated, be not thus exter- 
minated. 

Slave-making instinct. — ^This remarkable instinct was first dis- 
covered in the Formica (Polyerges) rufescens by Pierre Huber, a 
better observei^ even than his celebrated father. This ant is abso- 
lutely dependent on its slaves ; without their aid, the species would 
certainly become extinct in a single year. The males and fertile 
females do no work of any kind, and the workers or sterile females, 
though most energetic and courageous in capturing slaves, do no 
other work. They are incapable of making their own nests, or of 
feeding their own larvae. When the old nest is found inconvenient, 
and they have to migrate, it is the slaves which determine the 
migration, and actually carry their masters in their jaws. So utterly 
helpless are the masters, that when Huber shut up thirty of them 
without a slave, but with plenty of the food which they like best, 
and with their own larvae and pupas to stimulate them to work, they 
did nothing; they could not even feed themselves, and many perished 
of hunger. Huber then introduced a single slave (F. fusca), and she 
instantly set to work, fed and saved the survivors ; made some cells 
and tended the larvae, and put all to rights. What can be more extra- 
ordinary than these well-ascertained facts ? If we had not known of 
any other slave-making ant, it would have been hopeless to speculate 
how so wonderful an instinct could have been perfected. 



Chap. VIII. Slave-making Instinct 217 

Another species, Formica sanguinea, was likewise first discoyered 
by P. Huber to be a slave-making ant. lliis species is found in 
the southern parts of England, and its habits have been attended 
to by Mr. F. Smith; of the British Museum, to whom I am much 
indebted for information on this and other subjects. Although 
fully trusting to the statements of Huber and Mr. Smith, I tried to 
approach the subject in a sceptical frame of mind, as any one may 
well be excused for doubting the existence of so extraordinary an 
instinct as that of making slaves. Hence, I will give the observa- 
tbns which I made, in some little detail. I opened fourteen nests 
of F. sanguinea, and found a few slaves in all. Males and fertile 
females of the slave species (F. fusca) are found only in their own 
proper communities, and have never been observed in the nests of 
F. sanguinea. The slaves ai*e black and not above half the size 
of their red masters, so that the contrast in their appearance is 
great. When the nest is slightly disturbed, the slaves occasionally 
come out, and like their masters are much agitated and defend the 
nest : when the nest is much disturbed, and the larvse and pupse 
are exposed, the slaves work energetically together with their 
masters in carrying them away to a place of safety. Hence, it is 
clear, that the slaves feel quite at home. During the months of 
June and July, on three successive years, I watched for many hours 
several nests in Surrey and Sussex, and never saw a slave either 
leave or enter a nest. As, during these months, the slaves are very 
few in number, I thought that they might behave diflferently when 
more numerous ; but Mr. Smith informs me that he has watched 
the nests at various hours during May, June, and August, both in 
iSurrey and Hampshire, and has never seen the slaves, though 
present in large numbers in August, either leave or enter the nest. 
Hence he considers them as strictly household slaves. The masters, 
on the other hand, may be constantly seen bringing in materials for 
the nest, and food of all kinds. During the year 1860, however, 
in the month of July, I came across a community with an unusually 
large stock of slaves, and I observed a few slaves mingled with 
their masters leaving the nest, and marching along the same road 
to a tall Scotch-fir-tree, twenty-five yards distant, which they 
ascended together, probably in search of aphides or cocci. According 
to Huber, who had ample opportunities for observation, the slaves 
in Switzerland habitually work with their masters in making the 
nest, and they alone open and close the doors in the morning and 
evening; and, as Huber expressly states, their principal office is 
to search for aphides. This difference in the usual habits of the 
masters and slaves in the two countries, probably depends merely 



*t 



2l8 special Instincts, Chap. VIII 

on the slaves being captured in greater numbers in Switzerland 
than in England. 

One day I fortunately witnessed a migration of F. sanguinea from 
one nest to another, and it was n most interesting spectacle to 
behold the masters carefully" carrying their slaves in their jaws 
instead of being carried by them, as in the case of F. rufescens. 
Another day my attention was strack by about a score of the slave- 
makers haunting the same spot, and evidently not in search of 
food i they approached and were vigorously repulsed by an inde- 
pendent community of the slave-species (F. fusca) ; sometimes as 
many as thtee of these ants clinging to the legs of the slave-making 
F. sanguinea. The latter ruthlessly killed their small opponents, 
and carried their dead bodies as food to their nest, twenty-nine yards 
distant ; but they were prevented from getting any pupae to rear 
as slaves. I then dug up a small parcel of the pupae of F. fusca 
from another nest, and put them down on a bare spot near the 
place of combat ; they were eagerly seized and carried off by the 
tyrants, who perhaps fancied that, after all, they had been victorious 
in their late combat. 

At the same time I laid on the same place a small parcel of the 
pupae of another species, F. flava, with a few of these little yellow 
ants still clinging to the fragments of their nest. This species is* 
sometimes, though rarely, made into slaves, as has been described 
by Mr. Smith. Although so small a species, it is very courageous, 
and I have seen it ferociously attack other ants. In one instance 
I found to my surprise an independent community of F. flava 
under a stone beneath a nest of the slave-making F. sanguinea ; 
and when I had accidentally disturbed both nests, the little ants 
attacked their big neighbours with sui-prising courage. Now I was 
curious to ascertain whether F. sanguinea could distinguish the 
pupae of F. fusca, which they habitually make into slaves, from 
tbose-Qf the little and furious F. flava, which they rarely capture, 
and it was evident that they did at once distinguish them ; for 
we have seen that they eagerly and instantly seized the pupae of 
F. fusca, whereas they were much terrified when they came across 
the pupae, or even the earth from the nest, of F. flava, and quickly 
ran away ; but in about a quarter of an hour, shortly after all the 
little yellow ants had crawled away, they took heart and carried 
ofl' the pupae. 

One evening I visited another community of F. sanguinea, and 
found a number of these ants returning home and entering their 
nests, carrying the dead bodies of E'. fusca (showing that it was not 
a migration) and numerous pupae. I traced a long file of ants 



Chap. VIII. Slave-making Instinct 219 

— . — . - ■■ », 

burthened with booty, for about forty yards back, to a very thick 
clump of heath, whence I saw the last individual of F. sanguinea 
emerge, carrying a pupa ; but I was not able to find the desolated 
Dest in the thick heath. The nest, however, must have been close 
at hand, for two or three individuals of F. fusca were rushing about 
in the greatest agitation, and one was perched motionless with its 
own pupa in its mouth on the top of a spray of heath, an image 
of despair over its ravaged home. 

Such are the facts, though they did not need confirmation by me, 
in regard to the wonderful instinct of making slaves. Let it be 
observed what a contrast the instinctive habits of F. sanguinea 
present with those of the continental F. rufescens. llie latter does 
not build its own nest, does not determine its own migrations, does 
not collect food for itself or its young, and eannot even feed itself: 
it is absolutely dependent on its numerous slaves. Formica san- 
gninea, on the other hand, possesses much fewer slaves, and in the 
early part of the summer extremely few ; tbe masters determine 
when and where a new nest shall be formed, and when they 
migrate, the masters carry tbe slaves. Both in Switzerland and 
England the slaves seem to have the exclusive care of the larvsB, 
and the masters alone go on slave-making expeditions. In Switzer- 
land the slaves and masters work together, making and bringing 
materials for the nest; both, but chiefly the slaves, tend, and 
milk, as it may be called, their aphides; and thus both collect 
food for the community. In England the masters alone usually 
leave the nest to collect building materials and food for themselves, 
their slaves and larvas. So that the masters in this country receive 
much less service from their slaves than they do in Switzerland. 

By what steps the instinct of F. sanguinea originated I will nolp 
pretend to conjecture. But as ants, which are not slave-makers 
will, as I have seen, carry off the pupad of other species, if scattered 
near their nests, it is possible that such pupsB originally stored as 
food might become developed ; and the foreign ants thus uninten- 
tionally reared would then follow their proper instincts, and do what 
work they could. If their presence proved useful to the species 
which had seized them — if it were more advantageous to this 
species to capture workers than to procreate them — the habit of 
collecting pupee, originally for food, might by natural selection be 
strengthened aiid rendered permanent for the very different purpose 
of raising slaves. When the instinct was- once acquired, if carried 
oat to a much less extent even than in our British F. sanguinea, 
which, as we have seen, is less aided by its slaves than the same 
species in Switzerland, natural selection might increase and modify 



220 Special Instincts, Chap. VIII. 



the instinct — always supposing each modification to be of use to the 
specieft — ^until an ant was fonned as abjectly dependent on its 
Blave& as is thu Formica rufescens. 

Cell-making instinct of the Hive-Bee. — I will not here enter on 
minute details on this subject, but will merely give an outline of 
the conclusions at which I have arrived. He must be a dull man 
who can examine the exquisite structure of a comb, so beautifully 
adapted to its end, without enthusiastic admiration. We hear fro^I 
mathematicians that bees have practically solved a recondite pro- 
blem, and have made their cells of the proper shape to hold the 
greatest possible amount of honey, with the least possible con- 
sumption of precious wax in their construction. It has been re- 
marked that a skilful workman with tittiDg tools and measures, 
would find it very difficult to make cells of wax of the true form, 
though this is effected by a crowd of bees working in a dark hive. 
Granting whatever instincts you please, it seems at first quite 
inconceivable how they can make all the necessary angles and 
planes, or even perceive when they are correctly made. But the 
difficulty is not nearly so great as it at first appears: all this 
beautiful work can be shown, I think, to follow from a few simple 
instincts. 

I was led to investigate this subject by Mr. Waterhouse, who has 
shown that the form of the cell stands in close relation to the 
presence of adjoining cells; and the following view may, perhaps, 
be considered only as a modification of his theory. Let us look 
to the great principle of gradation, and see whether Nature does 
not reveal to us her method of work. At one end of a short series 
we have humble-bees, which use their old cocoons to hold honey, 
sometimes adding to them short tubes of wax, and likewise making 
separate and very irregular rounded cells of wax. At the other end 
of the series we have the cells of the hive-bee, placed in a double 
layer: each cell, as is well known, is an hexagonal prism, with 
the basal edges of its six sides bevelled so as to join an inverted 
pyramid, of three rhombs. These rhombs have certain angles, and 
the three which form the pyramidal base of a single cell on one 
side of the comb enter into the composition of the bases of three 
adjoining cells on the opposite side. In the series between the 
extreme perfection of the cells of the hive-bee and the simplicity 
of those of the humble-bee we have the cells of the Mexican 
Melipona domestica, carefully described and figured by Pierre Hiiber. 
The Melipona itself is intermediate in structure between the hive 
and humble bee, but more nearly related to the latter ; it forms a 
nearly regular waxen comb of cylindrical cells, in which the young 



Chap. VIII Cell-making Instinct 221 

are hatched, and, in addition, some large cells of wax for holding 
honey. These latter cells are nearly spherical and of nearly equal 
sizes, and are aggregated into an irregular mass. But the im- 
portant point to notice is, that these cells are always made at that 
degree of nearness to each other that they would have intersected 
or broken into each other if the spheres had been completed; but 
thia is never permitted, the bees building perfectly flat walls of wax 
l)etween the spheres which thus tend to intersect Hence, each cell 
consists of an outer spherical portion, and of two, three, or more flat 
surfaces, according as the cell adjoins two, three, or more othg: 
cells. When one cell rests on three other cells, which, from the 
spheres being nearly of the same size, is very frequently and neces- 
sarily the case, the three flat surfaces are united into a pyramid ; 
and this pjrramid, as Huber has remarked, is manifestly a gross imi- 
tation of the three-sided pyramidal base of the cell of the hive-bee. 
As in the cells of the hive-bee, so here, the three plane surfaces in 
any one cell necessarily enter into the construction of three adjoin- 
ing cells. It is obvious that the Melipona saves wax^ and what 
is more important, labour, by this manner of building ; for the flat 
walls between the adjoining cells are not double, but are of the 
same thickness as the outer spherical portions, and yet each flat 
portion forms a part of two cells. 

Reflecting on this case, it occurred to me that if the Melipona 
had made its spheres at some given distance from each other, and 
had made them of equal sizes and had arranged them symmetrically 
in a double layer, the resulting structure would have been as per- 
fect as the comb of the hive-bee. Accordingly I wrote to Professor 
Miller, of Cambridge, and this geometer has kindly read over the 
following statement, drawn up from his information, and tells me 
that it is strictly correct : — 

K a number of equal spheres be described with their centres 
placed in two parallel layers ; with the centre of each sphere at the 
distance of radius x ^ 2, or radius x 1*41421 (or at some lesser 
distance), from the centres of the six surrounding spheres in the 
same layer ; and at the same distance from the centres of the ad- 
joining spheres in the other and parallel layer ; then, if planes of 
intersection between the several spheres in both layers be formed, 
there will result a double layer of hexagonal prisms united together 
by pyramidal bases formed of three rhombs ; and the rhombs and 
the sides of the hexagonal prisms will have every angle identically 
the same with the best measurements which have been made of the 
I cells of the hive-bee. But I hear from Prof. Wyman, who has 

' made numerous careful measurements, that the accuracy of the 



222 " Special Instincts, Chap. viif. 

workmanship of the bee has been greatly Exaggerated ; so much so, 
that whatever the typical form of the cell may be, it is rarely, if 
ever, realised. 

Hence we may safely conclude that, if we could slightly modify 
the instincts already possessed by the Melipona, and in themselves 
not very wonderful, this bee would make a structure as wonderfully 
perfect as that of the hive-bee. We must suppose the Melipona to 
have the power of forming her cells truly spherical, and of equal 
sizes ; and this would not be very surprising, seeing that she already 
does so to a certain extent, and seeing what perfectly cylindrical 
burrows many insects make in wood, apparently by turning round 
on a fixed point. We must suppose the Melipona to arrange her 
cells in level layers, as she already does her cylindrical cells ; and 
we must further suppose, and this is the greatest difficulty, that 
she can somehow judge accurately at what distance to stand from 
her fellow-labourers when several are making their spheres; but 
she is already so far enabled to judge of distance, that she always 
describes her spheres so as to intersect to a certain extent ; and then 
she unites the points of intersection by perfectly flat surfaces. By 
such modifications of instincts which in themselves are not very 
' wonderful, — ^hardly more wonderful than those which guide a 
bird to make its nest, — 1 believe that the hive-bee has acquired, 
through natural selection, her inimitable architectural powers. 

But this theory can be tested by experiment. Following the 
example of Mr. Tegetmeier, I separated two combs, and put between 
them a long, thick, rectangular strip of wax : the bees instantly 
began to excavate minute circular pits in it ; and as they deepened 
these little pits, they made them wider and wider until they were 
converted into shallow basins, appearing to the eye perfectly true or 
parts of a sphere, and of about the diameter of a cell. It was most 
interesting to observe that, wherever several bees had begun to 
excavate these basins near together, they had begun their work at 
such a distance from each other, that by the time the basins had 
acquired the above-stated width (*. c. about the width of an ordinary 
cell), and were in depth about one sixth of the diameter of the 
sphere of which they formed a part, the rims -of the basins intersected 
or broke into each other. As soon as this occurred, the bees ceased 
to excavate, aud began to build up flat walls of wax on the lines of 
intersection between the basins, so that each hexagonal prism was 
built upon the scalloped edge of a smooth basin, instead of on the 
straight edges of a three-sided pyramid as in the case of ordinary 
cells. 
1 then put into the hive, instead of a thick, rectangular piece of 



Chap. VIII. Cell-making Instinct, 223 



wax, a thin and narrow, knife-edged ridge, coloured with vermilion. 
The bees instantly began on both sides to excavate little basins 
i.ear to each other, in the same way as before ; but the ridge of wax 
was so thin, that the bottoms of the l^asins, if they had been exca- 
vated to the same depth as in the former experiment, would have 
broken into each other from the opposite sides. The bees, however, 
did not suffer this to happen, and they stopped their excavations in 
due time; so that the basins, as soon as they had been a little 
deepened, came to have flat bases ; and these flat bases, formed by 
thin little plates of the vermilion wax left ungnawed, were situated, 
as far as the eye could judge, exactly along the plaues of imaginary 
intersection between the basins on the opposite sides of the ridge 
of wax. In some parts, only small poitions, in other parts, large 
portions of a rhombic plate were thus left between the opposed 
basins, but the work* from the unnatural state of things, had not 
been neatly performed. The bees must have worked at very 
nearly the same rate in circularly gnawing away and deepening 
the basins on both sides of the ridge of vermilion wax, in order to 
have thus succeeded in leaving fiat plates between the basins, by 
stopping work at the planes of intersection. 

Considering how flexible thin wax is, I do not see that there is 
any difficulty in the bees, whilst at work on the two sides of a strip 
of wax, perceiving when they have gnawed the wax away to the 
proper thinness, and then stopping their work. In ordinary combs 
it has appeared to me that the bees do not always succeed in work- 
ing at exactly the same rate from the opposite sides ; for I have 
noticed half-completed rhombs at the base of a just-commenced cell, 
which were slightly concave on one side, where I suppose that the 
bees had excavated too quickly, and convex on the opposed side 
where the bees had worked less quickly. In one well marked 
instance, I put the comb back into the hive, and allowed the bees 
to go on working for a short time, and again examined the cell, and 
I found that the rhombic plate had^been completed, and bad become 
'perfectly flat : it was absolutely impossible, from the extreme thin- 
ness of the little plate, that they could have effected this by gnawing 
away the convex side ; and I suspect that the bees in such cases 
stand on opposite sides and push and bend the ductile and warm 
wax (w^hich as I have tried is easily done) into its proper inter- 
mediate plane, and thus flatten it. 

From the experiment of the ridge of vermilion wax we can see 
that, if the bees were to build for themselves a thin wall of wax, 
they could make their cells of the proper shape, by standing at the 
proper distance from each other, by excavating at the same rate, 



224 Special Instincts, Chap. vill. 

and by endeavouriniij to make equal spherical holTows, but never 
allowing the spheres to break into each other. Now bees, as niay 
be clearly seen by examining the edge of a growing comb, do make 
a rough, circumferential wall or rin^ all round the comb ; and they 
gnaw this away from the opposite sides, always working circularly 
as they deepen each cell. They do not make the whole three-sided 
pyramidal base of any one cell at the same time, but only that 
one rhombic plate which stands on the extreme growing margin, or 
the two plates, as the case may be ; and they never complete the 
upper edges of the rhombic plates, until the hexagonal walls are 
commenced. Some of these statements differ from those made by 
the justly celebrated elder Huber, but I am convinced of their 
accuracy ; and if I had space, I could show that they are conformable 
with my theory. 

Huber's statement, that the very first cell is excavated out of a 
little parallel-sided wall of wax, is not, as far as I have seen, strictly 
correct ; the first commencement having always been a little hood 
of wax ; but I will not here enter on details. We see how important 
a part excavation plays in the construction of the cells; but it 
would be a great error to suppose that the bees cannot build up a 
rough wall of wax in the proper position — that is, along th^ plane 
of intersection between two adjoining spheres. I have several spe- 
cimens showing clearly that they can do this. Even in the nide 
circumferential. rim or wall of wax round a growing comb, flexures 
may sometimes be observed, corresponding in position to the planes 
of the rhombic basal plates of future cells. But the rough wall of 
wax has in every case to be finished off, by being largely gnawed 
away on both sides. The manner in which the bees build is 
curious; they always make the first rough wall from ten to twenty 
times thicker than the excessively thin finished wall of the cell, 
which will ultimately be left. We shall understand how they 
work, by supposing masons first to pile up a broad ridge of cement, 
and then to begin cutting it away equally on both sides near the 
ground, till a smooth, very thin wall is left in the middle ; the 
masons always piling up the cut-away cement, and adding fresh 
cement on the summit of the ridge. We shall thus have a thin 
wall steadily growing upward but always crowned by a gigantic 
coping. From all the cells, both those just conunenced and those 
completed, being thus crowned by a strong coping of wax, the bees 
can cluster and crawl over the comb without injuring the delicate 
hexagonal walls. These walls, as Professor Miller has kindly ascer- 
tained for me, vary greatly in thickness ; being, on an average of 
twelve measurements made near the border of the comb, yj^ of an 



Chap. VIII. Cell-making Instinct 225 

inch in thickness ; whereas the hasal rhomboidal plates are thicker, 
nearly in the proportion of three to two, having a mean thickness, 
from twenty-one measurements, of j^ of an inch. By the above 
lingular manner of building, strength is continually given to the 
comb, with the utmost ultimate economy of wax. 

It seems at first to add to the difficulty of understanding how 
the cells are made, that a multitude of bees all work together ; one 
bee after working a short time at one cell going to another, so that, 
as Hnber has stated, a score of individuals work even at the com- 
mencement of the first celL I was able practically to show this 
fieict, by covering the edges of the hexagonal walls of a single cell, 
or the extreme margin of the circumferential rim of a growing 
comb, with an extremely thin layer of melted vermilion wax ; and 
I invariably found that the colour was most delicately diffused by 
the bees — as delicately as a painter could have done it with his brush 
— ^by atoms of the coloured wax having been taken from the spot 
on which it had been placed, and worked into the growing edges of 
the cells aU round. The work of construction seems to be a sort 
of balance struck between many bees, all instinctively standing at 
the same relative distance from each other, all trying to sweep equal 
spheres, and then building up, or leaving imgnawed, the planes of 
intersection between these spheres. It was really curious to note 
in cases of difficulty, as when two pieces of comb met at an angle, 
how often the bees would pull down and rebuild in different ways 
the same cell, sometimes recurring to a shape which they had at 
first rejected. 

When bees have a place on which they can stand in their proper 
positions for working, — for instance, on a slip of wood, placed 
directly under the middle of a comb growing downwards, so that 
the comb has to be built over one face of the slip — in this case the 
bees can lay the foundations of one wall of a new hexagon, in its 
strictly proper place, projecting beyond the other completed cells. 
It suffices that the bees should be enabled to stand at their proper 
relative distances from each other and from the walls of the last 
completed cells, and then, by striking imaginary spheres, they can 
build up a wall intermediate between two adjoining spheres ; but, 
as far as I have seen, they never gnaw away and finish off the 
angles of a cell till a large part both of that cell and of the adjoin- 
ing cells has been built. This capacity in bees of laying down 
under certain circumstances a rough wall in its proper place between 
two just-commenced cells, is important, as it bears on a fact, which 
seems at first subversive of the foregoing theory ; namely, that the 
cells on the extreme margin of wasp-combs are sometimes strictly 

Q 



226 Special Instincts, Chap. viil. 

hexagonal ; but I have not space here to enter on this subject. Nor 
does there seem to me any great difficulty in a single insect (as in 
the case of a queen-wasp) making hexagonal cells, if she were to 
work alternately on the inside and outside of two or three cells oona- 
menced at the same time, always standing at the proper relative 
distance from the parts of the cells just begun, sweepii]^ sph^es or 
cylinders, and building up intermediate planes. 

As natural selection acts only by the accumulation of slight 
modifications of structure or instinct, each profitable to the indi- 
vidual under its conditions of life, it may reasonably be asked, how 
a long and graduated succession of modified architectural instincts, 
all tending towards the present |»rfect plan of construction, could 
have profited the progenitors of the hive-bee ? I think the answer 
is not difficult ; cells constructed like those of the bee or the wasp 
gain in strength, and save much in labour and space, and in the 
materials of which they are constructed. With respect to the for- 
mation of wax, it is known that bees are often hard pressed to get 
Sufficient nectar, and I am informed by Mr. Tegetmeier that it has 
been experimentally proved that from twelve to fifteen pounds of 
dry sugar are consumed by a hive of bees for the secretion of a 
pound of wax ; so that a prodigious quantity of fluid nectar must 
be collected and consumed by the bees in a hive for the secretion 
of the wax necessary for the construction of their combs. More- 
over, many bees have to remain idle for many days during the 
process of secretion. A large store of honey is indispensaUe to 
support a large stock of bees during the winter ; and the security 
of the hive is known mainly to depend on a large numb^ of bees 
being su^^rted. Hence the saving of wax by largely saving honey 
and the time consumed in collecting the honey must be an import- 
ant element of success to any family of bees. Of course the success 
of tdie 43pecies may be dependent on the number of its enemies, or 
parasites, or on quite distinct causes, and so be altogether inde- 
pendent of the quantity of honey which the bees can collect. But 
let us suppose that this latter circumstance determined, as it pro- 
bably often has determined, whether a bee allied to our humble- 
bees could exist in large numbers in any country; and let us 
further suppose that the community lived through the winter, and 
consequently required a store of honey : there can in this case be 
HO doubt that it would be an advantage to our imaginary humble- 
bee, if a slight modification in her instincts led her to make her 
waxen cells near together, so as to intersect a little ; for a wall in 
common even to two adjoining cells would save some little labour 
and wax. Hence it would continually be more and more advan- 



\ 



9 

Chap. VIII. - Cell-making Instinct. 227 

tageous to our htunble-bees, if they were to make their cells more 
and more regular, nearer together, and aggregated into a mass, like 
the cells of the Melipona ; for in this case a large part of the 
bounding surface of each cell would serve to bound the adjoining 
cells, and much labour and wa,x would be saved. Again, from the 
same cause, it would be advantageous to the Melipona, if she were 
4k> make her cells closer together, and more regular in every way 
than at present ; for then, as we have seen, the spherical surfaces 
would wholly disappear and be replaced by plane surfaces ; and the 
Melipona would make a comb as perfect as that of the hive-bee. 
Beyond this stage of perfection in architecture, natural selection 
could not lead ; for the comb of the hive-bee, as far as we can see, 
is absolutely perfect in economising labour and wax. 

Thus, as I believe, the most wonderful of all known instincts, 
that of the hive-bee, can be explained by natural selection having 
taken advantage of numerous, successive, slight modifications of 
simpler instincts ; natural selection having, by slow degrees, more 
and more perfectly led the bees to sweep equal spheres at a given 
distance from each other in a double layer, and to build up and 
excavate the wax along the planes of intersection ; the bees, of 
course, no more knowii^ that they swept their spheres at one par- 
ticular distance from each other, than they know what are the 
several angles of the hexagonal prisms and of the basal rhombic 
plates ; the motive power of the process of natural selection having 
been the construction of cells of due strength and of the proper 
size and shape for the larvas, this being effected with the greatest 
possible economy of labour and wax ; that individual swarm which 
thus made the best cells with least labour, and least waste of honey 
in the secretion of wax, having succeeded best, and having trans- 
mitted their newly-acquired economical instincts to new swarms, 
which in their turn will have had the best chance of succeeding in 
the struggle for existence. 

Ohjectums to the Theory of Natural Selection as applied to Instincts : 
« Neuter and Sterile Insects. 

It has been objected to the foregoing view of the origin of instincts 
that " the variations of structure and of instinct must have been 
simultaneous and accurately adjusted to each other, as a modifica- 
tion in the one without an immediate corresponding change in the 
other would have been fatal." The force of this objection rests 
entirely on the assumption that the changes in the instincts and 
structure are abrupt. To take as an illustration the case of the 
larger titmouse (Parus major) alluded to in a previous chapter : 

Q 2 



228 Objections to the Theory Chap. VIIL 

this bird often holds the seeds of the yew between its feet on a 
branch, and hammers with its beak till it gets at the kernel. Now 
what special diflficulty would there be in natural selection preserving 
all the slight individual variations in the shape of the beak, which, 
were better and better adapted to break open the seeds, until a 
beak wc^ formed, as well constructed for this purpose as that of 
the nuthatch, at the same time that habit, or compulsion, or spon- 
taneous variations of taste, led the bird to become more and more 
of a seed-eate-r ? In this case the beak is supposed to be slowly- 
modified by natural selection, subsequently to, but in accordance 
with, slowly changing habits or taste ; but let the feet of the tit- 
mouse vary and grow larger from correlation with the beak, or 
from any other unknown cause, and it is not improbable that such 
larger feet would lead the bird to climb more and more until it 
acquired the remarkable climbing instinct and power of the ntit- 
hatch. In this case a gradual change of structure^is supposed to 
lead to changed instinctive habits. To take one more case : few 
instincts are more remarkable than that which leads the swift of 
the Eastern Islands to make its nest wholly of inspissated saliva. 
Some birds build their nests of mud, believed to be moistened with 
saliva ; and one of the swifts of North America makes its nest (as 
I have seen) of sticks agglutinated with saliva, and even with flakes 
of this substance. Is it then very improbable that the natural 
selection of individual swifts, which secreted more and more saliva^ 
should at last produce a species with instincts leading it to neglect 
other materials, and to make its nest exclusively of inspissated 
saliva? And so in other cases. It must, however, be admitted 
that in many instances we cannot conjecture whether it was instinct 
or structure which first varied. 

No doubt many instincts of very difficult explanation could be 
opposed to the theory of natural selection — cases, in which we can- 
not see how an instinct could have originated ; cases, in which no 
intermediate gradations are known to exist; cases of instinct of 
such trifling importance, that they could hardly have been acted od 
by natural selection ; cases of instincts almost identically the same 
in animals so remote in the scale of nature, that we cannot account 
for their similarity by inheritance from a common progenitor, and 
coDsequently must believe that they were independently acquired 
through natural selection. I will not here enter on these several 
cases, but will confine myself to one special difficulty, which at first 
appeared to me insuperable, and actually fatal to the whole theory. 
I allude to the neuters or sterile females in insect-communities: 
— iar these neuters often difl'er widely in instinct and in structure 



Chap. vm. of Natural Selection. 229 

from both the males and fertile females, and yet, from being sterile^ 
they cannot propagate their kind. 

The subject well deserves to be discussed at great length, but I 
will here take only a single case, that of working or sterile ants. 
How the workers have been rendered sterile is a difficulty ; but not 
much greater than that of any other striking modification of struc- 
ture ; for it can'be shown that some insects and other articulate 
animals in a statd of nature occasionally become sterile; and if 
such insects had been social, and it had been profitable to the com- 
mimity that a number should have been annually bom capable of 
work, but incapable of procreation, I can see no especial difficulty 
in this having been effected through natural selection. But I must 
pass over this preliminary difficulty. The great difficulty lies in 
the working ants dififering widely from both the males and the 
fertile females in structure, as in the shape of the thorax, and in 
being destitifte of wings and sometimes of eyes, and in instinct. 
As far as instinct alone is concerned, the wonderftil difference in 
this respect between the workers and the perfect females, would 
have been better exemplified by the hiv^bee. If a working ant or 
other neuter insect had been an ordinary animal, I should have 
unhesitatingly assumed that all its characters had been slowly 
acquired through natural selection ; namely, by individuals having 
been bom with slight profitable modifications, which were inherited 
by the offspring; and that these again varied and again were 
selected, and so onwards. But with the working ant we have an 
insect dififering greatly from its parents, yet absolutely sterile ; so 
that it could never have transmitted successively acquired modifica- 
tions of structure or instinct to its progeny. It may well be asked 
how is it possible to reconcile this case with the theory of natural 
selection? 

• First, let it be remembered that we have innumerable instances, 
both in our domestic productions and in those in a state of nature, 
of all sorts of differences of inherited stracture which are correlated 
with certain ages, and with either sex. We have diflerences corre- 
lated not only with one sex, but with that short period when the 
reproductive system is active, as in the nuptial plumage of many 
birds, and in the hooked jaws of the male salmon. We have even 
slight differences in the horns of different breeds of cattle in rela- 
tion to an artificially imperfect state of the male sex ; for oxen of 
certain breeds have longer horns than the oxen of other breeds, 
relatively to the length of the horns in both the bulls and cows of 
these same breeds. Hence I can see no great difficulty in any 
character becoming correlated with the sterile condition of certain 



230 Objections to tfie Theory Chap. Viil. 



members of insect-communities : the difficulty lies in understanding 
how such correlated modifications of structure could have been 
slowly accumulated by natural selection. 

This difficulty, though appearing insuperable, is lessened, or, as 
I believe, disappears, when it is remembered that selection may be 
applied to the family, as well as to the individual, and may thus 
gain the desired end. Breeders of cattle wish the flesh and fat to 
be well marbled together : an animal thus characterised has been 
slaughtered, but the breeder has gone with confidence to the same 
stock and has succeeded. Such faith may be placed in the power 
of selection, that a breed of cattle, always yielding oxen with extra- 
ordinarily long horns, could, it is probable, be formed by carefully- 
watching which individual bulls and cows, when matched, produced 
oxen with the longest horns ; and yet no one ox would ever have 
propagated its kind. Here is a better and real illustration : accord- 
ing to M. Verlot, some varieties of the double annual Stock from 
having been long and carefully selected to the right degree, always 
produce a large proportion of seedlings bearing double and quite 
sterile flowers; but they likewise yield some single and fertile 
plants. These latter, by which alone the variety can be propagated, 
may be compared with the fertile male and female ants, and the 
double sterile plants with the neuters of the same community. 
As with the varieties of the stock, so with social insects, selection 
has been applied to the family, and not to the individual, for the 
sake of gaining a serviceable end. Hence we may conclude that 
slight modifications of structure or of instinct, correlated with the 
sterile condition of certain members of the community, have proved 
advantageous: consequently the fertile males and females have 
flourished, and transmitted to their fertile offspring a tendency to 
produce sterile members with the same modifications. This pro- 
cess must have been repeated many times, until that prodigious 
amount of difference between the fertile and sterile females of the 
same species has been produced, which we see in many social 
insects. 

But we have not as yet touched on the climax of the difficulty ; 
•namely, the fact that the neuters of several ants differ, not otily 
from the fertile females and males, but from each other, sometimes 
to an almost incredible degree, and are thus divided into two or even 
three castes. The castes, moreover, do not commonly graduate 
into each other, but are perfectly well defined ; being as distinct 
from each other as are any two species of the same genus, or rather 
as any two genera of the same family. Thus in Eciton, there are 
working and soldier neuters, with jaws and instincts extraordinarily 



Chap. vui. of Natural Selection. 23 1 

different : in Cryptocerus, the workers of one caste alone carry a 
wonderful sort of shield on their heads, the use of which is quite 
unknown: in the Mexican Myrmeoocystns, the workers of one 
caste never leave the nest ; they are fed hy the workers of another 
caste, and they have an enormously developed ahdomen which 
secretes a sort of honey, supplying the place of that excreted by the 
aphides, or the domestic cattle as they may be called, which oar 
European ants guard and imprison. 

It will indeed be thought that I have an overweening confidence 
in the principle of natural selection, when I do not admit that 
such wonderful and well-established facts at once annihilate the 
theory. In the simpler case of neuter insects all of one caste, 
which, as I believe, have been rendered different from the fertile 
males and females through natural selection, we may conclude from 
the analogy of ordinary variations, that the successive, slight, pro- 
fitable modifications did not first arise in all the neuters in the same 
nest, but in some few alone; and that by the survival of the 
communities with females which produced most neuters having 
the advantageous modification, all the neuters ultimately came to 
be thus characterised. According I.0 this view we ought occasion- 
ally to find in the same nest neuter insects, presenting gradations 
of structure ; and this we do find, even not rarely, considering how 
few neuter insects out of Europe have been carefully examined. 
Mr. F. Smith has shown that the neuters of several British ants 
difi'er surprisingly from each other in size and sometimes in colour ; 
and that the extreme forms can be linked together by individuals 
taken out of the same nest: I have myself compared perfect 
gradations of this kind. It sometimes happens that the larger or 
the smaller sized workers are the most numerous ; or that both 
large and small are numerous, whilst those of an intermediate size 
are scanty in numbers. Formica flava has larger and smaller 
workers, with some few of intermediate size ; and, in this species, 
as Mr. F. Smith has observed, the larger workers have simple eyes 
(ocelli), which though small can be plainly distinguished, whereas 
the smaller workers have their ocelli rudimentary. Having 
carefully dissected several specimens of these workers, I can affirm 
that the eyes are far more rudimentary in the smaller workers than 
can be accounted for merely by their proportionally lesser size ; and 
I fully believe, though I dare not assert so positively, that the 
workers of intermediate size have their ocelli in an exactly inter- 
mediate condition. So that here we have two bodies of sterile 
workers in the same nest, differing not only in size, but in their 
organs of vision, yet connected by some few members in an inter- 



4 



232 Objections to Natural Selection. Csap. vni. 

mediate condition. I may digress by adding, tbat if the smaller 
workers had been the most useful to the community, and those 
males and females had been continually selected, which produced 
more and more of the smaller workers, until all the workers were 
in this condition ; we should then have had a species of ant with 
neuters in nearly the same condition as those of Myrmica. For 
the workers of Myrmica have not even rudiments of ocelli, though, 
the male and female ants of this genus have well-developed ocellL 

I may give one other case : so confidently did I expect occasion- 
ally to find gradations of important structures between the diflferent 
castes of neuters in the same species, that I gladly availed myself 
of Mr. F. Smith's offer of numerous specimens from the same 
nest of the driver ant (Anomma) of West Africa. The reader will 
perhaps best appreciate the amount of difference in these workers, 
by my giving not the actual measurements, but a strictly accurate 
illustration : the difference was the same as if we were to see a set 
of workmen building a house, of whom many were five feet four 
inches high, and many sixteen feet high ; but we must in addition 
suppose that the larger workmen had heads four instead of three 
times as big as those of the smaller men, and jaws nearly five 
times as big. The jaws, moreover, of the working ants of the 
several sizes differed wonderfully in shape, and in the form and 
number of the teeth. But the important fact for us is, that, 
though the workers can be grouped into castes of different sizes, 
yet they graduate insensibly into each other, as does the widely- 
different structure of their jaws. I speak confidently on this 
latter point, as Sir J. Lubbock made drawings for me, with the 
camera lucida, of the jaws which I dissected from the workers of 
the several sizes. Mr. Bates, in his interesting * Naturalist on the 
Amazons,' has described analogous cases. 

With these facts before me, I believe that natural selection, by 
acting on the fertile ants or parents, could form a species which 
should regularly produce neuters, all of large size with one form 
of jaw, or all of small size with widely different jaws ; or lastly, 
and this is the climax of difficulty, one set of workers of one size 
and structure, and simultaneously another set of workers of a dif- 
ferent size and structure; — a graduated series having first been 
formed, as in the case of the driver ant, and then the extreme 
forms having been produced in greater and greater numbers, through 
the survival of the parents which generated them, until none with 
an intermediate structure were produced. 

An analogous explanation has been given by Mr. Walhwe, of 
the equally complex case, of certain Malayan Butterflies regularly 



Chap. VIII. Summary, 233 

- 

appearing under two or even three distinct female forms ; and by 
'Fritz Miiller, of certain Brazilian crustaceans likewise appearing 
under two widely distinct male forms. But this subject need not 
here be discussed. 

I have now explained how, as I believe, the wonderful fact of 
two distinctly defined castes of sterile workers existing in the 
same nest, both widely different from each other and from their 
parents, has originated. We can see how useful their production 
may have been to a social community of ants, on the same principle 
that the division of labour is useful to civilised man. Ants, how- 
ever, work by inherited instincts and by inherited organs or tools, 
whilst man works by acquired knowledge and manufactured instru- 
ments. But I must confess, that, with all my faith in natural 
selection, I should never have anticipated that this principle could 
have been efficient in so high a degree, had not the case of these neuter 
insects led me to this coDclusion. I have, therefore, discussed this 
case, at some little but wholly insufficient length, in order to show 
the power of natural selection, and likewise because this is by far the 
most serious special difficulty which my theory has encountered. 
The case, also, is very interesting, as it proves that with animals, as 
with plants, any amount of modification may be effected by the 
accumulation of numerous, slight, spontaneous variations, which 
are in any way profitable^ without exercise or habit having been 
brought into play. For peculiar habits confined to the workers or 
sterile females, however long they might be followed, could not 
possibly affect the males and fertile females, which alone leave 
descendants. I am surprised that no one has hitherto advanced 
this demonstrative case of neuter insects, against the well-known 
doctrine of inherited habit, as advanced by Lamarck. 

Bumma/ry. 

I have endeavoured in this chapter briefly to show that the 
mental qualities of our domestic animals vary, and that the varia- 
tions are inherited. Still more briefly I have attempted to show 
that instincts vary slightly in a state of nature. No one will dis- 
pute that instincts are of the highest importance to each animal. 
Therefore there is no real difficulty, under changing conditions of life, 
in natural selection accumulating to any extent slight modifications 
of instinct which are in any way useful. In many cases habit or 
use and disuse have probably come into play. I do not pretend 
that the facts given in this chapter strengthen in any great degree 
my theory ; but none of the cases ot difficulty, to the best of my 
judgment, annihilate it. On the other hand, the fact that instincts 



234 Summary, Chap, viii 

are not always absolutely perfect and are liable to mistakes : — ^that 
ijo instinct can be shown to have been produced for the good of 
other animals, though animals take advantage of the instincts of 
others ; — that the canon in natural history, of " Natura non fecit 
saltum," is applicable to instincts as well as to corporeal structure, 
and is plainly explicable on the foregoing views, but is other- 
wise inexplicable, — all tend to corroborate the theory of natural 
selection. 

This theory is also strengthened by some few other facts in 
regard to instincts ; as by that common case of closely allied, but 
distinct, species, when inhabiting distant parts of the world and 
living under considerably difGerent conditions of life, yet often 
retaining nearly the same instincts. For instance, we can under- 
stand, on the principle of inheritance, how it is that the thrush of 
tropical South America lines its nest with mud, in the same peculiar 
manner as does our British thrush ; how it is that the Hombills of 
Africa and India have the same extraordinary instinct of plastering 
up and imprisoning the females in a hole in a tree, with only a 
small hole left in the plaster through which the males feed them 
and their young when hatched ; how it is that the male wrens 
(Troglodytes) of North America build "cock-nests," to roost in, 
like the males of our Kitty-wrens, — ^a habit wholly unlike that of 
any other known bird. Finally, it may not be a logical deduction, 
but to my imagination it is far more satisfactory to look at such 
instincts as the young cuckoo ejecting its foster-brothers, — ^ants 
making slaves, — the larvae of ichneumonidaB feeding within the 
live bodies of caterpillars, — not as specially endowed or created 
instincts, but as small consequences of one general law leading to 
the advancement of all organic beings, — namely, multiply, vary, 
let the strongest live and the weakest die. 



Chap. IX. Hybridism, 235 



CHAPTEB IX. 

Hybridism. 

Distinction between the sterility of first crosses and of hybrids — Sterility 
various in degree, not uniyersal, affected by close interbreeding, re- 
moved by domestication — Laws governing the sterility of hybrids — 
Sterility not a special endowment, but incidental on other differences, 
not accumulated by natural selection — Causes of the sterility of first 
crosses and of hybrids — Parallelism between the effects of changed 
conditions of life and of crossing — Dimorphism and trimorphism — 
Fertility of varieties when crossed and of their mongrel offspring not 
universal — Hybrids and mongreb compared independently of their 
fertility — Summary. 

The view commonly entertained by naturalists is that species, when 
intercrossed, have been specially endowed with sterility, in order to 
prevent their confusion. This view certainly seems at first highly 
probable, for species living together could hardly have been kept 
distinct bad they been capable of freely crossing. The subject is 
in many ways important for ns, more especially as the sterility of 
species when first crossed, and that of their hybrid offspring, cannot 
have been acquired, as I shall show, by the preservation of suc- 
cessive profitable degrees of sterility. It is an incidental result of 
differences in the reproductive systems of the parent-species. 

In treating this subject, two classes of factSj^ to a large extent 
fundamentally different, have generally been confounded ; namely, 
t he sterility of sper ^^iji w^*^" ^THt ffn^fif^d, andl Jjjg. sterility. jj£ ihe, 
hybri/ li^-y^ftflT^^^fi f^^^^^Tvi 

Pure species have of course their organs of reproduction in a per- 
fect condition, yet when intercrossed they produce either few or no 
offspring. Hybrids, on the other hand, have their reproductive 
organs functionally impotent, as may be clearly seen in the state of 
the male element in both plants and animals ; though the formative 
organs themselves are perfect in structure, as far as the microscope 
reveals. In the first case the two sexual elements which go to form 
the embryo are perfect ; in the second case they are either not at all 
developed, or are imperfectly developed. This distinction is im- 
portant, when the cause of the sterility, which is common to the 



236 Hybridism. Chai». ix. 

two cases, has to be considerecL The distinction probably has been 
slurred over, owing to the sterility in both cases being looked on as 
a special endowment, beyond the province of our reasoning powers. 

The fertility of varieties, that is of the forms known or believed 
to be descended from common parents, when crossed, and likewise 
the fertility of their mongrel ofiFspring, is, with reference to my 
theory, of equal importance with the sterility of species; for it 
seems to make a broad and clear distinction between varieties and 
species. 

Degrees qf Sterility, — First, for the sterility of species when 
crossed and of their hybrid offspring. It is impossible to study the 
several memoirs and works of those two conscientious and admirable 
observers, Kolreuter and Gartner, who almost devoted their lives to 
this subject, without being deeply impressed with the high gene- 
rality of some degree of sterility. Kolreuter makes the rule 
universal ; but then he cuts the knot, for in ten cases in which he 
found two forms, considered by most authors as distinct species, 
quite fertile together, he unhesitatingly ranks them as varieties. 
Gartner, also, makes the rule equally universal; and he disputes 
the entire fertility of Koheuter's ten cases. But in these and in 
many other cases, Gartner is obliged carefully to count the seeds, 
in order to show that there is any degree of sterility. He always 
compares the maximum number of seeds produced by two species 
when first crossed, and the maximum produced by their hybrid 
offspring, with the average number produced by both pure parent- 
species in a state of nature. But causes of serious error here inter- 
vene : a plant, to be hybridised, must be castrated, and, what is 
often more important, must be secluded in order to prevent pollen 
being brought to it by insects from other plants. Nearly all the 
plants experimented on by Gslrtner were potted, and were kept in a 
chamber in his house. That these processes are often injurious to 
the fertility of a plant cannot be doubted ; for Gartner gives in his 
table about a score of cases of plants which he castrated, and 
artificially fertilised with their own pollen, and (excluding all cases 
such as the Leguminosas, in which there is an acknowledged diffi- 
culty in the manipulation) half of these twenty plants had their 
fertility in some degree impaired. Moreover, as Gartner repeatedly 
crossed some forms, such as the common red and blue pimpernels 
(Anagallis arvensis and coerulea), which the best botanists rank as 
varieties, and found them absolutely sterile, we may doubt whether 
many species are really so sterile, when intercrossed, as he believed. 

It is certain, on the one hand, that the sterility of various species 
when crossed is so different in degree and graduates away so in- 



Chap. IX. Degrees of Sterility 237 

sensibly, and, on the other hand, that the fertility of pure species 
is so easily a£fe(^ted by various circumstances, that for all practical 
purposes it is most difficult to say where perfect fertility ends and 
sterility begins. I think no better evidence of this can be required 
than that the two most experienced observers who have ever lived, 
namely Kolreuter and Gartner, arrived at diametrically opposite 
conclusions in regard to some of the very same forms. It is also 
most instructive to compare — but I have not space here to enter on 
details — the evidence advanced by our best botanists on the question 
whether certain doubtful forms should be ranked as species 01 
varieties, with the evidence from fertility adduced by different 
hybridisers, or by the same observer from experiments made during 
different years. It can thus be shown that neither sterility nor 
fertility affords any certain distinction between species and varieties. 
The evidence from this source graduates away, and is doubtfal in 
the same degree as is the evidence derived from other constitutional 
and structural differences. 

In regard to the sterility of hybrids in successive generations ; 
though Gartner was enabled to rear some hybrids, carefully guard- 
ing them from a cross with either pure parent, for six or seven, and 
in one case for ten generations, yet he asserts positively that their 
fertihty never increases, but generally decreases greatly and sud- 
denly. With respect to this decrease, it may first be noticed that 
"when any deviation in structure or constitution is common to both 
parents, this is often transmitted in an augmented degree to the 
ofOspring ; and both sexual elements in hybrid plants are already 
affected in some degree. But I believe that their fertility has been^ 
diminished in nearly all these cases by an independent cause, 
namely, by too close interbreeding. I have made so many experi- 
ments and collected so many facts, showing on the one hand that 
an occasional cross with a distinct individual or variety increases 
the vigour and fertility of the offspring, and on the other hand that 
very close interbreeding lessens their vigour and fertility, that I 
cannot doubt the correctness of this conclusion. Hybrids are seldom 
raised by experimentalists in great numbers ; and as the parent- 
species, or other allied hybrids, generally grow in the same garden, 
the visits of insects must be carefally prevented during the flowering 
season : ' hence hybrids, if left to themselves, will generally be 
fertilised during each generation by pollen from the same flower ; 
and this would probably be injurious to their fertility, already 
lessened by their hybrid origin. I am strengthened in this con- 
viction by a remarkable statement repeatedly made by Gartner, 
namely, that if even the less fertile hybrids be artificially fertilised 



238 Hybridism. Chap. ix. 

with hybrid pollen of the satoe kind, their fertility, notwithstanding 
the frequent ill effects from manipulation, sometimes decidedly 
increases, and goes on increasing. Now, in the process of arti6cial 
fertilisation, pollen is as often taken by chance (as I know from my 
own experience) from the anthers of another flower, as from the 
anthers of the flower itself which is to be fertilised ; so that a cross 
between two flowers, though probably often on the same plant, 
would be thus effected. Moreover, whenever complicated experi- 
ments are in progress, so careful an observer as Gartner would have 
castrated his hybrids, and this would have ensured in each genera- 
tion a cross with pollen from a distinct flower, either from the same 
plant or from another plant of the same hybrid nature. And thus, 
the strange fact of an increase of fertility in the successive genera- 
tions of artificially fertilised hybrids, in contrast with those 
spontaneously self-fertilised, may, as I beUeve, be accounted for by 
too close interbreeding having been avoided. 

Now let us turn to the results arrived at by a third most experi- 
enced hybridiser, namely, the Hon. and Rev. W. Herbert. He is 
as emphatic in his conclusion that some hybrids are perfectly fertile 
— as fertile as the pure parent-species — as are Kolreuter and Gartner 
that some degree of sterility between distinct species is a universal 
law of nature. He experimented on some of the very same species 
as did Gl^rtner. The difference in their results may, I think, be in 
part accounted for by Herbert's great horticultural skill, and by his 
having hot-houses at his command. Of his many important state- 
ments I will here give only a single one as an example, namely, 
that "every ovule in a pod of Crinum capense fertilized by C. 
revolutum produced a plant, which I never saw to occur in a case 
of its natural fecundation." So that here we have perfect or even 
more than commonly perfect fertility, in a first cross between two 
distinct species.^ 

This case of the Crinum leads me to refer to a singular fact, 
namely, that individual plants of certain species of Lobelia, Yer- 
bascum and Passiflora, can easily be fertilised by pollen fi;om a 
distinct species, but not by pollen from the same plant, though this 
pollen can be proved to be perfectly sound by fertilising other plants 
or species. In the genus Hippeastrum, in Gorydalis as shown by 
Professor Hildebrand, in various orchids as shown by Mr. Scott and- 
Fritz Muller, all the individuals are in this peculiar condition. So 
that with some species, certain abnormal individuals, and in other 
species all the individuals, can actually be hybridised much more 
readily than they can be fertilised by pollen from the same individual 
plant 1 To give one instance, a bulb of Hippeastrum aulicum pro- 



u 



Chap. IX. Degrees of Sterility. 239 

duced four flowers ; three were fertilised by Herbert with their own 
poll en, and the fourth was subsequently fertilised by the pollen of 
a oompound hybrid descended from three distinct species: the 
result was that "" the ovaries of the three first flowers soon ceased to 
grow, and after a few days perished entirely, whereas the pod 
impregnated by the pollen of the hybrid made vigorous growth 
and rapid progress to maturity, and bore good seed, which vege- 
tated freely." Mr. Herbert tried similar experiments during many 
years, and always with the same result. These cases serve to show 
on what slight and mysterious causes the lesser or greater fertility 
of a species sometimes depends. 

The practical experiments of horticulturists, though not made 
with scientific precision, deserve some notice. It is notorious in 
how complicated a manner the species of Pelargonium, Fuchsia, 
Calceolaria, Petunia, Bhododendron, &c., have been crossed, yet 
many of these hybrids seed freely. For instance, Herbert asserts 
that a hybrid from Calceolaria integrifolia and plantaginea, species 
most widely dissimilar in general habit, " reproduces itself as per- 
fectly as if it had been a natural species from the mountains of 
Chili." 1 have taken some pains to ascertain the degree of fertility 
of some of the complex crosses of Khododendrons, and I am assured 
that many of them are perfectly fertile. Mr. C. Noble, for instance, 
informs me that he raises stocks for grafting from a hybrid between 
Ehod. ponticum and catawbiense, and that this hybrid *' seeds as 
freely as it is possible to imagine." Had hybrids, when fairly 
treated, always gone on decreasing in fertility in each successive 
generation, as Gartner believed to be the case, the fact would have 
been notorious to nursery-men. Horticulturists raise large beds of 
the same hybrid, and such alone are fairly treated, for by insect 
agency the several individuals are allowed to cross freely with each 
other, fmd the injurious influence of close interbreeding is thus 
prevented. Any one may readily convince himself of the efficiency 
of insect-agency by examining the flowers of the more sterile kinds 
of hybrid Bhododendrons, which produce no pollen, for he will 
find on their stigmas plenty of pollen brought from other flowers. 

In regard to animals, much fewer experiments have been care- 
fully tried than with plants. If our systematic arrangements can 
be trusted, that is, if the genera of animals are as distinct from each 
other as are the genera of plants, then we may infer that animals 
more widely distinct in the scale of nature can be crossed more 
easily than in the case of plants ; but the hybrids themselves are, 
I think, more sterile. It should, however, be borne in mind that, 
owing to few animals breeding freely under confinement^ few 



240 Hybridism, Chap. IX. 

experiments have been feirly tried : for instance, the canary-bird 
has been crossed with nine distinct species of finches, but, as not 
one of these breeds freely in confinement, we have no right to 
expect that the first crosses between them and the canary, or that 
their hybrids, should be perfectly fertile. Again, with respect to 
the fertility in successive generations of the more fertile hybrid 
animals, I hardly know of an instance in which two families of the 
same hybrid have been raised at the same time from different 
parents, so as to avoid the ill effects of close interbreeding. On the 
contrary, brothers and sisters have usually been crossed in each 
successive generation, in opposition to the constantly repeated 
admonition of every breeder. And in this case, it is not at all 
sui-prising that the inherent sterility in the hybrids should have 
gone on increasing. 

Although I know of hardly any thoroughly well-authenticated 
cases of perfectly fertile hybrid animals, I have reason to believe 
that the hybrids from Cervulus vaginalis and Reevesii, and from 
Phasianus colchicus with P. torquatus, are perfectly fertile. M. 
Quatrefages states that the hybrids from two moths (Bombyx 
cynthia and arrindia) were proved in Paris to be fertile int^ se 
for eight generations. It has lately been asserted that two such 
distinct species as the hare and rabbit, when they can be got to 
breed together, produce offspring, which are highly fertile when 
crossed with one of the parent-species. The hybrids from the 
common and Chinese geese (A. cygnoides), species which are so 
different that they are generally ranked in distinct genera, have 
often bred in this country with either pure parent, and in one 
single instance they have bred inter se. This was effected by 
Mr. Eyton, who raised two hybrids from the same parents, but 
from different hatches ; and from these two birds he raised no less 
than eight hybrids (grandchildren of the pure geese) from one nest. 
In India, however, these cross-bred geese must be far more fertile ; 
for I am assured by two eminently capable judges, namely Mr. 
Blyth and Gapt. Hutton, that whole fiocks of these crossed geese 
are kept in various parts of the country ; and as they are kept for 
profit, where neither pure parent-species exists, they must certainly 
be highly or perfectly fertile. 

With our domesticated animals, the various races when crossed 
together are quite fertile ; yet in many cases they are descended 
from two or more wild species. From this fact we must conclude 
either that the aboriginal parent-species at first produced perfectly 
fertile hybrids, or that the hybrids subsequently reared under 
domestication became quite fertile. This latter alternative, which 



Chap. jx. ' Degrees of Sterility, 24 1 

was first propounded by Pallas, seems by far the most probable, and 
can, indeed, hardly be doubted. It is, for instance, almost certain 
that our dogs are descended from several wild stocks ; yet, with 
perhaps the exception of ceiiain indigenous domestic dogs of South 
America, all are quite fertile tc^ether; but analogy makes me 
greatly doubt, whether the several abori<];inal species would at first 
have freely bred together and have produced quite fertile hybrids. 
So again I have lately acquired decisive evidence that the 
crossed offspring from the Indian humped and common cattle are 
inter se perfectly fertile ; and from the observations by RUtimeyef 
on their important osteological differences, as well as from those 
by Mr. Blyth on their differences in habits, voice, constitution, &c., 
these two forms must be regarded as good and distinct species. 
The same remarks may be extended to the two chief races of 
the pig. We must, therefore, either give up the belief of the 
nniversal sterility of species when crossed; or we must look at 
this- sterility in animals, not as an indelible characteristic, but 
as one capable of being removed by domestication. 

Finally, considering all the ascertained facts on the intercross- 
ing of plants and animals, it may be concluded that some degree 
of sterility, botih-iir^-farthcrosjses and in hybiidar^ aa fl)ttramely 
general Tfi^oil^ but that it cannot, under our present state of 
knowledge, be considered as absoliiely Jiniverg^ 

Law8 governing the Sterility 0/ first Crosses and of Hyhrids^ 

We will now consider a little more in detail the laws governing 
the sterility of first crosses and of hybrids. Our chief object will 
be to see whether or not these laws indicate that species have 
been specially endowed with this quality, in order to prevent 
their crossing and blending together in utter confusion. The fol- 
lowing conclusions are drawn up chiefly from Gartner's admirable 
work on the hybridisation of plants. I have taken much pains 
to ascertain how far they apply to animals, and, considering how 
scanty our knowledge is in regard to hybrid animals, I have 
been surprised to find how generally the same rules apply to both 
kingdoms. 

It has been already remarked, that the degree of fertility, both 
of first crosses and of hybrids, graduates from zero to perfect 
fertility. It is surprising in how many curious ways this grada- 
tion cAn be shown ; but only the barest outline of the facts can 
here be given. When pollen from a plant of one family is placed 
on the stigma of a plant of a distinct family, it exerts no more 
influence than so much inorgaric dust. From this absolute zero of 



242 Laws governing the Sterility Chap. IX. 

fertility, the pollen of different species applied to the stigma of 
some one species of the same genus, yields a perfect gradation in 
the number of seeds produced, up to nearly complete or even quite 
complete fertility ; and, as we have seen, in certain abnormal cases^ 
even to an excess of fertility, beyond that which the plant's own 
pollen produces. So in hybrids themselves, there are some which 
never have produced, and probably never would produce, even with 
the pollen of the pure parents, a single fertile seed : but in some of 
these cases a first trace of fertility may be detected, by the pollen 
of one of the pure parent-species causing the flower of the hybrid to 
wither earlier than it otherwise would have done ; and the early 
withering of the flower is well known to be a sign of incipient 
fertilisation. From this extreme degree of sterility we have self- 
fertilised hybrids producing a greater and greater number of seeds 
up to perfect fertility. 

The hybrids raised from two species which are very difficult 
to cross, and which rarely produce any offspring, are generally very 
'sterile ; but the parallelism between the difficulty of making a first 
cross, and the sterility of the hybrids thus produced — ^two classes of 
facts which are generally confounded together — is by no means 
strict. There are many cases, in which two pure species, as in the 
genus Verbascum, can be united with unusual facility, and produce 
numerous hybrid-offspring, yet these hybrids are remarkably sterile. 
On the other hand, there are species which can be crossed very 
rarely, or with extreme difficulty, but the hybrids, when at last 
produced, are very fertile. Even within the limits of the same 
genus, for instance in Dianthus, these two opposite cases occur. 

The fertility, both of first crosses and of hybrids, is more easily 
affected by unfavourable conditions, than is that of pure species. 
But the fertility of first crosses is likewise innately variable ; for 
it is not always the same in degree when the same two species are 
crossed under the same circumstances ; it depends in part upoo the 
constitution of the individuals which happen to have been chosen 
for the experiment. So it is with hybrids, for their degree of 
fertility is often found to differ greatly in the several individuals 
raised from seed out of the same capsule and exposed to the same 
conditions. 

By the term systematic affinity is meant, the general resemblance 
between species in structure and constitution. Now the fertility of 
first crosses, and of the hybrids produced from them, is largely- 
governed by their systematic affinity. This is clearly shown by 
hybrids never having been raised between species ranked by sys- 
tematists in distinct families ; and on the other hand, by very 



Chap. IX. of first Crosses and of Hybrids. 243 

closely allied species generally uniting with facility. But the 
correspondence between systematic affinity and the facility of 
crossing is by no means strict. A multitude of cases could be given 
of VCTy closely allied species which will not unite, or only with 
extreme difficulty ; and on the other hand of very distinct species 
which unite with the utmost facility. In the same family there 
may be a genus, as Dianthus, in which very many species can most 
readily be crossed ; and another genus, as Silene, in which the most 
persevering efforts have failed to produce between extremely close 
species a single hybrid. Even within the limits of the same genus, 
we meet with this same difference ; for instance, the many species of 
Niootiana have been more largely crossed than the species of almost 
any other genus ; but Gartner found that N. acuminata, which is 
not a particularly distinct species, obstinately failed to fertilise, or 
to be fertilised by no less than eight other species of Kicotiana. 
Many analogous facts could be given. 

No one has been able to point out what kind or what amount of 
differenoe, in any rec(^;nisable character, is sufficient to prevent two 
species crossing. It can be shown that plants most widely different in 
habit and general appearance, and havii^ strongly marked differ- 
ences in every part of the flower, even in the pollen, in the firuit, 
and in the cotyledons, can be crossed. Annual and perennial plants, 
deciduous and evergreen trees, plants Inhabiting different stations 
and fitted for extremely different climates, can often be crossed 
with ease. 

By a reciprocal cross between two species, I mean the case, 
for instance, of a female-ass being first crossed by a stallion, and 
then a mare by a male-ass : these two species may then be said 
to have been reciprocally crossed. There is often the widest 
possible difference in the facility of making reciprocal crosses. 
Such cases are highly important, for they prove that the capacity 
in any two species to cross is often completely independent of their 
systematic affinity, that is of any difference in their structure 
or constitution, excepting in their reproductive systems. The 
diversity of the result in reciprocal crosses between the same two 
species was long ago observed by KOlreuter. To give an instance : 
Mirabilis jalapa can easily be fertilised by the pollen of M. longi- 
flora, and the hybrids thus produced are sufficiently fertile ; but 
Kobreuter tried more than two hundred times, during eight fol- 
lowing years, to fertilise reciprocally M. longiflora with the pollen of 
M. jalapa, and utterly failed. Several other equally striking cases 
could be given. Thuret has observed the same fact with certain 
sea-weeds or Fuci. Gartner, moreover, found that this difference of 

B 2 



244 Laws governing the Sterility Chap. IX. 

facility in making reciprocal crosses is extremely common in a 
lesser degree. He has observed it even between closely related 
forms (as Matthiola annua and glabra) which many botanists rank 
only as varieties. It is also a remarkable fact, that hybrids raised 
from reciprocal crosses, though of course compounded of the very 
same two species, the one species having first been used as the 
father and then as the mother, though they rarely differ in external 
characters, yet generally differ in fertility in a small, and occa- 
sionally in a high degree. 

Several other singular rules could be given from Gartner : for 
instance, some species have a remarkable power of crossing with 
other species ; other species of the same genus have a remarkable 
power of impressing their likeness on their hybrid offspring ; but 
these two powers do not at all necessarily go together. There are 
certain hybrids which, instead of having, as is usual, an intermediate 
character between their two parents, always closely resemble one of 
them ; and such hybrids, though externally so like one of their pure 
parent-species, are with rare exceptions extremely sterile. So again 
amongst hybrids which are usually intermediate in structure 
between their parents, exceptional and abnormal individuals some- 
times are bora, which closely resemble one of theii pure parents ; 
and these hybrids are almost always utterly sterile, even when the 
other hybrids raised from seed from the same capsule have a con- 
siderable degree of fertility. These facts show how completely the 
fertility of a hybrid may be independent of its external resemblance 
to either pure parent. 

Considering the several rules now give^ ^ which govern the 
f^ fertility of first crosses and of hybrids, we see that ilini fniijm^ 
which must be considered as gppd and distinct spAf^iftfi, jm;^ \\r^\£^^ 
their fertility graduates &om zero to perfect W^^^'^y. n^ even ±o 
fertility under certain conditions in.. excess^ that their fertility , 
besides being eminently susceptible to favourable a^nd jmfaYn^rflhlr 
conditions, is innately variable; that it is Jay, no mean8.jal3EajM 
the same in degree in the first cross and in 4%>T^^dn prniillfiH 
from this cross ; that the fertility of hybrids is not r ^ted ip the 
degree in which they resemble in external af^^earance .either parent ; 
and lastly, that the facility of making a first prosa between'any 
two species is not always governed by their systematiQ^affinity or 
degree of resemblance to each other. This latter statement is 
clearly proved by the difference in the result of reciprocal cresses 
between the same two species, for, according as the one species 
or the other is used as the father or the mother, there is generally 
some difference, and occasionally the widest possible difference^ 



Chap. IX. of first Crosses and of Hybrids, 245 

in the fiicility of effecting an nnion« The hyhrids, moreoyer, 
produced from reciprocal crosses often differ in fertility. 

Now do these complex and singular rules indicate that species 
have been endowed with sterility simply to prevent their becoming 
confounded in nature ? I think not. For why should the sterility I 
be so extremely different in d^ee, when various species are crossed, 1 
all of which we must suppose it would be equally important to keep 
from blending together? Why should the degree of steriUty be \ 
innately variable in the individuals of the same species? Why 
should some species cross with fjEicility, and yet produce very sterile 
hybrids ; and other species cross with extreme difficulty, and yet 
produce fairly fertile hybrids? Why should there often be so 
great a difference in the result of a reciprocal cross between the 
same two species ? Why, it may even be asked, has the production 
of hybrids been permitted? To grant to species the special power 
of producing hybrids, and then to stop their further propagation by 
different degrees of sterility, not strictly related to the facility of 
the first union between their parents, seems a strange arrangement. 

The foregoing rules and &cts, on the other hand, appear to me 
clearly to indicate that the sterility both of first crosses and of 
hybrids is simply incidental or dependent on unknown differences 
in their reproductive systems ; the differences being of so peculiar 
and limited a nature, that, in reciprocal crosses between the same 
two species, the male sexual element of the one will often freely act 
on the female sexual element of the other, but not in a reversed 
direction. It will be advisable to explain a little more fully by 
an example what I mean by sterility being incidental on other 
differences, and not a specially endowed quality. As the capacity 
of one plant to be grafted or budded on another is nnimjjorlant for 
their welfare in a state of nature, I presume that no one will suppose 
that this capacity is a specially endowed quality, but will admit that 
it is incidental on differences in the laws of growth of the two 
plants. We can sometimes see the reason why one tree will not 
take on another, from differences in their rate of growth, in the 
hardness of their wood, in the period of the flow or nature of their 
sap, &c. ; but in a multitude of cases we can assign no reason what- 
ever. Great diversity in the size of two plants, one being woody 
and the other herbaceous, one beings evergreen and the other deci- 
duous, and adaptation to widely different climates, do not always 
prevent the two grafting together. As in hybridisation, so with 
grafting, the capacity is limited by systematic affinity, for no one 
has been able to graft together trees belonging to quite distinct 
families ; and, on the other hand, closely allied species, and varieties 



246 Laws governing Sterility. Chap. ix. 

of the same species, caa usually, but not invariably, be grafted with 
ease. But this capacity, as in hybridisation, is by no means abso- 
lulicly governed by systematic affinity. Although many distinct 
genera within the same family have been grafted together, in other 
cases species of the same genus will not take on each other. The 
pear can be grafted far more readily on the quince, which is ranked 
as a distinct genus, than on the apple, which is a member of the 
same genus. Even different varieties of the pear take with different 
degrees of facility on the quince ; so do different varieties of the 
apricot and peach on certain varieties of the plum. 

As Gartner found that there was sometimes an innate difference 
in different individtuils of the same two species in crossing; so 
Sageret believes this to be the case with different individuals of 
the same two species in being grafted together. As in reciprocal 
crosses, the facility of effecting aV union is often very far from 
equal, so it sometimes is in grafting ; the common gooseberry, for 
instance, cannot be grafted on the currant^ whereas the currant will 
take, though with difficulty, on the gooseberry. 

We have seen that the sterility of hybrids, which have their 
reproductive organs in an imperfect condition, is a different case 
from the difficulty of uniting two pure species, which have their 
reproductive organs perfect ; yet these two distinct classes of 
cases run to a large extent parallel. Something analogous occurs 
in grafting; for Thoum found that throe species of Bobinia, 
which seeded freely on their own roots, and which could be 
grafted with no great difficulty on a fourth species, when thus 
grafted were rendered barren. On the other hand, certain species of 
Sorbus, when grafted on other species yielded twice as much fniit 
as when on their own roots. We are reminded by this latter fact of 
the extraordinary cases of Hippeastrum. Fassifiora, &c., which seed 
much more freely when fertilised with the pollen of a distinct 
species, than when fertilised with pollen from the same plant. 

We thus see, that, although there is a clear and great difference 
between the mere adhesion of grafted stocks, and the union of 
the male and female elements in the act of reproduction, yet that 
there is a rude degree of parallelism in the results of grafting and of 
crossing distinct species. And as we must look at the curious 
and complex laws governing the facility with which trees can be 
grafted on each other as incidental on unknown differences in tlieir 
vegetative systems, so I believe that the still more complex laws 
governing the facility of first crosses are incidental on unknown 
differences in their reproductive systems^ These differences in both 
cases, follow to a certain extent, as might have been expected. 



Chap. IX. » Sterility of Hybrids, 247 

-^— ^— — ^— ^.^— ^— ^ - \ 

systematic affinity, by which term every kind of resemblance and 
dissimilarity between organic beings is attempted to be expressed. 
The facts. by rSb means seem to indicate that the greater or lesser 
difficulty of either grafting or crossing various species has been a 
special endowment ; although in the case of crossing, the difficulty 
is as important for the endurance and stability of specific forms, 
as in the case of grafting it is unimportant for their welfare. 

Origin and Causes of the Sterility of first Crosses and of 

Hybrids, 

At one time it appeared to me probable, as it has to others, that 
the sterility of first crosses and of hybrids might have been slowly 
acquired through the natural selection of slightly lessened degrees 
of fertility^ which, like any other variation, spontaneously appeared 
in certain individuals of one variety when crossed with those of 
another variety. For it would clearly be advantageous to two 
varieties or incipient species, if they could be kept from blending, 
on the same principle that, when man is selecting at the same time 
two varieties, it is necessary that he should keep them separate. 
In the first place, it may be remarked that species inhabiting 
distinct regions are often sterile when crossed ; now it could clearly 
have been of no advantage to such separated species to have been 
rendered mutually sterile, and consequently this could not have 
been effected through natural selection; but it may perhaps be 
argued, that, if a species was rendered sterile with some one 
compatriot, sterility with other species would follow as a necessary 
contingency. In the second place, it is almost as much opposed to 
the theory of natural selection as to that of special creation, that in 
reciprocal crosses the male element of one form should have been 
rendered utterly impotent on a second form, whilst at the same 
time the male element of this second form is enabled freely to 
fertilise the first form ; for this peculiar state of the reproductive 
system could hardly have been advantageous to either species. 

In considering the probability of natural selection having come 
into action, in rendering species mutually sterile, the greatest 
difficulty will be found to lie in the existence of many graduated 
steps from slightly lessened fertility to absolute sterility. It may 
be admitted that it would profit an incipient species, if it were 
rendered in some slight degree sterile when crossed with its parent 
form or with some other variety ; for thus fewer bastardised and 
deteriorated ofifspring would be produced to commingle their blood 
with the new species in process of formation. But he who will take 
the trouble to reflect on the steps by which this first degree of 



248 Causes of the Sterility ' Chap. IX. 

sterility could be increased through natural selection to that high 
degree which is common with so many species, and which is 
universal with species which have been differentiated to a generic 
or family rank, will find the subject extraordinarily complex. 
After mature reflection it seems to me that this could not have been 
effected through natural selection. Take the case of any two 
species which, when crossed, produce few and sterile offspring ; now, 
what is there which could favour the survival of those individuals 
which happened to be endowed in a slightly higher degree with 
mutual infertility, and which thus approached by one small step 
towards absolute sterility ? Yet an advance of this kind, if the 
theory of natural selection be brought to bear, must have incessantly 
occurred with many species, for a multitude are mutually quite 
barren. With sterile neuter insects we have reason to believe that 
modifications in their structure and fertility have been slowly 
accumulated by natural selection, from an advantage having been 
thus indirectly given to the community to which they belonged 
over other communities of the same species; but an individual 
animal not belonging to a social community, if rendered slightly 
sterile when crossed with some other variety, would not thus itself 
gain any advantage or indirectly give any advantage to the other 
individuals of the same variety, thus leading to their preser^^ation. 

But it would be superfluous to discuss this question in detail; 
for with plants we have conclusive evidence that the sterility of 
crossed species must be due to some principle, quite independent of 
natural selection. Both Gartner and Kolreuter have proved that in 
genera including numerous species, a series can be formed from 
species which when crossed yield fewer and fewer seeds, to species 
which never produce a single seed, but yet are affected by the 
pollen of certain other species, for the germen swells. It is her© 
manifestly impossible to select the more sterile individuals, which 
have already ceased to yield seeds ; so that this acme of sterility, 
when the germen alone is affected, cannot have been gained through 
selection ; and from the laws governing the various grades of sterility 
being so uniform throughout the animal and vegetable kingdoms, 
we may infer that the cause, whatever it may be, is the same or 
nearly the same in all cases. 

We will now look a little closer at the probable nature of the 
differences between species which induce sterility in first crosses 
and in hybrids. In the case of first crosses, the greater or less 
difficulty in effecting an union and in obtaining offspring apparently 
depends on several distinct causes. There must sometimes be a 



Chap. IX. of first Crosses and of Hybrids. 249 

physical impossibility in the male element reaching the ovule, as 
would be the case with a plant having a pistil too long for the pollen- 
tubes to reach the ovarium. It has also been observed that when 
the pollen of one species is placed on the stigma of a distantly allied 
species, though the pollen-tubes protrude, they do not penetrate the 
stigmatic surface. Again, the male element may reach the female 
element but be incapable of causing an embryo to be developed, as 
seems to have been the case with some of Thuret*s experiments on 
FucL No explanation can be given of these facts, any more than 
why certain trees cannot be grafted on others. Lastly, an embryo 
may be developed, and- then perish at an early period. This latter 
alternative has not been sufficiently attended to; but I believe, 
from observations communicated to me by Mr. Hewitt, who has 
had great experience in hybridising pheasants and fowls, that the < 
early death of the embryo is a very frequent cause of sterility in 
first crosses. Mr. Salter has recently given the results of an 
examination of about 500 eggs produced from various crosses 
between three species of Gallus and their hybrids ; the majority of 
these eggs had been fertilised ; and in the majority of the fertilised 
eggs, the embryos had either been partially developed and had then 
perished, or had become nearly mature, but the young chickens had 
been unable to break through the shelL Of the chickens which 
were bom, more than four-fifths died within the first few days, or 
at latest weeks, " without any obvious cause, apparently from mere 
inability to live ; " so that from the 500 eggs only twelve chickens 
were reared. With plants, hybridised embryos probably often 
perish in a like manner ; at least it is known that hybrids raised 
from very distinct species are sometimes weak and dwarfed, and 
perish at an early age ; of which fact Max Wichura has recently 
given some striking cases with hybrid willows. It may be here 
worth noticing that in some cases of parthenogenesis, the embryos 
within the eggs of silk moths which had not been fertilised, pass 
through their early stages of development and then perish like the 
embryos produced by a cross between distinct species. Until 
becoming acquainted with these facts, I was unwilling to believe in 
the frequent early death of hybrid embryos ; for hybrids, when 
once born, are generally healthy and long-lived, as we see in the 
case of the common mule. Hybrids, however, are differently cir- 
cumstanced before and after birth: when bom and living in a 
country where their two parents live, they are generally placed under 
suitable conditions of life. But a hybrid partakes of only half of 
the nature and constitution of its mother ; it may therefore before 
birth, as long as it is nourished within its mother's womb, or within 



250 Causes of the Sterility Chap. ix. 

the egg or seed produced by the motlier, be exposed to conditions 
in some degree unsuitable, and consequently be liable to perish at 
an early period; more especially as all very young beings are 
emineutly sensitive to injurious or unnatural conditions of life. 
But after all, the cause more probably lies in some imperfection in 
the original act of impregnation, causing the embryo to be im- 
perfectly developed, rather than in the conditions to which it is 

^.subsequently exposed. 

j\ In regard to the sterility of hybrids, in which th^ sexual elements 

' are imperfectly developed, the case is somewhat different. I have 
more than once alluded to a large body of facts showing that, when 

'^animals and plants are removed from their natural conditions, they 
are extremely liable to have their reproductive systems seriously 
affected. This, in fact, is the great bar to the domestication of 
animals. Between the sterility thus superinduced and that of 
hybrids, there are many points of similarity. In both cases the 
sterility is independent of general health, and is often accompanied 
by excess of size or great luxuriance. In both cases the sterility 
occurs in various degrees ; in both, the male element is the most 
liable to be affected; but sometimes the female more than the 
male. In both, the tendency goes to a certain extent with sys- 
tematic affinity, for whole groups of auimals and plants are rendered 
impotent by the^same unnatural conditions ; and whole groups 
of species tend to produce sterile hybrids. On the other hand, one 
species in a group will sometimes resist great changes of conditions 
with unimpaired fertility; and certain species in a group will 
produce unusually fertile hybrids. No one can tell, till he tries, 
whether any particular animal will breed under confinement, or 
any exotic plant seed freely under culture ; nor can he teU till he 
tries, whether any two species of a genus will produce more or less 
sterile hybrids. Lastly, when organic beings are placed during 
several generations under conditions not natural to them, they are 
extremely liable to vary, which seems to be partly due to their 
reproductive systems having been specially affected, though in a 
lesser degree than when sterility ensues. So it is with hybrids, for 
their offspring in successive generations are eminently liable to vary, 
as every experimentalist has observed. 

Thus we see that when organic beings are placed under new 
and unnatural conditions, and when hybrids are produced by the 
unnatural crossing of two species, the reproductive system, inde- 
pendently of the general state of health, is affected in a very 
similar manner. In the one case, the conditions of life have been 
disturbed, though often in so slight a degree as to be inappreciable 



Chap. IX. of first Crosses and of Hybrids, 251 

by us ; in the other case, or that of hybrids, the external conditions 
have remained the same, but the organisation has been disturbed 
by two distinct structures and constitutions, iucluding of course the 
reproductive systems, having been blended into one. For it is 
scarcely possible that two organisations should be compounded 
into one, without some disturbance occurring in the development, or 
periodical action, or mutual relations of the different parts and 
organs one to another or to the conditions of life. When hybrids 
are able to breed inter se, they transmit to their offspring from 
generation to generation the same compounded organisation, and 
hence we need not be surprised that their sterility, though in some 
degree variable, does not diminish ; it is even apt to increase, this 
being generally the result, as before explained, of too close inter^ 
breeding. Tfhe above view of the sterility of hybrids being caused 
by two constitutions being compounded into one has been strongly 
maintained by Max Wichura. X 

It must, however, be owned that we cannot understand, on the 
above or any other view, several facts with respect to the sterility 
of hybrids ; for instance, the unequal fertility of hybrids produced 
from reciprocal crosses ; or the increased sterility in those hybrids 
which occasionally and exceptionally resemble closely either pure 
parent. Nor do I pretend that the foregoing remarks go to the 
root of the matter ; no explanation is offered why an organism, 
when placed under unnatural conditions, is rendered sterile. AU 
that I have attempted to show is, that in two cases, in some respects 
allied, sterility is the conmion result,— in the one case from the 
conditions of life having been disturbed, in the other case from 
the organisation having been disturbed by two organisations being 
compounded into one. 

A similar parallelism holds good with an allied yet very different 
class of facts. It is an old and almost universal belief founded on a 
considerable body of evidence, which I have elsewhere given, that 
slight changes in the conditions of life are beneficial to all living 
things. We see this acted on by farmers and gardeners in their 
frequent exchanges of seed, tubers, &c., from one soil or climate to 
another, and back again. During the convalescence of animals, 
great benefit is derived from almost any change in their habits of life. 
Again, both with plants and animals, there is the clearest evidence 
that a cross between individuals of the same species, which differ to 
a certain extent, gives vigour and fertility to the offspring ; and 
that close interbreeding continued during several generations between 
the nearest relations, if these be kept under the same conditions of 
life, almost always leads to decreased size, weakness, or sterility. 



252 Reciprocal Dimorphism Chap. IX. 

Hence it seems that, on the one hand, slight changes in the con- 
ditions of life benefit all organic beings, and on the other hand, that 
slight crosses, that is crosses between the males and females of the 
same species, which have been subjected to slightly different con^ 
ditions, or which have slightly varied, give vigour and fertility to 
the offspring. But, as we have seen, organic beings long habituated 
to certain unifonn conditions imder a state of nature, when sub- 
jected, as under confinement, to a considerable change in their 
conditions, very frequently are rendered more or less sterile ; and 
we know that a cross between two forms, that liave become widely 
or specifically different, produce hybrids which are almost always in 
some degree sterile. I am fully persuaded that this double paral- 
lelism is by no means an accident or an illusion. He who is able 
to explain why the elephant and a multitude of other animals are 
incapable of breeding when kept under only partial confinement in 
their native country, will be able to explain the primary cause of 
hybrids being so generally sterile. He will at the same time be 
able to explain how it is that the races of some of our domesticated 
animals, which have often been subjected to new and not uniform 
conditions, are quite fertile together, although they are descended 
from distinct species, which would probably have been sterile if 
aboriginally crossed. The above two parallel series of facts seem 
to be connected together by some common but unknown bond, 
which is essentially related to the principle of life ; this principle, 
according to Mr. Herbert Spencer, being that life depends on, or 
consists in, the incessant action and reaction of various forces, 
which, as throughout nature, are always tending towards an equi- 
librium; and when this tendency is slightly disturbed by any 
change, the vital forces gain in power. 

Beciprocal Dimorphism and Trim^orphism, 

This subject may be here briefly discussed, and will be found to 
throw som« light on hybridism. Several plants belonging to 
distinct orders pr<»,sent two forms, which exist in about equal 
numbers and which differ in no respect except in their reproductive 
organs ; one form having a long pistil with short stamens, the other 
a short pistil with long stamens ; the two having differently sized 
pollen-grains. With trimorphic plants there are three forms like- 
wise differing in the lengths of their pistils and stamens, in the size 
and colour of the pollen-grains, and in some other respects ; and as 
in each of the three forms there are two sets of stamens, the three 
forms possess altogether six sets of stamens and three kinds of 
pistils. These organs are so proportioned in length to each other. 



Chap. IX. and Tritnorphism, 253 

that half the stamens in two of the forms stand on a level with 
the stigma of the third form. Now I have shown, and the result 
has heen confirmed hy other observers, that, in order to obtain full 
fertility with these plants, it is necessary that the stigma of the one 
form should be fertilised b y pollen t akftn from th e stamfina m nar» 
responding height in another form. So that with dimorphic species 
two unions, which may be called legitimate, are fully fertile ; and 
two, which may be called illegitimate, are more or less iDfertile. 
With trimorphic species six unions are legitimate or fully fertile, 
and twelve are illegitimate or more or less infertile. 

The infe rtility which may b ej)bserv( td ^" v<^yimi« i^imnrpliin and 
trimorphic plants, when they are illegitimately fertilised, that is by 
pollen taken from stamens not corresponding in height with the 
pistil, diffe ra mu ch in degree, up to absolute and utter ste rility ; just 
in the same manner as occurs in crossing distinct species. As the 
degree of sterility in the latter case depends in an eminent degree 
on the conditions of life being more or less favourable, so I have 
found it with illegitimate unions. It is well known that if pollen 
of a distinct speciei^ be placed on the stigma of a flower, and its own 
pollen be afterwards, even after a considerable interval of time, 
placed on the same stigma, its action is so strongly prepotent that 
it generally annihilates the effect of the foreign pollen ; so it is with 
the pollen of the several forms of the same species, for legitimate 
pollen is strongly prepotent over illegitimate pollen, when both are 
placed on the same stigma. I ascertained this by fertilising several 
flowers, first illegitimately, and twenty-four hours afterwards legiti- 
mately, with pollen taken from a peculiarly coloured variety, and 
all the seedlings were similarly coloured ; this shows that the 
legitimate pollen, though applied twenty-four hours subsequently, 
had wholly destroyed or prevented the action of the previously 
applied illegitimate pollen. Again, as in making reciprocal crosses 
between the same two species, there is occasionally a great difference 
in the result, so the same thing occurs with trimorphic plants ; for 
instance, the mid-styled form of Lythrum salicaria was illegitimately 
fertilised with the greatest ease by pollen from the longer stamens 
of the short-styled form, and yielded many seeds ; but the latter 
form did not yield a single seed when fertihsed by the longer 
stamen^ of the mid-styled form. 

In all these respects, and in others which might be added, the 
forms of the same un doubted species when illegitijBjaJtely united 
behave in exactly the same manner as do two distinct species when 
crossed. This led me carefully to observe during four years many 
aeedlings, raised from several illegitimate unions. The chief result is 



254 Reciprocal Dimorphism Chap. ix. 



that these illegitimate plants, as they maybe called, are not fully fer- 
tile. It is possible to raise from dimorphic species, both long-styled 
and short-styled illegitimate plants, and from trimorphic plants all 
three illegitimate forms. These can then be properly united in a 
legitimate manner. When this is d6ne, there is no apparent reason 
why they should not yield as many seeds as did their parents when 
legitimately fertilised. But such is not the case. They are all 
infertile, in various degrees ; some being so utterly and incurably 
sterile that they did not yield during four seasons a single seed or 
even seed-capsule. The sterility of these illegitimate plants, when 
united with each other in a legitimate manner, may be strictly 
compared with that of hybrids when crossed inter se. If, on the 
other hand, a hybrid is crossed with either pure parent-species, the 
sterility is usually much lessened : and so it is when an illegitimate 
plant is fertilised by a legitimate plant. In the same manner as 
the sterility of hybrids does not always run parallel with the 
difficulty of making the first cross between the two parent-species, 
so the sterility of certain illegitimate plants was unusually great, 
whilst the sterility of the union from which they were derived was 
by no means great. With hybrids raised from the same seed- 
capsule the degree of sterility is innately variable, so it is in a 
marked manner with illegitimate plants. Lastly, many hybrids are 
profuse and persistent flowerers, whilst other and more sterile 
hybrids produce few flowers, and are weak, miserable dwarfs; 
exactly similar cases occur with the illegitimate offspring of various 
dimorphic and trimorphic plants. 

Altogether there is the closest identity in character and behaviour 
between illegitimate plants and hybrids. It is hardly an exagge- 
ration to maintain that illegitimate plants are hybrids, produced 
within the limits of the same species by the improper union of 
certain forms, whilst ordinary hybrids are produced from an im- 
proper union between so-called distinct species. We have also 
already seen that there is the closest similarity in all respects 
between first illegitimate unions and first crosses between distinct 
species. This will perhaps be made more fully apparent by an 
illustration; we may suppose that a botanist found two well- 
marked varieties (and such occur) of the long-styled form of the 
trimorphic Lythrum salicaria, and that he determined to try by 
crossing whether they were Specifically distinct. He would find 
that they yielded only about one-fifth of the proper number of seed, 
and that they behaved in all the other above specified respects as if 
they had been two distinct species. But to make the case sure, he 
would raise plants from his supposed hybridised seed, and he would 



Chap. IX and Trimorphism, 255 

find that the seedlings were miserably dwarfed and utterly sterile, and 
that they behaved in all other respects like ordinary hybrids. He 
might then maintain that he had actually proved, in accordance with 
the common view, that his two varieties were as good and as distinct 
species as any in the world ; but he would be completely mistaken. 

The facts now given on dimorphic and trimorphic plants are 
important, because they show us, first, that the physiological test 
of lessened fertility, both in first crosses and in hybrids, is no safe 
criterion of specific distinction ; secondly, because we may conclude 
that there is some unknown bond which connects the infertility of 
illegitimate unions with that of their illegitimate offspring, and we 
are led to extend, the same view to first crosses and hybrids ; 
thirdly, because we find, and this seems to me of especial importance, 
that two or three forms of the same species may exist and may 
differ in no respect whatever, either in structure or in constitution, 
relatively to external conditions, and yet be sterile when united in 
certain ways. For we must remember that it is the union of the 
sexual elements of individuals of the same form, for instance, of two 
long-styled forms, which results in sterility ; whilst it is the union 
of the sexual elements proper to two distinct forms which is fertile. 
Hence the case appears at first sight exactly the reverse of what 
occurs, in the ordinary unions of the individuals of the same species 
and with crosses between distinct species. It is, however, doubtful 
whether this is really so ; but I will not enlarge on this obscure 
subject. 

We may, however, infer as probable from the consideration of 
dimorphic and trimorphic plants, th at the sterility of dis tinct 
species when crossed and of th eir hvbna progren v^ depends excln* 
sively on the nature of their sexual el ements, and not on any differ- 
ence in their stfucture or general constitution. We are also led 
to this same conclusion by considering reciprocal crosses, in which 
the male of one species cannot be united, or can be united with 
great difficulty, with the female of a second species, whilst the 
converse cross can be effected with perfect facility. That excellent 
observer, Gartner, likewise concluded that species when crossed are 
sterile owing to differences confined to their reproductive systems. 

Fertility of Varietiea when Crossed, and of their Mongrel 

Offspring, not universal. 

It may be urged, as an overwhelming argument, that tihere must 
be some essential distinction between species and varieties, inasmuch 
as the latter, however much they .may differ from each other in 
external appearance, cross with perfect facility, and yield perfectly 



2S6 Fertility of Varieties when Crossed. Chap. IX. 

fertile offspring. With some exceptions, presently to be given, I 
fully admit that this is the rule. But the subject is surrounded by 
difficulties, for, looking to varieties produced under nature, if two 
forms hitherto reputed to be varieties be found in any degree sterile 
together, they are at once ranked by most naturalists as species. 
For instancei the blue and red pimpernel, which are considered by 
most botanists as varieties, are said by Gartner to be quite sterile 
when crossed, and he consequently ranks them as undoubted 
species. If we thus argue in a circle, the fertility of all varieties 
produced under nature will assuredly have to be granted. 

If we turn to varieties, produced, or supposed to have been pro- 
duced, under domestication, we are still involved in some doubt. 
For when it is stated, for instance, that certain South American 
indigenous domestic dogs do not readily unite with European dogs, 
the explanation which will occur to every one, and probably the 
true one, is that they are descended from aboriginally distinct 
species. Nevertheless the perfect fertility of so many domestic 
races, differing widely from each other in appearance, for instance 
those of the pigeon, or of the cabbage, is a remarkable fact ; more 
especially when we reflect how many species there are, which, 
though resembling each other most closely, are utterly sterile when 
intercrossed. Several considerations, however, render the fertility 
of domestic varieties less remarkable. In the first pl ace, it may 
be observed that the amount of eYtem al d ifference between two 
species iST So^ure gui de to their deg ree of m utual steri litv. so that 
similar differences in the case of varieties wouli be no sure guide. 
It is certain that with species the cause lies exclusively in differ- 
ences in their sexual constitution. Now the varying conditions 
to which domesticated animals and cultivated plants have been 
subjected, have had so little tendency towards* modifying the 
reproductive system in a manner leading to mutual sterility, that 
we have good grounds for admitting the directly opposite doctrine 
of Pallas, namely, that suph conditions generally eliminate this 
tendency ; so that the dom^ticated descendants of species, which in. 
their natural state probably would have been in some degree sterile 
when crossed, become perfectly fertile together. With plants, so 
far is cultivation from giving a tendency towards sterility between 
distinct species, that in several well-authenticated cases already 
alluded to, certain plants have been affected in an opposite manner, 
for they .have become self-impotent, whilst still retaining the 
capacity of fertilising, and being fertilised by, other species. If 
the Pallasian doctrine of the elimination of sterility through long- 
continued domestication be admitted, and it can hardly be rejected. 



Chap. IX. Fertility of Varieties when Crossed. 257 

it becomes in the highest degree improbable that similar oonditiona 
long-continued should likewise induce this tendency; though in 
certain cases, with species having a peculiar constitution, sterility 
might occasionally be thus caused. Thus, as I believe, we can 
understand why with domesticated animals varieties have not been 
produced which are mutually sterile ; and why with plants only a 
few such cases, immediately to be given, have been observed. 

The real difficulty in our present subject is not, as it appears to 
me, why domestic varieties have not become mutually infertile 
when crossed, but why this has so generally occurred ¥rith natural 
varieties, as soon as they have been permanently modified in a 
sufficient degree to take rank as species. We are &r from precisely 
knowing the cause ; nor is this surprising, seeing how profoundly 
ignorant we are in regard to the normal and abnormal action of 
the reproductive system. But we can see t hat species, og jag to 
their struggle for existence with n umerous com petitors, will have 
been exposed during long periods of time to mo re unifo rm con- 
ditions, than have do mestic vari etied ; ftftd this may well make a 
wide difference in the result. For we know how commonly wild 
animals and plants, when taken from their natural conditions and 
subjected to captivity, are rendered sterile; and t he reprodu ctive 
functions of organic beings w hich have ^ always lived under na tural 
conditions would p robably in like manner beje minently sensitive 
to the influenc e of an unnatur al cross. Dninfigti^a^^ prndnr.Hona^ 
on the other hand, which,- as shown by the mere fact o f their 
domestication, were not originally highly se nsitive to cha nges in 
their conditions of life, and which can now generally resist with 
undiminished fertility repeated changes ot conditions, might be 
expected to produce varieties, which would be little liable to have 
their reproductive powers injuriously affected by the act of crossing 
with other varieties which had originated in a like manner. 

I have as yet spoken as if the varieties of the same species were 
invariably fertile when intercrossed, ^ut it is impossible to resist 
the evidence of the existence of a ce rtauV amount of sterilitv in the 
few following cases, which 1 will briefly abstract. The evidence is 
at least as good as that from which we believe in the sterility of a 
multitude of species. I'he evidence is, also, derived from hostile 
-witnesses, who in all other cases consider fertility and sterility as 
safe criterions of specific distinction. Gartner kept during several 
years a dwarf kind of maize with yellow seeds, and a tall variety 
with red seeds growing near each other in his garden ; and although 
these plants have separated sexes, they never naturally crossed. 
He then fertilised thirteen fiowers of the one kind with pollen of the 

8 



258 Fertility of Varieties wJien Crossed. Chat. IX. 

4. u 0^ ^ other ; but only a single head pi-oduced any seed, and this one 

ji' ^vvCl ^®^ produced only five grains. Manipulation in this case could 

J( ^1 not have been injurious, as the plants have separated sexes. No 

\}l» I ^'^®» ^ believe, has suspected that these varieties of maize are 

^UAA j distinct species; and it is important to notice that the hybrid 

' i plants thus raised wore themselves perfecUy fertile ; so that even 

Gartner did not venture to consider the two varieties as specifically 

distinct. 

Girou de Buzareingues crossed three varieties of gourd, which 

* like the maize has separated sexes, and he asserts that their mutual 

fertilisation is by so much the less easy as their ditTerences are 

greater. How far these experiments may be trusted, I know not ; 

but the forms experimented on are ranked by Sageret, who mainly 

founds his classification by the test of infertility, as varieties, and 

Naudin has come to the same conclusion. 

The following case is far more remarkable, and seems at first 
incredible ; but it is the result of an astonishing number of experi- 
ments made during many years on nine species of Verbascum, by 
so good an observer and so hostile a witness as Gartner : namely 
that the yellow and white varieties when crossed produce less seed 
than the similarly coloured varieties of the same species. Moreover, 
he asserts that, when yellow and white varieties of one species are 
crossed with yellow and white varieties of a distinct species, 
more seed is produced by the crosses between the similarly 
coloured flowers, than between those which are dififerently coloured. 
Mr. Scott also has experimented on the species and varieties of 
Verbascum ; and although unable to confirm Gartnei'^s results on 
the crossing of the distinct species, he finds that the dissimilarly 
coloured varieties of the same species yield fewer seeds, in the pro- 
portion of 86 to 100, than the similarly coloured varieties. Yet these 
varieties differ in no respect except in the colour of their flowers ; 
and one variety can sometimes be raised from the seed of another. 

Kolreuter, whose accuracy has been confirmed by every subsequent 
observer, has proved the remarkable fact, that one particular 
variety of the common tobacco was more fertile than the other 
varieties, when crossed with a widely distinct species. He experi- 
mented on five forms which are commonly reputed to be varieties, 
and which he tested by the severest trial, namely, by reciprocal 
crosses, and he found their mongrel offispriDg perfectly fertile. But 
one of these five varieties, when used either as the father or mother, 
and crossed with the Nicotiana glutinosa, always yielded hybrids not 
BO sterile as those which were produced from the four other varieties 
when crossed with N. glutinosa. Hence the reproductive systeca 



Chap. IX. Hybrids and Mongrels compared, 259 

of this one variety must have been in some manner and in some 
degree modified. 

From these facts it can no longer be maintained that varieties 
when crossed are invariably quite fertile. From the great difficulty 
of ascertaining the infertility of varieties in a state of nature, for 
a supposed variety, if proved to be infertile in any degree, would 
'almost universally be ranked as a species; — from man attending 
only to external characters in his domestic varieties, and from such 
varieties not having been exposed for very long periods to uniform 
conditions of life ; — from these several considerations we may con- 
clude that fertility does not constitute a fundamental distinction 
between varieties and species when crossed. The general sterility 
of crossed species may safely be looked at, not as a special acquire- 
ment or endowment, but as incidental on changes of an unknown 
nature in their sexual elements. 

Hybrids and Mongrels compared^ independently of their 

fertility. 

Independently of the question of fertility, the offspring of species 
and of varieties when crossed may be compared in several other 
respects. Gartner, whose strong wish it was to draw a distinct line 
between species and varieties, could find very few, and, as it seems 
to me, quite unimportant differences between the so-call ed hybr id 
offspr ing of spe cies, and the so-called m ongrel offs pring of varieties. 
And, ofi the otter hand, they agree most closely in many important 
respects. 

I shall here discuss this subject with extreme brevity. The most 
important distinction is, that in the first generation jnong rels are ^ 
more varia ble th an hybrids ; but Gartner admits that hybrids from 
species which have long been cultivated are often variable in the 
first generation ; and I have myself seen striking instances of this 
fact. Gartner further admits that hybrids between very closely 
allied species are more variable than those from very distinct 
species; and this shows that' the difference in the degree of varia- 
bility graduates away. When mongrels and the more fertile hybrids 
are propagated for several generations, an extreme amount of varia- 
bility in the offspring in both cases is notorious ; but some few 
instances of both hybrids and mongrels long retaining a uniform 
character could be given. The variability, however, in the succes- 
sive generations of mongrels is, perhaps, greater than in hybrids. 

This greater variability in mongrels than in hybrids does not 
seem at all surprising. For the parents of mongrels are varieties, 
and mostly domestic varieties (very few experiments having been 

B 2 



26o Hybrids and Mongrels compared. Chap. IX. 

tried on natural varieties), and this implies that there has been 
recent vaiiahility, which would often continue and would augment 
that arising from the act of crossing. The slight variability ol 
hybrids in the first generation, in contrast with that in the succeed- 
ing generations, is a curious fact and deserves attention. For it 
bears on the view which I have taken of one of the causes of 
ordinary variability; namely, that the reproductive system from 
being eminently sensitive to changed conditions of life, fails under 
these circumstances to perform its proper function of producing 
offspring closely similar in all respects to the parent-form. Now 
hybrids in the first generation are descended from species (excluding 
those long-cultivated) which have not had their reproductive 
systems in any way afiected, and they are not variable; bnt 
hybrids themselves have their reproductive systems seriously 
affected, and their descendants are highly variable. 

But to return to our comparison of mongrels and hybrids: 
Gartner states that mongrels are more liable than hybrids to revert 
to either parent-form ; but this, if it be true, is certainly only a dif- 
ference in degree. Moreover, Gartner expressly states that hybrids 
from long cultivated plants are more subject to reversion than 
hybrids from species in their natural state; and this probably 
explains the singular difference in the results arrived at by different 
observers : thus, Max Wichura doubts whether hybrids ever revert 
to their parent-forms, and he experimented on uncultivated species 
of willows; whilst Naudin, on the other hand, insists in the strongest 
terms on the almost universal tendency to reversion in hybrids, 
and he experimented chiefly on cultivated plants. Gartner further 
states that when any two species, although most closely allied to 
each other, are crossed with a third species, the hybrids are widely- 
different from each other ; whereas, if two very distinct varieties of 
one species are crossed with another species, the hybrids do not 
differ much. But this conclusion, as far as I can make out, is 
founded on a single experiment ; and seems directly opposed to the 
results of several experiments made by Kolreuter. 

Such alone are the unimportant differences which Gartner is able 
to point out between hybrid and mongrel plants. On the other 
hand, the degrees and kinds of resemblance in mongrels and in 
hybrids to their respective parents, more especially in hybrids pro- 
duced from nearly related species, follow according to Gartner the 
same laws. When two species are crossed, one has sometimes a 
prepotent power of impressing its likeness on the hybrid. So I 
believe it to be with varieties of plants; and with animals one 
variety certainly often has this prepotent power over another 



Chap. IX. Hybrids and Mongrels compared. 261 

variety. Hybrid plants produced from a reciprocal cross, generally j 
resemble each other closely ; and so it is with mongrel plants from ' 
a reciprocal cross. Both hybrids and mongrels can be reduced to \ 
either pure parent-form^ by repeated crosses in successive generations ' 
with either parent. 

These several remarks are apparently applicable to animals ; but 
the subject is here much complicated, partly owing to the existence 
of secondary sexual characters ; but more especially owing to pre- 
potency in transmitting likeness running more strongly in one sex 
than in the other, both when one species is crossed with another, 
and when one variety is crossed with another variety. For instance, 
[ think those authors are right, who maintain that the ass has a 
prepotent power over the horse, so that both the mule and the hinny 
resemble more closely the ass than the horse ; but that the pre- 
potency runs more strongly in the male than in the female ass, so 
that the mule, which is the offspring of the male ass and mare, is 
more like an ass, than is the hinny, which is the offspring of the 
female-ass and stallion. 

Much stress has been laid by some authors on the supposed fact, 
that it is only with mongrels that the offspring are not intermediate 
in character, but closely resemble one of their parents ; but this does 
sometimes occur with hybrids, yet I grant much less frequently 
than with mongrels. Looking to the cases which I have collected 
of cross-bred animals closely resembling one parent, the resemblances 
seem chiefly confined to characters almost monstrous in their nature, 
and which have suddenly appeared — such as albinism, melanism, 
deficiency of tail or horns, or additional fingers and toes ; and do not 
relate to characters which have been slowly acquired through selec- 
tion. A tendency to sudden reversions to the perfect character of 
either parent would, also, be much more likely to occur with mongrels, 
which are descended from varieties often suddenly produced and 
semi-monstrous in character, than with hybrids, which are descended 
from species slowly and naturally produced. On the whole, I 
entirely agree with Dr. Prosper Lucas, who, after arranging an 
enormous body of facts with respect to animals, comes to the con- 
clusion, that the laws of resemblance of the child to its parents are 
the same, whether the two parents differ little or much from each 
other, namely, in the union of individuals of the same variety, or of 
different varieties, or of distinct species. 

Independently of the question of fertility and sterility, in all 
other respects there seems to be a general and close similarity in 
the offspring of crossed species, and of crossed varieties. If we 
look at species as having been specially created, and at varieties as 



262 Summary. Chap. IX. 

having been produced by secondary laws, this similarity would be 
an astonishing fact. But it harmonises perfectly with the view 
that there is no essential distinction between species and varieties. 

Summary of Chapter, 

First crosses between forms^ sufficiently distinct to be ranke d as 
species,' anT their hybrids, are vecy .genfirally^Jiut„n9tjmivCTsaIfy, 
sterile. The sterility is of all degrees, and is a£tea,so slight that the 
most careful experimentalists have arrived at diametrically opposite 
conclusions in ranking forms by this test. . The sterility is innateT^ 
variable in individuals of the same species, and is emin ently 
susceptible to the action of favourable and unfavourable conditions. 
The degree of sterility does not strictly follow systematic^ affinity, 
but is governed by sevexal^cuiious and complex, laws. It isjgenerally 
different, AndsometinLes widely different, in reciprocal crosses betw< 
the-same two speeies. It is not always equal in .digr^e..imk-^st 
cross and in the hybrids produced from this cross. 

In the same manner as in grafting trees, the capacity of one 
species or variety, to take on another, is incidenial ..oa jdifferences,^ 
generally of an unknown nature, in their vegetative systems, so in 
crossing, the greater or less facility of one species to' uiiite with 
another is incidental on unknown differences in their reproductive 
systems. There is no more reason to think that species have been 
specially endowed with various degrees of sterility to prevent their 
crossing and blending in nature, than to think that trees have been 
specially endowed with various and somewhat analogous degrees 
of difficulty in being grafted together in order to prevent their 
inarching in our forests. 

The sterility of first crosses and of their hybrid progeny has not 
been acquired through natural selection,, In the case of fir st crosse s 
it seems to depend on several circumstances ; in some instances in 
chief part on th^L early death of the embryo. In the case of hybrids, 
it apparently depends on their whole organisation having beea 
disturbed by being compounded from two distinct forms; the 
sterility being closely allied to that which so frequently affects pure 
species, when exposed to new and unnatural conditions of life. 
He who will explain these latter cases will be able to explain the 
sterility of hybrids. This view is strongly supported by a parallelism 
of another kind : namely, that, firstly, slight changes in the con- 
ditions of life add to the vigour and fertility of all organic beings ; 
and secondly, that the crossing of forms, which have been exposed to 
slightly diflerent conditions of life or which have varied, favours the 
size, vigour, and fertility of their offspriug. The facts given on tha 



Chap. IX. Summary, 263 

sterility of the illegitimate nnions of dimorphic and trimorphic 
plants and of their illegitimate progeny, perhaps render it prohahle 
that some unknown hond in all cases connects the degree of fertility 
of first miions with that of their offspring. The consideration of these 
facts on dimorphism, as well as of the results of reciprocal crosses, 
clearly leads to the conclusion that the primary cause of the sterility 
of crossed species is confined to differences in their sexual elements. 
Bat why, in the case of distinct species, the sexual elements should 
so generally have become more or less modified, leading to their 
miitual infertility, we do not know ; but it seems to stand in some 
dose relation to species having been exposed for long periods ol 
time to nearly uniform conditions of life. 

It is not surprising that the difficulty in crossing any two species,' 
and the sterility of their hybrid offspring, should in most cases cor- 
respond, even if due to distinct causes; for both depend on the 
amount of difference between the species which are crossed. Nor 
is it surprising that the facility of effecting a first cross, and the 
fertihty of the hybrids thus produced, and the capacity of being 
grafted together — though this latter capacity evidently depends on 
widely different circumstances — should all run, to a certain extent, 
parallel with the systematic affinity of the forms subjected to expe- 
riment; for systematic affinity includes resemblances of all kinds. 

£jil^t iisosafig ^between forms known to be v a ri e ti ee, or sufficiently 
alike to be considered^as varieties, and their mongrel offspring, are 
very generally, but not, as is so often stated, invariably fertile. 
ITor is this almost universal and perfect fertility surprising, when - 
it is remembered how liable we are to argue in a circle with respect 
to varieties in a state of nature ; and when we remember that the 
greater number of varieties have been produced under domestication 
by the selection of mere external differences, and that they have 
not been long ^posed to uniform conditions of life. It should also 
be especially kept in mind, that long-continued domestication tends 
to eliminate sterility, and is therefore little likely to induce this 
same quality. Independently of the question of fertility, in all 
other respects there is the closest general resemblance between 
hybrids and mongrels, — in their variability, in their power of 
absorbing each other by repeated crosses, and in their inheritance 
of characters from both parent-forms. Finally, then, although we 
are as ignorant of the precise cause of the sterility of first crosses 
and of hybrids as we are why animals and plants removed from 
their natural conditions become sterile, yet the facts given in this 
chapter do not seem to me opposed to the belief that species 
aboriginally existed as varieties. 



A 



264 Imperfection of the Geological Record, Chap. X. 



CHAPTEE X. 

On the Imfebfegtion of the Geological Becobd. 

On the absence of intermediate varieties at the present day — On the nature 
of extinct intermediate varieties; on their number — On the lapse of 
time, as inferred from the rate of denudation and of deposition — On 
the lapse of time as estimated by years — On the poorness of our palaeon- 
tological collections — On the intermittence of geological formations — 
On the denudation of granitic areas — On the absence of intermediate 
varieties in any one formation — On the sudden appearance of groups of 
species — On their sudden appearance in the lowest known fossiliferous 
strata — Antiquity of the habitable earth. 

Jn the sixth chapter I enumerated the chief objections which might 
be justly urged against the views maintained in this volume. 
Most of them have now been discussed. One, namely the dis- 
tinctness of specific forms, and their not being blended together 
by innumerable transitional links, is a very obvious difficulty. 
I assigned reasons why such links do not commonly occur at the 
present day under the circumstances apparently most favourable for 
their presence, namely on an extensive and continuous area with 
graduated physical conditions. I endeavoured to show, that the 
life of each species depends in a more important manner on the 
presence of other already defined organic forms, than on climate ; 
and, therefore, that the really governing conditions ^f life do not 
graduate away quite insensibly like' heat or moisture. I endea- 
voured, also, to show that intermediate varieties, from existing in 
lesser numbers than the forms which they connect, will generally 
be beaten out and exterminated during the course of further modifi- 
cation and improvement. The main cause, however, of innumerable 
intermediate links not now occurring everywhere throughout nature, 
depends on the very process of natural selection, through which new 
varieties continually take the places of and supplant their parent- 
forms. But just in proportion as this process of extermination has 
acted on an enormous scale, so must the number of intermediate 
varieties, which have formerly existed, be truly enormous. Why 
then is not every geological formation and every stratum full of 



CuAP. X. Imperfection of the Geological Record. 265 

such intermediate links ? Geology assuredly does not reveal any 
such finely-graduated organic chain ; and this, perhaps, is the most 
obvious and serious objection which can be urged against the theory 
The explanation lies, as I believe, in the extreme imperfection oi 
the geological record. 

In the first place, it should always be borne in mind what sort 
of intermediate forms must, on the theory, have formerly existed. 
I have found it difficult, when looking at any two species, to avoid 
picturing to myself forms direcUy intermediate between them. But 
this is a wholly fialse view ; we s hould always look for forms inter - 
medi ate b etween each species and a common but unknown p ro« 
genit^ ; and the progenitor will generally have differed in some 
respects from all its modified descendants. To give a simple 
illustration : the fsintail and pouter pigeons are both descended 
from the rock-pigeon ; if we possessed all the intermediate varieties 
which have ever existed, we should have an extremely close series 
between both and the rock-pigeon ; but we should have no varieties 
directly intermediate between the fiantail and pouter; none, for 
instance, combining a tail somewhat expanded with a crop some- 
what enlarged, the characteristic features of these two breeds. 
These two breeds, moreover, have become so much modified, 
that, if we had no historical or indirect evidence regarding their 
origin, it would not have been possible to have determined, from a 
mere comparison of their structure with that of the rock-pigeon, 
O. livia, whether they had descended from this species or from some 
other allied form, such as G. oenas. 

So with natural species, if we look to forms very distinct, for 
instance to the horse and tapir, we have no reason to suppose that 
links directly intermediate between them ever existed, but between 
each and an unknown common parent, llie common parent will 
have had in its whole organisation much general resemblauce to the 
tapir and to the horse ; but *in some points of structure may have 
differed considerably from both, even perhaps more than they 
differ from each other. Hence, in all such cases, we should be 
unable to recognise the parent-form of any two or more species, 
6ven if we closely compared the structure of the parent with that of 
its modified descendants, unless at the same time we had a nearly 
perfect chain of the intermediate links. 

It is just possible by the theory, that one of two living forms 
might have descended from the other ; for instance, a horse from a 
tapir ; and in this case direct intermediate links will have existed 
between them. But such a case would imply that one form had 
remained for a very long period unaltered, whilst its descendants 



266 Tlie Lapse of Time, Cau*. X. 

had uudergone a vast amount of change ; an d the principle of com- 
petition hetween organism and organism, between child and parent, 
will render this "a very rare event;' for in all cases the new and 
improved forms of life tend to supplant the old and unimproved 
forms. 

By the theory of natural selection all living species have been 
connected with the parent-species of each genus, by differences not 
greater than we see between the natural and domestic varieties 
of the same species at the present day; and these parent- 
species, now generally extinct, have in their turn been similarly 
connected with more ancient forms ; and so on backwards, always 
converging to the common ancestor of each great class. So that 
the number of intermediate and transitional links, between all 
living and extinct species, must have been inconceivably great. But 
assuredly, if this theory be true, such have lived upon the earth. 

On the Lapse of Time, as inferred from the rate of Deposition and 

extent of Benudatym, 

Independently of our not finding fossil remains of such infinitely 
numerous connecting links, it may be objecte d th^ ^- ^jypfi (^^iinnt 
*have sufficedjorjq^eat an ai]^ouj^t of orgamc change, all changes 
having been effected slowly. It is hardly possible for me to 
recall to the reader who is not a practical geologist, the facts 
leading the mind feebly to comprehend the lapse of time. He 
who can read Sir Charles Lyell's grand work on the Principles 
of Geology, which the future historian will recognise as having pro- 
duced a revolution in natural science, and yet does not admit how 
vast have been the past periods of time, may at once close this 
volume. Not that it suffices to study the Principles of Geology, 
or to read special treatises by different observers on separate 
formations, and to mark how each author attempts to give an 
inadequate idea of the duration of each formation, or even of each 
stratum. We can best gain some idea of past time by knowing 
the agencies at work, and learning how deeply the surface of the 
land has been denuded, and how much sediment has been deposited. 
As Lyell has well remarked, the extent and thickness of our sedi- 
mentary formations are the result and the measure of the denu- 
dation which the earth's crust has elsewhere undergone. Therefore 
a man should examine for himself the great piles of superimposed 
strata, and watch the rivulets bringing down mud, and the waves 
wearing away the sea-cliffs, in order to comprehend something 
about the duration of past time, the monuments of which we see 
all around us. 



Chap. X. The Lapse of Time. 267 

It is good to wander along the coast, when formed of moderately 
hard rocks, and mark the process of degradation. The tides in 
most cases reach the cliffs only for a short time twice a day, and 
the waves eat into them only when they are charged with sand or 
pebbles ; for there is good evidence that pure water effects nothing 
in wearing away rock. At last the base of the cliff is undermined, 
huge fragments fall down, and these, remaining fixed, have to be 
worn away atom by atom, until after being reduced in size they 
can be rolled about by the waves, and then they are more quickly 
ground into pebbles, sand, or mud. But how often do we see along 
the bases of retreating cliffs roimded boulders, all thickly clothed 
by marine productions, showing how little they are abraded and 
how seldom they are rolled about 1 Moreover, if we follow for a 
few miles any line of rocky cliff, which is imdergoing degradation, 
we find that it is only here and there, along a short length or 
round a promontory, that the cliffs are at the present time suffering. 
The appearance of the surface and the vegetation show that else- 
where years have elapsed since the waters washed their base. 

We have, however, recently learnt from the observations of 
Banisay, in the van of many excellent observers — of Jukes, Geikie, 
Groll, and others, that subaerial degradation is ^ much more im- 
portant agency than coast-action, or the power of the waves. The 
whole surface of the land is exposed to the chemical action of 
the air and of the rain-water with its dissolved carbonic acid, and 
In colder countries to frost ; the disint^ated matter is carried down 
even gentle slopes during heavy rain, and to a greater extent than 
might be supposed, especially in arid districts, by the wind; it 
is then transported by the streams and rivers, which when rapid 
deepen their channels, and triturate the fragments. On a rainy 
day, even in a gently undulating country, we see the effects of 
subaerial degradation in the muddy rills which flow down every 
slope. Messrs. Bamsay and Whitaker have shown, and the ob- 
servation is a most striking one, that the great lines of escarpment 
in the Wealden district and those ranging across England, which 
formerly were looked at as ancient sea-coasts, cannot have been 
thus formed, for each line S& composed of one and the same forma- 
tion, whilst our sea-cliffs are everywhere formed by the intersection 
of various formations. This being the case, we are compelled to 
admit that the escarpments owe their origin in chief part to the 
rocks of which they are composed having resisted subaerial denu- 
'dation better than the surrounding surface ; this surface conse- 
quently has been gradually lowered, with the lines of harder rock 



268 The Lapse of Time, Chap. x. 

left projecting. Nothing impresses the mind with the vast duration 
of time^ according to our ideas of time, more forcibly than the con- 
viction thus gained that subaerial agencies which apparently have 
80 little power, and which seem to work so slowly, have produced 
great results. 

When thus impressed with the slow rate at which the land is 
worn away through subaerial and littoral action, it is good, in order 
to appreciate the past duration of time, to consider, on the one hand, 
the masses of rock which have been removed over many exten- 
sive areas, and on the other hand the thickness of our sedimentary 
formations. I remember having been much struck when viewing 
volcanic islands, which have been worn by the waves and pared 
all round into perpendicular cliffs of one or two thousand feet in 
height ; for the gentle slope of the lava-streams, due to their for- 
merly liquid state, showed at a glance how far the hard, rocky 
beds had once extended into the open ocean. The same story is 
told still more plainly by faults, — those great cracks along which 
the strata have been upheaved on <9ie side, or thrown down on 
the other, to the height or depth of thousands of feet ; for since the 
crust cracked, and it makes no great difference whether the- up- 
heaval was sudden, or, as most geologists now believe, was slow 
and effected by many starts, the surface of the land has been so 
completely planed down that no trace of these vast dislocations 
is externally visible. The Graven fault, for instance, extends for 
upwards of 30 miles, and along this line the vertical displacement 
of the strata varies from 600 to 3000 feet. Professor Hamsay has 
published an account of a downthrow in Anglesea of 2300 feet;V 
and he informs me that he fully believes that there is one in Merio; 
nethshire of 12,000 feet; yet in these cases there is nothing on, 
the surface of the land to show such prodigious movements; the 
pile of rocks on either side of the crack having been smoothly swept 
away. 

On the other hand, in all parts of the world the piles of sedi- 
mentary strata are of wonderful thickness. In the Cordillera I esti- 
mated one mass of conglomerate at ten thousand feet ; and although 
conglomerates have probably been accumulated at a quicker rate 
than finer sediments, yet from beinc; formed of worn and rounded 
pebbles, each of which bears the stamp of time, they are good to 
show how slowly the mass must have been heaped together. Pro- 
fessor Bamsay has given me the maximum thickness, from actual 
measurement in most cases, of the successive formations in different 
parts of Great Britain ; and this is the result : — 



Chap. X. The Lapse of Time. 269 

Feet 
Palaeozoic strata (not including Igneous beds) .. .. 57,154 

Secondary strata 13,190 

Tertiary "strata 2,240 

— making altogether 72,584 feet ; that is, very nearly thirteen and 
tlire&-quarters British miles. Some of the formations, which are 
represented in England by thin beds, are thousands of feet in 
thickness on the Continent. Moreover, between each successive 
formation, we have, in the opinion of most geologists, blank periods 
of enormous length. So that the lofty pile of sedimentary rocks in 
Britain gives but an inadequate idea of the time which has elapsed 
during t^eir accumulation. The consideration of these various fact» 
impresses the mind almost in the same manner as does the vain 
endeavour to grapple with the idea of eternity. 

Nevertheless this impression is partly false. Mr. CroU, in an 
interesting paper, remarks that we do not err " in forming too great 
a conception of the length of geological periods," but in estimating 
tbem by years. When geologists look at large and complicated' 
phenomena, and then at the figures representing several million 
years, the two produce a totally different effect on the mind, and 
the figures are at once pronounced too small. In regard to subaerial 
denudation, Mr. Croll shows, by calculating the known amount oi 
sediment annually brought down by certain rivers, relatively to their 
areas of drainage, that 1000 feet of solid rock, as it became gradu- 
ally disintegrated, would thus be removed from the mean level of 
the whole area in the course of six million years. This seems an 
astonishing result, and some considerations lead to the suspicion 
that it may be too large, but even if halved or quartered it is still 
► very surprising. Few of us, however, know what a million really 
Ditans : Mr. Croll gives the following illustration : take a narrow 
strip of paper, 83 feet 4 inches in length, and stretch it along the 
wall of a large hall ; then mark off at one end the tenth of an inch. 
This tenth of an inch will represent one hundred years, and the 
entire strip a million years. But let it be borne in mind, in relation 
to the subject of this work, what Ji hundred years implies, repre- 
sented as it is by a measure utterly insignificant in a hall of the 
above dimensions. Several eminent breeders, during a single life- 
tiiue, have so largely modified some of the higher animals, which 
propagate their kind much more slowly than most of the lower 
animals, that they have formed what well deserves to be called a 
new sub-breed. Few men have attended with due care to any one 
strain for more than half a century, so that a hundred years repre- 
sents the work of twj breeders in succession. It is not to be sup- 



2/0 Tfie Poorness of our Chap. x. 

posed that species in a state of nature ever change so quickly as 
domestic animals under the guidance of methodical selection. Tho 
comparison would be in every way fairer with the effects which * 
follow from unconscious selection, that is the preservation of the 
most useful or beautiful animals, with no intention of modifying 
the breed ; but by this process of unconscious selection, various 
breeds have been sensibly changed in the course of two or three 
centuries. 

Species, however, probably change much more slowly, and within 
the same country only a few change at the same time. This slow- 
ness follows from all the inhabitants of the same country being 
already so well adapted to each other, that new places in the polity 
of nature do not occur until after long intervals, due to the occur- 
rence of physical changes of some kind, or through the immigration 
of new forms. Moreover variations or individual differences of the 
right nature, by which some of the inhabitants might be better 
fitted to their new places under the altered circumstances, would 
' not always occur at once. Unfortunately we have no means of 
determining, according to the standard of years, how long a period 
it takes to modify a species ; but to the subject of time we must 
return. 

On the Poorness of our Fdlceontological Collections. 

Kow let us turn to our richest geological museums, and what 
a paltry display we behold 1 That our collections are imperfect is 
admitted by every one. The remark of that admirable palaaonto- 
logist, Edward Forbes, should never be forgotten, namely, that very 
many fossil species are known and named from single and often 
broken specimens, or from a few specimens collected on some one 
spot. Only a small portion of the surface of the earth has been 
geologically explored, and no part with sufficient care, as the im- 
portant discoveries made every year in Europe prove. No organism 
wholly soft can be preserved. Shells and bones decay and disappear 
when left on the bottom of the sea, where sediment is not accumu- 
lating. We probably take a quite erroneous view, when we assume 
that sediment is being deposited over nearly the whole bed of the 
sea, at a rate sufficiently quick to embed and preserve fossil remains. 
Throughout an enormously large proportion of the ocean, the bright 
blue tint of the water bespeaks its purity. The many cases on 
record of a formation conformably covered, after an immense 
interval of time, by another and later formation, without the under- 
lying bed 'having suffered in the interval any wear and tear, seem 
explicable only on the view of the bottom of the sea not rarely lying 



OiiAP. X. Pal(sontological Collections, 271 



for ages in an nnaltered condition. The remains which do become 
embedded, if in sand or gravel, will, when the beds are upraised, 
generally be dissolved by the percolation of rain-water charged with 
carbonic acid. Some of the many kinds of animals which live on 
the beach between high and low water mark seem to be rarely pre- 
served. For instance, the several species of the Ghthamalinas (a 
snb-family of sessile cirripedes) coat the rocks all over the world in 
infinite numbers : they aio aU strictly littoral, with the exception 
of a single Mediterranean species, which inhabits deep water, and 
this has been found fossil in Sicily, whereas not one other species 
has hitherto been found in any tertiary formation : yet it is known 
that the genus Ghthamalus existed during the Chalk period. Lastly, 
many great deposits requiring a vast length of time for their accu- 
mulation. Are entirely destitute of organic remains, without our being 
able to assign any reason : one of the most striking instances is 
that of the Flysch formation, which consists of shale and sandstone, 
several thousand, occasionally even six thousand feet, in thickness, 
and extending for at least 300 miles from Vienna to Switzerland ; 
and although this great mass has been most carefully searched, no 
fossils, except a few vegetable remains, have been found. 

With respect to the terrestrial productions which lived during 
the Secondary and Palaeozoic periods, it is superfluous to state that 
our evidence is fragmentary in an extreme degree. For instance, 
until recently not a land shell was known belonging to either of 
these vast periods, with the exception of one species discovered by 
Sir C. Lyell and Dr. Dawson in the carboniferous strata of North 
America; but now land-shells have been found in the lias. In 
regard to mammiferous remains, a glance at the historical table 
published in Lyell's Manual will bring home the truth, how acci- 
dental and rare is their preservation, far better than pages of detail. 
Nor is their?, rarity surprising, when we remember how large a pro- 
portion of ^e bones of tertiary mammals have been discovered 
either in caves or in lacustrine deposits ; and that not a cave or true 
lacustrine bed is known belonging to the age of our secondary or 
palaeozoic formations. 

But the imperfection in the geological record largely results 
from another and more important cause than any of the foregoing ; 
namely, from the several formations being separated from each 
ether by wide intervals of time. This doctrine has been empha- 
tically admitted by many geologists and palaeontologists, who, like 
E. Forbes, entirely disbelieve in the change of species. When we 
see the formations tabulated in written works, or when we follow 
them in nature, it is difficult to avoid believing that they are closely 



2/2 The Poorness of our Chap. X. 

coDsecutive. But we know, for instance, from Sir R. Murchison's 
great work on Russia, what wide gaps there are in that conntry 
between the superimposed formations ; so it is in North America, 
and in many other parts of the world. The most skilful geologist, 
if his attention had been confined exclusively to these large ter> 
ritories, would never have suspected that, during the periods which 
were blank and barren in his own country, great piles of sediment, 
charged with new and peculiar forms of life, had elsewhere been 
accumulated. And if, in each separate territory, hardly any idea 
can be formed of the length of time which has elapsed between the 
consecutive formations, we may infer that this could nowhere be 
ascertained. The frequent and great changes in the mineralogical 
composition of consecutive formations, generally implying great 
changes in the geography of the surrounding lands, whence the 
sediment was derived, accord with the belief of vast intervals of 
time having elapsed between each formation. 

We cdn, I think, see why the geological formations of each region 
are almost invariably intermittent ; that is, have not followed each 
other in close sequence. Scarcely any fact struck me more when 
examining many hundred miles of the South American coasts, which 
have been upraised several hundred feet within the recent period, 
than the absence of any recent deposits sufficiently extensive to last 
for even a short geological period. Along the whole west coast, 
which is inhabited by a peculiar marine fauna, tertiary beds are so 
poorly developed, that no record of several successive and peculiar 
marine faunas will probably be preserved to a distant age. A little 
reflection will explain why, along the rising coast of the western 
side of South America, no extensive formations with recent or ter- 
tiary remains can anywhere be found, though the supply of sediment 
must for ages have been great, from the enormous degradation of 
the coast-rocks and from muddy streams entering the sea. The 
explanation, no doubt, is, that the littoral and sub-littoral deposits 
are continually worn away, as soon as they are brought up by the , 
slow and gradual rising of the land within the grinding action of 
the coast-waves. 

We may, I think, conclude that sediment must be accumulated 
in extremely thick, solid, or extensive masses, in order to withstand 
the incessant action of the waves, when first upraised and during 
successive oscillations of level, as well as the subsequent subaerial 
degradation. Such thick and extensive accumulations of sediment 
may be formed in two ways ; either in profound depths of the sea, 
in which case the bottom will not be inhabited by so many and 
such varied forms of life, as the more shallow seas ; and the mass 



Chap. X PalcBontological Collections, 273 

when upraised will give an imperfect record of the organisms which, 
existed in the neighhourhood during the period of its accumulation. 
Or, sediment may be deposited to any thickness and extent over a 
shallow bottom, if it continue slowly to subside. In this latter case, 
as long as the rate of subsidence and the supply of sediment nearly 
balance each other, the sea will remain shallow and favourable for 
many and varied forms, and thus a rich fossiliferous formation, 
thick enough, when upraised, to resist a large amount of denudation, 
may be formed. 

I am convinced that nearly all our ancient formations, which are 
throughout the greater part of their thickness rich in fossils, have 
thus been formed during subsidence. Since publishing my views 
on this subject in 1845, 1 have watched the progress of Geology, 
and have been surprised to note how author after author, in treat- 
ing of this or that great formation, has come to the conclusion that 
it was accumulated during subsidence. I may add, that the only 
ancient tertiary formation on the west coast of Sodth America, 
wliich has been bulky enough to resist such degradation as it has 
as yet suffered, but which will hardly last to a distant geological 
age, was deposited during a downward oscillation of level, and thus 
gained considerable thickness. 

All geological facts tell us plainly that each area has undergone 
numerous slow oscillations of level, and apparently these oscillations 
have affected wide spaces. Consequently, formations rich in fossils 
and sufficiently thick and extensive to resist subsequent degradation, 
will have been formed over wide spaces during periods of subsidence, 
but only where the supply of sediment was sufficient to keep the 
sea shallow and to embed and preserve the remains before they had 
time to decay. On the other hand, as long as the bed of the sea 
remains stationary, thick deposits cannot have been accumulated 
in. the shallow parts, which are the most favourable to life. Still 
less can this have happened during the alternate periods of elevation ; 
or, to speak more accurately, the beds which were then accumulated 
will generally have been destroyed by being upraised and brought 
within the limits of the coast-action. 

These remarks apply chiefly to littoral and sublittoral deposits. 
In the case of an extensive and shallow sea, such as that within a 
large part of the Malay Archipelago, where the depth varies from 
30 or 40 to 60 fathoms, a widely extended formation might be 
formed during a period of elevation, and yet not suffer excessively 
from denudation during its slow upheaval ^ but the thickness of the 
formation could not be great, for owmg to the elevatory movement 
it would be less than the depth in wliich it was formed ; nor would 

T 



274 Denudation of granitic Areas, Cuap. X. 

the deposit be much consolidated, nor be capped by overlying for- 
mations, so that it would run a good chance of being worn away by 
atmospheric degradation and by the action of the sea during sub- 
sequent oscillations of leveL It has, however, been suggested by 
Mr. Hopkins, that if one part of the area, after rising and before 
being denuded, subsided, the deposit formed during the rising move- 
ment, though not thick, might afterwards become protected by fresh 
accumulations, and thus be preserved for a long period. 

Mr. Hopkins also expresses his belief that sedimentary beds of 
considerable horizontal extent have rarely been completely destroyed. 
But all geologists, excepting the few who believe that our present 
metamorphic schists and plutonic rocks once formed the primordial 
nucleus of the globe, will admit that these latter rocks have been 
stript of their covering to an enormous extent. For it is scarcely 
possible that' such rocks could have been solidified and crystallized 
whilst uncovered ; but if the metamorphic action occurred at pro- 
found depths of the ocean, the former protecting mantle of rock 
may not have been very thick. Admitting then that gneiss, mica- 
schist, granite, diorite, &c., were once necessarily covered up, how 
can we account for the naked and extensive areas of such rocks in 
many parts of the world, except on the belief that they have sub- 
sequently been completely denuded of all overlying strata ? That 
such extensive areas do exist cajmot be doubted : the granitic region 
of Parime is described by Humboldt as being at least nineteen times 
as large as Switzerland. South of the Amazon, Bou^ colours an 
area composed of rocks of this nature as equal to that of Spain, 
France, Italy, part of Germany, and the British Islands, all con- 
joined. This region has not been carefully explored, but from the 
concurrent testimony of travellers, the granitic area is very large : 
thus. Von Eschwege gives a detailed section of these rocks, 
stretching from Bio de Janeiro for 260 geographical miles inland in 
a straight line ; and I travelled for 150 miles in another direction, 
and saw nothing but granitic rocks. Numerous specimens, col- 
lected along the whole coast from near Bio Janeiro to the mouth of 
the Plata, a distance of 1100 geographical miles, were examined by 
me, and they all belonged to this class. Inland, along the whole 
northern bank of the Plata I saw, besides modern tertiary beds, only 
one small patch of slightly metamorphosed rock, which alone could 
have formed a part of the original capping of the granitic series. 
Turning to a well-known region, namely, to the United States and 
Canada, as shown in Professor H. D. Bogers's beautiful map, I baye 
estimated the areas by cutting out and weighing the paper, and I 
find that the metamorphic (excluding '* the semi-metamorphic "^ 



Chap. X. Absence of Intermediate Varieties, 275 

and granitic rocks exceed, in the proportion of 19 to 12*5, the whole 
of the newer Palaeozoic formations. In many regions the metamor- 
phic and granitic rocks would be found much more widely extended 
than they appear to be, if all the sedimentary beds were removed which 
rest unconformably on them, and which could not have formed part 
of the original mantle under which they were crystallized. Hence 
it is probable that in some parts of the world whole formations have 
been completely denuded, with not a wreck left behind. 

One remark is here worth a passing notice* D uring periods, of 
ele vation the area of the land and o f the adjoining shoal p arts of the . 
sea will be increased, and ne w stations will o f ^en be fnrm firi ; — all : 
circumstances favo urable, as previously explained, for the formation } 
of new vjmeties and species ; b ut during such period s there will 
generally be a blank in th e geological record. On t he other hand, 
during subsidence , the in habited area and nnmbfif ^f inhabitants 
will decrease (excepting on the shores of a continent when first 
broken up into an archipelago), and conse quently during subsidence, 
though there will b e much ex tinction, few new varieties or species 
will be formed ; andTit is during these very periods of subsidence, 
that the^eposits which are richest in fossils have been accumulated. 

On the Absence of Numerous Intermediate Varieties in any Single 

Formation, 

From these several considerations, it cannot be doubted that the 
geological record, viewed as a whole, is extremely imperfect ; ) gitif 
we confine our attention to any one forma t ion, it becomes m uch 
more difiScult to understand why we do not therein find clo sely 
graduated varieties between the allied species which lived at its 
commencement and at its close. ^Several cases are on record of the 
same species prSfienimg varieties in the upper and lower parts of 
the same formation : thus, Trautschold gives a number of instances 
with Ammonites ; and Hilgendorf has described a most curious case 
of ten graduated forms of Planorbis multiformis in the successive 
beds of a fresh-water formation in Switzerland. Although each 
formation has indisputably required a vast number of years for its 
deposition, several reasons can be given why each should not com- 
monly include a graduated series of links between the species which 
lived at its commencement and close; but I cannot assign due 
proportional weight to the following considerations. 

Although each for mation may mark a very long lapse of y ears, 
each prnbfl gyj fi fthnrt. fy^m p ar ed with the peri od requisite to ch ange 
one species jnta-4ua»ther. I am aware that two palaeontologists, 
whose opinions are worthy of much deference, namely Bronn and 

T 2 



276 Absence of Intermediate Varieties Chap. X. 

Woodward, have concluded that the average duration of each for- 
mation is twice or thrice as long as the average duration of specitic 
forms. But insuperable diflBculties, as it seems to me, prevent us 
from coming to any just conclusion on this head. When we see a 
species first appearing in the middle of any formation, it would bo 
rash in the extreme to infer that it had not elsewhere previously 
existed. So again when we find a species disappearing before the 
last layers have been deposited, it would be equally rash to suppose 
that it then became extinct. We forget bow small the area of 
Europe is compared with the rest of the world ; nor have the 
several stages of the same formation throughout Europe been cor- 
related with perfect accuracy. 

We may safely infer th at with marin e a nimals of all kinds there 
has been a large amount "of migration due to climatal and other 
changes ; and when we see a s pecies fira t appearing in any forma- 
tion, the probability is that li only the n first immigrated into that 
area. It is well ttSwo^for instance, that several species appeared 
so^iewhat earlier in the palaeozoic beds of JiflEth-AffiSfica than in 
those of Europe ; time having apparen tly been required for their 
migration from the American to the European seas. In examining 
the lateat deposits iu various quarters Of 'the world, it has every- 
where been noted, that some few still existing species are common 
in the deposit, but have become extinct in the immediately sur- 
rounding sea ; or, conversely, that some are now abundant in the 
neighbouring sea, but are rare or absent in this particular deposit. 
It is an excellent lesson to reflect on the ascertained amount of 
migration of the inhabitants of Europe during the glacial epoch, 
which forms only a part of one whole geological period ; and like- 
wise to reflect on the changes of level, on the extreme change of 
climate, and on the great lapse of time, all included within this 
^same glacial period. Yet it may be doubted whether, in any 
quarter of the world, sedimentary deposits, including fossil remain Sy 
have gone on accumulating within the same area during the whole 
of this period. It is not, for instance, probable that sediment was 
deposited during the whole of the glacial period near the mouth of 
the Mississippi, Yfithin that limit of depth at which marine animals 
can best flouriSi: for we know that great geographical changes 
occurred m other parts of America during this space of time. "When 
such beds as were deposited in shallow water near the mouth of the 
Mississippi during some part of the glacial period shall have been 
upraised, organic remains will probably first appear and disappear 
at different levels, owing to the migrations of species and to geo- 
graphical changes. And in the distant future, a geologist, examining 



Chap. X in any Single Formation. 277 

these beds, would be tempted to conclude that the average duration 
of life of the embedded fossils had been less than that of the glacial 
period, instead of having been really far greater, that is, extending 
from before the glacial epoch to the present day. 

In order to get a perfect gradation between two forms in the upper 1 
and lower parts of the same formation, the deposit must have gone \ 
on continuously accumulating during a long period, sufficient for 
the slow process of modification ; hence the deposit must be a very 
thick one ; and the species undergoing change must have lived in 
the same district throughout the whole time. But we have seen 
that a thick formation, fossiliferous throughout its entire thickness, 
can accumulate only during a period of subsidence ; and to keep the 
depth approximately the same, which is necessary that the same 
marine species may live on the same space, the supply of sediment 
must nearly counterbalance the amount of subsidence. But this 
same movement of subsidence will tend to submerge the area 
whence the sediment is derived, and thus diminish the supply, 
whilst the downward movement continues. In fact, this nearly 
exact balancing between the supply of sediment and the amount of 
subsidence is probably a rare contingency ; for it has been observed 
by more than one palaeontologist, that very thick deposits are 
usually barren of organic remains, except near their upper or lower 
limits. 

It would seem that each separate formation, like the whole pile 
of formations in any country, has generally been intermittent in its 
accumulation. When we see, as is so often the case, a formatipi 
composed of beds of widely different mineralogical composition, w< 
may reasonably suspect that the process of deposition has beet 
more or less interrupted. Nor will the closest inspection of a for- 
mation give us any idea of the length of time which its deposition 
may have consumed. Many instances could be given of beds only 
a few feet in thickness, representing formations, which are else- 
where thousands of feet in thickness, and which must have required 
an enormous period for their accumulation ; yet no one ignorant of 
this fact would have even suspected the vast lapse of time repre- 
sented by the thinner formation. Many cases cpuld be given of 
the lower beds of a formation having been upraised, denuded, sub- 
merged, and then re- covered by the upper beds of the same forma- 
tion, — facts, showing what wide, yet easily overlooked, intervals 
have occurred in its accumulation. In other cases we have the 
plainest evidence in great fossilised trees, still standing upright as 
they grew, of many long intervals of time and changes of level 
during the process of deposition, which would not have been sus- 



I 



278 Absence of Intermediate Varieties Chap. x. 

pected, had not the trees been preserved : thus Sir C. Lyell and 
Dr. Dawson found carboniferous beds 1400 feet thick in Nova 
Sootia, with ancient root-bearing strata, one above the other at no 
^ less than sixty-eight different levels. Henlse, when the same s^jecies 
occurs at the bottom, middle, and top of a formation, the proba- 
bility is that it has not lived on the same spot during the whole 
period of deposition, but has disappeared and reappeared, perhaps 
many times, during the same geological period. Consequently if it 
were to undergo a considerable amount of modification during the 
deposition of any one geological formation, a section would not in- 
clude all the fine intermediate gradations which must on our theory 
have existed, but abrupt, though perhaps slight, changes of form. 

It is all-important to remember that natu ralists hav e no golden 
rule by which to distinguish species and v arieti es ; they grant 
some little variability to each species, but when they meet with a 
somewhat greater amount of difference between any two forms, 
they rank both as species, unless they are enabled to connect them 
together by the closest intermediate gradations; and this, from 
the reasons just assigned, we can seldom hope to eflFect in any one 
geological section. Supposing B and C to be two species, and a 
third, A, to be found in an older and underlying bed ; even_if A 
were strictly intermediate between B and C, it would simply be 
ranked as a third and distinct species, unless at the same time it 
could be closely connected by intermediate vscrieties with either one 
or both forms. Nor should it be forgotten, as before explained, 
that A might be the actual progenitor of B and 0, and yet would 
not necessarily be strictly intermediate between them in all respects. 
So that we might obtain the parent-species and its several modified 
descendants from the lower and upper beds of the same formation, 
and unless we obtained numerous transitional gradations, we should 
not recognise their blood-relationship, and should consequently rank 
them as distinct species. 

It is notorious on what excessively slight differences many palaj- 
ontologists have founded their species ; and they do this the more 
readily if the specimens come from different sub-stages of the same 
formation. Some etperienced conchologists are now sinking many 
of the very fine species of D'Orbigny and others into the rank of 
varieties; and on this view we do find the kind of evidence of 
change which on the theory we ought to find. Look again at the 
later tertiary deposits, which include many shells believed by the 
majority of naturalists to be identical with existing species ; but 
some excellent naturalists, as Agassiz and Pictet, maintain that all 
these tertiary species are specifically distinct, though the distinction 



Chap. X, in any Single Formation, 279 

is admitted to be very slight ; so that here, unless we believe that 
these eminent naturalists have been misled by their imaginationsi 
and that these late tertiary species really present no difference what- 
ever from their living representatives, or unless we admit, in oppo- 
sition to the judgment of most naturalists, that these tertiary species 
are all truly distinct from the recent, we have evidence of the fre- 
quent occurrence of slight modi6cations of the kind required. If 
we look to rather wider intervals of time, namely, to distinct but 
consecutive stages of the- same great formation, we find that the 
embedded fossils, though universally ranked as specifically different, 
yet are far more closely related to each other than are the species 
found in more widely separated formations ; so that here again we 
have undoubted evidence of change in the direction required by the 
theory; but to this latter subject I shall return in the following 
chapter. 

With animals and plants ^hfttr piY^p^ff"^^ ppi dly and do no t 
wand er much, there is reason to suspect, as we have formerly seen, 
thaTEheir varieties are g enerally at first local ; and th at such l ocal 
varieties do not spread wiiely sjid supplant their parent-forms ^ntil 
they have butifi modlbed and perfected in some considerable degree. 
According to this view, the chance of discovering in a formation in 
any one country all the early stages of transition between any two 
forms, is small, for the successive changes are supposed to have 
been local or confined to some one spot . M ost marine animals have 
a wide range ; and we have seen that with plants it is those which 
have the widest range, that oftenest present varieties ; so that, with 
shells and other marine animals, it is probable that those which 
had the widest range, far exceeding the limits of the known geo- 
Ic^cal formatio ns of Eur ope, have oftenest given rise, first to Ify al 
vaxieties and ultimately to new species; and this again would 
greatly lessen the chance of our being able to trace the stages of 
transition in any one geological formation. 

It is a more important consideration, leading to the same result, 
as lately insisted on by Dr. Falconer, namely, that the period during 
which each species underwent modification, though long as measured 
by years, was probably short in comparison with that during which 
it remained without undergoing any change. 

It should not be forgotten, that at the present day, with perfect 
specimens for examination, two forms can seldom be connected by 
intermediate varieties, and thus proved to be the same species, 
until many specimens are collected from many places; and with 
fossil species this can rarely be done. We shall, perhaps, best per- 
ceive the improbability of our being enabled to connect species 




28o Absence of Intermediate Varieties Chap. X. 

by numerous, fine, intermediate, fossil links, by asking ourselves 
whether, for instance, geologists at some future period will be able 
to prove that our different breeds of cattle, sheep, horses, and dogs 
are descended from a single stock or from several aboriginal stocks ; 
or, again, whether certain sea-shells inhabiting the shores of North 
America, which are ranked by some conchologists as distinct species 
from their European representatives, and by other conchologists as 
only varieties, are really varieties, or are, as it is called, specifically 
distinct. This could be effected by the future geologist only by 
his discovering in a fossil state numerous intermediate gradations ; 
and such success is improbable in the highest degree. 

It has been asserted over and over again, by writers who believe 
in the immutability of species, that geology yields no linking forms. 
This assertion, as we shall see in the next chapter, is certainly 
erroneous. As Sir J. Lubbock has remarked, " Every species is a 
link between other allied forms." If we take a genus having a score 
of species, recent and extinct, and destroy four-fifths of them, no 
one doubts that the remainder will stand much more distinct from 
each other. If the extreme forms in the genus happen to have 
been thus destroyed, the genus itself will stand more distinct from 
other allied genera. What geological research has not revealed, is 
the former existence of infinitely numerous gradations, as fine as 
existing varieties, connecting together nearly all existing and extinct 
species. But this ought not to be expected; yet this has beea 
repeatedly advanced as a most serious objection against my views. 

It may be worth while to sum up the foregoing remarks on the 
causes of the imperfection of the geological record under an imagi- 
nary illustration. The Malay Archipelago is about the size of 
Europe from the North Cape to the Mediterranean, and from Britain 
to Russia ; and therefore equals all the geological formations which 
have been examined with any accuracy, excepting those of the 
United States of America. I fully agree with Mr. Godwin- Austen, 
that the present condition of the Malay Archipelago, with its nume- 
rous large islands separated by wide and shallow seas, probably 
represents the former state of Europe, whilst most of our formations 
were accumulating. The Malay Archipelago is one of the richest 
regions in organic beings ; yet if all the species were to be collected 
which have ever lived there, how imperfectly would they represent 
the natural history of the world ! 

But we have every reason to believe that the terrestrial pro- 
ductions of the archipelago would be preserved in an extremely 
imperfect manner in the formations which we suppose to be there 
accumulating. Not many of the strictly littoral animals, or of 



Chap. X. in any Single Formation. 281 

those which lived on naked submarine rocks, would be embedded ; 
and those embedded in gravel or sand would not endure to a distant 
epoch. Wherever sediment did not accumulate on the bed of the 
sea, or where it did not accumulate at a sufficient rate to protect 
organic bodies from decay, no remains could be preserved. 

Formations rich in fossils of many kinds, and of thickness 
sufficient to last to an age as distant in futurity as the secondary 
formations lie in the past, would generally be formed in the archi- 
pelago only during periods o f subsidence . These periods of 
subsidence would be separated trom each other by imm ense inter- 
vals of time, during which the area would be either stationary or 
rising T whilst rising, the fossilife rous formations on the steeper 
shores would be destro yed, almost as soon as accumulated, by 
the incessant coast-action, as we now see on the shores of South 
America. Even throughout the extensive and shallow seas within 
the archipelago, sedimentary beds could hardly be accumulated of 
great thickness during the periods of elevation, or become capped 
and protected by subsequent deposits, so as to have a good chance 
of enduring to a very distant future. Duri ng the periods of sub- 
sidence, there would probably be much extinction of life ; during 
the periods of elevation, there would be much variation, but the 
geological record would then be less perfect. 

It may be doubted whether the duration of an y one great per iod 
of subsidence over the whole or par t of the archipe lago, together 
with a contemporaneo us accumulation of sediment, w ould e xceed the 
average dur ation of the same specltic forms ; and these contingen- 
cies are indispensable for the preservation of all the transitional 
gradations between any two or more species. If such gradations 
were not all fully preserved, transitional varieties would merely 
appear as so many new, though closely allied species. It is also 
probable that each great period of subsidence would be interru pted 
by oscillations of l evel, and t hat slight climatal changes would inter- 
vene during sucli lengt h y periods j^ and in these cases the inhabitants 
of the archipelago wouIS ^igraterand no clo sely consecutive record 
of their modifications couITbe J^ reserved in any one formation. 

Very many dftne marme inhabitants of the archipelago now 
range thousands of miles beyond its confines ; and analogy plainly 
leads to the belief that it would be chiefly these far-raflging species, 
though only some of them, which would oftenest produce new 
varieties ; and the varieties would at first be local or confined 
to one place, but if possesseooi any decided advantage, or when 
further modified and improved, they would slowly spread and 
supplant their parent-forms. When such varieties returned to 



282 Sudden Appearance of Ciiap- X. 

-^ |- I II ■ MM 

their ancient homes, as they would differ from their former state 
in a nearly uniform, though perhaps extremely slight degree, and 
as they would be found embedded in slightly different sub-stages of 
tho same formation, they would, according to the principles followed 
by many palaeontologists, be ranked as new and distinct species. 

If then there be some degree of truth in these remarks, we have 
no right to expect to find, in our geological formations, an infinite 
number of those fine transitional forms which, on our theory, have 
connected all the past and present species of the same group into 
one long and branching chain of life. We ought only to look for a 
few links, and such assuredly we do find — some more distantly, 
some more closely, related to each other; and these .links, let them 
be ever so close, if found in different stages of the same formation, 
would, by many paheontologists, be ranked as distinct species. 
But I do not pretend that I should ever have suspected how poor 
was the record in the best preserved geolf^cal sections, had not the 
absence of innumerable transitional links between the species which 
lived at the commencement and close of each formation, pressed so 
hardly on my theory. 

On tJie sudden Appearance of whole Groups of allied Species. 

The abrupt manner in which whole groups of species suddenly 
appear in certain formations, has been urged by several palaeontolo- 
gists — ^for instance, by Agassiz, Pictet, and Sedgwick— as a fatal 
objection to the belief in the transmutation of species. If numerous 
species, belonging to the same genera or lamilies, have really started 
into life at once, the fact would be fatal to the theory of evolution 
through natural selection. For the development by this means of 
a group of forms, all of which are descended from some one progeni- 
tor, must have been an extremely slow process ; and the progenitors 
must have lived long before their modified desceodants. But we 
continually overrate the perfection of the geological record, and 
falsely infer, because certain genera or families have not been found 
beneath a certain stage, that they did not exist before that stage. 
In all cases positive palaeontological evidence may be implicitly 
trusted ; negative evidence is worthless, as experience has so often 
shown. "We continually forget how large the world is, compared 
with the area over which our geological formations have been 
carefully examined; we forget that groups of species mAy else- 
where have long existed, and have slowly multiplied, before 
they invaded the ancient archipelagoes of Europe and the United 
States. We do not make due allowance for the intervals of 
time which have elapsed between our consecutive formations, — 



Chat. X. Groups of Allied Species, 283 

longer perhaps in many cases than the time required for the accu- 
mulation of each formation. These intervals will have given time 
for the multiplication of s|)ecie8 from some one parent-form ; aud in 
the succeeding formation, such groups or species will appear as if 
suddenly created. 

I may here recall a remark formerly made, namely, that it might 
require a long succession of ages to adapt an orcranism to some dctv^ 
and peculiar line of life, for instance, to fly through the air ; ai;d 
consequently that the transitional forms would often long remain\ 
confined to some one region ; but that, when this adaptation had I 
once been effected, and a few species had thus acquired a great I 
advantage over other organisms, a comparatively short time would 
be necessary to produce many divergent forms, which would spread 
rapidly and widely throughout the world. Professor Pictet, in his 
excellent Review of this work, in commenting on early transitional 
forms, and taking birds as an illustration, cannot see how the suc- 
cessive modifications of the anterior limbs of a supposed prototype 
could possibly have been of any advantage. But look at the I 
penguins of the Southern Ocean ; have not these birds their front | 
limbs in this precise intermediate state of *' neither true arms nor 
true wings " ? Yet these birds hold their place victoriously in the 
battle for life ; for they exist in infinite numbers and of many kinds. 
I do not suppose that we here see the real transitional grades through 
which the wings of birds have passed ; but what special difficulty is 
there in believing that it might profit the modified descendants of 
the penguin, first to become enabled to flap along the surface of the 
sea like the logger-headed duck, and ultimately to rise from its 
surface and glide through the air? 

I will now give a few examples to illustrate the foregoing remarks, 
and to show how liable we are to error in supposing that whole 
groups of species have suddenly been produced. Even in so short 
an interval as that between the first and second editions of Pictet's 
great work on Palaeontology, published in 1844-46 and in 1853-57, 
the conclusions on the first appearance and disappearance of several 
groups of animals have been considerably modified ; and a third 
edition would require still further changes. I may recall the well- 
known fact that in geological treatises, published not many years 
ago, mammals were always spoken of as having abruptly come in 
at the commencement of the tertiary series. And now one of 
the richest known accumulations of fossil mammals belongs to the 
middle of the secondary series ; and true mammals have been dis- 
covered in the new red sandstone at nearly the commencement of 
this great series. Cuvier used to urge that no monkey occurred in 



284 Sudden Appearance of <^hap. X. 



any tertiary stratum ; but now extinct species have been discovered' 
in India, South America, and in Europe, as far back as the miocene 
stage. Had it not been for the rare accident of the preservation of 
footsteps in the new red sandstone of the United States, who would 
have ventured to suppose that no less than at least thirty different 
bird-like animals, some of gigantic size, existed during that period ? 
Not a fragment of bone has been discovered in these beds. Not long 
ago, palaeontologists maintained that the whole class of birds came 
suddenly into existence during the eocene period ; but now we 
know, on the authority of Professor Owen, that a bird certainly 
lived during the deposition of the upper greensand ; and still more 
recently, that strange bird, the Archeopteryx, with a long lizard- 
like tail, bearing a pair of feathers on each joint, and with its wings 
furnished with two free claws, has been discovered in the oolitic 
slates of Solenhofen. Hardly any recent discovery shows more 
forcibly than this, how little we as yet know of the former inhabi- 
tants of the world. 

I may give another instance, which, from having passed under 
my own eyes, has much struck me. In a memoir on Fossil Sessile 
Cirripedes, I stated that, from the large number of existing and 
extinct tertiary species ; froin the extraordinary abundance of the 
individuals of many species all over the world, from the Arctic 
regions to the equator; inhabiting various zones of depths from the 
upper tidal limits to 50 fathoms ; from the perfect manner in which 
specimens are preserved in the oldest tertiary beds ; from the case 
with which even a fragment of a valve can be recognised ; from all 
these circumstances, I inferred that, had sessile cirripedes existed 
during the secondary periods, they would certainly have been pre- 
served and discovered ; and as not one species had then been dis- 
covered in beds of this age, I concluded that this great group had 
been suddenly developed at the commencement of the tertiary series. 
This was a sore trouble to me, adding as I then thouo:ht one more 
instance of the abrupt appearance of a great group of species. But 
my work had hardly been published, when a skilful palaeontologist, 
M. Bosquet, sent me a drawing of a perfect specimen of an unmis- 
takeable sessile cirripede, which he had himself extracted from the 
chalk of Belgium. And, as if to make the case as striking as 
possible, this cirripede was a Chthamalus, a very common, large^ 
and ubiquitous genus, of which not one species has as yet beeu 
found even in any tertiary stratum. Still more recently, a Pyrgoma, 
a member of a distinct sub-family of sessile cirripedes, has been 
discovered by Mr. Woodward in the upper chalk ; so that we now 



Chap. X. Groups of Allied Species. 285 

liave abundant eyidence of the existence of this group of animals 
during the secondary period. 

The case most frequently insisted on by palaeontologists of the 
apparently sudden appearance of a whole group of species, is that of 
the teleostean fishes, low down, according to Agassiz, in the Chalk 
period. This group includes the large majority of existing species. 
But certain Jurassic and Triassic forms are now commonly admitted 
to be teleostean ; and even some palaeozoic forms have thus been 
classed by one high authority. If the teleosteans had really 
appeared suddenly in the northern hemisphere at the commencement 
of the chalk formation, the fact would have been highly remarkable; 
but it would not have formed an insuperable difficulty, unless it 
could likewise have been shown that at the same period the species 
were suddenly and simultaneously developed in other quarters of 
the world. It is almost superfluous to remarks that hardly any 
fossil-fish are known from south of the equator ; and by running 
through Pictet's Palaeontology it will be seen that very few species 
are known from several formations in Europe. Some few families of 
fish now have a confined range ; the teleostean fishes might formerly 
have had a similarly confined range, and after having been largely 
developed in some one sea, have spread widely. Kor have we 
any right to suppose that the seas of the world have always been 
80 fireely open from south to north as they are at present. Even at 
this day, if the Malay Archipelago were converted into land, the 
tropical parts of the Indian Ocean would form a large and perfectly 
enclosed basin, in which any great group of marine animals might 
be multiplied ; and here they would remain confined, until some of 
the species became adapted to a cooler climate, and were enabled to 
double the Southern capes of Africa or Australia, and thus reach 
other and distant seas. 

From these considerations, from our ignorance of the geology of 
other countries beyond the confines of Europe and the United 
States, and from the revolution in our palaeontological knowledge 
effected by the discoveries of the last dozen years, it seems to me 
to be about as rash to dogmatize on the succession of organic forms 
throughout the world, as it would be for a naturalist to land for five 
minutes on a barren point in Australia, and then to discuss the 
number and range of its productions. 

On the stidden Appearance of Groups of allied Species in the 
lowest known FossUiferous Strata, 

There is another and allied difficulty, which is much more serious. 
I allude to the manner in which species belonging to several of the 



286 Groups of A Hied Species Chap. X. 

main divisions of the animal kingdom suddenly appear in the 
•lowest known fossiliferous rocks. Most of the argimients which 
have convinced me that all the existing species of the same group 
are descended from a single progenitor, apply with equal force to 
the earliest known species. For instance, it cannot be doubted that 
all the Cambrian and Silurian trilobites are descended from some 
one crustacean, which must have lived long before the Cambrian 
age, and which probably differed greatly from any known animal. 
Some of the most ancient animals, as the Nautilus, Lingula, &c., do 
not differ much from living species ; and it cannot on our theory 
be supposed, that these old species were the progenitors of all the 
species belonging to the same groups which have subsequently 
appeared, for they are not in any degree intermediate in character. 

Consequently, if the theory be true, it is indisputable that before 
the lowest Cambrian stratum was deposited, long periods elapsed, as 
long as, or probably far longer than, the whole interval from the 
Cambrian age to the present day; and that during these vast 

(periods the world swarmed with living creatures. Here we en- 
counter a formidable objection ; for it seems doubtful whether the 
earth, in a fit state for the habitation of living creatures, has lasted 
long enough. Sir W. Thompson concludes that the consolidation 
of the crust can hardly have occuiTcd less than 20 or more than 
400 million years ago, but probably not less than 98 or more 
than 200 million years. These very wide limits show how doubt- 
ful the data are ; and other elements may have hereafter to be 
introduced into the problem. Mr. Croll estimates that about 
60 million years have elapsed since the Cambrian period, but this, 
judging from the small amount of organic change since the com- 
mencement of the Glacial epoch, appears a very short time for the 
many and great mutations of life, which have certainly occurred 
since the Cambrian formation |;^and the previous 140 million years 
can hardly be considered as sufBcient for the development of the 
varied forms of life which already existed during the Cambrian 
period. It is, however, probable, as Sir William Thompson insists, 
that the world at a very early period was subjected to more rapid 
and violent changes in its physical conditions than those now 
occurring ; and such changes would have tended to induce chaises 
at a corresponding rate in the organisms jwhich then existed. 

To the question why we do not find rich fossiliferous deposits 
belonging to these assumed earliest periods prior ^ the Cambrian 
system, I can give no satisfactory answer. Several eminent geo- 
logists, with Sir R. Murchison at their head, were until recently 
convinced that we beheld in the organic remains of the lowest 






CuAP. X, in lozvest Fossiliferous Strata. 287 

Silurian stratum the first dawn of life. Other highly competent 

judges, as Lyell and E. Forbes, have disputed this conclusion. 

We should not forget that only a small portion of the world is 

known with accuracy. Not very long ago M. Barrande added 

another and lower stage, abounding with new and peculiar species, 

beneath the then known Silurian system; and now, still lower 

down in the Lower Cambrian formation, Mr. Hicks has foimd 

in South Wales beds rich in trilobites, and containing various 

molluscs and annelids. The presence of phosphatic nodules and 

bituminous matter, even in some of the lowest azoic rocks, probably 

indicates life at these periods ; and the existence of the Eozoon in 

the Laurentian formation of Canada is generally admitted. There 

are three great series of strata beneath the Silurian system in 

Canada, in the lowest of which the Eozoon is found. Sir W. 

Logan states that their " united thickness may possibly far surpass 

that of all the succeeding rocks, from the base of the palaeozoic 

series to the present time. We are thus carried back to a period 

so remote, that the appearance of the so-called Primordial fauna 

" (of Barrande) may by some be considered as a comparatively 

" modern event** The Eozoon belongs to the most lowly organised 

of all classes of animals, but is highly organised for its class ; it 

existed in countless numbers, and, as Dr. Dawson has remarked, 

certainly preyed on other minute organic beings, which must have 

lived in great numbers. Thus the words, which I wrote in 1859, 

about the existence of living beings long before the Cambrian 

period, and which are almost the same with those since used by 

Sir W. Logan, have proved true. Nevertheless, the difficulty of 

assigning any good reason for the absence of vast piles of strata 

rich in fossils beneath the Cambrian system is very great. It does 

not seem probable that the most ancient beds have been quite 

worn away by denudation, or that their fossils have been wholly 

obliterated by metamorphic action, for if this had been the case 

we should have found only small remnants of the formations next 

succeeding them in age, and these would always have existed in a 

imrtially metamorphosed condition. But the descriptions which we 

possess of the •Silurian deposits over immense territories in Bu^sia 

and in North America, do not support the view, that the older a 

formation is, the more invariably it has suffered extreme denudation 

and metamorphism. 

Tl^e case at present must remain inexplicable ; and may be truly 
urged as a valid argument against the views here entertained. To 
show that it may hereafter receive some explanation, I will give 
the following hypothesis. From the nature of the organic remains 



288 Groups of Species in lowest Strata. Chap. X. 

which do not appear to have inhabited profound depths, in the 
fieveral formations of Europe and of the United States ; and from 
the amount of sediment, miles in thickness, of which the formations 
are composed, we may infer that from first to last large islands 
or tracts of land, whence the sediment was derived, occurred in the 
neighbourhood of the now existing continents of Europe and 
North America. This same view has since been maintained by 
Agassiz and others. But we do not know what was the state 
of things in the intervals between the several successive formations ; 
whether Europe and the United States during these intervals 
existed as dry land, or as a submarine surface near land, on which 
sediment was not deposited, or as the bed of an open and unfathom- 
able sea. 

Looking to the existing oceans, which are thrice as extensive as 
the land, we see them studded with many islands ; but hardly one 
truly oceanic island (with the exception of New Zealand, if this 
can be called a truly oceanic island) is as yet known to afford even 
a remnant of any palaBozoic or secondary formation. Hence we may 
perhaps infer, that during the palseozoic and secondary periods, 
.neither continents nor continental islands existed where our oceans 
now extend ; for had they existed, palaeozoic and secondary forma- 
tions would in all probability have been accumulated from sediment 
derived from their wear and tear ; and these would have been at 
least partially upheaved by the oscillations of level, which must 
have intervened during these enormously long periods. If then we 
may infer anything from these facts, we may infer that, where our 
oceans now extend, oceans have extended from the remotest period 
of which we have any record ; and on the other hand, that where 
continents now exist, large tracts of land have existed, subjected no 
doubt to great oscillations of level, since the Cambrian period. The 
coloured map appended to my volume on Coral Keefs, led me to 
conclude that the great oceans are still mainly areas of subsidence, 
the great archipelagoes still areas of oscillations of level, and the 
continents areas of elevation. But we have no reason to assume 
that things have thus remained from the beginning of the world. 
Our continents seem to have been formed by a preponderance, during 
many oscillations of level, of the force of elevation ; but may not 
the areas of preponderant movement have changed in the lapse of 
ages ? At a period long antecedent to the Cambrian epoch, con- 
tinents may have existed where oceans are now spread out ; and 
clear and open oceans may have existed where our continents now 
stand. Nor should we be justified in assuming that if, for instance, 
the bed of the Pacific Ocean were now converted into a continent 



Chap. X. Imperfection of Geological Record, 289 

we should there find sedimentary formations in a recognisable 
condition older than the Cambrian strata, supj-iosing such to have 
been formerly deposited; for it might well happen that strata 
which had subsided some miles nearer to the centre of the earth, 
and which had been pressed on by an enormous weight of superin- 
cumbent water, might have undergone far more metamorphic action 
than strata which have always remained nearer to the surface. 
The immense areas in some parts of the world, for instance in 
South America, of naked metamorphic rocks, which must have been 
heated under great pressure, have always seemed to me to require 
some special explanation ; aud we may perhaps believe that we see 
in these large areas, the many formations long anterior to the 
Cambrian e(Kx;h in a completely metamorphosed and denuded 
condition. 

The several difficulties here discussed, namely — -jthat, though we 
find in our geological formations many links between the species 
which now exist and which formerly existed, we do not find 
infinitely numerous fine transitional forms closely joining them all 
tc^ether ; — the sudden manner in which several groups of species 
first appear in our European formations ; — the almost entire absence, 
as at present known, of formations rich in fossils beneath the 
Cambrian strata, — are all undoubtedly of the most serious nature. 
We see this in the £Eict that the most eminent palaeontologists, 
namely, Cuvier, Agassiz, Barrande, Pictet, Falconer, E. Forbes, &c., 
and all our greatest geologists, as Lyell, Murchison, Sedgwick, 
&c., have unanimously, often vehemently, maintained the immu- 
tability of species. But Sir Charles Lyell now gives the support of 
his high authority to the opposite* side ; and most geologists and 
palaeontologists are much shaken in their former belief. 1 hose 
who believe that the geological record is in any degree perfect, will 
undoubtedly at once reject the theory. For my part, following out 
Lyeirs metaphor, I look at the geological record as a history of the 
world imperfectly kept, and written in a changing dialect ; of this 
history we possess the last volume alone, relating only to two or 
three countries. Of this volume, only here and there a short 
chapter has been preserved ; and of each page, only here and there 
a few lines. Each word of the slowly-changing language, more or 
less different in the successive chapters, may represent the forms of 
life, which are entombed in our consecutive formations, and which 
falsely appear to us to have been abruptly introduced. On this 
view, the difficulties above discussed are greatly diminished., or even 
disappear. 



290 The Geological Succession Chap. XI. 



CHAPTEE XL 

On the Geological Succession of Oboanic Beings. 

On the slow and snccessive appearance of new species — On their different 
rates of change — Species once lost do not reappear — Groups of species 
follow the same general rules in their appearance and disappearance as 
do single species — On extinction — On simultaneous changes in the 
forms of life thronghont the world — On the affinities of extinct species 
to each other and to living species — On the state of development of 
ancient forms — On the succession of the same types within the same 
areas — Summary of preceding and present chapter. 

Let us now see whether the several facts and laws relating to the 
geological succession of organic beings accord best with the common 
view of the immutability of species, or with that of their slow and 
gradual modification, through variation and natural selection, 
y New species have* appeared very slowly, one after another, both 
on the land and in the waters. Lyell has shown that it is hardly 
possible to resist the evidence on this head in the case of the several 
tertiary stages ; and every year tends to fill up the blanks between 
the stages, and to make the proportion between the lost and exist- 
ing forms more gradual. In some of the most recent beds, though 
undoubtedly of high antiquity if measured by years, only one or 
two species are extinct, and only one or two are new, having 
appeared there for the first time, either locally, or, as far as we 
know, on the face of the earth. The secondary formations are 
more broken ; but, as Bronn has remarked, neither the appearance 
nor disappearance of the many species emb^ded in each formation 
has been simultaneous. 

Species belonging to different genera and classes have not changed 
t the same rate, or in the same degree. In the older tertiary- 
beds a few living shells may still be found in the midst of a mul- 
titude of extinct forms. Falconer has given a striking instance 
of a similar fact, for an existing crocodile is associated with many- 
lost mammals and reptiles in the sub-Himalayan deposits. The 
Silurian Lingula differs but little from the living species of this 
genus ; whereas most of the other Silurian Molluscs and all the 
Crustaceans have changed greatly. The productions of the land 






Chap. XI. of Organic Beings, ~ 291 



seem to have changed at a quicker rate than those of the sea, of 
which a striking instance has been observed in Switzerland. There 
is -some reason to believe that organisms high in the scale, change 
more quickly than those that are low : though there are exceptions 
to this rule. The amount of organic change, as Pictet has remarked, 
is not the same in each successive so-called formation. Tet if we 
compare any but the most closely related formations, all the species 
will be found to have undergone some change. When a speciet: 
has once disappeared from the face of the earth, we have no reason to 
believe that i^e same identical form ever reappears. The strongest 
apparent exception to this latter rule is that of the so-called 
** colonies " of M. Barrande, which intrude for a period in the midst of 
an older formation, and then allow the pre-existing fauna to reappear ; 
but Lyeirs explanation, namely, that it is a case of temporary 
migration from a distinct gec^aphical province, seems satisfactory. 
These several facts accord well vidth our theory, which includes 
no fixed law of development, causing all the inhabitants of an area 
to change abruptly, or simultaneously, or to an equal degree. The 
process of modification must be slow, and will generally affect only 
a few species at the same time ; for the variability of each species 
is independent of that of all others. Whether such variations or 
individual differences as may arise will be accumulated through 
natural selection in a greater or less degree, thus causing a greater 
or less amount of permanent modification, will depend on many 
complex contingencies — on the variations being of a beneficial 
nature, on the freedom of intercrossing, on the slowly changing 
physical conditions of the country, on the immigration of new 
colonists, and on the nature of the other inhabitants with which 
the varying species come into competition. Hence it is by no 
means silrprising that one species should retain the same identical 
form much longer than others ; or, if changing, should change in a 
less degree. We find similar relations between the existing inha- 
bitants of distinct countries; for instance, the land-shells and 
coleopterous insects of Madeira have come to differ considerably 
from their nearest allies on the continent of Europe, whereas the 
marine shells and birds have" remained unaltered. We can perha]i» 
understand the apparently quicker rate of change in terrestrial 
and in more highly organised productions compared with marine 
and lower productions, by the more complex relations of the higher 
beings to their organic and inorganic conditions of life, as explained 
in a former chapter. When many of the inhabitants of any area 
have become modified and improved, we can understand, on the 
principle of competition, and from the all-important relations of 

u 2 



292 The Geological Siucession Chap. xi. 

org^uum to organism in the struggle for life, that any form which, 
did not hecome in some degree modified and improved, would be 
liable to extermination. Heuce we see why all the species in the 
same region do at last, if we look to long enough intervals of time, 
become modified, for otherwise they would become extinct 

In members of the same class the average amount of change, 
during long and equal periods of time, may, perhaps, be nearly the 
same; but as the accumulation of enduring formations, rich in 
fossils, depends on great masses of sediment being deposited on 
subsiding areas, our formations have beei> almost necessarily accu- 
mulated at wide and irregularly intermittent intervals of time; 
cousequently the amount of organic change exhibited by the fossitf 
embedded in consecutive formations is not equal. Each formation, 
on this view, does not mark a new and complete act of creation,, 
but only an occasional scene, taken almost at hazard, in an ever 
slowly changing drama. 

We can clearly understand why a species when once lost should 
never reappear, even if the very same conditions of life, organic and 
inorganic, should recur. For though the offspring of one species 
might be adapted (and no doubt this has occurred in innumerable 
instances) to fill the place of another species in the economy of 
nature, and thus supplant it ; yet the two forms — -the old and the 
new — would not be identically the same ; for both would almost 
certainly inherit different characters from their distinct progenitors ; 
and organisms already differing would vary in a different manner. 
For instance, it is possible, if all our fantail pigeons were destroyed, 
that fanciers might make a new breed hardly distinguishable from 
the present breed; but if the parent rock>pigeon were likewibe 
destroyed, and under natdre we have every reason to believe that 
parent-forms are generally supplanted and exterminated by their 
improved ofispring, it is incredible that a fantail, identical with the 
existing breed, could be raised from any other species of pigeon, or 
even from any other well-established race of the domestic pigeon, 
for the successive variations would almost certainly be in some 
degree different, and the newly-formed variety would probably 
inherit from its progenitor some characteristic differences. 

Groups of species, that is, genera and families, follow the same 
general rules in their appearance and disappearance as do single 
species, changing more or less quickly, and in a greater or lesser 
degree. A group, when it has onoe disappeared, never reappears ; 
that is, its existence, as long as it lasts, is continuous. I am 
aware that there are some apparent exceptions to this rule, but the 
exceptions are surprisingly few, so few that E. Forbes, Pictet, and 



Chap. XI. of Organic Beings, 293 

Woodward (though all strongly opposed to such views as I maintain) 
admit its truth ; and the rule strictly accords with the theory. For 
all the species of the same group, however long it may have lasted, 
are the modified descendants, one from the other, and all from a 
common progenitor. In the genus Lingula, for instance, the species 
which have successively appeared at all f^es must have been con- 
nected by an unbroken series of generations, from the lowest 
Silurian stratum to the present day. 

We have seen in the last chapter that whole groups of species 
sometimes falsely appear to have been abruptly developed; and 
^I have attempted to give an explanation of this fact, which if true 
>:^ould be fatal to my views. But such cases are certainly excep- 
tional ; the general rule being a gradual increase in number, until 
..the group reaches its maximum, and then, sooner or later, a gradual 
decrease. If the number of the species included within a genus, 
or the number of the genera within a family, be represented by a 
vertical line of varying thickness, ascending through the successive 
geological formations in which the species are found, the line will 
sometimes falsely appear to begin at its lower end, not in a sharp 
point, but abruptly; it then gradually thickens upwards, often 
keeping of equal thickness for a space, and ultimately thins out in 
the upper beds, marking the decrease and final extinction of the 
species. This gradual increase in number of the species of a group 
is strictly conformable with the theory, for the species of the same 
genus, and the genera of the same family, can increase only slowly 
and progressively ; the process of modification and the production 
of a number of allied forms necessarily being a slow and gradual 
process, — one species first giving rise to two or three varieties, these 
being slowly converted into species, which in their turn produce by 
equally slow steps other varieties and species, and so on, like the 
branching of a great tree from a single stem, till the group becomes 
large. 

On JUxtindion, 

We have as yet spoken only incidentally of the disappearance of 
species and of groups of species. On the theory of natural selection, 
the extinction of old forms and the production of new and improved 
forms are intimately connected together. The old notion of all the 
inhabitants of the earth having been swept away by catastrophes 
at successive periods is very generally given iip, even by those 
geologists, as Elie de Beaumont, Murchison, Barmnde, &c., whose 
general views would naturally lead them to this conclusion. On 
the contrary, we have every reason to believe, from the study of the 



^^ 



294 Extinction. Chap. XI. 

tertiary formations, that species and groups of species gradually 
disappear, one after another, first from one spot, then from another, 
and finally from the world. In some few cases, however, as by the 
breaking of an isthmus and the consequent irruption of a multitude 
of new inhabitants into an adjoining sea, or by the final subsidence 
of an island, the process of extinction may have been rapid. Both 
single species and whole groups of species last for very unequal 
periods; some groups, as we have seen, have endured from the 
earliest known dawn of life to the present day ; some have dis- 
appeared before the close of the palaeozoic period. No fixed law 
seems to determine the length of time during which any single 
species or any single genus endures. There is reason to believe that 
the extinction of a whole group of species is generally a slower pro- 
cess than their production : if their appearance and disappearance 
be represented, as before, by a vertical line of varying thickness 
the line is found to taper more gradually at its upper end, which 
marks the progress of extermination, than at its lower end, which 
marks the first appearance and the early increase in number of the 
species. In some cases, however, the extermination of whole 
groups, as of ammonites, towards the close of the secondary period, 
has been wonderfully sudden^ 

The extinction of species has been involved in the most gratuitous 
mystery. Some authors have even supposed that, as the individual 
has a definite length of life, so have species a definite duration. No 
one can have marvelled ihore than I have done at the extinction of 
species. When I found in La Plata the tooth of a horse embedded 
with the remains of Mastodon, Megatherium, Toxodon, and other 
extinct monsters, which all co-existed with still living shells at a 
very late geological period, I was filled with astonishment; for, 
seeing that the horse, since its introduction by the Spaniards into 
South America, has run wild over the whole country and has 
increased in numbers at an unparalleled rate, I asked myself what 
could so recently have exterminated the fonner horse under con- 
ditions of life apparently so favourable. But my astonishment was 
groundless. Professor Owen soon perceived that the tooth, though 
so like that of the existing horse, belonged to an extinct species. 
Had this horse been still living, but in some degree rare, no naturalist 
would have felt the least surprise at its rarity ; for rarity is the 
attribute of a vast number of species of all classes, in all countries. 
If we Ask ourselves why this or that species is rare, we answer 
that something is unfavourable in its conditions of life ; but what 
that something is, we can hardly ever tell. On the supposition of 
the fossil horse still existing as a rare species, we might have felt 



Chap. XL Extinction, 29 S 

certain, from the analogy of all other nuunmals, even of the slow- 
breeding elephant, and irom the history of the naturalisation of the 
domestic horse in Sonth America, that under more favourable con- 
ditions it would in a very few years have stocked the whole 
continent. But we could not have told what the unfavourable con- 
ditions were which checked its increase, whether some one or several 
contingencies, and at what period of the hoise's life, and in what 
degree, they severally acted. If the conditions had gone on, how- 
ever slowly, becoming less and less favourable, we assuredly should 
not have perceived the fact, yet the fossil horse would certainly 
have become rarer and rarer, and finally extinct ; — its place being 
seized on by some more successful competitor. 

It is most difficult always to remember that the increase of every 
creature is constantly being checked by unperceived hostile agencies ; 
and that these same unperceived agencies are amply sufficient to 
cause rarity, and finally extinction. So little is this subject under- 
stood, that I have heard surprise repeatedly expressed at such great 
monsters as the Mastodon and the more ancient Dinosaurians having 
become extinct; as if mere bodily strength gave victory in the 
battle of life. Mere size, on the contrary, would in some cases 
determine, as has been remarked by Owen, quicker extermination 
from the greater amount of requisite food. Before man inhabited 
India or Africa, some cause must have checked the continued 
increase of the existing elephant. A highly capable judge, Dr. 
Falconer, believes that it is chiefly insects which, from incessantly 
harassing and weakening the elephant in India, check its increase ; 
and this was Bruce's conclusion with respect to the African elephant 
in Abyssinia. It is certain that insects and blood-sucking bats 
determine the existence of the larger naturalised quadrupeds in 
several parts of S. America. 

We see in many cases in the more recent tertiary formations, 
that rarity precedes extinction ; and we know that this has been 
the progress of events with those animals which have been exter- 
minated, either locally or wholly, through man's agency. I may 
repeat what I published in 1845, namely, that to admit that species 
generally become rare before they become extinct — to feel no sur- 
prise at the rarity of a species, and yet to marvel greatly when the 
species ceases to exist, is much the same as to admit that sickness 
in the individual is the forerunner of death — to feel no surprise 
at sickness, but, when the sick man dies, to wonder and to suspect 
that he died by some deed of violence. 

The theory of natural selection is grounded on the belief that 
each new variety, and ultimately each now species, is produced and 



I 



296 Extinction. Chap. XI. 

maiutained by having some advantage over those with which it 
comes into competition ; and the consequent extinction of the less- 
favoured forms almost inevitably follows. It is the same with our 
domestic productions ; when a new and slightly improved variety 
has been raised, it at first supplants the less improved varieties in 
the same neighbourhood ; when much improved it is transported 
far and near, like our short-horn cattle, and takes the place of other 
breeds in other countries. Thus the appearance of new forms and 
the disappearance of old forms, both those naturally and those arti- 
ficially produced, are bound together. In flourishing groups, the 
number of new specific forms which have been produced within a 
given time has at some periods probably been greater than the 
number of the old specific forms which have been exterminated ; 
but we know that species have not gone on indefinitely increasing, 
at least during the later geological epochs, so that, looking to later 
times, we may believe that the production of new forms has caused 
the extinction of about the same number of old forms. 

The competition will generally be most severe, as formerly ex- 
plained and illustrated by examples, between the forms which are 
most like each other in all respects. Hence the improved and 
modified descendants of a species will generally cause the extermi- 
nation of the parent-species ; and if many new forms have been 
developed from any one species, the nearest allies of that species, 
t.e. the species of the same genus, will be the most liable to extermi- 
nation. Thus, as I believe, a number of new species descended 
from one species, that is a new genus, comes to supplant an old 
genus, belonging to the same family. But it must often have 
happened that a new species belonging to some one group has seized 
on the place occupied by a species belonging to a distinct group, 
and thus have caused its extermination. If many allied forms be 
developed from the successful intruder, many will have to yield 
their places ; and it will generally be the allied forms, which will 
suiSFer from some inherited inferiority in common. But whether it 
be species belonging to the same or to a distinct class, which have 
yielded their places to other modified and improved species, a few 
of the sufferers may often be preserved for a long time, from being 
fitted to some peculiar line of life, or from inhabiting some distant 
and isolated station, where they will have escaped severe competi- 
tion. For instance, some species of Trigonia, a great genus oLshells 
in the secondary formations, survive in the Australian seas ; and a few 
members of the great and almost extinct group of Ganoid fishes still 
inhabit our fresh waters. Therefore the utter extinction of a group 
is generally, as we have seen, a slower process than its production. 



Chap. XL Extinction, 297 

With respect to the apparently sudden extermination of whole 
families or ordere, as of Trilobites at the close of the pakeozoic 
period and of Ammonites at the close of the secondary period, we 
must remember what has been already said on the probable wide 
intervals of time between our consecutive formations ; and in these 
intervals there may have been much slow extermination. More- 
over, when, by sudden immigration or by unusually rapid develop- 
ment, many species of a new group have taken possession of an 
area, many of the older species will have been exterminated in a 
correspondingly rapid manner; and the forms which thus yield 
their places will commonly be allied, for they ivill partake of the 
same inferiority in common. 

Thus, as it seems to me, the manner in which single species and 
whole groups of species become extinct accords well with the theory 
of natural selection. We need not marvel at extinction; if we 
must marvel, let it be at our own presumption in imagining for a 
moment that we understand the many complex contingencies on 
which the existence of each species depends^ If we forget for an 
instant, that each species tends to increase inordinately, and that 
some check is always in action, yet seldom perceived by us, the 
whole economy of nature will be utterly obscured. Whenever we 
can precisely say why this species is more abundant in individuals 
than that ; why this species and not another can be naturalised in 
a given country ; then, and not until then, we may justly feel sur- 
prise why we cannot account for the extinction of any particular 
species or group of species. 

On the Farms of Life changing almost simultaneously throughout 

the World. 

Scarcely any palaeontological discovery is more striking than the 
fact, that the forms of life change almost simultaneously throughout 
the world. Thus our European Chalk formation can be recognised 
in many distant regions, imder the most different climates, where 
not a fragment of the mineral chalk itself can be found ; namely, 
in North America, in equatorial South America, in Tierra del 
Fuego, at the Cape of Good Hope, and in the peniDsula of India, 
For at these distant points, the organic remains in certain beds pre- 
sent an unmistakeable resemblance to those of the Chalk. It is 
not that the same species are met with ; for in some cases not one 
specUb is identically the same, but they bel( ng to the same fami- 
lies, genera, and sections of genera, and sometimes are similarly 
characterised in such trifling points as mere superficial sculpture. 
Moreover, other forms, which aie not found in the Chalk of Europe 



298 Forms of Life cJtanging Chap. XL 



but which occur in the formations either above or below, occur in 
the same order at these distant points of the world. In the several 
successive palaeozoic formations of Eussia, Western Europe, and 
North America, a similar parallelism in the forms of life has been 
observed by several authors : so it is, according to Lyell, with the 
European and North American tertiary deposits. Even if the few 
fossil species which are common to the Old and New Worlds were 
kept wholly out of view, the general parallelism in the successive 
forms of life, in the palaeozoic and tertiary stages, would still be 
manifest, and the several formations could be easily correlated. 

These observations, however, relate to the marine inhabitants of 
the world : we have not sufficient data to judge whether the pro- 
ductions of the land and of fresh water at distant points change in 
the same parallel manner. We may doubt whether they have thus 
changed : if the Megatherium, Mylodon, Macrauchenia, and Toxo- 
don had been brought to Europe from La Plata, without any in- 
formation in regard to their geological position, no one would have 
suspected that they had co-existed with sea-shells all still living ; 
but as these anomalous monsters co-existed with the Mastodon and 
Horse, it might at least have been inferred that they had lived 
during one of the later tertiary stages. 

When the marine forms of life are spoken of as having changed 
simultaneously throughout the world, it must not be supposed that 
this expression relates to the same year, or to the same century, 
or even that it has a very strict geological sense ; for if all the 
marine animals now living in Europe, and all those that lived 
in Europe during the pleistocene period (a very remote period as 
measured by years, including the whole glacial epoch) were com- 
pared with those now existing in South America or in Australia, 
the most skilful naturalist would hardly be able to say whether 
the present or the pleistocene inhabitants of Europe resembled most 
closely those of the southern hemisphere. So, again, several highly 
competent observers maintain that the existing productions of the 
United States are more closely related to those which lived in 
Europe during certain late tertiary stages, than to the present 
inhabitants of Europe ; and if this be so, it is evident that fossili- 
ferous beds now deposited on the shores of North America would 
hereafter be liable to be classed with somewhat older European 
beds. Nevertheless, looking to a remotely future epoch, there can 
be little doubt that all the more modem marine formations, namely, 
the upper pliocene, the pleistocene and strictly modem beds, of 
Europe, North and South America, and Australia, from containing 
fossil remains in some degree allied, and from not including those 






Chap. XI. throughout the World, 299 

forms which are found only in the older underlying deposits, would 
be correctly ranked as simultaneous in a geological sense. 

The fact of the forms of life changing simultaneously, in the 
above large sense, at distant parts of the world, has greatly strock 
tho0e admirable observers, MM. de Vemeuil and d'Archiac. After 
referring to the parallehsm of the palaeozoic forms of life in various 
parts of Europe, they add, " If, struck by this strange sequence, we 
*' ttim our attention to North America, and there discover a series 
*' of anal(^ous phenomena, it will appear certain that all these modi- 
" fications of species, their extinction, and the introduction of new 
ones, cannot be owing to mere changes in marine currents or other 
causes more or less local and temporary, but depend on general 
laws which govern the whole animal kingdom." M. Barrande 
has made forcible remarks to precisely the same effect It is, indeed, 
quite futile to look to changes of currents, climate, or other physical 
conditions, as the cause of these great mutations in the forms of hfe 
throughout the world, under the most different climates. We must, 
as Barrande has remarked, look to some special law. We shall see 
this more clearly when we treat of the present distribution of organic 
beings, and find how slight is the relation between the physical 
conditions of various countries and the nature of their inhabitants. 

This great fact of the parallel succession of the forms of life 
throughout the world, is explicable on the theory of natural selec-. 
tion. New species are formed by having some advantage over^ 
older forms ; and the forms, which are already dominant, or have 
some advantage over the other forms in their own country, give 
birth to the greatest number of new varieties or incipient species. 
We have distinct evidence on this head, in the plants which are 
dominant, that is, which are commonest and most widely diffused, 
producing the grec^test number of new varieties. It is also natural 
that the dominant, varying, and far-spreading species, which have 
already invaded to a' certain extent the territories of other species, 
should be those which would have the best chance of spreading still 
further, and of giving rise in new countries to other new varieties 
and species. The process of diffusion would often be very slow, 
depending on climatal and geographical changes, on strange acci- 
dents, and on the gradual acclimatisation of new species to the 
various climates through which they might have to pass, but in 
the course of time the dominant forms would generally succeed in 
spreading and would ultimately prevail. The diffusion would, it is 
probable, be slower with the terrestrial inhabitants of distinct con- 
tinents than with the marine inhabitants of the continuous sea. 
We might therefore expect to find, as we do find, a less strict degree 



300 Forms of Life changing. Chap. xi. 

of parallelism in the succession of the productions of the land than 
with those of the sea. 

Thus, as it seems to me, the parallel, and, taken in a large sense, 
simultaneous, succession of the same forms of life throughout the 
world, accords well with the principle of new species having been 
formed by dominant species spreading widely and varying ; the new 
species thus produced being themselves dominant, owing to their 
having had some advantage over their already dominant parents, as 
well as over other species, and again spreading, varying, and pro- 
ducing new forms. The old forms which are beaten and which 
yield their places to the new and victorious forms, will generally be 
allied in groups, from inheriting some inferiority in common ; and 
therefore, as new and improved groups spread throughout the worlds 
old groups disappear from the world ; and the succession of forms 
everywhere tends to correspond both in their first appearance and 
final .disappearance. 

There is one other remark connected with this subject wortili 
making. I have given my reasons for believing that most of our 
great formations, rich in fossils, were deposited during periods of 
subsidence; and that blank intervals of vast duration, as far as 
fossils are concerned, occurred during the periods when the bed of 
the sea was either stationary or rising, and likewise when sediment 
was not thrown down quickly enough to embed and preserve organic 
remains. During these long and blank intervals I suppose thai the 
inhabitants of each region underwent a considerable amount of 
modification and extinction, and that there was much migration 
from other parts of the world. As we have reason to believe that 
large areas are affected by the same movement, it is probable that 
strictly contemporaneous formations have often been accumulaled 
over very wide spaces in the same quarter of the world ; but we fire 
very far from having any right to conclude that this has invariably 
been the case, and that large areas have invariably b«&n affected by 
the same movements. When two formations have been deposited 
in two regions during nearly, but not exactly, the same period, we 
should find in both, from the causes explained in the forgoing 
paragraphs, the same general succession in the forms of life ; but 
the species would not exactly correspond ; for there will have been 
a little more time in the one region than in the other for modifica- 
tion, extinction, and immigration. 

I suspect that cases of this nature occur in Europe. Mr. 
Prestwich, in his admirable Memoirs on the eocene deposits of 
England and France, is able to draw a close general parallelism 
between the successive stages in the two countries ; but when he 



CiiAp. XI. Affinities of Extinct species, 301 

compares certain stages in England with those in France, although 
he finds in both a curious accordance in the numbers of the species 
belonging to the same genera, yet the species themselves differ in 
a manner very diflBcult to account for considering the proximity 
of the two areas, — unless, indeed, it be assumed that an isthmus 
separated two seas inhabited by distinct, but contemporaneous, 
faunas. Lyell has made similar observations on some of the later ^ 
tertiary formations. Barrande, also, shows that there is a striking 
general parellelism in the successive Silurian deposits of Bohemia 
and Scandinavia; nevertheless be finds a surprising amount of 
difference in the species. If the several formations in these regions 
have not been deposited during the same exact periods, — ^a forma- 
tion in one region often corresponding with a blank interval in the 
other, — and if in both regions the species have gone on slowly 
changing during the accumulation of the several formations and 
during the long intervals of time between them ; in this case the 
several formations in the two regions could be arranged in the same 
order, in accordance with the general succession of the forms of life, 
and the order would falsely appear to be strictly parallel ; never- 
theless the species would not be all the same in the apparently 
corresponding stages in the two regions. 

On the Affinities of Extinct Sjoecies to each other, and to Livitig 

Forms, 

Let us now look to the mutual affinities of extinct and living 
species. All fall into a few grand classes ; and this fact is at once 
explained on the principle of descent. The more ancient any form 
is, the more, as a general rule, it differs from living foims. But, 
as Euckland long ago remarked, extinct species can all be classed 
either in still existing groups, or between them. That tlfe extinct 
forms of life help to fill up the intervals between existing genera, 
families, and orders, is certainly true ; but as this statement has 
often been ignored or even denied, it may be well to make some 
remarks on this subject, and to give' some instances. If we confine 
our attention either to the living or to the extinct species of the 
same class, the series is far less perfect than if we combine both into 
one general system. In the writings of Professor Owen we continually 
meet with the expression of generalised forms, as applied to extinct 
animals ; and in the writings of Agassiz, of prophetic or synthetic 
types ; and these terms imply that such forms are in fact inter- 
mediate or connecting links. Another distinguished palaeontologist. 
M. Gaudry, has shown in the most striking manner that many of 
the fossil mammals discovered by him in Attica serve to brtak 



302 Affinities of Extinct Species. Chap. XI. 

down die intervals between existing genera. Cuvier ranked the 
Kuminants and Pachyderms, as two of the most distinct orders of 
mammals ; but so many fossil links have been disentombed that 
Owen has had to alter the whole classification, and has placed 
certain pachyderms in the same sub-order with ruminants; for 
example, he dissolves by gradations the apparently wide interval 
between the pig and the camel. The Ungnlata or hoofed quad- 
rupeds are now divided into the even-toed or odd-toed divisions ; 
but the Macrauchenia of S. America connects to a certain extent 
these two grand divisions. No one will deny that the Hipparion is 
intermediate between the existing horse and certain older ungulate 
forms. What a wonderful connecting link in the chain of mammals 
is the Typotherium from S. America, as the name given to it by- 
Professor Gervais expresses, and which cannot be placed in any- 
existing order. The Sirenia form a very distinct group of mammals, 
and one of the most remarkable peculiarities in the existing dugong 
and lamentin is the entire absence of hind limbs, without even a 
rudiment being left ; but the extinct Halitherium had, according 
to Professor Flower, an ossified thigh-bone " articulated to a well- 
defined acetabulum in the pelvis,*' and it thus makes some approach 
to ordinary hoofed quadrupeds, to which the Sirenia are in other 
respects allied. The cetaceans or whales are widely different from 
all other mammals, but the tertiary Zeuglodon and SqualodoD, 
which have been placed by some naturalists in an order by them- 
selves, are considered by Professor Huxley to be undoubtedly ceta- 
ceans, "and to constitute connecting links with the aquatic car- 
nivora." 

Even the wide interval between birds and reptiles has been 
shown by the naturalist just quoted to be partially bridged over in 
the most unexpected manner, on the one hand, by the ostrich and 
extinct Archeopteryx, and on the other hand, by the Compso- 
gnathus, one of the Dinosaurians — that group which includes the 
most gigantic of all terrestrial reptiles. Turning to the Inverte- 
brata, Barrande asserts, and a higher authority could not be named, 
that he ia every day taught that, although palaeozoic animals can 
certainly be classed under existing groups, yet that at this ancient 
period the groups were not so distinctly separated from each other 
as they now are. 

Some writers have objected to any extinct species, or group of 
species, being considered as intermediate between any two living 
species, or groups of species. If by this term it is meant that 
an extinct form is directly intermediate in all its characters be- 
tween two living forms or groups, the objection is probably valid. 



Chap. XI. Affinities of Extinct Species. 303 

But in a natural classiiication many fossil species certainly stand 
between living species, and some extinct genera between living 
genera, even between genera belonging to distinct families. The 
most common case, especially with respect to very distinct groups, 
such as fish and reptiles, seems to be, that, supposing them to be 
distinguished at the present day by a score of characters, the ancient 
members are separated by a somewhat lesser number of characters ; 
so that the two groups formerly made a somewhat nearer approach 
to each other than they noy do. 

It is a common belief that the more ancient a form is, by so 
much the more it tends to connect by some of its characters groups 
' now widely separated from each other. This remark no doubt 
must be restricted to those groups which have undergone much 
change in the course of geological ages ; and it would be difficult 
to prove the truth of the proposition, for every now and then even 
a living animal, as the Lepidosiren, is discovered having affinities 
directed towards very distinct groups. Yet if we compare the 
older Beptiles and Batrachians, the older Fish, the older Cepha- 
lopods, and the eocene Mammals, with the more recent members 
ot the same classes, we must admit that there is truth in the 
remark. 

Let us see how far these several facts and inferences accord with 
the theory of descent with modification. As the subject is some- 
what complex, I must request the reader to turn to the diagram 
in the fourth chapter. We may suppose that the numbered letters 
in italics represent genera, and the dotted lines diverging from 
them the species in each genus. The diagram is much too simple, 
too few genera and too few species being given, but this is un- 
important for us. The horizontal lines may represent successive 
geological formations, and all the forms beneath the uppermost 
line may be considered as extinct. The three existing genera 
a", ^*,i>", will form a small family; 5" and/^* a closely allied 
family or sub-family; and 0", e", w^*, a third family. These 
three families, together with the many extinct genera on the 
several lines of descent diverging from the parent-form (A) wiY. 
form an order ; for all will have inherited something in common 
from their ancient progenitor. On the principle of the continued 
tendency to divergence of character, which was formerly illus- 
trated by this diagram, the more recent any form is, the more 
it will generally differ from its ancient progenitor. Hence we 
can understand the rule that the most ancient fossils differ most 
from existing forms. We must not, however, assume that diver- 
gence of character is a necessary contingency ; it depends solely 



304 Affinities of Extinct Species, Chap. xi. 

on the descendants from a species being thus enabled to seize on 
many and different places in the economy of nature. Therefore it 
is quite possible, as we have seen in the case of some Silurian fomas, 
that a species might go on being slightly modified in relation to 
its slightly altered conditions of life, and yet retain throughout a 
vast period the same general characteristics. This is represented 
in the diagram by the letter f". 

All the many forms, extinct and recent, descended from (A), 
make, as before remarked, one order;, and this order, from the 
continued effects of extinction and divei^ence of character, has 
become divided into several sub-families and families, some of 
which are supposed to have perished at difierent periods, and some 
to have endured to the present day. 

By looking at the diagram we can see that if many of the extinct 
forms supposed to be imbedded in the successive formations, were 
discovered at several points low down in the series, the three 
existing families on the uppermost line would be rendered less 
distinct from each other. If, for instance, the genera a^, o*, a*®, 
/*, w*, m*, m', were disinterred, these three families would be so 
closely linked together that they probably would have to be united 
into one great family, in nearly the same manner as has occurred 
with ruminants and certain pachyderms. Tet he who objected to 
consider as intermediate the extinct genera, which thus link together 
the living genera of three families, would be partly justified, for 
they are intermediate, not directly, but only by a long and cir- 
cuitous course through many widely different forms. If many 
extinct forms were to be discovered above one of the middle 
horizontal lines or geological formations — for instance, abo>v« 
No. VI. — ^but none from beneath this line, then only two of 
the families (those on the left hand, a^^ &c., and 6^^ &c.) would 
have to be united into one ; and there would remain two families, 
which would be less distinct from each other than they were 
before the discovery of the fossils. So again if the three families 
formed of eight genera (a** to w"), on the uppermost line, be 
supposed to differ from each other by half-a-dozen important 
characters, then the £BimilieB which existed at the period marked 
YI. would certainly have differed from each other by a less number 
of characters ; for they would at this early stage of descent have 
diverged in a less degree from their common progenitor. Thus it 
comes that ancient and extinct genera are often in a greater or less 
degree intermediate in character between their modified descendants, 
<»r between their collateral relations. 

Under nature the process will be far more complicated than is 



Ghap. XI. Affinities of Extinct "Species, 305 

represented in the diagram; for the groups will have been more 
numerous ; they will have endured for extremely unequal lengths 
of time, and will have been modified in various degrees. As we 
possess only the last volume of the geological record, and that in 
a very broken condition, we have no right to expect, except 
in rare cases, to fill up the wide intervals in the natural system, 
and thus to unite distinct families or orders, i^ll that we have 
a hght to esfpect is, that those groups which have, within known 
geological periods, undergone much modification, should in the 
older formations make some slight approach to each other ; so 
that the older members should differ less from each other in 
some of their characters than do the existing members of the 
same groups; and this by the concurrent evidence of our best 
palaeontologists is frequently the case. 

Thus, on the theory of descent with modification, the main facts 
with respect to the mutual affinities of the extinct forms of life 
to each other and to living forms, are explained in a satisfactory 
manner. And they are wholly inexplicable on any other view. 

On this same theory, it is evident that the fauna during any 
one great period in the earth*s history will be intermediate in 
general character between that which preceded and that which 
succeeded it. Thus the species which lived at the sixth great 
Btage of descent in the diagram are the modified offspring of those 
which lived at the fifth stage, and are the parents of those which 
became still more modified at the seventh stage ; hence they could 
hardly fail to be nearly intermediate in character between the forms 
of life above and below. We must, however, allow for the entire 
extinction of some preceding forms, and in any one region for the 
immigration of new forms from other regions, and for a large 
amount of modification during the long and blank intervals between 
the successive formations. Subject to these allowances, the fauna 
of each geological period undoubtedly is intermediate in character, 
between the preceding and succeeding faunas. I need give only 
one instance, namely, the maimer in which the fossils of tho 
Devonian system, when this system was first discovered, were at 
once recognised by palaeontologists as intermediate in character 
between those of the overlying carboniferous, and underlying 
Silurian systems. But each fauna is not necessarily exactly inter- 
mediate, as unequal intervals of time have elapsed between con- 
secutive formations. 

It is no real objection to the truth of the statement that the 
fauna of each period as a whole is nearly intermediate in character 
between the preceding and succeeding faunas, that certain genert. 

X 



3o6 Affinities of Extiitct Species, Chap. XT. 

oflfer exceptions to the rule. For instance, the species of mastodons 
and elephants, when arranged by Dr. Falconer in two series, — in 
the first place according to their mutual affinities, and in the second 
place according to their periods of existence, — dp not accord in 
arrangement. The species extreme in character are not the oldest 
or the most recent ; nor are those which are intermediate in cha- 
racter, intermediate in age. But supposing for an instant, in this 
and other such cases, that the record of the first appearance and 
disappearance of the species was complete, which is far from the 
case, we have no reason to believe that forms successively produced 
necessarily endure for corresponding lengths of time. A very 
ancient form may occasionally have lasted much longer than a form 
elsewhere subsequently produced, especially in the case of terres- 
trial productions inhabiting separated districts. To compare small 
things with great ; if the principal living and extinct races of the 
domestic pigeon were arranged in serial affinity, this arrangement 
would not closely accord with the order in time of their production, 
and even less with the order of their disappearance ; for the parent 
rock-pigeon still lives ; and many varieties between the rock-pigeon 
and the carrier have become extinct; and carriers which are 
extreme in the important character of length of beak originated 
earlier than short-beaked tumblers, which are at the opposite end 
of the series in this respect. 

Closely connected with the statement, that the organic remains 
from an intermediate formation are in some degree intermediate 
in character, is the fact, insisted on by all palaeontologists, that 
fossils from two consecutive formations are far more closely related 
to each other, than are the fossils from two remote formations. 
Pictet gives as a well-known instance, the general resemblance of 
the organic remains from the several stages of the Chalk forma- 
tion, though the species are distinct in each stage. This fact alone, 
from its generality, seems to have shaken Professor Pictet in 
his belief in the immutability of species. He who is acquainted 
with the distribution of existing species over the globe, will not 
attempt to account for the close resemblance of distinct species in 
closely consecutive formations, by the physical conditions of the 
ancient areas having remained nearly the same. Let it be remem- 
bered that the forms of life, at least those inhabiting the sea, have 
changed almost simultaneously throughout the world, and there- 
fore under the most different climates and conditions. Consider 
the prodigious vicissitudes of climate during the pleistocene period; 
which includes the whole glacial epoch, and note how little the 
specific forms of the inhabitants of the sea }|ave been affected. 



Chap. XL State of Development. 307 

On the theory of descent, the full meaning of the fossil remains 
from closely consecutive formations heing closely related, though 
ranked as distinct species, is ohvious. As the accumulation of each 
formation has often been interrupted, and as long blank intervals 
have intervened between successive formations, we ought not to 
expect to find, as I attempted to show in the last chapter, in any 
one or in any two formations, all the intermediate varieties between 
tbe species which appeared at the commencement and close of these 
periods : but we ought to find after intervals, very long as measured 
by years, but only moderately long as measured geologically, 
closely allied forms, or, as they have been called by some authors, 
representative species ; and these assuredly we do find. We find, 
in short, such evidence of the slow and scarcely sensible mutations 
of specific forms, as we have the right to expect. 

On the State of Development of Ancient compared with Living 

Forms. 

We have seen in the fourth chapter that the degree of differentia- 
tion and specialisation of the parts in organic beings, when arrived 
at maturity, is the best standard, as yet suggested, of their degree 
of x)erfection or highness. We have also seen that, as the speciali- 
sation of parts is an advantage to each being, so natural selection 
will tend to render the organisation of each being more specialised 
and perfect, and in this sense higher ; not but that it may leave 
many creatures with simple and unimproved structures fitted for 
simple conditions of life, and in some cases will even degrade or 
simplify the organisation, yet leaving such degraded beings better 
fitted for their new walks of life. In another and more general 
manner, new species become superior to their predecessors ; for they 
have to beat in the struggle for life all the older forms, with which 
they come into close competition. We may therefore conclude 
that if under a nearly similar climate the eocene inhabitants of the 
world could be put into competition with the existing inhabitants, 
the former would be beaten and exterminated by the latter, as 
would the secondary by the eocene, and the palaeozoic by the 
secondary forms. So that by this fundamental test of victory in 
the battle for life, as well as by the standard of the specialisation of 
organs, modern forms ought, on the theory of natural selection, to 
stand higher than ancient forms. Is this the case? A large 
majority of palaeontologists would answer in the affirmative ; and it 
seems that this answer must be admitted as true, though difficult of 

proof. 
It is no valid objection to this conclusion, that certain Brachiopods 

x2 






3o8 State of Developme^tt of Chap. XI. 

liavii been but slightly modified from an extremely remote geological 
epoch ; and that certain land and fresh-water shells have remained 
nearly the same, from the time when, as far as is known, they first 
appeared. It is not an insuperable difficulty that Foraminifera have 
not, as insisted on by Dr. Carpenter, progressed in organisation since 
even the Laurentian epoch ; for some organisms would have to 
remain fitted for simple conditions of life, and what could be better 
fitted for this end than these lowly organised Protozoa? Such 
objections as the above would be fatal to my view, if it included 
advance in organisation as a necessary contingent. They would 
likewise be fatal, if the above Foraminifera, for instance, could be 
pioved to have first come into existence during the Laurentian 
epoch, or ihe above Brachiopods during the Cambrian formation ; for 
in this case) there would not have been time sufficient for the 
development of these organisms up to the standard which they 
had then reached. When advanced up to any given point, there is 
no necessity, on the theory of natural selection, for their further 
continued progress ; though they will, during each successive age, 
have to be slightly modified, so as to hold their places in relation to 
slight changes in their conditions. The foregoing objections hinge 
on the question whether we really know how old the world is, and 
at what period the various forms of life first appeared; and this 
may well be disputed. 

The problem whether organisation on the whole has advanced is 
in many ways excessively intricate. The geological record, at all 
times imperfect, does not extend far enough back, to show with 
unmistakeable clearness that within the known history of the world 
organisation has largely advanced. Even at the present day, looking 
to members of the same class, naturalists are not unanimous which 
forms ought to be ranked as highest: thus, some look at the 
selaceans or sharks, from their approach in some important points 
of structure to reptiles, as the highest fish ; others look at the 
teleosteans as the hiig^hest. The ganoids stand intermediate between 
the selaceans and telfosteans ; the latter at the present day are 
largely preponderant in number ; but "formerly selaceans and 
ganoids alone existed ; and in this case, according to the standard 
of highness chosen, so will it be said that fishes have advanced or 
retrograded in organisation. To attempt to compare members of 
distinct types in the scale of highness seems hopeless; who will 
decide whether a cuttle-fish be higher than a bee — that insect which 
the great Von Baer believed to be " in fact more highly organised 
til an a fish, although upon another type " ? In the complex struggle 
for life it is quite credible that- crustaceans, not very high in their 



Chap. XI. Ancient and Living Forms. 309 

own class, might beat cephalopods, the highest molluscs ; and sach 
crustaceans, though not highly deyeloped, would stand very high in 
the scale of invertebrate animals, if judged by the most decisire of 
all trials — the law of battle. Besides these inherent difficulties in de- 
ciding which forms are the most advanced in organisation, we ought 
not solely to compare the highest members of a class at any two 
periods — though undoubtedly this is one and perhaps the most 
important element in striking a balance — ^but we ought to compare 
all the members, high and low, at the two periods. At an ancient 
epoch the highest and lowest moUuscoidal animals, namely, cephalo- 
pods and brachiopods, swarmed in numbers ; at the present time both 
groups are greatly reduced, whilst others, intermediate in organisation, 
have largely increased; consequently some naturalists maintain 
that molluscs were formerly more highly developed than at present ; 
but a stronger case can be made out on the opposite side, by cob- 
sidering the vast reduction of brachiopods, and the fact that our 
existing cephalopods, though few in number, are more highly orga- 
nised than their ancient representatives. We ought also to compare 
the relative proportional numbers at any two periods of the high and 
low classes throughout the world : if, for instance, at the present 
day fifty thousand kinds of vertebrate animals exist, and if we knew 
that at some former period only ten thousand kinds existed, we 
ought to look at this increase in number in the highest class, which 
implies a great displacement of lower forms, as a decided advance 
in the organisation of the world. We thus see how hopelessly 
difficult it is to compare with perfect fairness, under such extremely 
complex relations, the standard of organisation of the imperfectly- 
known faunas of successive periods. 

We shall appreciate this difficulty more clearly, by looking to 
certain existing faunas and floras. From the extraordinary manner 
in which European productions have recently spread over Kew 
Zealand, and have seized on places which must have been previously 
occupied by the indigenes, we must believe, that if all the animals 
and plants of Great Britain were set free in New Zealand, a multi- 
tude of British forms would in the course of time become thoroughly 
naturalised' there, and would exterminate many of the natives. On 
the other hand, from the fact that hardly a single inhabitant of the 
southern hemisphere has become wild in any part of Europe, we 
may well doubt whether, if all the productions of New Zealand wero 
set free in Great Britain, any considerable number would be enabled 
to seize on places now occupied by our native plants and animals. 
Under this point of view, the productions of Great Britain stand 
much higher in the scale than those of New Zealand. Yet the 



3IO Succession of the Chap. XL 

most skilful naturalist, from an examination of the species of the 
two countries, could not have foreseen this result. 

Agassiz and several other highly competent judges insist that 
ancient animals resemble to a certain extent the embryos of recent 
animals belonging to the same classes ; and that the geological suc- 
cession of extinct forms is nearly parallel with the embryological 
development of existing forms. This view accords admirably well 
with our theory. In a future chapter I shall attempt to show that 
the adult differs from its embryo, owing to variations having 
supervened at a not early age, and having been inherited at a 
corresponding age. This process, whilst it leaves the embryo 
almost unaltered, continually adds, in the course of successive 
generations, more and more difference to the adult. Thus the 
embryo comes to be left as a sort of picture, preserved by nature, of 
the former and less modified condition of the species. This view 
may be true, and yet may never be capable of proof. Seeing, for 
instance, that the oldest known mammals, reptiles, and fishes 
strictly belong to their proper classes, though some of these old 
forms are in a slight degree less distinct from each other than are 
the typical members of the same groups at the present day, it 
would be vain to look for animals having the common embryological 
character of the Vertebrata, until beds rich in fossils are discovered 
far beneath the lowest Cambrian strata — ^a discovery of which the 
chance is small. 

On the Succession of tJie same Types within the same Areas, 
during the later Tertiary periods, 

Mr. Glift many years ago showed that the fossil mammals from 
the Australian caves were closely allied to the living marsupials 
of that continent. In South America, a similar relationship is 
manifest, even to an uneducated eye, in the gigantic pieces of 
armour, like those of the armadillo, found in several parts of La 
Plata ; and Professor Owen has shown in the most striking manner 
that most of the fossil mammals, buried there in such numbers, are 
related to South American types. This relationship is even more 
clearly seen in the wonderful collection of fossil bones made by MM. 
Lund and Clausen in the caves of BraziL I was so much impressed 
with these facts that I strongly insisted, in 1839 and 1845, on this 
" law of the succession of types," — on " this wonderful relationship 
in the same continent between the dead and the living.*' Professor 
Owen has subsequently extended the same generalisation to the 
mammals of the Old World. We see the same law in this author's 
restorations of the extinct and gigantic birds of New Zealand. We 



Chap. XL same Types in the same A reas, 3 1 1 

see it also in the birds of the caves of BraziL Mr. Woodward has 
shown that the same law holds good with sea-shells, hut, from the 
wide distribution of most molluscs, it is not well displayed by 
them. Other cases could be added, as the relation between the 
extinct and living land-shells of Madeira ; and between the extinct 
and living brackish water-shells of the Aralo-Caspian Sea. 

Kow what does this remarkable law of the succession of the 
same types within the same areas mean ? He would be a bold man 
who, after comparing the present climate of Australia and of parts of 
South America, under the same latitude, would attempt to account, 
on the one hand through dissimilar physical conditions, for the 
dissimilarity of the inhabitants of these two continents ; and, on the 
other hand through similarity of conditions, for the uniformity of 
, the same types in each continent during the later tertiary periods. 
Nor can it be pretended that it is an immutable law that marsupials 
should have been chiefly or solely produced in Australia ; or that 
Edentata and other American types should have been solely produced 
in South America. For we know that Europe in ancient times was 
peopled by numerous marsupials ; and I have shown in the publi- 
cations above alluded to, that in America the law of distribution of 
terrestrial mammals was formerly different from what it now is. 
North America formerly partook strongly of the present character 
of the southern half of the continent ; and the southern half was 
formerly more closely allied, than it is at present, to the northern 
half. In a similar manner we know, from Falconer and Gautley's 
discoveries, that Northern India was formerly more closely related in 
its mammals to Africa than it is at the present time. Analogous facts 
could be given in relation to the distribution of marine animals. 

On the theory of descent with modification, the great law of the 
long enduring, but not immutable, succession of the same types 
within the same qreas, is at once explained ; for the inhabitants 
of each quarter of the world will obviously tend to leave in that 
quarter, during the next succeeding period of time, closely allied 
though in some degree modified descendants. If the inhabitants 
of one continent formerly differed greatly from those of another 
continent, so will their modified descendants still differ in nearly 
the same manner and degree. But after very long intervals of 
time, and after great geographical changes, permitting much inter- 
migration, the feebler will yield to the more dominant forms, and 
there will be nothing immutable in the distribution of organic 
beings. 

It may be asked in ridicule, whether I suppose that the megathe- 
rium and other allied huge monsters, which formerly lived in 



312 . Summary of tlie Chap. X U 

South America, have left behind them the sloth, armadillo, and 
anteater, as their degenerate descendants. This cannot for an 
instant be admitted. These huge animals have become wholly 
extinct, and have left no progeny. But in the caves of Brazil, 
there are many extinct species which are closely allied in size send 
in all other characters to the species still living in South America ; 
and some of these fossils may have been the actual progenitors of 
the living species. It must not be forgotten that, on our theory^ 
all the species of the same genus are the descendants of some one 
species ; so that, if six genera, each having eight species, be found in 
one geological formation, and in a succeeding formation there be six 
other allied or representative genera each with the same number of 
species, then we may conclude that generally only one species of each 
of the older genera has left modified descendants, which constitute 
the new genera containing the several species; the other seven 
species of each old genus having died out and left no progeny. Or, 
and this will be a far commoner case, two or three species in two 
or thtee alone of the six older genera will be the parents of the new 
genera : the other species and the other whole genera having become 
utterly extinct In failing orders, with the genera and species 
decreasing in numbers as is the case with the Edentata of South 
America, still fewer genera and species will leave modified blood- 
descendants. 

Summary of the preceding and present Chapters. 

I have attempted to show that the geological record is extremely 
imperfect ; that only a small portion of the globe has been geo- 
logically explored with care ; that only certain classes of organic 
beings have been largely preserved in a fossil state ; that the 
number both of specimens and of species, preserved in our museums, 
is absolutely as nothing compared with the number of generations 
which must have passed away even during a single formation ; that, 
owing to subsidence being almost necessary for the accumulation 
of deposits rich in fossil species of many kinds, and thick enough to 
outlast future degradation, great intervals of time must have elapsed 
between most of our successive formations ; that there has probably 
been more extinction during the periods of subsidence, and moro 
variation during the periods of elevation, and during the latter the 
record will have been least perfectly kept ; that each single forma- 
tion has not been continuously deposited ; that the duration of 
each formation is, probably, short compared with the average dura- 
tion of specific forms ; that migration has played an important part 
in the first appearance of new forms in any one area and fonnation ; 



Chap. XI. preceding and present Chapters. ' 313 

that widely ranging species are those which have varied most fre- 
quently, and have oftenest given rise to new species ; that varieties 
have at first heen local ; and lastly, although each species must 
have passed through numerous transitional stages, it is prohahle 
that the periods, during which each underwent modification, though 
many and long as measured hy years, have heen short in com- 
parison with the periods during which each remained in an un- 
changed condition. These causes, taken conjointly, will to a large 
extent explain why — though we do find many Unks — we do not 
find interminahle varieties, connecting together all extinct and 
existing forms hy the finest graduated steps. It should also be 
constantly borne in mind that any linking variety between two 
forms, which might be found, would be ranked, unless the whole 
chain could be perfectly restored, as a new and distinct species ; 
for it is Dot pretended that we have any sure criterion by which 
species and varieties can be discriminated. 

He who rejects this view of the imperfection of the geological 
record, will rightly reject the whole theory. For he may ask* in 
vain where are the numberless transitional links which must 
formerly have connected the closely allied or representative species, 
found in the successive stages of the same great formation ? He 
may disbelieve in the immense intervals of time which must have 
elapsed between our consecutive formations ; he may overlook how 
important a part migration has played, when the formations of any 
one great region, as those of Europe, are considered ; he may utoq 
the apparent, but often falsely apparent, sudden coming in of whole 
groups of species. He may ask where are the remains of those 
infinitely numerous organisms which must have existed long before 
the Cambrian system was deposited ? We now know that at least 
one animal did then exist; but I can answer this last question 
only by supposing that where our oceans now extend they have 
extended for an enormous period, and where our oscillating con- 
tinents now stand they have stood since the commencement of the 
Cambrian system ; but that, long before that epoch, the world pre- 
sented a widely different aspect ; and that the older continents, 
formed of formations older than any known to us, exist now only 
as remnants in a metamorphosed condition, or lie still buried imder 
the ocean. 

Passing from these difficulties, the other "great leading facts in 
palaeontology agree admirably with the theory of descent with 
modification through variation and natural selection. We can thus 
understand how it is that new species come in slowly and succes- 
sively ; how species of different classes do not necessarily change 



314 Summary of the Chap. XI. 

• 

together, or at the same rate, or in the same degree ; yet in the 
long ran that all midergo modification to some extent. The ex- 
tinction of old forms is the almost inevitable consequence of the 
production of new forms. We can understand why when a specie& 
has once disappeared it never reappears. Groups of species increase 
in numbers slowly, and endure for unequal periods of time ; for the 
process of modification is necessarily slow, and depends on many 
complex contingencies. The dominant species belonging to large 
and dominant groups tend to leave many modified descendants, 
which form new sub-groups and groups. As these are formed, the 
species of the less vigorous groups, from their inferiority inherited 
from a common progenitor, tend to become extinct together, and 
to leave no modified offspring on the face of the earth. But the 
utter extinction of a whole group of species has soihetimes been 
a slow process, from the survival of a few desceniants, lingering 
in protected and isolated situations. When a group has once wholly 
disappeared, it does not reappear ; for the link of generation has 
been broken. 

We can imderstand how it is that dominant forms which spread 
widely and yield the greatest number of varieties tend to people the 
world with allied, but modified, descendants ; and these will gene- 
rally succeed in displacing the groups which are their inferiors in 
the struggle for existence. Hence, after long intervals of time, the 
productions of the world appear to have changed simultaneously. 

We can understand how it is that all the forms of life, ancient 
and recent, make together a few grand classes. We can under- 
stand, from the continued tendency to divergence of character, why 
the more ancient a form is, the more it generally differs from those 
now living ; why ancient and extinct forms often tend to fill up 
gaps between existing forms, sometimes blending two groups, pre- 
viously classed as distinct, into one ; but more commonly bringing 
them only a little closer together. The more ancient a form is, the 
more often it stands in some degree intermediate between groups 
now distinct ; for the more ancient a form is, the more nearly it 
will be related to, and consequently resemble, the common pro- 
genitor of groups, since become widely divergent. Extinct forms 
are seldom directly intermediate between existing forms ; but are 
intermediate only by a long and circuitous course through other 
extinct and different forms. We can clearly see wliy the organic 
remains of closely consecutive formations are closely allied ; for 
they are closely linked together by generation. We can clearly see 
why the remains of an intermediate formation are intermediate in 
character. 



Chap. XL preceding and present Cfiapters, 3 1 5 

The inhabitants of the world at each successive period in its 
history have beaten their predecessors in the race for life, and 
are, in so far, higher in the scale, and their structure has gene- 
rally become more specialised ; and this may account for the com- 
mon belief held by so many palaeontologists, that organisation on 
the whole has progressed. Extinct and ancient animals resemble 
to a certain extent the embryos of the more recent animals belong- 
ing to the same classes, and this wonderful fact receives a simple 
explanation according to our views. The succession of the same 
types of structure within the same areas during the later geological 
periods ceases to be mysterious, and is intelligible on the principle 
of inheritance. 

If then the geological record be as imperfect as many believe, and 
it may at least be asserted that the record cannot be proved to be 
much more perfect, the main objections to the theory of natural 
selection are greatly diminished or disappear. On the other hand, 
all the chief laws of palaBontology plainly proclaim, as it seems to 
me, that species have been produced by ordinary generation : old 
forms having been supplanted by new and improved forms of life, 
the products of Variation and the Survival of the Fittest. 



3i6 Geographical Distribution. Chap. xii. 



CHAPTEK XII. 

Geographical Distribution. 

Present distribution cannot be accounted for hj differences in physical 
conditions — Importance of barriers — Affinity of the productions of the 
same continent — Centres of creation — Means of dispersal by changes 
of climate and of the level of the land, and by occasional means — 
Dispersal during the Glacial period — Alternate Glacial periods in the 
North and South. 

In considering the distribution of organic beings over the face of 
the globe, the first great fact which strikes us is, that neither the 
similarity nor the dissimilarity of the inhabitants of yarious regions 
can be wholly accounted for by climatal and other physical con- 
ditions. Of late, almost every author who has studied the subject 
has come to this conclusion. The case of America alone would 
almost sufQce to prove its truth: for if we exclude the arctic 
and northern temperate parts, all authors agree that one of the 
most fundamental divisions in geographical distribution is that 
between the New and Old Worlds; yet if we travel over the 
vast American continent, from the central parts of the United 
States to its extreme southern point, we meet with the most 
diversified conditions; humid districts, arid deserts, lofty moun- 
tains, grassy plains, forests, marshes, lakes, and great rivers, under 
almost every temperature. There is hardly a climate or condition 
in the Old World which cannot be paralleled in the New — at 
least as closely as the same species generally require. No doubt 
small areas can be pointed out in the Old World hotter than any id- 
the New World, but these are not inhabited by a fauna different 
from that of the surrounding districts ; for it is rare to find a group 
of organisms confined to a small area, of which the conditions are 
peculiar in only a slight degree. Notwithstanding this general 
parallelism in the conditions of the Old and New Worlds, ho\T 
widely different are their living productions I 

In the southern hemisphere, if we compare large tracts of land in 
Australia, South Africa, and western South America, between lati- 
tudes 25° and 35°, we shall find parts extremely similar in all their 



Chap. XII. Geographical Distribution. 317 

conditions, yet it would not be possible to point out three faunas 
and floras more utterly dissimilar. Or, again, we may compare the 
productions of South America south of lat. 35° with those north of 
25°, which consequently are separated by a space of ten degrees 
of latitude and are exposed to considerably different conditions, yet 
they are incomparably more closely related to each other than they 
are to the productions of Australia or Africa under nearly the same 
climate. Analogous facts could be given with respect to the inha- 
bitants of the sea. 

A second great fiekit which strikes us in our general review is, 
that barriers of any kind, or obstacles to free migration, are related 
in a close and important manner to the differences between the 
productions of various regions. We see this in the great difference 
in nearly all the terrestrial productions of the New and Old Worlds, 
excepting in the northern parts, where the land almost joins, and 
where, under a slightly different tlimate, there might have been 
free migration for the northern temperate forms, as-there now is for 
the strictly arctic productions. We see the same fact in the great 
difference between the inhabitants of Australia, Africa, and South 
America under the same latitude ; for these countries are almost as 
much isolated from each other as is possible. On each continent, 
also, we see the same fact ; for on the opposite sides of lofty and 
continuous mountain-ranges, of great deserts, and even of large 
rivers, we find different productions; though as mountain-chains, 
deserts, &c., are not as impassable, or likely to have endured so 
long, as the oceans separating continents, the differences are very 
inferior in degree to those characteristic of distinct continents. 

Turning to the sea, we find the same law. The marine inha- 
bitants of the eastern and western shores of South America are 
very distinct, with extremely few shells, Crustacea or echinoder- 
mata in common ; but Dr. Giinther has recently shown that about 
thirty per cent, of the fishes are the same on the opposite sides 
of the isthmus of Panama; and this fact has led naturalists to 
Relieve that the isthmus was formerly open. Westward of the 
shores of America, a wide space of open ocean extends, with not 
an island as a halting-place for emigrants ; here we have a barrier 
of another kind, and as soon as this is passed we meet in the eastern 
islands of the Pacific with another and totally distinct fauna. So 
that three marine faunas range far northward and southward in 
parallel lines not far from each other, under corresponding climates ; 
but from being separated from each other by impassable barriers, 
either of land or open sea, they are almost wholly distinct. On the 
other hand, proceeding still farther westward from the eastern 



3 1 8 Geographical Distribution. Chap. xri. 

islands of the tropical parts of the Pacific, we encounter no im- 
passable barriers, and we have innumerable islands as halting- 
places, or continuous coasts, until, after travelling over a hemisphere, 
we come to the shores of Africa ; and over this vast space we meet 
with no well-defined and distinct marine faunas. Although so few 
marine animals are common to the above-named three approximate 
faunas of Eastern and Western America and the eastern Pacific 
islands, yet many fishes range from the Pacific into the Indian 
Ocean, and many shells are common to the eastern islands of the 
Pacific and the eastern shores of Africa on almost exactly opposite 
meridians of longitude. 

A third great fact, partly included in the foregoing statement^ is 
the affinity of the productions of the same continent or of the same 
sea, though the species themselves are distinct at different points 
and stations. It is a law of the widest generality, and every con- 
tinent offers innumerable instances. Nevertheless the naturalist, in 
travelling, for instance, fro^l north to south, never fails to be struck 
by the manner in which successive groups of beings, specifically 
distinct, though nearly related, replace each other. He hears from 
closely allied, yet distinct kinds of birds, notes nearly similar, and 
sees their nests similarly constructed, but not quite alike, with eggs 
coloured in nearly the same manner. The plains near the Straits of 
Magellan are inhabited by one species of Bhea (American ostrich), 
and northward the plains of La Plata by another species of the same 
genus; and not by a true ostrich or emu, like those inhabiting 
Africa and Australia under the same latitude. On these same plains 
of La Plata, we see the agouti and bizcacha, animals having nearly 
the same habits as our hares and rabbits and belonging to the same 
order of Rodents, but they plainly display an American type of 
structure. We ascend the lofty peaks of the Cordillera, and we find 
an alpine species of bizcacha ; we look to the waters, and we do not 
find the beaver or musk-rat, but the coypu and capybara, rodents 
of the S. American type. Innumerable other instances could be 
given. If we look to the islands off the American shore, however 
much they may differ in geological structure, the inhabitants are 
essentially American, though they may be all peculiar species. We 
may look back to past ages, as shown in the last chapter, and we 
find American t^^pes then prevailing on the American continent and 
in the American seas. We see in these facts some deep organic 
bond, throughout space and time, over the same areas of land and 
water, independently of physical conditions. The naturalist must 
be dull, who is not led to inquire what this bond is. 

The bond is simply inheritance, that cause which alone, as far as 



Chap. XII. Geographical Distribution, 319 

we positively know, produces organisms quite like each other, or, 
as we see in the case of varieties, nearly alike, llie dissimilarity of 
the inhabitants of different regions may be attributed to modification 
through variation and natural selection, and probably in a sub- 
ordinate degree to the definite infiuence of diflerent physical con- 
ditions. The degrees of dissimilarity will depend on the migration 
of the more dominant forms of life from one region into another 
having been more or less effectually prevented, at periods more or 
less remote ; — on the nature and number of the former immigrants ; 
— and on the action of the inhabitants on each other in leading to 
the preservation of different modifications ; the relation of organism 
to organism in the struggle for life being, as I have already often 
remarked, the most important of all relations.' Thus the high im- 
portance of barriers comes into play by checking migration ; as does 
time for the slow process of modification through natural selection. 
Widely-ranging species, abounding in individuals, which have already 
triumphed over many competitors in their own widely-extended 
homes, will have the best chance of seizing on new places, when they 
spread into new countries. In their new homes they will be ex- 
posed to new conditions, and will frequently undergo further modi- 
fication and improvement ; and thus they will become still further 
victorious, and will produce groups of modified descendants. On this 
principle of inheritance with modification, we can understand how it 
is that sections of genera, whole genera, and even families, are con- 
fined to the same areas, as is so commonly and notoriously the case. 

There is no evidence, as was remarked in the last chapter, of the 
existence of any law of necessary development. As the variability 
of each species is an independent property, and will be taken advan- 
tage of by natural selection, only so far as it profits each individual 
in its complex struggle for life, so the amount of modification in 
different species will be no uniform quantity. If a number of species, 
after having long competed with each other in their old home, were 
to migrate in a body into a new and afterwards isolated country, 
they would be little liable to modification ; for neither migration 
nor isolation in themselves effect anything. These principles come 
into play only by bringing organisms into new relations with each 
other, and in a lesser degree with the surrounding physical conditions. 
As we have seen in the last chapter that some forms have retained 
neariy the same character from an enormously remote geological 
period, so certain species have migrated over vast spaces, and have 
not become greatly or at all modified. 

According to these views, it is obvious that the several species of 
the same genus, though inhabiting the most distant quarters of the 



320 Geographical Distrihitiofu Chap. XII. 

world, must originally have proceeded from the same source, as they 
are descended from the same progenitor. In the case of those 
species, which have undergone during whole geological periods little 
modification, there is not much difficulty in believing that they have 
migrated from the same region ; for during the vast geographical 
and climatal changes which have supervened since ancient times, 
almost any amount of migration is possible. But in many other 
cases, in which we have reason to believe that the species of a genns 
have been produced within comparatively recent times, there is 
great difficulty on this head. It is also obvious that the individuals 
of the same species, though now inhabiting distant and isolated 
regions, must have proceeded from one spot, where their parents 
were first produced : for, as has been explained, it is incredible that 
individuals identically the same should have been produced from 
parents specifically distinct. 

Single Centres of supposed Creation, — ^We are thus brought to 
the question which has been largely discussed by naturalists, namely, 
whether species have been created at one or more points of the 
earth's surface. Undoubtedly there are many cases of extreme 
difficulty in understanding how the same species could possibly 
have migrated from some one point to the several distant and isolated 
points, where now found. Nevertheless the simplicity of the view 
that each species was first produced within a single region captivates 
the mind. He who rejects it, rejects the vera causa of ordinary 
generation with subsequent migration, and calls in the agency of a 
miracle. It is universally admitted, that in most cases the area 
inhabited by a species is continuous; and that when a plant or 
animal inhabits two points so distant from each other, or with an 
interval of such a nature, that the space could not have been easily 
passed over by migration, the fact is given as something remarkable 
and exceptional. The incapacity of migrating across a wide sea is 
more clear in the case of terrestrial mammals than perhaps with any 
other organic beings; and, accordingly, we find no inexplicable 
instances of the same mammals inhabiting distant points of the 
world. No geologist feels any difficulty in Great Briton possessing 
the same quadrupeds with the rest of Europe, for they were no 
doubt once united. But if the same species can be produced at two 
separate points, why do we not find a single mammal common to 
Europe and Australia or South America? The conditions of life 
are nearly the same, so that a multitude of Euroj)ean animals and 
})lants have become naturalised in America and Australia ; and soioe 
of the aboriginal plants are identically the same at these distant 
l)oiiits of the northern and southern hemispheres? The answer, as 



Chap. XII. ' Geographical Distribution. 321 

I believe, is, that mammals have not been able to migrate, whereas 
some plants, from their varied means of dispersal, have migrated 
across the wide and broken interspaces. The great and striking 
influence of barriers of aU kinds, is intelligible only on the view 
that the great majority of species have been produced on one side, 
and have not been able to migrate to the opposite side. Some few 
families, many sub-families, very many genera, and a still greater 
number of sections of genera, are confined to a single region ; and 
it has been observed by several naturalists, that the most natural 
genera, or those genera in which the species ore most closely related 
to each other, are generally confined to the same country, or if they 
have a vTide range that their range is continuous. What a strange 
anomaly it would be, if a directly opposite rule were to prevail, 
when we go down one step lower in the series, namely, to the 
individuals of the same species, and these had not been, at least at 
first, confined to some one region ! 

Hence it seems to me, as it has to many other naturalists, that 
the view of each species having been produced in one area alone, 
and having subsequently migrated from that area as far as its 
powers of migration and subsistence under past and present con- 
ditions permitted, is the most probable. Undoubtedly many cases 
occur, in which we cannot explain how the same species could have 
passed from one point to the other. But the geographical and 
climatal changes, which have certainly occurred within recent 
geological times, must have rendered discontinuous the formerly 
continuous range of many species. So that we are reduced to con- 
sider whether the exceptions to continuity of rs^ge are so numerous 
and of so grave a nature, that we ought to give up the belief, 
rendered probable by general considerations, that each species has 
been produced within one area, and has migrated thence as far as it 
could. It would be hopelessly tedious to discuss all the exceptional 
cases of the same species, now living at distant and separated points, 
nor do I for a moment pretend that any explanation could be offered 
of many instances. But, after some preliminary remarks, I will 
discuss a few of the most striking classes of facts; namely, the 
existence of the same species on the summits of distant mountain- 
ranges, and at distant points in the arctic and antarctic regions ; and 
secondly (in the following chapter), the wide distribution of fresh- 
water productions ; and thirdly, the occurrence of the same terrestrial 
species on islands and on the nearest mainland, though separated by 
hundreds of miles of open sea. If the existence of the same species 
at distant and isolated points of the earth's surface, can in many 
instances be explained on the view of each species having migrated 

y 



322 Single Centres of Creation. Chap. Xll. ^^ 

from a single birthplace ; then, considering our ignorance with re- 
spect to former climatal and geographical changes and to the various 
occasional means of transport, the belief that a single birthplace is 
the law, seems to me incomparably the safest. 

In discussing this subject, we shall be enabled at the same time 
to consider a point equally important for us, namely, whether the 
several species of a genus, which must on our theory all be descended 
from a common progenitor, can have migrated, undergoing modi- 
fication during their migration, from some one area. If^ when most 
of the species inhabiting one r^ion are different from those of 
another region, though closely allied to them, it can be shown that 
migration from the one region to the other has probably occurred 
at some former period, our general view will be much strengthened ; 
for the explanation is obvious on the principle of descent with modi- 
fication. A volcanic island, for instance, upheaved and formed at 
the distance of a few hundreds of miles from a continent, would 
probably receive from it in the course of time a few colonists, 
and their descendants, though modified, would still be related by 
inheritance to the inhabitants of that continent. Gases of this 
nature are common, and are, as we shall hereafter see, inexplicable 
on the theory of independent creation. This view of the relation of 
the species of one region to those of another, does not differ much 
from that advanced by Mr. Wallace, who concludes that ''every 
species has come into existence coincident both in space and time 
with a pre-existing closely allied species.** And it is now well 
known that he attributes this coincidence to descent with modi- 
fication. 

The question of single or multiple centres of creation differs 
from another though allied question, — namely, whether all the 
individuals of the same species are descended from a single pair, or 
single hermaphrodite, or whether, as some authors suppose, from 
many individuals simultaneously created. With organic beings 
which never intercross, if such exist, each species must be de- 
scended from a succession of modified varieties, that have sup- 
planted each other, but have never blended with other individuals 
or varieties of the same species ; so that, at each successive stage 
of modification, all the individuals of the same form will be de- 
scended from a single parent But in the great majority of cases, 
namely, with all organisms which habitually imite for each birth, 
or which occasionally intercross, the individuals of the same species 
inhabiting the same area will be kept nearly uniform by intei^ 
crossing; so that many individuals will go on simultaneously 
changing, and the whole amount of modification at each stage will 



Chap. XII. Means of Dispersal 323 

not be due to descent from a single parent. To illustrate what 
I mean : our English race-horses differ from the horses of every 
other breed ; but they do not owe their difference and superiority 
to desert from any single pair, but to continued care in the 
selecting and training of many individualB during each generation. 

Before discussing the three classes of fieu^ts, which I have selected 
as presenting the greatest amount of difficulty on the theory of 
*' single centres of creation,** I must say a few words on the means 
of dispersal. 

Means of Disjpersah 

Sir C. Lyell and other authors have ably treated this subject. 
I can give here only the briefest abstract of the more important facts. 
Change of climate must have had a powerful influence on migration. 
A region now impassable to certain organisms from the nature of 
its climate, might have been a high road for migration, when the 
climate was different. I shall, however, presently have to discuss 
this branch of the subject in some detail. Changes of level in the 
land must also have been highly influential: a narrow isthmus 
now separates two marine faunas ; submerge it, or let it formerly 
have been submerged, and the two faunas will now blend together, 
or may formerly have blended. Where the sea now extends, land 
may at a former period have connected islands or possibly ev^n 
continents together, and thus have allowed terrestrial productions 
to pass from one to the other. No geologist disputes that great 
mutations of level have occurred within the period of existing 
organisms. Edward Forbes insisted that all the islands in the 
Atlantic must have been recently connected with Europe or Africa, 
and Europe likewise with America. Other authors have thus 
hypothetically bridged over every ocean, and united almost every 
island to some mainland. If indeed the arguments used by Forbes 
are to be trusted, it must be admitted that scarcely a single island 
exists which has not recently been united to some continent. This 
view cuts the Gordian knot of the dispersal of the same species to 
the most distant points, and removes many a difficulty ; but to the 
best of my judgment we are not authorized in admitting such 
enormous geographical changes within the period of existing species. 
It seems to me that we have abundant evidence of great oscillations 
in the level of the land or sea ; but not of such vast changes in the 
position and extension of our continents, as to have united them 
within the recent period to each other and to the several intervening 
oceanic islands. I freely admit the former existence of many islands, 
now buried beneath the sea, which may have served as halting- 

Y 2 



324 Means of DupersaL Chap. Xll. 

places for plants and for many animals during their migration. In 
the coral-producing oceans such sunken islands are now marked by 
rings of coral or atolls standing over them. Whenever it is fully 
admitted, as it will some day be, that each species has proceeded 
from a sii^le birthplace, and when in the course of time we know 
something definite about the means of distribution, we shall be 
enabled to speculate with security on the former extension of the 
land. But I do not believe that it will ever be proved that within 
the recent period most of our continents which now stand quite 
separate, have been continuously, or almost continuously united 
with each other, and with the many existing oceanic islands. 
Several facts in distribution, — such as the great difference in the 
marine faunas on the opposite sides of almost every continent, — 
the close relation of the tertiary inhabitants of several lands and 
even seas to their present inhabitants, — the degree of affinity be- 
tween the mammals ihhabiting islands with those of the nearest 
continent, being in part determined (as we shall hereafter see) by 
the depth of the intervening ocean, — these and other such facts are 
opposed to the admission of such prodigious geographical revolutions 
within the recent period, as are necessary on the view advanced by 
Forbes and admitted by his followers. The nature and relative pro- 
portions of the inhabitants of oceanic islands are likewise opposed 
to the belief of their former continuity with continents. Nor does 
the almost universally volcanic composition of such islands favour 
the admission that they are the wrecks of sunken continents ; — if 
they had originally existed as continental mountain-ranges, some at 
least of the islands would have been formed, like other mountain- 
summits, of granite, metamorphic schists, old fossiliferous and other 
rocks, instead of consisting of mere piles of volcanic matter. 

I must now say a few words on what are called accidental means* 
but which more properly should be called occasional means of dis- 
tribution. I shall here confine myself to plants. In botanical 
works, this or that plant is often stated to be ill adapted for wide 
dissemination ; but the greater or less facilities for transport across 
the sea may be said to be almost wholly unknown. Until I tried, 
with Mr. Berkeley's aid, a few experiments, it was not even known 
how far seeds could resist the injurious action of sea- water. To 
my surprise I found that out of 87 kinds, 64 germinated after an 
immersion of 28 days, and a few survived an immersion of 137 
days. It deserves notice that certain orders were far more injured 
than others : nine Leguminosae were tried, and, with one exception, 
they resisted the salt-water badly ; seven species of the allied orders, 
Hydrophylla^eae and Polemoniaceae, were all killed by a month's 



'^ 



OiiAT. XII. Means of Dispersal 325 

inunersion. For convemeDce' sake I chiefly tried small seeds, 
without the capsule or fruit ; and as all of these sank in a few days, 
they could not have been floated across wide spaces of the sea, 
whether or not they were injured by the salt-water. Afterwards 
I tried some larger fruits, capsules, &c., and some of these floated 
for a long time. It is well known what a difference there is in the 
buoyancy of green and seasoned timber ; and it occurred to me that 
floods would often wash into the sea dried plants or branches with 
seed-capsules or fruit attached to them. Hence I was led to dry the 
stems and branches of 94 plants with ripe fruit, and to place them 
on sea-water. The majority sank quickly, but some which, whilst 
green, floated for a very short time, when dried floated much longer ; 
for instance, ripe hazel-nuts sank immediately, but when dried 
they floated for 90 days, and afterwards when planted germinated ; 
an asparagus-plant with ripe berries floated for 23 days, when dried 
it floated for 85 days, and the seeds afterwards germinated; the 
ripe seeds of Helosciadlum sank in two days, when dried they 
floated for above 90 days, and afterwards germinated. Altogether, 
out of the 94 dried plants, 18 floated for above 28 days; and 
some of the 18 floated for a very much longer period. So that as 
1^' kinds of seeds germinated after an immersion of 28 days; and 
as 1^ distinct species with ripe fruit (but not all the same species 
as in the foregoing experiment) floated, after being dried, for above 
28 days, we may conclude, as far as anything can be inferred from 
these scanty facts, that the seeds of -^q kinds of plants of any 
country might be floated by sea-currents during 28 days, and would 
retain their power of germination. In Johnston's Physical Atlas, 
the average rate of the several Atlantic currents is 33 miles per 
diem (some currents running at the rate of 60 miles per diem) ; on 
this average, the seeds of -^-^ plants belonging to one country 
might be floated across 924 miles of sea to another country, and 
when stranded, if blown by an inland gale to a favourable spot, 
would germinate. 

Subsequently to my experiments, M. Martens tried similar ones, 
but in a much better manner, for he placed the seeds in a box in 
the actual sea, so. that they were alternately wet and exposed to the 
air like really floating plants. He tried 98 seeds, mostly different 
from mine ; but he chose many large fruits and likewise seeds from 
plants which live near the sea ; and this would have favoured both 
the average length of their flotation and their resistance to the 
injurious action of the salt-water. On the other hand, he did not 
previously dry the plants or branches with the fruit ; and this, as 
we have seen, would have caused some of them to have floated 



326 Means of Dispersal Chap, xil 

much longer. The result was that f| of his seeds of different 
kinds floated for 42 days, and were then capable of germination. 
But I do not doubt that plants exposed to the waves would float 
for a less time than those protected from violent movement as in 
our experiments. Therefore it would perhaps be safer to assume 
that the seeds of about -^ plants of a flora, after having been 
dried, could be floated across a space of sea 900 miles in width, and 
would then germinate. The fact of the larger fruits often floating 
longer thaU the small, is interesting ; as plants with large seeds or 
fruit which, as Alph. de CandoUe has shown, generally have re- 
stricted ranges, could hardly be transported by any other means. 

Seeds may be occasionally transported in another manner. Drift 
timber is thrown up on most islands,' even on those in the midst 
of the widest oceans ; and the natives of the coral-islands in the 
Pacific procure stones for their tools, solely from the roots of drifted 
trees, these stones being a valuable royal tax, I find that when 
irregularly shaped stones are embedded in the roots of trees, small 
parcels of earth are frequently enclosed in their interstices and 
behind them, — ^so perfectly that not a particle could be washed away 
during the longest transport : out of one small portion of earth 
thus completely enclosed by the roots of an oak about 50 years old, 
three dicotyledonous plants germinated : I am certain of the accu- 
racy of this observation. Again, I can show that the carcases of 
birds, when floating on the sea, sometimes escape being immediately 
devoured : and many kinds of seeds in the crops of floating birds 
long retain their vitality : peas and vetches, for instance, are killed 
by even a few days' immersion in sea-water ; but some taken out 
of the crop of a pigeon, which had floated on artificial sea-water for 
30 days, to my surprise nearly all germinated. 

Living* birds can hardly fail to be highly effective agents in the 
transportation of seeds, I could give many facts showing how 
frequently birds of many kinds are blown by gales to vast distances 
across the ocean. "We may safely assume that under such circum- 
stances their rate of flight would often be 35 miles an hour ; and 
some authors have given a far higher estimate. I have never seen 
an instance of nutritious seeds passing through the intestines of 
a bird ; but bard seeds of fruit pass uninjured through even the 
digestive organs of a turkey. In the course of two months, I picked 
up in my garden 12 kinds of seeds, out of the excrement of small 
birds, and these seemed perfect, and some of them, which were 
tried, germinated. But the following fact is more important : the 
crops of birds do not secrete gastric juice, and do not, as I know by 
trial, injure in the least the germination of seeds ; now, after a bird 



Chap. XII. Means of Dispersal, 327 



has found and devoured a large supply of food, it is positively 
asserted that all the grains do not pass into the gizzard for twelve 
or even eighteen hours. A bird in this interval might easily be 
blown to the distance of 500 miles, and hawks are known to look 
out for tired birds, and the contents of their torn crops might thus 
readily get scattered. Some hawks and owls bolt their prey whole, 
and, after an interval of from twelve to* twenty hours, disgorge 
pellets, which, as I know from experiments made in the Zoological 
Gardens, include seeds capable of germination. Some seeds of the 
oat, wheat, millet, canary, hemp, clover, and beet germinated after 
having been from twelve to twenty-one hours in the stomachs of 
different birds of prey; and two seeds of beet grew after having 
been thus retained for two days and fourteen hours. Fresh-water 
fish, I find, eat seeds of many land and water plants: fish are 
frequently devoured by birds, and thus the seeds might be trans- 
ported from place to place. I forced many kinds of seeds into the 
stomachs of dead fish, and then gave their bodies to fishing-eagles, 
storks, and pelicans ; these birds, after an interval of many hours, 
either rejected the seeds in pellets or passed them in their excre- 
ment ; and several of these seeds retained the power of germination. 
Certain seeds, however, were always killed by this process. 

Locusts are sometimes blown to great distances from the land ; I 
myself caught one 370 miles from the coast of Africa, and have 
heard of others caught at greater distances. The Rev. R. T. Lowe 
informed Sir 0. Lyell that in November 1844 swarms of locusts 
visited the island of Madeira. They were in countless numbers, as 
thick as the flakes of snow in the heaviest snowstorm, and extended 
upwards as far as could be seen with a telescope. During two or 
three days they slowly careered roand and roimd in an immense 
ellipse, at least five or six miles in diameter, and at night alighted 
on the taller trees, which were completely coated with them. They 
then disappeared over the sea, as suddenly as they had appeared, 
and have not since visited the island. Now, in parts of Natal it is 
believed by some farmers, though on insufficient evidence, that 
injurious seeds are introduced into their grass-land in the dung left 
by the great flights of locusts which often visit that country. In 
consequence of this belief Mr. Weale sent me in a letter a small 
packet of the dried pellets, out of which I extracted under the 
microscope several seeds, and raised from them seven grass plants, 
belonging to two species, of two genera. Hence a swarm of locusts, 
such as that which visited Madeira, might readily be the means of 
introducing several kinds of plants into an island lying far from the 
mainland. 



328 Means of Dispersal, Chap. XIL 

Although the beaks and feet of birds are generally clean, earth 
sometimes adheres to them : in one case 1 removed sixty-one grains, 
and in another case twenty-two grains of dry argillaceous earth 
from the foot of a partridge, and in the earth there was a pebble as 
large as the seed of a vetch. Here is a better case : the leg of a 
woodcock was sent to me by a friend, with a little cake of dry earth 
attached to the shank, weighing only nine grains ; and this con- 
tained a seed of the toad-rush (Juncus bufonius) which germinated 
and flowered. Mr. Swaysland, of Brighton, who during the last 
forty years has paid close attention to our migratory birds, informs 
me that he has often shot wagtails (MotacillaB), wheatears, and whin- 
chats (Saxicolsd), on their first arrival on our shores, before they 
had alighted ; and he has several times noticed little cakes of earth 
attached to their feet. Many facts could be given showing how 
generally soil is charged with seeds. For instance, Prof. Newton 
sent me the leg of a red-legged partridge (Gaccabis rufa) which had 
been wounded and could not fly, with a ball of hard earth adhering 
to it, and weighing six and a half ounces. The earth had been 
kept for three years, but when broken, watered and placed under a 
bell glass, no less than 82 plants sprung from it : these consisted of 
12 monocotyledons, including the common oat, and at least one 
kind of grass, and of 70 dicotyledons, which consisted, judging from 
the young leaves, of at least three distinct species. With such facts 
before us, can we doubt that the many birds which are annually 
blown by gales across great spaces of ocean, and which annually 
migrate — for instance, the millions of quails across the Mediterra- 
nean — must occasionally transport a few seeds embedded in dirt 
adhering to their feet or beaks ? But I shall have to recur to this 
subject. 

As icebergs are known to be sometimes loaded with earth and 
stones, and have even carried brushwood, bones, and the nest of a 
land-bird, it can hardly be doubted that they must occasionally, as 
suggested by Lyell, have transported seeds from one part to another 
of the arctic and antarctic regions ; and during the Glacial period 
from one part of the now temperate regions to another. In the 
Azores, from the large number of plants common to Europe, in com- 
parison with the species on the other islands of the Atlantic, which 
stand nearer to the mainland, and (as remarked by Mr. H. G. 
Watson) from their somewhat northern character in comparison 
with the latitude, I suspected that these islands had been partly 
stocked by ioe-bome seeds, during the Glacial epoch. At. my request 
Sir C. Lyell wrote to M. Hartung to inquire whether he had 
observed erratic boulders on these islands, and he answered that he 



Chap. XII. Means of Dispersal, 329 

had found large fragments of granite and other rocks, which do not 
occur in the archipelago. Hence we may safely infer that icebergs 
formerly landed their rocky burthens on the shores of these mid- 
ocean islands, and it is at least possible that they may have brought 
thither some few seeds of northern plants. 

Considering that these several means of transport, and that other 
means, which without doubt remain to be discovered, have been in 
action year after year for tens of thousands of years, it would, I 
think, be a marvellous fact if many plants had not thus become 
widely transported. These means of transport are sometimes called 
accidental, but this is not strictly correct : the currents of the sea 
are not accidental, nor is the direction of prevalent gales of wind. 
It should be observed that scarcely any means of transport would 
carry seeds for very great distances : for seeds do not retain their 
vitality when exposed for a great length of time to the action of 
sea- water ; nor could they be long carried in the crops or intestines 
of birds. These means, however, would suffice for occasional trans- 
port across tracts of sea some hundred miles in breadth, or from 
island to island, or from a continent to a neighbouring island, but 
not from one distant continent to another. The floras of distant 
continents would not by such means become mingled ; but would 
remain as distinct as they now are. The currents, from their 
course, would never bring seeds from North America to Britain, 
though they might and do bring seeds from the West Indies to our 
western shores, where, if not killed by their very long immersion in 
salt water, they could not endure our climate. Almost every year, 
one or two land-birds are blown across the whole Atlantic Ocean, 
from North America to the western shores of Ireland and England ; 
but seeds could be transported by these rare wanderers only by 
one means, namely, by dirt adhering to their feet or beaks, which is 
in itself a rare accident. Even in this case, how small would be the 
chance of a seed falling on favourable soil, and coming to maturity ! 
But it would be a great error to argue that because a well-stocked 
island, like Great Britain, has not, as far as is known (and it would 
be very difficult to prove this), received within the last few centu- 
ries, through occasional means of transport, immigrants from Europe 
or any other continent, that a poorly-stocked island, though stand- 
ing more remote from the mainland, would not receive colonists by 
similar means. Out of a hundred kinds of seeds or animals trans- 
ported to an island, even if far less well- stocked than Britain, per- 
haps not more than one would be so well fitted to its new home, as 
to become naturalised. But this is no valid argument against what 
would be effected by occasional means of transport, during the long 



330 Dispersal during the Glacial Period, Chap. xil. 

lapse of geological time, whilst the island was being upheaved, and 
before it had become fully stocked with inhabitants. On almost 
bare land, with few or no destructive insects or birds living there, 
nearly every seed which chanced to arrive^ if fitted for the climate, 
would germinate and survive. 

Dispersal during the Qlacial Period, 

The identity of many plants and animals, on mountainnsummits, 
separated from each other by hundreds of miles of lowlands, where 
Alpine species could not possibly exist, is one of the most striking 
cases known of the same species living at distant points, without 
the apparent possibility of their having migrated from one point 
to the other. It is indeed a remarkable i»ct to see so many plants 
of the same species living on the snowy regions of the Alps or 
Pyrenees, and in the extreme northern parts of Europe ; but it is 
far more remarkable, that the plants on the White Mountains, in 
the United States of America, are all the same with those of 
Labrador, and nearly all the same, as we hear from Asa Gray, with 
those on the loftiest mountains of Europe. Even as long ago as 
1747, such facts led Gmelin to conclude that the same species must 
have been independently created at many distinct points ; and we 
might have remained in this same belief, had not Agassiz and 
others called vivid attention to the Glacial period, which, as we 
shall immediately see, affords a simple explanation of these facts. 
We have evidence of almost every conceivable kind, oi^nic and 
inorganic, that, within a very recent geological period, central 
Europe and North America suffered under an arctic climate. The 
ruins of a house burnt by fire do not tell their tale more plainly 
than do the mountaius of Scotland and Wales, with their scored 
flanks, polished surfaces, and perched boulders, of the icy streams 
with which their valleys were lately filled. So greatly has the 
climate of Europe changed, that in Northern Italy, gigantic moraines, 
left by old glaciers, are now clothed by the vine and maize. Through- 
out a large part of the United States, erratic boulders and scored 
rocks plainly reveal a former cold period. 

The former influence of the glacial climate on the distribution of 
the inhabitants of Europe, as explained by Edward Forbes, is sub- 
stantially as follows. But we shall follow the changes more readily, 
by supposing a new glacial period slowly to come on, and then 
pass away, as formerly occurred. As the cold came on, and as 
each more southern zone became fitted for the inhabitants of the 
north, these would take the places of the former inhabitants of 
the temperate regions. The latter, at the same time, would travel 



Chap. XII. Dispersal during the Glacial Period, 331 

further and further southward, unless they were stopped by harriers, 
in which case they would perish. The mountains would become 
covered with snow and ice, and their former Alpine inhabitants 
would descend to the plains. By the time that the cold had reached 
its maximum, we should have an arctic fauna and flora, covering 
the central parts of Europe, as far south as the Alps and Pyrenees, 
and even stretching into Spain. The now temperate regions of the 
United States would likewise be covered by arctic plants and ani- 
mals and these would be nearly the same with those of Europe ; for 
the present circumpolar inhabitants, which we suppose to have every- 
where travelled southward, are remarkably uniform round the world. 

As the warmth returned, the arctic forms would retreat north- 
wanl, closely followed up in their retreat by the productions of the 
more temperate regions. And as the snow melted from the bases 
of the mountains, the arctic forms would seize on the cleared 
and thawed ground, always ascending, as the warmth increased and 
the snow still further disappeared, higher and higher, whilst their 
brethren were pursuing their northern journey. Hence, when the 
warmth had fully returned, the same species, which had lately 
lived together on the European and North American lowlands, 
would again be found in the arctic regions of the Old and New 
Worlds, and on many isolated mountain-summits far distant from 
each other. 

Thus we can understand the identity of many plants at points 
so immensely remote as tlie mountains of the United States and 
those of Europe. We can thus also understand the fact that the 
Alpine plants of each mountain-range are more especially related 
to the arctic forms living due north or nearly due north of them : 
for the first migration when the cold came on, and the re-migration 
on the returning warmth, would generally have been due south and 
north. The Alpine plants, for example, of Scotland, as remarked 
by Mr. H. C. Watson, and those of the Pyrenees, as remarked by 
Bamond, are more especially allied to the plants of northern Scandi- 
navia ; those of the United States to Labrador ; those of the moun- 
tains of Siberia to the arctic regions of that country. These views, 
grounded as they are on the perfectly well-ascertained occurrence of 
a former Glacial period, seem to me to explain in so satisfactory a 
manner the present distribution of the Alpine and Arctic produc- 
tions of Europe and America, that when in other regions we find 
the same species on distant mountain-summits, we may almost 
conclude, without other evidence, that a colder climate formerly 
permitted their migration across the intervening lowlands, now 
become too warm for their existence. 



332 Dispersal during the Glacial Period. Chap. xil. 

As the arctic forms moved first southward and afterwards back- 
wards to the north, in unison with the changing climate, they will 
not have been exposed during their long migrations to any great 
diversity of temperature; and as they all migrated in a body 
together, their mutual relations will not have been much disturbed. 
Hence, in accordance ¥rith the principles inculcated in this volume, 
these forms will not have been liable to much modification. But 
with the Alpine productions, left isolated from the moment of the 
returning warmth, first at the bases and ultimately on the summits 
of the mountains, the case will have been somewhat different; for 
it is not likely that all the same arctic species will have been left 
on mountain-ranges far distant from each other, and have survived 
there ever since; they will also in all probability, have become 
mingled with ancient Alpine species, which must have existed on 
the mountains before the conmiencement of the Glacial epoch, and 
which during the coldest period will have been temporarily driven 
down to the plains ; they will, also, have been subsequently ex- 
posed to somewhat different climatal influences. Their mutual rela- 
tions will thus have been in some degree disturbed; consequently 
they will have been liable to modification; and they have been 
modified ; for if we compare the present Alpine plants and animals 
of the several great European mountain-ranges one with another, 
though many of the species remain identically the same, some 
exist as varieties, some as doubtful forms or sub-species, and 
some as distinct yet closely allied species representing each other 
on the several ranged. 

In the foregoing illustration I have assumed that at the com- 
mencement of our imaginary Glacial peri(xl, the arctic productions 
were as uniform round the polar regions as they are at the present 
day. But it is also necessary to assume that many sub-arctic and 
some few temperate forms were the same round the world, for 
some of the species which now exist on the lower moimtain-slopes 
and on the plains of North America and Europe are the same; 
and it may be asked how I account for this degree of uniformity 
in the sub-arctic and temperate forms round the world, at the 
commencement of the real Glacial period. At the present day, 
the sub-arctic and northern temperate productions of the Old 
and New Worlds are separated from each other by the whole 
Atlantic Ocean and by the northern part of the Pacific. During 
the Glacial period, when the inhabitants of the Old and New 
Worlds lived farther southwards than they do at present, they 
must have been still more completely separated from each other 
by wider spaces of ocean; so that it may well be asked how the 



Chap. XII. Dispersal during the Glacial Period, 333 

same species could then or previously have entered the two con- 
tinents. The explanation, I helieve, lies in the nature of the 
climate hefore the connnencement of the Glacial period. At this, 
the newer Pliocene period, the majority of the inhabitants of the 
world were specifically the same as now, and we have good reason 
to helieve that the climate was warmer than at the present day. 
Hence we may suppose that the organisms which now live under 
latitude 60% lived during the Pliocene period farther north under the 
Polar Circle, in latitude 66°-67° ; and that the present arctic pro- 
ductions then lived on the broken land still nearer to the pole. 
Now, if we look at a terrestrial globe, we see under the Polar Circle 
that there is almost continuous land from western Europe, through 
Siberia, to eastern America. And this continuity of the circum- 
polar land, with the consequent freedom under a more favourable 
climate for intermigration, will account for the supposed uniformity 
of the sub-arctic and temperate productions of the Old and New 
Worlds, at a period anterior to the Glacial epoch. 

Believing, from reasons before alluded to, that our continents 
have long remained in nearly the same relative position, though 
subjected to great oscillations of level, I am strongly inclined to 
extend the above view, and to infer that during some still earlier 
and still warmer period, such as the older Pliocene period, a large 
number of the same plants and animals inhabited the almost 
continuous circumpolar land; and that these plants and animals, 
both in the Old and New Worlds, began slowly to migrate south- 
wards as the climate became less warm, long before the commence- 
ment of the Glacial period. We now see, as I believe, their 
descendants, mostly in a modified condition, in the central parts 
of Europe and the United States. On this view we can under- 
stand the relationship with very little identity, between the pro- 
ductions of North America and Europe, — ^a relationship which is 
highly remarkable, considering the distance of the two areas, and 
their separation by the whole Atlantic Ocean. We can further 
understand the singular fact remarked on by several observers 
that the productions of Europe and America during the later 
tertiary stages were more closely related to each other than they 
are at the present time; for during these warmer periods the 
northern parts of the Old and New Worlds will have been almos 
continuously united by land, serving as a bridge, since rendered 
impassable by cold, for the intermigration of their inhabitants. 

During the slowly decreasing warmth of the Pliocene period, as 
soon as the species in common, which inhabited the New and Old 
Worlds, migrated south of the Polar Circle, they will have been 



334 Dispersal during the Glacial Period, Chap, xil 

completely cut off from each other. This separation, as far as the 
more temperate productions are concerned, must have taken place 
long ages ago. As the plants and animals migrated southward, 
they will have become mingled in the one great region with the ' 
native American productions, and would have had to compete 
with them ; and in the other great region, with those of the Old 
World. Consequently we have here everything favourable for 
much modification, — for far more modification than with the 
Alpine productions, left isolated, within a much more recent' 
period, on the several mountain-ranges and on the arctic lands 
of Europe and N. America. Hence it has come, that when we 
compare the now living productions of the temperate r^ons of 
the New and Old Worlds, we find very few identical species (though 
Asa Gray has lately shown that more plants are identical than was 
formerly supposed), but we find in every great class many forms, 
which some naturalists rank as geographical races, and others as dis- 
tinct species ; and a host of closely allied or representative forms 
which are ranked by all naturalists as specifically distinct. 

As on the land, so in the waters of the sea, a slow southern 
migration of a marine fauna, which, during the Pliocene or even a 
somewhat earlier period, was nearly uniform along the continuous 
shores of the Polar Circle, will account, on the theory of modifica- 
tion, for many closely allied forms now living in marine areas com- 
pletely sundered. Thus, I think, we can understand the presence 
of some closely allied, still existing and extinct tertiary forms, on 
the eastern and western shores of temperate North America ; and 
the still more striking fact of many closely allied crustaceans (as 
described in Dana's admirable work), some fish and other marine 
animals, inhabiting the Mediterranean and the seas of Japan, — 
these two s^eas being now completely separated by the breadth of a 
whole continent and by wide spaces of ocean. 

These cases of close relationship in species either now or formerly 
inhabiting the seas on the eastern and western shores of Nortk 
America, the Mediterranean and Japan, and the temperate lands 
of North America and Europe, are inexplicable on the theory ot 
creation. We cannot maintain that such species have been created 
alike, in correspondence with the nearly similar physical conditions 
of the areas ; for if we compare, for instance, certain parts of South 
America with parts of South Africa or Australia, we see countries 
closely similar in all their physical conditions, with their inhab- 
itants utterly dissimilar. 



Chap. XII. A Iternate Glacial Periods. 335 



AlUrvuUe Olacial Periods in the North and South. 

But we must return to our more immediate subject. I am con- 
vinced that Forbes's view may be largely extended. In Europe we 
meet with the plainest evidence of the Glacial period, from the 
western shores of Britain to the Oural range, and southward to the 
Pyrenees. We may infer from the frozen mammals and nature 
of the mountain vegetation, that Siberia was similarly affected. In 
* the Lebanon, ftccording to Dr. Hooker, perpetual snow formerly 
covered the central axis, and fed glaciers which rolled 4000 feet 
down the valleys. The same observer has recently found great 
moraines at a low level on the Atlas range in N. Africa. Along 
the Himalaya, at points 900 miles apart, glaciers* have left the 
marks of their former low descent ; and in Sikkim, Dr. Hooker 
saw maize growing on ancient and gigantic moraines. Southward 
of the Asiatic continent, on the opposite side of the equator, we 
know, from the excellent researches of Dr. J. Haast and Dr. Hector, 
that in New Zealand immense glaciers formerly descended to a 
low level; and the same plants found by Dr. Hooker on widely 
separated mountains in this island tell the same story of a former 
cold period. From facts communicated to me by the Bev. W. B. 
Clarke, it appears also that there are traces of former glacial action 
on the mountains of the south-eastern comer of Australia. 

Looking to America; in the northern half, ice-borne fragments of 
rock have been observed on the eastern side of the continent, as far 
south as lat 36^-37°, and on the shores of the Pacific, where the 
climate is now so different, as far south as lat. 46°. Erratic boulders 
have, also, been noticed on the Bocky Mountains. In the Cor- 
dillera of South America, nearly under the equator, glaciers once 
extended far below their present level. In Central Chile I ex- 
amined a vast mound of detritus with great boulders, crossing the 
Portillo valley, which there can hardly be a doubt once formed a 
huge moraine; and Mr. D. Forbes informs me that he found in 
various parts of the Cordillera, from lat. 13° to 30° S., at about the 
height of 12,000 feet, deeply-furrowed rocks, resembling those with 
which he was familiar in Norway, and likewise great masses of 
detritus, including grooved pebbles. Along this whole space of the 
Cordillera true glaciers do not now exist even at much more con- 
siderable heights. Farther south on both sides of the continent, 
from lat. 41° to the southernmost extremity, we have the clearest 
evidence of former glacial action, in numerous immense boulders 
transported far from their parent source. 

From these several facts, namely from the glacial action having 



336 Alternate Glacial Periods Chap. XII. 

extended all round the northern and southern hemispheres — from 
the period having been in a geological sense recent in both hemi- 
spheres—from its having lasted in both during a great length of 
time, as may be inferred from the amount of work effected — ^and 
lastly from glaciers having recently descended to a low level along 
the whole line of the Cordillera, it at one time appeared to me that 
we could not avoid the conclusion that the temperature of the 
whole world had been simultaneously lowered during the Glacial 
period. But now Mr. CroU, in a series of admirable memoirs, has 
attempted to show that a glacial condition of climate is the result 
of various physical causes, brought into operation by an increase in 
the eccentricity of the earth's orbit. All these causes tend towards 
the same end; but the most powerful appears to be the indirect 
influence of the eccentricity of the orbit upon oceanic currents. 
According to Mr. CroU, cold periods regularly recur every ten or 
fifteen thousand years; and these at long intervals are extremely 
severe, owing to certain contingencies, of which the most important^ 
as Sir C. Lyell has shown, is the relative position of the land and 
water. Mr. CroU believes that the last great Glacial period occurred 
about 240,000 years ago, and endured with slight alterations of 
climate for about 160,000 years. With respect to more ancient 
Glacial periods, several geologists are convinced from direct evidence 
that such occurred during the Miocene and Eocene formations, not 
to mention still more ancient formations. But the most important 
result for us, arrived at by Mr. CroU, is that whenever the northern 
hemisphere passes through a cold period, the temperature of the 
southern hemisphere is actually raised, with the winters rendered 
much mUder, chiefly through changes in the direction of the ocean- 
currents. So conversely it will be with the northern hemisphere, 
whilst the southern passes though a glacial period. This conclusion 
throws so much light on geographical distribution that I am 
strongly incUned to trust in it ; but I wiU first give the facts, which 
demand an explanation. 

In South America, Dr. Hooker has shown that besides many 
closely allied species, between forty and fifty of the flowering plants 
of Tierra del Fuego, forming no inconsiderable part of its scanty 
flora, are conmion to North America and Europe, enormously 
r^note as these areas in opposite hemispheres are from each other. 
On the lofty mountains of equatorial America a host of peculiar 
species belonging to European genera occur. On the Organ moun- 
tains of Brazil, some few temperate European, some Antarctic, and 
some Andean genera were found by Gardner, which do not exist 
in the low intervening hot countries. On the Silla of Caraocas, 



Chap. XII. in the North and South, 337 



the illustrious Humboldt long ago found species belonging 'fy genera 
characteristic of the Cordillera. 

In Africa, several forms characteristic of Europe and some few 
representatives of the flora of the Cape of Good Hope occur on the 
mountains of Abyssinia. At the Cape of Good Hope a very few 
European species, believed not to have been introduced by man, 
and on the mountains several representative European forms are 
found, which have not been discovered in the intertropical parts of 
Africa. Dr. Hooker has also lately shown that several of the plants 
living on the upper parts of the lofty island of Fernando Po and on 
the neighbouring Cameroon mountains, in the Gulf of Guinea, are 
closely related to those on the mountains of Abyssinia, and likewise 
to those of temperate Europe. It now also appears, as I hear from 
Dr. Hooker, that some of these same temperate plants have been 
discovered by the Rev. R. T. Lowe on the mountains of the Cape de 
Verde islands. This extension of the same temperate forms, almost 
under the equator, across the whole continent of Africa and to the 
mountains of the Cape de Yerde archipelago, is one of the most 
astonishing facts ever recorded in the distribution of plants. 

On the Himalaya, and on the isolated mountain-ranges of the 
peninsula of India, oh the heights of Ceylon, and on the volcanic 
cones of Java, many plants occur, either identically the same or 
representing each other, and at the same time representing plants 
of Europe, not found in the intervening hot lowlands. A list of 
the genera of plants collected on the loftier peaks of Java, raises 
a picture of a collection made on a hillock in Europe ! StfU more 
striking is the fact that peculiar Australian forms are represented 
by certain plants growing on the summits of the mountains of 
Borneo. Some of these Australian forms, as I hear from Dr. Hooker, 
extend along the heights of the peninsula of Malacca, and are 
thinly scattered on the one hand over India, and on the other baud 
as far noi*th as Japan. 

On the southem mountains of Australia, Dr. P. Mtiller has 
discovered several European species ; other species, not introduced 
by man, occur on the lowlands ; and a long list can be given, as I 
am informed by Dr. Hooker, of European genera, found in Australia, 
but hot in the intermediate torrid regions. In the admirable 
• Introduction to the Flora of New Zealand,* by Dr. Hooker, analo- 
gous and striking facts are given in regard to the plants of that 
large Island. Hence we see that certain plants growing on the more 
lofty mountains of the tropics in all parts of the world, and on the 
temperate plains of the north and south, are either the same species 
or varieties of the same species. It should, however, be observed 



338 Alternate Glacial Periods Chap. xii. 

that these plants are not strictly arctic forms ; for, as Mr. H. C. 
Watson has remarked, *' in receding from' polar towards equatorial 
latitudes!, the Alpine or mountain floras really become less and less 
Arctia" Besides these identical and closely allied fcMrms, noany 
species inhabiting the same widely sundered areas, belong to genera 
not now found in the intermedinte tropical lowlands. 

These brief remarks apply to plants alone ; but some few analogous 
facts could be given in regard to terrestrial animals. In marine 
productions, similar cases likewise occur; as an example, I may 
quote a statement by the highest authority, Prof. Dana, that '* it is 
certainly a wonderful fact that New Zealand should have a closer 
resemblance in it^ crust&cea to Great Britain, its antipode, than to 
any other part of the world.** Sir J. Bichardson, also, speaks ot 
the reappearance on the shores of New Zealand, Tasmania, &c., 
of nottbem forms of fish. Dr. Booker informs me that twenty- 
five species of Algn are common to New Zealand and to Eniope, 
but hav« not been found in the intennediate tropical seas. 

Prom the foregoing facts, namely, the presence of temperate forms 
on the highlands across the whole of equatorial Africa, and along 
the Peninsula of India, to Ceylon and the Malay Archipelago, and 
in a letes well-marked manner across the wide expanse of tropical 
South America, it appears almost certain that at some former 
period, no doubt during the most severe part of a Glacial period, 
the lowlands of these great continents were everywhere tenanted 
under the equator by a considerable number of temperate forms. 
At this period the equatorial climate at the level of the sea was 
probably about the same with that now experienced at the height 
of from five to six thousand feet under the same latitude, or 
perhaps even rather cooler. During this, the coldest period, the 
lowlands under the equator must have been clothed with a mingled 
tropical and temperate vegetation, like that described by Hooker as 
growing luxuriantly at the height of from four to five thousand feet 
on the lower slopes of the Himalaya, but with perhaps a still 
greater preponderance of temperate forms. So again in the moun- 
tainous island of Fernando Po, in the Gulf of Guinea, Mr. Mann 
found temperate European forms beginning to appear at the height 
of about five thousand feet. On the mountains of Panama, at the 
height of only two thousand feet, Dr. Seemann found the vegetation 
like that of Mexico, '* with forms of the torrid zone harmoniously 
blended with those of the temperate." 

Now let us see whether Mr. CroU's conclusion that when the 
northern hemisphere suffered from the extreme cold of the great 
Glacial period, the southern hemisphere was actually warmer, throws 



Ghap, XIJ. in the North and South, 339 

aziy dear light cm ihe present ^>parently ineKplicable distribation of 
various organiBms in the temperate parts of both hemispheres, and on 
the mountains of the tropics. The Glaoial period, as measured by 
years, must have been very long ; and when we remember over wbai 
vast spaces some natuialised plants and animals have spread within 
a few centuries, this period will have been ample for any amount of 
migration. As the cold became more and more intense, we know 
that Arctic forms invaded the tranperate regions ; and, from the 
facts just given, there can hardly be a doubt that some of the more 
vigorous, dominant and widest-spreading temperate forms invaded 
the equat<^al lowlands. The inhabitants of these hot lowlands 
would at the same time have migrated to the tropical and sub- 
toopicftl regions of the eouth, for the southern hemisphere was at this 
period warmer. On the decline of the Glacial period, as both hemi- 
spheres gradually recovered their farmer temperatures, the nwthem 
temperate forms living on the lowlands under the equator, would 
have been driven to their former homes or have been destroyed^ 
being replaced by the equatorial forms returning from the south. 
ScMaae, however, of the n<M:them temperate forms would almost 
eertainly have ascended any adjoining high land, where, if snffi* 
dently lofty, they would have long survived like the Arctic forms 
on l^e mountains of Europe. They might have survived, ev«i if 
the chmate was not perfectly ^tted for them, Sxx the change of tern- 
perature must have been very slow, an({ plants undoubtedly possess 4 
certain capacity for acdimatiBation, ae shown by their transmitting to 
their offspring different constitutional powers of resisting heat and oold» 
}n the regular course of events the southern henuspbere would in 
ita turn be subjected to a severe Glacial period, with the northern 
hemisphere rendered warmer ; and then the southern temperate 
forms would invade the equatorial lowlands. The northern forms 
which had before been left on the mountains would now descend 
aad mingle with the southern forms. These latter, when the 
warmth returned, would return to their fonner homes, leaving noma 
lew species on the mountains, and carrying southward with ihem 
some of the northern temperate forms Which had descended from 
their mountain fastnesses, 'llius, we should have some few species 
id^itically the same in the northern and southern temperate zones 
and on the mountains of the intermediate tropical regions. But 
the species left during a long time on these mountains, or in opposite 
hemispheres, would have to compete with many new forms and 
would 'be exposed to scanewhat different physical conditions ; hence 
they would be eminently liable to modification, and would generally 
now exist as varieties or as representative species ; and this is the 

z 2 



34^ Alternate Glacial Periods Chap. XII. 

case. We must, also, "bear in mind the oocurrenoe in both hemi- 
spheres of former Glacial periods; for these will account, in 
accordance with the same principles,- for the many quite distinct 
species inhabiting the same widely separated areas, and belonging to 
genera not now found in the intermediate torrid zones. 

It is a remarkable fact strongly insisted on by Hooker in regard 
to America, and hy Alph. de Gandolle in regard to Australia, that 
many more identical or slightly modified species have migrated from 
the north to the south, than in a reversed direction. We see, 
however, a few southern forms on the mountains of Borneo and 
Abyssinia. I suspect that this preponderant migration from the 
north to the south is due to the greater extent of land in the north, 
and to the northern forms having existed in their own homes in 
greater numbers, and having consequently been advanced through 
natural selection and competition to a higher stage of perfection, or 
dominating power, than the southern forms. And thus, when tbd 
two sets became commingled in the equatorial regions, during 
the alternations of the Glacial periods, the northern forms were the 
more powerful and were able to hold their places on the mountains, 
and afterwards to migrate southward with the southern forms ; but 
not so the southern in regard to the northern forms. In the 
Bame manner at the present day, we see that very many European 
productions cover the ground in La Plata, New Zealand, and to a 
lesser degree in Australia, and have beaten the natives ; whereas 
extremely few southern forms have become naturalised in any part 
of the northern hemisphere, though hides, wool, and other objects 
likely to carry seeds have been largely imported into Europe during 
the last two or three centuries from La Plata, and during the last 
forty or fifty years from Australia. The Neilgherrie mountains in 
India, however, offer a partial exception ; for here, as I hear from 
Br. Hooker, Australian forms are rapidly sowing themselves and 
becoming naturalised. Before the last great Glacial period, no 
doubt the intertropical mountains were stocked with endemic Alpine 
forms; but these have almost everywhere yielded to the more 
dominant forms, generated in the larger areas and more efficient 
workshops of the north. In many islands the native productions 
are nearly equalled, or even outnumbered, by those which have 
become naturalised; and this is the first stage towards their 
extinction. Mountains axe islands on the land, and their inhabit 
tants have yielded to those produced within the larger areas of the 
north, just in the same way as the inhabitants of real islands have 
everywhere yielded and are still yielding to continental forms 
naturalised through man's agency. 



Chap. XIL in the North and South. 34J 

The same principles apply to the distrihution of terrestrial 
animals and of marine productions, in the northern and southern 
temperate zones, and on the intertropical mountains. When» 
during the height of the Glacial period, the ocean-currents were 
widely different to what they now are, some of the inhabitants of 
the temperate seas might have reached the equator ; of these a few 
would perhaps at once be able to migrate southward, by keeping to 
the cooler currents, whilst others might remain and survive in the 
colder depths until the southern hemisphere was in its turn sub* 
jected to a glacial climate and permitted their further progress ; in 
nearly the same manner as, according to Forbes, isolated spaces 
inhabited by Arctic productions exist to the present day in the 
deeper parts of the northern temperate seas. 

I am far from supposing that all the difficulties in regard to the 
distribution and affinities of the identical and allied species, which 
now live so widely separated in the north and south, and sometimes 
on the intermediate mountain-ranges, are removed on the viows 
above given. The exact lines of migration cannot be indicated. 
We cannot say why certain species and not others have migrated ; 
why certain species have been modified and have given rise to new 
forms, whilst others have remained unaltered. We cannot hope 
to explain such facts, until we can say why one species and not 
another becomes naturalised by man's agency in a foreign land; 
why one species ranges twice or thrice as far, and is twice or thrice 
as common, as another species within their own homes. 

Various special difficulties also remain to be solved ; for instance, 
the occurrence, as shown by Dr. Hooker, of the same plants at points 
so enormously remote as Eerguelen Land, New Zealand, and Fuegia ; 
but icebergs, as su^ested by Lyell, may have been concenled in 
their dispersal. The existence at these and other distant points of 
the southern hemisphere, of species, which, though distinct, belong 
to genera exclusively confined to the south, is a more remarkable 
case. Some of these species are so distinct, that we cannot sup- 
pose that there has been time since the commencement of the last 
Glacial period for their migration and subsequent modification 
to the necessary degree. The facts seem to indicate that distinct 
species belonging to the same genera have migrated in radiating 
lines from a common centre; and I am inclined to look in the 
southern, as in the northern hemisphere, to a former and warmer 
period, before the commencement of the last Glacial period, when 
the Antarctic lands, now covered with ice, supported a highly 
peculiar and isolated flora. It may be suspected that before this flora 
was exterminated during the last Glacial epoch, a few forms had 



342 Alternate Glacial Periods. Chap. xii. 



been already widely dispersed to various points of the southern hemi- . 
sphere by occasional means of transport, and by the aid as haltiag- 
places, of now sunken islands. Thus the southern shores of Ameidea, 
Australia, and New Zealand, may have become slightly tinted by 
the same peculiar forms of life. 

Sir C. Lyell in a striking passage has speculated, in language 
almost identical with mine, on the effects of great altematicMas of 
climate throughout the world on geographical distribution. And 
we have now seen that Mr. CrolPs conclusion that successive Glacial 
periods in the one hemisphere coincide with warmer periods in the 
opposite hemisphere, together with the admission of the slow modifi- 
cation of species, explains a multitude of facts in the distribution of 
the same and of the allied forms of life in all parts of the globe. The 
living waters have flowed during one period from the north and 
during another from the south, and in both cases have reached th« 
equator ; but the stream of life has flowed with greater force from 
the north than in the opposite direction, and has consequently more 
freely inundated the south. As the tide leaves its drift in hori- 
zontal lines, rising higher on the shores where the tide rises highest, 
so have the living waters left their living drift on our mountain 
summits, in a line gently rising from the Arctic lowlands to a great 
altitude under the equator. The various beings thus left stranded 
may be compared with savage races of man, driven up and surviving 
in the mountain fastnesses of almost every land, which serve as a 
record, full of interest to us, of the former inhabitants of the 
surrounding lowlands. 



Chap. XIII. Fresh-water Productions. 343 



CHAPTEE XIII. 

Gboqbaphical Distribution — continued. 

Distribution of fresh-water productions — On the inhabitants of oceanic 
islands — Absence of Batrachians and of terrestrial Mammals — On the 
relation of the inhabitants of islands to those of the nearest mainland — 
On colonisation from the nearest source with subsequent modification 
— Summary of the last and present chapter. 

^esh-water Froductiom, 

As lakes and river-systems are separated from each other by barrieis 
of land, it might have been thought that fresh-water productions 
would not have ranged widely within the same country, and as the 
sea is apparently a still more formidable barrier, that they would 
never have extended to distant countries. But the case is exactly 
the reverse. Not only have many fresh-water species, belonging to 
different classes, an enormous range, but allied species prevail in a 
remarkable manner throughout the world. When first collecting 
in the fresh waters of Brazil, I well remember feeling much sur- 
prise at the similarity of the fresh-water insects, shells, &c., and 
at the dissimilarity of the surrounding terrestrial beings, compared 
with those of Britain. 

But the wide ranging power of fresh-water productions can, I 
think, in most cases be explained by their having become fitted, in 
a manner highly useful to them, for short and frequent migrations 
from pond to pond, or from stream to stream within their own 
countries; and liability to wide dispersal would follow from this 
capacity as an almost necessary consequence. We can here consider 
only a few cases ; of these, some of the most difficult to explain 
are presented by fish. It was formerly believed that the same 
fresh-water species nev^r existed on two continents distant from 
each other. But Dr. Giinther has lately shown that the G^laxias 
attenuatus inhabits Tasmania, New Zealand, the Falkland Islands, 
and the mainland of South America. This is a wondei-ful case, and 
probably indicates dispersal from an Antarctic centre during a former 
warm period. This case, however, is rendered in some degree less 



I 



I 



344 Fresh-water Productions. Chap. XIII, 

surprising by the species of this genus having the power of crossiDg 
by some unknown means considerable spaces of open ocean : thus 
there is one species common to New Zealand and to the Auckland 
Islands, though separated by a distance of about 230 miles. On 
the same continent fresh- water fish often range widely, and as if 
capriciously ; for in two adjoining river-systems some of the species 
may be the same, and some wholly different. It is probable that 
they are occasionally transported by what may be called accidental 
means. Thus fishes still alive are not very rarely dropped at distant 
points by whirlwinds ; and it is known that the jjva retain their 
vitality for a considerable time after removaT from" the water. 
Their dispersal may, however, be mainly attributed to changes in 
the level of the land within th« recent period, causing rivers to flow 
into each other. Instances, also, could be given of this having 
occurred during floods, without any change of level. The wide 
difference of the fish on the opposite sides of most mountain-ranges, 
which are continuous, and which consequently must from an early 
period have completely prevented the inosculation of the river- 
systems on the two sides, leads to the same conclusion. Some 
f]'PQh-wQ|^l' figii hftlQTior to very anci ent^ forms, and in such, cases 
there vrill have been ample timelor great geographical changes, and 
consequently time and means for much migration. Moreover Dr. 
Giinther has recently been led by several considerations to infer 
lat with fishes the same formai^ve a long endurance. Salt-water 
jh can with care be slowly accustomed to live in fresh water ; 
Aid, accordiiig to Valenciennes, there is hardly a single group of 
which all the members are confined to fresh water, so that a marine 
species belonging to a fresh-water group n^ight travel far along the 
shores of the sea, and could, it is probable, become adapted without 
much difficulty to the fresh waters of a distant land. 

Some species of fresh-water shells have very wide ranges, and 
allied species which, on our theory, are descended from a common 
parent, and must have proceeded from a single source, prevail 
throughout the world. Their distribution at first perplexed me 
much, as their ova are not likely to be transported by birds ; and 
the ova, as well as the adults, are immediately killed by sea-water. 
I could not even understand how some naturalised species have 
spread rapidly throughout the same country. But two facts, which 
I have observed — and many others no doubt will be discovered-^ 
throw some light on this subject. When ducks suddenly emerge 
from a pond, covered with duck-weed, I have twice seen these little 
plants adhering to their backs; and it has happened to me, in 
removing a little duck-weed from one aquarium to another, that I 



Chap. xiii. Fresh-water Productions, 345 

have unintentionally stocked the one with fresh-water shells from 
the other. But another agency is perhaps more effectual : I sus- 
pended the feet of a duck in an aquarium, where many ova of fresh- 
water shells were' hatchfSg ; and I found that numhers of the 
extremely minute and just-hatched shells crawled on the feet, and 
clung to them so firmly that when taken out of the water they 
could not he jarred off, though at a somewhat more advanced age 
they would voluntarily drop off. These just-hatched molluscs, 
though aquatic in their nature, survived on the duck's feet, in 
damp air, from twelve to twenty hours ; and in this length of time . 
a duck or heron might fly at least six or seven hundred miles, and I 
if hlown across the sea to an oceanic island, or to any other distant 
point, would he sure to alight on a pool or rivulet. SSir Charles 
Lyell informs me that a Dytiscus has heen caught with an Ancylus 
(a fresh-water shell like a limpet) firmly adhering to it; and a 
water-heetle of the same family, a Colymhetes, once flew on hoard 
the * Beagle,' when forty-five miles distant from the nearest land : 
how much farther it might have heen hlown hy a favouring gale 
no one can tell. 

With respect to plants, it has long heen known what enormous 
ranges many fresh-water, and even marsh species, have, hoth over 
continents and to the most remote oceanic islands. This is strikingly 
illustrated, according to Alph. de CandoUe, in those large groups of 
terrestrial plants, which have very few aquatic memhers ; for the 
latter seem Immediately to acquire, as if in consequence, a wide 
range. I think favourahle means of dispersal explain this fact. I 
have hefore mentioned that earth occasionally adheres in some 
quantity to the feet and heaks of birds. Wading birds, which fre- 
quent the muddy edges of ponds, if suddenly flushed, would be the 
most likely to have muddy feet. Birds of this order wander more 
than those of any other ; and they are occasionally found on the 
most remote and barren islands of the open ocean ; they would not 
be likely to alight on the surface of the sea, so that any dirt on 
their feet would not be washed of; and when gaining the land, 
they would be sure to fly to their natural fresh-water haunts. I do 
not believe that botanists are aware how charged the mud of pondfl 
is with seeds ; I have tried several little experiments, but will here 
give only the most striking case : 1 took in February three table- 
spoonfals of mud from three different points, beneath water, on the 
edge of a little pond : this mud when dried weighed only 6f ounces ; 
I kept it covered up in my study for six months, pulling up and 
counting each plant as it grew ; the plants were of many kinds, 
and were altogether 637 in number ; and yet the viscid mud was all 



346 Fresh-water Productions, Chap. XIII. 

eontained in a breakfast cup ! Considering these facts, I think it 
would be an inexplicable circumstance if water-birds did not trans- 
port the seeds of fresh-water plants to unstocked ponds and streams, 
situated at very distant points. ITie same agency may have come 
into play with the eggs of some of the smaller fresh-water animals. 
Other and unknown agencies probably have also played a part. 
I have stated that fresh-water fish eat some kinds of seeds, though 
they reject many othier kinds after having swallowed them ; even 
small fish swallow seeds of moderate size, as of the yellow water- 
lily and Potamogeton. Herons and other birds, century after cen- 
tury, have gone on daily devouring fish ; they then take flight and 
go to other waters, or are blown across the sea ; and we^ have seen 
that seeds retain their power of germination, when rejected many 
hours afterwards in pellets or in the excrement. When I saw the 
great size of the seeds of that fine water-lily, the Nelumbium, and 
remembered Alph. de Candolle's remarks on the distribution of 
this plant, I thought that the means of its dispersal must remain 
inexplicable ; but Audubon states that he found the seeds of the 
great southern water-lily (probably, according to "Dr. Hooker, the 
Nelumbium luteum) in a heron's stomach. Now this bird must 
often have flown with its stomach thus well stocked to distant 
ponds, and then getting a hearty meal of fish, analogy makes me 
believe that it would have rejected the seeds in a pellet in a fit state 
for germination. 
In considering these several means of distribution, it should be 
^ remembered that when a pond or stream is first formed, for instance, 
t on a rising islet, it will be unoccupied ; and a single seed or egg 
I will have a good chance of succeeding. Although there will always 
be a struggle for life between the inhabitants of the same pond, 
however few in kind, yet as the number even in a well-stocked pond 
is small in comparison with the number of i^cies inhabiting an 
equal area of land, the competition between them will probably be 
less severe than between terrestrial species; consequently an in- 
trudey from the waters of a foreign country would have a better 
chance of seizing on a new place, than in the case of terrestrial 
colonists. We should also remember that many fresh-water pro- 
ductions are low in the scale of nature, and we have reason to 
believe that such beings become modified more slowly than the 
high ; and this will give time for the migration of aquatic species. 
We should not forget the probability of many fresh-water forms 
having formerly ranged continuously over immense areas, and then 
having become extinct at intermediate points. But the wide dis- 
tribution of fresh-water plants and of the lower animals^ whether 



Chap. XIJI. Inhabitants of Oceanic Islands, 347 

retaining the same identical form or in some degree modified, appa- 
remtly depends in main part on the wide dispenal of their seeds 
and e^ by animals, more especially by iresh-water birds, which 
have great powers of flight, and naturally travel from one piece of 
Mvater to another. 

On the Inhabitants of Oceanic Islands. 

We now come to the last of the three classes of facts, which I 
have selected as presenting the greatest amount of difficulty with 
respect to distribution, on the view that not only all the individuals 
of the same species have migrated from some one area, but that 
allied species, although now inhabiting the most distant points, 
have proceeded from a single area, — the birthplace of their early 
progenitors. I have already given my reasons for disbelieving in 
eonUnental extensions within the period of existing species, on so 
enormous a scale that all the many islands of the several oceans 
were thus stocked with their present terrestrial inhabitants. This 
view removes many difficulties, but it does not accord with all the 
facts in regard to the pro ductions of islands. In the following 
remarks I shall not confine myself to the mere question of dispersal, 
but shall consider some other cases bearing on the truth of the two 
theories of independent creation and of descent with modification. 

The specie s of; all kinds which inhabit oceanic islands are few in 
number compared with those on equal continental areas : Alph. de 
CandoUe admits this for plants, and Wollaston for insects. New 
Zealand, for instance, with its lofty mountains and diversified 
stations, extending over 780 miles of latitude, together with the 
outlying islands of Auckland, Campbell and Chatham, contain 
altogether cmly 960 kinds of flowering plants ; if we compare this 
moderate number with the species which swarm over equal areas in 
South- Western Australia or at the Cape of Good Hope, we must 
admit that some cause, independently of different physical con- 
ditions, has given rise to so great a difference in number. Even 
the uniform county of Cambridge has 847 plants, lyid the little 
island of Anglesea 764, but a few ferns and a few introduced 
plants are included in these numbers, and the comparison in some 
other respects is not quite fair. We have evidence that the barren 
island of Ascension aboriginally possessed less than half-a-dozen 
flowering plants ; yet maAy species have now become naturalised 
on it, as they have in New Zealand and on every other oceanic island 
which can be named. In St. Helena there is reason to believe that 
the naturalised plants and animals have nearly or quite exter- 
minated many native productions. He who admits the doctrine 



34 8 Inhabitants of Oceanic Islands, Chap. XIII. 

of the creation of each separate species, will have to admit that 
a sufficient number of the best adapted plants and animals were 
not created for oceanic islands ; for man has unintentionally stocked 
them far more fully and perfectly than did nature. 

Although in oceanic islands the species are few in number, the 
proportion of endemic kinds (t. 6. those found nowhere else in 
the world) is often extremely large. If we compare, for instance, 
the number of endemic landnshells in Madeira, or of endemic birds 
in the Galapagos Archipelago, with the number found on any 
continent, and then compare the area of the island with that of 
the continent, we shall see that this is true. This fact might 
have been theoretically expected, for, as already explained, species 
occasionally arriving after long intervals of time in a new and 
isolated district, and having to compete with new associates, would 
be eminently liable to modification, and would often produce groups 
of modified descendants. But it by no means follows that, because 
in an island nearly all the species of one class are peculiar, those of 
another class, or of another section of the same class, are peculiar; 
and this difference seems to depend partly on the species which are 
not modified having immigrated in a body, so that their mutual 
relations have not been much disturbed; and partly on the fre- 
quent arrival of unmodified immigrants from the mother-country^ 
with which the insular forms have intercrossed. It should be 
borne in mind that the offspring of such crosses would certainly 
gain in vigour ; so that even an occasional cross would produce 
more effect than might have been anticipated. I will give a few 
illustrations of the foregoing remarks: in the Galapagos Islands 
there are 26 land-birds ; of these 21 (or perhaps 23) are peculiar, 
whereas of the 11 marine birds only 2 are peculiar; and it is 
obvious that marine birds could arrive at these islands much more 
easily and frequently than land-birds. Bermuda, on the other 
hand, which lies at about the same distance from North America 
as the Galapagos Islands do from South America, and which has 
a very peculiar soil, does not possess a single endemic land-bird ; 
and we know from Mr. J. M. Jones's admirable account of Bermuda, 
that very many North American birds occasionally or even fre- 
quently visit this island. Almost every year, as I am informed 
by Mr. E. V. Harcourt, many European and African birds are 
blown to Madeira ; this island is inhabited by 99 kinds, of which 
one alone is peculiar, though very closely related to a European 
^forrn ; and three or four other species are confined to this island 
and to the Canaries. So that the Islands of Bermuda and Madeira 
have been stocked from the neighbouring continents with birds. 



Chap. XIII. Inhabitants of Oceanic Islands, 349 

whicli for long ages have there struggled together, and have 
become mutually co-adapted. Hence when settled in their new 
homes, each kind wUl have been kept by the others to its proper 
place and habits, and will consequently have been but little liable 
to modification. Any tendency to modification will also have been 
checked by intercrossing with the unmodified immigrants, often 
arriving from the mother-country. Madeira again is inhabited 
by a wonderful number of peculiar land-shells, wh^^as not one 
species of sea-shell is peculiar to its shores : now, though we do 
not know how sea-shells are dispersed, yet we can see that their 
eggs or larvae, perhaps attached to seaweed or floatiug timber, or to 
the feet of wading-birds, might be transported across three or four 
hundred miles of open sea far more easily than land-shells. The 
different orders of insects inhabiting Madeira present nearly parallel 
cases. 

Oceanic islands are sometimes deficient in animals of certain 
whole classes, and their places are occupied by other classes : thus 
in the Galapagos Islands reptiles, and in New Zealand gigantic 
wingless birds, take, or recently took, the place of manmials. 
Although New Zealand is here spoken of as an oceanic island, 
it is in some degree doubtful whether it should be so ranked ; it 
is of large size, and is not separated from Australia by a profoundly 
deep sea ; from its geological character and the direction of its 
mountain-ranges, the Bev. W. B. Clarke has lately maintaiued 
that this island, as well as New Caledonia, should be considered as 
sppurteDances of Australia. Turning to plants, Dr. Hooker has 
shown that in the Galapagos Islands the proportional numbers of 
the different orders are very different from what they are elsewhere. 
All such differences in number, and the absence of certain whole 
groups of animals and plants, are generally accounted for by sup- 
posed differences in the physical conditions of the islands ; but this 
explanation is not a little doubtful. Facility of immigration 
seems to have been fully as important as the nature of the con- 
ditions. 

Many remarkable little facts could be given with respect to the 
inhabitants of oceanic islands. For instance, in certain islands not 
tenanted by a single mammal, some of the endemic plants have 
beautifully hooked seeds; yet few relations are more manifest 
than that hooks serve for the transportal of seeds in the wool 
or fur of quadrupeds. But a hooked seed might be carried to 
an* island by other means ; and the plant then becoming mod^ed 
would form an endemic species, still retaining its hooks, which 
would form a useless appendage -like the shrivelled wings under 



350 Absence of Terrestrial Mammals Chap. xiii. 

the fioldered wing^-ooyers of many insular beetles. Again, ishuinbi 
often possess trees or bushes belonging to orders which elsewhere 
include only herbaceous species ; now trees, as Alph. de Candt^le 
has shown, generally hare, whatever the cause may be, confined 
ranges. Hence trees would be little lik^y to reach distant oceanic 
islands ; and an herbaceous plant, which had no chance of success* 
fully competing with the many fully developed trees growing on 
a continent, might, when established on an island, gain an advan- 
tige over other herbaceous plants by growing taller and taller and 
overtopping them. In this case, natural selection would tend to 
add to ^e stature of the plant, to whatever oi^der it belonged, and 
thiB first convert it into a bush and then into a tree. 

Ahwnte qf Batra4)hian8 and TerresirUd Ma/mmals <m Oceamc 

Idandi. 

With respect to the absence of whole orders of animals on oceanic 
islands, Bory Bt. Vincent long ago remarked that BatraohiaaiA 
(firogs, toads, newts) are never found on any of t^e many islands 
with wluch the great oceans are studded. I have taken pains to 
verify this asserticNa, and have found it true, with the exoeption 
of New Zealand, N«w Caledonia, the Andaman Islands, and |)er> 
haps the Salomon Islands and the Seychelles. But I have already 
remarked that it is doubtful whether New Zealand and New Gale- 
donia ought to be classed as oceanic islands ; and tius is still more 
doubtful with respect to the Andaman and Salomon groups and 
the Seychelles. This general absence of frogs, toads, and newts on 
so many true oceanic islands cannot be accounted for by their 
^ysical conditions : indeed it seems that islands are peculiarly 
fitted for these animals ; for firogs have been introduced into Ma- 
deira, the Azores, and Mauritius, and have multiplied so as to 
become a nuisance. But as these animals and their spawn are im- 
mediately killed (with the exception, as far as known, of one Indian 
species) by sea-water, there would be great difficulty in their trans- 
portal across the sea, and therefore we can see why they do not 
exist on strictly oceanic islands. But why, on the theory of crea- 
tion, they should not have been created there, it would be very 
difficult to explain. 

Mammals offer another and similar case. I have carefdlly searched 
the oldest voyages, and have not found a single instance, firee from 
doubt, of a terrestrial mammal (excluding domesticated animals 
kept by the natives) inhabiting an island situated above 300 miles 
from a continent or great continental island; and many islands 
situated at a much less distance are equally barren. The Falkland 



Chap. XIII. on Oceanic Islands, 351 

Islands, which are inhabited by a wolf-like fox, come nearest to an 
exception ; but this group cannot be considered as oceanic, as it 
lies on a bank in connection with the mainland at the distance of 
about 280 miles ; moreover, icebei^ formerly brought boulders to 
its western shores, and th^ may have formerly transported foxes, 
as now frequently happens in the arctic regions. Yet it cannot be 
said that small islands will not support at least small mammals, 
for they occur in many parts of the world on very small islands, 
when lying close to a continent; and hardly an island can be 
named on which our smaller quadrupeds have noli become natu- 
xaliBed and greatly multiplied. It cannot be said, on the ordinary 
view of creation, that there has not been time for the creation of 
mammals ; many volcanic islands are sufBciently ancient, as shown 
by the stupendous degradation which they have suffered, and by 
their tertiary strata : there has also been time for the production 
of endemic species belonging to other classes ; and on continents 
it is known that new species of mammals appear and disappear at 
a quicker rate than other and lower animals. Although terrestrial 
mammals do not occur on oceanic islands, aerial mammals do occur 
on almost every island. New Zealand possesses two bats found 
nowhere else in the world : Norfolk Island, the Yiti Archipelago, 
the Bonin Islands, the Caroline and Marianne Archipelagoes, and 
Mamitiua, all possess their peculiar bats. Why, it may be asked, 
has the supposed creative force produced bats and no other mam- 
mals on remote islands ? On my view this question can easily be 
answered ; for no terrestrial mammal can be transported across a 
wide space of sea, but bats can fly across. Bats have been seen 
wandering by day far over the Atlantic Ocean ; and two North 
American species either regularly or occasionally visit Bermuda, at 
tiie distance of 600 miles from the mainland. I hear from Mr. 
Tonses, who has specially studied this family, that many species 
have enormous ranges, and are found on continents and on far 
distant islands. Hence we have only to suppose that such wan- 
dering species have been modified in their new homes in relation 
to their new position, and we can understand the presence of 
endemic bats on oceanic islands, with the absence of all other 
terrestrial mammals. 

Another interesting relation exists, namely between the depth 
of the sea separating islands from each other or from the nearest 
continent, and the degree of affinity of their mammalian inha- 
bitants. Mr. Windsor Earl has made> some striking observations 
on this head, since greatly extended by Mr. Wallace's admirable 
researches, in regard to the great Malay Archipelago, which is 



352 A bsence of Terrestrial Mammals Chap. Xill. 

traversed near Celebes by a space of deep ocean, and this separates 
two widely distinct mammalian faunas. On either side the 'islands 
stand on a moderately shallow submarine bank, and these islands 
are inhabited by the same or by closely allied quadrupeds. I have 
not as yet had time to follow up this subject in all quarters of the 
world; but as far as I have gone, the relation holds good. For 
instance, Britain is separated by a shallow channel from Europe, 
and the mammals are the same on both sides ; and so it is with all 
the islands near the shores of Australia. The West Indian Islands, 
on the other hand, stand on a deeply submerged bank, nearly 1000 
fjEithoms in depth, and here we find American forms, but the species 
and even the genera are quite distinct. As the amount of modi- 
fication which animals of all kinds undergo, partly depends on the 
lapse of time, and as the islands which are separated from each 
other or from the mainland by shallow channels, are more likely 
to have been continuously united within a recent period than the 
islands separated by deeper channels, we can understand how it 
is that a relation exists between the depth of the sea separating 
two mammalian faunas, and the degree of their affinity, — ^a relation 
which is quite inexplicable on the theory of independent acts of 
creation. 

The foregoing statements in regard to the inhabitants of oceanic 
islands, — namely, the fewness of the species, with a large proportion 
consisting of endemic forms— the members of certain groups, but 
not those of other groups in the same class, having been modified — 
the absence of certain whole orders, as of batrachians and of ter- 
restrial mammals, notwithstanding the presence of aerial bats, — 
the singular proportions of certain orders of plants, — ^herbaceous 
forms having been developed into trees, &c., — seem to me to accord 
better with the belief in the efficiency of occasional means of trans- 
port, carried on during a long course of time, than with the belief 
in the former connection of all oceanic islands with the nearest 
continent ; for on this latter view it is probable that the various 
classes would have immigrated more uniformly, and from the 
species having entered in a body their mutual relations would not 
have been much disturbed, and consequently they would either have 
not been modified, or all the species in a more equable manner. 

I do not deny that there are many and serious difficulties in 
understanding how many of the inhabitants of the more remote 
islands, whether still retaining the same specific form or subs^ 
quently modified, have reached their present homes. But the 
probability of other islands having once existed as halting-places, 
of which not a wreck now remains, must not be overlooked. I will 



Chap. xiii. on Oceanic Islands. 353 

specify one difficult case. Almost all oceanic islands, even the 
most isolated and smallest, are inhabited by land-shells, generally 
by endemic species, but sometimes by species found elsewhere, — 
striking instances of which have been given by Dr. A. A. Gould 
in relation to the Pacific. Now it is notorious that land-shells 
are easily killed by sea- water ; their eggs, at least such as I have 
tried, sink in it and are killed. Tet there must be some unknown, 
but occasionally efficient means for their transportal. Would the 
just-hatched young sometimes adhere to the feet of birds roosting 
on the ground, and thus. get transported ? It occurred to me that 
land-shells, when hybemating and having a membranous diaphragm 
over the mouth of the shell, might be floated in chinks of drifted 
timber across moderately wide arms of the sea. And I find that 
several species in this state withstand uninjured an immersion in 
sea-water during seven days : one shell, the Helix pomatia, after 
having been thus treated and again hybemating was put into sear 
water for twenty days, and perfectly recovered. During this length 
of time the shell might have been cieirried by a marin<e current of 
average swiftness, to a distance of 660 geographical miles. As 
this Helix has a thick calcareous operculum, I removed it, and 
when it had formed a new membranous one, I again immersed it 
for fourteen days in sea-water, and again it recovered and crawled 
away. Baron Aucapitaine has since tried similar experiments : he 
placed 100 land-shells, belonging to ten species, in a box pierced 
with holes, and immersed it for a fortnight in the sea. Out of the 
hundred shells, twenty-seven recovered. The presence of an oper- 
culum seems to have been of importance, as out of twelve specimens 
of Cyclostoma elegans, which is thus furnished, eleven revived. It 
is remarkable, -seeing how well the Helix pomatia resisted with me 
the salt-water, that not one of fifty-four specimens belonging to 
four other species of Helix tried by Aucapitaine, recovered. It is, 
however, not at all probable that land-shells have often been thus 
transported ; the feet of birds offer a more probable method. 

On the Belations of the Inhabitants of Islands to those of the 

nearest Mainland, 

The most striking and important fact for us is the affinity of the 
species which inhabit islands to those of the nearest mainland, 
without being actually the same. Numerous instances could be 
given. The Galapagos Archipelago, situated under the equator, 
lies at the distance of between 600 and 600 miles from the shores 
of South America.* Here almost every product of the land and of 
the water bears the unmistakeable stamp of the American continent. 

2 A 



354 Relatiofis of tJie Inhabitants of Chap. xiii. 

There are twenty-six land-birds ; of these, twenty-one or perhaps 
twenty-three are ranked as distinct species, and would commonly be 
assumed to have been here created ; yet the close affinity of most 
of these birds to American species is manifest in every charactei;, 
in their habits, gestures, and tones of voice. So it is with the other 
animals, and with a large proportiou of the plants, as shown by 
Dr. Hooker in his admirable Flora of this archipelago. The natu- 
ralist, looking at the Inhabitants of these volcanic islands in the 
Pacific, distant several himdred miles from the continent, feels that 
he is standing on American land. Why should this be so ? why 
should the species which are supposed to have been created in 
the Galapagos Archipelago, and nowhere else, bear so plainly the 
stamp of affinity to those created in America ? There is nothing 
in the conditions of life, in the geological nature of the islands, in 
their height or climate, or in the proportions in which the several 
classes are associated together, which closely resembles the con- 
ditions of the South American coast : in fact, there is a consider- 
able dissimilarity in all these respects. On the other hand, there 
is a considerable degree of resemblance in the volcanic nature of 
the soil, in the climate, height, and size of the islands, between the 
Galapagos and Cape de Verde Archipelagoes : but what an entire 
and absolute difference in their inhabitants ! The inhabitants of 
the Cape de Verde Islands are related. to those of Africa, like those 
of the Galapagos to America. Facts such as these, admit of no 
sort of explanation on the ordinary view of independent creation; 
whereas on the view here maintained, it is obvious that the Gala- 
pagos Islands would be likely to receive colonists from America, 
whether by occasional means of transport or (though I do not 
believe in this doctrine) by formerly continuous land, and the Cape 
de Verde Islands from Africa; such colonists would be liable 
to modification, — the principle of inheritance still betraying their 
original birthplace. 

Many analogous facts could be given: indeed it is an almost 
universal rule that the endemic productions of islands are related 
to those of the nearest continent, or of the nearest large island. 
The exceptions are few, and most of them can be explained. 
Thus although Kerguelen Land stands nearer to Africa than to 
America, the plants are related, and that very closely, as we know 
from Dr. Hooker's account, to those of America : but on the view 
that this island has been mainly stocked by seeds brought with 
earth and stones on icebergs, drifted by the prevailing currents, 
this anomaly disappears. New Zealand in its endemic plants is 
much more closely related to Australia, the nearest mainland, thau 



Chap. XIII. Islands to those of the Mainland, 355 

to any other region : and this is what might have been expected ; 
but it is also plainly related to South America, which, although 
the next nearest continent, is so enormously remote, that the fact 
becomes an anomaly. But this difficulty partially disappears on 
the view that New Zealand, South America, and the other southern 
lands have been stocked in part from a nearly intermediate though 
distant point, namely from the antarctic islcmds, when they were 
clothed with vegetation, during a warmer tertiary period, before the 
commencement of the last Glacial period. The affinity, which 
though feeble, I am assured by Dr. Hooker is real, between the flora 
of the south-western comer of AustraUa and of the Cape of Good 
Hope, is a far more remarkable case ; but this affinity is confined 
to the plants, and will, no doubt, some day be explained. 

The same law which has determined the relationship between 
the inhabitants of islands and the nearest mainland, is sometimes 
displayed on a small scale, but in a most interesting manner, 
within the limits of the same archipelago. Thus each separate 
island of the Galapagos Archipelago is tenanted, and the fact is a 
marvellous one, by many distinct species: but these species are 
related to each other in a very much closer manner than to the 
inhabitants of the American continent, or of any other quarter 
of the world. This is what might have been expected, for islands 
itituated so near to each other would almost necessarily receive im- 
migrants from the same original source, and from each other. But 
how is it that many of the immigrants have been differently 
modified, though only in a small d^ree, in islands situated within 
sight of each other, having the same geological nature, the same 
height, climate, &c. ? This long appeared to me a great difficulty ; 
but it arises in chiefpart from the deeply-seated error of considering 
the physical conditions of a country as the most important ; whereas 
it cannot be disputed that the nature of the other species with 
which each has to compete, is at least as important, and generally 
a far more important element of success. Now if we look to the 
species which inhabit the Galapagos Archipelago and are like- 
wise found in other parts of the world, we find that they difler 
considerably in the several islands. This difieience might indeed 
have been expected if the islands have been stocked by occasional 
means of transport — a seed, for instance, of one plant having been 
brought to one island, and that of another plant to another island, 
though all proceeding from the same general source. Hence, when 
in former times an immigrant first settled on one of the islands, 
or when it subsequently spread from one to another, it would 
undoubtedly be exposed to different conditions in the different 

2 A 2 



3S6 Relations of the Inhabitants of Chap. XIII. 

— I' — ' 

islands, for it would have to compete with a different set of 
organisms ; a plant for instance, wonld find the ground best fitted 
for it occupied by somewhat different species in the different 
islands, and would be exposed to the attacks of somewhat dif- 
ferent enemies. If then it varied, natural selection would probably 
favour different varieties in the different islands. Some species, 
however, might spread and yet retain the same character through- 
out the group, just as we see some species spreading widely 
throughout a continent and remaining the same. 

The really surprising fact in this case of the Galapagos Archipe- 
lago, and in a lesser degree in some analogous cases, is that each 
new species after being formed in any one island, did not spread 
quickly to the other islands. But the islands, though in sight of 
each other, are separated by deep arms of the sea, in most cases 
wider than the British Channel, and there is no reason to suppose 
that they have at any former period been continuously united. 
The currents of the sea are rapid and sweep between the islands, 
and gales of wind are extraordinarily rare ; so that the islands are 
far more effectually separated from each other than they appear on 
a map. Nevertheless some of the species, both of those found in 
other parts of the world and of those confined to the arc|iipeIago, 
are common to the several islands ; and we may infer from their 
present manner of distribution, that they have spread from one 
island to the others. But we often take, I think, an erroneous view 
of the probability of closely-allied species invading each other*s 
territory, when put into free intercommunication. Undoubtedly, if 
one species has any advantage over another, it will in a very brief 
time wholly or in part supplant it ; but if both are equally well fitted 
for their own places, both will probably hold their separate places 
for almost any length of time. Being familar with the fact that 
many species, naturalised through man's i^ency, have spread with 
astonishing rapidity over wide areas, we are apt to infer that moat 
species would thus spread ; but we should remember that the species 
which become naturalised in new countries are not generally closely 
allied to the aboriginal inhabitants, but are very distinct forms, 
belonging in a large proportion of cases, as shown by Alph. de 
Candolle, to distinct genera. In the Galapagos Archipelago, many 
even of the birds, though so well adapted for flying from island 
to island, differ on the different islands; thus there are three 
closely-allied species of mocking-thrush, each conBned to its own 
island. Now let us suppose the mocking-thrush of Chatham 
Island to be blown to Charles Island, which has its own mocking- 
thrush; why should it succeed in establishing itself there? We 



Crap. XIII. Islands to those of the Mainland, 357 

may safely infer that Charles Island is well stocked with its own 
species, for annually more eggs are laid and young birds hatched, 
than can possibly be reared ; and we may infer that the mocking- 
thrush peculiar to Charles Island is at least as well fitted for its 
home as is the species peculiar to Chatham Island. Sir C. Lyell 
and Mr. Wollaston have communicated to me a remarkable fact 
beariTig on this subject ; namely, that Madeira and the adjoining 
islet of Porto Santo possess many distinct but representative 
species of land-shells, some of which live in crevices of stone ; 
and although large quantities of stone are annually transported 
from Porto Santo to Madeira, yet this Utter island has not become 
colonised by the Porto Santo species: nevertheless both islands 
have been colonised by European land-shells, which no doubt had 
some advantage over the indigenous species. From these con- 
siderations I think we need not greatly marvel at the endemic 
species which inhabit the several islands of the Galapagos Archi- 
I)elago, not having all spread from island to island. On the same 
continent, also, preoccupation has probably played an important 
part in checking the commingling of the species which inhabit 
different districts with nearly the same physical conditions. Thus, 
the south-east and south-west comers of Australia^have nearly the 
same physical conditions, and are united by continuous land, 
yet they are inhabited by a vast number of distinct mammals, 
birds, and plants ; 80 it is, according to Mr. Bates, with the butter- 
flies and other animals inhabiting the great, open, and continuous 
valley of the Amazons. 

The same principle which governs the general character of the 
inhabitants of oceanic islands, namely, the relation to the source 
whence colonists could have been most easily derived, tc^ether with 
their subsequent modification, is of the vHdest application through- 
out nature. We see this on every mountain-summit, in every lake 
and marsh. For Alpine species, excepting in as far as the same 
species have become widely spread during the Glacial epoch, are 
related to those of the surrounding lowlands; thus we have in 
South America, Alpine humming-birds, Alpine rodents, Alpine 
plants, &c., all strictly belonging to American forms ; and it is 
obvious that a mountain, as- it became slowly upheaved, would be 
colonised from the surrounding lowlands. So it is with the inha- 
bitants of lakes and marshes, excepting in so far as great £eu;ility 
of transport has allowed the same forms to prevail throughout 
large portions of the world. We see this same principle in the 
character of most of the blind animals inhabiting the caves of 
America and of Europe. Other analogous facts could be given. 



358 Relations of the Inhabitants of Chap. xili. 

It will, I believe, be found universally true, that wherever in two 
regions, let them be ever so distant, many closely allied or repre- 
sentative species occur, there will likewise be found some identical 
species; and wherever many closely-allied species occur, there will 
be found many forms which some naturalists rank as distinct 
species, and others as mere varieties ; these doubtful forms showing 
us the steps in the progress of modification. 

The relation between the power and extent of migration in 
certain species, either at the present or at some former period, and 
the existence at remote points of the world of closely-allied species, 
is shown in another and more general way. Mr. Gould remarked 
to me long ago, that in those genera of birds which range over the 
world, many of the species have very wide ranges. I can hardly 
doubt that this rule is generally tnie, though difficult of proof. 
Amongst mammals, we see it strikingly displayed in Bats, and 
in a lesser degree in the Felidae and CaniddB. We see the same 
rule in the distribution of butterflies and beetles. So it is with 
most of the inhabitants of fresli water, for many of the genera 
in the most distinct classes range over the world, and many of the 
species have enormous ranges. It is not meant that all, but that 
some of the species have very wide ranges in the genera which 
range very widely. Nor is it meant that the species in STich 
genera have on an average *a very wide range; for this will 
largely depend on how far the process of modification has gone; 
for instance, two varieties of the same species inhabit America 
and Europe, and thus the species has an immense range ; but, if 
variation were to be carried a little further, the two varieties would 
be ranked as distinct species, and their range would be greatly 
reduced. * IStill less is it meant, that species which have the 
capacity of crossing barriers and ranging widely, as in the case 
of certain powerfully-winged birds, will necessarily range widely ; 
for we should never forget that to range widely implies not only 
the power of crossing barriers, but the more important power of 
being victorious in distant lands in the struggle for life with 
foreign associates. But according to the view that all the species 
of a genus, though distributed to the most remote points of the 
world, are descended from a single progenitor, we ought to find, 
Itnd I believe as a general rule we do find, that some at least of 
the species range very widely. 

We should bear in mind that many genera in all classes are of 
ancient origin, and the species in this case will have had ample 
time for dispersal and subsequent modification. There is also 
reason to believe from geological evidence, that within each great 



I 



Chap. XIII. Islands to those of the Mainland, 359 

class the lower organisms change at a slower rate than the higher ; 
consequently they will have had a better chance of ranging widely 
and of still retaining the same specific character. This fact, 
together with that of the seeds and eggs of most lowly organised 
forms being very minute and better fitted for distant transportal, 
probably accounts for a law which has long been observed, and 
which has lately been discussed by Alph. de Candolle in regard to 
plants, namely, that the jower any group of organisms stands, the 
more widely it ranges. 

The relations just discussed,:— namely, lower organisms ranging 
more widely than the higher, — some of the species of widely- 
ranging genera themselves ranging widely, — such facts, as alpine, 
lacustrine, and marsh productions being generally related to those 
which live on the surrounding low lands and dry lands, — the 
striking relationship between the inhabitants of islands and those 
of the nearest mainland-^the still closer relationship of the distinct 
inhabitants of the islands in the same archipelago — are inexplicable 
on the ordinary view of the independent creation of each species, 
but are explicable if we admit colonisation from the nearest or 
readiest source, together with the subsequent adaptation of the 
colonists to their new homes. 

Summary of the last and present Chapters, 

In these chapters I have endeavoured to show, that if we make 
due allowance for our ignorance of the full effects of changes of 
climate and of the level of the land, which have certainly occurred 
within the recent period, and of other changes which have probably 
occurred, — if we remember how ignorant we are with respect to the 
many curious means of occasional transport, — if we bear in mind, 
and this is a very important consideration, how often a species 
may have ranged continuously over a wide area, and then have 
become extinct in the intermediate tracts, — the difficulty is not 
insuperable in believing that all the individuals of the same 
species, wherever found, are descended, from common parents. 
And we are led to this conclusion, which has been arrived at by 
many naturalists under the designation of single centres of creation, 
by various general considerations, more especially from the import- 
ance of barriers of all kinds, and from the analogical distribution of 
sub-genera, genera, and families. 

With respect to distinct species belonging to the same genus, 
which on our theory have spread from one parent-source ; if we 
make the same allowances as before for our ignorance, and re- 
member that some forms of life have changed very slowly, 



36b Summary of the Chap. XIH. 

enonnoTis periods of time having been thus granted for their 
migration, the difficulties are far from insuperable; though in 
this case, as in that* of the individuals of the same species, they 
are often great. 

As exemplifying the effects of dimatal changes on distribution, 
I have attempted to show how important a part the last Glacial 
period has played, which affected even the equatorial regions, 
and which, during the alternations of the cold in the north and 
south, allowed the productions of opposite hemispheres to mingle, 
and left some of them stranded on the mountain-summits in all 
parts of the world* As showing how diversified are the means 
of occasional transport, I have discussed at soma little length the 
means of dispersal of fresh-water productions. 

If the difficulties be not insuperable in admitting that in the 
long course of time all the individuals of the same species, and 
likewise of the several species belonging to the same genus, have 
proceeded from some one source ; then all the grand leading facts 
of geographical distribution are explicable on the theory of 
migration, together with subsequent modification and the multipli- 
cation of new forms. We can^thus understand the high importance 
of barriers, whether of land or water, in not only separating, but in 
apparently forming the several zoological and botanical provinces. 
We can thus understand the concentration of related species within 
the same areas ; and how it is that under different latitudes, for 
instance in South America, the inhabitants of the plains and 
mountains, of the forests, marshes, and deserts, are linked together 
in so mysterious a manner, and are likewise linked to the extinct 
beings which formerly inhabited the same continent. Bearing in 
mind that the mutual relation of organism to organism is of the 
highest importance, we can see why two areas having nearly the 
same physical conditions should often be inhabited by very different 
forms of life ; for according to the length of time which has elapsed 
since the colonists entered one of the regions, or both ; according 
to the nature of the communication which allowed certain forms 
and not others to enter, either in greater or lesser numbers ; accord- 
ing or not, as those which entered happened to come into more or 
less direct competition with each other and with the aborigines ; 
and according as the immigrants were capable of varying more or 
less rapidly, there would ensue in the two or more regions, inde- 
pendently of their physical conditions, infinitely diversified con- 
ditions of life, — ^there would be an almost endless amount of organic 
action and reaction, — and we should find some groups of beings 
greatly, and some only slightly modified, — some developed in great 



Chap. Xlll. last and present Chapters, 36 1 

force, some existing in scanty numbers — and this we do find in 
the several great geographical provinces of the world. 

On these same principles we can understand, as I have endea- 
voured to show, why oceanic islands should have few inhabitants, 
but that of these, a large pix^portion should be endemic or peculiar ; 
and why, in relation to the means of migration, one group of beings 
should have all its species peculiar, and another group, even within 
the same class, should have aU its species the same with those in 
an adjoining quarter of the world. We can see why whole groups 
of organisms, as batrachians and terrestrial mammals, should be 
absent from oceanic islands, whilst the most isolated islands should 
possess their own peculiar species of aerial mammals or bats. We 
can see why, in islands, there should be some relation between the 
presence of mammals, in a more or less modified condition, and 
the depth of the sea between such islands and the mainland. We 
can clearly see why all the inhabitants of an archipelago, though 
specifically distinct on the several islets, should be closely related 
to each other ; and should likewise be related, but less closely, to 
those of the nearest continent, or other source whence inmiigrants 
might have been derived. We can see why, if there exist very 
closely allied or representative species in two areas, however distant 
from each other, some identical species will almost always there be 
found. 

As the late Edward Forbes often insisted, there is a striking 
parallelism in the laws of life throughout time and space ; the laws 
governing the succession of forms in past times being nearly the 
same with those governing at the present time the differences in 
different areas. We see this in many feu^ts. The endurance of each 
species and group of species is continuous in time ; for the apparent 
exceptions to the rule are so few, that they may fairly be attributed 
to our not having as yet discovered in an intermediate deposit certain 
forms which are absent in it, but which occur both above and 
below : so in space, it certainly is the general rule that the area in- 
habited by a single species, or by a group of species, is continuous, 
and the exceptions, which are not rare, may, as I have attempted 
to show, be accounted for by former migrations under different cir- 
cumstances, or through occasional means of transport, or by the 
species having become extinct in the intermediate tracts. Both 
in time and space, species and groups of species have their points 
of maximum development. Groups of species, living during the 
same period of time, or living within the same area, are often 
characterised by trifling features in -common, as of sculpture or 
colour. In looking to the long succession of past ages, as in 



362 Summary, Chap. XIU. 



looking to distant pro'vinces throughout the world, we find that 
species in certain classes differ little from each other, whilst those 
in another class, or only in a different section of the same order, 
differ greatly from each other. In both time and space the lowly 
organised members of each class generally change less than the 
highly organised ; but there are in both cases marked exceptions 
to the rule. According to our theory, these several relations 
throughout time and space are intelligible ; for whether we look to 
the allied forms of life which have changed during successive ages, 
or to those which have changed after having migrated into distant 
quarters, in both cases they are connected by the same bond of 
ordinary generation ; in both cases the laws of variation have been 
the same, and modifications have been accumulated by the same 
means of natural selection. 



Ciup. XIV. Classification. 363 



OHAPTEE XIV. 

Mutual Affinities of Organic Beings : Morphology : 
Embryology : Eudimentary Organs. 

Classification, groups subordinate to groups — Natural system — Hales 
and difficulties in classification, explained on the theory of descent with 
modification — Classification of varieties — Descent always used in 
classification — Analogical or adaptive characters — Affinities, general, 
complex, and radiating — Extinction separates and defines groups-— 
Morphology, between members of the same class, between parts of 
the same individual — Embryology, laws of, explained by variations 
not supervening at an early age, and being inherited at a corresponding 
age — Rudimentary organs ; their origin explained — Summary. 

ClassificxiHon, 

From the most remote period in the history of the world organic 
beings have been found to resemble each other, in descending de- fc 
grees, so that they can be classed in groups under groups. This | 
classification is not arbitrary like the grouping of the stars in 
constellations. The exisience of groups would have been of simple 
significance, if one group had been exclusively fitted to inhabit the 
land, and another the water ; one to feed on flesh, another on. vege- 
table matter, and so on ; but the case is widely different, for it is \ 
notorious how commonly members of even the same sub-group have \ 
diflerent habits. In the second and fourth chapters, on Variation ' 
and on Natural Selection, I have attempted to show that within each 
country it is the widely ranging, the much diffused and common, 
that is the dominant species, belonging to the larger genera in each 
class, which vary most. The varieties, or incipient species, thus 
produced, ultimately become converted into new and distinct 
species ; and these, on the principle of inheritance, tend to produce 
other new and dominant species. Consequently the groups which 
are now large, and which generally include many dominant species, 
tend to go on increasing in size. I further attempted to show that 
from the varying descendants of each species trying to occupy as 
many and as different places as possible in the economy of nature, 
they constantly tend to diverge in character. This latter conclusion 



364 Classification. Chap. xiv. 

is supported by observing the great diversity of forms which, in any 
small area, come into the closest competition, and by certain facts 
in naturalisation. 

I attempted also to show that there is a steady tendency in the 
forms which are increasing in number aiid diverging in character, 
to supplant and exterminate the preceding, less divergent and* less 
improved forms. I request the reader to turn to the diagram 
illustrating the action, as formerly explained, of these several 
principles ; and he will see that the inevitable result is, that the 
modified descendants proceeding from one progenitor become broken 
up into groups subordinate to groups. In the diagram each letter 
on the uppermost line may represent a genus including several 
species ; and the whole of the genera along this upper line form 
together one class, for all are descended from one ancient parent 
and, consequently, have inherited something in common. But the 
three genera on the left hand have, on this same principle, much in 
common, and form a sub-family, distinct from that containing the 
next two genera on the right hand, which diverged from a common 
parent at the fifth stage of descent. These five genera have also 
much in common, though less than when grouped in sub-families ; 
and they form a family distinct from that containing the three 
genera still farther to the right hand, which diverged at an earlier 
period. And all these genera, descended from (A), form an order 
distinct from the genera descended from (I). 80 that we here have 
many species descended from a single progenitor grouped into 
genera ; and the genera into sub-families, families, and orders, all 
under one great class. Ulie grand fact of the natural subordinatioa 
of organic beings in groups under groups, which, from its famili- 
arity, does not always sufiSciently strike us, is in my judgment thus 
explained. No doubt organic beings, like all other objects, can be _ 
classed in many ways, either artificially by single characters or more 
naturally by a number of characters. We know, for instance, that 
minerals and the elemental substances can be thus arranged. In 
this case there is of course no relation to genealogical succession, 
and no cause can at present be assigned for their falling into 
groups. But with organic beings the case is different, and the 
view above given accords with their natural arrangement in group 
under group ; and no other explanation has ever been attempted. 

Naturalists, as we have seen, try to arrange the species, genera, 
and families in each class, on what is called the Natural System. 
But what is meant by this system ? Some authors look at it merely 
as (I scheme for arranging together those living objects which are 
most alike, and for separating those which are most unlike ; or as 



Chap. XIV, Classification. 365 

an artificial method of enunciating, as briefly as possible, general 
propositions, — that is, by one sentence to give the characters 
common, for instance, to all mammals, by another those common 
to aU camivora, by another those common to the dog-genus, and 
then, by adding a single sentence, a full description is given of each 
kind of dog. The ingenuity and utility of this system are indispu- 
table. But many naturalists think that something more is meant 
by the Natural System ; they belieye that it reveals the plan of the 
Creator ; but unless it be specified whether order in time or space, 
or both, or what else is meant by the plan of the Creator, it seems 
to me that nothing is thus added to our knowledge. Expressions 
such as that fsimous one by Linnaeus, which we often meet with in 
a more or less concealed form, namely, that the characters do not 
make the genus, but that the genus gives the characters, seem to 
imply that some deeper bond is included in our classifications than 
mere resemblance. I believe that this is the case, and that commu- 
nity of descent —the one known cause of close similarity in organic 
beings — ^is the bond, which though observed by various degrees of 
modification, is partially revealed to us by our classifications. 

Let us now consider the rules followed in classification, and the 
difficulties which are encountered on the view that classification 
either gives some unknown plan of creation, or is simply a scheme 
for enunciating general propositions and of placing together the 
forms most like each other. It might have been thought (and was 
in ancient times thought) that those parts of the structure which 
determined the habits of life, and the general place of each being 
in the economy of nature, would be of very high importance in 
classification. Nothing can be more false. No one regards the 
external similarity of a mouse to a shrew, of a dugong to a whale, 
of a whale to a fish, as of any importance. These resemblances, 
though so intimately connected with the whole life of the being, 
are ranked as merely '* adaptive or analogical characters ; '* but to 
the consideration of these resemblances we shall recur. It may 
even be given as a general rule, that the less any part of the organ- \ 
isation is concerned with special habits, the more important it \ 
becomes for classification. As an instance : Owen, in speaking of 1 
the dugong, says, " The generative organs, being those which are 
most remotely related to the habits and food of an animal, I have 
always regarded as afibrding very clear indications of its true afiini- 
ties. We are least likely in the modifications of these organs to 
mistake a merely adaptive for an essential character." With plants 
how remarkable it is that the organs of vegetation, on which their 
nutrition and life depend, are of little signification ; whereas the 



» 

366 Classification, Chap. XI V^. 

organs of reproduction, with their product the seed and embryo, are 
of ()aramount importance ! So again in formerly discussing certain 

' morphological characters which are not functionally important, we 
have seen that they are often of the highest service in classification. 

|. This depends on their constancy throughout many allied groups ; 
and their constancy chiefly depends on any slight deviations not 

• having been preserved and accumulated by natural selection, which 
\ acts only on serviceable characters. 

• That the mere physiological importance of an organ does not 
determine its classificatory value, is almost proved by the fact, that 
in allied groups, in which the same organ, as we have every reason 
to suppose, has nearly the same physiological value, its classificatory 
value is widely different. No naturalist can have worked long at 
any group without being struck with this fact ; and it has been 
fully acknowledged in the writings of almost every author. It 
will suffice to quote the highest authority, Robert Brown, who, 
in speaking of certain organs in the Proteacag, says their generic 
importance, " like that of all their parts, not only in this, but, as I 
apprehend, in every natural family, is very unequal, and in some 
cases seems to be entirely lost.** Again, in another work he saya, 
the genera of the Connaracese "differ in having one or more 
ovaria, in the existence or absence of albumen, in the imbricate or 
valvular ajstivation. ,Any one of these characters singly is fre- 
quently of more than generic importance, though here even when 
all taken together they appear insufficient to separate Cnestis from 
Connarus.'* To give an example amongst insects : in one great di- 
vision of the Hymenoptera, the antennae, as Westwood has remarked, 
are most constant in structure ; in another division they differ much, 
and the differences are of quite subordinate value in classification ; 
yet no one will say that the antennae in these two divisions of the 
same order are of unequal physiological importance. Any number 
of instances could be given' of the varying importance for classi- 
fication of the same important organ within the same group of 
beings. 

Again, no one will say that rudimentary or atrophied organs are 
of high physiological or vital importance ; yet, undoubtedly, organs 
in this condition are often of much value in classification. No one 
will dispute that the rudimentary teeth in the upper jaws of young 
ruminants, and certain rudimentary bones of the leg, are highly 
serviceable in exhibiting the close affinity between ruminants and 
pachyderms. Robert Brown has strongly insisted on the fact that 
the position of the rudimentary florets is of the highest importance 
in the classification of the grasses. •' 



Chap. XIV. Classification. 367 

Nunoerous instances could be given of characters derived from 
parts which must be considered of very trifling physiological import- 
ance, but which are universally admitted as highly serviceable in 
the definition of whole groups. For instance, whether or not there 
is an open passage from the nostrils to the mouth, the only charac- 
ter, according to Owen, which absolutely distinguishes fishes and 
reptiles — ^the inflection of the angle of tlie lower jaw in Marsupials 
— the manner in which the wings of insects are folded — mere 
colour in certain Algad — mere pubescence on j>arts of the flower in 
grasses — ^the nature of the dermal covering, as hair or feathers, 
in the Vertebrata. If the Omithorhynchus had been covered with 
feathers instead of hair, this external and trifling character would 
have been considered by naturalists as an important aid in deter- 
mining the degree of affinity of this strange creature to birds. 

The importance, for classification, of trifling characters, mainly 
depends on their being correlated with many other characters of 
more or less importance. The value indeed of an aggregate of 
characters is very evident in natural history. Hence, as has often 
been remarked, a species may depart from its allies in several 
characters, both of high physiological importance, and of almost 
universal prevalence, and yet leave us in no doubt where it should 
be ranked. Hence, also, it has been found that a classification 
founded on any single character, however important that may be, 
has always fiiiled; for no part of the organisation is invariably 
constant. The importance of an aggregate of characters, even when 
none are important, alone explains the aphorism enunciated by 
Linnseus, namely, that the characters do not give the genus, but 
the genus gives the chai-acters; for this seems founded on the 
appreciation of many trifling points of resemblance, too slight to be 
defined. Certain plants, belonging to the MalpighiaceaB, bear 
perfect and degraded flowers ; in the latter, as A. de Jussieu has 
remarked, "the greater number of the characters proper to the 
species, to the genus, to the family, to the class, disappear, and thus 
laugh at our classification." When Aspicarpa produced in France, 
during several years, only these degraded flowers, departing so 
wonderfully in a number of the most important points of structure 
from the proper type of the order, yet M. Eichard sagaciously saw, 
as Jussieu. observes, that this genus should still be retained amongst 
the MalpighiaceaB. This case well illustrates the spirit of our 
classifications. 

' Practically, when naturalists are at work, they do not trouble 
themselves about the physiological value of the characters which 
lihey use in defining a group or in allocating any particular species. 



368 Classification, Chap. xiv. 

If they find a character nearly unifonn, and. common to a great 
number of forms, and not common to others, they use it as one of 
high value ; if common to some lesser number, they use it as of 
subordinate value. This principle has . been broadly confessed by 
some naturalists to be the true one ; and by none more clearly than 
by that excellent botanist, Aug. St. Hilaire. If several trifling cha- 
racters are always found in* combination, though no apparent bond 
of connection can be discovered between them, especial value is set 
on them. As in most groups of animals, important organs, such as 
those for propelling the blood, or for aerating it, or those for pro- 
pagating the race, are found nearly uniform, they are considered as 
highly serviceable in classification ; but in some groups all these, 
the most important vital organs, are found to offer characters of 
quite subordinate value. Thus, as Fritz Miiller has lately remarked, 
in the same group of crustaceans, Cypridina is furnished with a 
heart, whilst in two closely allied genera, namely Cypris and 
Gy therea, there is no such organ ; one species of Cypridina has well- 
developed branchiaB, whilst another species is destitute of them. 

We can see why characters derived from the embryo should be 

of equal importance with those derived from the adult, for a natural 

classification of course includes all ages. But it is by no means 

obvious, on the ordinary view, why the structure of the embryo 

should be more important for this purpose than that of the adult, 

which alone plays its full part in the economy of nature. Yet it 

I has been strongly urged by those great naturalists, Milne Edwards 

I and Agassiz, that embryological characters are the most important 

I of all ; and this doctrine has very generally been admitted as true. 

* Nevertheless, their importance has sometimes been exaggerated, 

owing to the adaptive characters of larvae not having been excluded ; 

in order to show this, Fritz Miiller arranged by the aid of such 

characters alone the great class of crustaceans, and the arrangement 

did not prove a natural one. But there can be no doubt that 

embryonic, excluding larval characters, are of the highest value 

for classification, not only with animals but with plants. Thus the 

main divisions of flowering plants are foimded on differences in 

the embryo,— K)n the number and position of the cotyledons, and on 

the mode of development of the plumule and radicle. We shall 

inmiediately see why these characters possess so high a value in. 

classification, namely, from the natural system being genealogical 

in its arrangement. 

\ Our classifications are often plainly influenced by chains of affini- 

? ties. Nothing can be easier than to define a number of characters 

^ common to all birds ; but with crustaceans, any such definition has 

V 

\ - - — . 



Chap. XIV. Classification. 369 

hitherto heen found impossible. There are crustaceans at the 
opposite eods of th^ series, which haye hardly a character in com- 
mon ; yet the species at both ends, from being plainly allied to 
others, and these to others, and so onwards, can be recognised as 
unequivocally belonging to this, and to no other class of the 
Articulata. 

Geographical distribution has often been used, though perhaps 
not quite logically, in classification, more especially in very large 
groups of closely allied forms. Temminck insists on the utility or 
even necessity of this practice in certain groups of birds ; and it has 
been followed by several entomologists and botanists. 

Finally, with respect to the comparative value of the various 
groups of species, such as orders, sub-orders, families, sub-families, 
and genera, they seem to be, at least at present, almost arbitrary. 
Several of the best botanists, such as Mr. Bentham and others, 
have strongly insisted on their arbitrary value. Instances could 
be given amongst plants and insects, of a group first ranked by 
practised naturalists as only a genus, and then raised to the rank of 
a sub-£ftmily or family ; and this has been done, not because further 
research has detected important structural differences, at first over- 
looked, but because numerous allied species with slightly different 
grades of difference, have been subsequently discovered. 

All the foregoing rules and aids and difficulties in classification 
may be explained, if I do not greatly deceive myself, on the view that 
the Natural System is founded on descent with modification ; — that 
the characters which naturalists consider as showing true affinity 
-between any two or more species, are those which have been in- 
herited firom a common parent, all true classification being genea- 
logical; — that community of descent is the hidden bond which 
naturalists have been unconsciously seeking, and not some unknown 
plan of creation, or the enunciation of general propositions, and the 
mere putting together and separating objects more or less alike. 

But I must explain my meaning more fully. I believe that the 
a/rrangement of the groups within each class, in due subordioation 
and relation to each other, must be strictly genealogical in order 
to be natural; but that the amount of difference in the several 
branches or groups, though allied in the same degree in blood to 
their common progenitor, may differ greatly, being due to the 
different degrees of modification which they have undergone ; and 
this is expressed by the forms being ranked under different genera, 
^ > fiamilies, sections, or orders. The reader will best understand what 
is meant, if he wi]^ take the trouble to refer to the diagram in the 
fourth chapter. We will suppose the letters A to L to represent 

2 B - 



\ 



370 Classification, Chap. XIV, 

allied genera existing during the Silurian epoch, and descended from 
some still earlier form. In three of these genera (A, F, and I), a 
species has transmitted modified descendants to the present day, 
represented by the fifteen genera (a" to 2^*) on the uppermost 
horizontal line. Kow all these modified descendants from a single 
species, are related in blood or descent in the same degree ; they 
may metaphorically be called cousins to the same millionth degree ; 
yet they differ widely and in different degrees from each other. The 
forms descended from A, now broken up into two or three families, 
constitute a distinct order from those descended from I, also broken 
up into two families. Nor can the existing species, descended from 
A, be ranked in the same genus with the parent A; or those 
from I, with the parent I. But the existing genus f" may be sup- 
posed to have been but slightly modified ; and it will then rank with 
the parent-genus F ; just as some few still living organisms belong 
to Silurian genera. So that the comparative value of the differences 
between these organic beings, which are all related to each other in 
the same degree in blood, has come to be widely different. Kever- 
theless their genealogical arrangement remains strictly true, not 
only at the present time, but at each successive period of descent. 
All the modified descendants from A will have inherited something 
in common from their common parent, as will all the descendants 
from I ; so will it be with each subordinate branch of descendants, 
at each successive stage. If, however, we suppose any descendant of 
A, or of I, to have become so much modified as to have lost all traces 
of its parentage, in this case, its place in the natural system will be 
lost, as seems to have occurred with some few existing organisms. 
All the descendants of the genus F, along its whole line of descent, 
are supposed to have been but little modified, and they form a single 
genus. But this genus, though much isolated, will still occupy its 
proper intermediate position. The representation of the groups, 
as here given in the diagram on a flat surface, is much too simple. 
The branches ought to have diverged in all directions. If the 
names of the groups had been simply written down in a linear 
series, the representation would have been still less natural ; and it 
is notoriously not possible to represent in a series, on a flat surface, 
the affinities which we discover in nature amongst the beings of the 
same group. Thus, the natural system is genealogical in its 
arrangement, like a pedigree : but the amount of modification which 
the different groups have undergone has to be expressed by ranking 
them under difierent so-called genera, sub-families, families, sections^ 
orders, and classes. 

It may be worth while to illustrate this view of classification, by 



I • 



Chap. XIV. Classification. 37 1 

taking the case of languages. If we possessed a perfect pedigree of 
mankind, a genealogical arrangement of the races of man would 
afford the best classification of the various languages now spoken 
throughout the world ; and if all extinct languages, and alir inter- 
mediate and slowly changing dialects, were to be included, such an 
arrangement would be the only possible one. Yet it might be that 
some ancient languages had altered very little and had given rise 
to few new languages, whilst others bad altered much owing to the 
spreading, isolation, and state of civilisation of the several co- 
descended races, and had thus given rise to many new dialects and 
languages. The various degrees of difference between the languages 
of the same stock, would have to be expressed by groups subordinate 
to groups ; but the proper or even the only possible aiTangement 
would still be genealogical ; and this would be strictly natural, as 
it would connect together all languages, extinct and recent, by the 
closest afSnities, and would give the filiation and origin of each 
tongue. 

In confirmation of this .view, let us glance at the classification of 
varieties, which are known or believed to be descended from a single 
species. These are grouped under the species, with the sub-varieties 
under the varieties; aud in some cases, as with the domestic 
pigeon, with several other grades of difference. Nearly the same 
rules are followed as in classifying species. Authors have insisted 
on the necessity of arranging varieties on a natural instead of an 
artificial system; we are cautioned, for instance, not to class two 
varieties of the pine-apple together, merely because their fruit, 
though the most important part, happens to be nearly identical ; 
no one puts the Swedish and common turnip together, though the 
esculent and thickened stems are so similar. Whatever part is 
found to be most constant, is used in classing varieties : thus the 
great agriculturist Marshall says the horns are very useful for this 
X)urpose with cattle, because they are less variable than the shape 
or colour of the body, &c. ; whereas with sheep the horns are much 
less serviceable, because less constant. In classing varieties, I ap- 
prehend that if we had a real pedigree, a genealogical classification 
would be universally preferred ; and it has been attempted in some 
cases. For we might feel sure, whether there had been more or 
less modification, that the principle of inheritance would keep the 
forms together which were allied in the greatest number of points. 
In tumbler pigeons, though some of the sub-varieties differ in the 
important character of the length of the beak, yet all are kept 
together from having the common habit of tumbling; but the 
short-faced breed has nearly or quite lost this habit : nevertheless, 

2 B 2 



372 Classification. Chap. xiv. 

without any thought on the subject, these tumblers are kept in 
the same group, because allied in blood and alike in some other 
respects. 

With species in a state of nature, every naturalist has in fact 
brought descent into his classification; for he includes in his 
lowest grade, that of species, the two sexes ; and how enormously 
these sometimes differ in the most important characters, is known 
to every naturalist: scarcely a single fact can be predicated in 
common of the adult males and hermaphrodites of certain cirri* 
pedes, and yet no one dreams of separating them. As soon as the 
I three Orchidean forms, Monachanthus, Myanthus, and Catasetum, 
which had previously been ranked as three distinct genera, were 
known to be sometimes produced on the same plant, they were 
inmiediately considered as varieties ; and now I have been able to 
show that they are the male, female, and hermaphrodite forms 
of the same species. The naturalist includes as one species the 
various larval stages of the same individual, however much they 
may differ from each other and from the adult, as well as the so- 
called alternate generations of Steenstrup, which can only in a 
•technical sense be considered as the same individual. He includes 
monsters and varieties, not from their partial resemblance to the 
parent-form, but because they are descended from it. 

As descent has universally been used in classing together the 
individuals of the same species, though the males and females 
and larvae are sometimes extremely different ; and as it has been 
used in classing varieties which have undergone a certain, and 
sometimes a considerable amount of modification, may not this 
same element of descent have been unconsciously used in grouping 
species under genera, and genera under higher groups, all under 
the so-called natural system ? I believe it has been unconsciously 
used ; and thus only can I understand the several rules and guides 
which have been followed by our best systematists. As we have 
no written pedigrees, we are forced to trace community of descent 
by resemblances of any kind. Therefore we choose those characters 
which are the least likely to have been modified, in relation to the 
conditions of life to which each species has been recently exposed. 
Rudimentary structures on this view are as good as, or even some- 
times better than, other parts of the organisation. We care not how 
trifling a character may be — let it be the mere inflection of the 
angle of the jaw, the manner in which an insect's wing is folded, 
whether the skin be covered by hair or feathers — if it prevail 
throughout many and different species, especially those h.\ving very 
different habits of life, it assumes high value ; for we can account 



/ 



Chap. XIV. A fialogical Resemblances, 373 

for its presence in so many forms with such different habits, only 
by inheritance from a common parent. We may err in this respect 
in regard to single points of stmcture, but when several characters, 
let them be ever so trifling, concur throughout a lai^ group of 
r beings having different habits, we may feel almost sure, on the 
I theory of descent, that these characters have been inherited from 
1 a common ancestor ; and we know that such aggregated characters 
' .have especial value in classification. * 

1 We can understand why a species or a group of species may 
depart from its allies, in several of its most important characteristics, 
and yet be safely classed with them. This may be safely done, and 
!b often done, as long as a sufficient number of characters, let them 
\be ever so unimportant, betrays the hidden bond of community 
lof descent. Let two forms have not a single character in com- 
*mon, yet, if these extreme forms are connected together by a chain 
of intermediate groups, we may at once infer their community of 
descent, and we put them all into the same class. As we find 
organs of high physiological importance — ^those which serve to 
preserve life under the most diverse conditions of existence — are 
generally the most constant, we attach especial value to them; 
but if these same organs, in another group or section of a group, 
are found to differ much, we at once value them less in our 
classification. We shall presently see why embryological cha- 
racters are of such high classificatory importance. Geographical 
distribution may sometimes be brought usefully into play in 
classing large genera, because all the species of the same genus, 
inhabiting any distinct and isolated region, are in all probability 
descended from the same parents. 

Analogical BesemhUmces, — ^We can understand, on the above 
views, the very important distinction between real affinities 
and analogical or adaptive resemblances. Lamarck first called 
attention to this subject, and he has been ably followed by 
Macleay and others. The resemblance in the shape of the body 
and in the fin-like anterior limbs between dugongs and whales, 
and between these two orders of mammals and fishes, are ana- 
logical. So is the resemblance between a mouse and a shrew-mouse 
(Sorex), which belong to different 'orders ; and the still closer 
resemblance, insisted on by Mr. Mivart, between the mouse and 
a small marsupial animal (Antechinus) of Australia. These latter 
resemblances may be accounted for, as it seems to me, by adapta- 
tion for similarly active movements through thickets and herbage, 
together with concealment from enemies. 

Amongst insects there are innumerable similar instances ; thus 



374 Classification. Chap. XIV. 

Liiinaeua, misled by external appearances, actually classed an 
homopteroufl insect as a moth. We see something of the same 
kind even with our domestic varieties, as in the strikingly similar 
shape of the body in the improved breeds of the Chinese and 
common pig, which are descended from distinct species; and in 
the similarly thickened stems of the common and specifically 
distinct Swedish turnip. The resemblance between the greyhound 
and the racehorse is hardly more fanciful than the analogies 
which have been drawn by some authors between widely different 
animals. 

On the view of characters being of real importance for classifi- 
cation, only in so far as they reveal descent, we can clearly under- 
stand why analogical or adaptive characters, although of the utmost 
importance to the welfare of the being, are almost valueless to the 
. systematist. For animals, belonging to two most distinct lines of 
• descent, may have become adapted to similar conditions, and thus 
\ have assumed a close external resemblance ; but such resemblances 
will not reveal — will rather tend to conceal their blood-relation- 
ship. We can thus also understand the apparent paradox, that 
the very same characters are analogical when one group is com- 
pared with another, but give true affinities when the membera of 
the same group are compared together: thus, the shape of the 
body and fin-like limbs are only analogical when whales are com- 
pared with fishes, being adaptations in both classes for swinmiing 
through the water; but between the several members of the 
whale family, the shape of the body and the fin-like limbs offer 
characters exhibiting true affinity ; for as these parts are so 
nearly similar throughout the whole family, we cannot doubt 
that they have been inherited from a common ancestor. So it is 
with fishes. 

Numerous cases could be given of striking resemblances in quite 
distinct beings between single parts or organs, which have been 
adapted for the same functions. A good instance is afforded by 
the close resemblance of the jaws of the dog and Tasmanian wolf 
or Thylacinus, — ^animals which are widely sundered in the natural 
system. But this resemblance is confined to general appearance, 
as in the promiDence of the canines, and in the cutting shape 
of the molar teeth. For the teeth really differ much : thus the dog 
has on each side of the upper jaw four pre-molars and only two 
molars ; whilst the Thylacinus has three pre-molars and four molars. 
The molars also differ much in the two animals in relative size 
and structure. The adult dentition is preceded by a widely dif- 
ferent milk dentition. Any one may of course deny that the teeth 



Chap. XIV. A^ialogical Resemblances. 375 



in either case have been adapted for tearing flesh, through the 
natural selection of successive variations; but if this be admitted 
in the one case, it is unintelligible to me that it should be denied 
in the other. I am glad to find that so high an authority as 
Professor Flower has come to this same conclusion. 

The extraordinary cases given in a former chapter, of widely 
different fishes possessing electric organs, — of widely different 
insects possessing luminous organs, — ^and of orchids and asclepiads 
having pollen-masses with viscid discs, come under this same head 
of analogical resemblances. But these cases are so wonderful that 
they were introduced as difficulties or objections to our theory. 
In all such cases some fundamental difference in the growth or 
development of the parts, and generally in their matured structure, 
can be detected. The end gained is the same, but the means, 
though appearing superficially to be the same, are essentially dif- 
ferent. The principle formerly alluded to under the term of ana^ 
logical variation has probably in these cases often come into play; 
that is, the members of the same class, although only distantly 
allied, have inherited so much in common in their constitution, 
that they are apt to vary under similar exciting causes in a similar 
manner ; and this would obviously aid in the acquirement through 
natural selection of parts or organs, strikingly like each other, inde- 
pendently of their direct inheritance from a common progenitor. 

As species belonging to distinct classes have often been adapted 
by successive slight modifications to live under nearly similar 
circumstances, — to inhabit, for instance, the three elements of land, 
air, and water, — ;we can perhaps understand how it is that a 
numerical parallelism has sometimes been observed between the 
sub-groups of distinct classes. A naturalist, struck with a paral- 
lelism of this nature, by arbitrarily raising or sinking the value 
of the groups in several classes (and all our experience shows that 
their valuation is as yet arbitrary), could easily extend the paral- 
lelism over a wide range ; and thus the septenary, quinary, quater- 
nary and ternary classifications have probably arisen. 

There is another and curious class of cases in which close external 
resemblance does not depend on adaptation to similar habits of life, 
but has been gained for the sake of protection. I allude to the 
wonderful manner in which certain butterflies imitate, as first 
described by Mr. Bates, other and quite distinct species. This 
excellent observer has shown that in some districts of S. America, 
where, for instance, an Ithomia abounds in 'gaudy swarms, another 
butterfly, namely, a Leptalis, is often found mingled in the same 
flock; and the latter so closely resembles the Ithomia in every 



3/6 Classification. Chap. XIV. 

shade and stripe of colour and even in the shape of its wings, that 
Mr. Bates, with his eyes sharpened by collecting during eleven 
years, was, though always on his guard, continually deceived. 
When the mockers and the mocked are caught and compared, 
they are found to be very different in essential structure, and to 
belong not only to distinct genera, but often to distinct families. 
Had this mimicry occurred in only one or two instances, it might 
have been passed over as a strange coincidence. But, if we proceed 
from a district where one Leptalis imitates an Ithomia, another mock- 
ing and mocked species belonging to the same two genera, equally 
clQse in their resemblance, may be found. Altogether no less than 
ten genera are enumerated, which include species that imitate 
other butterflies. The mockers and mocked always inhabit the 
same region; we never find an imitator living remote from the 
form which it imitates. The mockers are almost invariably rare 
insects ; the mocked in almost every case abound in swarms. In 
the same district in which a species of Leptalis closely imitates 
an Ithomia, there are sometimes other Lepidoptera mimicking the 
same Ithomia : so that in the same place, species of three genera 
of butterflies and even a moth are found all closely resembling 
a butterfly belonging to a fourth genus. It deserves especial notice 
that many of the mimicking forms of the Leptalis, as well as of the 
mimicked forms, can be shown by a graduated series to be merely 
varieties of the same species ; whilst others are undoubtedly distinct 
species. But why, it may be asked, are certain forms treated as 
the mimicked and others as the mimickers? Mr. Bates satis- 
factorily answers this question, by showing that the form which 
is imitated keeps the usual dress of the group to which it belongs, 
whilst the counterfeiters have changed their dress and do not 
resemble their nearest allies. 

We are next led to inquire what reason can be assigned for 
certain butterflies and moths so often assuming the dress of another 
and quite distinct form ; why, to the perplexity of naturalists, has 
nature condescended to the tricks of the stage ? Mr. Bates has, 

' no doubt, hit on the true explanation. The mocked forms, which 
always abound in numbers, must habitually escape destruction tu 

/ a large extent, otherwise they could not exist in such swarms ; 
and a large amount of evidence has now been collected, showing 
that they are distasteful to birds and other insect-devouring animals. 
The mocking forms, on the other hand, that inhabit the same 
district, are comparatively rare, and belong to rare groups; hence 
they must suffer habitually from some danger, for otherwise, from 
the number of eggs laid by all butterflies, they would in three or 



Chap. XIV. Analogical Resemblances. 377 

four generations swarm over the whole country. Now if a member 
of one of these persecuted and rare groups were to assume a dress 
so like that of a well-protected species that it continually deceived 
the practised eyes of an entomologist, it would often deceive pre- 
daceous birds and insects, and thus often escape destruction. Mr. 
Bates may almost be said to have actually witnessed the process 
by which the mimickers have come so closely to resemble the 
mimicked ; for he found that some of the forms of Leptalis which 
mimic so many other butterflies, varied in an extreme degree. In 
one district several varieties occurred, and of these one alone 
resembled to a certain extent, the common Ithomia of the same 
district. In another district there were two or three varieties, one 
of which was much commoner than the others, and this closely 
mocked another form of Ithomia. From facts of this nature, 
Mr. Bates concludes that the Leptalis first varies ; and when a 
variety happens to resemble in some degree any common butterfly 
inhabiting the same district, this variety, irom its resemblance to 
a flourishing and little-persecuted kind, has a better chance of 
escaping destruction from predaceous birds and insects, and is 
consequently oftener preserved ; — " the less perfect degrees of re- 
semblance being generation after generation eliminated, and only 
the others left to propagate their kind." So that here we have an 
excellent illustration of natural selection. 

Messrs. Wallace and Trimen have likewise described several 
equally striking cases of imitation in the Lepidoptera of the Malay 
Archipelago and Africa, and with some other inserts. Mr. Wallace 
has also detected one such case with birds, but we have none with 
the larger quadrupeds. The much greater frequency of imitation 
with insects than with other animals, is probably the consequence 
of their small size ; insects cannot defend themselves, excepting 
indeed the kinds furnished with a sting, and I have never heard of 
an instance of such kinds mocking other insects, though they are 
mocked; insects cannot easily escape by flight from the larger 
animals which prey on them ; hence they are reduced, like most 
weak creatures, to trickery and dissimulation. 

It should be observed that the process of imitation probably never 
commenced between forms widely dissimilar in colour. But starting 
with species already somewhat like each other, the closest resem- 
blance, if beneficial, could readily be gained by the above means ; 
and if the imitated form was subsequently and gradually modified 
through any agency, the imitating form would be led along the 
s&me track, and thus be altered to almost any extent, so that it 
might ultimately assume an appearance or colouring wholly unlike 



3/3 Classification, Chap. xiv. 

that of the other members of the family to which it belonged. 
There is, however, some diflSculty on this head, for it is necessary 
to suppose in some cases that ancient members belonging to several 
distinct groups, before they had diverged to their present extent, 
accidentally resembled a member of another and protected group 
in a sufficient degree to afford some slight protection ; this having 
given the basis for the subsequent acquisition of the most perfect 
resemblance. 

On the Nature of the Affinities connecting Organic Beings. — As 
the modified descendants of dominant species, belonging to the 
Urger genera, tend to inherit the advantages which made the groups 
to which they belong large and their parents dominant, they are 
almost sure to spread widely, and to seize on more and more places 
in the economy of nature. The larger and more dominant groups 
within each class thus tend to go on increasing in size ; and they 
consequently supplant many smaller and feebler groups. Thus we 
can account for the fact that all organisms, recent and extinct, are 
included under a few great orders, and under still fewer classes. As 
showing how few the higher groups are in number, and how widely 
they are spread throughout the world, the fact is striking that the 
discovery of Australia has not added an insect belonging to a new 
class ; and that in the vegetable kingdom, as I learn from Dr. Hooker, 
it has added only two or three families of small size. 

In the chapter on Geological Succession I attempted to show, on 
the principle of each group having generally diverged much in 
character during the long-continued process of modification, how it 
is that the more ancient forms of life often present characters in 
some degree intermediate between existing groups. As some few of 
the old and intermediate forms have transmitted to the present day 
descendants but little modified, these constitute our so-called 
osculant or aberrant species. The more aberrant any form is, the 
greater must be the number of connecting forms which have been 
exterminated and utterly lost. And we have some evidence of 
aberrant groups having suffere*! severely from extinction, for they 
are almost always represented by extremely few species ; and such 
species as do occur are generally very distinct from each other, 
which again implies extinction. The genera Omithorhynchus and 
Lepidosiren, for example, would not have been less aberrant had 
each been represented by a dozen species, instead of as at present 
by a single one, or by two or three. We can, I think, account for 
this fact only by looking at aberrant groups as forms which have 
been conquered by more successful competitors, with a few members 
still preserved under unusually favourable conditions. 



Chap. XIV. Affinities connecting Organic Beings. 379 

Mr. Waterhouse has remarked that, when a member beloDgiug 
to one group of animals exhibits an affinity to a quite distinct 
group, this affinity in most cases is general and not special ; thus, 
according to Mr. Waterhouse, of all Eodents, the bizcacha is most 
nearly related to Marsupials ; but in the points in which it ap- 
proaches this order, its relations are general, that is, not to any one 
marsupial species more than to another. As these points of affinity 
are believed to be real and not merely adaptive, they must be due 
in accordance with our view to inheritance from a common progeni- 
tor. Therefore we must suppose either that all Bodents, including 
the bizcacha, branched off from some ancient Marsupial, which will 
naturally have, been more or less intermediate in character with 
respect to all existing Marsupials ; or that both Rodents and Marsu- 
pials branched off from a common progenitor, and that both groups 
have since undergone much modification in divergent directions. 
On either view we must suppose that the bizcacha has retained, 
by inheritance, more of the characters of its ancient progenitor than 
have other Rodents ; and therefore it will not be specially related 
to any one existing Marsupial, but indirectly to all or nearly all 
Marsupials, from having partially retained the character of their 
common progenitor, or of some early member of the group. On the 
other hand, of all Marsupials, as Mr. Waterhouse has remarked, the 
Phascolomys resembles most nearly, not any one species, but the 
general order of Rodents. In this case, however, it may be strongly 
suspected that the resemblance is only analogical, owing to the 
Phascolomys having become adapted to habits like those of a 
Rodent. The elder De CandoUe has made nearly similar observations 
on the general nature of the affinities of distinct families of plants. 

On the principle of the multiplication and gradual divergence in 
character of the species descended from a common progenitor, 
together with their retention by inheritance of some characters in 
common, we can understand the excessively complex and radiating 
affinities by which all the members of the same family or higher 
group are connected together. For the common progenitor of a 
whole family, now broken up by extinction into distinct groups and 
sub-groups, will have transmitted some of its characters, modified 
in various ways and degrees, to all the species ; and they will con- 
sequently be related to each Other by circuitous lines of affinity of 
various lengths (as maybe seen in the diagram so often referred to), 
mounting up through many predecessors. As it is difficult to show 
the blood-relationship between the numerous kindred of any ancient 
and noble family even by the aid of a genealogical tree, and almost 
impossible to do so without this aid, we can understand the extra- 



3 So Classification. Chap. XIV, 

ordinary difficulty which naturalists have experienced in describing, 
without the aid of a diagram, the various affinities which they 
perceive between the many living and extinct members of the same 
great natural class. 

Extinction, as we have seen in the fourth chapter, has played an 
important part in defining and widening the intervals between the 
^ several groups in each class. We may thus account for the distinct- 
ness of whole classes from each other — for instance, of birds from 
all other vertebrate animals — ^by the belief that many ancient forms 
of life have been utterly lost, through which the early progenitors 
of birds were formerly connected with the early progenitors of 
the other and at that time less differentiated vertebrate classes. 
There has been much less extinction of the forms of life which once 
connected fishes with batrachians. There has been still less within 
some whole classes, for instance the Crustacea, for here the most 
wonderfully diverse forms are still linked together by a long and 
only partially broken chain of affinities. Extinction has only 
de&xed the groups : it has by no means made them ; for if every 
form which has ever lived on this earth were suddenly to reappear, 
though it would be quite impossible to give definitions by which 
each group could be distinguished, still a natural classification, or ai; 
least a natural arrangement, would be possible. We shall see this 
by turning to the diagram; the letters, A to L, may represent 
eleven Silurian genera, some of which have produced large groups of 
modified descendants, with every link in each branch and sub- 
branch still alive; and the links not greater than those between 
existing varieties. In this case it would be quite impossible to give 
definitions by which the several members of the several groups 
could be distinguished from their more immediate parents and 
descendants. Yet the arrangement in the diagram would still hold 
good and would be natural ; for, on the principle of inheritance, all 
the forms descended, for instance, from A, would have something 
in common. In a tree we can distinguish this or that branch, 
though at the actual fork the two unite and blend tc^ether. We 
could not, as I have said, define the several groups ; but we could 
pick out types, or forms, representing most of the characters of each 
group, whether large or small, and thus give a general idea of 'tlie 
value of the differences between them. This is what we should be 
driven to, if we were ever to succeed in collecting all the forms in 
any one class which have lived throughout all time and space. 
Assuredly we shall never succeed in making so perfect a collec- 
tion : nevertheless, in certain classes, we are tending towards this 
end ; and Milne Edwards has lately insisted, in an able paper, on 



Chap. XIV. Affinities connecting Organic Beings, 381 

the high importance of looking to types, whether or not ,we can 
separate and define the groups to which such types belong. 

Finally, we have seen that natural selection, which follows from 
the struggle for existence, and which almost inevitably leads to 
extinction and divergence of character in the descendants from any 
one parent-species, explains that great and universal feature in 
the affinities of all organic beings, namely, their subordination 
in group under group. We use the element of descent in 
classing the individuals of both sexes and of all ages under one 
species, although they may have but few characters in common ; 
we use descent in classing acknowledged varieties, however different 
they may be from their parents ; and I believe that this element of 
descent is the hidden bond of connexion which naturalists have 
sought under the term of the Natural System. On this idea of the 
natural system being, in so far as it has been perfected, genealogical 
in its arrangement, with the grades of difference expressed by the 
terms genera, families, orders, &c., we can understand the rules 
which we are compelled to follow in our classification. We can 
understand why we value certain resemblances far more than 
others ; why we use rudimentary and useless organs, or others of 
trifling physiological importance; why, in finding the relations 
between one group and another, we summarily reject analogical or 
adaptive characters, and yet use these same characters within the 
limits of the same group. We can clearly see how it is that all 
living and extinct forms can be grouped together within a few great 
classes ; and how the several members of each class are connected 
together by the most complex and radiating lines of affinities. We 
shall never, probably, disentangle the inextricable web of the 
affinities bdlween the members of any one class ; but when we have 
a distinct object in view, and do not look to some unknown plan of 
creation, we may hope to make sure but slow progress. 

Professor Hackel in his * Generelle Morphologic * and in other 
works, has recently brought his great knowledge and abilities to bear 
on what he calls phylogeny, or the lines of descent of all organic 
beings. In drawing up. the several series he trusts chiefly to 
embryological characters, but receives aid from homologous and 
rudimentary organs, as well as from the successive periods at which 
the various forms of life are beUeved to have first appeared in our 
geological formations. He has thus boldly made a great beginning, 
and shows us how classification will in the future be treated. 



382 Morphology. Chap. XIV. 



MoT'phology, 

We have seen that the members of the same class, independently 
of their habits of life, resemble each other in the general plan ot 
their organisation. This resemblance is often expressed by the 
term " unity of type ; " or by saying that the several parts and organs 
in the different species of the class are homologous. The whole 
subject is included under the general term of Morphology. This is 
one of the most interesting departments of natural history, and may 
almost be said to be its very soul. What can be more curious than 
that the hand of a man, formed for grasping, that of a mole for 
digging, the leg of the horse, the paddle of the porpoise, and the 
wing of the bat, should all be constructed on the same pattern, and 
should include similar bones, in the same relative positions ? How 
curious it is, to give a subordinate though striking instance, that 
the hind-feet of the kangaroo, which are so well fitted for bounding 
over the open plains, — those of the climbing, leaf-eating koala, 
equally well fitted for grasping the branches of trees,— those of the 
ground-dwelling, insect or root eating, bandicoots, — ^and those of 
some other Australian marsupials, — should all be constructed on the 
same extraordinary type, namely with the bones of the second and 
third digits extremely slender and enveloped within the same skin, 
so that they appear like a single toe furnished with two claws. 
Notwithstanding this similarity of pattern, it is obvious that the 
hind feet of these several animals are used for as widely different 
purposes as it is possible to conceive. The case is rendered all the 
more striking by the American opossums, which follow nearly 
the same habits of life as some of their Australian relatives, having 
feet constructed on the ordinary plan. Professor Flower, from 
whom these statements are taken, remarks in conclusion : " We 
may call this conformity to type, without getting much nearer to 
an explanation of the phenomenon ; '* and he then adds " but is it 
not powerfully suggestive of true relationship, of inheritance from a 
common ancestor ? " 

Geoffiroy St. Hilaire has strongly insisted on the high importance 
of relative position or connexion in homologous parts ; they may 
differ to almost any extent in form and size, and yet remain con- 
nected together in the same invariable order. We never find, for 
instance, the bones of the arm and fore-arm, or of the thigh and 
leg, transposed. Hence the same names can be given to the homo- 
logous bones in widely different animals. We see the same great 
law in the construction of the mouths of insects : what can be more 
different than the immensely long spiral proboscis of a sphinx-moth, 



r 

1 

\ 



r 



Chap. XIV. Morphology, 383 

^^■^— — ^— — - — ■ __^____^___^— ^— ^— ^.— 

the curious folded one of a "bee or bug, and the great jaws of a 
beetle? — yet all these organs, serving for such widely different 
purposes, are formed by infinitely numerous modifications of an 
upper lip, mandibles, and two pairs of maxillas. The same law 
governs the construction of the mouths and limbs of crustaceans. 
So it is with the flowers of plants. 

Nothing can be more hopeless than to attempt to explain this 
similarity of pattern in members of the same class, by utility or 
by the doctrine of final causes, llie hopelessness of the attempt 
has been expressly admitted by Owen in his most interesting work 
on the * Nature of Limbs.' On the ordinary view 6f the inde- 
pendent creation of each being, we can only say that so it is ;— 
that it has pleased the Creator to construct all the animals and 
plants in each great class on a uniform plan; but this is not a 
scientific explanation. 

■ The explanation is to a large extent simple on the theory of the 
selection of successive slight modifications, — each modification being 
profitable in some way to the modified form, but often affecting by 
y^JDrrelation other parts of the organisation. In changes of this 
nature, there will be little or no tendency to alter the original 
// pattern, or to transpose the parts. The bones of a limb might be 
i shortened and flattened to any extent, becoming at the same time 
* enveloped in thick membrane, so as to sei-ve as a fin ; or a webbed 
hand might have all its bones, or certain bones, lengthened to any 
extent, with the membrane connecting them increased, so as to 
serve as a wing ; yet all these modifications would not tend to alter 
the framework of the bones or the relative connexion of the parts. 
If we suppose that an early progenitor — the archetype as it may 
be called— of all mammals, birds, and reptiles, had its limbs con- 
structed on the existing general pattern, for whatever purpose they 
served, we can at once perceive the plain signification of the homo- 
logous construction of the limbs throughout the class. So with 
the mouths of insects, we have only to suppose that their common 
progenitor had an upper lip, mandibles, and two pairs of maxillse, 
these parts being perhaps very simple in form ; and then natural 
selection will account for the infinite diversity in the structure and 
functions of the mouths of insects. . Nevertheless, it is conceivable 
that the general pattern of an organ might become so much 
obscured as to be finally lost, by the reduction and ultimately by 
the complete abortion of certain parts, by the fusion of other parts, 
and by the doubling or multiplication of others, — variations which 
we know to be within the limits of possibility. In the paddles of 
the gigantic extinct sea-lizards, and in the " mouths of certain 



384 Morphology, Chap. XIV. 

suctorial crustaceans, the general pattern seems thus to have become 
partially obscured. 

I There is another and equally curious branch of our subject; 
oxamely, serial homologies, or the comparison of the different parts 
pr organs in the same individual, and not of the same parts or 
lorgans in different members of the same class. Most physiolo- 
/gists believe that the bones of the skull are homologous — that 
is, correspond in number and in relative connexion — with the 
elemental parts of a certain number of vertebrae, llie anterior 
and posterior limbs in all the higher vertebrate classes are plainly 
homologous. So it is with the wonderfully complex jaws and 
legs of crustaceans. It is familiar to almost every one, that in 
a flower the relative position of the sepals, petals, stamens, and 
pistils, as well as their intimate structure, are intelligible on the 
view that they consist of metamorphosed leaves, arranged in a 
spire. In monstrous plants, we often get direct evidence of the 
possibility of one organ being transformed into another ; and we 
can actually see, during the early or embryonic stages of develop- 
ment in flowers, as well as in crustaceans and many other animals, 
that organs, which when mature become extremely diflerent are at 
first exactly alike. 

How inexplicable are the cases of serial homologies on the 
ordinary view of creation 1 Why should the brain be enclosed 
in a box composed of such numerous and such extraordinarily 
shaped pieces of bone, apparently representing vertebrae? As 
Owen has remarked, the benefit derived from the yielding of the 
separate pieces in the act of parturition by mammals, will by no 
means explain the same construction in the skulls of birds and 
reptiles. Why should similar bones have been created to form 
the wing and the leg of a bat, used as they are for such totally 
different purposes, namely flying and walking ? Why should one 
crustacean, which has an extremely complex mouth formed of 
many parts, consequently always have fewer legs ; or conversely, 
those with many legs have simpler mouths? Why should the 
sepals, petals, stamens, and pistils, in each flower, thougl\ fitted 
for such distinct purposes, be all constructed on the same pattern ? 

On the theory of natural selection, we can, to a certain extent, 
answer the^ questions. We need not here consider how the bodies 
of some animals first became divided into a series of segments, 
or how they became divided into right and left sides, with corre- 
sponding organs, for such questions are almost beyond investiga- 
tion. It is, however, probable that some serial structures are 
the result of cells multiplyiug by division, entailing the multi- 



Chap. XIV. Morphology, 385 

plication of the parts developed from sach cells. It must sufiSce for 
our purpose to bear in mind that an indefinite repetition of the 
same part or organ is the common characteristic, as Owen has 
remarked, of all low or little specialised forms; therefore the 
unknown progenitor of the Yertebrata probably possessed many 
vertebrse; the unknown progenitor of the Articulata, many seg- 
ments; and the unknown progenitor of flowering plants, many 
leaves arranged in one or more spires. We have. also formerly 
seen that parts many times repeated are eminently liable to vary, I 
not only in number, but in form. Consequently such parts, ■ 
being already present in considerable numbers, and being highly 
variable, would naturally afford the materials for adaptation to the 
most different purposes ; yet they would generally retain, through 
the force of inheritance, plain traces of their original or fundamental 
resemblance. They would retain this resemblance all the more, 
as the variations, which afforded the basis for their subsequent 
modification through natural selection, would tend from the first 
to be similar ; the parts being at an early stage of growth alike, 
and being subjected to nearly the same conditions. Such parts, 
whether more or less modified, unless their common origin became 
wholly obscured, would be serially homologous. 

In the great class of molluscs, though the parts in distinct 
species can be shown to be homologous, only a few serial homo* 
logics, such as the valves of Chitons, can be indicated ; that is, 
we are seldom enabled to say that one part is homologous with 
another part in the same individuaL And we can understand this 
fact ; for in molluscs, even in the lowest members of the class, we 
de^ not find nearly so much indefinite repetition of any one part , 
^ we find in the other great classes of the animal and vegetable 
kingdoms. 

But morphology is a much more complex subject than it at first 
appears, as has lately been well shown in a remarkable paper by 
Mr. E. Ray Lankester, who has drawn an important distinction 
between certain classes of cases which have all been equally ranked 
by naturalists as homologous. He proposes to call the structures 
which resemble each other in distinct animals, owing to their 
descent from a common progenitor with subsequent modification, 
h&mogenous ; and the resemblances which cannot thus be accounted 
for, he proposes to call homoplastic. For instance, he believes that 
the hearts of birds and mammals are as a whole homogenous, — 
that is, have been derived from a common progenitor; but that 
the four cavities of the heart in the two classes are homoplastic, — 
that is, have been independently developed. Mr. Lankester also 

2 



\ 



I 



386 Developrnent and Embryology, Chap. xiv. 

. — ■ — g 

adduces the close resemblance of the parts on the right and left 
sides of the body, and in the successive segments of the same indi- 
vidual animal; and here we have parts commonly called homo- 
logous, which bear no relation to the descent of distinct species 
from a common progenitor. Homoplastic structures are the same 
with those which I have classed, though in a very imperfect 
manner, as analogous modifications or resemblances. Their forma- 
tion may be attributed in part to distinct organisms, or to distiuct 
parts of the same organism, having varied in an analogous manner ; 
and in part to similar modifications, having been preserved for 
the same general purpose or function,— of which many instances 
have bei^n given. 

Naturalists frequently speak of the skull as formed of metamor- 
phosed vertebraB^, the jaws of crabs as metamorphosed legs; the 
stamens and pistils in flowers as metamorphosed leaves; but it 
would in most cases be more correct, as Professor Huxley has 
remarked, to speak of both skull and vertebras, jaws and legs, &c., 
as having been metamorphosed, not one from the other, as they 
now exist, but &om some common and simpler element. Most 
naturalists, however, use such language only in a metaphorical 
.sense; they are far from meaning that during a long course of 
descent, primordial organs of any kind — ^vertebrse in the one case 
and legs in the other — have actually been converted into skulls or 
jaws. Yet so strong is the appearance of this having occurred, 
that naturalists can hardly avoid employing language having this 
plain signification. According to the views here maintained, such 
language may be used literally ; and the wonderful fact of the 
jaws, for instance, of a crab retaining numerous characters, which 
they probably would have retained through inheritance, if they 
had really been metamorphosed from true though extremely simple 
legs, is in part explained. 

Development and Embryology, 

This is one of the most important subjects in the whole round of 
natural history. The metamorphoses of insects, with which every 
one is familiar, are generally effected abruptly by a few stages ; 
but the transformations are in reality numerous and gradual, 
though concealed. A certain ephemerous insect (ChlOeon) during 
its development, moults, as shown by Sir J. Lubbock, above 
twenty times, and each time undergoes a certain amount of 
change ; and in this case we see the act of metamorphosis per- 
formed in a x)rimary and gradual manner. Many insects, and 



Chap. XIV. Development and Embryology, ' 387 

especially certain crustaceans, show us what wonderful changes 
of structure can be effected during development. Such changes, 
however, reach their climax in the so-called alternate generations 
of some of the lower animals. It is, for instance, an astonishing 
fact that a delicate branching coralline, studded with polypi and 
attached to a submarine rock, should produce, first by budding and 
then by transverse division, a host of huge floating jelly-fiiBhes ; 
and that these should produce eggs, from which are hatched 
swimming animalcules, which attach themselves to rocks and 
become developed into branching corallines; and so on in an 
endless cycle. The belief in the essential identity of the process 
of alternate generation and of ordinary metamorphosis has been 
I greatly strengthened by Wagner's discovery of the larva or mi^got 
V of a fly, namely the Cecidomyia, producing asexually other larvas, 
and these others, which finally are developed into mature males and 
females, propagating their kind in the ordinary manner by eggs. 

It may be worth notice that when Wagner's remarkable discovery 
was first announced, I was asked how was it possible to account 
for the larvae of this fly having acquired the power of asexual 
reproduction. As long as the case remained unique no answer 
could be given. But already Grimm has shown that another fly, 
a Chironomus, reproduces itself in nearly the same manner, and he 
believes that this occurs frequently in the Order. It is the pupa, 
and not the larva, of the Chironomus which has this power ; and 
Grimm further shows that this case, to a certain extent, " unites 
that of the Cecidomyia with the p^u'thenogenesis of the Coccidae ;" — 
the term parthenogenesis implying that the mature females of the 
Coccidae are capable of producing fertile eggs without the con- 
course of the male. Certain animals belonging to several classes 
are now known to have the power of ordinary reproduction at an 
unusually early age ; and we have only to accelerate partheno- 
genetic reproduction by gradual steps to an earlier and earlier age, 
— Chironomus showing us an almost exactly intermediate stage, 
viz., that of the pupa — and we can perhaps account for the mar- 
vellous case of the Cecidomyia. 

It has already been stated that various parts in the same indi- 
vidual which are exactly alike during an early embryonic period, 
become widely different and serve for widely different purposes in 
the adult state. So again it has been shown that generally the 
embryos of the most distinct species belonging to the same class 
are closely similar, but become, when fully developed, widely dis- 
similar. A better proof of this latter fact cannot be given than 
the statement by Von Baer that " the embryos of mammalia, of 

2 c 2 



388 Development and Embryology, Chap. XIV. 

*' Hrdfl, lizards, and snakes, probably also of chelonia, are in their 
*' earliest states exceedingly like one another, both as a whole and 
'* in the mode of development of their parts ; so much so, in fact, 
''that we can often distinguish the embryos only by their size. 
" In my possession are two little embryos in spirit, whose names 
*' I have omitted to attach, and at present I am quite unable to say 
'' to what class they belong. They may be lizards or small birds, 
*' or very young mammalia, so complete is the similarity in the 
*' mode of formation of the head and trunk in these animals. The 
"extremities, however, are still absent in these embryos. But 
" even if they had existed in the earliest stage of their develop- 

I'' ment we should learn nothing, for the feet of lizards and mam- 
** mals, the wings and feet of birds, no lees than the hands and feet 
*' of man, all arise from the same fundamental form.* The larvae 
of most crustaceans, at corresponding stages of development, closely 
resemble each other, however different the adults may become 
and |0 it is with very many other animals. A trace of the law 
of embryonic resemblance occasionally lasts till a rather late age : 
thus birds of the same genus, and of allied genera, often resemble 
each other in their immature plumage ; as we see in the spotted 
feathers in the young of the thrush group. In the cat tribe, most 
of the species when adult are striped or spotted in lines; and 
stripes or spots can be plainly distinguished in the whelp of the 
lion and the puma. We occasionally though rarely see something 
of the same kind in plants ; thus the first leaves of the ulex or 
fmrze, and the first leaves of the phyllodineous acacias, are pinnate 
or divided like the ordinary leaves of the leguminosae. 

The points of structure, in which the embryos of widely different 

animals within the same class resemble each other, often have no 

direct relation to their conditions of existence. We cannot, for 

instance, suppose that in the embryos of the vertebrata the peculiar 

loop-like courses of the arteries near the branchial sUts are related 

to similar conditions, — ^in the young mammal which is nourished in 

the womb of its mother, in the egg of the bird which is hatched 

in a nest, and in the spawn of a frog under water. We have no 

more reason to believe in such a relation, than we have to believe 

that the similar bones in the hand of a man, wing of a bat, and fin 

of a porpoise, are related to similar conditions of life. Ko one 

supposes that the stripes on the whelp of a lion, or the spots on 

I the young blackbird, are of any use to these animals. 

\ The case, however, is different when an animal during any part 

lof its embryonic career is active, and has to provide for itself. The 

Wriod of activity may come on earlier or later in life ; but whenever 



\ 



Chap. XIV. Developmeftt and Embryology, 389 

it comes on, the adaptation of the larva to its conditioiis of life is 
just as perfect and as beautiful as in the adult animal In how 
important a manner this has acted, has recently been well shown 
by Sir J. Lubbock in his remarks on the close similarity of the 
larvjB of some insects belonging to very different orders, and on 
the dissimilarity of the lanrao of other insects within the same 
order, according to their habits of life. Owing to such adaptations, 
the similarity of the larvas of allied animals is sometimes greatly 
obscured ; especially when there is a division of labour during the 
different stages of development, as when the same larva has during 
one stage to search for food, and during another stage has to search 
for a place of attachment. Cases can even be given of the larvte of 
allied species, or groups of species, differing more from each other 
than do the adults. In most cases, however, the larvae, though 
active, still obey, more or less closely, the law of common embryonic 
resemblance. Cirripedes afford a good instance of this ; even the 
illustrious Cuvier did not perceive that a barnacle was a crustacean : 
but a glance at the larva shows this in an unmistakable manner. 
So again the two main divisions of cirripedes, the pedunculated and 
sessile, though differing widely in external appearance, have larvae 
in all their stages barely distinguishable. 

The embryo in the course of development generally rises in 
organisation ; I use this expression, though I am aware that it is 
hardly possible to define clearly what is meant by the organisation 
being higher or lower. But no one probably will dispute that the 
butterfly is higher than the caterpillar. In some cases, however, 
the mature animal must be considered as lower in the scale than 
the larva, as with certain parasitic crustaceans. To refer once 
again to cirripedes : the larvae in the first stage have three pairs of 
locomotive organs, a simple single eye, and a probosciformed mouth, 
with which they feed largely, for they increase much in size. In 
the second stage, answering to the chrysalis stage of butterflies, 
they have six pairs of beautifully constructed natatory legs, a pair 
of magniflcent compound eyes, and extremely complex antennae; 
but they have a closed and imperfect mouth, and cannot feed: 
their function at this stage is, to search out by their well-developed 
organs of sense, and to reach by their active powers of swimming, 
a proper place on which to become attached and to undergo their 
final metamorphosis. When this is completed they are fixed for 
life: their legs are now converted into prehensile organs; they 
again obtain a well-constructed mouth ; but they have n6 antennae, 
and their two eyes are now reconverted into a minute, single, 
simple eye-spot. In this last and complete state, cirripedes may 



390 Developnetit and Embryology. Chap. xiv. 



be considered as either more highly or more lowly organised than 
they were in the larval condition. But in some genera the Isurras 
become developed into hermaphrodites having the ordinary struc- 
ture, and into what I have called oomplemental males ; and in the 
latter the development has assuredly been retrograde, for the male 
is a mere sack, which lives for a short time and is destitute of 
mouth, stomach, and every other organ of importance, excepting 
those for reproduction. 

We are so much accustomed to see a difference in structure be- 
tween the embryo and the adult, that we are tempted to look at 
this difference as in some necessary manner contingent on growth. 
But there is no reason why, for instance, the wing of a bat, or the 
fin of a porpoise, should not have been sketched out with all their 
parts in proper proportion, as soon as any part became visible. In 
some whole groups of animals and in certain members of other 
groups this is the case, and the embryo does not at any period differ 
widely from the adult : thus Owen has remarked in regard to cuttle- 
fish, " there is no metamorphosis ; the cephalopodic character is 
manifested long before the parts of the embryo are completed." 
Land-shells and fresh-water crustaceans are bom having their proper 
forms, whilst the marine members of the same two great classes pass 
through considerable and often great changes during their develop- 
ment. Spiders, again, barely undergo any metamorphosis. Th0 
larvae of most insects pass through a worm-like stage, whether they 
are active and adapted to diversified habits, or are inactive from 
being placed in the midst of proper nutriment or from being fed by 
their parents ; but in some few cases, as in that of Aphis, if we look 
to the admirable drawings of the development of this insect, by 
Professor Huxley, we see hardly any trace of the vermiform stage. 

Sometimes it is only the earlier developmental stages which fail. 
Thus Fritz Muller has made the remarkable discovery that certain 
shrimp-like crustaceans (allied to Penoeus) first appear under the 
simple nauplius-form, and after passing through two or more zoea- 
stages, and then through the mysis-stage, finally acquire their 
mature structure : now in the whole great malacostracan order, to 
which these crustaceans belong, no other member is as yet known 
to be first developed under the nauplius-form, though many appear 
as zoeas ; nevertheless Miiller assigns reasons for his belief, that if 
there had been no suppression of development, all these crustaceans 
would have appeared as nauplii. 

How, then, can we explain these several facts in embryology, — 
namely, the very general, though not universal, difference in struc- 
ture between the embiyo and the adult ; — the various. parts in tho 



Chap. XIV. Development and Embryology, 391 

same individual embryo, which ultimately become, very uulike and 
Serve for diverse purposes, being at an early period of growth alike ; 
' — the common, but not invariable, resemblance between the em- 
bryos or larvaB of the most distinct species in the same class ; — 
the embryo often retaining whilst within the egg or womb, struc- 
tures which are of no service to it, either at that or at a later 
period of life ; on the other hand larvsB, which have to provide for 
their own wants, being perfectly adapted to the surrounding condi- 
tions ; — ^and lastly the fact of certain larvae standing higher in the 
scale of organisation than the mature animal into which they are de- ) 
veloped ? I believe that all these facts can be explained, as follows. / 

It is commonly assumed, perhaps from monstrosities affecting the 
embryo at a very early period, that slight variations or individual 
differences necessarily appear at an equally early period. We have 
little evidence on this head, but what we have certainly points the 
other way ; for it is notorious that breeders of cattle, horses, and 
various fancy animals, cannot positively tell, until some time after 
birth, what will be the merits or demerits of their young animals. 
We see this plainly in our own children ; we cannot tell whether a 
child will be tall or short, or what its precise features will be. The 
question is not, at what period of life each variation may have been 
caused, but at what period the effects are displayed. The cause 
may have acted, and I believe often has acted, on one or both 
parents before the act of generation. It deserves notice that it is 
of no importance to a very young animal, as long as it remains in 
its mother's womb or in the egg, or as long as it is nourished and 
protected by its parent, whether most of its characters are acquired 
a little earlier or later in life. It would not signify, for instance, 
to a bird which obtained its food by having a much-curved beak 
whether or not whilst young it possessed a beak of this shape, as 
long as it was fed by its parents. 

I have stated in the first chapter, that at whatever age a variation 
first appears in the parent, it tends to re-appear at a corresponding 
age in the offspring. Certain variations can only appear at corres- 
ponding ages ; for instance, peculiarities in the caterpillar, cocoon, 
or imago states of the silk-moth : or, again, in the full-grown horns 
of cattle. But variations, which, for all that we can see might 
have first appeared either earlier or later in life, likewise tend to re- 
appear at a corresponding age in the offspring and parent. I am 
far from meaning that this is invariably the case, and I could give 
several exceptional cases of variations (taking the word in the 
largest sense) which have supervened at an earlier age in the child 
than in the parent* 



392 Development and Embryology, Chap. xiv. 

These two principles, namely, that slight variations generally 
appear at a not very early period of life, and are inherited at a cor- 
responding not early period, explain, as I believe, all the above 
specified leading facts in embryology. But first let ns look to a few 
analogous cases in our domestic varieties. Some authors who have 
written on Dogs, maintain that the greyhound and bulldog, though 
so different, are really closely allied varieties, descended from the 
same wild stock ; hence I was curious to see how far their puppies 
differed from each other : I was told by breeders that they differed 
just as much as their parents, and this, judging by the eye, seemed 
almost to be the case; but on actually measuring the old dogs 
and their six-days-old puppies, I found that the puppies had not 
acquired nearly their fuU amount of proportional difference. So, 
a^in, I was told that the foals of cart and race-horses — ^breeds 
which have been almost wholly formed by selection under domesti- 
cation — differed as much as the full-grown animals ; but having had 
careful measurements made of the dams and of three-days-old 
colts of race and heavy cart-horses, I %sA that this is by no means 
the case. 

As we have conclusive evidence that the breeds of the Pigeon 
are descended from a single wild species, I compared the young 
within twelve hours after being hatched ; I carefully measured the 
proportions (but will not here give the details) of the beak, width 
of mouth, length of nostril and of eyelid, size of feet and length of 
leg, in the wild parent-species, in pouters, fantails, runts, barbs,, 
dragons, carriers, and tumblers. !Now some of these birds, when 
mature, differ in so extraordinary a manner in the length and form 
of beak, and in other characters, that they would certainly have 
been ranked as distinct genera if foutd in a state of nature. But 
when the nestling birds of these several breeds were placed in a row, 
though most of them could just be distinguished, the proportional 
differences in the above specified points were incomparably less than 
in the full-grown birds. Some characteristic points of difference — 
for instance, that of the width of mouth— could hardly be detected 
in the young. But there was one remarkable exception to this rule, 
for the young of the short-faced tumbler differed from the young of 
the wild rock-pigeon and of the other breeds, in almost exactly the 
same proportions as in the adult state. 

These facts are explained by the above two principles. Fanciers 
select their dogs, horses, pigeons, &c., for breeding, when nearly 
grown up : they are indifferent whether the desired qualities are 
acquired earlier or later in life, if the full-grown animal possesses 
them. And the cases just given, more especially that of the 



Chap. XIV. Development and Embryology. 393 



pic;eoiis, show that the characteristic differencee which have heen 
accumulated by tuan's selection, and which give value to his breeds, 
do not generally appear at a very early period of life, and are inhe- 
rited at a corresponding not early period. But the case of the short- 
faced tumbler, which when twelve hours old possessed its proper 
characters, proves that this is not the universal rule ; for here the 
characteristic differences must either have appeared at an earlier 
period than usual, or, if not so, the differences must have benn in- 
herited, not at a corresponding, but at an earlier age. 

Now let us apply these two principles to species in a state of 
nature. Let us take a group of birds, descend^ from some ancient 
form and modified through natural selection for different habits. 
Then, from the many slight successive variations having supervened 
in the several species at a not early age, and having been inherited 
at a corresponding age, the young will have been but little modi- 
fied, and they will still resemble each other much more closely 
than do the adults, — just as we have seen with the breeds of the 
pigeon. We may extend this view to widely distinct structures and 
to whole classes. The fore-limbs, for instance, which once served 
as legs to a remote progenitor, may have become, through a long 
course of modification, adapted in one descendant to act as hands, 
in another as paddles, in another as wings ; but on the above 
two principles the fore-limbs will not have been much modified 
in the embryos of these several forms ; although in each form 
the fore-limb will differ greatly in the adult state. Whatever 
influence long-continued use or disuse may have had in modifying 
the limhs or other parts of any species, this will chiefly or solely 
have affected it when nearly mature, when it was compelled to 
use its full powers to gain its own living; and the effects thus 
produced will have been transmitted to the offspring at a cor- 
responding nearly mature age. Thus the young will not be modi- 
fied, or will be modified only in a slight degree, through the effects 
of the increased use or disuse of parts. 

With some animals the successive variations may have supervened 
at a very early period of life, or the steps may have been inherited 
at an earlier age than that at which they first occurred. In either 
of these cases, the young or embryo will closely resemble the 
mature parent-foim, as we have seen with the short-faced tumbler. 
And this is the rule of development in certain whole groups, or 
in certain sub-groups alone, as with cuttle-fish, land-shells, fresh- 
water crustaceans, spiders, and some members of the great class of 
insects. With respect to the final cause of the young in such 
groups not passing through any metamorphosis, we can see that this 



594 Development and Embryology, Chap. xiv. 

would follow from the following contingences ; namely, from the 
young having to provide at a very early age for their own wants, 
and from their following the same hahits of life with their parents ; 
for in this case, it would be indispensable for their existence that 
they should be modified in the same manner as their parents. 
Again, with respect to the singular fact that many terrestrial and 
fresh-water animals do not undergo any metamorphosis, whilst 
marine members of the same groups pass through various transfor- 
mations, Fritz MtQler has suggested that the process of slowly 
modifying and adapting an animal to live on the land or in fresh 
water, instead of in the sea, would be greatly simplified by its not 
passing through any larval stage ; for it is not probable that places 
well adapted for both the larval and mature stages, under such new 
and greatly chauged habits of life, would commonly be found un- 
occupied or ill-occupied by other organisms. In this case the 
gradual acquirement at an earlier and earlier age of the adult 
structure would be favoured by natural selection ; and all traces of 
former metamorphoses would finally be lost. 

If, on the other hand, it profited the young of an animal to follow 
habits of life slightly different from those of the parent-form, and 
consequently to be constructed on a slightly different plan, or if 
it profited a larva already different from its parent to change still 
further, then, on the principle of inheritanoe at corresponding ages, 
the young or the larvae might be rendered by natural selection more 
and more different from their parents to any conceivable extent. 
Differences in the larva might, also, become correlated with succes- 
sive stages of its development ; so that the larva, in the first stage, 
might come to differ greatly from the larva in the second stage, as 
is the case with many animals. The adult might also become fitted 
for sites or habits, in which organs of locomotion or of the senses, 
&c., would be useless ; and in this case the metamorphosis would be 
retrograde. 

From the remarks just made we can see how by changes of struc- 
ture in the young, in conformity with changed habits of life, to- 
gether with inheritance at corresponding ages, animals might come 
to pass through stages of development, perfectly distinct from the 
primordial condition of their a&ult progenitors. Most of our best 
authorities are now convinced that the various larval and pupal 
stages of insects have thus been acquired through adaptation, and 
not through inheritance from some ancient form. The curious case 
of Sitaris — a beetle which passes through certain unusual stages of 
development— will illustrate how this might occur. The first larval 
form is deacribed by M. Fabre, as an active, minute insect, furnished 



Chap. XIV. Development and Embryology. 395 

with six legs, two long aotexmae, and four eyes. These larvae are 
hatched in the nests of bees ; and when the male-bees emerge irom 
their burrows, in the spring, which they do before the females, the 
larvas spring on them, and ai'terwards ca^wl on to the females whilst 
paired with the males. As soon as the female bee deposits her 
eggs on the surface of the honey stored in the cells, the larvse of 
the Sitaris leap on the eggs and devour them. Afterwards they 
undergo a complete change; their eyes disappear; their legs and 
antennae become rudimentary, and they feed on honey ; so that they 
now more closely resemble the ordinary larvas of insects ; ultimately 
they undergo a further transformation, and finally emerge as the 
perfect beetle. Now, if an insect, undergoing transformations like 
those of the Sitaris, were to become the progenitor of a whole new 
class of insects, the course of development of the new class would 
be widely different from that of our existing insects ; and the first 
larval stage certainly would not represent the former condition of 
any adult and ancient form. 

On the other hand it is highly probable that with many animals 
the embryonic or larval stages show us, more or less completely, the 
condition of the progenitor of the whole group in its adult state. 
In the great class of the Crustacea, forms wonderfully distinct from 
each other, namely, suctorial parasites, cirripedes, eutomostraca, and 
even the malacostraca, appear at first as larvae under the nauplius- 
form ; aud as these larvae live and feed in the open sea, and are not 
adapted for any peculiar habits of life, and from other reasons 
assigned by Fritz MtiUer, it is probable that at some very remote 
period . an independent adult animal, resembling the Nauplius, 
existed, and subsequently produced, along several divergent lines of 
descent, the above-named great Crustacean groups. So again it is 
probable, from what we know of the embryos of mammals, birds, 
fishes, and reptiles, that these animals are the modified descendants 
of some ancient progenitor, which was furnished in its adult stale 
with branchiae, a swim-bladder, four fin-like limbs, and a long tail, 
all fitted for an aquatic life. 

As all the organic beings, extinct and recent, which have ever 
lived, can be arranged within a few great classes ; and as all within 
each class have, according to our theory, been connected together 
by fine gradations, the best, and, if our collections were nearly per- 
fect, the only possible arrangement, would be genealogical ; descent 
being the hidden bond of connexion which naturalists have been 
seeking under the term of the Natural System. On this view we 
can understand how it is that, in the eyes of most naturalists, the 
structure of the embryo is even more important for classification 



396 Development and Embryology, Chap. xiv. 

than that of the adult In two or more groups of animals, however 
much they may differ from each other in structure and habits in 
their adult condition, if they pass through closely similar embryonic 
stages, we may feel assured that they all are descended from one 
parent-form, and are therefore closely related. - Thus, community 
in embryonic structure reveals community of descent ; but dissi- 
milarity in embryonic development does not prove discommunity of 
descent, for in one of two groups the developmental stages may 
have been suppressed, or may have been so greatly modified throt^ 
adaptation to new habits of life, as to be no longer recognisable. 
Even in groups, in which the adults have been modified to an ex- 
treme degree, community of origin is often revealed by the structure 
of the larvffi ; we have seen, for instance, that cirripedes, though 
externally so like shell-fish, are at once known by their larvas to 
belong to the great class of crustaceans. As the embryo often 
shows us more or less plainly the structure of the less modified and 
ancient progenitor of the group, we can see why ancient and extinct 
forms so often resemble in their adult state the embryos of existing 
species of the same class. Agassiz believes this to be a universal 
law of nature ; and we may hope hereafter to see the law proved true. 
It can, however, be proved true only in those cases in which the 
ancient state of the progenitor of the group has not been wholly 
ooliterated, either by successive variations having supervened at a 
very early period of growth, or by such variations having been inhe- 
rited at an earlier age than that at which they first appeared. It 
should also be borne in mind, that the law may be true, but yet, 
owing to the geological record not extending far enough back in 
time, may remain for a lung period, or for ever, incapable of demon- 
stration. The law will not strictly hold good in those cases in 
which an ancient form became adapted in its larval state to some 
special line of Ufe, and transmitted the same larval state to a whole 
group of descendants; for such larvsB will not resemble any still 
more ancient foim in its adult state. 

Thus, as it seems to me, the leading facts in embryology, which 
are second to none in importance, are explained on the principle of 
variations in the many descendants from some one ancient proge- 
nitor, having appeared at a not very early period of life, and having 
been inherited at a corresponding period. Embryology rises greatly 
in interest, when we look at the embryo as a picture, more or less 
obscured, of the progenitor, either in its adult or larval state, of all 
the members of the same great class. 



CiiAP. XiV. Rudimentary Organs, 397 

Budimentary, Atrophied, and Aborted Organs. 

Organs or parts in this strange condition, bearing the plain stamp 
of inutility, are extremely common, or even general, throughout 
nature. It would be impossible to name one of the higher animate 
in which some part or other is not in a rudimentary condition. In 
the mammalia, tor instance, the males possess rudimentary mammse ; 
in snakes one lobe of the lungs is rudimentary; in birds the 
'^bastard-wing" may safely be considered as a rudimentary digit» 
and in some species the whole wing is so far rudimentary that it 
eannot be used for flight. What can be more curious than the 
presence of teeth in foetal whales, which when grown up have not a 
tooth in their heads ; or the teeth, which never cut through the 
gums, in the upper jaws of unborn calves ? 

Budimentary organs plainly declare their origin and meaning in 
various ways. There are beetles belonging to closely allied species, 
or even to the same identical species, which have either full-sized 
and perfect wings, or mere rudiments of membrane, which not 
rarely lie under wing-covers firmly soldered together ; and in these 
cases it is impossible to doubt, that the rudiments represent wings. 
Budimentary organs sometimes retain t^eir potentiality : this oc- 
casionally occurs with the mammas of male mammals, which have 
been known to become well developed and to secrete milk. So 
again in the udders in the genus Bos, there are normally four deve- 
loped and two rudimentary teats ; but the latter in our domestic 
cows sometimes become well developed and yield milk.. In regard 
to plants the petals are sometimes rudimentary, and sometimes well- 
developed in the individuals of the same species. In certain plants 
having separated sexes Eolreuter found that by crossing a species, in 
which the male flowers included a rudiment of a pistil, with an 
hermaphrodite species, having of course a well-developed pistil, the 
rudiment in the hybrid offspring was much increased in size ; and 
this clearly shows that the rudimentary and perfect pistils are es- 
sentially alike in nature. An animal may possess various parts in 
a perfect state, and yet they may in one sense be rudimentary, for 
they are useless : thus the tadpole of the common Salamander or 
Water-newt, as Mr. G. H. Lewes remarks, " has gills, and passes 
*^ its existence in the water ; but the Salamandra atra, which lives 
** high up among the mountains, brings forth its young full-formed. 
" This animal never lives in the water. Yet if we open a gravid 
" female, we find tadpoles inside her with exquisitely feathered 
" gills ; and when placed in water they swim about like the tad- 
" poles of the water-newt. Obviously this aquatic organisation has 



« 



39^ Rudimentary, Atrophiedy Chap. XfV. 

" no reference to the future life of the animal, nor has it any adap- 
" tation to its emhryonic condition ; it has solely reference to 

ancestral adaptations, it repeats a phase in the development of its 

progenitors.** 

An organ, serving for two purposes, may become rudimentary or 
utterly aborted for one, even the more important purpose, and remain 
I)erfectly efficient for the other. Thus in plants, the office of the 
pistil is to allow the pollen-tubes to reach the ovules within the 
ovariimi. The pistil consists of a stigma supported on a style ; but 
in some Ck)mposita3, the male florets, which of course cannot be 
fecundated, have a rudimentary pistil, for it is not crowned with a 
stigma ; but the style remains well developed and is clothed in the 
usual manner with hairs, which serve to brush the pollen out of the 
surrounding and conjoined anthers. Again, an organ may become 
rudimentary for its proper purpose, and be used for a distinct 
one: in certain fishes the swim-bladder seems to be rudimentary 
for its proper function of giving buoyancy, but has become con- 
verted into a nascent breathing organ or lung. Many similar in- 
stances could be given. 

Useful organs, however little they may be developed, unless we 
have reason to suppose that they were formerly more highly deve- 
loped, ought not to be considered as rudimentary. They may be 
in a nascent condition, and in progress towards further develop- 
ment. Rudimentary organs, o«i the other hand, are either quite use- 
less, such as teeth which Jiever cut through the gums, or almost 
useless, such as the wiflgs of an ostrich, which serve merely as 
sails. As organs in this condition would formerl)'', when still less 
developed, have been of even less use than at present, they cannot 
formerly have been produced through variation and natural selection, 
which acts solely by the preservation of useful modi6cations. They 
have been partially retained by the power of inheritance, and re- 
late to a former state of things. It is, however, often difficult to 
distinguish between rudimentary and nascent organs ; for we can 
judge only by analogy whether a part is capable of further deve- 
lopment, in which case alone it deserves to be called nascent. 
Organs in this condition will always be somewhat rare ; for beings 
t^ius provided will commonly have been supplanted by their suc- 
cessors with the same organ in a more perfect state, and conse- 
quently will have become long ago extinct. The wing of the 
penguin is of high service, acting as a fin ; it may, therefore, 
represent the nascent state of the wing : not that I believe this to 
be the case ; it is more probably a reduced organ, modified for a new 
function: the wing of the Apteryx, on the other hand, is quite 



Chap. XIV. and A borted Organs, 399 

useless, and is truly rudimentary. Owen considers the simple fila- 
mentary limbs of the Lepidosiren as the '^ beginnings of organs 
which attain full functional development in higher vertebrates ; " 
but,^ according to the view lately advocated by Dr. Giinther, they 
are probably remnants, consisting of the persistent axis of a fin, 
with the lateral rays or branches aborted. The mammary glands of 
the Omithorhynchus may be considered, in comparison with the 
udders of a cow, as in a nascent condition. The ovigerous frena of 
certain cirripedes, which have ceased to give attachment to the 
ova and are feebly developed, are nascent branchisB. 

Budimentary organs in the individuals of the same species are 
very liable to vary in the degree of their development and in other 
respects. In closely allied species, also, the. extent to which the 
same organ has been reduced occasionally differs much. This latter 
fact is well exemplified in the state of the wings of female moths 
belonging to the same family. Budimentary organs may be utterly 
aborted ; and this implies, that in certain animals or plants, parts 
are entirely absent which analogy would lead us to expect to find in 
them, and which are occasionally found in monstrous individuals. 
Thus in most of the Scrophulariacead the fifth stamen is utterly 
aborted ; yet we may conclude that a fifth stamen once existed, for 
a rudiment of it is found in many species of the feimily, and this 
rudiment occasionally becomes perfectly developed, as may some- 
times be seen in the common snap-dragon. In tracing the homo- 
logies of any part in different members of the same class, nothing 
is more common, or, in order fully to understand the relations of 
the parts, more useful than the discovery of rudiments. This is well 
shown in the drawings given by Owen of the leg-bones of the horse, 
ox, and rhinoceros. 

It is an important fact that rudim^itary organs, such as teeth in 
the upper jaws of whales and ruminants, can often be detected 
in the embryo, but afterwards wholly disappear. It is also, I 
believe, a universal rule, that a rudimentary part is of greater size 
in the embryo relatively to the adjoining parts, than in the adult ; 
so that the organ at this early age is less rudim^itary, or even 
cannot be said to be in any degree rudimentary. Hence rudimen- 
tary organs in the adult are often said to have retained their 
embryonic condition. 

I have now given the leading facts with respect to rudimentary 
organs. In reflecting on them, every one must be struck with 
astonishment; for the same reasoning power which tells us that 
most parts and organs are exquisitely adapted for certain purposes, 
tells us with equal plainness that these rudimentary or atrophied 



400 Rudimentary, Atrophied, Chap. XI 7. 

organs are imperfect and useless. In works on natural his^ry, 
rudimentaiy organs are generally said to have been created ** for 
the sake of symmetry," or in order " to complete the scheme of 
nature/' But this is not an explanation, merely a re-statement of 
the fact. Nor is it consistent with itself: thus the boa-constrictor 
has rudiments of hind-limbs and of a pelvis, and if it be said that 
these bones have been retained *' to complete the scheme of nature," 
why, as Professor Weismann asks, have they not been retained by 
other snakes, which do not possess even a vestige of these same 
bones ? What would be thought of an astronomer who maintained 
that the satellites revolve in elliptic courses round their planets 
"for the sake of symmetry,** because the planets thus revolve 
round the sun ? An eminent physiologist accounts for the presence 
of rudimentary organs, by supposing that they serve to excrete 
matter in excess, or matter injurious to the system ; but can we 
suppose that the minute papilla, which often represents the pistil in 
male flowers, and which is formed of mere cellular tissue, can thus 
act ? Can we suppose that rudimentary teeth, which are subse- 
quently absorbed, are beneficial to the rapidly growing embryonic 
calf by removing matter so precious as phosphate of lime ? When 
a man's fingers have been amputated, imperfect nails have been 
known to appear on the stumps, and I could as soon believe that 
these vestiges of nails are developed in order to excrete homy 
matter, as that the rudimentary nails on the fin of the manatee 
have been developed for this same purpose. 

On the view of descent with modification, the origin of rudimen- 
tary organs is comparatively simple ; and we can understand to a 
large extent the laws governing ^eir imperfect development. We 
have plenty of cases of rudimentary organs in our domestic pro- 
ductions, — ^as the stump of a tail in tailless breeds, — the vestige of 
an ear in earless breeds of sheep, — the reappearance of minute 
dangling horns in hornless breeds of cattle, more especially, 
according to Youatt, in young animals, — and the state of the 
whole flower in the cauliflower. We often see rudiments of 
various parts in monsters; but I doubt whether any of these 
cases throw light on the origin of rudimentary organs in a state 
of nature, further than by showing that rudiments can be 
produced; for the balance of evidence clearly indicates that 
species under nature do not undergo great and abrupt changes. But 
we learn from the study of our domestic productions that the 
disuse of parts leads to their reduced size ; and that the result is 
inherited. 

It appears probable that disuse has been the main agent in 



Chap. XIV. and A bar ted Organs. 40 1 



rendering organs rudimentary. It would at first lead by slow steps 
to the more and more complete reduction of a part, until at last it 
became rudimentaiy, — as in the case of the eyes of animals in- 
habiting dark caverns, and of the wings of birds inhabiting oceanic 
islands, which have seldom been forced by beasts of prey to take 
flight, and have ultimately lost the power of flying. Again, an 
organ, useful under certain conditions, might become injurious under 
others,- as with the wings of beetles living on small and exposed 
islands ; and in this case natural selection will have aided in re- 
ducing the organ, until it was rendered harmless and rudimentary. 

Any change in structure and function, which can be effected by 
small stages, is within the power of natural selection ; so that an 
organ rendered, through changed habits of life, useless or injurious 
for one purpose, might be modified and used for another purpose. 
An organ might, also, be retained for one alone of its former 
functions. Organs, originally formed by the aid of natural selec- 
tion, when rendered useless may well be variable, for their vari- 
ations can no longer be checked by natural selection. All this 
agrees well with what we see under nature. Moreover, at whatever 
period of life either disuse or selection reduces an organ, and this 
will generally be when the being has come to maturity and has 
to exert its full powers of action, the principle of inheritance at 
corresponding ages will tend to reproduce the organ in its reduced 
state at the same mature age, but will seldom affect it in the 
embryo. Thus we can understand the greater size of rudimentary 
organs in the embryo relatively to the adjoining parts, and their 
lesser relative size in the adult. If, for instance, the digit of 
an adult animal was used less and less during many generations, 
owing to some change of habits, or if an organ or gland was less 
and less functionally exercised, we may infer that it would become 
reduced in size in the adult descendants of this animal, but would 
retain nearly its original standard of development in the embryo. 

There remains, however, this difficulty. After an organ has 
ceased being used, and has become in consequence much reduced, 
how can it be still further reduced in size until the merest vestige 
is left ; and how can it be finally quite obliterated ? It is scarcely 
possible that disuse can go on producing any further effect after 
the organ has once been rendered functionless. Some additional 
explanation is here requisite which I cannot give. If, for in- 
stance, it could be proved that every part of the organisation tends 
to vary in a greater degree towards diminution than towards aug- 
mentation of size, then we should be able to understand how an organ 
which has become useless would be rendered, independently of the 

2 D 



402 Summary, Chap. XIV. 

efifects of disuse, rudimentary and would at last be wholly sup- 
pressed ; for the variations towards diminished size would no longer 
be checked by natural selection. The principle of the economy 
of growth, explained in a former chapter, by which the materials 
forming any part, if not useful to the possessor, are saved as far as 
is possible, will perhaps come into play in rendering a useless part 
rudimentary. But this principle will almost necessarily be con- 
fined to the earlier stages of the process of reduction ; for we cannot 
suppose that a minute papilla, for instance, representing in a male 
flower the pistil of the female flower, and formed Merely of cellular 
tissue, could be further reduced or absorbed for the sake of econo- 
mising nutriment. 

Finally, as rudimentary organs, by whatever steps they may 
have been degraded into their present useless condition, are the 
record of a former btate of things, and have been retained solely 
through the power of inheritance, — we can understand, on the 
genealogical view of classification, how it is that systematists, in 
placing organisms in their proper places in the natural system, have 
often found rudimentary parts as useful as, or even sometimes more 
useful than, parts of high physiological importance. Rudimentary 
organs may be compared with the letters in a word, still retained 
in the spelling, but become useless in the pronunciation, but which 
serve as a clue for its derivation. On the view of descent with 
modification, we may conclude that the existence of organs in a 
rudimentary, imperfect, and useless condition, or quite aborted, far 
from presenting a strange difQculty, as they assuredly do on the old 
doctrine of creation, might even have been anticipated in accordance 
with the views here explained. 

Summary. 

In this chapter I have attempted to show, that the arrangement 
of all organic beings throughout all time in groups under groups — 
that the nature of the relationships by which all living and extinct 
organisms are united by complex, radiating, and circuitous lines of 
affinities into a few grand classes, — the rules followed and the 
difficulties encountered by naturalists in their classifications, — 
the value set upon characters, if constant and prevalent, whether 
of high or of the most trifling importance, or, as with rudimentary 
organs, of no importance, — the wide opposition in value between 
analogical or adaptive characters, and characters of true affinity ; 
and other such rules ; — all naturally follow if we admit the common 
parentage of allied forms, together with their modification through 
variation and natural selection, with the contingencies of extinction 



Chap. XIV. Summary, 403 

and divergence of character. In considering this view of classifica- 
tion, it should be borne in mind that the element of descent has 
been universally used in ranking together the sexes, ages, dimorphic 
forms, and acknowledged varieties of the same species, however 
much they may differ from each other in structure. If we extend 
the use of this element of descent, — the one certainly known cause 
of similarity in organic beings,— we shall understand what is meant 
by the Natural System: it is genealogical in its attempted arrange- 
ment, with the grades of acquired difference marked by the terms, 
varieties, species, genera, families, orders, and classes. 

On this same view of descent with modification, most of the 
great facts in Morphology become intelligible, — whether we look 
to the same pattern displayed by the different species of the same 
class in their homologous organs, to whatever purpose applied ; 
or to the serial and lateral homologies in each individual animal 
and plant. 

On the princii)le of successive slight variations, not necessarily 
or generally supervening at a very early period of life, and being 
inherited at a corresponding period, we can understand the leading 
facts in Embryology ; namely, the close resemblance in the indi- 
vidual embryo of the parts which ave homologous, and which when 
matured become widely different in structure and function; and 
the resemblance of the homologous parts or organs in allied though 
distinct species, though filtted in the adult state for habits as 
different as is possible. Larvas are active embryos, which have 
been specially modified in a greater or less degree in relation to their 
habits of life, with their modifications inherited at a correspond- 
ing early age. On these same principles, — ^and bearing in mind, 
that when organs are reduced in size, either from disuse or through 
natural selection, it will generally be at that period of life when 
the being has to provide for its own wants, and bearing in mind 
how strong is the force of inheritance — the occurrence of rudi- 
mentary organs might even have been anticipated. The im- 
portance of embryological characters and of rudimentary organs 
in classification is intelligible, on the view that a natural arrange- 
ment must be genealogical. 

Finally, the several classes of facts which have been considered 
in this chapter, seem to me to proclaim so plainly, that the innu- 
merable species, genera and families, with which this world is 
peopled, are all descended, each within its own class or group, from 
common parents, and have all been modified in the course of descent, 
that I should without hesitation adopt this view^ even if it were 
unFupported by other facts or arguments. 

2 D 2 



404 Recapittilation, Chap. XV 



CHAPTER XV. 

Hecapitttlation and Conclusion. 

Recapitulation of the objections to the theory of Natural Selection — 
Recapitulation of the general and special circumstances in its favour 
— Causes of the general belief in the immutability of species — How 
for the theory of Natural Selection may be extended — flffects of its 
adoption on the study of Natural History — Concluding remarks. 

As this whole volume is one long argument, it may be convenient 
to the reader to have the leading facts and inferences briefly ret- 
capitulated. 

That many and serious objections may be advanced against the 
theory of descent with modification through variation and natural 
selection, I do not deny. I have endeavoured to give to them their 
fall force. Nothing at first can appear more difficult to believe than 
that the more complex organs and instincts have been perfected, 
not by means superior to, though analogous with, human reason, 
but by the accumulation of innumerable slight variations, each good 
for the individual possessor. Nevertheless, this difficulty, though 
appearing to our imagination insuperably great, cannot be con- 
sidered real if we admit the following propositions, namely, that 
all parts of the organisation and instincts offer, at least, individual 
differences — ^that there is a struggle for existence leading to the 
preservation of profitable deviations of structure or instinct — ^and, 
lastly, that gradations in the state of perfection of each organ may 
have existed, each good of its kind. The truth of these propositiouk' 
cannot, I think, be disputed. 

It is, no doubt, extremely difficult even to conjecture by what 
gradations many structures have been perfected, more especially 
amongst broken and failing groups of organic beings, which have 
suffered much extinction ; but we see so many strange gradations 
in nature, that we ought to be extremely cautious in saying that 
any organ or instinct, or any whole structure, could not have 
arrived at its present state by many graduated steps. There are,'> 
it must be admitted, cases of special difficulty opposed to the ( 
theory of natural selection ; and one of the most curious of these . 



Chap. XV. Recapitulation. 405 

is the existence in the same community of two or three defined 
castes of workers or sterile female ants; but I have attempted 
to show how these difficulties can be mastered. 

With respect to the almost universal sterility of species when 
first crossed, which forms so remarkable a contrast with the almost 
universal fertility of varieties when crossed, I must refer the reader 
to the recapitulation of the facts given at the end of the ninth 
chapter, which seem to me conclusively to show that this sterility 
is no more a special endowment than is the incapacity of two 
distinct kinds of trees to be grafted together; but that it is 
incidental on differences confined to the reproductive systems of 
the intercrossed species. We see the truth of this conclusion in 
the vast difference in the results of crossing the same two species 
reciprocally, — ^that is, when one species is first used as the father 
and then as the mother. Analogy from the cousideration of 
dimorphic and trimorphic plants clearly leads to the same con- 
clusion, for when the forms are illegitimately united, they yield 
few or no seed, and their offspring are more or less sterile ; and 
these forms belong to the same undoubted species, and differ from 
each other in no respect except in their reproductive organs and 
functions. 

Although the fertility of varieties when intercrossed and of their 
mongrel offspring has been asserted by so many authors to be 
universal, this cannot be considered as quite correct after the facts 
given on the high authority of Gartner and Kolreuter. Most of 
the varieties which have been experimented on have been pro- 
duced under domestication ; and as domestication (I do not mean 
mere confinement) almost certainly tends to eliminate that sterility 
which, judging from analogy, would have affected the parent-species 
if intercrossed, we ought not to expect that domestication would 
likewise induce sterility in their modified descendants when crossed. 
This elimination of sterility apparently follows from the same 
cause which allows our domestic animals to breed freely under 
diversified circumstances ; and this again apparently follows &om 
their having been gradually accustomed to frequent changes in 
their conditions of life. 

A double and parallel series of facts seems to throw much light 
on the sterility of species, when first crossed, and of their hybrid 
offspring. On the one side, there is good reason to believe that 
slight changes in the conditions of life give vigour and fertility to all 
organic beings. We know also that a cross between the distinct 
individuals of the same variety, and between distinct varieties, 
increases the number of their offspring, and certainly gives to them 



4C6 Recapitulation, Chap. XV. 

increased size and vigour. This is chiefly owing to the fonns which 
are crossed having been exposed to somewhat different conditions 
of life ; for I have ascertained by a laborious series of experiments 
that if all the individuals of the same variety be subjected during 
several generations to the same conditions, the good derived from 
crossing is often much diminished or wholly disappears. ITiis is 
one side of the case. On the other side, we know that species 
which have long been exposed to nearly uniform conditions, when 
they are subjected under confinement to new and greatly changed 
conditions, either perish, or if they survive, are rendered sterile, 
though retaining perfect health. This does not occur, or only in a 
very slight degree, with our domesticated productions, which have 
long been exposed to fluctuating conditions. Hence, when we find 
that hybrids produced by a cross between two distinct species are 
few in number, owing to their perishing soon after conception or 
at a very early age, or if surviving that they are rendered more 
or less sterile, it seems highly probable that this result is due to 
their having been in fact subjected to a great change in their 
conditions of life, from being compounded of two distinct organisa- 
tions. He who will explain in a definite manner why, for instance, 
an elephant or a fox will not breed under confinement in its native 
country, whilst the domestic pig or dog will breed freely under the 
most diversified conditions, wiU at the same time be able to give a 
definite answer to the question why two distinct species, when 
crossed, as well as their hybrid offspring, are generally rendered 
more or less sterile, whilst two domesticated varieties when crossed 
and their mongrel ofifspring are perfectly fertile. 

Turning to geographical distribution, the difficulties encountered 
on the theory of descent with modification are serious enough. 
All the individuals of the same species, and all the species of the 
same genus, or even higher group, are descended from common 
parents ; and therefore, in however distant and isolated parts of the 
world they may now be found, they must in the course of successive 
generations have travelled from some one point to all the others. 
We are often wholly unable even to conjecture how this could 
have been effected. Yet, as we have reason to believe that some 
species have retained the same specific form for very long periods 
of time, immensely long as measured by years, too much stress 
ought not to be laid on the occasional wide diffusion of the same 
species ; for during very long periods there will always have been 
a good chance for wide migration by many means. A broken 
or interrupted range may often be accounted for by the extinction 

"\^ species in the intermediate regions. It cannot be denied 



Chap. XV. Recapitulation. 407 

that we are as yet very ignorant as to the full extent of the various 
climatal and geographical changes which have affected the earth 
during modern periods ; and such changes will often have facilitated 
migration. As an example, I have attempted to show how potent 
has been the influence of the Glacial period on the distribution of 
the same and of allied species throughout the world. We are as 
yet profoundly ignorant of the many occasional means of trans- 
port. With respect to distinct species of the same genus inha- 
biting distant and isolated regions, as the process of modification 
has necessarily been slow, all the means of migration will have 
been possible during a very long period; and consequently the 
difficulty of the wide diffusion of the species of the sam« genus 
is in some degree lessened. 

As according to the theory of natural selection an interminable 
number of intermediate forms must have existed, linking together 
all the species in each group by gradations as fine as are our 
existing varieties, it may be asked. Why do we not see these 
linking forms all around us? Why are not all organic beings 
blended together in an- inextricable chaos? With respect to 
existing forms, we should remember that we have no right to ex- 
pect (excepting in rare cases) to discover direcUy connecting links 
between them, but only between each and some extinct and sup- 
planted form. Even on a wide area, which has during a long 
period remained continuous, and of which the climatic and. other 
conditions of life change insensibly in proceeding from a district 
occupied by one species into another district occupied by a closely 
allied species, we have no just right to expect often to find inter- 
mediate varieties in the intermediate zones. For we have reason 
to believe that only a few species of a genus ever undergo change ; 
the other species becoming utterly extinct and leaving no modified 
progeny. Of the species which do change, only a few within the 
same country change at the same time; and all modifications 
are slowly effected. I have also shown that the intermediate 
varieties which probably at first existed in the intermediate zones, 
would be liable to be supplanted by the allied forms on either 
hand; for the latter, from existing in greater numbers, would 
generally be modified and improved at a quicker rate than the 
intermediate varieties, which existed in lesser numbers; so that 
the intermediate varieties would, in the long run, be supplanted 
and exterminated. 

On this doctrine of the extermination of an infinitude of con- 
necting links, between the living and extinct inhabitants of the 
world, and at each successive period between the extinct and still 



/ 



4o8 Recapitulation, Chap. XV 

older species, why is not every geological formation charged with 
such links? Why does not every collection of fossil remains 
afford plain evidence of the gradation and mutation of the forms 
of life? Although geological research has undoubtedly revealed 
the former existence of many links, bringing numerous forms 
of life much closer together, it does not yield the infinitely many 
fine gradations between past and present species required on tha 
theory ; and this is the most obvious of the many objections which 
may be urged against it. Why, again, do whole groups of allied 
species appear, though this appearance is often false, to have come 
in suddenly on the successive geological stages? Although we 
now know that organic beings appeared on this globe, at a period 
incalculably remote, long before the lowest bed of the Cambrian t 
system was deposited, why do we not find beneath this system 
great piles of strata stored with the remains of the progenitors of 
the Cambrian fossils ? For on the theory, such strata must some- 
where have been deposited at these ancient and utterly unknown 
epochs of the world^s history. 

I can answer these questions and objections only on the sup- 
position that the geological record is far more imperfect than most 
geologists believe. The number of specimens in all our museums 
is absolutely as nothing compared with the countless generations 
of countless species which have certainly existed. The parent- 
form of any two or more species would not be in all its characters 
directly intermediate between its modified offspring, any more than 
the rock-pigeon is directly intermediate in crop and tail between 
its descendants, the pouter aud fantail pigeons. We should not be 
able to recognise a species as the parent of another and modified 
species, if we were to examine the two ever so closely, unless we 
possessed most of the intermediate links ; and owing to the imper^ 
fection of the geological record, we have no just right to expect 
to find so many links. If two or three, or even more linking forms 
were discovered, they would simply be ranked by. many naturalists 
as so many new species, more especially if found in different geo- 
logical sub-stages, let their differences be ever so slight. Numerous 
existing doubtful forms could be named which are probably varie- 
ties ; but who will pretend that in future ages so many fossil links 
will be discovered, that naturalists will be able to decide whether 
or not these doubtful forms ought to be called varieties ? Only a 
small portion of the world has been geologically explored. Only 
organic beings of certain classes can be preserved in a fossil con- 
dition, at least in any great number. Many species when once 
formed never undergo any further change but become extinct 



Chap. XV. Recapitulation, 409 

without leaving modified descendants; and the periods, during 
which species have undergone modification, though long as mea- 
sured by years, have probably been short in comparison with the 
periods during which they retained the same form. It is the domi- 
nant and widely ranging species which vary most frequently and 
vary most, and varieties are often at first local — both causes 
reudering the discovery of intermediate links in any one formation 
less likely. Local varieties will not spread into other and distant 
regions until they are considerably modified and improved ; and 
when they have spread, and are discovered in a geological formar 
tion, they appear as if suddenly created there, and will be simply 
classed as new species. Most formations have been intermittent in 
their accumulation ; and their duration has probably been shorter 
than the average duration of specific forms. Successive formations 
are in most cases separated from each other by blank intervals 
of time of great length ; for fossiliferous formations thick enough 
to resist future degradation can as a general rule be accumulated 
only where much sediment is deposited on the subsiding bed of the 
sea. During the alternate periods of elevation and of stationary 
level the record will generally be blank. During these latter 
periods there will probably be more variability in the forms of life ; 
during periods of subsidence, more extinction. 

With respect to the absence of strata rich in fossils beneath the 
Cambrian formation, I can recur only to the hypothesis given in 
the tenth chapter ; namely, that though our continents and oceans 
have endured for an enormous period in nearly their present relative 
positions, we have no reason to assume that this has always been 
the case; consequently formations much older than any now 
known may lie buried beneath the great oceans. With respect 
to the lapse of time not having been sufficient since our planet 
was consolidated for the assumed amount of organic change, and 
this objection, as urged by Sir William Thompson, is probably one 
of the gravest as yet advanced, I can only say, firstly, that we do 
not know at what rate species change as measured by years, and 
secondly, that many philosophers are not as yet willing to admit 
that we know enough of the constitution of the universe and of 
the interior of our globe to speculate with safety on its past dura- 
tion. 

That the geological record is imperfect all will admit ; but that 
it is imperfect to the degree required by our theory, few will be 
inclined to admit. If we look to long enough intervals of time, 
geology plainly declares that species have all changed ; and they 
have changed in the manner required by the theory, for they have 



4IO Recapitulation, Chap. XV. 



changed slowly and in a graduated manner. We clearly see this 
in the fossil remains from consecutive formations invariably being 
much more closely related to each other, than are the fossils &om 
widely separated formation^. 

Such is the sum of the several chief objections and difficulties 
which may be justly urged against the theory ; and I have now 
biiefly recapitulated the answers and explanations which, as far 
as I can see, may be given. I have felt these difficulties far too 
heavily during many years to doubt their weight. But it deserves 
especial notice that the more important objections relate to ques- 
tions on which we are confessedly ignorant ; nor do we know how 
ignorant we are. We do not know all th« possible transitional 
gradations between the simplest and the most perfect organs; it 
cannot be pretended that we know all the varied means of Distribu- 
tion during the.long lapse of years, or that we know how imperfect 
is the Geological Record. Serious as these several objections are, 
in my judgment they are by no means sufficient to overthrow the 
theory of descent with subsequent modification. 

Now let us turn to the other side of the argument. Under 
domestication we see much variability, caused, or at least excited, 
by changed conditions of life ; but often in so obscure a manner, 
that we are tempted to consider the variations as spontaneous. 
Variability is governed by many complex laws, — by correlated 
growth, compensation, the increased use and disuse of parts, and 
the definite action of the surrounding conditions. There is much 
difficulty in ascertaining how largely our domestic productions 
have been modified; but we may safely infer that the amount 
has been large, and that modifications can be inherited for long 
periods. As long as the conditions of life remain the same, we 
have reason to believe that a modification, which has already been 
inherited for many generations, may continue to be inherited for an 
almost infinite number of generations. On the other hand, we have 
^evidence that variability when it has once come into play, does not 
cease under domestication for a very long period ; nor do we know 
that it ever ceases, for new varieties are still occasionally produced 
by our oldest domesticated productions. 

Variability is not actually caused by man; he only uninten- 
tionally exposes organic beings to new conditions of life, and then 
nature acts on the organisation and causes it to vary. But man 
can and does select the variations given to him by nature, and thus 
accumulates them in any desired manner. He thus adapts animals 
And plants for his own benefit or pleasure. He may do this 



Chap. XY. Recapitulation 411 

methodically, or he may do ft unconsciously by preservinoj tho 
individuals most useful or pleasing to him without any intention of 
altering the breed. It is certain that he can largely influence the 
character of a breed by selecting, in each successive generation, 
individual differences so slight as to be inappreciable except by an 
educated eye. This unconscious process of selection has been the 
great agency in the formation of the most distinct and useful 
domestic breeds. That many breeds produced by man have to a 
large extent the character of natural species, is shown by the 
inextricable doubts whether many of them are varieties or aborigi- 
nally distinct species. 

There is no reason why the principles which have acted so 
efficiently under domestication should nqt have acted under nature. 
In the survival of favoured individuals and races, during the 
constantly-recurrent Struggle for Existence, we see a powerful and 
ever-acting form of Selection. The struggle fur existence inevitably 
follows from the high geometrical ratio of increase which is common 
to all organic beings. This high rate of increase is proved by 
calculation, — by the rapid increase of many animals and plants 
during a succession of peculiar seasons, and when naturalised in 
new countries. More individuals are bom than can possibly 
survive. A grain in the balance may determine which individuals 
shall live and which shall die, — which variety or species shall 
increase in number, and which shall decrease, or finally become 
extinct. As the individuals of the same species come in all 
respects into the closest competition with each other, the struggle 
will generally be most severe between them; it will be almost 
equally severe between the varieties of the same species, and next 
in severity between the species of the same genus. On the other 
hand the struggle will often be severe between beings remote in the 
scale of nature. The slightest advantage in certain individuals, at 
any age or during any season, over those with which they come 
into competition, or better adaptation in however slight a degree to 
the surrounding physical conditions, will, in the long run, turn the 
balance. 

With animals having separated sexes, there will be in most cases 
a struggle between the males for the possession of the females. 
The most vigorous males, or those which have most successfully 
struggled with their conditions of life, will generally leave most 
progeny. But success will often depend on the males having 
special weapons, or means of defence, or charms; and a slight 
advantage will lead to victoiy. 

As 8;eology plainly proclaims that each land has undergone great 



412 Recapitulation. Chap. XV. 

physical changes, we might have expected to find that organic 
beings have varied under nature, in the same way as they have 
varied under domestication. And if there has been any variability 
under nature, it would be an unaccoimtable fact if natural selection 
had not come into play. It has often been asserted, but the 
assertion is incapable of proof, that the amount of variation under 
nature is a strictly limited quantity. Man, though acting on 
external characters alone and often capriciously, can produce within 
a short period a great result by adding up mere individual differences 
in his domestic productions; and every one admits that species 
present individual differences. But, besides such differences, all 
naturalists admit that natural varieties exist, which are considered 
sufficiently distinct to be worthy of record in systematic works. 
No one has drawn any clear distinction between individual differ- 
ences and slight varieties ; or between more plainly marked varieties 
and sub-species, and species. On separate continents, and on 
xiifferent parts of the same continent when divided by barriers of 
any kind, and on outlying islands, what a multitude of forms exist, 
which some experienced naturalists rank as varieties, others as 
geographical races or sub-species, and others as distinct, though 
closely allied species ! 

If then, animals and plants do vary, let it be ever so slightly or 
slowly, why should not variations or iDdividual differences, which 
are in any way beneficial, be preserved and accumulated through 
natural selection, or the survival of the fittest? If man can by 
patience select variations useful to him, why, under changing and 
complex conditions of life, should not variations useful to nature's 
living products often arise, and be preserved or selected ? What 
limit can be put to this power, acting during long ages and rigidly 
scrutinising the whole constitution, structure, and habits of each 
creature, — favouring the good and rejecting the bad ? I can see no 
limit to this power, in slowly and beautifully adapting each form to 
the most complex relations of life. The theory of natural selection, 
even if we look no farther than this seems to be in the highest 
degree probable. I have already recapitulated, as fairly as I could, 
the opposed difficulties and objections: now let us turn to the 
special facts and arguments in favour of the theory. 

On the view that species are only strongly marked and permanent 
varieties, and that each species first existed as a variety, we can 
see why it is that no line of demarcation can be drawn between 
species, commonly supposed to have been produced by special acts 
of creation, and varieties which are acknowledged to have been 



Chap. XV. Recapitulation, 413 

produced by secondary laws. On this same view we caa understand 
how it is that in a region where many species of a genus have been 
produced, and where they now flourish, these same species should 
present many varieties ; for where the manufactory of species has 
been active, we might expect, as a general rule, to find it still in 
action ; and this is the case if varieties be incipient species. More- 
over, the species of the larger genera, which afford the greater 
number of varieties or incipient species, retain to a certain degree 
the character of varieties ; for they differ from each other by a less 
amount of difference than do the species of smaller genera. The 
closely allied species also of the larger genera apparently have re- 
stricted ranges, and in their affinities they are clustered in little groups 
round other species — in both respects resembling varieties. These 
are strange relations on the view that each species was independently 
created, but are intelligible if each existed first as a variety. 

As each species tends by its geometrical rate of reproduction to 
increase inordinately in number ; and as the modified descendants 
of each species will be enabled to increase by as much as they 
become more diversified in habits and structure, so as to be able 
to seize on many and widely different places in the economy of 
nature, there will bo a constant tendency in natural selection to 
preserve the most divergent offspring of any one species. Hence, 
during a long-continued course of modification, the slight differences 
characteristic of varieties of the same species, tend to be augmented 
into the greater differences characteristic of the species of the same 
genus. New and improved varieties vdll inevitably supplant and 
exterminate the older, less improved, and intermediate varieties; 
and thus species are rendered to a laro;e extent defined and 
distinct objects. Dominant species belonging to the larger 
groups within each class tend to give birth to new and domi- 
nant forms; so that each large group tends to become still 
larger, and at the same time more divergent in character. But as 
all groups cannot thus go on increasing in size, for the world would 
not hold them, the more dominant groups beat the less dominant. 
This tendency in the large groups to go on increasing in size and 
diverging in character, together with the inevitable contingency of 
much extinction, explains the arrangement of all the forms of life 
in groups subordinate to groups, all within a few great classes, 
which has prevailed throughout all time. This grand fact of the 
grouping of all organic beings under what is called the Natural 
System, is utterly inexplicable.on the theory of creation. 

As natural selection acts solely by accumulating slight, successive, 
&vourable variations, it can produce no great or sudden modifica- 



414 Recapitulation, Chap. xv. 

tions ; it can act only by short and slow steps. Hence the canon of 
"Natura non facit saltum,** which every fresh addition to our 
knowledge tends to confirm, is on this theory intelligible. We can 
see why throughout nature the same general end is gained by an 
almost infinite diversity of means, for every peculiarity when once 
acquired is long inherited, aud structures already modified in many 
different ways have to be adapted for the same general purpose. We 
can, in short, see why nature is prodigal in variety, though niggard 
in iunovation. But why this should be a law of nature if each 
species has been independently created, no man can explain. 

Many other facts are, as it seems to me, explicable on this theory. 
How strange it is that a bird, under the form of a woodpecker, 
should prey on insects on the ground; that upland geese which 
rarely or never swim, should possess webbed feet ; that a thrush- 
like bird should dive and feed on sub-aquatic insects ; and that a 
petrel should have the habits and structure fitting it for the life of 
an auk ! and so in endless other cases. But on the view of each 
species constantly trying to increase in number, with natural 
selection always. ready to adapt the slowly varying descendants of 
each to any unoccupied or ill-occupied place in nature, these facts 
cease to be strange, or might even have been anticipated. 

We can to a certain extent understand how it is that there is 
so much beauty throughout nature ; for this may be largely attri- 
buted to the agency of selection. That beauty, according to our 
sense of it, is not imiversal, must be admitted by every one who 
will look at some venomous snakes, at some fishes, and at certain 
hideous bats with a distorted resemblance to the human face. 
Sexual selection has given the most brilliant colours, elegant 
patterns, and other ornaments to the males, and sometimes to 
both sexes of many birds, butterflies, and other animals. With 
birds it has often rendered the voice of the male musical to the 
female, as well as to our ears. Flowers and firuit have been 
rendered conspicuous by brilliant colours in contrast with the green 
foliage, in order that the flowers may be easily seen, visited, and 
fertilised bj insects, and the seeds disseminated by birds. How it 
comes that certain colours, sounds, and forms should give pleasure 
to man and the lower animals, — that is, how the sense of beauty 
in its simplest form was first acquired, — we do not know any 
more than how certain odours and flavours were first rendered 
agreeable. ' * 

As natural selection acts by competition, it adapts and impuoves 
the inhabitants of each country only in relation to their co- 
inhabitants ; so that we need feel no surprise at the species of any 



Chap. XV. Recapitulation, 415 

one country, although on the ordinary view supposed to have been 
created and specially adapted for that country, being beaten and 
supplanted by the naturalised productions from another land. Nor 
ought we to marvel if all the contrivances in nature be not, as far 
as we can judge, absolutely perfect, as in the case even of the 
human eye ; or if some of them be abhorrent to our ideas of 
fitness. We need not marvel at the sting of the bee, when used 
against an enemy, causing the bee*s own death ; at drones being 
produced in such great numbers for one single act, and being then 
slaughtered by their sterile sisters; at the astonishing waste of 
pollen by our fir-trees ; at the instinctive hatred of the queen-bee 
for her own fertile daughters ; at ichneumonidae feeding within the 
living bodies of caterpillars ; or at other such cases. The wonder 
indeed is, on the theory of natural selection, that more cases of the 
want of absolute perfection have not been detected. 

The complex and little known laws governing the production 
of varieties are the same, as far as we can judge, with the laws 
which have governed the production of distinct species. In both 
cases physical conditions seem to have produced some direct 
and definite effect, but how much we cannot say. Thus, when 
varieties enter any new station, they occasionally assume some of 
the characters proper to the specios of that station. With both 
varieties and species, use and disuse seem to have produced a 
considerable effect; for it is impossible to resist this conclusion 
when we look, for instance, at the logger-headed duck, which has 
wings incapable of flight, in nearly the same condition as in the 
domestic duck ; or when we look at the burrowing tucu-tucu, which 
is occasionally blind, and then at certain moles, which are habitually 
blind and have their eyes covered with skin ; or when we look 
at the blind animals inhabiting the dark caves of America and 
Europe. With varieties and species, correlated variation seems to 
have played an important part, so that when one part has been 
modified other parts have been necessarily modified. With both 
varieties and species, reversions to long-lost characters occasionally 
occur. How inexplicable on the theory of creation is the occasional 
appearance of stripes on the shoulders and legs of the several species 
of the horse-genus and of their hybrids I How simply is this fact 
explained if we believe that these species are all descended fi*om a 
striped progenitor, in the same manner as the several domestic 
breeds of the pigeon are descended from the blue and barred rock- 
pigeon ! 

On the ordinary view of each species having been independently 
created, why should specific characters, or those by which the 



4i6 Recapitulation. Ciup. XV 

species of the same genus differ from each other, be more variable 
than generic characters in which they all agree? Why, for in- 
stance, should the colour of a flower be more likely to vary in 
any one species of a genus, if the other species possess differently 
coloured flowers, than if all possessed the same coloured flowers? 
If species are only well-marked varieties, of which the characters 
have become in a high d^ee permanent, we can understand this 
feet ; for they have already varied since they branched off from a 
common progenitor in certain characters, by which they have come 
ito be specifically distinct from each other; therefore these same 
characters would be more likely again to vary than the generic cha- 
racters which have been inherited without change for an immense 
period. It is inexplicable on the theory of creation why a part 
developed in a very unusual manner in one species alone of a genus, 
and therefore, as we may naturally infer, of great importance to 
that species, should be eminently liable to variation ; but, on our 
view, this part has undergone, since the several species branched off 
from a conmion progenitor, an unusual amount of variability and 
modification, and therefore we might expect the part generally to 
be still variable. But a part may be developed in the most unusual 
manner, like the wing of a bat, and yet not be more variable than 
any other structure, if the part be common to many subordinate 
forms, that is, if it has been inherited for a very long period ; for in 
this case it will have been rendered constant by long-continued 
natural selection. 

Glancing at instincts, marvellous as some are, they offer no 
greater difficulty than do corporeal structures on the theory of the 
natural selection of successive, slight, but profitable modifications. 
We can thus understand why nature moves by graduated steps in 
endowing different animals of the same class with their several 
instincts. I have attempted to show how much light the principle 
of gradation throws on the admirable architectural powers of the 
hive-bee. Habit no doubt often comes into play in modifying 
instincts; but it certainly is not indispensable, as we see in the 
caae of neuter insects, which leave no progeny to inherit the effects 
of long-continued habit. On the view of all the species of the same 
genus having descended from a common parent, and having in- 
herited much in common, we can understand how it is that allied 
species, when placed under widely different conditions of life, yet 
follow nearly the same instincts ; why the thrushes of tropical and 
temperate South America, for instance, line their nests with mud 
like our British species. On the view of instincts having been 
slowly acquired through natural selection, we need not marvel 



Chap. XV. Recapitulation, 417 

at some instincts being not perfect and liable to mistakes, and at 
many instincts causing other animals to suffer. 

If species be only well-marked and permanent varieties, we can 
at once see why their crossed offspring should follow the same 
complex laws in their degrees and kinds of resemblance to their 
parents, — in being absorbed into each other by successive crosses, 
and in other such points, — as do the crossed offspring of acknow- 
ledged varieties. This similarity would be a strange fact, if species 
had been independently created and varieties had been produced 
through secondary laws. 

If we admit that the geological record is imperfect to an extreme 
degree, then the facts, which the record does give, strongly support 
the theory of descent with modification. New species have come 
on the stage slowly and at successive intervals ; and the amount of 
change, after equal intervals of time, is widely different in different 
groups. The extinction of species and of whole groups of species, 
which has played so conspicuous a part in the history of the 
organic world, almost inevitably follows from the principle of 
natural selection ; for old forms are supplanted by new and im- 
proved forms. Neither single species nor groups of species re- 
appear when the chain of ordinary generation is once broken. The 
gradual diffusion of dominant forms, with the slow modification of 
their descendants, causes the forms of life, after long intervals 
of time, to appear as if they had changed simultaneously through- 
out the world. The fact of the fossil remains of each formation 
being in some degree intermediate in character between the fossils 
in the formations above and below, is simply explained by their 
intermediate position in the chain of descent. The grand fact 
that all extinct beings can be classed with all recent beings, 
naturally follows from the living and the extinct being the off- 
spring of common parents. As species have generally diverged in 
character during their long course of descent and modification, we 
can understand why it is that the more ancient forms, or early 
progenitors of each group, so often occupy a position in some 
degree intermediate between existing groups. Kecent forms are 
generally looked upon as being, on the whole, higher in the scale 
of organisation than ancient forms ; and they must be higher, in 
80 far as the later and more improved forms have conquered the 
older and less improved forms in the struggle for life ; they have 
also generally had their organs more specialised for different 
functions. This fact is perfectly compatible with numerous beings 
still retaining simple and but little improved structures, fitted for 
simple conditions of life; it is likewise compatible with some 

2 E 



4 1 8 Recapitulation. Chap. XV . 

forms having retrograded in organisation, by liaving become at 
each stage of descent better fitted for new and degraded habits 
of life. Lastly, the wonderful law of the long endurance of allied 
forms on the same continent, — of marsupials in Australia, of eden* 
tata in America, and other such cases, — is intelligible, for within 
the same country the e:^isting and the extinct will be closely 
allied by descent. 

Looking to geographical distribution, if we admit that there has 
been during the long course of ages much migi'ation from one part 
of the world to another, owing to former climatal and geographical 
changes and to the many occasional and unknown means of dis- 
persal, then we can undei'stand, on the theory of descent with 
modification, most of the great leading facts in Distribution. We 
can see why there should be so striking a parallelism in the dis- 
tribution of organic beings throughout space, and in their geological 
succession throughout time ; for in both cases the beings have been 
connected by the bond of ordinary generation, and the means of 
modification have been the same. We see the full meaning of the 
wonderful fact, which has struck every traveller, namely, that on 
the same continent, under the most diverse conditions, under heat 
and cold, on moimtain and lowland, on deserts aud marshes, most 
of the inhabitants within each great class are plainly related ; for 
they are the descendants of the same progenitors and early colonists. 
On this same principle of former migration, combined in most cases 
with modification, we can understand, by the aid of the Glacial 
period, the identity of some few plants, and the close alliance of 
many others, on the most distant mountains, and in the northern 
and southern temperate zones ; and likewise the close alliance of 
some of the inhabitants of the sea in the northern and southern 
temperate latitudes, though separated by the whole intertropical 
ocean. Although two countries may present physical conditions 
as closely similar as the same species ever require, we need feel no 
surprise at their inhabitants being widely different, if they have 
been for a long period completely sundered from each other ; for as 
the relation of organism to organism is the most important of all 
relations, and as the two countries will have received colonists 
at various periods and in different proportions, from some other 
country or from each other, the course of modification in the two 
areas will inevitably have been different. 

On this view of migration, with subsequent modification, we 
see why oceanic islands are inhabited by only few species, but of 
these, why many are peculiar or endemic forms. We clearly see 
why species belonging to those groups of animals which cannot 



Chap. XV. Recapitulation, 419 

cross wide spaces of the ocean, as frogs and terrestrial mammals, do 
not inhabit oceanic islands ; and why, on the other hand, new and 
peculiar species of bats, animals which can traverse the ocean, are 
often found on islands far distant from any continent. Such cases 
as the presence of peculiar species of b&ts on oceanic islands and 
the absence of all other terrestrial mammals, are facts utterly 
inexplicable on the theory of independent acts of creation. 

The existence of closely allied or representative species in any 
two areas, implies, on the theory of descent with modification, that 
the same parent-forms formerly inhabited both areas: and we 
almost invariably find that wherever many closely allied species 
inhabit two areas, some identical species are still common to both. 
Wherever many closely allied yet distinct species occur, doubtful 
forms and varieties belonging to the same groups likewise occur. 
It is a rule of high generality that the inhabitants of each area are 
related to the inhabitants of the nearest source whence immigrants 
might have been derived. We see this in the striking relation of 
nearly all the plants and animals of the Galapagos archipelago, 
of Juan Fernandez, and of the other American islands, to l^e 
plants and animals of the neighbouring American mainland ; and 
of those of the Cape de Verde archipelago, and of the other African 
islands to the African mainland. It must be admitted that these 
fiacts receive no explanation on the theory of creation. 

The fact, as we have seen, that all past and present organic beings 
can be arranged within a few great classes, in groups subordinate to 
groups, and with the extinct groups often falling in between the 
recent groups, is intelligible on the theory of natural selection with 
its contingencies of extinction and divergence of character. On 
these same principles we see how it is, that the mutual affinities of 
the forms within each class are so complex and circuitous. We 
see why certain characters are far more serviceable than others for. 
classification ; — why adaptive characters, though of paramount im- 
portance to the' beings, are of hardljr any importance in classifi- 
cation ; why characters derived firom rudimentary parts, though of 
ito service to the beings, are often of high classificatory value ; and 
why embryological characters are often the most valuable of all. 
The real affinities of all organic beings, in contradistinction to their 
adaptive resemblances, are due to inheritance or community of 
descent. The Natural System is a genealogical arrangement, with 
the acquired grades of difierence, marked by the terms, varieties, 
species, genera, families, &c. ; and we have to discover the lines 
of descent by tbe most permanent characters whatever they may 
be and of however slight vital importance. 

2 E 2 



420 Recapitulation, Chap. XV. 

The similar framework of bones in the hand of a man, wing of 
^ bat, fin of the porpoise, and leg of the horse, — ^the same number 
of vertebras forming the neck of the girafife and of the elephant, — 
and innumerable other such facts, at once explain themselves on 
the theory of descent with slow and slight successive modifica- 
tions. The similarity of pattern in the wing and in the leg of 
a bat, though used for such different purpose, — in the jaws and 
legs of a crab,— in the petals, stamens, and pistils of a flower 
is likewise, to a lai^e extent, intelligible on the view of the 
gradual modification of parts or organs, which were aboriginally 
alike in an early progenitor in each of these classes. On the 
principle of successive variations not always supervening at an 
early age, and being inherited at a corresponding not early 
period of life, we clearly see why the embryos of mammals, 
birds, reptiles, and fishes should be so closely similar, and so 
unlike the adult forms. We may cease marvelling at the em- 
bryo of an air-breathing mammal or bird havii^ branchial slits 
and arteries running in loops, like those of a fish which has to 
breathe the air dissolved in water by the aid of well-developed 
branchiae. 

Disuse, aided sometimes by natural selection, will often have 
reduced organs when rendered useless under changed habits or 
conditions of life ; and we can understand on this view this meaning 
of rudimentary Organs. But disuse and selection will generally act 
on each creature, when it has come to maturity and has to play its 
full part in the struggle for existence, and will thus have little 
power on an organ during early life ; hence the organ will not be 
reduced or rendered rudimentary at this early age. The calf, for 
instance, has inherited teeth, which never cut through the gums of 
the upper jaw, from an early progenitor having well-developed 
teeth ; and we may believe, that the teeth in the mature animal 
were formerly reduced by disuse, owing to the tongue and palate, 
or lips, having become excellently fitted through natural selection 
to browse without their aid ; whereas in the calf, the teeth have 
been left unaffected, and on the principle of inheritance at cor- 
responding ages have been inherited from a remote period to 
the present day. On the view of each organism with all its 
separate parts having been specially created, how utterly inexplic- 
ai^le is it that organs bearing the plain stamp of inutility, such 
as the teeth in the embryonic calf or the shrivelled wings under 
the soldered wing-covers of many beetles, should so frequently 
occur. Nature may be said to have taken pains to reveal her 
scheme of modification, by means of rudimentary organs, of em* 



Chap. XV. Conclusion, 42 1 

bryological and homologous structures, but we are too blind to 
understand her meaning. 

I have now recapitulated the facts and considerations which have 
thoroughly convinced me that species have been modified, during a 
long course of descent. This has been effected chiefly through the"" I 
natural selection of numerous successive, slight, favourable varia- i 
tions ; aided in an important manner by the inherited effects of the 
use and disuse of parts ; and in an unimportant manner, that is 
in relation to adaptive structures, whether past or present, by the 
direct action of external conditions, and 'by variations which seem 
to us in our ignorance to arise spontaneously, it appears thaf"" 
I formerly underrated the frequency and value of these latter 
forms of variation, as leading to permanent modifications of struc- 
ture independently of natural selection. But as my conclusions 
have lately been much misrepresented, and it has been stated 
that I attribute the modification of species exclusively to natural 
selection, I may be permitted to remark that in the first edition of 
this work, and subsequently, I placed in a most conspicuous posi- 
tion — ^namely, at the close of the Introduction — the following words : 
** I am convinced that natural selection has been the main but not 
the exclusive means of modification." This has been of no avail. 
Great is the power of steady misrepresentation; but the history 
of science shows that fortunately this power does not long endure. 

It can hardly be supposed that a false theory would explain, in 
so satisfactory a manner as does the theory of natural selection, the 
several large classes of facts above specified. It has recently 
been objected that this is an unsafe method of arguing; but 
it is a method used in judging of the common events of life, and 
has often been used by the greatest natural philosophers. The 
undulatory theory of light has thus been arrived at ; and the belief 
in the revolution of the earth on its own axis was until lately 
supported by hardly any direct evidence. It is no valid objection 
that science as yet throws no light on the far higher problem of the 
essence or origin of life. Who can explain what is the essence of 
the attraction of gravity ? No one now objects to following out the 
results consequent on this unknown element of attraction; not- 
withstanding that Leibnitz formerly accused Newton of introducing 
" occult qualities and miracles into philosophy." 

J see no good reason why the views given in this volume should 
shock the religious feelings of any one. It is satisfactory, as 
showing how transient such impressions are, to remember that the 
greatest discovery ever made by man, namely, the law of the 



422 Conclusion, Chap. XV. 






attraction of gravity, was also attacked by Leibnitz, "as sub- 
versive of natural, and inferentially of revealed, religion." A cele- 
brated author and divine has written to me that " he has gradually 

learnt to see that it is just as noble a conception of the Deity to 

believe that He created a few original forms capable of self- 
" development into other and needful forms, as to believe that He 
" required a fresh act of creation to supply the voids caused by the 
" action of His laws.** 

Why, it may be asked, until recently did nearly all the most 
eminent living naturalists and geologists disbelieve in the muta- 
bility of species. It cannot be asserted that organic beings in a 
state of nature are subject to no variation ; it cannot be proved 
that the amount of variation in the course of long ages is a limited 
quantity ; no clear distinction has been, or can be, drawn between 
species and well-marked varieties. It cannot be maintained that 
species when intercrossed .are invariably sterile, and varieties in- 
variably fertile ; or that sterility is a special endowment and sign 
of creation. The belief that species were immutable productions 
was almost unavoidable as long as the history of the world was 
thought to be of short duration ; and now that we have acquired 
some idea of the lapse of time, we are too apt to assume, without 
proof, that the geological record is so perfect that it would have 
afforded us plain evidence of the mutation of species, if they had 
undergone mutation. 

But the chief cause of our natural unwillingness to admit that 
one species has given birth to other and distinct species, is that we 
are always slow in admitting great changes of which we do not see 
the steps. The difficulty is the same as that felt by so many geo- 
logists, when Lyell first insisted that long lines of inland cliffs had 
been formed, and great valleys excavated, by the agencies which 
we see still at work, llie mind cannot possibly grasp the full 
meaning of the term of even a million years ; it cannot add '^up and 
perceive the full effects of many slight variations, accumulated 
during an almost infinite number of generations. 

Although I am fully convinced of the truth of the views given in 
this volume under the form of an abstract, I by no means expect 
to convince experienced naturalists whose minds are stocked with 
a multitude of facts all viewed, during a long course of years, from 
a point of view directly opposite to mine. It is so easy to hide our 
ignorance under such expressions as the '* plan of creation," " unity 
of design,'' &c., and to think that we give an explanation when we 
only re-state a fact. Any one whose disposition leads him to attach 
more weight to unexplained difficulties than to the explanation of 



Chap. XV. Conclusion. 423 



a certain number of facts will certainly reject the theory. A few 
naturalists, endowed with much flexibility of mind, and who have 
already begun to doubt the immutability of species, may be in- 
fluenced by this volume ; but I look with confidence to the future, — 
to young and rising naturalists, who will be able to view both sides 
of the question with impartiality. Whoever is led to believe that 
species are mutable will do good service by conscientiously ex- 
pressing his conviction ; for thus only can the load of prejudice by 
which this subject is overwhelmed be removed. 

Several eminent naturalists have of late published their belief 
that a multitude of reputed species in each genus are not real 
species ; but that other species are real, that is, have been inde- 
pendently created. This seems to me a strange conclusion to 
arrive at. They admit that a multitude of forms, which till lately 
they themselves thought were special creations, and which are still 
thus looked at by the majority of naturalists, and which conse- 
quently have all the external characteristic features of tnie species, 
. — they admit that these have been produced by variation, but they 
refuse to extend the same view to other and slightly different forms. 
Nevertheless they do not pretend that they can define, or even 
conjecture, which are the created forms of life, and which are those 
produced by secondary laws. They admit variation as a vera causa 
in one case, they arbitrarily reject it in another, without assigning 
any distinction in the two oases. The day will come when this 
will be given as a curious illustration of the blindness of precon- 
ceived opinion. These authors seem no more startled at a mira- 
culous act of creation than at an ordinary birth. But do they 
really believe that at innumerable periods in the earth's history 
certain elemental atoms have been commanded suddenly to flash 
into living tissues ? Do they believe that at each supposed act of 
oreation one individual or many were produced? Were all the 
infinitely numerous kinds of animals and plants created as eggs or 
seed, or as full grown ? and in the case of mammals, were they 
created bearing the false marks of nourishment from the mother's 
womb? Undoubtedly some of these same questions cannot be 
answered by those who believe in the appearance or creation of only 
a few forms of life, or of some one form alone. It has been main- 
tained by several authors that it is as easy to believe in the creation 
of a million" beings as of one; but Maupertuis' philosophical 
axiom "of least action" leads' the mind more willingly to admit 
the smaller number ; and certainly we ought not to believe that 
innumerable beings within each great class have been created 
with plain, but deceptive, marks of descent from a single parent. 



424 Conclusion, Chap. XV. 

As a record of a former state of things, I have retained in tbe 
foregoing paragraphs, and elsewhere, several sentences which imply 
that naturalists believe in the separate creation of each species ; and 
I have been much censured for having thus expressed myself. 
But uudoubtedly this was the general belief when the first 
edition of tbe present work appeared. I formerly spoke to very 
many naturalists on tbe subject of evolution, and never once met 
with any sympathetic agreement. It is probable that some did 
then believe in evolution, but they were either silent, or expressed 
themselves so ambiguously that it was not easy to understand their 
meaning. Kow things are wholly changed, and almost every 
naturalist admits the great principle of evolution. There are, how- 
ever, some who still think that species have suddenly given birth, 
through quite unexplained means, to new and totally diflferent 
forms : but, as I have attempted to show, weighty evidence can be 
opposed to the admission of great and abrupt modifications. Under 
a scientific point of view, and as leading to further investigation, 
but little advantage is gained by believing that new forms are 
suddenly developed in an inexplicable manner from old and widely 
different forms, over the old belief in the creation of species from 
the dust of the earth. 

It may be asked how far I extend the doctrine of the modification 
of species. The question is difficult to answer, because the more 
distinct the forms are which we consider, by so much the arguments 
in favour of community of descent become fewer in number and less 
in force. But some arguments of the greatest weight extend very 
far. All the members of whole classes are connected together by 
a chain of affinities, and all can be classed on the same principle, 
in groups subordinate to groups. Fossil remains sometimes tend 
to fill up very wide intervals between existing oiders. 

Organs in a rudimentary condition plainly show that an early 
progenitor had the organ in a fully developed condition ; and this 
in some cases implies an enormous amount of modification in 
the descendants. Throughout whole classes various structures are 
formed on the same pattern, and at a very early age the embryos 
closely resemble each other. Therefore I cannot doubt that the 
theory of descent with modification embraces all the members of 
the same great class or kingdom. I believe that animals are 
descended from at most only four or five progenitors, and plants 
from an equal or lesser number. 

Analogy would lead me one step farther, namely, to the belief 
that all animals and plants arc descended from some one prototype. 
But analogy may be a deceitful guide. Nevertheless all living 



Chap. XV. Conclusion. 425 

things have much in common, in their chemical composition, their 
cellular structure, their laws of growth, and their liability to in- 
jurious influences. We see this even in so trifling a fact as that the 
same poison often similarly affects plants and animals; or that 
the poison secreted by the gall-fly produces monstrous growths 
on the wild rose or oak-tree. With all organic beings, excepting 
perhaps some of the very lowest, sexual reproduction seems to be 
essentially similar. With all, as far as is at present known, the 
germinal vesicle is the same ; so that all organisms start from a 
common origin. K we look even to the two main divisions — 
namely, to the animal and vegetable kingdoms — certain low forms 
are so far intermediate in character that naturalists have disputed 
to which kingdom they should be referred. As Professor Asa Gray 
has remarked, " the spores and other reproductive bodies of many 
** of the lower algas may claim to have first a characteristically 
" animal, and then an unequivocally vegetable existence." There- 
fore, on the principle of natural selection with divergence of 
character, it does not seem incredible that, from some such low and 
intermediate form, both animals and plants may have been de- 
veloped ; and, if we admit this, we must likewise admit that all 
the organic beings which have ever lived on this earth may be 
descended from some one primordial form. But this inference is 
chiefly grounded on analogy, and it is immaterial whether or not 
it be accepted. No doubt it is possible, as Mr. Gr. H. Lewes has 
urged, that at the first commencement of life many different forms 
were evolved ; but if so, we may conclude that only a very few 
have left modified descendants. For, as 1 have recently remarked 
in regard to the members of each great kingdom, such as the 
Vertebrata, Articulata, &c., we have distinct evidence in their 
embryological, homologous, and rudimentary structures, that 
within each kingdom all the members are descended from a single 
progenitor. 

When the views advanced by me in this volume, and by Mr. 
Wallace, or when analogous views on the origin of species are 
generally admitted, we can dimly foresee that there will be a 
considerable revolution in natural history. Systematists will be 
able to pursue their labours as at present; but they will not be 
incessantly haunted by the shadowy doubt whether this or that 
form be a true species. This, I feel sure and I speak after experience^ 
will be no slight relief. The endless disputes whether or not some 
fifty species of British brambles are good species will cease. Syste- 
matists will have only to decide (not that this will be easy) whether 
any form be sufficiently constant and distinct from other forms, 



426 Conclusion. Chap. XV. 

to be capable of definition ; and if definable, whether the differences 
be suflBciently important to deserve a specific name. This latter 
point will become a far more essential consideration than it is at 
present; for differences, however slight, between any two forms, 
if not blended by intermediate gradations, are looked at by most 
naturalists as sufficient to raise both forms to the rank of species. 

Hereafter we shall be compelled to acknowledge that the only 
distinction between species and well-marked varieties is, that the 
latter are known, or believed, to be connected at the present day by 
intermediate gradations, whereas species were formerly thus con- 
nected. Hence, without rejecting the consideration of the present 
existence of intermediate gradations between any two forms, we shall 
be led to weigh more carefully and to value higher the actual 
amount of difierence between them. It is quite possible that forms 
now generally acknowledged to be merely varieties may hereafter 
be thought worthy of specific names ; and in this case scientific and 
common language will come into accordance. In short, we shall 
have to treat species in the same manner as those naturalists treat 
genera, who admit that genera are merely artificial combinations 
made for convenience. This may not be a cheering prospect ; but 
we shall at least be freed from the vain search for the undiscovered 
and undiscoverable essence of the term species. 

The other and more general departments of natural history will 
rise greatly in interest. The terms used by naturalists, of affinity, 
relationship, community of type, paternity, morphology, adaptive 
characters, rudimentary and aborted organs, &c., will cease to be 
metaphorical, and will have a plain signification. When we no 
longer look at an organic being as a savage looks at a ship, as some- 
thing wholly beyond his comprehension; when we regard every 
production of nature as one which has had a long history ; when we 
contemplate every complex structure and instinct as the summing 
up of many contrivances, each useful to the possessor, in the same 
way as any great mechanical invention is the summing up of the 
iabour, the experience, the reason, and even the blunders of nume- 
rous workmen ; when we thus view each organic being, how far 
more interesting, — I speak from ' experience, — does the study of 
natural history become ! 

A grand and almost untrodden field of inquiry will be opened, on 
the causes and laws of variation, on correlation, on the effects of use 
and disuse, on the duect action of external conditions, and so forth. 
The study of domestic productions will rise immensely in value. A 
new variety raised by man will be a more important and interesting 
subject for study than one more species added to the infinitude of 



Chap. XV. Conclusion. 427 



already recorded species. Our classifications will come to be, as far 
as they can be so made, genealogies ; and will then truly give what 
may be called the plan of creation. The rules for classifying will 
no doubt become simpler when we have a definite object in view. 
We possess no pedigrees or armorial bearings ; and we have to dis- 
cover and trace the many diverging lines of descent in our natural 
genealogies, by characters of any kind which have long been in- 
herited. Rudimentary organs will speak infallibly with respect to 
the nature of long-lost structures. Species and groups of species 
which are called aberrant, and which may fancifully be called living 
fossils, will aid us in forming a picture of the ancient forms of life. 
Embryology will often reveal to us the structure, in some degree 
obscured, of the prototypes of each great class. 

When we can feel assured that all the individuals of the same 
species, and all the closely allied species of most genera, have within 
a not very remote period descended from one parent, and have 
migrated from some one birth-place; and when we better know 
the many means of migration, then, by the light which geology 
now throws, and will continue to throw, on former changes of 
climate and of the level of the land, we shall surely be enabled to 
trace in an admirable manner the former migrations of the inhabi- 
tants of the whole world. Even at present, by comparing the 
differences between the inhabitants of the sea on the opposite sides 
of a continent, and the nature of the various inhabitants on that 
continent in relation to their apparent means of immigration, some 
light can be thrown on ancient geography. 

The noble science of Geology loses glory from the extreme 
imperfection of the record. The crust of the earth with its em- 
bedded remains must not be looked at as a well-filled museum, but 
as a poor collection made at hazard and at rare intervals. The accu- 
mulation of each great fossiliferous formation will be recognised as 
having depended on an unusual concurrence of favourable circum- 
stances, and the blank intervals between the successive stages as 
having been of vast duration. But we shall be able to gauge with 
some security the duration of these intervals by a comparison of 
the preceding and succeeding ofganic forms. We must be cautious 
in attempting to correlate as strictly contemporaneous two forma- 
tions, which do not include many identical species, by the general 
succession of the forms of life. As species are produced and ex- 
terminated by slowly acting and still existing causes, and not by 
miraculous acts of creation ; and as the most important of all causes 
of organic change is one which is almost independent of altered 
and perhaps suddenly altered physical conditions, namely, the 



428 Conclusion, Chap, xv.^ 

mutual relation of organism to organism, — the improvement of 
one organism entailing the improvement or the extermination 
of others ; it follows, that the amount of organic change in the 
fossils of consecutive formations probably serves as a fair measure 
of the relative, though not actual lapse of time. A number of 
species, however, keeping in a body might remain for a long period 
unchanged, whilst within the same period, several of these species, 
by migrating into new countries and coming into competition with 
foreign associates, might become modified; so that we must not 
overrate the accuracy of organic change as a measure of time. 

In the future I see open fields for far more important researches. 
Psychology will be securely based on the foundation already well 
laid by Mr. Herbert Spencer, that of the necessary acquirement 
of each mental power and capacity by gradation. Much light will 
be thrown on the origin of man and his history. 

Authors of the highest eminence seem to be fully satisfied with 
the view that each species has been independently created. To my 
mind it accords better with what we know of the laws impressed on 
matter by the Creator, that the production and extinction of the 
past and present inhabitants of the world should have been due to 
secondary causes, like those determining the birth and death of the 
individual. When I view all beings not as special creations, but 
as the lineal descendants of some few beings which lived long before 
the first bed of the Cambrian system was deposited, they seem to 
me to become ennobled. Judging from the past, we may safely 
infer that not one living species will transmit its unaltered likeness 
to a distant futurity. And of the species now living very few will 
transmit progeny of any kind to a far distant futurity ; for the 
manner in which all organic beings are grouped, shows that the 
greater number of species in each genus, and all the species in 
many genera, have left no descendants, but have become utterly 
extinct. We can so far take a prophetic glance into futurity as to 
foretell that it will be the common and widely-spreieul species, 
belonging to the larger and dominant groups within each class, 
which will ultimately prevail and procreate new and dominant 
species. As all the living forms of life are the lineal descendants of 
those which lived long before the Cambrian epoch, we may feel 
certain that the ordinary succession by generation has never once 
been broken, and that no cataclysm has desolated the whole world. 
Hence we may look with some confidence to a secure future of 
great length. And as natural selection works solely by and for the 
good of each being, all corporeal and mental endowments will tend 
to progress towards perfection. 



Chap. XV. Conclusion, 429 



It is interesting to contemplate a tangled bank, clothed with 
many plants of many kinds, with birds singing on the bushes, with 
various insects flitting about, and with worms crawling through 
the damp earth, and to reflect that these elaborately constructed 
forms, so diflerent from each other, and dependent upon each other 
in so complex a manner, have all been produced by laws acting 
around us. These laws, taken in the largest sense, being Growth 
with Heproduction ; Inheritance which is almost implied by repro- 
duction ; Variability from the indirect and direct action of the con- 
ditions of life, and from use and disuse : a Batio of Increase s6 high 
as to lead to a Struggle for Life, and as a consequence to Natural 
Selection, entailing Divergence of Character and the Extinction of 
less-improved forms. Thus, from the war of nature, from famine 
and death, the most exalted object which we are capable of con- 
ceiving, namely, the production of the higher animals, directly 
follows. There is grandeur in this view of life, with its several 
powers, having been originally breathed by the Creator into a few 
forms or into one ; and that, whilst this planet has gone cycling on 
according to the fixed law of gravity, from so simple a b^uning 
endless forms most beautiful and most wonderful have been, and 
are being evolved. 



Globsary. 



( 430 ) 



GLOSSARY 



OP THE 



PRINCIPAL SCIENTIFIC TEBMS USED IN THE 

PRESENT VOLUME.* 



■^>«<< 



Aberrant. — Forms or groups of animals or plants which deviate in im- 
portant characters from their nearest allies, so as not to be easily in- 
cluded in the same group with them, are said to be aberrant. 

Aberration (in Optics). — In the refraction of light by a convex lens the 
rays passing through different parts of the lens are brought to a focus at 
slightly different distances, — this is called spherical aberration; at the 
same time the coloured rays are separated by the prismatic action ot 
the lens and likewise brought to a focus at different distances, — this is 
chromatic aberration. 

Abnormal. — Contrary to the general i-ule. 

Aborted. — An organ is said to be aborted, when its development has been 
arrested at a very early stage. 

Albinism. — Albinos are animals in which the usual c^loui*ing matters 
characteristic of the species have not been produced in the skin and its 
appendages. Albinism is the state of being an albino. 

AiiGhiE. — ^A class of plants including the ordinary sea-weeds and the fila- 
mentous fresh-water weeds. 

Alternation of Generations. — ^This term is applied to a peculiar mode 
of reproduction which prevails among many of the lower animals, in 
which the egg produces a living foi*m quite different from its parent, but 
from which the parent-form is reproduced by a process of budding, or 
by the division of the substance of the first product of the egg. 

Ammonites. — ^A group of fossil, spiral, chambered shells, allied to the 
existing pearly Nautilus, but having the partitions between the cham- 
bers waved in complicated patterns at their junction with the outer 
wall of the shell. 

Analogy. — That resemblance of structures which depends upon simi- 
larity of function, as in the wings of insects and birds. Such structures 
are said to be afialogous, and to be analogues of each other. 



* I am indebted to the kindness of Mr. W. S. Dallas for this Glossary, whidi has been 
given because several readers have complained to me that some of the terms used were 
unintelligible to them. Mr. Dallas has endeavoured to give the explanations of the- 
terms in as popular a form as possible. 



Glossary, 43 1 

Animalcule. — ^A minute animal : generally applied to those visible only by 

the microscope. 
Annelids. — ^A class of worms in which the sui'face of the body exhibits a 

more or less distinct division into rings or segments, generally provided 

with appendages for locomotion and with gills. It includes the ordinary 

marine worms, the earthworms, and the leeches. 

Antennje. — Jointed organs appended to the head in Insects, Ci-ustacea and 
Centipedes,- and not belonging to the mouth. 

Anthers. — The summits of the stamens of flowers, in which the pollen or 
fertilising dust is produced. 

Aplacentalia, Aplacentata or Aplacental Mammals. See Mammalia. 

Archettpal. — Of or belonging to the Archetype, or ideal primitiye form 
upon which all the beings of a group seem to be organised. 

Articulata. — ^A great division of the Animal Kingdom characterised gene- 
rally by having the surface of the body divided into rings, called seg- 
ments, a greater or less number of which are furnished with jointed legs 
(such as Insects, Crustaceans and Centipedes). 

Asymmetrical. — Having the two sides unlike. 

Atrophied. — Arrested in development at a very early stage. 

Balanus. — The genus mcluding the common Acorn-shells which live in 
abundance on the rocks of the sea-coast. 

Batrachians. — A class of animals allied to the Reptiles, but undergoing 
a peculiar metamorphosis, in which the young animal is generally 
aquatic and breathes by gills. (^Examples, Frogs, Toads, and Newts.) 

Boulders. — Large transpoi*ted blocks of stone generally imbedded in clayt 
or gravels. 

Braciiiopoda. — ^A class of marine MoUusca, or soft-bodied animals, fur- 
nished with a bivalve shell, attached to submarine objects by a stalk 
which passes through an aperture in one of the valves, and furnished 
with fringed arms, by the action of which food is carried to the 
mouth. 

Branchlsl — Gills or organs for respiration in water. 

Branchial. — Pertaining to gills or branchiae. 

Cambrian System. — A Series of very ancient Palaeozoic rocks, between the 
Laurentian and the Silurian. Until recently these were regai'ded as 
the oldest fossiliferous rocks. 

CANiDiB. — ^The Dog-family, including the Dog, Wolf, Fox, Jackal, &c 

Carapace. — ^The ^ell enveloping the anterior part of the body in<I!rusta- 
ceans generally ; applied also to the hard shelly pieces of the Cirripedes. 

Carboniferous. — ^This teim is applied to the great formation which 
includes, among other rocks, the coal-measures. It belongs to the 
oldest, or Palaeozoic, system of formations. 

Caudal. — Of or belonging to the tail. 

Cephalopods. — ^The highest class of the MoUusca, or soft-bodied animals, 
characterised by having the mouth surrounded by a greater or less 
number of fleshy arms or tentacles, which, in most living species, are 
furnished with sucking-cups. {Examples, Cuttle-fish, Nautilus.) 

Cbtacea. — An order of Mammalia, including the Whales, Dolphins, &c., 



■H 



432 Glossary, 

having the form of the body fish-like, the skin naked, and only the foie- 
limbs developed. 

Chelonia. — ^An order of Reptiles including the Turtles, Tortoises, &c. 

ClBBlPEDES. — An order of Crustaceans including the Barnacles and Acorn- 
shells. Their young resemble those of many other Crustaceans in form ; 
but when mature they are always attached to other objects, either 
directly or by means of a stalk, and their bodies are enclosed by a 
calcareous shell composed of several pieces, two of which can open to 
give issue to a bunch of cui*led, jointed tentacles, which represent the 
limbs. 

Coccus. — ^The genus of Insects including the Cochineal. In these the male 

is a minute, winged fly, and the female generally a motionless, berry - 

like mass. 
Cocoon. — A case usually of silky material, in which insects are frequently 

enveloped during the second or re/iting-stage (pupa) of their existence. 

The tenn " cocoon-stage " is here used as equivalent to ** pupa-stage.** 

C(ELOSP£BMon8. — ^A term applied to those fruits of the Umbelliferas 
which have the seed hollowed on the inner face. 

CoLEOPTERA. — Beetles, an order of Insects, having a biting mouth and the 
first pair of wings more or less horny, forming sheaths for the second 
pair, and usually meeting in a straight line down the middle of the 
back. 

Column. — ^A peculiar organ in the flowers of Orchids, in which the stamens, 
style and stigma (or the reproductive parts) are united. 

COMPOSiTiE or COMPOSITOUS Plants. — ^Plants in which the inflorescence 
consists of numerous small flowers (florets) brought together into a 
dense head, the base of which is enclosed by a common envelope. 
{£xample8f the Daisy, Dandelion, &c.) 

CONFERVJS. — ^The filamentous weeds of fresh water. 

Conglomerate. — ^A rock made up of fragments of rock or pebbled, 
cemented together by some other material. 

Corolla. — ^The second envelope of a flower, usually composed of coloured, 
leaf-like organs (petals), which may be united by their edges either ii. 
the basal part or throughout. 

Correlation. — ^The normal coincidence of one phenomenon, character, &c., 
with another. 

Corymb. — A bunch of flowers in which those springing from the lower 
part of the flower stalk are supported on long stalks so as to be nearly 
on a level with the upper ones. 

Cotyledons. — ^The first or seed-leaves of plants. 

Crustaceans. — A class of articulated animals, Jiaving the skin of the body 
generally more or less hardened by the deposition of calcareous matter, 
breathing by means of gills. (JExamples, Crab, Lobster, Shrimp, &c.) 

CuRCULio. — ^The old generic term for the Beetles known as Weevils, cha- 
racterised by their four-jointed feet, and by the head being produced 
into a sort of beak, upon the sides of which the antennae ai'e inserted. 

Cutaneous. — Of or belonging to the skin. 

Degradation. — ^The wearing down of land by the action of the sea or of 
meteoric agencies. 



\ 



\ 



Glossary. 433 

Peiyddation. — ^The wearing away of the surface of the land by water. 

Devonian SrerrEM or formation. — ^A series of Palaeozoic rocks, including 
the Old Red Sandstope. 

Dicotyledons or Diootyledonoub Plants. — ^A class of plants character- 
ised by haying two seed-leaves, by the formation of new wood between 
the bark and the old wood (exogenous growth) and by the reticulation 
of the reins of the leaves. The parts of the flowers are generally in 
multiples of fiye. 

Differentiation. — ^The separation or discrimination of parts or organs 
which in simpler forms of life are more or less united. 

Dimorphic. — Having two distinct forms. — Dimorphism is the condition of 

the appearance of the same species under two dissimilar forms. 
Dioecious. — ^Having the organs of the sexes upon distinct individaals. 
Diorite. — ^A peculiar form of Greenstone. 
Dorsal. — Of or belonging to the back. 

£dentata. — ^A peculiar order of Quadrupeds, characterised by the absence 
of at least the middle incisor (front) teeth in both jaws. {ExampleSy 
the Sloths and Armadillos.) 

Elytra. — ^The hardened fore-wings of Beetles, serving as sheaths for the 
membranous hind-wings, which constitute the true organs of flight. 

Embryo. — ^The young animal undergomg development within the egg or 
womb. 

Embryology. — ^The study of the development of the embryo. 

Endemic. — Peculiar to a given locality. 

Entomostraca. — ^A division of the class Crustacea, having all the seg- 
ments of the body usually distinct, gills attached to the feet or organs 
of the mouth, and the feet fringed with fine hairs. They are generally 
of small size. 

Eocene. — ^The earliest of the three divisions of the Tertiary epoch of geolo- 
gists. Rocks of this age contain a small proportion of shells identical 
with species now living. 

Ephemeroub Insects. — Insects allied to the May-fly. 

Fauna. — ^The totality of the animals naturally inhabiting a certain 
country or region, or which have lived during a given geological 
period. 

FELID.S. — ^The Cat-family. 

Feral. — ^Having become wild from a state of cultivation or domestication. 
Flora. — ^The totality of the plants growing naturally in a countiy, or 
during a given geological period. 

Florets. — ^Flowers imperfectly developed in some respects, and collected 
into a dense spike or head, as in the Grasses, the Dandelion, &c. 

Fcetal. — Of or belonging to the fcetus, or embyro in course of develop- 
ment. 

Foraminifera. — ^A class of animals of very low organisation, and generally 
of small size, having a jelly-like body, from the surface of which deli- 
cate filaments can be given off and retracted for the prehension of 
external objects, and having a calcareous or sandy shell, usually 
divided into chambers, and perforated with small apertures. 

2 F 



434 Glossary, 

F08SILIFEBOU8. — Containing fossils. 

F08SORIAL. — Having a faculty of digging. The Fossorial Hymenoptera are 
a group of Wasp-like Insects, which burrow in sandy soil to make nests 
for their young. 

FuENUM (pi. Frena). — A small band or fold of skin. 

Fungi (sing. Fungus). — A class of cellular plants, of which Mushrooms, 
Toadstools, and Moulds, are familiar examples. 

Furcula. — The forked bone formed by the union of the collar-bones in many 
birds, such as the common Fowl. 

Gallinaceous Birds. — An order of Birds of which the common Fowl, 
Turkey, and Pheasant, are well-known examples. 

Gallus. — The genus of birds which includes the common Fowl. 

Ganglion.— A swelling or knot from which nerves are given off as from a 

centre. 
Ganoid Fishes. — Fishes covered with peculiar enamelled bony scales. 

Most of thorn are extinct. 

Germinal Vesicle. — A minute vesicle in the eggs of animals, from which 
the development of the embyro proceeds. 

Glacial Period. — A period of great cold and of enormous extension of 
ice upon the surface of the earth. It is believed that glacial periods 
have occurred repeatedly during the geological history of the earth, but 
the term is generally applied to the close of the Tertiary epoch, when 
nearly the whole of Europe was subjected to an arctic climate. 

Gland. — An organ which secretes or separates some peculiar product from 
the blood or sap of animals or plants. 

Glottis. — ^The opening of the windpipe into the oesophagus or gullet. 

Gneiss. — A rock approaching granite in composition, but more or less 
laminated, and really produced by the alteration of a sedimentary 
deposit after its consolidation. 

Grallatores. — ^The so-called Wading-birds (Storks, Cranes, Snipes, &c.), 
which are generally furnished with long legs, bare of feathers above 
the heel, and have no membranes between the toes. 

Granite. — A rock consisting essentially of crystals of felspar and mica in 
a mass of quartz. 

Habitat.— The locality in which a plant or animal naturally lives. 

Hemiptera. — An order or sub-order of Insects, characterised by the posses- 
sion of a jointed beak or rostrum, and by having the fore-wings homy 
in the basal portion and membranous at the extremity, where they cross 
each other. This group includes the various species of Bugs. 

Herhaphbodite. — Possessing the organs of both sexes. 

Homology. — ^That relation between parts which results from their deve- 
lopment from cori'esponding embryonic parts, either in different animals, 
as in the case of the arm of man, the fore-leg of a quadruped, and the 
wing of a bird ; or in the same individual, as in the case of the fore and 
hind legs in quadrupeds, and the segments or rings and their appen- 
dages of which the body of a wonn, a centipede, &c., is composed. The 
latter is called serial homology. The parts which stand in such a relation 
to each other are said to be homoiogouSy and one such part or organ is 



Glossary. 435 

called the homologva of the other. In different plants the parts of the 
flower ai*e homologous, and in general these parts are regarded as 
homologous with leaves. 

HoMOPTERA. — An order or sub-order of Insects haying (like the Hemi- 
ptera) a jointed beak, but in which the fore-wings are either wholly 
membranous or wholly leathery. The Cicadas, Frog-hoppers, and 
Aphides f are well-known examples. 

Htbrid. — The offspring of the union of two distinct species. 

Hyhenopteba. — ^An order of Insects possessing biting jaws and usually 
four membranous wings in which there are a few veins. Bees and 
Wasps are familiar examples of this group. 

Hypebtrophied. — Excessively developed. 

ICHNEUMONID^. — ^A family of Hymenopterous insects, the members of 
which lay their eggs in the bodies or eggs of other insects. 

Imaoo. — The perfect (generally winged) reproductive state of an insect. 

Indigeens. — The aboriginal animal or vegetable inhabitants of a country 
or region. 

Inflorescence. — The mode of arrangement of the /lowers of plants. 

Infusoria. — A class of microscopic Animalcules, so called from their 
having originally been observed in infusions of vegetable matters. They 
consist of a gelatinous material enclosed in a delicate membrane, the 

' whole or part of which is furnished with short vibrating hail's (called 
cilia), by means of which the animalcules swim through the water or 
convey the minute particles of their food to the orifice of the mouth. 

iNSEcniVOROns. — ^Feeding on Insects, i 

Invertebrata, or Invertebrate Animals. — Those animals which do not 
possess a backbone or spinal column. 

Lacuna. — Spaces left among the tissues in some ot the lower animals, 
and serving in place of vessels for the circulation of the fluids of the body. 
Lamellated. — Furnished with lamellae or little plates. 

Larva (pi. Larv^). — The first condition of an insect at its issuing from the 

egg, when it is usually in the form of a ginib, caterpillar, or maggot. 
Larynx. — The upper part of the windpipe opening into the gullet. 

Laurentian. — A group of greatly altered and very ancient rocks, which 
is greatly developed along the course of the St. Laurence, whence the 
name. It is in these that the earliest known traces of organic bodies 
have been found. • 

LEGUMiNOSiB. — An order of plants represented by the common Peas and 
Beans, having a& irregular flower in which one petal stands up like a 
wing, and the stamens and pistil are enclosed in a sheath formed by two 
other petals. The fruit is a pod (or legume). 

LemuriDjE. — A group of four-handed animals, distinct from the Monkeys 
and approaching the Insectivorous Quadrupeds in some of theit charac- 
tei-s and habits. Its members have the nostrils curved or twisted, and 
a claw instead of a nail upon the first finger of the hind hands. 

Lepidoptera. — ^An order of Insects, characterised by the possession of a 
spiral proboscis, and of four large more or less scaly wings. It includes 
the well-known Butterflies and Moths. 

2 F 2 



43^ Glossary. 

Littoral. — Inhabiting the seashore. 

LoBBS. — ^A marly deposit of recent (Post-Tertiary) date, which occupies a 
great part of the valley of the Rhine. 

Malacostraca. — ^The higher division of the Crustacea, including the 
ordinary Crabs, Lobsters, Shrimps, &c, together with the Woodlice and 
Sand-hoppers. 

Mammalia. — ^The highest class of animals, including the ordinary hairy 
quadrupeds, the Whales, and Man, and characterised by the production 
of living young which are nourished after birth by milk from the 
teats (^MammsR, Mammary glands) of the mother. A striking difference 
in embryonic development has 1^ to the division of this class into two 
great groups ; in one of these, when the embryo has attained a certain 
stage, a vascular connection, called the placentOy is formed between the 
embryo and the mother ; in the other this is wanting, and the young 
are produced in a very incomplete state. The former, including the 
greater part of the class, are called PlacentcU mammals ; the latter, or 
Aplacental mammals, include the Marsupials and Monotremes ((>n»- 
thorhynchtis). 

Mammifebous. — Having mammse or teats (see Mammalia). 

Mandibles, in Insects. — The first or uppei*most pair of jaws, which are 
generally solid, horny, biting organs. In Birds the term is applied to 
both jaws with their homy coverings. In Quadrupeds the mandible 
is properly the lower jaw. 

Marsupials. — ^An order of Mammalia in which the young are bom in a 
very incomplete state of development, and carried by the mother, while 
sucking, in a ventral pouch (marsupium), such as the Kangaroos, 
Opossums, &c. (see Mammalia). 

Maxillae, in Insects. — ^The second or lower pair of jaws, which are com 
posed of several joints and furnished with peculiar jointed appendages 
called palpi, or feelers. 

Melanism. — The opposite of albinism ; an undue development of colouring 
material in the skin and its appendages. 

Metamorphic Rocks. — Sedimentary rocks which have undergone altera- 
tion, generally by the action of heat, subsequently to their deposition 
aud consolidation. 

MOLLUSCA. — One of the great divisions of the Animal Kingdom, including 
those anlmab which have a soft body, usually furnished with a shell, 
and in which the nervous ganglia, or centres, present no definite general 
arrangement. They are generally known under the denomination of 
" shell-fish ;" the cuttle-fish, and the common snails, whelks, oysters^ 
mussels, and cockles, may serve as examples of the^. 

Monocotyledons, or Monoootyledonous plants.— Plants in which the 
seed sends up only a single seed-leaf (or cotyledon) ; characterised by 
the absence of consecutive layers of wood in the stem (endogenous 
growth), by the veins of the leaves being generally straight, and by the 
parts of the flowers being generally in multiples of three. (Examples^ 
Grasses, Lilies, Orchids, Palms, &c.) 

Moraines. — The accumulations of fragments of rock brought down by 

glaciers. 

MoRPHOi/)GY. — ^The law of form or structure independent of function. 



Glossary. 437 

liTSis-ffrAaB; — A stage in the deyelopment of certain Omstaceans 
(Prawns), in which they closely resemble the adnlts of a genns (Jdym) 
belonging to a slightly lower group. 

Nascent. — Coinmendng deyelopment. 

Katatort. — Adapted for the purpose of swimming. 

Nauplius-fobm. — The earliest stage in the deyelopment of many Crustacea, 
especially belonging to the lower groups. In this stage the animal has 
a short body, with indistinct indications of a diyision into segments, 
and three pairs of fringed limbs. This form of the common fresh-water 
Cyclops was described as a distinct genus under the name of Nauplitus, 

Neubation. — ^The arrangement of the yeins or neryures.in the wings of 
Insects. 

Neutebs. — ^Imperfectly deyeloped females of certain social insects (such as 
Ants and Bees), which perform all the labours of the community. 
Hence they are also called workers. 

Nictitating Membbane. — ^A semi-transparent membrane, which can be 
drawn across the eye in Birds and Reptiles, either to moderate the 
effects of a strong light or to sweep particles of dust, &c., from the sur- 
face of the eye. 

Ocelli. — ^The simple eyes or stemmata of Insects, usually situated on the 
crown of the head between the great compound eyes. 

(Esophagus. — ^The gullet. 

00LITIC.-^A great series of secondary rocks, so called from the lexture of 
some of its members, which appear to be made up of a mass of small 
egg^lihe calcareous bodies. 

Opebculum. — A calcareous plate employed by many Mollusca to close the 
aperture of their shell. The opercular valves of Cirripedes are those 
which close the aperture of the shell. 

Orbit. — ^The bony cayity for the reception of the eye. 

Obgakism. — ^An organised being, whether plant or animal. 

Obthosper'mous. — A term applied to those fruits of the Umbelliferse 
which haye the seed straight. 

Osculant. — Forms or groups apparently intermediate between and con- 
necting other groups are said to be osculant. 

Ova. — Eggs. 

OVABIXTM or OvABT (in plants). — ^The lower part of the pistil or femaie 
organ of the flower, containing the oyules or incipient seeds ; by growth 
af^r the other organs of the flower haye fallen, it usually becomes 
conyerted into the fruit. 

Ovigebous. — ^Egg-bearing. 

Ovules (of plants). — ^The seeds in the earliest condition. 

Pachydebms. — A group of Mammalia, so called from their thick skins, 

and including the Elephant, Rhinoceros, Hippopotamus, &c 
Palaeozoic. — ^The oldest system of fossiliferous rocks. 

Palpi. — ^Jointed appendages to some of the organs of the mouth in Insects 
and Crustacea 



43 8 Glossary, 

Papilionaceje. — ^An order of Plants (see Leguminos^). — The flowers of 
these plants are called papilionaceous, or butterfly-like, from the 
fancied resemblance of the expanded superior petals to the wings of a 
butterfly. 

Parasite. — An animal or plant living upon or in, and at the expense of,, 
another organism. 

Parthenogenesis. — ^The production of living organisms from unimpreg- 
nated eggs or seeds. 

Pedunculated. — Supported upon a stem or stalk. The pedunculated oak 
has its acorns borne upon a footstalk. 

Peloria or Pelorism. — ^The appearance of regularity of structure in the 
flowers of plants which normally bear irregular flowers. 

Pelvis. — ^The bony arch to which the hind limbs of vertebrate animals are 
articulated. 

Petals. — ^The leaves of the corolla, or second circle of organs in a flower. 
They are usually of delicate texture and brightly coloured. 

Phtllodineous. — ^Having flattened, leaf-like twigs or leafstalks instead of 
true leaves. 

PiaifENT. — ^The colouring material produced generally in the superflcial 
l^arts of animals. The cells secreting it are called pigment-celh. 

Pinnate. — Bearing leaflets on each side of a central stalk. 

PiSTius. — ^The female organs of a flower, which occupy a position in the 
centre of the other floral organs. The pistil is generally divisible into 
the ovary or germen, the style and the stigma. 

Placentalia, Placentata, or Placental Mammals. — See Mammalia. 

Plantigrades. — Quadrupeds which walk upon the whole sole of the foot, 
like the Bears. 

Plastic. — Readily capable of change. 

Pleistocene Period. — The latest portion of the Tertiary epoch. 

Plumule (in plants). — ^The minute bud between the seed-leaves of newly- 
germinated plants. 

Plutonic Rocks. — ^Rocks supposed to have been produced by igneous action 
in the depths of the earth. 

Pollen. — The male element in flowering plants ; usually a fine dust pro- 
duced by the anthers, which, by contact with the stigma effects the 
fecundation of the seeds. This impregnation is brought about by means 
of tubes (pollen-tubes) which issue from the pollen-grains adhering to 
the stigma, and penetrate through the tissues until they reach the 
ovary. 

PoLYANDROUS (flowers). — ^Flowers having many stamens. 

Polygamous Plants. — Plants in which some flowers are unisexual and 
others hermaphrodite. The unisexual (male and female) flowers, may be 
on the same or on different plants. 

Polymorphic. — Presenting many forms. 

PoLYZOARY. — The common structure formed by the cells of the Pplyzo^i, 
such as the well-known Sea-mats. 

Prehensile. — Capable of grasping. 

Prepotent. — Having a superiority of power. 



Glossary. 439 

Primabies. — ^The feathers forming the tip of the wing of a bii*d, and in- 
serted upon that part which represents the hand of man. 

Pbocesses. — Projecting portions of bones, usually for the attachment of 
muscles, ligaments, &c. 

Propolis. — A resinous material collected by the Hive-Bees from the 
opening buds of rarious trees. 

Protean. — Exceedingly variable. 

Protozoa. — The lowest great division of the Animal Kingdom. These 
animals are composed of a gelatinous material, and show scarcely any 
trace of distinct organs. The Infusoria, Foraminifera, and Sponges, 
with some other forms, belong to this division. 

Pupa (pi. Pup^). — ^The second stage in the development of an Insect, from 
which it emerges in the perfect (winged) reproductive form. In most 
insects the papal stage is passed in perfect repose. The chrysalis is the 
pupal state of Butterflies. 

jIadicle. — ^The minute root of an embryo plant. 

Ramus. — One half of the lower jaw in the Mammalia. The portion which 
rises to articulate with the skull is called the ascending ramus. 

Range. — ^The extent of country over which a plant or animal is naturally 
spread. Range in time expresses the distribution of a species or group 
through the fossiliferous beds of the earth's crust. 

Retina. — ^The delicate inner coat of the eye, formed by nervous filaments 
spreading from the optic nerve, and serving for the perception of the 
impressions produced by light. 

Retrogression. — Backward development. When an animal, as it ap-r 
proaches maturity, becomes less perfectly organised than might h^. 
expected from its early stages and known relationships, it is said to 
undergo a retrograde development or fnetamorphosis. 

Rhizopods. — A class of lowly organised animals (Protozoa), having a gela- 
tinous body, the surface of which can be protruded in the form of root- 
like processes or filaments, which serve for locomotion and the prehen- 
sion of food. The most important order is that of the Foraminifera. 

Rodents. — The gnawing Mammalia, such as the Rats, Rabbits, and 
Squirrels. They are especially characterised by the possession of a 
single pair of chisel-like cutting teeth in each jaw, between which and 
the grinding teeth there is a great gap. 

RUBUS. — ^The Bramble Genus. 

Rudimentary. — ^Very imperfectly developed. 

Ruminants. — ^The group of Quadrupeds which ruminate or chew the 
cud, such as oxen, sheep, and deer. They have divided hoofs, and are 
destitute of front teeth in the upper jaw. 

Sacral. — Belonging to the sacrum, or the bone composed usually of two 

or more united vertebrae to which the sides of the pelvis in vertebrate 

animals are attached. 
Sarcode. — ^The gelatinous material of which the bodies of the lowest 

animals (Protozoa) are composed. 
ScuTELL-ffi. — The horny plates with which the feet of birds are generally 

more or less covered, especially in front. 
Sedimentary Formations. — Rocks deposited as sediments from water. 



440 Glossary. 

Segments. — ^The transverse rings of which the body of an articulata 

animal or Annelid is composed. 
Sepals. — ^The leaves or segments of the calyx, or outermost envelope of 

an ordinary flower. They are usually green, bat sometimes brightly 

coloured. 
Sebratures. — ^Teeth like those of a saw. 
Sessile. — Not supported on a stem or footstalk. 
Silurian Ststem. — ^A very ancient system of fossiliferous rocks belonging 

to the earlier part of the Palaeozoic series. 
Specialisation. — The setting apart of a particular organ fi>r the perform- 
ance of a particular function. 
Spinal Chord. — The central portion of the nervous system in the Verte- 

brata, which descends from the brain through the arches of the ver- 

tebrse, and gives off nearly all the nerves to the various organs of the 

body. 
Stamens. — ^The male organs of flowering plants, standing in a circle within 

the petals. They usually consist of a filament and an anther, the 

anther being the essential part in which the pollen, or fecundating 

dust, is formed. 
Sternum. — ^The breast-bone. 

Stigma. — ^The apical portion of the pistil in flowering plants. 
Stipules. — Small leafy organs placed at the base of the footstalks of the 

leaves in many plants. 
Sttle. — ^The middle portion of the perfect pistil, which rises like a column 

from the ovary and supports the stigma at its summit. 
Subcutaneous.— -Situated beneath the skin. 
Suctorial. — ^Adapted for sucking. 
Sutures (in the skull). — ^The lines of iunction of the bones of which the 

skull is composed. 

Tarsus (pi. Tarsi). — ^The jointed feet of articulate animals, such as Insects. 

Teleostean Fishes. — Fishes of the kind familiar to us in the present day, 
having the skeleton usually completely ossified and the scales homy. 

Tentacuia or Tentacles. — Delicate fleshy organs of prehension or touch 
possessed by many of the lower animals. 

Tertiary. — ^The latest geological epoch, immediately preceding the esta- 
blishment of the present order of things. 

Trachea. — The wind-pipe or passage for the admission of air to the lungs. 

Tridacttle. — ^Three-fingered, or composed of three movable parts attached 
to a common base. 

Trilobites. — ^A peculiar group of extinct Crustaceans, somewhat resembling 
the Woodlice in external form, and, like some of them, capable of rolling 
themselves up into a ball. Their remains are found only in the Palaeo- 
zoic s'ocks, and most abundantly in those of Silurian age. 

Trimorphic. — ^Pi*esenting three distinct foi*ms. 

Umbellifer^. — ^An order of plants in which the flowers, wfilch contain 
five stamens and a pistil with two styles, are supported upon footstalks 
which spring from the top of the flower stem and spread out like the 
wires of an umbrella, so as to bring all the flowers in the samis head 
(umbel) nearly to the same level. (Examples, Parsley and Carrot.) 



Glossary, 44 1 

(jNaxn<ATA. — ^Hoofed quadrupeds. 
Unicellulab. — Consisting of a single cell. 

Yasculab. — Containing blood-vessels. 

Vermifobm. — Like a worm. 

Yebtebbata: or Yebtebbate Animai^i. — ^The highest division of the 
animal kingdom, so called from the presence in most cases of a back- 
bone composed of numerous joints or vertebraBy which constitutes the 
centre of the skeleton and at the same time supports and protects 
the central parts of the nervous system. 

WdORLS. — The circles or spiral lines in which the parts of plants arc 
arranged upon the axis of growth. 

Wobkebs. — See Neuters. 

Zoea-stage. — ^The earliest stage in the development of many of the higher 
Crustacea, so called from the name of ZoSa applied to these young 
animals when they were supposed to constitute a peculiar genus. 

ZOOIDS. — ^In many of the lower animals (such as the Corals, Medusae, &c.) 
reproduction takes place in two ways, namely, by means of eggs and 
by a process of budding with or without separation from the parent of 
the product of the latter, which is often very different from that of the 
egg. The individuality of the species is represented by the whole of 
the form produced between two sexual reproductions ; and these forms, 
which are apparently individual animals, have been called zooid$. 



Index. 



\ 



( 443 ) 



INDEX. 



ABERRANT. 



BAER. 



Aberrant grcAips, 379. 

Abyssinia, plants of^ 340. 

Acclimatisation, 112. 

Adoxa, 173. 

Affinities of extinct species, 301. 

of organic beings, 378. 

Agassiz, on Andblyopsis, 112. 

, on groups of species suddenly 

appearing, 289. 

, on prophetic forms, 301. 

, on embryological succession, 

310. 

, on the Glacial period, 330. 

-, on embryological characters, 



368. 

, on the latest tertiary forms, 278. 

, on parallelism of embryological 

development and geological suc- 
cession, 396. 

, Alex., on pedicellarise, 191. 

Algae of New Zealand, 338. 

Alligators, males, fighting, 69. 

Alternate generations, 387. 

Amblyopsis, blind fish, 112. 

America, North, productions allied to 
those of Europe, 333. 

, , bouldei*s and glaciers of, 

335. 

, South, no modem formations 

on west coast, 272. 

Ammonites, sudden extinction of, 297. 

Anagallis, sterility of, 236. 

Analogy of variations, 127. 

Ancylus, 345. 

Andaman Islands inhabited by a toad, 
350. 

Animals, not domesticated from being 
variable, 13. 

, domestic, descended from seve- 
ral stocks, 14. 

, , acclimatisation of, 112. 

of Australia, 90. 

with thicker fur in cold climates, 

107. 



Animals, blind, in caves, 110. 

, extinct, of Australia, 310. 

Anomma, 232. 

Antarctic islands, ancient fiora of, 

355. 
Antechinus, 373. 
Ants attending aphides, 207. 

, slave-making instinct, 217. 

, neuters, structure of, 230. 

Apes, not having acquired intellectual 

powers, 181. 
Aphides, attended by ants, 207. 
Aphis, development of, 390. 
Apteryx, 140. 
Arab horses, 26. 
Aralo-Caspian Sea, 311. 
Archeopteryx, 284. 
Archiac, M. de, on the succession of 

species, 299. 
Ai*tichoke, Jei*usalem, 114. 
Ascension, plants of, 347. 
Asclepias, pollen of, 151. 
Asparagus, 325. 
Aspicarpa, 367. 
Asses, striped, 127. 

, improved by selection, 30. 

Ateuchus, 109. 

Aucapitaine, on land-shells, 353. 

Audubon, on habits of frigate-bird, 

142. 
, on variation in birds* nests, 

208. 
-, on heron eating seeds, 346. 



Australia, animals of, 90. 

, dogs of, 211. 

, extinct animals of, 310. 

, European plants in, 337. 

, glaciers of, 335. 

Azara, on flies destroying cattle, 56. 
Azores, flora of, 328. 

B. 

Babington, Mr., on British plants, 37. 
Bafer, Von, standard of Highness, 97. 

, comparison of bee and fish 

308. 



444 



BAEB. 



INDEX. 



CATTLE. 



Baer, Yon, embryonic similarity of 

the Yertebrata, 887. 
Baker, Sir S., on the giraffe, 178. 
Balancement of growth, 117. 
Baleen, 182. 
Barberry, flowers of, 77. 
Barrande, M., on Silurian colonies, 

291. 
, on the succession of species, 

299. 
, on parallelism of palseozoic 

formations, 301. 
f on affinities of ancient species, 

302. 
Barriers, importance of, 317. 
Bates, Mr., on mimetic butterflies, 

375, 376. 
Batrachians on islands, 350. 
Bats, how structure acquired, 140. 

f distribution of, 351. 

Bear, catching water-insects, 141. 
Beauty, how acquired, 159, 414. 
Bee, sting of, 163. 

) queen, killing rivals, 164. 

J Australian, extermination of, 

69. 
Bees fertilising flowers, 57. 
J hive, not sucking the red clover, 

75. 
' , Ligurian, 75. 

, hive, cell-making instinct, 220. 

, variation in habits, 208. 

f parasitic, 216. 

, humble, cells o^ 220. 
Beetles, wingless, in Madeira, 109. 

with deficient tarsi, 109. 

Bentham, Mr., on British plants, 37. 

, on classification, 369. 

Berkeley, Mr., on seeds in salt water, 

324. 
Bermuda, birds of, 348. 
Biixis acquiring fear, 208. 

^ beauty of, 161. 

annually cross the Atlantic, 329. 

, colour of, on continents, 107. 

, footsteps, and remains of, in 

secondary rocks, 284. 

, fossil, in caves of Brazil, 310. 

, of Madeira, Bermuda, and Ga- 
lapagos, 348, 349. 
— , song of males, 70. 

transporting seeds, 328. 

, waders, 345. 
, wingless, 108, 140. 



I 



Bizcacha, 818. 

, affinities of, 379. 

Bladder for swimming, in fish, 147. 
Blindness of cave animals, 110. 
Blyth, Mr., on distinctness of Indian 

cattle, 14. 

f on striped hemionus, 128. 

y on crossed geese, 240. 

Borrow, Mr., on the Spanish pointer, 

26. 
Bory St.Yincent, on Batrachians, 350. 
Bosquet, M., on fossil Chthamalus, 

284. 
Boulders, erratic, on the Azores, 328. 
Branchiae, 148, 149. 

of crustaceans, 152. 

Braun, Prof., on the seeds of Fuma- 

riacese, 174. 
Brent, Mr., on house-tumblers, 216. 
Britain, mammals of, 352. 
Broca, Prof., on Natural Selection, 

170. 
Bronn, Prof., on duration of specific 

forms, 275. 

, various objections by, 170. 
Brown, Robert, on classification, 366. 
, Sequard, on inherited mutila- 
tions, 108. 
Busk, Mr., on the Polyzoa, 193. 
Butterflies, mimetic, 375, 376. 
Buzareingues, on sterility of varieties, 

258. 



0. 



Cabbage, varieties of, crossed, 78. 

Calceolaria, 239. 

Canary-birds, sterility of hybrids, 

240. 
Cape de Yerde blands, productions of, 

354. 

, plants of, on mountains, 337. 

Cape of Good Hope, plants of, 101, 

347. 
Carpenter, Dr., on foraminifera, 308. 
Carthamus, 173. 
Catasetum, 155, 372. 
Cats, with blue eyes, deaf, 9. 

, variation in habits of, 209. 
curling tail when going to 

spring, 162. 
Cattle destroying fir-trees, 56. 
destroyed by flies in Paraguay, 

56. 



CATTLE. 



INDEX. 



CUYIER. 



445 



Cattle, breeds of, locally extinct, 86. 
, fertility of Indian and European 

breeds, 241. 

, Indian, 14, 241. 

"^ Cave, inhabitants of, blind, 110. 
Cecidomyia, 387. 

Celts, preying antiquity of man, 13. 
Centres of creation, 320. 
Cephalopodse, structure of eyes, 151. 

, development of, 390. 

Cercopithecus, tail of, 189. 
7 Cerozylus laceratus, 182. 
Cervulus, 240. 
Cetacea, teeth and hair, 115. 
^ development of the whalebone, 

182. 
Cetaceans, 182. 
Ceylon, plants of, 338. 
Chalk formation, 297. 
Characters, divergence of, 86. 
— , sexual, Tariable, 119, 123. 

, adaptive or analogical, 373. 

Charlock, 59. 

Checks to increase, 53. 

— , mutual, 55. 

Chelse of Crustaceans, 193. 
Chickens, instinctive tameness of, 211. 
Chironomus, its asexual reproduction, 

387. 
Chthamalinse, 271. 
Chthamalus, cretacean species of, 284. 
Circumstances favourable to selection 

of domestic products, 29. 

• to natural selection, 80. 

Cirripedes capable of crossing, 79. 
, carapace aborted, 118. 

, their ovigerous frena, 148. 

, fossil, 284. 



lai-vse of) 389. 



ClaparMe, Prof, on the hair-claspers 
of the Acarid«e, 153. 

Clarke, Rev. W. B., on old glaciers in 
Australia, 335. 

Classification, 363. 

Clift, Mr., on the succession of types, 
310. 

Climate, effects of, in checking in- 
crease of beings, 54. 

, adaptation of, to organisms, 

112. 

Climbing plants, 147. 

— , development of, 96. 

Clover visited by bees, 75t 

Cobites, intestine of, 147. 



Cockroach, 59. 

Collections, palseontological, poor, 
270. 

Colour, influenced by climate, 107. 
, in relation to attacks by flies, 
159. 

Columba livia, parent of domestic 
pigeons, 17. 

Colymbetes, 345. 

Compensation of growth, 117. 

Composite, flowers and seeds of, 116. 
, outer and inner florets of, 173. 

, male flowers of, 398. 

Conclusion, general, 421. 

Conditions, slight changes in, favour- 
able to fertility, 251. 

Convergence of genera, 100. 

Coot, 142. 

Cope, Prof., on the acceleration or 
retardation of the period of repro- 
duction, 149. 

Coral-islands, seeds drifted to, 326. 

reefs, indicating movements of 

earth, 326. 

CorJt-crake, 143. 

Correlated variation in domestic pro- 
ductions, 9. 

Coryanthes, 154. 

Creation, single centres of, 320. 

Crinum, 238. *»; 

CroU, Mr., on subaerial denudation ,- 
267, 269. 

— , on the age of our oldest form- 
ations, 286. 

, on alternate Glacial periods in 
the North and South, 336. 

Crosses, reciprocal, 244. 

Crossing of domestic animals, import- 
ance in altering breeds, 15. 
, advantages of, 76, 77. 
, unfavourable to selection, 80. 

Criiger, Dr., on Coryanthes, 154. 

Crustacea of New Zealand, 338. 

Crustacean, blind, 110. 

^— air-breathers, 152. 

Crustaceans, their chelsB, 193. 

Cryptocerus, 231. 

Ctenomys, blind, 110. 

Cuckoo, instinct of, 205, 212. 

Cunningham, Mr., on the flight of 
the logger-headed duck, 108. 

Currants, grafts of, 246. 

Currents of sea, rate of, 325. 

Cuvier,on conditions of existence, 205. 



446 



CUVIER. 



im)EX. 



EXTINCTION. 



Cuvier, on fossil monkeys, 283, 284. 

, Fred., on instinct, 205. 

Cyclostoma, resisting salt water, 353. 

D. 

Dana, Prof., on blind cave-animals. 111. 

, on relations of crustaceans of 

Japan, 334. 

, on crustaceans of New Zea- 
land, 338. 

Dawson, Dr., on eozoon, 287. 

De Candolle, Aug. Pyr., on struggle 
for existence, 49. 

, on umbelliferae, 116, 

, on general affinities, 379. 

De Candolle, Alph., on the variability 
of oaks, 40. 

, on low plants, widely dispersed, 

359. 

y on widely-ranging plants being 

variable, 43. 

, on naturalisation, 89. 

, on winged seeds, 117. 

, on Alpine species suddenly be- 
coming rare, 135. 

y on distribution of plants with 

large seeds, 326. 

, on vegetation of Australia, 340. 

, on fresh-water plants, 345. 

-, on insular plants, 347. 



Degradation of rocks, 266. 
Denudation, rate of, 268. 

• of oldest rocks, 287. 

of granitic areas, 274. 

Development of ancient forms, 307. 
Devonian system, 305. 
Dianthus, fertility of crosses, 243. 
Dimorphism in plants, 35, 252. 
Dirt on feet of birds, 328. 
Dispersal, means of, 323. 

during Glacial period, 330. 

Distribution, geographical, 316. 

, means of, 323. 

Disuse, effects of, under nature, 108. 
Divergence of character, 86. 
Diversification of means for same 

general purpose, 153. 
Division, physiological, of labour, 89. 
Dog, resemblance of jaw to that of 

the Thylacinus, 374. 
Dogs, hairless, with imperfect teeth, 9. 
descended from several wild 

stocks, 15. 
, domestic instincts of, 210. 



Dogs, inherited civilisation of, 210. 

, fertility of breeds together, 241. 

, of crosses, 256. 

-, proportions of body in different 



breeds, when young, 392. 

Domestication, variation under, 5. 

Double flowers, 230. 

Downing, Mr., on fruit-trees in Ame- 
rica, 66, 

Dragon-flies, intestines of, 147. 

Drift-timber, 326. 

Driver-ant, 232. 

Drones killed by other bees, 164. 

Duck, domestic, wings of, reduced, S. 

, beak of, 183, 

, logger-headed, 140. 

Duckweed, 344. 

Dugong, affinities of, 365. 

Dung-beetles with deficient tarsi, 108. 

Dytiscus, 345. 

2. 

Earl, Mr. W., on the Malay Archipe- 
lago, 351. 

Ears, drooping, in domestic animals, 8. 

y rudimentary, 400. 

Earth, seeds in roots of trees, 326. 

charged with seeds, 328. 

Echinodermata, their pedicellaria;, 
191. 

Eciton, 230. 

Economy of organisation, 117. 

Edentata, teeth and hair, 115. 

, fossil species of, 417. 

Edwards, Milne, on physiological 
division of labour, 89. 

, on gradations of stnicture, 156. 

, on embryological characters, 

368. 

Eggs, young birds escaping from, 6S. 

Egypt, productions of, not modified. 
169. 

Electric organs, 150. 

Elephant, rate of increase, 51. 

, of Glacial period, 113. 

Embryology, 386. 

Eozoon Canadense, 287. 

Epilepsy inherited, 108. 

Existence, struggle for, 48. 

— — , conditions of, 167. 

Extinction, as bearing on natural 
selection, 96. 

of domestic varieties, 93. 

, 293. 



ETE. 



INDEX. 



GALEOPITHECUS. 



447 



r 



Eye, stracture of, 144. 

, correction for aberration, 1G3. 

Eyes reduced in moles, 110. 

T. 

Fabre, M., on hymenoptera fighting, 
69. 

, on parasitic sphex, 216. 

, on Sitaris, 394. 

Falconer, Dr.^ on naturalisation of 
plants in India, 51. 

, on elephants and mastodons, 
306. 

and Cautley, on mammals of 

sub-Himalayan beds, 311. 

Falkland Islands, wolf of, 351. 

Faults, 268. 

Faunas, marine, 317. 

Fear, instinctive, in birds, 211. 

Feet of birds, young molluscs ad- 
hering to, 345. 

Fertilisation variously effected, 154, 
161. 

Fertility of hybrids, 238. 

, from slight changes in con- 
ditions, 252. 

Fertility of crossed varieties, 255. 

Fir-trees destroyed by cattle, 56. 

, pollen of, 164. 

Fish, flying, 140. 

, teleostean, sudden appearance 

of, 285. 

, eating seeds, 327, 346. 

, fresh-water, distribution of, 

343. 

Fishes, ganoid, now confined to fresh 
water, 83. 

, electric organs of, 150. 

, ganoid, living in fresh water, 

296. 
', of southern hemisphere, 338. 



Flat-fish, their structure, 186. 
Flight, powers of, how acquired, 140. 
Flint-tools, proving antiquity of man, 

13. 
Flower, Prof., on the Larynx, 190. 

, on Halitherium, 302. 

, on the resemblance between 

the jaws of the dog and Thyla- 

cinus, 375. 
, on the homology of the feet of 

certain marsupials, 382. 
Flowers, structure of, in relation to 

crossing, 73. 



Flowers, of compositae and umbelli- 
ferae, 116, 173. 

, beauty of, 161. 

, double, 230. 

Flysch formation, destitute of or- 
ganic remains, 271. 

Forbes, Mr. D., on glacial action in 
the Andes, 335. 

, E., on colours of shells, 107. 

, on abrupt range of shells in 

depth, 135. 
-, on pooraess of palseontological 



collections, 270. 
— , on continuous succession ot 
genera, 293. 

— , on continental extensions, 323. 
-, on distribution during Glacial 



period, 330. 
, on parallelism in time and 

space, 361. 
Forests, changes in, in America, 58. 
Formation, Devonian, 305. 

, Cambrian, 287. 

Formations, thickness of, in Britain, 

268, 269. 

, intermittent, 277. 

Formica rufescens, 216. 

, sanguinea, 217. 

, flava, neuter of, 231. 

Forms, lowly organised, long en- 
during, 99. 
Frena, ovigerous, of cirripedes, 148. 
Fresh-water productions, dispei*sal 

of, 343. 
Fries, on species in large genera 

being closely allied to other species, 

45. 
Frigate-bird, 142. 
Frogs on islands, 350. 
Fruit-trees, gradual improvement of, 

27. 

in United States, 66. 

, varieties of, acclimatised in 

United States, 114. 
Fuci, crossed, 249, 343. 
Fur, thicker in cold climates, 107. 
Furze, 388. 



0. 

Galapagos Archipelago, birds of, 348. 

, productions of, 353, 355. 

Galaxias, its wide range, 343. 
Galeopithecus, 139. 



448 



OAHE. 



INDEX. 



HEUANTHEMUX. 



ivame, increase of, checked by ver- 



miD, 55. 



Gartner, on steiilitj of hybrids, 237, 

241. 
, on reciprocal crosses, 243. 
, on crossed maize and verbas- 

com, 257, 258. 

, on comparison of hybrids and 

mongrels, 259, 260. 
Gaudry, Prof., on intermediate genera 

of fossil mammals in Attica, 301. 
Geese, fertility when crossed, 307. 
— , upland, 142. 
Geikie, Mr., on subaerial denudation, 

267. 
Genealogy, important in classifica- 

cation, 369. 
Generations, alternate, 387. 
Geoffroy St. Hilaire, on balancement, 

117. 
, on homologous organs, 382. 
, Isidore, on variability of re- 
peated parts, 118. 

, on correlation, in monstrosi- 
ties, 9. 

, on correlation, 115. 
— , on yariable parts being often 

monstrous, 122. 
Geographical distribution, 316. 
Geography, ancient, 427. 
Geology, future progress of, 427. 
— , imperfection of the record, 

427. 
Gervais, Prof., on Typotherium, 302. 
Giraffe, tail of, 157. 
— , sti*ucture of, 177. 
Glacial period, 330. 

, affecting the North and South, 

335. 
Glands, mammary, 189. 
Gmelin, on distribution, 330. 
Godwin-Austen, Mr., on the Malay 

Archipelago, 280. 
Goethe, on compensation of growth, 

117. 
Gomphia, 174. 
Gooseberry, grafts of, 246. 
Gould, Dr. Aug. A., on land-shells, 

353. 
— — , Mr., on colours of birds, 107. 

, on instincts of cuckoo, 214. 

, on distribution of genera of 

birds, 358. 
Gourds, crossed, 258. 



Graba, on the Uria lacrymans, 72. 

Grafting, capacity of, 245, 246. 

Granite, areas of denuded, 274. 

Grasses, varieties of, 88. 

Gray, Dr. Asa, on the variability of 
oaks, 40. 

, on man not causing varia- 
bility, 62. 

, on sexes of the holly, 74. 

— , on trees of the United States, 
79. 

, on naturalised plants in the 
United States, 89. 
, on sestivation, 174. 
, on Alpine plants, 330. 

, on rarity of intermediate va- 
rieties, 136. 

— , Dr. J. E., on striped mule, 128. 

Grebe, 142. 

Grimm, on asexual reproduction, 387. 

Groups, aberrant, 378. 

Grouse, colours of, 66. 

, red, a doubtful species^ 38. 

Growth, compensation of, 117. 

Gunther, Dr., on flat-fish, 187. 

, on prehensile tails, 189. 

, on the fishes of Panama, 317. 

— , on the range of fresh-water 
fishes, 343. 

— , on the limbs of Lepidosiren, 
399. 



Haast, Dr., on glaciers of New Zea- 
land, 335. 

Habit, effect of, under domestica- 
tion, 8. 

— , effect of, under nature, 108. 

, diversified, of same species, 141. 

Hackel, Prof., on classification and 
the lines of descent, 381. 

Hair and teeth, correlated, 115. 

Halitherium, 302. 

Harcourt, Mr. £. Y., on the birds Qi 
Madeira, 348. 

Hartung, M., on boulders in the 
Azores, 328. 

Hazel-nuts, 325. 

Hearne, on habits of bears, 141. 

Heath, changes in vegetation, 55. 

Heer, Oswald, on ancient cultivated 
plants, 13. 

, on plants of Madeira, 83. 

Helianthemum, 174. 



HEUZ. 



INDEX. 



INDIYIDUAUS. 



449 



Helix pomatia, 353. 

HelmhoUz, M., on the imperfection 

of the human eye, 163. 
Helosciadium, 325. 

Hemionus, striped, 128. 

Hensen, Dr., on the eyes of Cepha- 
lopods, 152. 

Herbert, W., on struggle for exist- 
ence, 49. 

, on sterility of hybrids, 238. 

Hector, Dr., on glaciera of New Zea- 
land, 335. 

Hermaphrodites crossing, 76. 

Helix, resisting salt water, 353. 

Heron eating seed, 346. 

Heron, Sir R., on peacocks, 70. 

Heusinger, on white animals poi- 
soned by certain plants, 9. 

Hewitt, Mr., on sterility of first 
crosses, 249. 

Hildebrand, Prof., on the self-ste- 
rility of Corydalis, 238. 

Hilgendorf, on intermediate varie- 
ties, 275. 

Himalaya, glaciers of, 335. 

, plants of, 337. 

Hippeastrnm, 238. 

Hippocampus, 189. 

Hofmeister, Prof., on the movementa 
of plants, 197. 

Holly-trees, sexes.of, 73. 

Hooker, Dr., on trees of New Zea- 
land, 78. 

— -, on acclimatisation of Hima- 
layan frees, 112. 

, on flowers of umbelliferae, 116. 

, on the position of ovules, 172. 

-- — , on glaciers of Himalaya, 335. 

— , on algaj of New Zealand, 338. 

, on vegetation at the base of 

the Himalaya, 338. 

, on plants of Tierra del Fuego, 

336. 

— ' — , on Australian plants, 337, 355. 

— — , on relations of flora of Ame- 
rica, 340. 

, on flora of the Antarctic lands. 

341, 354. 

, on the plants of the Gala- 
pagos, 349, 354. 

, on glaciers of the Lebanon, 



335. 
-, on man not causing variability, 



6? 



a» 



Hooker, Dr., on plants of mountainf 
of Fernando Po, 337. 

Hooks on palms, 158. 

on seeds, on islands, 349. 

Hopkins, Mr., on denudation, 274. 

Hombill, remarkable instinct of 
234. ■ 

Horns, rudimentary, 400. 

Horse, fossil, in La Plata, 294. 

, proportions of, when young, 

392. 

Horses destroyed by flies in Para- 
guay, 56. 

, striped, 128. 

Horticulturists, selection applied by, 
23. 

Huber, on cells of bees, 224. 

f P., on reason blended with, 

instinct, 205. 

, on habitual nature of instincts, 
206. 

, on slave-making ants, 216.' 

, on Melipona domestica, 220. 

Hudson, Mr., on the Ground- Wood- 
pecker of La Plata, 142. 
, on the Molothrus, 215. 

Humble-bees, cells, of, 221. 

Hunter, J., on secondary sexual 
characters, 119. 

Hutton, Captain, on crossed geese, 
240. 

Huxley, Prof., on structure of her- 
maphrodites, 79. 

, on the affinities of the Sirenia, 

302. 

, on forms connecting birds and 

reptiles, 302. 

, on homologous organs, 386. 

— , on the development of aphis, 
390. 

Hybrids and mongrels compared, 
259. 

Hybridism, 235. 

Hydra, structure of, 147. 

Hymenoptera, fighting, 69. 

Hymenopterous insect, diving, 142. 

Hyoseris, 173. 



Ibla, 118. 

Icebergs transporting seeds, 829. 
Increase, rate of, 50. 
Individuals, numbers favourable to 
selection, 80. 

2g 



450 



INDIYIDUALB. 



INDEX. 



LUCAS. 



IndiridnalB/ many, whether simtdta- 

neoubly created, 822. 
Inheritance, laws of, 10. 

, at corresponding ages, 10, 67. 

Insects, colour of, £tted for their 

stations, 66. 
— , sea-side, colours of, 107. 

, blind, in caves, 110. 

, luminous, 151. 

, their resemblance to various 

objects, 181. 
-, neuter, 230. 



Instinct, 205. 

, not varying simultaneously 
with structure, 229. 
Instincts, domestic, 209. 
Intercrossing, advantages ofj 76, 251. 
Islands, oceanic, 347. 
Isolation favourable to selection, 81. 

J. 

Japan, productions of, 334. 

Java, plants of, 337. 

Jones, Mr. J. M., on the birds of 
Bermuda, 348. 

Jourdain, M., on the eye-spots of 
star-fishes, 144. 

Jukes, Prof., on subaerial denuda- 
tion, 267. 

Jussieu, on classification, 367. 



Kentucky, caves of. 111. 

Eerguelen-land, flora of, 341, 354. 

Kidney-bean, acclimatisation of, 114. 

Kidneys of birds, 115. 

Kirby, on tarsi deficient in beetles, 
108. 

Knight, Andrew, on cause of varia- 
tion, 5. 

Kolreuter, on Intercrossing, 76. 
, on the barberry, 77. 

, on sterility of hybrids, 237. 

, on reciprocal crosses, 243. 

— , on crossed varieties of nico- 
tiana, 258. 

, on crossing male and herma- 
phrodite flowers, 397. 

L. 

Lamarck, on adaptive characters, 

373. 
Lancelet, 99. 
, eyes of, 146. 



Landois, on the development of the 

wings of insects, 148. 
Land-shells, distribution of, 353. 

, of Madeira, naturalised, 357. 

, resisting salt water, 353. 

Languages, classification of, 371. 
Lankester, Mr. £. Ray, on Longevity, 

169. 

, on homologies, 385. 

Lapse, great, of time, 266. 

Larvae, 388, 389. 

Laurel, nectar secreted by the leaves, 

73. 
Laurentian formation, 287. 
Laws of variation, 106. 
Leech, varieties of, 59. 
Leguminosse, nectar secreted by 

glands, 73. 
Leibnitz' attack on Newton, 421. 
Lepidosiren, 83, 303. 
, limbs in a nascent condition, 

398, 399. 
Lewes, Mr. G. H., on species not hav- 
ing changed in Egypt, 169. 

, on the Salamandra atra, 397. 

, on many forms of life having 

been at first evolved, 425. 
Life, struggle for, 49. 
Lingula, Silurian, 286. 
Linnaeus, aphorism of, 365. 
Lion, mane of, 69. 

, young of, striped, 388. 

Lobelia fulgens, 57, 77. 

, sterility of crosses, 288. 

Lockwood, Mr., on the ova of the 

Hippocampus, 189. 
Locusts transporting seeds, 327. ^ 
Logan, Sir W., on Laurentian forma- 
tion, 287. 
Lowe, Rev. R. J., on locusts visiting 

Madeira, 327. 
Lowness of structure Connected with 

variability, 118. 
, related to wide distribution, 

359. 
Lubbock, Sir J., on the nerres of 

coccus, 35. 
-, on secondary sexual characters, 



124. 



on a diving hymenopterous 



insect, 142. 
-, on affinities, 280. 



-, on metamorphoses, 386, 389. 



Lucas, Dr. P., on inheritance, 9. 



LUCAS. 



IKD£:X. 



MON& 



451 



Lucas, J>T. P.^ on re8e¥xU>laiioe of child 

to parent) 261. 
Lnnd and Clausen, on. fossils of 

Brazil, 310. 
Lyell, Sir C, on the struggle for 
existence, 49. 

', on modem changes of the 
earth, 75.- 
-, on terrestial animals not hayiiig 



been developed on islands, 180. 
-, on a carbonlferons land-shell, 



271. 

■^-s on strata^., benea^ Silurian 



system, 287. 

— y on the imperfection of the 
geological record, 289. 
-, on the appearance of species, 



289. 

— , on Barrande's colonies, 291. 
— f on tertiary formations of 
Europe and North America, 298. 
— , on parallelism of tortiary for- 
mations, 301. 

— ) on transport of seeds by ice- 
oergs, 328. 

— F-, on great alternations of cli- 
mate,. 342. 

— , on the distribution of fresh- 
water shells, '345. 
— -, on laxidHBhells ; of ^Meira, 



357. 
Lvell and Dawson, on fossilised trees 

'in Nova Scotia, 278. 
Lythrum salicaria, trimorphic, 254. 

H. 

Macleay, on analogical churocters^ 

373. ' • 

Macrauchenia, 302. 
McDonnell, Dr., on electric orgsqs^ 

150. 
Madeira, plants o^ 83. 

, beetles of, wingless^.- lQd» • 

, fossil land-shells ofy 311. 

y birds of, 348. 

Magpi« tame in Norway, 209. . 

Males fighting, 69. 

Maize, crossed,, 257. 

Malay Archipelago com|)Aied with 

Europe, 280. 

', mammals of, 352./ 

Malm, on flat-fish, 186u 
Malpighiacese, small imper&ot floweiss- 

of, 173. 



Malpighiacee, 367. 

Mammae, their development, 189. 

, rudimentary, 397. 

Mammals, fossil, in secondary for- 
mation, 283. 

, insalar, 351. 

Man, origin o£^ 428. 

Manatee, rudimentary nails of, .400. 

Marsupials of Australia, 90. 

—I — , structure of their feet, 382. 

, fossil species of, 310. 

Martens, M., experiment on seeds, 325. 

Martin, Mr. W. C, on striped mules, 
129. 

Masters, Dr., on Saponaria, 174. 

Matteucci, on the electric organs of 
rays, 150. 

Matthiola, reciprocal crosses of, 244. 

Maurandia, 197.. 

Means of dispersal, 323. 

Mellipona domestica, 220. 

Merrell, Dr., on the American puckoo, 

, 212. 

MetaffiiMrphism of oldest rocks, 287. 

Mice destroying bees, 56. 
i> i ' «, acclimatisation o£^ 113. 

—t,^, tails of, 189.. 

Miller, Prof., on the cells of bees, 
221, 224. 

Mirabilis, crosses of, 243. 

Missel-thrush, 59. 

Mistletoe, complex relations Qt, 2. 

Mivart, Mr., on , the relation of hair 
and teeth, 115. 

■ ■ , , on the ey^ ..of ceph{4opods, 
151. 



— , various objections to Natural 
Selection, 174. 

— y on abrupt modifications* 2Q1. 
— y on the resemblance of the 



mouse and antechinus, 373. 
Mocking-thrush of the Galapagos, 

357. 
Modification of species not abrupt, 

424. 
Moles, blind, 110. 
Mplothrus, habits pf, 215. 
Mongrels,; fertility and stej^ity.Tof.- 

255.. 
— and hybrids compared, 259t' 
Monkeys, fossil, 284;, 28^ 
Monachanthus, 372. 
Mons, Van, on the. origin of fruit 

trees, 21. 

2 G 2 



452 



llONBTftOeiTIES. 



INDEX. 



OSTBIOH. 



Monstrosities, 33. 

Moquin-Tandon, on sea-side plants, 

107. 
Morphology, 382. 

Morren, on the leaves of Oxalis, 197. 
Moths, hybrid, 240. 
Mozart, musical powers of, 206. 
Mud, seeds in, 345. 
Mules, striped, 129. 
MiQler, Adolf, on the instincts of the 

cuckoo, 213. 
Miiller, Dr. Ferdinand, on Alpine 

Australian plants, 337. 
Miiller, Fritz, on dimoi'phic crus- 
taceans, 35, 233. 

' , on the lancelet, 99. 

r, on air-breathing crustaceans, 

152. 

, on climbing plants, 197. 

— ' — t on the self-sterility of orchids, 

238. 
f on embryology in relation to 

classification, 368. 
-, on the metamorphoses of crus- 



taceans, 390, 395. 
-, on terrestrial and fresh-water 



organisms not undergoing any me- 
tamorphosis, 394. 

Multiplication of species not indefi- 
nite, 101. 

Murchison, Sir R., on the forma- 
tions of Russia, 272. 

, on azoic formations, 286. 



, on extinction, 293. 

Murie, Dr., on the modification of the 

skull in old age, 149. 
Murray, Mr. A., on cave-insects, 111. 
Mustela vison, 138. 
Myanthus, 372. 
Myrmecocystus, 231. 
Myrmica, eyes o^ 232. 

N. 

Kftgeli, on morphological characters, 

170. 
Kails, rudimentary, 400. 
Nathusius, Von, on pigs, 159. 
Natural history, future progress of, 

426. 

selection, 62, 

system, 364. 

Naturalisation of forms distinct from 

the indigenous species, 89. 



Naturalisation in New Zealand, 163. 
Naudin, on analogous variations in 

gourds, 125. 

, on hybrid gourds, 258. 

, on reversion, 260. 

Nautilus, Silurian, 286. 
Nectar of plants, 73. 
Nectaries, how formed, 73. 
Nelumbium luteum, 346. 
Nests, variation in, 208, 228, 234. 
Neuter insects, 230, 231. 
Newman, Col., on humble-bees, 57. 
New Zealand, productions of, not 

perfect, 163. 

, naturalised products of, 309. 

• , fossil birds of, 310. 

, glaciers of, 335. 

, crustaceans of, 338. , 

, algflB of, 338. 

, flora of, 354. 

, number of plants of, 374. 

Newton, Sir I., attacked for iri-e- 

ligion, 421. 
, Prof., on earth attached to a 

partridge's foot, 328. 
Nicotiana, crossed varieties of, 258. 
, certain species very sterile, 

243. 
Nitsche, Dr., on the Polyzoa, 193. 
Noble, Mr., on fertility of Rhodo- 
dendron, 239. 
Nodules, phosphatic, in azoic rocks, 

287. 

0. 

Oaks, variability of, 40. 

CEnonis, small imperfect flowers of, 

173. 
Onites appelles, 108. 
Orchids, fertilisation of, 154. 

, the development of their 

flowers, 195. 

f forms of, 372. 

Orchis, pollen of, 151. 

Organisation, tendency to advance, 97. 

Organs of extreme perfection, 143. 

y electric, of fishes, 150. 

of little importance, 156. 

, homologous, 382. 

, rudiments of, and nascent, 397. 

Ornithorhynchus, 83, 367. 

, mammae of, 190. 

Ostrich not capable of flight,. 180. . 



(KTBICB, 



INDEX. 



POINTER. 



453 



Ostrich, habit of laying eggs together, 

216. 

J American, two species of, 318. 

Otter, habits of, how acquired, 138. 

Onzel, water, 142. 

Owen, Prof., on birds not flying, 108. 

, on vegetative repetition, 118. 

, on variability of unusually 

developed parts, 119. 

, on the eyes of fishes, 145. 

, on the swim-bladder of fishes, 

148. 
f on fossil horse of La Plata, 

294. 

, on generalized form, 301. 

-, on .relations of ruminants and 



pachyderms, 303. 
— , on /ossil birds of Hew Zealand, 
310. 

— , on succession of types, 310. 
-, on affinities of the dugong. 



365. 

, on homologous organs, 383. 

, on the metamorphosis of ce- 

phalopods, 390. 

P. 

Pacific Ocean, faunas of, 317. 

Pacini, on electric organs, 151. 

Paley, on no organ formed to. give 
pain, 163.- 

Pallas, on the fertility of the domes- 
ticated descendants of wild stocks, 
241. 

Palm with hooks, 158. 

Papaver bracteatum, 174. 

Paraguay, cattle destroyed by flies, 
56. 

Parasites, 215. 

Partridge, with ball of earth attached 
to foot, 328. 

Parts greatly developed, variable, 
119. 

Parus major, 141. 

Passiflora, 238. 

Peaches in United States, 66. 

Pear, grafts of, 246. 

Pedicellarise, 191. 

Pelargonium, flowers of, 166. 

, sterility of, 239. 

Pelvis of women, 115. 

Peloria, 116. 

Period, glacial, 330. 



Petrels, habits of; 142. 

Phasianus, fertility of hybrids, 240. 

Pheasant, young, wild, 211. 

Pictet, Prof., on groups of species 

suddenly appearing, '282. 

, on rate of organic change, 291. 

, on continuous succession of 

genera, 293. 

on change in latest tertiary 



forms, 278. 
— , on close alliance of fossils in 
consecutive formations, 306. 
-, on early transitional links, 283. 



Pierce, Mr., on varieties of wolves, 

71. 
Pigeons with feathered feet and skin 

between toes, 9. 
-, breeds described, and origin of, 



15. 



30. 



breeds of, how produced, 28, 



, tumbler, not being able to get 

out of egg, 68. 

, reverting to blue colour, 127. 

, instinct of tumbling, 210. 

, young of, 392. 

Pigs, black, not affected by the paint- 
root, 9. 

, modified by want of exercise, 

159. 

Pistil, rudimentary, 397. 

Plants, poisonous, not affecting cer- 
tain, coloured animals, 9. 

J selection applied to, 27. 

, gradual improvement of, 27. 

, not improved in barbarous 

countries, 27. 

, dimorphic, 35, 253. 

, destroyed by insects, 53. 

, in midst of range, have to 



struggle with other plants, 60. 
— , nectar of, 73. 
— , fleshy, on sea-shores, 107. 
— , climbing, 147, 196. 
— , fresh-water, distribution 



345. 



of, 



low in scale, widely distri- 
buted, 359. 

Pleuronectid«B, their structure, 186. 

Plumage, laws of change in saxes of 
birds, 70. 

Plums in the United States, 66< 

Pointer dog, origin of, 25. 

—^, habits of, 210. 



454 



Fonov. 



INDEX. 



SEA'WATER. 



Poison not affecting certain coloured 

animals, 9. 
— — , similar effect of, on animals 

and plants, 425. 
Pollen of fir-trees, 164. 
transported hj varions means, 

154, 161. 
Pollinia, tiieir development, 1 95. 
Polyzoa, their ayicularia, 193. 
Poole, Col., on striped hemionns, 

128. 
Potamogeton, 346. 
Pouchet, on the colours of flat-fish, 

188. 
Prestwich, Mr., on English and 

French eocene formations, 30(K 
Proctotrupes, 142. 
Proteolepas, 118. 
Proteus, 112. 

Psychology, future progress of, 428. 
Pyrgoma, found in the chalk, 284. 



Quagga, striped, 129. 

Quatreifages, M., on hybrid moths, 

240. 
Quercus, variability of, 40. 
Quince, grafts o£, !^4£d 



Rabbit, disposition of young,- ^U. 
Haces, domestic, charactess o^.l2 
Hace-horses, Arab, 26 

, English, 323. 

fUdcliffe, Dri) the eleotriiial organs 

of the torpedo, 150. . 
Ramond, on plants' of .Pyteneesi 331. 
Ramsay, Prof., on subaerial idenu- 

dationj 267. 
, on thickness of th». British 

formations, 268, 269, 

, on faults, 268. 

Ramsay, Mr., on instincts <of cuckoo, 

213. 
Ratio of increase, 50. 
Rats supplanting each other^' 59. 
, acclimatisation of,. 113., 

f blind, in cave, llO.i 

Rattle-snake, 162. 
Reason and instinct, 205. 
Recapitulation, general, 404. 
Recriprocity of crosses, 243. 
Record, geological, imperfect, 264. 



Rengger, on flies destroying cattle, 
66. 

Reproduction, rate of, 50. 

Resemblance, protective,, of insects, 
181. 

to parents in mongrels and 

hybrids, 260. 

Reversion, law of inheritance, 11. 

, in pigeons, to blue colour, 127. 

Rhododendron, sterility of, 239. 

Richard, Pro£, on Aspicarpa, 367. 

Richardson, Sir J., on structure of 
squirrels, 139. 

f on fishes of the southern hemi- 
sphere, 338. 

R6binia,. grafts of^ 246. 

Rodents, blind, 110. 

Rogers, Prof, Map of N. America, 
274. 

Rudimentary organs, 397. 

Rudiments important for classifica- 
tion, 367. 

Riitimeyeri . on Indian . cattlC) 14, 
24L 



& 



Salamandra atra, 397. 

Saliva used in nests, 228. • 

Salvin, Mt.,.on the beaks .M>l>d«c)is« 

184.,. 
Sageret, on grafts, 246. - 
Salmons, males fighting, and booked 

jaws of, 69. 
Salt water, how far injurious to 

seeds, 325. 
not destructive to land-sheUs, : 

353. 
Salter, Mr., on early death of hybi^id 

embryos, 249. 
Saorophagus sulphnratns^ 141. 
Schacht, Prof., on Phyllotaxy, 173. 
Sdiiodte, on blind insects^ 110> 

, on flat-fish, 186. 

Schlegel, on snakes, 113. 

Schobl, Dr., on the ears of .mice,^172. 

Scott, J., Mr., on the eelfrsterility oi- 

ordiids, 238. 
, on the crossing -of varueties oi 

verbascum, 258. 
Sea- water, how far* injurious - to- 

seeds, 325. 
not destructive to labd-shaUs, 

325. 



SEBRiaRT 



INDEX 



9TUCK8. 



45 S 



Sebright, Sir J., on crossed animals, I 
15. I 

Sedgwick, Prof., on groups of .species 
suddenly appearing, 282. 

Seedlings destroyed by insects, 53. 

Seeds, nntriment in, 60. 
, winged, 117. 

, means of dissemination, 154, 

161, 327, 328. 
-, power of resisting salt • water. 



325. 



in • crops and intestines < of 



birds, 326, 327. 

— , eaten by fish, 327, 846. 

— in mud, 345. 

-^ hooked, on islands, 349. 



Selection of domestic products, 22. 
, principle not of recent origin, 
27. 

, unconscious, 27. 

, natural, 62. 

y sexual, 69. 

, objections to term, 63. 

natural, has not induced- ste- 



rility, 247. 
Sexes, relations of, 69. 
Sexual characters variafole, 123. 
•^— selection, 69. 
Sheep, Merino, their selection, 23. 
, two sub-breeds, unintentionally 
produced, 26. 

, mountain varieties of^ 59. 
Shells, colours of, 107. 
, hinges of, 154. 

, littoral, seldom embedded, 270. 

, fresh-water, long retain the 

same forms, 308. 

, fresh-water, dispersal of, 344. 

— — , of Madeira, 349. 

, land, distribution of, 349. 

-, land, resisting salt water, 325. 



Shrew-mouse, 373. 
Silene, infertility of crosses, 243. 
Silliman, Prof., on blind rat, 110. 
Sirenia, their affinities, 302. 
Sitaris, metamorphosis of, 394. 
Skulls of young mammals, 159, 384. 
Slave-making instinct, 216. 
Smith, Col. Hamilton, on striped 

horses, 129. 
J Mr. Fred., on slave-making 

ants, 217. 
— , on neuter ants, 231. 
Smitt, Dr., on the Polyzoa, 193. 



Snake with tooth for catting through 

egg-shell, 214. 
Somerville, Lord, on selection of 

sheep, 23. 
Sorbus, grafts of, 246. 
Sorex, 373. 

Spaniel, King Charles's breed, 25. 
Specialisation of organs, 98. 
Species, pol3rmorphic, 35. 

, dominant, 43. 

, common, variable, 42. 

in large genera variable, 44. 

, groups of, suddenly f^peanng, 

282, 285. 
beneath Silurian formations, 



287. 

— successively appearing, 290. 

changing simultaneously 



throughout the world, 297. 
Spencer, Lord, on • increase ifi size of 

cattle, 26. 
, Herbert, Mr., on the first steps 

in differentiation, 100. 
-, on the tendency to an equili- 



brium in all forces, 252. 
Sphex, parasitic, 216. 
Spiders, development of, 390. 
Sports in plants, 8. 
Sprengel, C. C, on crossing, 76. 

, on ray-florets, 116. 

Squalodon, 302. 

Squirrels, gradations in stractvre, 

139. 
Staffordshire, heath, changes in, 55. 
Stag-beetles, fighting, 69. 
Star-fishes, eyes of, 144. 

y their pedicellarise, 192. 

Sterility from changed conditions of 

life, 7. 

of hybrids, 286. 

-, laws of, 241. 



-, causes of, 247. 



250. 



from unfavourable conditions. 



not induced through natural 

selection, 247. 

St. Helena, productions of, 347. 

St. Hilaire, Aug., on variability of 
certain plants, 174. 

, on classification, 368. 

St. John, Mr,, on habits of cats, 209. 

Sting of bee, 163. 

Stocks, aboriginal, of domestic ani- 
mals, 14. 



4S6 



STRATA. 



INDEX 



unuTT. 



Strata, thickness of; in Britain, 268, 

269. 
Stripes on horses, 128. 
Structure, degrees of utility of, 159. 
Struggle for existence, 48. 
Succession, geological, 290. 

of types in same areas, 310. 

Swallow, one species supplanting 

another, 59. 
Swaysland, Mr., on earth adhering to 

the feet of migratory birds, 328. 
Swifts, nests of, 228. 
Swim-bladder, 148. 
Switzerland, lake habitations of, 13. 
System, natural, 364. 



T. 

Tail of gii-affe, 157. 

of aquatic animals, 157. 

— — , prehensile, 188. 

f rudimentary, 400. 

Tanais, dimorphic, 36. 

Tarsi, deficient, 108. 

Tausch, Dr., on umbellifene, 173. 

Teeth and hair correlated, 115. 

, rudimentary, in embryonic, 

calf, 397, 420. 
Tegetmeier, Mr., on cells of bees, 

222, 226. 
Temminck, on disfoibution aiding 

classification, 369. 
Tendrils, their development, 196. 
Thompson, Sir W., on the age of the 

habitable world, 286. 
f on the consolidation of the 

crust of the earth, 409. 
Thouin, on grafts, 246. 
Thrush, aquatic species of, 142. 

f mocking, of the Galapagoe, 356. 

, young of, spotted, 388. 

, nest of, 234. 

Thuret, M., on crossed fuel, 243. 
Thwaites, Mr., on acclimatisation, 

112. 
Thylacinus, 374. 
Tierra del Fuego, dogs o^ 211. 

f plants 0^ 341* 

Timber-drift, 326. 
Time, lapse of, 266. 
— by itself not causing modifica- 
tion, 81. 
Titmouse, 141. 



Toads on islands, 350. 

Tobacco, crossed yarieties of, 258. 

Tomes, Mr., on the distribution of 
bats, 351. 

Transitions in varieties rare, 134. 

Traquair, Dr., on flat-fish, 188. 

Trautschold, on intermediate varie- 
ties, 275. 

Trees on islands belong to peculiar 
orders, 350. 

with separated sexes, 78. 

Trifolium pratense, 57, 75, 
' incarnatum, 75. 

Trigonia, 296. 

Trilobites, 286. 

, sudden extinction of, 297. 

Trimen, Mr., on imitating-insects, 
377. 

Trimorphism in plants, 35, 252. 

Troglodytes, 234. 

Tuco-tuco, blind, 110. 

Tumbler pigeons, habits o£f heredi- 
tary, 210. 

f young of, 392. 

Turkey-cock, tuft of hair on breast, 
70. 

, naked skin on head, 158. 

-, young of, instinctively wild. 



265. 

Turnip and cabbage, analogous vari- 
ations of, 125. 

Type, unity of, 166, 167. 

Types, succession of, in same areas, 
310. 

Typotherium, 302. 

IT. 

Udders enlarged by use, 8. 

, rudimentary, 397. 

Ulex, young leaves of, 388. 
Umbelliferse, flowers and seeds of, 

116. 

f outer and inner florets o^ 173. 

Unity of type, 166, 167. 

Uria lacrymans, 72. 

Use, effects of, under domestication, 

8. 
, effects of, in a state of nature, 

108. 
Utility, how fiur important in th.c 

construction of each part, 159 



VALENCIENNES. 



INDEX. 



WOLP. 



457 



V. 

Valenciennes, on fresh-water fish, 344. 
Variability of mongrels and hybrids, 

259. 
Variation under domestication, 5. 
caused by reproductive system 

being affected by conditions of 

life, 7. 

under nature, 33. 

, laws of, 106. 

-, correlated, 9, 114, 159. 



Variations appear at corresponding 
ages, 10, 67. 

analogous in distinct species, 

124. 
Varieties, natural, 32. 

, struggle between, 59. 

, domestic, extinction of, 86. 

J transitional, rarity of, 134. 

-, when crossed, fertile, 257. 

-, when crossed, sterile, 256. 



y classification of, 371. 

Verbascum, sterility of, 238. 
— — , varieties of, crossed, 258. 
Verlot, M., on double stocks, 230. 
Verneuil, M. de, on the succession of 

species, 299. 
Vibracula of the Polyzoa, 193. 
Viola, small imperfect flowers of, 173. 

. , tricolor, 57. 

Virchow, on the structure of the 

crystalline lens, 145. 
Virginia, pigs of, 66. 
Volcanic islands, denudation of, 268. 
Vulture, naked skin on head, 158. 



W. 

Wading-birds, 375. 

Wagner, Dr., on Cecidomyia, 387 

Wagner, Moritz, on the importance 
of isolation, 81. 

Wallace, Mr., on origin of species, 1. 

, on the limit of variation under 

domestication, 31. 

, on dimorphic lepidoptera, 36, 

232. 

, on races in the Malay Archi- 
pelago, 37. 

f on the improvement of the eye, 

145. 



Wallace, Mr., on the walking-stick 
insect, 182. 

, on laws of geographical distri- 
bution, 322. 

, on the Malay Archipelago, 351. 

, on mimetic animals, 377. 

Walsh, Mr. B. D., on phytophagic 
forms, 38. • 

, on equable variability, 125. 

Water, fresh, productions of, 343. 

Water-hen, 143. 

Waterhouse, Mr., on Australian mar- 
supials, 90. 

, on greatly developed parts 

being variable, 119. 

, on the cells of bees, 220. 

-, on general affinities, 379. 



Water-ouzel, 142. 

Watson, Mr. H. C, on range of va- 
rieties of British plants, 37, 46. 

, on acclimatisation, 112. 

, on flora of Azores, 328. 

f on Alpine plants, 331. 

f on rarity of intermediate va- 
rieties, 136. 

, on convergence, 100. 

-, on the indefinite multiplication 



of species, 101. 
Weale, Mr., on locusts transporting 

seeds, 327. 
Web of feet in water-birds, 142. 
Weismann, Prof., "on the causes of 

variability, 6. 

f on rudimentary organs, 400. 

West Indian Islands, mammals of 

352. 
Westwood, on species in large genera 

being closely allied to others, 45. 

, on the tarsi of £ngidae, 124. 

— ^, on the antenna: of hymeno- 

pterous insects, 366. 
Whales, 182. 
Wheat, varieties of, 88. 
White Mountains, flora of, 330. 
Whittaker, Mr., on lines of escarp- 
ment, 267. 
Wichura, Max, on hybrids, 249, 251, 

260. 
Wings, reduction of size, 109. 

■ of insects homologous with 

branchise, 148. 

, rudimentary, in insects, 397. 

Wolf crossed with dog, 210. 
of Falkland Isles, 351. 

2 H 



4S8 



WOLLAffrON. 



INDEX. 



ZEUOLODOK. 



WoUastoD, Mr., on varieties of iu- 
8ect8| 38. 

f on fossil Tarieties of shells in 

Madeira, 42. 

, on ooloors of insects on sea- 
shore, 107. 

f on wingless beetles, 109. 

-, on rarity of intermediate va- 



rieties, 136. 

, on insular insects, 347. 

, on land-shells of Ma4eira, natu- 
ralised, 357. 

Wolves, varieties of, 71. 

Woodcock with earth attached to leg, 
328. 

Woodpecker, habits of, 141. 

— -, green colour of^ 158. 

Woodward, Mr., on the duratiod of 
specific forms, 276. 

, on Pyrgoma, 284. 

— , on the continuous succession of 
genera, 293. 

, on the succession of types, 311. 



World, species changing simaltant 

ously throughout, 297. 
Wrens, nest of, 234. 
Wright, Mr. Chauncey, on the gira£ 

178. 

f on abrupt modifications, 203. 

Wyman, Prof., on correlation of c- 

lour and effects of poison, 9. 
, on the cells of the bee, 222. ' 



T. 



Youatt, Mr., on selection, 23. 

, on sub-breeds of sheep, 26. 

» on rudimentary horns in youn 

cattle, 400. 



Zanthoxylon, 174. 
Zebra, stripes on, 128. 
Zeuglodon, 302. 



\ 



THE END. 



/ 



3 



d 



UOi'DOH: PBnrTKD by WILLTAM GLOWBS A>i> SOKSi STAMTOBD 8TBXXT, 

AND CHABIKQ C ''o 



I 






■',-■ 



:)^-. 



* v 



.-i 



*■» 



1 ,- 

s 






■t; r 



• * 



'Jt' .. 



i 



' V i