Skip to main content

Full text of "The University of Missouri studies"

See other formats


eg es neh A SoG UM HS Weer ere nig DO wy 
ie GAC ised WNSOECS SR 


3 


_ 


Gj: 
GK 
rane 
5 3 C 


CKE 
CCE 
CLO 


7 
K 
SS eee 


eC CEG 
CCE 


oe 


C 


cs 


mn 


1 


3G -< 


as 
C 


sf 
‘oy 


GIIDIGIOING 
Wd ANd DORSOS SI, 


A 


eC 
C Eq 


x ¢ 
< 


WISY : / Ad | 
WW Wogtyges C2 Io: 
Ren S oom E eesti, 


—- 2 
\ 


ee eee 

peg AS 
GN RAPA SS 
eRe, 


CC Cae 


C 
@ 


COL CG 


& 


TE CWE. 
Co CE 
C 


Cal 


C 
5 & Es S S 


Cae 


“CG 
is 


wv CIS IG GIG 
ees a w PIAA» 
Bee 
a wig DF 42 
SOOO Sat 
Avis SOUS 


poner 
vY 


LCs th Nine) 
Di OG OLD 
‘ YA A OR co 


LG BIY 


NA A Sa Hh Nog ies 4 iv oe y dee 


DY AE 8g i! 
~ - pe Le 
Fare) pod DIS vd dnd ce 
4 Abe 


5 OR | ame Naan Ae a Fe 4k 


oN 2 
Ni 
nn 


i 


Bs 


G y) 25 e 


UNIVERSITY OF MISSOURI 
STUDIES 


EDITED BY 
W. G. BROWN 
Professor of Chemistry 


VOLUME II 
SCIENCE SERIES 


PUBLISHED BY THE 
UNIVERSITY OF MISSOURI 
IgII 


a2\oe¥ 


CONTENTS 


NUMBER PAGE 


1. An Introduction to the Mechanics of the Inner 
Ear, by Max Meyrr, Pu. D., Professor of Ex- 
perimental Psychology... 0... c cc ec vec c cc cccees 


2. The Flora of Boulder, Colorado, and Vicinity, by 
Francis Porter Daniets, Professor of the Ro- 
mance Languages, Wabash College. Formerly 
Assistant in the University of Missourt.......... 149 


VoLuME I]. SCIENCE SERIES ~ NuMBER I 


THE 
UNIVERSITY OF MISSOURI | 


STUDIES 


EDITED BY 
- W. G, BROWN 
Professor of Chemistry 


AN INTRODUCTION TO THE 
MECHANICS OF THE INNER EAR 


BY 


MAX MEYER, Ph. D. 
Professor of Experimental Psychology 


PUBLISHED BY THE (onal Museure! 
UNIVERSITY OF MISSOURI } 


December, 1907 


PRICE, $1.00 


Tie 
AN INTRODUCTION TO THE 
MECHANICS OF THE INNER EAR 


VoLumME II SCIENCE SERIES NUMBER I 


THE 
UNIVERSITY OF MISSOURI 
SI UIDIVES 


EDITED BY 
W. G. BROWN 
Professor of Chemistry 


AN INTRODUCTION TO THE 
MECHANICS OF THE INNER EAR 


BY 


MAX MEYER, Ph. D. 
Professor of Experimental Psychology 


PUBLISHED BY THE 


UNIVERSITY OF MISSOURI 


December, 1907 


Copyright, 1907, by 
THE UNIVERSITY OF MISSOURI 


COLUMBIA, MO.: 
E. W. STEPHENS PUBLISHING COMPANY, 


1907 


PREFACE 


About two thirds of this study has been published at different 
times in various German scientific periodicals, chiefly in the Zeit- 
schrift fiir Psychologie und Physiologie der Sinnesorgane. The 
author has long hesitated to present in book form the results 
of his labor in this remote corner of scientific investigation 
because the interest in these problems seems to be neither 
intense nor general. This lack of interest on the part 
of the scientific public, however, is not due to the unimpor- 
tance of the subject, but rather to a wide-spread conviction 
that all the problems ‘pertaining to it were solved half a cen- 
tury ago and that therefore nothing problematic is left. For 
years during which—since his student days—these pro- 
blems have been in the mind of the writer, he has belonged 
to an exceedingly small minority of scientific men, who have 
not permitted themselves to become captives of this convic- 
tion. But since this minority is gradually increasing in num- 
ber, and since professional friends have encouraged the writer 
he has decided to lay before the public the results of his in- 
vestigations in a continuous exposition of his theory as far as 
it goes at present. It is natural that he has preferred to do 
this in the English language, since nearly all his previous 
publications concerning it are in German. 

The author does not pretend to present in this book a 
complete, perfect, and final solution of the problem concern- 
ing the mechanics of the inner ear. His farthest reaching 
hopes will be fulfilled if he succeeds in impressing upon the 
reader’s mind the fact that there are here still problems left 
for solution and in giving these problems such a clear and 
definite formulation that the interest of others will be turned 
towards them. There is little hope for a final solution of 
these problems except by the co-operation of many investi- 


\7 


gators. The contents of this book are arranged from a peda- 
gogical rather than from a logical point of view. The author 
does not intend to present a systematic representation of his 
own ideas for comparison with the ideas of others, but rather 
a series of lectures as he would deliver them before a class of 
college students, not presupposing any knowledge or any in- 
terest but what a somewhat advanced college student might 
be expected to possess. A reader who should prefer to make 
himself acquainted with the contents of this book from an- 
other point of view, will be able to do this by the aid of the 
index added. 

The author has attempted to omit as much as possible 
everything of a polemic nature. His criticism of the views 
of other investigators may be found in his previous publica- 
tions. In this book he does not propose to record the views 
of other scientists, but the conclusions which he has reached 
himself after more than a decade of thought concerning these 
problems. For the reader who might be interested in the 
development of the author’s thought concerning these prob- 
lems, he has added at the end of the book a list of those pub- 
lications of his own which are directly concerned with the 
problems here presented. 

The author hopes that this booklet will help to break 
down the barrier of dogmatism which has too long stood in 
the way of progress in this field of scientific inquiry, and 
which is still far from being a thing of the past. It is truly 
dogmatism to profess that the application of so simple a 
theorem as that of Fourier can do justice-to an attempt at 
comprehending the mechanical processes underlying the won- 
derfully complicated and unfortunately only superficially 
known phenomena of audition. 


vi 


THE MECHANICS OF THE INNER EAR 


Everyone knows that the part of our body which in ordi- 
nary life we call the ear and which anatomists call the pinna, 
is not the organ of hearing but a mere ap- 
The external ear pendage to the organ. Its chief utility 
consists in the fact that it aids us in dis- 
tinguishing sounds coming from a source in front of us from 
sounds in our rear. We know how much more difficult it is 
to understand the words of a speaker behind us than the 
words of one who stands before us. We can reverse this con- 
dition by forming of our hands leaves similar to the external 
ears, but naturally larger and placing them opposite the ears, 
that is in front of the opening, the auditory passage. Then, 
sounds from the rear can enter the passage and reach the 
tympanum with a much greater force than sounds coming 
from the front. Animals, being able to move their external 
ears, can use them, of course, to greater advantage than hu- 
man beings. 
The organ of hearing—in the narrower sense of 
the word—that is, the anatomical structure within which the 
ends of the auditory nerve fibres receive 
The tube con- their peripheral excitations, is to be 
taining the sense found stretched out along the central 
Geesuis) long line of a tube which is very narrow rel- 
and narrow 
ative to its length. This tube is called 
by the anatomists the cochlea, because 
it is not built in the form of a straight line, but coiled 
up like the tube of a snail shell. The advantage of its being 
coiled up in this way is obviously not to be sought in its 
mechanic—or rather hydrodynamic—function. At least, no 


(1) 


2 UNIVERSITY OF MISSOURI STUDIES 


one, to the writer’s knowledge, has ever expressed himseli 
as inclined to look for it there. For its hydrodynamic func- 
tion it is clearly of no great importance whether the tube is 
curved or straight, and we shall speak of it in the following 
for the most part as if it were straight, in order to simplify 
the discussion. The real advantage of this shape of the tube 
is doubtless a mere anatomical one, it being possible thus to 
find a better place for it in the base of the skull. 
We must, in order to understand the function of this 
tube, be aware of the fact that it is filled with a watery fluid, 
lymph, and that its walls consist of hard 
The contents of Unyielding bone. Now, when we go 
the tube, a fluid, through the literature of the subject, we 
is incompressible often see writers speak of waves in the fluid 
which are said to pass along the tube as 
air waves move in a tube filled with air. Views of 
this kind cannot, of course, contribute towards an un- 
derstanding of the process of stimulation of the periph- 
eral nerve ends. They are not rational considerations of the 
facts before us, but theoretical dreams, forgetting the physical 
conditions of the case. Let us regard the velocity of the 
sound in such a fluid as that of the inner ear as about fourteen 
hundred meters, let us remember that the whole length of the 
tube is only a couple of centimeters, let us understand, then, 
that even with rather high tones of short wave lengths— 
beyond the musical range—the total length of the tube is only 
a small part of the spatial length of the waves said to travel 
up and down the tube; and we shall admit at once that to 
speak of tone waves travelling in the lymph up and down 
the tube is like speaking of a horse race which is to take place 
within a dog kennel. We have to follow the custom of the 
physicists who in such cases neglect the compressibility and 
elasticity of the small volume of fluid altogether. We must, 
therefore, regard the fluid in the cochlea as being of identical 


MECHANICS OF THE INNER EAR 3 


density throughout at any given time, that is practically, as 
unelastic, incompressible. 


il li 


Fig.1. The external and the middle ear 


The walls of the tube consist of hard, unyielding bone, 
except in two places where the bone is broken through and 
the openings closed by flexible mem- 

The authe Tee branes. These two places are common- 
two windows to ly called the oval and the round windows. 
communicate with (The fact that the tube communicates 
the middle ear with the semicircular canals and the oth- 
er parts‘of the labyrinth can here be neg- 

lected, since all these communicating cavities are also enclos- 
ed in bone, not possessing any windows.) On the other side 
of these windows there is the air of the middle ear. Let us 
now consider at once what could happen to the fluid in the 
tube if rhythmical changes of pressure in the external air (a 
“tone”) caused, through the tympanum, like changes (of 
condensation and rarefaction) in the air of the middle ear. 
Let us at present, however, consider this under the imaginary 
assumption of no chain of ossicles existing in the middle ear. 
What was said about waves in the fluid of the tube holds 
good to some extent also for the air in the middle ear. That which 
occurs there is the same as that which occurs, say, in a bicycle 


4 UNIVERSITY OF MISSOURI STUDIES 


pump, that is, an alternate condensation and rarefaction of all the 
particles of air almost simultaneously. This condensation and 
rarefaction always acts in the same _ sense (positive 
or negative) on both windows of the tube. According to 
the laws of hydrodynamics no motion inthe fluid of the tube 
can result from the difference in size of the two windows. It 
is hardly comprehensible, therefore, why we find in literature 
lengthy discussions of the question whether it is the round 
or the oval window through which “the tone waves’ enter 
the inner ear. They do not enter through either window 
since they do not occur in the middle ear, the volume of this 
cavity being too small to contain whole tone waves. Only 
after complete destruction of the tympanum would the ques- 
tion as to the manner in which an air wave strikes the two 
windows attain practical importance. Under normal condi- 
tions we must regard all the air particles in the middle ear 
as being, at any time, of identical density, and, thus, as unable 
to produce any movement in the inner ear. 
If there were no ossicles, the fluid in the tube would 
remain practically motionless. But to the membrane of the 
oval window is attached the plate of the 
Disturbances stirrup which has a somewhat rigid con- 


within the tube — nection with the tympanum. The result 
are caused by 
motion of 


the stirrup 


is that every movement of the tympanum 
is accompanied by a movement of the 
stirrup in the same (positive or negative) 
direction. Whenever the tympanum moves inwards, the air 
in the middle ear is, of course, somewhat condensed. But 
this condensation or rarefaction has no relevant influence on 
the fluid in the tube, as before mentioned. The alternate 
condensation and rarefaction of the air in the middle ear, re- 
sulting from like processes in the external auditory passage, 
is an unavoidable, but functionally negligible by-product of 
the mechanical process in question, bearing no direct rela- 


MECHANICS OF THE INNER EAR 5 


tion to the function of the tube. It is the movement of the 
stirrup which causes the disturbances in the fluid of the tube 
which we have soon to study in detail. And this motion of 
the stirrup is made possible only through the mediation of 
solid bodies, the auditory ossicles. 
The bony connection between the stirrup and the tym- 
panum would serve its purpose of causing movements in 
the fluid of the tube whatever might be 
The auditory the special structure of this connecting 
ossicles are a link. As a matter of fact, it is arranged 
system oflevers in such a particular manner that it acts as 
a lever (or system of levers), the large 
arm, so to speak, being attached to the tympanum, the small 
arm to the stirrup. This effect, however, is produced in dif- 
ferent animals in different ways. In birds, for example, (Fig. 
2) there is no chain of three little bones, but only a single 
bone, a rod bearing an oval plate. The leverage of this sim- 
ple connection is explained by the fact that the tympanum 
and the window plate are not in parallel planes. The far 


» 
plate 


Fig. 2. Schematic representation of 
the leverage in birds 


more complicated connection by means of three links of a 
chain of bones in most of the mammals has been theoretically 
studied by various investigators and found to result in a sim- 
ilar, but probably more delicately adjustable leverage than 
the simpler arrangement in birds. The advantage of the lev- 


6 UNIVERSITY OF MISSOURI STUDIES 


erage is easily understood. To cause a fluid to move along 
a narrow tube requires a considerable force because of the 
friction resulting from the narrowness of the passage. 
The :extent of movement, on the other hand, may be 
of any minuteness, the nerve ends certainly being sensitive 
to the very slightest curving of their tufts of hairs of which 
we shall have to speak again. It is of advantage, therefore, to 
gain force at the expense of magnitude of displacement. 
Someone might here raise the question: Why are there 
two windows when only one of them has a solid connection 
with the tympanum? The answer to this 
Why would not question is very simple. If there were 
one window not a second window, the stirrup could 
be sufficient? not move at all. Imagine a bottle filled 
with water up to the stopper and the 
stopper fitting the neck most accurately. Would it be possi- 
ble to drive the stopper farther in? The water being incom- 
pressible, it would not be possible for a moderate force 
to drive a perfectly fitting stopper in any more than to pull it 
out. The second window, closed by a flexible membrane, 
is therefore necessary if the movements of the stirrup and 
of the fluid in the tube are to take place. If it were not for 
movements of the fluid, the round window would be super- 
fluous. It is, however, not an essential condition that the sec- 
ond window should open on the middle ear and not perhaps 
directly on the external air space; for instance, on the exter- 
nal auditory passage, or anywhere on the skull. But it is 
an essential condition that the one window containing 
the stirrup plate open on a drum and that the plate be 
rigidly connected with the external membrane of this 
drum. Thus every condensation or rarefaction of the 
air outside the drum must result through movements of the 
tympanum in like condensations or rarefactions inside the 
drum; the movements of the tympanum must result in move- 


MECHANICS OF THE INNER EAR 7 


ments of the stirrup, and consequently in movements of the 
fluid in the tube. If the tympanum is destroyed to such an 
extent that the middle ear can no longer act even imperfectly 
as a drum, movements of the fluid in the tube must be dif- 
ficult to produce. The organ is then deprived of its normal 
manner of functioning—a defect which does not necessarily 
involve total deafness, yet certainly a great impairment of 
the sense of hearing. 

We naturally do not wonder at the fact that the round 
window is arranged in the simplest way possible, that is, 
opening on the middle ear not far from the oval window. 

Let us now attempt to determine what movements would 
occur in the tube, caused by movements of the stirrup, if 

this tube were a perfectly plain tube, con- 
ineovement taining nothing whatever but an incom- 
of the fluid in pressible fluid. It is a decided advantage 
a plain tube to study first a case as simple as can be 

imagined. We are sure that, thus, the 
elementary foundations of our thought will be clear and not 
confused by the influence of a complexity of conditions and 
a sum of powerful prejudices which almost inevitably ac- 


i a 


Fig. 3. Movement of fluid in a plain tube 


company a complexity of conditions. Let us try to keep clear 
of such influences. In figure 3 we see the anatomical facts 
of our imaginary case diagrammatically represented: a long 
and narrow tube, two windows at one end, one of these win- 
dows containing the stirrup, the other end of the tube closed. 


8 UNIVERSITY OF MISSOURI STUDIES 


The question is this: What will happen to the particles of fluid 
in the tube when the stirrup moves slightly inwards or out- 
wards? This is a problem which can be answered either 
on the basis of our general knowledge of similar processes 
or by means of a special experiment. Let us first try the 
former way. When the stirrup is pushed inwards and the 
round window outwards, the liquid near the windows must 
certainly move in the direction indicated by the arrows in the 
figure. Of course, the direction of the movement would be 
the opposite if the movement of the stirrup changes its sign 
and pulls instead of pushes. But what would happen in the 
fluid at the other end of the tube? At x or even at y? The 
answer to the question is simple: Nothing would happen. 
No movement of any kind could possibly occur there, since 
there is no sufficient cause why any movement should occur. 
The friction of the fluid against the walls of the tube, which is 
quite considerable in a narrow tube, must prevent any spread- 
ing of the disturbance beyond a very near limit. That is, when- 
ever the stirrup moves back and forth, those particles of the 
fluid which are in the nearest path leading from the oval 
to the round window must move accordingly. All the rest 
of the fluid remains motionless. 
In order to demonstrate the facts just mentioned to those 
finding difficulty in understanding that from the general laws 
of hydromechanics nothing else could re- 
A simple sult in the case in question but what we 
experiment have just described, we may perform the 
following experiment. A box containing 
white clay in a plastic condition has two circular openings 
on one side, not far from each other, as shown by figure 4 
in cross-section. We now press, by means of a piston, 
into one of the openings, A, a small quantity of colored clay, 
then a small quantity of white clay, and again colored clay 
until the latter becomes visible on the outside of the box 


MECHANICS OF THE INNER EAR 9 


at the other opening, B. In our figure we see at a and b 
the colored clay pressed in first. The part protruding be- 
yond the outside of the box is cut away. At c we see the 
white clay pressed in afterwards, and at f the advance guard, 
so to speak, of the colored clay pressed in last. What has 
happened within the box is obviously this. The colored clay 
pressed in first, collects inside the box near A’ in the direc- 
tion of B. A corresponding amount of the white clay with 


Fig. 4. An experiment with 
plastic clay 


which the box was filled has been pushed out through the 
opening B. The white clay pressed in next forces up the 
colored clay somewhat as a mass of glass is blown up in a 
glass factory to form a bottle. This white clay is forced up in 
turn by the succeeding colored clay, the “bottle” of colored 
clay increasing its dimensions at the same time. During this 
whole time and afterwards the total mass moves in the di- 
rection of B. However, the particles of clay to the left, 


pie) UNIVERSITY OF MISSOURI STUDIES 


nearer the openings, move much more quickly than those 
farther to the right. This is seen from the fact that the 
left wall d of the white “bottle” has been separated entirely 
from the opening A and is just getting ready to disappear 
altogether through the opening B, whereas the right wall e 
is merely beginning to sever its connection with A. We 
have here a simple experimental proof for the statement of 
the preceding paragraph that friction prevents the spreading 
of the motion beyond narrow limits, causing it to occur as 
near the two openings as possible. Although the experiment 
in this form does not show it, the reader hardly doubts that 
somewhat farther to the right, say six inches from the open- 
ings, no motion whatsoever has occurred during the whole 
time. The quickest motion, of course, is in this particular 
case not found at the extreme left, at g, but about a fourth 
of an inch to the right, since the friction at g is too great. 
Without entering into a detailed study of the hydrodynamic 
problem which confronts us here, in which friction against 
the walls, internal friction in the fluid, and the momentum 
of the fluid play their roles, let it be sufficient to say here 
that the motion is practically limited to the portion of the 
tube near the windows in accordance with the general law 
of nature that whatever occurs, occurs with the least pos- 
sible expenditure of energy. Some clay is pressed in at A. 
The same quantity has to pass out at B. This can be made 
possible by many kinds of displacement of the particles with- 
in the box. But only one form of displacement becomes 
actual, the one that requires the smallest amount of work to 
be done by the piston at A. And this form of displacement 
consists in the displacement being confined to the neighbor- 
hood of the openings. 


MECHANICS OF THE INNER EAR Il 


Let us now consider another imaginary case which will 
contribute towards a better understanding of the processes 
actually occurring in the ear. Suppose 

Mhelehecwore a part of the tube, near the windows, to 
rigid partition be divided by an inflexible partition, as 
within the tube shown in figure 5. It is self-evident that 
in this case every movement of the stir- 

rup would cause the particles of fluid in the upper and lower 
division of the tube to move in the directions of the arrows, 
parallel to the partition; and the particles at y, at the end of 
the partition, to move up or down. But the fluid farther on 
in the undivided tube would remain motionless, as in the 
former case, since there is no sufficient cause why it should 
move. If the partition extended farther, the only change re- 


Fig. 5. A rigid partition in the tube 


sulting would be a diminution of the length of that part of 
the tube where the fluid remains permanently motionless. 
If the partition extended to x (Fig. 5), leaving only a small 
opening of communication between the upper and lower division, 
all the fluid within the tube would have to move whenever 
the stirrup moves. If the partition extended throughout the 
tube, leaving no communication whatever between the two 
divisions, no movement of the fluid could then take place, of 
course; but no piston-like movement of the stirrup could 
then take place either. 


12 UNIVERSITY OF MISSOURI STUDIES 


Let us now imagine a third case. Suppose a partition 
to divide the tube lengthwise into two divisions, leaving, 
however, a small opening of communica- 
Mheletectiol a tion between the divisions at x. Suppose 
flexible, but inelas- further this partition to be neither per- 
tic partition with- fectly rigid like a wall of hard bone nor 
in the tube as readily yielding and in turn contract- 
ing as a thin rubber membrane, but to be 
of the physical nature of a soft leather strap somewhat 
loosely stretched out between the opposite sides of the 
tube to which it is assumed to be well attached. To have 
something definite in mind, let the reader think, for compar- 
ison of its function, of a leathcr-seated chair. If you press 
from below, the seat yields and bulges upwards; but 
soon it stops in spite of your effort. If now you sit down 
on the chair, the seat bulges downwards; but again, it 
soon stops—how could it otherwise be used for the support 
of your weight? But what is particularly important to note 
here, is the fact that the leather seat, after it has bulged 
either way, may continue to remain thus until some ex- 
ternal force acts upon it again from the other side. Now 
let us consider the movements which would occur in the 
fluid of a tube, divided into two divisions by a partition 
of the nature just described. If the partition could yield 
indefinitely, the case would obviously be practically the same 
as the first one we studied—without any partition. That 
is, the fluid would move near the two windows and the part 
of the partition suspended between moving masses of fluid 
would move with the fluid. Farther on where the fluid re- 
mains motionless the partition would remain motionless too. 
But we made the assumption that the partition, like the seat 
of a leather-seated chair, can move only within certain 
narrow limits up and down. Now, the result of this condi- 
tion will be this. When the stirrup begins moving inwards, 


MECHAN:CS OF THE INNER EAR 13 


the part of the partition next to the windows must follow 
the movement of the fluid and move downwards. But soon 
it has reached its lower limit. Consequently it acts now as 
an unyielding partition, the effect of which we studied in 
our second case above. The fluid just above and below this 
temporarily unyielding part can now move only horizontally, 
but the particles of fluid next to the end of this now motionless 
piece move down and push the underlying piece of the par- 
tition down until it has reached its lower limit. And so, 
gradually, further and further pieces of the partition come 


Fig. 6. The partition moves within an upper 
and a lower limit 


down until the stirrup stops moving inwards. Figure 6 
shows a number of successive stages of the position of the 
partition during this process. The vertical scale in this rep- 
resentation is, of course, enormously exaggerated relative to 
the horizontal scale. But at once after stopping, the stirrup 
begins to move in the opposite direction. At once the par- 
ticles of fluid next to the windows (not those which have 
moved down last) move upwards and take the corresponding 
part of the partition with them until it has reached its upper 
limit. Now the following parts come up, and so on in exactly 
the same way as before, except that we have now an upward 
instead of a downward movement, — until the stirrup 
stops moving in this direction. Let us remember by all 


14 UNIVERSITY OF MISSOURI STUDIES 


means, because a mistake made here in our comprehension 
of the process would result in serious errors later, that the 
bulging of the partition, whether up or down, begins in- 
evitably as near the two windows as possible, and that fur- 
ther pieces can bulge in either direction only under the 
condition that all the pieces nearer the windows have already 
reached their limit in that same direction. 
We made at the beginning of the last paragraph the 
assumption that there was a small opening between the two 
divisions at the extreme end of the tube. 
A safety valve Let us see what purpose such an opening 
could serve. What would be the result 
of an extraordinarily large movement of the stirrup, so large 
that the whole length of the partition would reach its—upper 
or lower—limit of position before the stirrup ceased to move 
in the same direction? The result would be either an enforc- 
ed stop of the movement of the stirrup or, if the external 
force acting on the tympanum and stirrup was too violent, a 
bursting of the partition. The latter disastrous result, how- 
ever, can to a considerable extent be guarded against by the 
opening in question. As soon as the total length of the par- 
tition has bulged the fluid will begin to flow through this 
opening from one division of the tube into the other, until 
the stirrup stops moving in the same direction. Such an 
opening therefore can serve as a kind of safety valve for the 
protection of the partition. 
After having studied the hydromechanical function of 
several imaginary tubes with divers interior equipments, let 
us now turn to a careful survey of the 
The anatomy and facts which the anatomists have discover- 
physiology of ed for us concerning the structure of the 
the inner ear inner ear. Figure 7 shows us in a cross- 
section all the important details which have 
been found there by the anatomists. Hard bone pro- 


15) 


MECHANICS OF THE INNER EAR 


auoje uo WA1ed oy} Jo UOT}eS peyluseU s10W B UMOYS SI MOl[ag 
‘uolj1q1ed 94} PUL SUOISIAIP OM} 3}I YIM f9qgn} 9y3 YsNorIY} UOL}OS B UMOYS SI VAOGE }J2] 94} OT, 


‘L31g 


16 UNIVERSITY OF MISSOURI STUDIES 


trudes from diametrically opposite sides of the bony wall of 
the tube, on the left side more than on the right. But the 
bone does not protrude far enough to actually cut off the 
lower part of the tube from the upper. While, therefore, we 
do not find a hard, inflexible partition, we find indeed some 
kind of a partition since the space between the bony protru- 
sions is filled with a delicate structure which we shall have 
to study somewhat in detail. This structure, which we 
shall always refer to hereafter as “the partition” in the 
inner ear, is customarily spoken of under the name of its 
discoverer as the organ of Corti, The lower part of this par- 
tition has been shown to be a membrane, generally called the 
basilar membrane. This is obviously the strongest part of 
the partition, capable more than any of the other elements 
of structure to resist a pressure of the fluid above or be- 
low. But we must not think that this membrane is the main 
part of the partition considering its volume. It is rather 
small in bulk compared with the rest. Above the membrane 
we see a triangular structure, something like two pillars which 
have fallen towards each other. This structure is usually 
called the rods of Corti. Its mechanical significance becomes 
at once clear to us when we see at its sides the delicate end 
organs of the auditory nerve fibres. These end organs would 
obviously be crushed by the push of the fluid which occurs 
now from above, now from below, as we have seen, if they 
were not braced by this arch. No better protection could be 
devised than this triangular structure which effectually pre- 
serves the natural form of the soft tissues as the skeleton 
does in the total animal body, without interfering with a 
slight bending or compression of the tissues of the partition. 
On the upper side of the partition, opposite the basilar mem- 
brane, we notice another membrane, but much more delicate 
in structure, easily torn to pieces when sections are made 
for the miscroscope. This membrane touches the tufts of hairs 


MECHANICS OF THE INNER EAR 17 


which are the extreme peripheral parts of the sensory 
organs. This membrane, however, is firmly attached to the 
left side of the partition only. Its right end is free or seems 
to be almost free. The kind of action exerted by this mem- 
brane upon the hair tufts can only be guessed. The real con- 
nections between, and the physical properties of, these tissues 
are not well enough known. We may perhaps make this 
action a little clearer by assuming that the upper membrane, 
when the partition bulges upwards, pulls the hairs slight- 
ly, and that a bulging of the partition downwards means 
merely a relief from this pull. It is hardly worth while, how- 
ever, to enter into details of a function which cannot be more 
than hypothetical since there are no data upon which to 
base any more definite theory. But there is little doubt, that 
the points between the tufts of hairs and the membrane in 
question are to be regarded as in the strictest sense the per- 
iphery of the sensory apparatus of hearing. And we shall 
scarcely make a grave mistake in assuming that a double 
bulging, back and forth in the vertical direction, of the 
partition causes a single shock in all those nerve fibres whose 
termini are located in this part of the partition, and that 
somewhere in the neurons a new process, perhaps a kind of 
chemical process, is set up if more than one of such shocks 
are received in quick succession, that the special character 
of this new process is dependent on the frequency with which 
these shocks follow each other, and that thus we perceive a 
definite tone, occupying—according to the frequency of shocks 
received—a definite point in the total series of sensations of 
hearing. 


18 UNIVERSITY OF MISSOURI STUDIES 


In the preceding paragraph we studied briefly the ana- 
tomical elements of the partition in their mutual relations. We 
now have to get a definite idea of the 


The physical physical properties of the partition as a 


properties of whole in its relation to the surrounding 
the partition fluid. These properties depend, of course, 
as a whole on the properties of its elements. The 


partition as a whole can certainly not be 
regarded as perfectly rigid and unyielding to pressure. It con- 
sists of tissues too soft to be unyielding. On the other hand, 
we cannot possibly assume that under the influence of pres- 
sure the partition could bulge to any large extent, for 
this would be disastrous to the delicate end organs of the 
nerve fibres. We could hardly make a mistake, then, in as- 
suming that the partition can yield, but only withm very nar- 
row limits up as well as down, even if we did not know 
anything about the physical properties of the anatomical 
elements. We know, however, that the basilar membrane is 
a comparatively tough structure, probably capable of consid- 
erable resistance. We are justified, then, in our conviction 
that the whole partition bulges in response to pressure 
but resists such pressure as soon as a certain rather narrow 
limit of displacement is reached. 

Here, however, arises another question of the greatest 
importance, which, unfortunately, cannot be answered with 
anything approaching accuracy. This is the question as to 
the elasticity of the partition. Of course, all the elasticity 
the partition can possibly have must be the elasticity of the 
basilar membrane. The basilar membrane is the only one of 
the anatomical elements of the partition which might have 
a tendency to restore spontaneously the whole partition to 
its original position after the pressure causing the displace- 
ment has ceased and before any pressure in the opposite 
direction has had time to act towards this result. 


MECHANICS OF THE INNER EAR 19 


There is only one way of deciding for our present pur- 
pose the question as to the elasticity of the basilar mem- 
brane. We must recall our knowledge 

Is the basilar of the elastic properties of similar mem- 
membrane elastic? branous tissues which are found in divers 
parts of the human body and elsewhere 

in the organic world. Now, we know that there are plenty 
of membranes in the body which, when stretched within 
certain limits, show a tendency to return to the original 
shape. But they never remain in a stretched condition, that 
is, under tension, for any length of time. Indeed, they would 
become permanently lengthened if they remained thus. This 
is the consequence of a universal biological law. We may, 
for instance, bend a sapling and expect it to straighten itself 
as soon as we let it go, because of the elasticity of the 
stretched tissues of the convex side and the compressed tis- 
sues of the concave side. But if we tie it in this bent po- 
sition to another tree and return after a year and cut 
the tie, we find that it has adjusted itself to the position 
we gave it. This biological fact does away at once with cer- 
tain theories found quite frequently in physical and other 
textbooks, which speak of the basilar membrane as con- 
sisting of a great number of stretched strings, comparable 
to the strings in a piano. These theories assert, after having 
introduced, in opposition to the laws of biology, the idea 
of a permanent, constant tension of the basilar membrane, 
that these different strings—as in a piano—are under different 
tension and differently weighted and that they serve accord- 
ingly as resonators, responding sympathetically to the va- 
rious sounds of the external world. However pretty this 
theory of “the piano in the ear” may appear, authors who 
expect their readers to accept it as the truth should first of all 
try to convince them of the possibility of living animal tissues 
retaining their tension for any length of time instead of ad- 


zO UNIVERSITY OF MISSOURI STUDIES 


justing themselves to the permanent stretching and thus los- 
ing their tension, as all living tissues do. We shall not, of 
course, entertain for a moment this idea of the basilar mem- 
brane being under constant tension, since our alm is not 
unreality, but reality. We need not, therefore, discuss any 
further the assumption of the presence of resonators in the 
inner ear, which falls with the above rejected, preposterous 
assumption of a permanent tension. That the membrane is 
capable of resistance, as it probably is, means something 
very different from the assertion that it is under constant 
tension, which is biologically impossible. 
The actual question before us is evidently the question 
as to the elasticity of the partition as a whole. Now, we 
have seen that the only element of it 
Is the partition which, according to its structure, may be 
as a whole regarded as elastic, is the basilar mem- 
elastic? brane. This membrane, however, we have 
found to be quite a small part of the bulk - 
of the partition. If the partition is displaced by an external 
force and, this force having ceased, is caused to return to 
its original place by the tension which the basilar membrane 
has just suffered, such a spontaneous return movement must 
be greatly retarded by the bulk of inelastic tissues of the 
partition which the membranous part of it has to drag or 
shove along with itself. A spontaneous return of the par- 
tition to its normal position must be therefore very slow 
when compared with the velocity of a displacement caused 
by a rather powerful external influence from the stirrup. 
Let us, then, keep in mind that with respect to the elastic 
properties of the partition there are only two alternatives: 
Either the basilar membrane is practically inelastic; then 
the partition as a whole is inelastic and cannot sponta- 
neously return to its original position after having been 
displaced. Or the basilar membrane is elastic; then the par- 


MECHANICS OF THE INNER EAR 21 


tition can spontaneously return after having been displaced, 
but with a velocity that is only very small compared with 
the velocity of its displacement. Of the two alternatives 
the latter seems to be the more probable. 

We saw on a previous page, in our second imaginary 
case of a partition, that the fluid moves along the unyielding 
partition, causing friction on the sur- 
faces of the partition. The same friction 


Protection of the 
must be suffered by any part of the real 


surfaces of the 


partition from partition as soon as it has reached its 
the friction upper or lower limit and as long as the 
of the fluid stirrup continues to move in the same 


direction, pushing the fluid on over the 
initial parts of the partition. If we had to design an ap- 
paratus to function thus, would we not see that the sur- 
faces of the partition were sufficiently protected so that the 
rush of the fluid over them could not injure them? It is 
interesting to raise this question of protection with respect 
to the actual partition in the tube. If we look above at fig- 
ure 7, representing a cross-section of the partition, we 
notice that the lower surface of the partition is well 
protected from injury by friction of the fluid by a part of its 
own structure, the tough basilar membrane. The upper sur- 
face, however, with its delicate sensory cells would be ex- 
posed to injuries by friction were it not for the membrane of 
Reissner which we see stretching across the upper division 
of the tube. The space between this membrane and the 
partition does not communicate with the rest of the upper 
division or with the lower division. It would therefore be 
really more nearly correct, in speaking of a partition divid- 
ing the tube into two divisions which communicate through 
an opening at the extreme end, to call the total body between 
the membrane of Reissner and the basilar membrane the 
partition. No movements perpendicular to the plane of the 


22 UNIVERSITY OF MISSOURI STUDIES 


drawing can occur in the fluid below the Reissner membrane. 
The fluid here can only move up and down, pushing or pull- 
ing the organ of Corti into its limit of displacement. No fric- 
tion of the kind above referred to, which might do injury to 
the delicate tissues of the organ of Corti, can therefore take 
place, and the problem of protection from friction is thus 
solved. We shall, however, in order to make our language as 
simple as possible, restrict the term partition to the organ of 
Corti, neglecting the membrane of Reissner, since this mem- 
brane, aside from the important protection which it offers to 
the tissues below, does not seem to possess any function 
whatever. 
We saw on a previous page that an imaginary partition 
which is able to yield to the pressure of the fluid only within 
certain limits would be exposed to the dan- 
The safety valve ger of breaking whenever an extraordina- 
rily powerful external force tended to 
cause a movement of the stirrup which would displace more 
fluid than the yielding partition could make room for, and 
that this danger might be avoided or at least greatly lessened 
by an opening of communication between the two divisions at 
the end of the tube. It is interesting to learn from the re- 
searches of the anatomists that such an opening—a safety 
valve, as we may call it—actually exists at the extremity of 
the tube of the cochlea. 
We may now, after making ourselves familiar with the 
structural elements of the inner ear and their physical prop- 
erties, enter into a discussion of the actual function of the 


organ. 


MECHANICS OF THE INNER EAR 23 


We have thus far taken into consideration only a single 
movement of the stirrup, in either direction. We must now 
study the result of a rhythmical movement 
of the stirrup, back and forth, a number of 


Stimulations of times during a certain length of time. In 


the brain resulting 


from a given order to have a definite case before our 
rhythmical mind we will suppose the stirrup to move 
movement of back and forth in such a way that it will 
the stirrup describe a sine curve on a board moving 


parallel to the plane of the paper. In fig- 
ure 8 is represented a single period of such a curve in a hor- 
izontal position. It is not necessary, however, to imagine this 
definite curve. What we shall have to say will apply equally 
to any simple periodic movement, whether of the form of a 
sinusoid or of a combination of straight lines or of any other 


Fig. 8. A curve representing stirrup movement 


curve connecting each maximum with the preceding and the 
following minimum. The question arises then by what means 
—computation, simple description in words, or otherwise—we 
can obtain a clear and sufficiently detailed view of the move- 
ments of the partition. What we want to know is the form 
of motion for each point of the partition, and the temporal 


24 UNIVERSITY OF MISSOURI STUDIES 


relations existing between all the several movements. Only 
thus can we obtain a definite view concerning the nervous 
stimulations received by the brain as the result of a given 
rhythmical movement of the stirrup. In order to find the 
movements of the partition in every detail we might try com- 
putation since this is the method which yields, although not 
always the clearest, yet in general the most accurate results. 
Our chief task, then, would be, stated again as definitely 

as possible, to find out for each point of the partition which 
moves at all the exact time which elapses 


Computation of | {tom a jerk down to a jerk up and from 


the form of a jerk up to a jerk down. Figure 9 may 
motion of the help us to understand the conditions of 
partition computing the time interval in question. 


Let us call x the distance of any point of 
the partition from the point of +, nearest the windows. The 
length of the part of the partition which moves in response 
to the motion of the stirrup depends, of course, on the ampli- 
tude of the movement of the stirrup. This length alone is 
represented in the figure. What is farther to the right re- 
mains motionless. The dotted lines above and below rep- 
resent the upper and lower limit of each moving point of 


Fig. 9. The partition in the tube and its 
limits of movement 


the partition. In our curve, figure 8, the minimum, at A, rep- 
resents the position of the stirrup most to the left, the max- 
imum, at the time B, the position of the stirrup most to the 
right. The horizontal line represents, of course, the time. To 
the position of the stirrup at A corresponds the position of the 
partition (in figure 9) in its upper limit; to the position of 


MECHANICS OF THE INNER EAR 25 


the stirrup at B the position of the partition in its lower limit. 
Let us now find out when any arbitrary point +, is jerked up 
and when it is jerked down, measuring the time from A. It 
is obvious that the amount of fluid for which room is made 
by the piece of the partition from x, to +, moving from its 
upper to its lower limit is equal to the amount of fluid dis- 
placed by the stirrup moving inwards through the distance 
measured by y. (For convenience we place the zero point 
of the system of coordinates in a minimum point of the curve.) 
It would be very easy, therefore, to find the equation of inter- 
dependence of x and y, if the following conditions were ful- 
filled : 
1. Ifthe quantity of fluid displaced were proportional to 
the horizontal movement of the stirrup. 
a. If the partition were perfectly in- 
sit elastic; that is, not offering any resistance 
provisionally : Hits tae 
made; not as to a displacement until either of the limits 
hypotheses, but is reached, and then offering absolute re- 
for the sake of a_ sistance. 
gradual compre- 3. If the distance between the upper 
hension and lower limits were the same at any 
point of the partition. 
4. If the width of the partition at any point near the 
windows were the same as at any point far away from them. 
Let us temporarily regard these conditions as fulfilled. If 
they are fulfilled, + is proportional to y. That is, a unit of 
movement of the stirrup always pushes 


Four assumptions 


Attempt at down (or raises, as the case may be) a 
computation unit of the partition lengthwise. Or, ex- 
continued pressed in a formula: 

(1) y= Cr 


where C is a constant dependent on the physical properties 
of the organ. 


26 UNIVERSITY OF MISSOURI STUDIES 


The equation of the curve in figure 8 is: 
(11) y = c(1— cos 2unt) ; 
that is, while ¢ changes from zero to _1_, y changes from 
2 


zero through c, 2c, and again c, back to zero. We now sub- 
stitute Cx for y: 
c (1—cos 2ant) = Cx, consequently : 


G 


(111) cos 2ant = 1 — ert 


This formula permits us to calculate ¢, that is, the exact 
time when any point of the partition is jerked down. But 
it holds good only for the time from A to B, that is, while the 
stirrup moves in one direction. As soon as the stirrup reverses 
its movement a new formula has to be applied, since the move- 
ment of the partition is of a kind which is mathematically 
called a discontinuous function. The moment when the stir- 
rup reverses its movement and the farthest point of the par- 
tition has been jerked down, the function jumps, so to speak, 
from this point to the beginning of the partition and the first 
point, nearest the windows, is jerked up. The formula to be 
used from B to C is to be derived by substituting (2c—y) 
for y in (1), since + would now be proportional to (2c—vy). 
We then have the following new equations: 


(IV) 2c— y= Cx. 
(11) y =c (1—cos 2nnt), consequently : 
(V) cos 2ant = HE ISS 

c 


This {crmula is valid from B to C, that is for values of 


t varying from = to 1, while the partition is being 
nN n 
jerked upwards. We notice that the only difference between 


the right side of (III)i and the right side of (V) is the sign, 
For the same + we obtain the same absolute value of cos 2rnt, 
but in the one case it is positive, in the other negative. Now, 
it is easy to see what this means for the time interval between 
a downward and an upward jerk of any point of the partition. 


MECHANICS OF THE INNER EAR 27 


Remembering that (III) is valid for jerking down, (V) 
for jerking up, we notice that the arc of cos 2nt runs through 
the first and second quadrant while the partition is being 
jerked down, through the third and fourth quadrant while 
the partition is being jerked up. Therefore, since we found 
that the time of jerking down of a definite point x, and the 
time of jerking up of the same point are subject to the con- 
dition that cos 2mnt yields the same absolute value, but differ- 
ing in sign, the time of jerking up must be found in a quad- 
rant opposite to the quadrant wherein the time of jerking down 
occurred, never in an adjoining quadrant; that is, if the 
former time is to be found in the arc 2zmt, the latter must 


be found in the arc 2an(t + a), since the addition of 
7 
=a to ¢ means the addition of two quadrants. The differ- 
7 
ence of time, therefore, is always ak. In other words, the 
an 


time interval from a jerk down to a jerk up and from a jerk 
up to a jerk down of any definite point is with this particular 
curve always the same, being exactly one half of the whole 
period. We have thus found by computation the exact move- 
ment of the partition in case the movement of the stirrup 
is of the form of a sinusoid. 
We have seen then that, provided a certain set of condi- 
tions (our four provisional assumptions) is fulfilled, and pro- 
vided the movement of the stirrup is of the 
Summary of form of a simple sine (or cosine, as this 
the foregoing means the same) curve, computation of 
discussion the movement of the partition is possible. 
But computation is neither particularly 
clear—at least those who are not professional mathemati- 
cians will think so—nor is it universally applicable, but only 
in a few cases of stirrup movement, the above, the case of 
straight lines connecting the maxima and minima, and a very 
small number of others. 


28 UNIVERSITY OF MISSOURI STUDIES 


To prove that computation is not universally applicable 
let the movement of the stirrup be represented by the function 
y = c(2— cos 2ermt — cos 2rnt) 

4 and let m be equal to 4 and m equal to 
Computation 5 (the simple case of a major third, 
abandoned : : i d 

musically speaking). Even in a case like 
this, by no means far fetched, rather the 
contrary, computation is impossible since it would involve, 
as the mathematical reader may easily convince himself, the 
solution of an equation of the fifth degree in order to find the 
mutually corresponding values of y and ¢ for the maxima and 
minima of the curve. Without these values for the maxima 
and minima, which are the points of discontinuity of the func- 
tion representing the movement of the partition, we could 
not proceed at all. It is out of the question, therefore, to ex- 
pect that computation pure and simple, even under the four 
assumptions provisionally made, will ever give us a satisfac- 
tory comprehension of the function of the inner ear. We 
must look for other means in order to obtain our end, an 
insight into the details of movement of the partition. 
Let us, then, try to represent the movement of the par- 
tition in the above case as well as in others graphically. I 
shall offer to the reader two methods of 


i h 
Graphic ieee graphic representation. The first of these 


of determining 


the exact is more accurate in some respects than the 
movement of second, but a little more difficult of ap- 
the partition plication. 


The vertical axis of our system of coordinates in figure 

10 may represent the succession of points of the partition, be- 
ginning from next to the windows. The 

First graphic horizontal axis may represent the time. I 
method must warn the reader against thinking 
that the figures resulting on the paper are 

pictures of something that exists in the ear or elsewhere. The 


MECHANICS OF THE INNER EAR 29 


figures are not pictures of existing things but merely symbols 
of a function, that is, of the time when any point of the par- 
tition is jerked up or down. The construction of the figure 
is based on the following considerations. Let us mark on the 
paper the points indicating the time when any given point 
of the partition is jerked. When we shall have marked a 
sufficient number of such points, we shall draw a curve 
through them. But how do we find the points? The move- 
ment of the stirrup is represented in figure 8. When the stir- 
rup has its extreme position to the left (according to Fig. 
x 


Fig. to. Graph of the times when each point of the partition is jerked down 
(curves of odd numbers) and up (curves of even numbers). Compare figure 8 


9) and just begins to move inwards, we mark the time as 
zero and the point of the partition which is jerked down also 
as zero, since the point which is jerked is the point nearest 
the windows. In figure 10 we find this point near a. As the 
time advances (Fig. 8) the stirrup moves farther and farther 
inwards, with gradually increasing and later again decreas- 
ing velocity. A further point, say b, in figure 10 must be 
located somewhat to the right of a and above a, since a 
more distant point of the partition is represented by a higher 
position of the mark in our system of coordinates, and the 


30 UNIVERSITY OF MISSOURI STUDIES 


fact that it is jerked later is represented by a position farther 
to the right. Now, since the velocity of the stirrup increases 
as shown by figure 8, the following marks have to be placed 
higher than proportionate to their advance to the right. That 
is, points marked off by equal steps on the partition are now 
jerked successively in briefer time intervals than before. 
Later approaching the time B in figure 8, the stirrup moves 
again more slowly, and the marks in figure 10 advance there- 
fore more rapidly towards the right, as seen in f and g. If 
we now draw a complete curve through the marks a, b, c, d, 
e, f, g, we convince ourselves readily that the new curve is 
the same curve as the one in figure 8 from A to B. Of course, 
if we have not chosen the same vertical and horizontal scales 
in both figures, the new curve must appear more or less steep 
than the old one. But the selection of a scale for a graphic 
representation is entirely a matter of convenience. Choosing 
identical scales, we simply have to transplant the first half 
of the curve in figure 8 from A to B into the new figure. 

But now the stirrup begins to move in the opposite di- 
rection, causing the partition to be jerked upwards gradually. 
The point of the partition nearest the windows is jerked up 
first, the others later in regular order. Now, it can be easily 
seen where we have to place the further marks in our new fig- 
ure, namely k, 1, 7, k, 1, m, n. We find them, or rather immed- 
iately the complete curve of which they are points, by simply 
turning the second half (B to C) of the curve in figure 8 up- 
side down, without, however, making any change between 
right and left. In this way we go on, simply transplanting the 
parts of the stirrup curve, leaving the rising ones in the same 
position, but turning the falling parts upside down. 

If we now desire to find out for any point of the parti- 
tion, for example, for x, the exact time when it is jerked 
down and when it is jerked up, all we have to do is to pass 
on from this point (Fig. 10) to the right (along the dotted 


MECHANICS OF THE INNER EAR 31 


line), since this direction, according to definition, represents 
the time. Our first crossing of a curve (in e¢) means a jerk 
down; the next crossing (in /) a jerk up; and so forth. That 
is, the odd crossings mean each a jerk down, the even crossings 
each a jerk up. The time intervals can then be measured 
with a rule. We find in this special case that the intervals are 
all equal. We have thus graphically represented the exact 
movement of the partition in a case where the movement of 
the stirrup is of the form of a sinusoid. The same graphic 
tepresentation is applicable to any given curve, however com- 
plicated it may appear. This method has universal validity. 
We shall soon convince ourselves of its importance for the 
analysis of a complicated curve. 
We can easily learn from the graphic representation be- 
fore us that under the assumptions provisionally made the 
stimulation of each nerve ending can 
RU Be rise eanent Rardly be insitienced by the ‘ona of the 
of the stirrup stirrup curve, that is, whether this curve 
produces the is a sinusoid, or made up of straight lines 
sensation of a connecting the maxima and minima, or of 
single tone (free any other shape, provided the maxima and 
from overtones)? minima remain unaltered. Let us sup- 
pose that each “down” means a shock to 
the nerve end and that the “ups” are indifferent as to ner- 
vous excitation. We see immediately (Fig. 10) that the time 
interval between two shocks at any point of the partition 
must be exactly the same, since each down curve would be 
exactly like any other down curve, whatever the shape of 
the up curve. (This result would be the same if the “ups” 
meant excitation of the nerve end and the “downs” were in- 
different.) That is, the particular shape of the curve rep- 
resenting the movement of the stirrup, has no significance 
for the question whether a single tone will be heard or not. 
If all the down curves are identical, a single tone only is 


32 UNIVERSITY OF MISSOURI STUDIES 


audible. I remind the reader, however, that we are deriving 
this conclusion on the basis of our provisional assumptions, 
and further, that we are speaking here of movements of the 
stirrup, not of rhythmical pressure changes of the air in the 
external ear or of movements of a tuning fork or any other 
vibrating body. In discussing later the effect of the latter 
conditions upon the stirrup, we shall see that their form is 
not necessarily identical with the form of the stirrup move- 
ment. 
As yet, we have studied only very simple movements of 
the stirrup. Before we take up the problem of how the inner 
ear analyzes more complicated move- 
The physiological ments of the stirrup, we ought to remem- 
condition of ber that we have not yet discussed the 
tone intensity physiological condition of tone intensity. 
We have spoken only of the frequency 
with which shocks are received by the nerve ends. But the 
frequency of the shocks determines only the attributes of 
pitch and quality, not the attribute of intensity of a tone sen- 
sation. Let us look to another sense organ, the olfactory 
organ, for a suggestion. On what physiological condition 
does the intensity of an odor depend? Although we have no 
definite knowledge here any more than in the sense of hear- 
ing, we have reason to believe that the intensity of an odor 
depends, or may depend, on two conditions: 1. The num- 
ber of nerve ends stimulated; and 2. the concentration of the 
substance which stimulates each of these nerve ends. Ac- 
cepting this suggestion we have to see what conditions might 
determine tone intensity. Only these two can come up for 
consideration, so far as I can see: 1. The number of nerve 
ends which receive shocks in a definite frequency; and 2. 
the suddenness, the impetuosity with which each nerve end 
is shaken when the point of the partition in which it is lo- 
cated is jerked down. Now, the second of these two conditions 


MECHANICS OF THE INNER EAR 33 


is theoretically almost beyond our reach. We cannot, in the 
present state of our knowledge, obtain a very clear idea of 
differences in the suddenness with which the nerve ends 
might be shaken in different cases. It will be best, therefore, 
to omit this factor in the discussion of intensity altogether, 
or at least for the present, rather than burden our theory 
with arbitrary hypotheses the usefulness of which is no more 
probable than their uselessness. At present we shall limit 
our discussion to the first condition, the number of those nerve 
ends which are stimulated with equal frequency. 
It is clear that the number of nerve ends stimulated de- 
pends in some way on the length of that part of the partition 
which is jerked up and down in a certain 
A difficulty in frequency. But here we are confronted by 
the hesretical this difficulty. We do not know whether 
determination of the nerve fibres are equally distributed 
tone intensity. along the partition. It might be the case 
Fifth provisional that on a certain length of the partition 
assumption near the windows a greater number of 
nerve ends were found than on an equal 
length farther away from the windows; or the reverse. In 
our present state of knowledge this difficulty cannot be over- 
come. In order to go on with our theory, we have to make 
an assumption. We shall make, of course, the simplest, the 
least arbitrary assumption. We assume, provisionally, that 
equal parts of the partition lengthwise contain equal num- 
bers of nerve ends. If it should be found that the theory 
agrees with the facts of auditory observation more closely un- 
der another assumption, we would have to substitute this for 
the one now made. Of course a definite answer given to the 
problem by the anatomists would be more satisfactory. 


34 UNIVERSITY OF MISSOURI STUDIES 


We can measure the length of that part of the partition 
which is jerked up and down, only by the aid of our knowledge 
(if we have any) of the movement of the 
Another difficulty stirrup. Now, the reader will recall among 
in the theoretical Our provisional assumptions the one that 
determination of the width of the partition at any point near 
tone intensity the windows is the same as at any point 
far away from them. But the anatomists 
tell us that this assumption is incorrect; that the partition is 
about twelve (or more) times as wide at the end 
as near the windows. Nevertheless we shall provisionally 
make the assumption of proportionality between any 
length of the partition being jerked up and down and 
the extent of the movement of the stirrup which causes 
the movement of this piece of the partition, in order to under- 
stand first a simpler, though imaginary, case and to proceed 
gradually to a comprehension of the actual, rather compli- 
cated function of the partition. Let us be aware, however, 
that, having thus simplified the actual conditions, we cannot 
expect to find a perfect, but only an approximate harmony 
between the results of a theoretical analysis and the direct 
observations of an actual sound analysis by the ear. We 
may find, indeed, with respect to tone intensity, rather se- 
rious disagreements between the facts and the theory. But 
these disagreements will disappear as soon as the theory takes 
account of what, for simplicity’s sake, we provisionally neg- 
lect. 
Making the two provisional assumptions just mentioned, 
we can theoretically measure the intensity of a tone sensa- 
tion by the total length of that part of the 
Tone intensity partition the nerve ends of which are ex- 
in our graphic cited with one definite frequency. In our 
representation graphic representation (Fig. 10) the inten- 
sity can then be measured by the vertical 
distance between the horizontal coordinate and the top of the 
curves which represent the down and up jerks. 


MECHANICS OF THE INNER EAR 35 


We discussed above the result of a simple back and forth 
movement of the stirrup. Let us now do the same with a 
more complicated movement. Figure 11 

Analysis of the represents the new stirrup movement 


combination which we are going to study. This curve 
2 and 3 is approximately the one represented by the 
equation 


y = (1—cos 2r2t) + (1 — cos 2x8t) ; 
which justifies us in saying that it represents physically the 
sum of two tones of the vibration ratio 2:3. Let us apply 


Fig. 11. ‘(he combination 2 and 3. First characteristic phase 


the same graphic method to this case. We have first to trans- 
plant the part of the curve from the first minimum to the fol- 
lowing maximum, A to B, into figure 12. Now, when the stirrup 
reverses its motion, the parts of the partition near the windows 
begin to be jerked up. Therefore, the curve from the maximum B 
to the next minimum C has to be turned upside down and then 
transplanted. The following part of the curve, from C to D, must 
be transplanted in its original upright position, but placed on the 


36 UNIVERSITY OF MISSOURI STUDIES 


horizontal coordinate of the new figure, whatever its elevation in 
the original curve may be, since every reversal of the movement of 
the stirrup causes at once a movement of the parts of the parti- 
tion next to the windows and only later a movement of the follow- 
ing parts. So we continue transplanting each section of the 
curve, alternately upright and upside down. This figure (Fig. 12) 


X3 


Tone 2 


Figure 12. The combination 2 and 3. First characteristic 
phase. (A is identical with G.) Compare figure 11 


is to be interpreted in the same way as figure 10. The distances 
from 4, toz,, z, to x, and x, to 4, represent three pieces 
of the partition, +, being next to the windows. During the 
unit of time, which is here the period from A to G, all the 
nerve ends located between +, and # receive, as is easily 
seen, three shocks, counting the number of shocks received 
by the number of downs (or ups, since this distinction between 
the physiologically effective and ineffective direction of jerk- 
ing is arbitrary, for want of better knowledge as to the man- 
ner of excitation of the nerve ends). All the nerve ends be- 
tween +, and +, receive, as the figure shows, counting from 
left to right, two shocks in the unit of time. And all the 


MECHANICS OF THE INNER EAR Bi 


nerve ends between +, and x, receive one shock. The nerve 
ends located farther towards the apex of the cochlea do not 
receive any stimulation and do not, therefore, concern us. How 
many tones should we expect then to hear in this case? The 
answer is as easy as simple: Three different tones, since shocks 
of three different frequencies are received by the several nerve 
ends. And the musical relationship, the pitch, as we say, of 
these tones is determined by the relative frequencies found, 
which are 3 and 2 and 1. The relative intensity of these tones 
is to be measured, in accordance with our remarks in the pre- 
ceding paragraph, by the relative lengths 42,2, 4,%, and 

Lp ee 
A movement of the stirrup, not probably exactly like, 
but similar to the one just discussed could be produced by 
sounding simultaneously with approxi- 


, mately equal intensities two tuning forks 
Two important ahs bi 8 


See | Seuindl representing the ratio of vibration rates 


analysis and 3:2. It is well known that we hear in such 
production of a case three different tones, 3 and 2, which 
subjective we may call “objective” or primary tones, 


difference tones ang 1, which we may call a “subjective” or 


difference tone. Some further facts con- 
cerning such subjective or difference tones will be mentioned 
subsequently for those readers who are not familiar with the 
conditions under which they make their appearance. The 
appropriateness of calling the subjective tones in question 
“difference tones” will then become apparent. The fact that 
our theory of the function of the inner ear and actual obser- 
vation in this case agree so nicely, is highly satisfactory to 
us and ought to encourage us to proceed further in applying 
the theory to other special cases of movements of the stirrup. 
Let us keep in mind that our theory thus far has explained in 
a special case two most fundamental observations: 1. That 
our organ of hearing is capable of analyzing a compound 


38 UNIVERSITY OF MISSOURI STUDIES 


acoustic process; and 2. that it has the power of producing 
on its own account subjective tones which no study of mere 
external conditions could ever have revealed to us as a natural 
consequence of the physical processes we call tones. 
We saw in the preceding paragraph that all the nerve 
ends between +, and +, received three shocks in the unit of 
time. A measurement of the distances in 
A problem for the figure, however, shows that the time 
future solution intervals between these three shocks, al- 
though approximately the same, are not’ 
exactly alike (and, moreover, there are differences in this re- 
spect between the several nerve ends all of which receive three 
stimulations). Now, it is probable that the particular nervous 
excitation set up in each ganglion cell by these three stimula- 
tions of its terminal fibre and thence carried farther to the 
brain, may be just the same in either case, whether the shocks 
are received in an exactly regular rhythm or in a slightly irreg- 
ular succession. It will be one of the problems of the future 
to decide what is the limit of irregularity which must not be 
overstepped if the sensation produced is to be the same as that 
of a regular series of shocks of the same frequency. At pres- 
ent we have hardly any certain data upon which to found a 
decision. We must leave this problem open for the present. 
It would be well, however, to remember that the above graphic 
representation of the movement of the partition—for simplic- 
ity’s sake—is based on a number of assumptions, and that 
the actual movement of the partition is doubtless somewhat 
different from the one which is here under discussion, and 
which contains probably only the essential features of the 
actual movement, not all its minor details. It is entirely pos- 
sible, under these circumstances, that the irregularity in ques- 
tion is in reality much less considerable than it appears to us 
now, and what seems to be an important problem, may turn 
out to be no problem at all. The reason we have for believ- 


MECHANICS OF THE INNER EAR 39 


ing that the actual irregularity might be less than the one 
found here, is that in the graphic representation we have as- 
sumed a movement made up of absolutely sudden, unpre- 
pared jerks, with intervals of perfect rest between them. The 
real movement is probably a more gradual change from rest 
to motion and back to rest; and the result of this might 
very well be an equalization of the time intervals preceding 
the shocks received by the nerve ends. This, however, is not 
offered as a solution of the problem, but merely as a sugges- 
tion for the future investigator of this subject. 
Let us try another method of graphically representing 
the movement of the partition under the provisional as- 
sumptions made. This method has a cer- 
Second method tain disadvantage as compared with the 
of graphic method used above, in being less accurate 
representation of with regard to the time intervals, but, on 
the movement of the other hand, the advantage of a greater 
the partition simplicity for the constructor as well as 
for the reader. The extension of the par- 
tition from the windows towards the apex of the cochlea is here 
represented, not—as before—by the vertical, but by the hori- 
zontal extension of the figure, from left to right. Figure 13 
shows the method as applied to the same curve (Fig. 11) which 
we have just discussed. The first thing we have to do is to 
draw in the given curve (Fig. 11) at equal distances so many 
lines parallel to the horizontal coordinate that each of the 
maxima and minima can be regarded as lying on one of these 
parallels. If this is not easily done, then any arbitrary number 
of parallels may be drawn. But the drawing as well as 
the interpretation of the new figure requires a little more atten- 
tion in this case, because we have to consider fractions. In this 
figure there are thirty equidistant lines drawn parallel to the 
horizontal coordinate. A greater accuracy than this would 
be entirely out of place, since our representation in any case 


40 UNIVERSITY OF MISSOURI STUDIES 


is merely an approximate representation of the actual move- 
ment of the partition. These horizontal parallels are auxiliary 
lines, serving the purpose of a measuring scale. The second 
thing we have to do is to draw a second, independent, system 
of auxiliary lines enclosing a corresponding number of spaces. 
These lines are the thirty-one vertical parallels in figure 13. 
The horizontal lines here indicate for the times A, B, C, and 
so forth, the positions of the different points of the parti- 
tion at the upper or lower limit of movement. The vertical 


Fig. 13. Successive positions of the partition. The combination 2 and 3. 
First characteristic phase. Compare figure 11 


auxiliaries serve the purpose of cutting off the partition a 
number of equal sections corresponding to the number of parts 
into which we divided the total amplitude of the given curve 
representing the movement of the stirrup. To the right of 
these sections which move are to be imagined the parts of the 
partition nearer the apex which do not move at all in this spe- 
cial case and which do not, for this reason, concern us here. 
At the time A, all the moving parts of the partition are at 
their upper limits, since the stirrup has at this time its extreme 
outward position. From A to B, the stirrup moves through 


MECHANICS OF THE INNER EAR 41 


thirty units inwards, pushing down successively all the thirty 
sections of the initial part of the partition. We find, therefore, 
in figure 13 at B all the thirty sections at their lower limits. 
From B to C, the stirrup makes an outward movement through 
nineteen spaces. The result is an upward movement of an 
equal number of sections of the partition. We find, therefore, 
at C the first nineteen sections of the partition at their upper 
limits. All the following parts of the partition remain ex- 
actly in the positions at which they were at the time B, since— 
according to the assumptions under which we are working— 
no force whatsover has acted upon them. That is, the sec- 
tions twenty to thirty are still at the lower limits, and the 
further parts of the partition in their normal positions. From 
C to D the stirrup moves inward through six spaces, as seen 
in figure 11. It causes therefore the first six sections of the 
partition to be jerked down. In this position we find them 
in figure 13 at D. All the rest of the partition remains exactly 
as it was at C. That is, the next thirteen sections are still 
at the upper limits and the following eleven still at the lower 
limits where we found them at B. From D to E, the stirrup 
makes an outward movement through six spaces, causing an 
equal number of the initial sections of the partition to be jerked 
up. We therefore find in the figure at E the first nineteen sec- 
tions of the partition at the upper limits, the following eleven 
at the lower limits. From E to F, the stirrup moves inward 
again through nineteen spaces, causing nineteen sections of 
the partition to be jerked down. We find, therefore, in the 
figure at F all the thirty moving sections of the partition at 
the lower limits. From F to G, the stirrup moves outward 
through thirty spaces, as seen in figure 11. This causes thirty 
sections of the partition to be jerked up. So we find in figure 
13 at G the whole initial piece of the partition which moves 
and therefore alone concerns us, at the upper limit. The stir- 
tup has now reached the very position from which it started 


42 UNIVERSITY OF MISSOURI STUDIES 


at A; and the partition has the same position which it had 
then. We have thus graphically represented the characteristic 
positions through which the partition passes during a com- 
plete period of the movement in question. 
The graphic representation, of course, is only a means 
to an end.. We have to read off from this representation 
how many shocks are received during the 
Elowitalreadvotk period by the nerve ends on each section 
the tones heard of the partition. This is easily done. Let 
and their us again, for want of definite knowledge, 
intensities make the assumption that a jerk down of 
the partition means a stimulation of the 
nerve ends, and that a jerk up is irrelevant. We then sim- 
ply have to go down in the figure from the top to the bottom 
and count the number of times each section is jerked down. 
The first section is down at B, up again at C, down for a sec- 
ond time at D, up again at E, down for a third time at F, 
and up again at G. The nerve ends on this section, there- 
fore, receive three shocks during the period. We find the 
same number of stimulations on the following five sections. 
Let us now inspect the seventh section. It is down at B, up at 
C and still up at D and E. It is down for a second time 
at F and up again at G. That is, the nerve ends on this sec- 
tion receive two shocks during the period. The same is true 
for the following twelve sections. Let us now look at the 
twentieth section of the partition. It is down at B, still down 
at C, D, E, and F; up again at G. That is, the nerve ends here 
receive only one shock during the period. The same holds 
for the following ten sections. We see, then, that three 
tones must be simultaneously heard, which we may call, 
according to the relative frequency of stimulation, the tones 3, 
2, and 1. The relative intensities of these tones may be re- 
garded—under the provisional assumption of a uniform dis- 
tribution of nerve ends lengthwise over the partition—as six, 


MECHANICS OF THE INNER EAR 43 


thirteen, and eleven, according to the number of sections which 
receive the greater or smaller number of shocks. 
Let us now appiy the second graphic method to another 
given movement of the stirrup, which will make clear to us 
another interesting property of the ear with 
Difference OF respect to the AQIS in which this or- 
phase. Charac- am analyzes an objective sound. The curve 
teristic curves of the stirrup (Fig. 14) is made up of 
of a tone combi- two component curves, very similar to the 
nation curves composing the last curve discussed. 
That is, each of the two components is ap- 
proximately a sinusoid, one of a period equal to two thirds of the 
other’s period, both of approximately the same amplitude. The 
resultant curve is constructed here as before by measuring 
and adding together the ordinate values of the components 
in the drawing. The difference between the present case and 
the last case discussed is a difference of phase. If the reader 
should not know what this means, it can be easily understood 
by the aid of figure 14. We find there two sinusoids, one with 
two and one with three maxima within the same period, which 
accordingly may be called curve two and curve three. Now 
imagine curve two moved slightly to the right until the 
minima at the extreme right and also the minima at the ex- 
treme left coincide. We then have exactly the case discussed 
above; that is, the addition of the two curves would result 
in a compound curve as represented by figure 11. The curves 
of figure 11 and of figure 14 may be called the characteristic 
curves of the ratio 2:3, because they are the two extreme forms 
between which the compound curve changes as the result of 
a change of phase, that is, of a lateral movement of curve two, 
while curve three remains stationary. Let us convince our- 
selves here that there are no more than two characteristic 
compound curves. If we move curve two again slightly to the 
tight, the same distance as before, that is, one twelfth of the 


44 UNIVERSITY OF MISSOURI STUDIES 


period, we obtain a compound curve as shown in figure 16, 
which is exactly like figure 14 when read from the right to the 
left. And if we change the phase again in the same manner, 
that is, move curve two again one-twelfth of the period 
to the right, we obtain a compound curve as shown 
in figure 18, which is exactly like figure 11 only turned 
upside down. We shall demonstrate in the succeeding 
paragraphs that it is entirely irrelevant with respect 


Fig. 14. The combination 2 and 3. Second characteristic phase 


to our theory whether we read a curve from the left 
or from the right, in its first position or turned upside 
down. We shall demonstrate thus that there are in- 
deed only two compound curves, no more, which are character- 
istic of a combination of two sinusoids. This is an important 
fact because it makes much simpler and easier our task of 
comprehending the function of the inner ear. 


MECHANICS OF THE INNER EAR 45 


Let us apply, then, the second graphic method to this 
second characteristic curve of the combination 2 and 3. We 
locate, in figure 14, the horizontal coordi- 
Theory applied nate so that the absolute minima of the 
to second charac- Compound curve are to be found thereon. 
teristic curve of We then draw a number of equidistant 
combination lines, say thirty, parallel to the horizontal 
2 and 3 coordinate. To avoid making the figure 

obscure I have indicated of these parallels 
only those which pass approximately through the maxima and 
minima of the curve. We further draw a system of thirty-one 
equidistant vertical parallels enclosing a series of thirty equal 
spaces which represent succeeding pieces of the partition. In 
this system of auxiliaries we represent the positions of the par- 
tition at the time A, B, C, and so forth. At A in figure 15 we 
find all the moving sections of the partition at their upper lim- 
its, since the stirrup has at this time, as figure 14 shows, the 
most outward position, the external air pressure and accord- 
ingly the density of the air in the middle ear being lowest. At 
B we find all the thirty initial sections of the partition down, 


sree 


Fig. 15. Compare figure 14 


46 UNIVERSITY OF MISSOURI STUDIES 


since from A to B the stirrup has moved through thirty units 
of space inwards. At C we find the twenty-four initial sections 
raised again since the stirrup has moved outward through 
twenty-four spaces. At D the eleven initial sections of the par- 
tition are at their lower limits since from C to D the stirrup has 
moved through eleven spaces in an inward direction. From D 
to E the stirrup moves outwards through three spaces. Ac- 
cordingly we find at E the first three sections of the partition 
raised to their upper limits. From E to F the stirrup moves 
inwards through eleven spaces. Accordingly eleven sections of 
the partition must be. pushed down to their lower limits. We 
find the first three down at F. The following sections up to 
the twelfth were already down at E. In order to represent 
eleven sections of the partition as just pushed down we have 
to place at F the twelfth and the following, including the nine- 
teenth, sections of the partition at their lower limits. Then the 
first three and the latter eight make up the total number of 
eleven sections pushed down. From F to G the stirrup moves 
outwards through twenty-four spaces. Accordingly all sec- 
tions of the partition are raised to their upper limits except 
those from the nineteenth to the twenty-fifth which were 
already at their upper limits at F and therefore simply stay 
there. So we find the partition at the time G in exactly the 
same position in which it was at A; and we must find it again 
in the same position since now another period of stirrup move- 
ment begins, exactly like the period just discussed. We now 
have to read off the tones heard and their intensities in the 
same manner as we did this before. The result is that we must 
expect to hear the three tones 3, 2, and 1 in the relative inten- 
sities three, sixteen, and eleven. 


MECHANICS OF THE INNER EAR 47 


Comparing our analysis of the curve in figure 14 with the 
former result obtained from figure 11, we observe that in 
spite of the remarkable difference of ap- 


Practical pearance of these curves to the eye, the 
irrelevance tones which we expect to hear are the 
of phase same. This is, of course, of the greatest 


importance in musical practice. Imagine 
the unsurmountable difficulties if the director of an orchestra 
were responsible for the phase in which the several tones pro- 
duced by the members of the orchestra acted upon the audi- 
tory organs of each hearer in the concert hall. But, as it is, 
each hearer perceives the same tones whatever the phases of 
the objective processes in the air. Now those who believe 
in the existence of a system of strings like “a piano in the 
ear,” have laid much stress on this fact of the practical irrel- 
evance of phase, and some have even gone so far as to say that 
it compels us to assume sympathetic resonance to be the me- 
chanical power of the auditory organ. I need not persuade 
the reader, however, that such a compulsion does not exist. 
Some have gone still farther and asserted that phase differ- 
ence has never and under no circumstances any influence 
whatsoever upon the auditory perception. Their theory of the 
mechanics of the inner ear may lead to such a consequence, to 
an absolute irrelevance of phase. Experiment, however, has 
not yet proved that phase difference of the sinusoidal compon- 
ents of stirrup movement has never any influence of any kind 
upon the perception. Our theory has shown us the practical ir- 
relevance of phase differences and, at the same time, left a pos- 
sibility for slight influences of this kind upon the perception, 
resulting in a change of the relative intensities of the sev- 
eral tones heard. The intensities of the three tones 
for one phase we found to be six, thirteen, and eleven; for the 
other phase three, sixteen, and eleven. That is to say, we 
would hear in the second case the same tones, but their relative 


48 UNIVERSITY OF MISSOURI STUDIES 


intensities would not be exactly the same as those in the first 
case. That is, difference of phase may be irrelevant, but it 
need not be so. Let us recall, however, that our representa- 
tion is only a rather remote approximation to the actual 
movements of the partition, so that actually the influence of 
phase upon the perception may be other than it here appears 
to be. What is important is our insight into the possibility 
of a slight influence of this kind. 


Fig, 16. Compare figure 14 


I promised to demonstrate that the application of our the- 

ory yields the same result if we read the curve of stirrup move- 
ment from the right to the left, or turn it 

Theoretic irrel. UPSide down. The former case is illus- 
evance of the trated by figure 16, which is exactly like 
sign of the co- figure 14 when read from the right to the 
ordinates left. Figure 17% shows the successive posi- 
tions of the partition. At B the twenty- 

four initial sections are down. At C the first eleven of them 


MECHANICS OF THE INNER EAR 49 


are up again. At D three are down again. From D to E the 
stirrup moves through eleven units of space outwards. 


Fig. 17. Compare figure 16 


Therefore at E the first nineteen sections are up, eight of them 
being up already at D. From E to F the stirrup moves in- 


Fig. 18. Compare figure 11 


wards through a little more than twenty-four units of space. 
Therefore at F thirty sections are down, five of them being 


5° UNIVERSITY OF MISSOURI STUDIES 


down already at E. At G (equal to A) all the thirty sections 
are up again. The tones to be heard, which the reader after 
all the previous practice in this task can easily read off, are 
3, 2, and 1 with the relative intensities three, sixteen, and eleven. 


Fig. 19. Compare figure 18 


As expected, this result agrees perfectly with our analysis of 


the curve in figure 14. 

Let us now demonstrate that turning the curve upside down 
has no influence on the theoretic result. Figure 18 is exactly 
like figure 11, only turned upside down. In figure 19 we see 


Fig. 20. The combination 24 and 25 


MECHANICS OF THE INNER EAR 51 


Fig. 21. The combination 24 and 25. Compare figure 20 


52 UNIVERSITY OF MISSOURI STUDIES 


the successive positions of the partition corresponding to this 
curve. The interpretation of the figure is so simple that the 
reader will easily read off, without any aid, what tones are to 
be heard; namely the tones.3, 2, and 1 with the relative intensi- 
ties six, thirteen, and eleven. This is exactly the same result 
as that of our analysis of the curve in figure 11. 
The interval studied above is in musical terminology that 
of a fifth. Let us now study an interval which is even small- 
er than a semitone. The compound curve 
in figure 20 is made up of twenty-four 
The tone com- vibrations originating from one source and 
bination 24 : 
and 25 twenty-five from another. Figure 21 
shows the successive positions of the parti- 
tion corresponding thereto. The initial 
section of the partition moves up and down twenty-five times 
during the period. We may, therefore, conclude that 
the nerve ends located here will transmit to the brain 
a process resulting in the sensation of the tone 25. 
In order to discuss this matter with more accuracy, 
I have not relied only upon the draftsman’s skill in con- 
structing the compound curve, but computed the ordinate 
values of some of the maxima and minima. Such a compu- 
tation is exceedingly tiresome work, since for each pair of val- 
ues in the table it is necessary to compute twenty or more 
values in order to select from them what appears as the maxi- 
mum or minimum. But the accuracy of this method can be 
carried to any decimal desired. We learn from the table of 
these values that the relative intensity (when determined in 
the same way as above) of the tone 25 would be nine (that is, 
200—191). 


MECHANICS OF THE INNER EAR 53 


INTERVAL 24:25, EQuAL AMPLITUDES 


Abscissa | Ordinate Ree Point arena 
Min. {o} fo} 73 fo} 400 
Max. 73 400 73 I 400 
Min 147 2 74 2 388 
Max 1540 246 — 21 — 
Min 1620 167 80 22 79 
Max 1685 221 65 23 54 
Min 1755 191 70 24 30 
Max 1800 200 45 25 9 
Min 1845 191 45 26 9 
Max 1915 221 70 27 30 
Min 1980 167 65 28 54 
Max 2060 246 80 29 79 
Min.| 3453 2 = 48 -— 
Max.) 3527 400 74 49 388 
Min 3600 {o} 73 50 400 


If we regard—quite arbitrarily—the time from one stimu- 
lation to the next as measurable by the abscissa differences 
of the succeeding maxima, we observe that 

Do we hear this difference is about one hundred and 
the tone 25? forty-seven at the beginning of the period, 
that it decreases very slowly and is about 

one hundred and forty-five at the maximum twenty-three, 
about one hundred and fifteen at the maximum twenty-five, 
the same at the maximum twenty-seven, and that it increases 
gradually till the end of the period. One twenty-fifth of the 
whole period is one hundred and forty-four. This is the average 
abscissa difference, on which the pitch of the tone heard depends, 
since the abscissa difference is inversely proportional to the fre- 
quency of stimulation. But the actual abscissa differences, as we 


54 UNIVERSITY OF MISSOURI STUDIES 


have just seen, deviate from the average, particularly in the 
middle of the period. Now, some one might prefer to 
conclude that we ought not to hear the tone 25 all the 
time, but at first a tone somewhat lower than this, gradually 
rising slightly and falling again in pitch towards the end of the 
period. Whether we should draw this conclusion I will not 
attempt to decide. Neither do I care to express a definite 
opinion as to what we actually hear. Let the reader who 
wants to know this find it out by an experiment of his own. 
What I must point out, however, is the fact that the time inter- 
val between two maxima is not necessarily the time between 
two stimulations. In a provisional way, the interval be- 
tween two maxima or between two minima or between two 
points of inflection or between two points of any other name 
and definition may be used thus, but let us always remember 
that this is only a provisional, an artificially simplified method, 
which can scarcely yield more than a rough approximation of 
what actually happens. 
Another section of the partition moves up and down twen- 
ty-four times during the period. The length of this section, 
which determines the relative intensity of 
Do we hear the tone heard, is derived from the table 
the tone 24? as being twenty-one (221 — 200). If we 
look at the time interval between the 
successive maxima, we find this to be at the beginning of 
the period: one hundred and forty-seven, to decrease gradually 
to one hundred and forty-five at the maximum twenty-three, 
tc be two hundred and thirty from maximum twenty-three to 
maximum twenty-seven (maximum twenty-five has disappeared, 
as seen in figure 21), and to fall again to one hundred and 
forty-five. Here again, I will not attempt to decide what we 
ought to expect theoretically, because we have no right to 
deduce anything definite from a theory in a direction in which 
this theory is as yet professedly indefinite, in which it obvious- 


MECHANICS OF THE INNER EAR 55 


ly lacks as yet all details, owing to the deficiency of the requisite 
experimental data. I can only repeat here what I said in the 
preceding paragraph. 
Before we continue this attempt at an interpretation of 
figure 21, let us consider an imaginary case the application 
of which to our figure will soon make 
Notindicenimi: itself clear. Imagine that during half a 
nate counting of Second a nerve end receives in regular in- 
stimuli allowed tervals fifty stimulations, but during the 
following half-second no stimulations at 
all; then again for half a second fifty stimulations in regular 
intervals, and again for half a second none; and so on. What 
could we hear in such a case, but a tone for half a second, 
nothing for half a second, a tone again for half a second, noth- 
ing again for half a second, and.so on. And what tone would 
it be? Plainly the tone which we ordinarily call 100, 
because the frequency with which fifty stimuli are received in 
half a second is the same as that with which one hundred are 
received'in one second. I need not waste any effort in trying 
to prove what is self evident, namely that it would be absurd 
to count in a case like this simply the number of stimuli during 
any whole second and to expect, these being fifty, that we should 
hear the tone 50. Amd yet this way of counting has been 
actually proposed. But this proposition may well be ignored. 
Now let us return to the interpretation of figure 21. The 
third section of the partition, the length of which is twenty- 


four (191 — 167), receives stimulations in 
What beats approximately equal intervals until about the 
do we hear? miximum twenty-three when there is no 


stimulus at all until about the maximum 
twenty-nine. With the rough approximation here possible we 
may say that there is no stimulus during about one-tenth of the 
period. From our discussion in the preceding paragraph it fol- 
lows that during about nine-tenths of the period we should 


56 UNIVERSITY OF MISSOURI STUDIES 


hear a tone and during one-tenth of the period we should 
hear nothing so far as the nerve ends of this section are con- 
cerned. The pitch of the tone we must expect to lie between 
the tones 24 and 25, acording to the probable frequency with 
which the stimulations are received during that part of the period 
during which they are received. 
It is plain that the fourth, fifth and following sections of the 
partition must move up and down very much the same as the third 
section does, with this difference only, 
The “mean” tone that for each further section the pause 
when no stimulations at all are received 
becomes longer and longer. The total sensation, then, which 
is derived from the sum of the nerve ends of the third and the 
following sections must be a tone of a certain intensity at a 
certain time when all these sections mediate the sensation, 
but becoming weaker and weaker as one after another of the 
sections stops moving until for a moment it ceases alto- 
gether, then appearing again and increasing up to its former 
intensity. And so on again and again. That is to say, we 
hear this tone “beating.” And since its pitch lies probably 
somewhere between 24 and 25, between the “primary” 
tones (perhaps its pitch is not quite constant but may 
vary slightly during each period), I propose to call it 
the “mean tone” (German: Zwischenton). The question 
whether we hear such a mean tone I do not care to answer 
here, this discussion being devoted to theory, not to experi- 
mental research. Let the reader who desires make observa- 
tions of this kind himself. 
The farthest section of the partition set in motion by this 
movement of the stirrup moves up and down only once dur- 
ing the period. The nerve ends located 
The difference here receive one shock during each period 
tone and convey therefore the sensation of the 
tone 1, the difference tone of this case. The 
intensity of the difference tone, corresponding to the length 
of this section of the partition, is two. 


MECHANICS OF THE INNER EAR 57 


It is not impossible, however, it is even probable, also 
that a few of the sections just preceding this last convey the 
sensation of this difference tone, instead of that of the mean 
tone. The last section which may convey the sensation of 
the mean tone moves only twice up and down during 
the period, in quick succession. This double move- 
ment is followed by a long pause during which no movement 
occurs. Now, experimental research of recent years has prov- 
ed that two shocks received by the auditory nerve ends may 
be sufficient to give the sensation of the tone corresponding 
to the frequency with which the two shocks are received— 
but only within the middle region of the tonal series. To- 
wards either end of this series four, six, and even more shocks 
are found to be necessary for the sensation of the tone cor- 
responding to the frequency of the shocks. What, then, will 
be the consequence of choosing the tones 24 and 25 somewhat 
higher? The section of the partition which makes the two 
up and down movements in quick succession can no longer 
convey the sensation of a short mean tone. If there is only 
one period of movement, no sensation at all will then result. 
But if many periods succeed, it is much more likely that the 
double movement of the partition section will have the effect 
of a single shock than no effect at all; and the repetition of 
this shock in each succeeding period must result in the sen- 
sation of the tone 1, the difference tone. 

If the tones 24 and 25 are chosen still higher, it becomes 
improbable that even three shocks received by the nerve ends 
in quick succession between two long pauses can give the 
sensation of a short mean tone. In this case it is highly prob- 
able also that the second section before the last conveys the 
sensation of the difference tone. And so a few more of those 
more distant sections may convey the sensation of the dif- 
ference tone instead of the mean tone. 


58 UNIVERSITY OF MISSOURI STUDIES 


If the difference tone results exclusively from the func- 
tion of the nerve ends located on the last moving section of 
the partition, its relative intensity is two, according to the 
above table. But if the difference tone results from the func- 
tion of the nerve ends of further sections, its relative inten- 
sity must be higher and the maximum intensity of the mean 
tone correspondingly lower. That is, the phenomenon of a 
beating mean tone must be the less pronounced the 
more audible the difference tone; and the difference tone of 
a small interval like the one in question must be the more 
audible the higher the pair of primary tones in the tonal series. 

Summarizing now our interpretations of figure 21, we 
must say that so far as the meager data reach from which we 

can draw theoretical conclusions, the fol- 
The combination /owing seems likely to be the total -im- 
24 and 25; pression (listening with one ear, having 
summary the other ear plugged): 1. A tone 25 

of the constant, but comparatively weak 
intensity nine; 2. a tone 24 of the constant, but compar- 
atively weak intensity twenty-one; 3. a mean tone (perhaps 
slightly varying in pitch during each period) of an intensity 
which varies once during each period from zero to a definite 
maximum intensity and back to zero. This maximum inten- 
sity may be (under the most favorable conditions) as high 
as (relatively) three hundred and sixty-eight, but must be 
much less if the primary tones are above the middle region 
of the tonal series. Its being less means that the “beats” are 
less pronounced; 4. a difference tone the relative inten- 
sity of which may be (under the most unfavorable condi- 
tions) as low as two. Its intensity, however, may be greatly 
increased, at the expense of the maximum intensity of the 
beating mean tone, in case the pitch of the primary tones is 
raised. 


MECHANICS OF THE INNER EAR 59 


Before we take up the theoretical discussion of further 
tone combinations, the reader ought to obtain some informa- 
tion concerning the difference tones which 


awsvot we hear in addition to the “objective” 
difference tones in the several combinations. To 
tones give such information of this kind as is 


indispensable, I shall state here the laws 
of these phenomena in as clear and comprehensible a manner 
as possible. These laws given below do not pretend to tell 
all the difference tones which we might possibly hear in every 
possible combination of objective tones. Neither do they tell 
the relative intensities of the difference tones, although this 
is a matter of no small importance. Laws of difference tones 
of this scientific perfection are as yet not known and may 
never be known. The laws below merely tell those differ- 
ence tones which one is most likely to hear in those combi- 
nations which correspond to relatively simple ratios of the 
vibration rates and are therefore (musically and otherwise) 
particularly interesting. These laws are the following four: 
In case the ratio of the vibration rates does not differ 
much from 1:1, let us say 11:12, or 9911: 9989, a single dif- 
ference tone is audible, whose pitch corre 
First law of sponds to the pitch of a tuning fork the 
difference tones vibration rate of which is equal to the 
difference of the vibration rates of our 
case. In addition to the difference tone, however, beats are 
usually clearly audible, and a mean tone may be audible too 
which lies between the two primary tones. If the interval is 
quite small, this mean tone is usually more pronounced than 
either of the primary tones, particularly when we hear with 
one ear only, having the other ear plugged. The beats just 
mentioned seem to be the fluctuations of the intensity of the 
mean tone rather than of the primary tones, if we use one 
ear only. 


60 UNIVERSITY OF MISSOURI STUDIES 


A second class of ratios which is of particular interest, 

is that of the ratios whose numbers differ by one. In each 
of these cases the difference tone 1! is audi- 

Second law of ble, but often quite a number of additional 
difference tones difference tones can be perceived. If the 
numbers of the ratio are rather small, 

as in the case of 5:4, all the tones from the 

highest, that is, 5, down to 1 are without any great difficulty 
noticeable. As we study ratios of increasing numbers, the 
tones following directly upon 1 (in a rising direction) seem 
to have a tendency to drop out. And if we go on in the same 


Objective tones Difference tones easily audible 
Fy ie - 
By 2 I 
4, 3 2,92 
Bp) a 3, 2) 25 
6, 5 4, 3, % 2 
7, 6 5) 4 ? 1 
8, 6 5, % 1 
9, 8 7 (6. 5) By 2 
10, 9 By. Ty 


way, we soon find only one difference tone left, the tone 1. We 
have then simply reached a case in which the difference tone 
is determined by the first law above. The accompanying table 
represents this class of ratios with their difference tones. 

A third class of ratios are the ratios made up of com- 
paratively small numbers, representing intervals less than an 


MECHANICS OF THE INNER EAR 61 


octave. In these cases three difference 
Third law of tones are often easily noticeable, one cor- 
difference tones responding to the direct difference of 

the vibration rates (4 —/) ; one correspond- 

ing to the difference between the lat- 
ter number (A—/) and the vibration rate? of the lower 
primary tone, that is, (2/—-h); and one corresponding 
to the difference between the just mentioned differences (4 —/) 
and (2/—/), that is (2h—31). It is to be noticed, however, that 
a difference tone is rarely audible which corresponds to 
a difference larger than the subtrahend; for example, the 
primary tones 9 and 5 produce the difference tones 4 and 1, 
but not 3 = 41, or at least not an easily noticeable tone 3, three 
being larger than one. The following table contains a few ex- 
amples of this class: 


Objective tones Difference tones easily audible 
Sh 5 By By 
SB |S Ap Tt 
Op. 5 4, 1 
7 4 op 
Ti, fly By 1 


The fourth class are the ratios made up of comparatively 
small numbers, representing intervals larger than an octave. 
The first fact to be noticed here is the lack 
of an easily observable difference tone 
corresponding to the direct difference 
of the two vibration rates. Such a tone, if 
audible, would lie between the primary 
tones. As a rule, only one difference tone is easily noticeable 
in these cases, which can be found according to the following 


Fourth law of 
difference tones 


62 UNIVERSITY OF MISSOURI STUDIES 


tule: Find the smallest difference between the larger num- 
ber of the ratio and any multiple of the smaller number. The 
table contains a few instances of this class: 


Objective tones Difference tones easily audible 
Il, 4 I=3x4—I1 
12, 5 2—=12—2 x5 
9, 4 Ome, 
II, 3 I=4x3—I1 
Gy 2 I=5—2x2 
8, 3 1=3x3—8 


Let me repeat that the above rules do not pretend to 
represent scientific laws in the strict sense of the word. They 
are stated here chiefly for a practical pur- 
The use of pose. If the reader who is unfamiliar with 
such laws difference tones will use the above “laws” 
as directions for observation and obtain 
a first hand knowledge of the phenomena of difference tones, 
he will be more interested in the theoretical discussions which 
are to follow, and able to decide for himself in what di- 
rections the mechanical theory is yet most undeveloped and 
most wanting in details. 
Let us apply our theory now to the combination of two 
sinusoids of the relative periods nine and four, that is, of the 
relative frequencies 4 and 9. The com- 
The combination pound curve, representing the function 
4 and 9 f(+) = 1.99 + sindy + sin9x 
is shown in figure 22. The period is made 
to begin and to end with the lowest ordinate value of the 
function, zero, because this has certain technical advantages. 


MECHANICS OF THE INNER EAR 63 


It is, of course, in a periodical function, entirely irrelevant for 
the mechanical theory what point we regard as the beginning 
of the period. The accompanying table contains the pairs of 
corresponding coordinate values of all the maxima and min- 
ima of the curve. These values are found by computing a 
large number of pairs of values and selecting from them 


INTERVAL 4:9, EQUAL AMPLITUDES 


Ordinate | Abscissa | Ordinate | pordinat 
Max.| + 169 119 368 | P 338 
Min.| — 16 318 | 183 Q 185 
Max. + 75 aos | Ais R 91 
Min.| — 199 696 | oO A 274 
Max.| -+ 110 929 309 B 309 
Min.| — 2 1094 197 C 112 
Max.| + 142 1275 341 D 144 
Min.| — 189 1512 10 E 331 
Max.| + 42 1724 241 1 231 
Min | — 42 1876 157 G 84 
Max.! + 189 2088 388 H 231 
Min.| — 142 2325 57 I 331 
Max. | =). 2 2506 201 J 144 
Min. — 110 2671 89 K 112 
Max.| + 199 2904 398 L 309 
Min.|} — 75 3129 124 M 274 
Max.| + 16 3282 215 N gI 
a — 169 3481 30 O 185 
Max. + 169 3719 368 P 338 


those which have the highest and lowest ordinate values. 
This computation is a very slow process, but has no limit of 
accuracy. Figure 23 shows the positions of the partition be- 
longing to the maxima and minima of figure 22. We see that 
at A the initial forty sections of the partition are in their 


64 UNIVERSITY OF MISSOURI STUDIES 


upper positions. At B, the first thirty-one of them are at 
their lower limits. At C, the stirrup has caused eleven 
sections to assume their upper limits. From C to D, 
the stirrup moves inwards through fourteen units of space, 
pushing down the eleven sections which were up at C, leaving 
the following twenty unmoved since they are down already, 
and pushing down three more, so that now the first thirty-four 


Fig. 22. The combination 4 and 9 


sections of the partition are down, six further sections are up, 
and all the following ones are in their normal positions. From 
D to E the stirrup makes an outward movement through 
thirty-three units of space, moving up the first thirty-three 
sections of the partition. From E to F, the stirrup moves 
inwards through twenty-three units of space; and so on. At 
S, we find the partition in the same position as at A, our 
starting point; then, a new period begins. 
Let us now try to interpret the figure. We can easily 
see that the first eight sections move down and up again nine 
times during the period. This would mean 
Do we hear 9? that the nerve ends located on this section 
convey to our mind the sensation of the 
tone 9 of the relative intensity eight. The ninth section of 
the partition moves down and up only eight times during the 
period; but after our discussion about the omission of stimuli 


MECHANICS OF THE INNER EAR 65 


it is clear that we should not be justified in concluding that 
we must hear the tone 8. This tone would be audible only 
if the frequency with which the stimuli occur on the ninth 
section was less than the frequency on the first eight sections. 
However, there is no reason why we should regard the ire- 


aD = Ft 2 ee 
lf | | 


o_O 
9 8° 6? 4 e | 
Fig. 23. The combination 4 and 9. Compare figure 22 


quency as different. It seems most probable, then, that 
the nerve ends of the ninth section convey to us the sensation 
of the tone 9, but with a short pause (or possibly, because of 
the after-sensation, a diminution of intensity only) at the 
moment about G, when no stimulation takes place. Our total 
impression of the tone 9 is, of course, the sum of the sensa- 
tions conveyed by all the nine initial sections. This means 
that the tone intensity perceived would, on the whole, be 
nine; but that for one moment in each period this intensity of 
the tone might suddenly be slightly decreased. It does not 


66 UNIVERSITY OF MISSOURI STUDIES 


seem improbable—so far as our theoretical data permit us to 
draw a conclusion—that such a sudden, but weak decrease 
in intensity might become noticeable as a kind of just per- 
ceptible “beat.” I leave it to the reader to decide experi- 
mentally whether the tone 9 in this combination appears 
slightly “rough” or perfectly ‘“smooth.” 
The tenth and eleventh sections of the partition move 
down and up six times during the period. But we must 
remember here from our previous discus- 
Do we hear @? sion that—in order to conclude as to the 
tones to be heard—no indiscriminate count- 
ing is permissible. Mere counting of stimuli would indicate 
the tone heard only in case it seems probable that these stimuli 
occur in equal or approximately equal intervals. Now, a 
survey of figure 23 does not make it appear probable that the 
stimuli on the two sections in question occur in even approx- 
imately equal intervals. The partition moves down at F 
and remains in the lower position until it moves up at I. It 
moves down at J and immediately, at K, up again. Down 
at L and up at M. In this upper position it remains until 
P, when it moves down. At Q it is up again, to stay in the 
upper position until B, when it moves down. At C it is up 
again. At D it moves down, at E up, and at F down again. 
Are we justified in concluding that the nerve ends located on 
these two sections of the partition must convey to our mind 
the sensation of the tone 6 of the intensity two; or any other 
definite sensation? I do not know how to answer this ques- 
tion. If we knew the time intervals between the successive 
stimuli exactly, we might attempt to decide whether one or 
the other sensation would be more or less probable in this 
case. But we know that figure 23 is only an approximate, 
not an exact representation of the actual movement of the 
partition. It is a certain comfort in this dilemma that the prac- 


MECHANICS OF THE INNER EAR 67 


tical importance of a decision in this case is rather small, for 
the reason that, whatever sensation these two sections might 
produce, it would be a sensation of the relative intensity two 
only, a rather weak sensation compared with the tones which 
appear theoretically certain. 
The twelfth, thirteenth, and fourteenth sections of the 
partition move down at B, a second time at F, a third time 
at J, and a fourth time at P. These sec- 
Do we hear 4? tions, therefore, move down and up four 
times during the period in approximately 
equal intervals. The five following sections of the partition 
move down at B, a second time at F, a third time at L, and 
a fourth time at P. These sections, therefore, move down 
and up four times during the period in approximately equal 
intervals. The four sections from the twentieth to the twenty- 
third move down at B, a second time at F, a third time at L, 
and a fourth time at P. These sections, therefore, move 
down and up four times during the period in approximately 
equal intervals. The following four sections move down at B, 
a second time at H, a third time at L, and a fourth time at 
P; that is, four times during the period in approximately equal 
intervals. The four sections from the twenty-eighth to the 
thirty-first move down at B, a second time at H, a third time 
at L, and a fourth time at P; again, four times during the 
period in approximately equal intervals. The thirty-second 
and thirty-third sections move down at D, a second time at 
H, a third time at L, and a fourth time at P. These sections, 
therefore, move down and up four times during the period in 
approximately equal intervals. It follows that according to 
our theory we must expect to hear the tone 4 of a relative in- 
tensity twenty-two, since it is produced by all the sections 
from the twelfth to the thirty-third. 


68 UNIVERSITY OF MISSOURI STUDIES 


The thirty-fourth section of the partition moves down at 
D, and up again at O'; down at P, and up again at S. That 
is, the nerve ends of this section receive 
Do we hear any _two stimuli during the period. We may 
difference tones? expect to hear, therefore, the tone 2 of the 
relative intensity one. The three follow- 
ing sections of the partition move down at H and up again 
at O. The nerve ends on these sections receive, therefore, 
one stimulus during the period. The next two sections move 
down at H and up again at S. The nerve ends here receive 
one stimulus during the period. The fortieth section moves 
down at L and up again at S. The nerve ends here receive 
one stimulus during the period. We must hear, then, the 
tone 1 of the relative intensity six. The tones 2 (weak) and 1 
(strong) are the only difference tones in this case which we 
can derive from our theory with some degree of certainty. 
Summarizing now the results derived from our represen- 
tation of the movements of the partition in the case of the 
ratio 4:9, we find that we must expect to 
The relative hear the tones 9, 4, 2 and 1, with the rel- 
intensities ative intensities nine, twenty-two, one and 
compared six; leaving out of discussion the doubt- 
ful sensation of the intensity two which 
may be conveyed to our mind by the tenth and eleventh sec- 
tions. Now, it is quite natural to ask the question whether 
we hear these tones with just these relative intensities. Un- 
fortunately, no exact answer to this question is possible, 
because this matter, owing to technical difficulties and other 
circumstances, has never been experimentally subjected to 
accurate measurement. It is known, however—what also ap- 
pears in the above statement of our results—that in a com- 
bination of two tones the higher one loses in intensity, com- 
pared with the lower one. Yet it is doubtful if this loss in 
intensity is so great as the number nine indicates, compared 


MECHANICS OF THE INNER EAR 69 


with twenty-two. The present writer at least is inclined to 
doubt this. He believes that the theory, representing only an 
approximation to what actually happens in the organ of hear- 
ing, exaggerates the degree of this loss of intensity on the 
part of the higher tone. He is also inclined to believe that 
the theory exaggerates the relative intensity of the difference 
tone 1, which was found to be six. In reality, this tone seems 

to be somewhat weaker than is indicated by this number. 
Let us remember, now, the provisional assumptions 
which we made in order to render the graphic representation 
of the movement of the partition as sim- 


The third and ple as possible. We may raise this ques- 
fourth provisional tion: Is not, perhaps, the above disagree- 
assumptions ment between theory and experimental ob- 
recalled servation a result of one or more of these 


provisional assumptions? I shall demon- 
strate that this is indeed the case. Or, more exactly, I shall 
demonstrate that, if we omit one of these assumptions and 
take into account in its stead the actual anatomical conditions 
so far as these are known, we change the results of the theory 
in such a direction as to diminish the exaggerated loss of 
intensity of the higher primary tone and also the exaggerated 
intensity of the difference tone. 
The partition was provisionally assumed to be of equal 
width all along the tube. As a matter of fact, its width near 
the windows is only one-twelfth or one- 
The partition is tenth (measurements differ somewhat) of 
narrower near what it is at the far end of the tube. And 
the windows further, it is to be noted that the width 
of the partition does not increase uniformly 
along the tube, like the area between the dotted lines of figure 
24, but that it increases first rather rapidly, later more slowly, 
like the area between the curved lines. The figure, however, 
does not represent the true relation between the width and 


79° UNIVERSITY OF MISSOURI STUDIES 


the length of the partition. The partition as a whole is much 
Narrower in comparison to its length than appears in the fig- 
ure. Let us try, then, to get a clear conception of the func- 
tional significance of these facts. It is of no particular im- 
portance, in this connection, whether the measurements upon 


Fig. 24. Shape of the partition 


which the following considerations are based are more or less 
incorrect, as they probably are; for our intention is merely to 
get an idea of the general direction in which the actual shape 
of the partition changes the results of a theory having pro- 
visionally assumed that the partition is everywhere of equal 
width. 
When the partition yields in either direction, up or down, 
its former place is taken by the fluid of the tube. Let us call 
the quantity of fluid which has taken po- 
A unit of stirrup sitions formerly occupied by the partition 
movement equals “the displaced fluid.” Now, it is plain that 
a unit of dis- the quantity of displaced fluid must al- 
placed fluid ways be approximately proportional to the 
distance through which the stirrup has 
moved since its last reversal of movement. If the partition 
were equally wide everywhere, then any section of equal 
length, far from or near the windows, would make room, in 
moving from one limit to the other, to the same quantity of 
displaced fluid as any other section. And then, plainly, the 
length of that part of the partition which is caused to move 
from one limit to the other would always be proportional to 
that part of the stirrup movement which caused it to move. 


MECHANICS OF THE INNER EAR 71 


This is the effect of our provisional assumption. But if the 
partition tapers as it does, a unit of displaced fluid (corre- 
sponding to a unit of stirrup movement) is made room for by 
sections of the partition of very unequal length according as 
the displaced fluid unit is located nearer or farther from the 
windows. Where the partition is narrow, a longer section 
would have to move in order to make room for a unit of dis- 
placed fluid. Where the partition is wider, a shorter section 
would make room for the same quantity of fluid. 
Since, then, tone intensity depends on the length of the 
partition section which is jerked up and down, and since this 
length is not proportional to the given 
The computation value of the stirrup movement, it is use- 
of a table ful to have a table showing the partition 
lengths corresponding to various stirrup 
movements in order to get a clear idea of the influence of the 
tapering of the partition upon the relative tone intensities. 
To simplify the computation of such a table, it is well to 
restrict it to a short distance from the windows, so that we 


Fig. 25. The partition widens 


may approximately assume the partition to increase uni- 
formly in width within this distance. Let us call w the 
smallest width of the partition, near the windows; let us 
assume that a distance from the windows equal to 50w the 
width of the partition is 6w, and let us assume a uniform in- 
crease of width. Let us call y the width at any point of the 
partition and x» the distance of this point from the beginning 


72 UNIVERSITY OF MISSOURI STUDIES 


near the windows. We then know (Fig. 25) that the ratio 
6w—w 
507 


Y~® is equal to the ratio of 
a 

Len OID) 

Ba Ee WO) 


low--x 
10 


x 
By, Uses 


The area described by the cross-section of the partition in 
being jerked from one limit to the other may be called a at 
the point where the width of the partition 
is smallest, g at any arbitrary point of the 


The area Ha 

described by a partition. These areas, let us assume, are 
cross-section of geometrically similar. This assumption 
the partition possesses a higher degree of probability 


than what would follow for the areas from 
the third provisional assumption made above for the sake of 
simplicity. It then follows that the ratio of the areas is equal 
to the ratio of the squares of the widths of the partition at the 
same points. 


a S 
BG 

a 2 
ar 


For y we substitute its value found above and have then the 
equation: 


el a(1ow-+-+)? 
10720" 

The left side of this equation is a measure of the area 
described by the cross-section of the partition at the point 
x, in being jerked from one limit to the other. The right 
side of the equation contains the variable +, the distance of 
any point of the partition from its beginning near the windows, 


MECHANICS OF THE INNER EAR 73 


and the two constants a and w. The former of these con- 
stants is the area described by the initial point of the partition 
in moving from one limit to the other, of whatever form this 
area may actually be found to be. The latter is the width of 
the partition at the initial point. 

The mathematical reader immediately sees that that quan- 
tity F of displaced fluid for which room is made by a move- 
The quantity of ment of any given section of the partition 
fluid for which is determined by the following equation, 
room is made which can be easily integrated. 


a, 
i i aadx 
4, 


In order to integrate this equation we have to express g 
as a function of x. This has been done above under the tem- 
porary assumption of a uniform increase of width. The re- 
sult is stated in the equation just preceding the last. We 
then have 


1007” 


4% a 
raf? (1ow+2)'d*z—= 


— Sant | (row-+1,) — (100+) 5 


where +,is the farther, , the nearer of the two points enclosing 
whatever section of the partition is in question. 

If the section in question is an initial section of the par- 
tition, then x, is equal to zero, and the quantity of displaced 
fluid is 


imal | 
= I 4,)°—(10w)3) - 
Let us regard the partition as consisting of sections each of 
the length of w. We can find, then, the quantities of dis- 
placed fluid for which room is made by the first section, the 
first two, the first three, the first four, and so forth, sections 


74 UNIVERSITY OF MISSOURI STUDIES 


by making +, successively equal to w, to 2w, to 3w, to 4w, 
and so forth. If + —=xnw, we have 


AD . ole 
aCor: (eee) —(10w) i = 


al as 
aes [core — 10'|. 


7, 


Let us arbitrarily regard ae as the unit of displaced 


fluid. We could then easily compute a table which contains 
the number of fluid units displaced by the 

Two tables number » of partition units. If the num- 

possible ber of partition units is, for example, three, 
the quantity of displaced fluid is 

(13"—10°) units and so on. 

More useful, however, is a table which progresses in a 
regular series of units of fluid and tells us—in decimals—the 
lengths of the initial sections which make room for these quan- 
tities of fluid; for our representation of the movement of the 
partition tells us the quantities of displaced fluid, and the cor- 
responding section lengths are to be found in order to obtain 
a more correct idea of the relative tone intensities. In order 
to compute such a table it is advantageous to use a larger 
fluid unit than the above. Let us determine the total quan- 
tity of fluid for which room is made by the partition section 
from += 0 to + = 50w, that is, the whole part of the partition 
near the windows for which we have assumed a uniform taper- 
ing or change of width; and let us—arbitrarily—regard one- 
fiftieth of this quantity as the fluid unit. 


wl BN dN 
moe uae) 103 em 


__ 215000 a w 
fa 300 


MECHANICS OF THE INNER EAR 15 


The fluid unit, defined as one-fiftieth of the above quantity, 
is therefore 


4300 a w 
300 


Any number m of such fluid units is then 


4300 a wm 
300 


We derived above the following equation between fluid 
quantities and partition lengths 


= =o ae ( 1ow-+4,)>—( row)" 


In this equation we have to substitute for F the above 
expression of fluid quantity and then to solve the equation 
LOL 


ACNE DEB) BI 
300 ~ 3002? | 


(1ow + +#,)? — (10%) 
(10w-+#,)? = 10°23 4300703 
1ow+24, = wV 1000--4300m 


x, = (V1000-++4300m — 10)w 


The following table contains the corresponding values of 
m and «#,, measured in the unit of length w. 


76 UNIVERSITY OF MISSOURI STUDIES 


Let us see, now, how we must use the table of fluid 
quantities and partition lengths. We recall that any unit of 
stirrup movement causes the displacement 

The use of of a unit of fluid. What we have 
the table called above “the relative intensities of the 
tones heard” refers directly to relative 

numbers of units of stirrup movement; indirectly also to rela- 
tive numbers of units of displaced fluid, since it is highly prob- 
able that the quantity of displaced fluid is approximately pro- 
portional to the extent of a stirrup movement. What we want 


TABLE OF THE RELATIONS BETWEEN FLUID DISPLACEMENT AND 
PARTITION LENGTH 


m nN m x m x m x m x 


I 7.43 II | 26.42 21 | 35-03 31 | 41.22 41 | 46.18 
2 | 11.25 12 | 27.47 22 | 35.73 32 | 41.75 42 | 46.62 


14.04 13 | 28 46 23 | 36.40 33 | 42.28 43 | 47.07 


3 
4 | 16.30 || 14 | 29.41 || 24 | 37-05 || 34 | 42-80 || 44 | 47.50 


5 | 18.23 15 | 30-31 25 | 37-70 35 | 43-31 45 | 47.94 
6 | 19.92 16 | 31.17 26 | 38.32 36 | 43.81 46 | 48.36 


7 | 21-45 || 17 | 32.00 || 27 | 38.92 || 37 | 44-30 || 47 | 48.78 


10 | 25.30 20 | 34.31 30 | 40.65 40 | 45.72 50 | 50.00 


to know now, is the length of the several sections of the par- 
tition of which—in the last case of tone combination, 4 and 
9—the first or initial one moves up and down nine times and 
produces the tone 9, the second produces no definite tone with 


MECHANICS OF THE INNER EAR 9/7) 


certainty, the third produces the tone 4, the fourth the tone 
2, and the fifth the tone 1. 

The fluid quantity for the tone 9 is measured, as we found 
above, by the relative number nine. Now, let us, for exam- 
ple, assume that this means an equal number of fluid 
units in our table. We then read off the corresponding par- 
tition length as being 24.11 units. The fluid quantity for the 
uncertain tone was measured as two units. But now, we can- 
not simply read off from the table the number of partition 
units corresponding to two; for the partition section making 


TONE INTENSITIES IN THE COMBINATION 4 AND 9 


Tones |Uniform width| Tapering 
9 22.5% 52.7% 
Uncertain 5.0% 5.0% 
4 55-0% 34.8% 
2 2.5% L.1% 
I 15.0% 6.4% 


room for these two fluid units is not an initial section. We 
must read off, therefore, the value corresponding to eleven 
fluid units (26.42) and subtract from this the value correspond- 
ing to nine fluid units (24.11). We thus see that the length 
of the partition section about the tone of which we could not 
come to a decision is 2.31 units. The fluid quantity for the 
tone 4 was measured as twenty-two. But here again we can- 
not simply read off the length of the partition section pro- 
ducing this tone, because this section is not an initial section. 
We must read off the values for 9--2+-22—33 and for 9+2=11 
and subtract the latter from the former. These values are 
42.28 and 26.42. The length of that section of the partition 


48 UNIVERSITY OF MISSOURI STUDIES 


which moves up and down four times is therefore 15.86 units. 
The intensity of the tone 2 is one fluid unit. The length of 
the partition section corresponding to this fluid unit is 42.80— 
42.28—.52. The fluid quantity for the tone 1 is six fluid units. 
We have to read off from the table the values corresponding 
to 9+24+22+1+6=—40 and to 9+2+22+1—34 fluid units. These 
values are 45.72 and 42.80. The length of that section of the 
partition which produces the tone 1 is therefore 2.92 units of 
the partition. 
The relative intensities of the four tones 9, 4, 2, and 1, 
would then be, not as nine to twenty-two to one to six, but as 
24.1 to 15.9 to .5 to 2.9; and the tone about 
Thevrelative which we could not reach a definite con- 
intensities of the clusion would have the relative intensity 
tones 9, 4, 2, 2.3 instead of two. For the sake of better 
and 1 . comparison let us express the relative in- 
tensities in percentages. The table shows 
in one column the tone intensities in case we regard the par- 
tition as of uniform width and in another column the intensi- 
ties in case we regard the partition as tapering and possess- 
ing those properties upon which the present computation is 
based. 
We must not, of course, regard the result found in the 
second column of intensities as any more final than that in 
the first column. We have assumed that 
This result the initial section of the partition tapers 
not final uniformly so that, the initial width being 
w, its width is 6w at a distance of 50w. But 
we do not know that it tapers just this way. We have further 
assumed that the areas described by cross-sections of the par- 
tition in moving from one limit of position to the other, are 
geometrically similar. But we do not know whether they are 
or not. We have further assumed that the total movement of 
the partition in this case extends just to the distance of 45.72w. 


MECHANICS OF THE INNER EAR 79 


But this is an arbitrary assumption, and the results of the ta- 
ble, as is shown farther below, would look different if the total 
movement did not extend just so far, but farther or less far. 
We must not, then, regard this result as final, but simply ob- 
serve if it tends to change the relative intensities in such a 
direction as might correct the intensities which seemed some- 
what objectionable. Now, we objected, first, to the fact that 
the higher of the primary tones had such a slight intensity com- 
pared with the lower one, 22.5 per cent compared with 55.0 
per cent. Now we see that taking into account the tapering 
of the partition raises the intensity of the tone 9 to 52.7 per 
cent and lowers that of the tone 4 to 34.8 per cent. As stated 
before, these particular figures must not be regarded as a final 
result. It is irrelevant that now the lower tone is weaker than 
the higher. What is important is the fact that the influence 
in question is in the direction in which it must be in order to 
correct the objectionable features of the former computation. 
A further result of this influence is the reduction of the former 
intensity of the difference tone 1, which we regarded as 
rather high, from 15.0 per cent to 6.4 per cent—again a change 
in the desired direction. 
We can obtain here a more special insight in addition 
to the general insight into the fact that tapering of the par- 
tition tends to increase the intensities of the 
Tihs Pee tones piocuced by tne initial sections, to 
tensities not inde- decrease the intensities of the tones pro- 
pendent of the duced by more distant sections of the par- 
absolute intensity tition. More especially, we shall observe 
of the compound that the amount of this increasing or de- 
sound creasing influence varies according as the 
total length of the partition section set in 
motion varies, that is, as the total intensity of the compound 
sound heard varies. Imagine, for example, three tones, which 
we call A, B, and C, being produced by successive sections of 


80 UNIVERSITY OF MISSOURI STUDIES 


the partition. Imagine further that the quantity of displaced 
fluid for the tone A’ is 20 per cent of the total amount of fluid 
displaced by the compound sound wave, that the quantity 
for B is 50 per cent, and the quantity for C 30 per cent. This 
is a percentage which might easily be found in an actual case. 
The pitch of the tones A, B, and C is irrelevant. The table 
below contains all the values which are of interest to us, for 
two cases. In the first case the actual fluid quantities are 
two, five, and three, by assumption; in the second case they 
are ten, twenty-five, and fifteen. That is, the stirrup move- 
ment in the second case is of the same form, but exactly five 
times as large as in the first. 


Quantities of dis- Length of sections Length of sections 
placed fluid (absolute values) (percentages) 
A B C A B Cc a A B C 
2 5 3 | 11.3 | 10.2 | 3.8 | 25.3 | 44.7% | 40.3% | 15.0% 


18.0] 6.7 | 50.0] 50.6% | 36.0% | 13.4% 


Lal 
° 
is) 
n 
4 
wn 
iS) 
on 
iS) 


The table shows that the tone intensities do not increase 
proportionally to the increase in the amplitude of stirrup move- 
ment. The amplitude in the second case is five times that of 
the first case; but the total intensity (3) of the audible sound 
in the second case is less than twice that of the first case (50.0 
compared with 25.3). The table shows further that the inten- 
sity of the tone A is in the first case 44.7 per cent, in the second 
case 50.6 per cent. That is the increase in the intensity of the 
whole sound is favorable to the relative intensity of the tone 
produced by the initial section of the partition. The percentage 
intensity of this tone, A, is increased at the cost of the tones 
B and C, the percentages of both of which are diminished. 


MECHANICS OF THE INNER EAR 81 


Thus far we have studied the effect upon the relative tone 
intensities of initial and more distant sections which would 
result from a uniform increase in width of 
Increase in width the partition as compared with a uniform 
of partition width. But we know that the partition 
not uniform does not increase uniformly, but rapid- 
ly at first, near the windows, and more 
slowly the farther we go from the windows (Fig. 24). To 
understand the theoretical result of this manner of increase, 
it is not necessary to compute a new table. It is plain that, 
if a more distant section increases less than we assumed in 
computing the preceding table, showing the corresponding 
values of m and x, this would cause a longer piece of this dis- 
tant part of the partition to move in order to make room for 
a certain quantity of displaced fluid. That is, the decrease in 
the broadening of the partition would counteract the effect 
last discussed. We saw in the preceding paragraph that an 
increase in the intensity of the whole sound does not leave 
the relative intensities of the partial tones unaltered, but favors 
the intensities of the tones on the initial sections, reduces 
those on the distant sections. But now, if we increase the in- 
tensity of the whole sound, we throw the tones of the more 
distant sections on still more distant sections, that is, on sec- 
tions where the broadening of the partition is much less than 
that assumed in the table. Consequently, the tones of distant 
sections cannot lose in percentage as much as a derivation 
from the table would indicate, but might even gain somewhat 
in percentage of intensity through an increase of the total in- 
tensity of the sound. 


82 UNIVERSITY OF MISSOURI STUDIES 


The preceding paragraphs must impress us with the per- 
plexity of our situation. We want to comprehend the facts 
of audition as depending on the structure 


THe necd Of a and function of the sense organ. But every 


more accurate endeavor to enter into the details of the 
and detailed function of the organ is thwarted by the 
anatomical poverty and inaccuracy of our anatomical 
knowledge knowledge. We cannot obtain a definite 


idea of the intensities of the various physi- 
ological processes resulting from a compound aerial wave un- 
less we know exactly the manner of increase in width of the 
partition. It is not sufficient to know that it increases first 
tapidly, then slowly. We need a very exact measurement 
of the width of succeeding cross-sections of the partition and 
of the distance of each of them from the beginning of the par- 
tition near the windows. 
On the other hand, we need also a much more detailed 
and accurate comparison of the relative intensities of the 
components of stronger and weaker com- 


The nesdiok a pound sounds, based on psychological ex- 
more accurate perimentation and observation. Thus far, 
observation of the practically nothing in this regard is known 
psychological with exactness. It is to be hoped that, in 


facts of hearing spite of the extraordinary technical diffi- 

culties and the costliness of the apparatus 
required for such investigations, an accurate knowledge of 
these psychological facts will be obtained. We _ need this 
knowledge because some of the constants contained in the 
mechanical theory may never become directly measurable, for 
example, the elastic properties of the partition, and, therefore, 
will have to be inferred from their psychological conse- 
quences. 


MECHANICS OF THE INNER EAR 83 


‘ 


Two consequences of the particular shape of the partition 
which we have just discussed in as much detail as anatomical 
knowledge permits should be emphasized. 
The first of these is of the greatest biolog- 


Two important 5 SiN x g 
ical significance. It is certainly important 


consequences of 


the partition’s for the animal to be very sensitive to 
shape. sound, that is, to be able to hear sounds 
Sensitiveness which are very weak and cause only a 
of the ear 


minute movement of the stirrup. Now, 
the initial part of the partition being ex- 
ceedingly narrow, even the minutest quantity of fluid dis- 
placed by the stirrup must spread considerably lengthwise 
over the partition and thus stimulate quite a number of nerve 
ends. But it would not be advantageous to have the partition 
equally narrow all along. In that case comparatively weak 
objective sounds would cause the whole partition to move up 
and down and the displaced fluid for which no room can be 
made by the partition, to flow back and forth through the 
“safety valve.” Strong objective sounds would then make 
the same impression upon the animal as sounds of medium 
physical intensity. This disadvantage is overcome by the 
partition’s tapering, by its being narrow at the beginning, 
but wide farther on, so that even sounds of considerable 
strength do not involve the whole partition. But again, there 
would be a disadvantage if the partition’s width increased uni- 
formly : for then the relative intensities of simultaneous tones 
—as we have seen—would not be even approximately inde- 
pendent of the absolute intensity of the total sound. This 
disadvantage might be avoided by the width increasing first 
rapidly, then more and more slowly. If it is thus avoided, 
either partially or totally, we do not exactly know because of lack 
of exact anatomical data. 


$4 UNIVERSITY OF MISSOURI STUDIES 


The second of the consequences to be emphasized is 
probably of little biological significance, but possibly of some 
importance to the student observing differ- 
Conditions more °¢e tones in a psychological iaboratory. 
or less favorable It is quite possible that, as a result of the 
to the observation tapering not being uniform but decreasing 
of difference as the windows are left behind, the rela- 
tones tive intensity of difference tones, which are 
obviously produced by the more distant 
sections of the partition, is somewhat greater when the abso- 
lute intensity of the whole sound is rather great. If this is 
so, it would be advisable to use for the observation of dif- 
ference tones fairly strong primary tones rather than weak 
ones. Whether this conclusion is borne out by experience, I 
must leave to the reader to decide. 
The above discussion of tone intensities naturally leads us 
to take up the theoretical aspects of the fact frequently ob- 
served by experimenters that in a combina- 


The dis- tion of a lower and a higher tone the latter 
appearance of is sometimes entirely inaudible, provided, 
a higher tone of course, that it is physically much weaker 


than the former. The reverse, however, 
that is, the disappearance of a physically weak low tone when 
sounded together with a strong higher tone, has hardly been 
observed. The phenomenon in question can, perhaps, be most 
easily observed with such ratios at 1:2, 2:3, or 1:3. Let us 
study, then, one of these ratios, say 1:2, from the theoretical 
point of view. 


G-A 


Fig. 26. The combination r and 2, unequal amplitudes 


MECHANICS OF THE INNER EAR 85 


Let us combine two sinusoids according to the following 

equation : 

f(#) = 2sina-+sin2dsv. 
The combination hat is, the amplitude of the sinusoid of 
1 and 2, when 2 ‘the shorter period is one-half of the am- 
is comparatively plitude of the sinusoid of the longer pe- 
weak riod. Figure 26 shows the curve represent- 

ing the stirrup movement, and the accom- 
panying table shows the exact numerical values of those points 
of the curve which, as we shall see, are of particular import- 
ance to us, that is, the maxima and minima, and the points 
of inflection. These values are easily found in this particular 
case. To find the maxima and minima, we have to set the 
first derivative of the above function equal to zero and solve 
the equation for +; for the maxima and minima are those 
points where the tangential angle or differential coefficient 
is zero. 

f' (4) = 2cosx + 2cos2y = 0. 

To find the points of inflection, we have to set the second 
derivative equal to zero and solve the equation for x; for the 
points of inflection are those points of the curve where the 
tangential angle neither increases nor decreases. 

f’ (#) = — 2sinex — 4sin2« = 0. 

The purely arithmetical work I do not care to perform 
here. The table shows its results. It is plain that, if we rep- 
resent the successive positions of the partition according to 
the same rules as formerly employed, we find that only one 
tone can become audible, the tone 1. The tone 2 has disap- 
peared because its addition does not increase the number of 
the maxima and minima of the compound curve (Fig. 26), but 
merely influences its shape. However interesting this in- 
sight may be into the fact that a weak higher tone added 
to a strong lower tone may be entirely inaudible, the present 
theoretic result is not quite satisfactory. It is somewhat un- 


86 UNIVERSITY OF MISSOURI STUDIES 


satisfactory because it seems improbable that the higher octave 
should become inaudible as soon as its amplitude is decreased 
to one-half of the amplitude of the lower tone. It seems, judg- 
ing from experimental experience, that the higher octave must 
be weakened by far more, in order to become entirely inaudi- 


INTERVAL 1:2, AMPLITUDES 2:1 


Ordinate | Abscissa | Ordinate Orne, 
Inf. fo) fo) 2598 B 2598 
Max.| + 2598 600 5196 Cc 2598 
Inf. | + 1125 1045 3723 D 1473 
Inf. fo) 1800 2598 E 1125 
Inf. — 1125 2555 1473 F 1125 
Min.| — 2598 3000 fo) GVA 1473 
Inf. fo) 3600 2598 B 1473 


ble. Now, to correct the above theoretic result, we cannot 
make use of the previous considerations concerning the in- 
fluence of the tapering of the partition. As long as there is 
an initial section, however short, jerked down and up twice 
during the period, the result of tapering may be the length- 
ening of this section and a corresponding increase of the rel- 
ative intensity of the higher tone. But when there is no 
initial section at all which moves twice, no tapering of the par- 
tition can create one. Let us, therefore, recall the other pro- 
visional assumptions. 


MECHANICS OF THE INNER EAR 87 


The second of our provisional assumptions is that the 
partition is perfectly inelastic, that is, not offering any re- 
sistance to a displacement until either of 


Hel secontd the limits is reached, and then offering ab- 


provisional solute resistance. Now, does our anatom- 
assumption ical knowledge warrant such an assump- 
recalled tion? The most striking fact derived from 


an anatomical study of the organ is the 
absence of any solid body which might serve to interfere sud- 
denly, abruptly, with a yielding movement of the partition in 
either direction. Even the analogy with the leather seat 
of a chair is hardly admissible if we mean thereby a flabby, 
wrinkled piece of leather. The analogy probably holds good 
only if we imagine the leather in such a condition as we find 
it in a new, unused chair, occupying a perfect plane, being 
practically free, however, from any stresses as long as no weight 
is resting upon it, yielding to a certain extent if a certain weight 
is placed upon it, but not yielding in proportion to the weight 
if the weight is increased. It is probably in a similar manner 
that the partition resists pressure. What determines the 
limit of yielding must be the partition’s own elasticity. But 
let us always remember that there is no elastic force—no 
stress—in the partition while in its normal position, that its 
elastic force is the result of a displacement in either direction, 
that this elastic force increases much more rapidly than the 
displacement, and that therefore a constant increase of press- 
ure on any point of the partition does not cause a constant 
movement of this point, but a movement first rapid, then 
quickly decreasing in velocity. Figure 27 is a graphic repre- 
sentation of such a function under the arbitrary assumption— 
which, perhaps, may be regarded as a rough approximation 
to the actual conditions—that the elastic force of the partition 
increases proportionally to the tangent of its displacement. The 
abscisse represent the increasing pressure, the ordinates 


88 UNIVERSITY OF MISSOURI STUDIES 


the corresponding displacements of the partition. We notice, 
then, that there is a practical limit of yielding, that an increase 
of pressure beyond a certain point is practically ineffective, does 
not cause any further displacement to speak of. 

There can be no doubt that the assumption of a relation 
existing between the displacement of the partition and the 
pressure, similar to the relation between an angle and its 
tangent—however rough the approximation to the facts—is 


ee 
ine 
| HH , 


ce GyeniSi Sir Ciaigine, 
Fig. 27. The probable relation between pressure and displacement of the partition 


much better adapted to the anatomical facts than the second 
provisional assumption. Of course, the second provisional as- 
sumption simplifies greatly the graphic representation of the 
successive positions of the partition, but at the cost of ail 
accuracy. Wherever the approximation thus possible is suffi- 
cient for our purposes, we shall, of course, continue to work 
under that simpler assumption. But let us now apply the 
latter assumption to our problem of representing the succes- 
sive positions of the partition which correspond to the stirrup 


MECHANICS OF THE INNER EAR 89 


movement of the curve in figure 26. Let us disregard, how- 
ever, the varying width of the partition, in order to avoid too 
much complication. We shall again assume the partition to be 
of uniform width, without, however, forgetting the fact that 
this is an arbitrary simplification of the conditions. 
Imagine that the whole partition is in its normal posi- 
tion, free of any stress, and that the stirrup begins an outward 
movement of the form of the curve from E 
The significance to G in figure 26. We see from the curve 
of a point of that the stirrup moves at first very slowly, 
inflection then gradually more and more quickly un- 
til at F, the point of inflection, it moves 
with the greatest velocity. Now, a simple consideration will 
make it plain to us that the pressure acting upon the initial part 
of the partition must be dependent on, probably be propor- 
tional to the velocity of the stirrup. If the velocity of the stir- 
rup movement were extremely small, no point of the partition 
would move more readily than any other, and consequently 
none of them would move to a considerable extent; but the 
fluid would every time and all the time flow through the 
opening at the end of the tube which we called the safety 
valve, because there would then be practically no friction at 
any point within the tube, and an infinitesimal elastic force 
of displacement could keep the partition in place. On the other 
hand, if the velocity of the stirrup movement is not very 
small, the points of the partition near the windows receive 
the greatest push from the fluid, farther points only a slighter 
push, very quickly diminishing with increasing distance, and 
at some distance away the push could be regarded as practi- 
cally infinitesimal; all this as the result of the friction of the 
fluid in the narrow tube, the total influence of which is the greater 
the longer the column of fluid in question, measuring this column 
from the windows. 


go UNIVERSITY OF MISSOURI STUDIES 


As the stirrup moves away from H, the initial part of the 
partition yields upwards, as shown in figure 28 at I. By I, 
II, and so forth, are meant successive moments between E 
and G in figure 26. The increasing velocity of the stirrup re- 
sults at II in an increased pressure at all the points of the 
partition which had yielded at I. Therefore, at II in figure 28 
these points are somewhat farther displaced than they were at 
I, but not proportional to the increase of the velocity of the 
stirrup but much less, according to figure 27. At the same 


Fig, 28. Seven successive positions of the partition, three preceding 
and three following an inflection point (F) 


time we notice that the part of the partition which has now 
yielded extends much farther to the right at II than at I; 
for the stirrup has displaced much more fluid at II than at the 
earlier moment I, and the slight increase in the displacement 
of those parts of the partition which were already displaced 
at I, can not nearly make room for all this fluid. Therefore the 


MECHANICS OF THE INNER EAR gI 


spreading of the displacement lengthwise over the partition. 
At III the velocity of the stirrup is still greater than at II. 
Therefore we notice again a slight increase in the displace- 
ment of the initial part of the partition. But as the stirrup 
approaches F, this increase of displacement of the initial parts 
must become less; for the velocity of the stirrup is now nearly 
constant, its increase very slight, and the increase of displace- 
ment is in any case much less than proportional to the increase 
of velocity, according to figure 27. As soon as the stirrup passes 
F, its velocity begins to decrease. Immediately the press- 
ure on the whole piece of the partition which has yielded de- 
creases; and this whole piece, therefore begins to move 
slowly back by its elasticity in the direction of its normal 
position. It is clear, however, from figure 27 that even a 
considerable decrease of the velocity of the stirrup causes only 
a slight decrease of the displacement until the stirrup ap- 
proaches G, when its velocity approaches zero and the part 
of the partition in question can move more rapidly by its 
elasticity since it has no longer to overcome much pressure 
caused by the stirrup. It does not follow, however, that any 
point of the partition has returned to its normal position by 
the time the stirrup reaches G. The initial sections have 
merely moved in the direction of their normal position. And 
meanwhile, new points of the partition to the right must 
have yielded upwards to make room for the fluid being dis- 
placed all the time by the stirrup in moving towards G. 
Three positions of the partition between F and G are shown 
in figure 28 at IV, V, and VI. 


g2 UNIVERSITY OF MISSOURI STUDIES 


One of the consequences of the decrease of pressure on the 
partition at the point of inflection between a maximum and a 
preceding or following minimum of the 


Thearetiocons curve consists in the fact that the partition 


sequences of does not move up and down so suddenly 
the inflection as it appeared from our previous graphic 
of the curve representations. We had to point out this 


fact before in mentioning the irregular- 
ity with which stimuli often seem to be received by the nerve 
ends according to our simplified graphic representation. The 
exact time when a stimulus—a shock, as we called it—is re- 
ceived we now find to be dependent also on the location of each 
inflection point, not merely on the temporal location of the 
maxima and minima. Unfortunately, however, we can not 
determine the time of each shock with certainty even now, 
taking into account the inflection point. This important ques- 
tion of theoretical detail must be left open for future investi- 
gation. 

Another consequence of the decrease of pressure on 
the partition marked by any point of inflection consists in the 
fact that a double movement—up and down—of the partition 
may result, not only from an alternation of maxima and mini- 
ma of a curve, but also from an alternation of inflection points 
marking an increasing and decreasing velocity of the stirrup. 
This means that the number of shocks received by the nerve 
ends during one period of the curve may exceed the total num- 
ber of maxima (or minima) in case any part of the curve 
from a maximum to a minimum or from a minimum to a max- 
imum contains more than a single point of inflection. An example 
will be given at once. 


MECHANICS OF THE INNER EAR 93 


Let us return to the theoretical analysis of the whole 
curve in figure 26. From A to C the stirrup moves inwards, 
pushing down a certain length of the parti- 

mie sueceadive tion. The initial part of this length, how- 
positions of the ever, begins a slow upward movement as 
partition corres- soon as the velocity of the stirrup begins 
ponding to to decrease, at B. The same part moves 
figure 26 up more quickly when, at C, the stirrup 
reverses its movement and begins to pull 

it upward. We therefore see at B in figure 29 the initial two 
sections in an extreme downward position. At C, we see them 


Fig. 29. The combination 1 and 2. Compare figure 26 


only in a medium downward position, and at the same time 
we find the following two sections of the partition in a similar 
downward position since the stirrup has continued, from B to 
C, to move inwards. It is plain that to take into account, in 
our graphic representation, only two kinds of displacements in 
either direction, an extreme and a medium one, is again an ar- 
tificial simplification, introduced merely to suit our momentary 
needs, in spite of the fact that thus we lose sight of some of the 
details of the movement. Actually, the movement probably 
occurs rather in the form of figure 28. But the simplification 
used in figure 29 not only renders the drawing of the figure 


94 UNIVERSITY OF MISSOURI STUDIES 


easier, but also contributes towards a readier comprehension 
of the significance of the graphic representation, towards a 
quicker reading off of the tones to be heard. 

At D we see the first section in an extreme upward position 
since the stirrup has moved outwards and has reached a max- 
imum velocity. At E, the first section has returned to a me- 
dium displacement since the velocity of the stirrup has reached 
a minimum. At the same time the second section of the par- 
tition has moved upwards as a result of the continued outward 
movement of the stirrup. At F we find the initial three sec- 
tions of the partition in an extreme upward position; for the 
stirrup has continued to move outwards and has also reached 
a maximum of velocity. At G all four initial sections of the 
partition are in an upward position since the stirrup has con- 
tinued to move outwards. But they are only in a medium 
displacement since the velocity of the stirrup has again reach- 
ed a minimum. 

Looking now over the four columns in figure 29, we notice 
that the first shows an extreme upward position of this section 

of the partition at F, a medium upward 


De we hear position at G=A, an extreme downward 
both tones position at B, a medium downward posi- 
2 and 1? tion at C, an extreme upward position at 


D, a medium upward position at E, an ex- 
treme upward position again at F. This section of the parti- 
tion, therefore, has moved up and down twice during the pe- 
riod, the second upward movement occurring between E and 
F. It is quite probable, then, that the nerve ends located on 
this section receive two shocks during the period. The second 
section of the partition has an extreme upward position at F, 
a medium upward position at G=A, an extreme downward 
position at B, a medium downward position at C and D, 
and a medium upward position at E. It follows that 
this section moves up and down only once during the pe- 


MECHANICS OF THE INNER EAR 95 


riod, and that the nerve ends located there recefve only one 
shock during the period. The third section has an extreme 
upward position at F, a medium upward position at G=A and 
also at B, a medium downward position at C, D, and E, The 
nerve ends of this section receive therefore one shock during 
the period. The fourth section has a medium upward position 
at G=A and at B, a medium downward position at C, D, E, and 
F. The nerve ends of this section receive therefore one shock 
during the period. It is plain, then, that from our theory we 
must expect to hear the tone 2 as well as the tone 1, the former 
conveyed by the first, the latter by the three following sec- 
tions of the partition. 
To determine the relative intensities of the tones heard, 
we have to compare the length of the initial section of the par- 
tition with the total length of the three 
Sixth provision- following sections when added together. 
al assumption For simplicity’s sake, let us make this 
comparison again under the third and 
fourth provisional assumptions, and also under a new assump- 
tion, namely, that the fluid for which room is made or whose 
room is taken by a move of the partition from a medium to an 
extreme (or the reverse) displacement on the same side (eith- 
er above or below the normal position) is a negligible quanti- 
ty. That this assumption simplifies our representation of the 
successive positions of the several sections of the partition is 
clear, since we may thus take the length of each section pro- 
portional to the ordinate difference of the corresponding points 
of the curve. For instance, the third and fourth sections in 
figure 29, which move down at C, would be longer than pro- 
portional to the ordinate difference of the points B and C in 
figure 26 if the fluid displaced by the first and second sections 
in moving from an extreme position at B to a medium displace- 
ment at C were not a negligible quantity. In the latter case, 
the fluid displaced by the first and second sections during the 


96 UNIVERSITY OF MISSOURI STUDIES 


time from B to C would have to be made room for by the third 
and fourth sections, which, then, by necessity would extend 
farther to the right than in proportion to the stirrup movement 
from B to C. To take this into account would extraordinarily 
complicate the graphic representation without offering, at 
present, a correspondingly great advantage. This additional 
extension of the third and fourth sections to the right could 
be but slight since the amount of fluid in question would be 
but slight. This becomes clear from a glance at figure 27. 
We have learnt from this figure that some pressure added to 
a given pressure does not cause a proportional, but a much 
smaller increment to be added to the previous displacement of 
the partition; and thus the amount of fluid in question may be 
entirely neglected without depriving us of the right to regard 
our representation as an approximation to the actual positions 
of the partition sections. 
We may, then, under the third, fourth, and sixth pro- 
visional assumptions, regard the relative intensities of the 
tones as proportional to the ordinate dif- 
Theurclative ferences in the table belonging to figure 
intensities of 26. We find in the table the value 1473: as 
2 and 1 expressing the ordinate difference of C and 
D, the value 1125 of D and E, 1125 
of E and F, and 1473 of F and G, the sum of these last three being 
3728. Therefore, under the above simplifying assumptions, 
the relative intensity of the tone 2 compared with 1 is about 
as fifteen to thirty-seven. 
Let us now apply our theory to the ratio of the vibration 
rates 5:8. The curve in figure 30 represents the function 
f(#) = sindx + sin8x. 
The table below contains all the abscissa and ordinate 
: values of the maxima and minima as well 
The combina- ( E : 
oninndle as of the inflection points of the curve. 
Equal ampli- The inflection points are computed as the 
tudes of stirrup maxima and minima of the first derivative 
movement curve, represented by the function 


MECHANICS OF THE INNER EAR 97 


f' (#) = 5cos5w ++ 8cos8xr. 
It is impossible, in this case, to apply the simple method of 


K W, 


Fig. 36 


Fig. 38 


The combination 5 and 8 with different amplitude ratios 


98 UNIVERSITY OF MISSOURI STUDIES 


finding the corresponding ordinate and abscissa values of the 
maxima and minima of these two functions by making their 
derivatives equal to zero and solving the resultant equations 


INTERVAL 5:8, EQUAL AMPLITUDES 


Ordinate | Abscissa | Ordinate Cee 
Inf. fo) fo) 199 Vv 188 
Max.| + 188 131 387 WwW 188 
Inf. + 24 249 223 x 164 
Min.| — Ioo 385 99 Y 124 
Inf. | — 51 474 148 Z 49 
Max.| + 3 576 202 Dye 54 
Inf. — 29 661 170 Da} 32 
Min.|; — 61 740 138 € 32 
Inf. + 59 8472 258 D 120 
Max.| + 167 983 366 & 108 
Inf. | — 18 I116 181 S 185 
Min.| — 199 1244 fo) A 181 
Inf. | — 36 1367 163 B 163 
Max.| + 137 1504. 336 Cc 173 
Inf. + 61 1603 260 D 76 
Min — 26 1725 173 E 87 
Inf fo) 1800 199 F 26 
Max.| + 26 1875 225 G 26 
Inf. | — 61 1997 138 H 87 
Min.| — 137 2096 62 I 76 
Inf. | + 36 2233 235 J 173 
Max.| + 199 2356 398 K 163 
Inf. + 18 2484 217 L 181 
Min.| — 167 2617 32 M 185 
Inf — 59 2728 140 N 108 
Max.| + 61 2860 260 Oo 120 
Inf + 29 2939 228 P 32 
Min.| — 3 3024 196 Q 32 
Inf + 51 3126 250 R 54 
Max.} -++ 100 3215 299 S 49 
Inf — 24 3351 175 T 124 
Min.| — 188 3469 II U 164 
Inf fo) 3600 199 Vv 188 


MECHANICS OF THE INNER EAR 99 


for +. This is impossible because the equations to be solved 
would be of the eighth degree. We have to use, therefore, 
the only method left, however great our sacrifice of time, and 
to calculate directly a sufficiently large number of values from 
which we then select the largest and smallest. In this way the 
values of the table have been obtained. By adding 199 to each 
of the values of the first column we get the third column, 
which offers the advantage of containing only positive ordi- 
nates. This procedure is equivalent to selecting a different 
horizontal coordinate, which is always dependent on our 
choice. The ordinate value zero, thus obtained, is the one which 
belongs to point A in figure 30. The successive positions of 
the partition corresponding, under the sixth provisional as- 
sumption, to all the maxima, minima, and inflection points of 
the curve are shown in figure 31. 
Let us at once examine the movements of the three sec- 
tions, the fiftieth, the fifty-first, and the fifty-second.* At A, we 
find these sections occupying a medium up- 
What tones do ward position. From A to B they move down. 
we hear? The From B to C they begin to move up. 
tone 8 From C to D they continue to move up. 
From D to E they begin to move down 
and continue to move down until G. From G to H they move 
up, completing thus the second down and up movement. 
From H to J they move down, and from J to L up, complet- 
ing the third down and up movement. From L to N they move 
down, and from N to Q up, completing the fourth down and 
up movement. From Q to R they move down, and from R to T 
up, completing the fifth down and up movement. From T to 
V they move down, and from V to X up, completing the sixth 


* For a perfect understanding of the details, the reader will have to 
draw figure 31 (and the similar figures following) for himself on a larger 
scale, and to inscribe the exact values as derived from each corresponding 
table. 


100 UNIVERSITY OF MISSOURI STUDIES 


fo} 
50 
100 


% 8 & 8 & 8 
_ a a (Se) ise) + 


Fig. 31. Compare figure 30 


MECHANICS OF THE INNER EAR 101 


dowm and up movement. From X to 9% they move down, 
and from % to © up, completing the seventh down and up 
movement. From © to D they move down, and from D to § 
up, completing the eighth down and up movement. From % 
to ®©=A they begin to move down and continue to .move 
down aiter A, as we have seen. 

The movements of the forty-nine initial sections are so sim+ 
ilar to those of the three sections just discussed that we convince 
ourselves easily that the nerve ends located there receive the 
same number of shocks during the period. 

The fifty-third and fifty-fourth sections move down from % 
to B, and up from B to D. Down from D to G, and up from G 
to H. Down from H to J, and up from J to L. Down from 
Lto N, and up from N toQ. Down from Q to R, and up from 
R to T. Down from T to V, and up from V to X. Down 
from X to %, and up from 2% to ©. Down from € to 9, and 
up from D to %. The nerve ends located on these sections 
therefore receive eight shocks during the period. 

The ten sections from the fifty-fifth to the sixty-fourth move 
down from % to B, and up from B to D. Down from D to G, 
and up from Gto H. Down from H to J, and up from J to L. 
Down from L to N, and up from N' to Q. Down from Q to S, 
and up from S to T. Down from T to V, and up from V to 
X. Down from X to Y%, and up from % to ©. Down from € 
to ©, and up from 9 to %. The nerve ends located on these 
sections therefore receive eight shocks during the period. 

The twelve sections from the sixty-fifth to the seventy-sixth 
move down from % to B, and up from B to D. Down from D 

to G, and up from Gto H, Down from H 

The tone 6 to J, and up from J to L. Down from L 

to N, and up from N to T. Down from 

T to V, and up from V to X. Down from X to 9, and up from 

® to %. The nerve ends located on these sections therefore re- 
ceive six shocks during the period. 

The twenty seven sections from the seventy-seventh to the 


102 UNIVERSITY OF MISSOURI STUDIES 


hundred and third move down from % to C, and up from C to 
H. Down from H to J, and up from J to 
The tone 5 L. Down from L to N, and up from N to 
T. Down from T to V, and up from V to 
X. Down from X to 9, and up from D to %. The nerve ends 
located on these sections therefore receive five shocks during 
the period. 

The five sections from the hundred and fourth to the hun- 
dred and eighth move down from % to C, and up from C to H. 
Down from H to J, and up from J to L. Down from L to N, 
and up from N to T. Down from T to V, and up from V to 
X. Down from X to 9, and up from 9 to 3. The nerve ends 
located on these sections therefore receive five shocks during 
the period. 

All the following sections to the two hundred and sixty- 
seventh move down and up five times during the period. Let 
us study in detail only the movements of the last few of this 
group. The sections from the two hundred and twenty-eighth to 
the two hundred and sixty-seventh move down from A to C, 
and up from C to I. Down from I to K, and up from K to 
M. Down from M to S, and up from S to U. Down from U 
to W, and up from W to Y. Down from Y to ©, and up from 
& to G=A. The nerve ends located on these sections there- 
fore receive five shocks during the period. 

The seven sections from the two hundred and sixty-eighth 
to the two hundred and seventy-fourth move down from Y 

to C, and up from C to I. Down from I 
The tone 3 to K, and up from K to M. Down from 

M to W, and up from Wi to Y. The nerve- 
ends located on these sections therefore receive three shocks 
during the period. 

The fourteen sections from the two hundred and seventy- 
fifth to the two hundred and eighty-eighth move down 

from Y to C, and up from C to M. Down 
The tone 2 from M to W, and up from W to Y. The 
sections from the two hundred and eighty- 
ninth to the three hundred and thirty-sixth move down from 


MECHANICS OF THE INNER EAR 103 


A to C, and up from C to M. Down from M to W, 
and up from W to @=A. The sections from the 
three hundred and thirty-seventh to the three hundred 
and sixty-sixth move down from A to K, and up from K to M. 
Down from M to W, and up from W to G@=A. The sections 
from the three hundred and sixty-seventh to the three hun- 
dred and seventy-sixth move down from A to K, and up from 
K to U. Down from U to W, and up from Wi to ®@=A. All 
these sections therefore receive two shocks during the period. 
The sections from the three hundred and seventy-seventh 
to the three hundred and eighty-seventh move down from U 
to K, and up from K to U. The sections 
The tone 1 from the three hundred and eighty-eighth 
to the three hundred and ninety-eighth 
move down from A to K, and up from K to G@=A. All 
these sections therefore receive one shock during the period. 
The relative intensities of the several tones, if we accept 
the third, fourth, and sixth provisional assumptions for this 
case, are shown in the following table, 
The relative which contains the number of partition 
intensities sections conveying each tone in absolute 
numbers as well as in percentages. 


Tones 8 6 5 3 2 I 


Intensities} 64 I2 {191 7 {102 22 


Percent- 16.1 3.0 | 48.0 | 1.8] 25.6] 5.5 
ages 


Let us now apply our theory to the same ratio of the 
vibration rates, but with different amplitudes of the two sin- 
usoids. The curve in figure 32 represents 


The combination the function 


5 and 8. The f(#) = 2sind% + sin8x. 
amplitude of This signifies that the stirrup movement 
8 is decreased eight has an amplitude which is only one- 


half of the amplitude of the stirrup move- 
ment five. The table below contains all the abscissa and 


104 UNIVERSITY OF MISSOURI STUDIES 


ordinate values of the maxima and minima and of the inflec- 
tion points of the curve. 


INTERVAL 5:8, AMPLITUDES 2:1 


Ordinate | Abscissa | Ordinate idinae 

Inf. fo) fo) 298 Vv 281 
Max.} + 281 142 579 Ww 281 
Inf + 87 268 385 xX 194 
Min — 143 436 I55 AY4 230 
Inf — 118 512 180 Z 25 
Max. ») I 

Inf. | — 82 636 216 B 36 
Min ity 

Inf. + 110 846 408 D 192 
Max.| + 248 962 546 E 138 
Inf. — 34 III 264 o 282 
Min.| — 298 1247 fo} A 264 
Inf. | — 62 1379 236 B 236 
Max.| -++ 200 1535 498 Cc 262 
Inf. + 120 1638 418 D 80 
Min E 

Inf. fe) 1800 298 F 120 
Max G 

Inf. | — 120 1962 178 H 120 
Min.}| — 200 2065 98 I 80 
Inf. + 62 2221 360 J 262 
Max.) -+ 298 2353 596 K 236 
Inf. + 34 2489 332 L 264 
Min.| — 248 2638 50 M 282 
Inf. — 110 2754 188 N 138 
Max O 

Inf. + 82 2964 380 1p 192 
Min Q 

Inf + 118 3088 416 R 36 
Max.| + 143 3164 441 Ss 25 
Inf. — 87 3332 211 T 230 
Min.| — 281 3458 17 U 194 
Inf. fo) 3600 298 Vv 281 


MECHANICS OF THE INNER EAR 105 


These values have been computed in the same manner 
as in the case immediately preceding. The successive po- 
sitions of the partition corresponding, under the sixth pro- 
visional assumption, to the maxima, minima, and inflection points 
of the curve are shown in figure 33, 


° 


je) ° ° ° 
° je} {2} fo} 
Lal a ise) + 


8 


600 


Fig. 33. The combination 5 and 8. Compare figure 32 


106 UNIVERSITY OF MISSOURI STUDIES 


Let us examine the movements of the twenty-five initial 
sections. From % to B they move down, and from B to D up. 
From D to F down, that is, from an ex- 
The tone 8 treme upward position to a medium up- 
ward position; and from F to H_ they 
move up again, that is, from a medium upward position to an 
extreme upward position. From H to J they move down, and 
from J to L up, completing thus the third down and up move- 
ment. From L to N they move down and from N to P up, 
completing thus the fourth down and up movement. From 
P to R they move down, and from R to T up, completing 
thus the fifth down and up movement. From T to V down, 
and from V to X up, completing thus the sixth down and up 
movement. From X to Z down, and from Z to 8 up, com- 
pleting thus the seventh down and up movement. From 6 
to ® down and from D to § up again. The nerve ends lo 
cated on these twenty-five sections therefore receive eight 
shocks during the period, and accordingly, convey the sen- 
sation of the tone 8. 

The thirty-six sections from the twenty-sixth to the sixty- 
first move down from % to B, and up from B to D. Down 
from D to F, and up from F to H. Down from H to J, and 
up from J to L. Down from L to N, and up from Ni to P. 
Down from P to R, and up from R to T. Down from T to 
V, and up from V to X. Down from X to 9, and up from D 
to %. The nerve ends located on these sections therefore 
receive seven shocks during the period. But, in accordance 
with previous considerations, it is highly impfobable that they 
could convey the sensation of the tone 7. When seven shocks 
are received in time intervals identical with those of the tone 
8, and when the eighth shock, at the moment Z, chances to 
be omitted, it is rather to be expected that the tone 8 is 
heard, only with a little pause or, perhaps, merely a diminu- 
tion of intensity at the moment Z. The sensation conveyed 


MECHANICS OF THE INNER EAR 107 


by these nerve ends, then, is probably the tone 8 slightly 
beating, that is, being characterized by a slight roughness. 
The nineteen sections from the sixty-second to the eight- 
ieth move down from % to B, and up from B to D. Down 
from D to F, and up from F to H. Down from H to J, and 
up from J to L. Down from L to N, and up from N to P. 
Down from P to R, and up from R to T. Down from T 
to V, and up from V to X. Down from X to 9, and up from 
® to %. The nerve ends located on these sections therefore 
receive seven shocks during the period; but, here as above, 
it is highly improbable that they could convey, merely be- 
cause of the omission of the stimulus at Z, the sensation of the 
tone 7 instead of 8. Most probably the tone heard is 8 with 
a slight roughness. 
The fifty-eight sections from the eighty-first to the one 
hundred and thirty-eighth move down from § to B, and up 
from B to H. Down from H to J, and up 
The tone 6 from J to L. Down from L to N, and up 
from N to P. Down from P to R, and 
up fon R to T. Down from T to V, and up from V to X. 
Down from X to 9, and up from D to %. The nerve ends 
located on these sections therefore receive six shocks during 
the period. 
The fifty-six sections from the one hundred and thirty- 
ninth to the one hundred and ninety-fourth move down from 
@ to B, and up from B to H. Down from 
The tone 5 H to J, and up from J to L. Down from 
L to R, and up from R to T. Down from 
T to V, and up from V to X. Down from X to 9, and up 
from D to §. The nerve ends located on these sections there- 
fore receive five shocks during the period. 
All the following sections to the three hundred and ninety- 
first move down and up five times during the period. Let 
‘us examine only the last twenty-five of this group. They move 


108 UNIVERSITY OF MISSOURI STUDIES 


down from A to C and up from C to I. Down from I 
to K, and up from K to M. Down from M to S, and up from 
S to U. Down from U to W, and up from W to Y, Down 
from Y to G, and up from € to G6=A. 
The nine sections from the three hundred and ninety- 
second to the four hundredth move down from Y to C, and 
up from C to I. Down from I to K, and 
The tone 3 up from K to M. Down from M to W, 
and up from W to Y. The nerve ends lo- 
cated on these sections therefore receive three shocks during 
the period. 
The sections from the four hundred and first to the four 
hundred and twenty-fourth move down from Y to C, and up 
from C to M. Down from M to W, and 
The tone 2 up from W to Y. The sections from the 
four hundred and twenty-fifth to the four 
hundred and ninety-eighth move down from A to C, and up 
from C to M. Down from M to Wi, and up from W to G@=A. 
The sections from the four hundred and ninety-ninth to the 
five hundred and forty-sixth move down from A to K, and 
up from K to M. Down from M to W, and up from W to 
@=A. The sections from the five hundred and forty-seventh 
to the five hundred and sixty-second move down from A to 
K, and up from K to U. Down from U to W, and up from 
W to @=A. The nerve ends located on these sections of 
the partition therefore receive two shocks during the period. 
The sections from the five hundred and sixty-third to the 
five hundred and seventy-ninth move down from U to K, and 
up from K to U. The sections from the 
The tone 1 five hundred and eightieth to the five hun- 
dred and ninety-sixth move down from A 
to K, and up from K to G=A. The nerve ends located on 
these sections therefore receive one shock during the period. 
The relative intensities of the several tones, if we accept 


MECHANICS OF THE INNER EAR 109 


the third, fourth, and sixth provisional assumptions, are shown 
in the following table, which contains the 

The relative number of partition sections conveying 

intensities each tone in absolute numbers as well as 
in percentages. 


Tones /|8, smooth} 8, rough 6 5 3 2 it 
Intensities} 25 55 58 253 9 162 34 
Percent- 4.2 g.2 Caf || C@oH || wo |) Bes WW He¥/ 

ages 


Since in the case just studied the higher of the two primary 
tones, though weak, is yet audible, let us still further change the 
relative intensities of the objective tones in favor of the lower one. 
The curve in figure 34 represents the function 

f(#) = 3sindx + sin8x, 
This signifies that the stirrup move- 


Thevcombinas ment eight has an amplitude which is only 


tion 5 and 8. one-third of the amplitude of the stirrup 
Amplitude of 8 movement five. The table below contains 
still less all the abscissa and ordinate values of the 


maxima and minima and of the inflection 
points of the curve. 


1@ te) 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


UNIVERSITY OF MISSOURI STUDIES 


INTERVAL 5:8, AMPLITUDES 3:1 


Ordinate 


oO 


+ 376 
+ 114 


— 219 


+ 140 
+ 336 


7 SY 


+++ 
S 


Abscissa | Ordinate 


820 
949 
1106 
1250 
1389 
1558 


1800 


2042 
2211 
2350 
2494 
2651 
2780 


3117 
3317 
3451 
3600 


397 
773 
51I 
178 


397 


116 
474 
794 
438 

61 


257 


616 
283 

21 
397 


SGHY*ANHVOFZRZHPAAWKMTODBAHASCAWDPRROeRSRENKK Zs 


Ordinate 
Difference 


376 
376 
262 


333 


359 
196 
377 
356 
320 
358 


281 


281 
358 
320 
356 
377 
196 


359 
333 
262 


376 


MECHANICS OF THE INNER EAR III 


The successive positions of the partition corresponding, 
under the sixth provisional assumption, to the maxima, minima, 
and inflection points of the curve are shown in figure 35. 


FB 88, BUN SNC seg 


» ive) 


Fig. 35. The combination 5 and 8. Compare figure 34 


The five hundred and fifty-five initial sections of the par- 
tition move down and up five times during the period. Let 
us here closely examine only the one hun- 

The tone 5 dred and ninety-six initial sections and 
the one hundred and seventy-eight most 

distant sections of this group. The initial sections move 


I12 UNIVERSITY OF MISSOURI STUDIES 


down from % to B, and up from B to F. Down from F to J, 
and up from J' to L. Down from L to N, and up from N to 
T. Down from T to V, and up from V to X. Down from X 
to 9, and up from ® to %. The sections from the three hun- 
dred and seventy-eighth to the five hundred and fifty-fifth 
move down from A' to C, and up from C to I. Down from 
I to K, and up from K to M. Down from M to S, and up from 
S to U. Down from U to W, and up from W to Y. Down 
from Y to € and up from © to G@=A. The nerve ends of all 
these sections therefore receive five shocks during the period. 
The seven sections from the five hundred and fifty-sixth 
to the five hundred and sixty-second move down from Y to 
C, and up from C to I. Down from I to 
The tone 3 K, and up from K to M. Down from M 
to W, and up from W to Y. The nerve 
ends located on these sections therefore receive three shocks 
during the period. 
The sections of the partition from the five hundred and 
sixty-third to the five hundred and seventy-second move down 
and up twice during the period. Let us 
The tone 2 here examine only the sections from the 
five hundred and sixty-third to the five 
hundred and ninety-fifth. They move down from Y to C, and 
up from C to M. Down from M to W, and up from W to Y. 
The nerve ends located on these sections therefore receive two 
shocks during the period. 
The partition sections from the seven hundred and fifty- 
third to the seven hundred and seventy-third move down from 
U to K, and up from K to U. The sec- 
The tone 1 tions from the seven hundred and seventy- 
fourth to the seven hundred and ninety- 
fourth move down from A to K, and up from K to @=A. 


MECHANICS OF THE INNER EAR 113 


All the nerve ends on these sections therefore receive one 
shock during the period. 
The relative intensities of the several 
The relative tones under the third, fourth, and sixth pro- 
intensities visional assumptions are shown in the fol- 
lowing table. 


Tones 5 3 2 I 


Intensities] 555 7 190 | 42 


Percent- | 69.9 AONEZ3COn MSS 
ages 


Having studied the effect of changing the relative intensities 
of the objective tones in favor of the lower one, we shall now in- 
vestigate the effect of increasing the intensity of the higher objec- 
tive tone. The curve in figure 36 represents the function 

f (+) = sindx + 2sin8x. 

The stirrup movement eight has an am- 
The combination Plitude which is twice the amplitude of 
5 and 8. The the stirrup movement five. The table be- 
amplitude of 8is low contains the abscissa and ordinate 
greaterthanof5 yalues of the maxima, minima, and inflec- 

tion points. 


114 


Eee eee 


UNIVERSITY OF MISSOURI STUDIES 


Ordinate | Abscissa 


INTERVAL 5:8, AMPLITUDES 1:2 


++ 


Orainate| |, 0sfinate 
298 Vv 286 
584 WwW 286 
353 x 231 
108 Y 245 
249 Z 141 
400 2 151 
272 B 128 
146 Cc 126 
358 D> 212 
560 & 202 
278 AY 282 

fo) A 278 
258 B 258 
527 Cc 269 
358 D 169 
178 E 180 
298 F 120 
418 G 120 
238 H 180 

69 I 169 
338 J 269 
596 K 258 
318 L 278 

36 M 282 
238 N 202 
450 O 212 
324 P 126 
196 Q 128 
347 R 151 
488 Ss 141 
243 T 245 

12 U 231 
298 Vv 286 


MECHANICS OF THE INNER EAR I 15 


The successive positions of the partition corresponding, 
under the sixth provisional assumption, to the maxima, min- 
ima, and inflection points of the curve are shown in figure 37. 

The two hundred and forty initial sections move down 
and up 8 times during the period. Let us here examine only 

the nine most distant sections of this 
The tone 8 group, from the two hundred and thirty- 

second to the two hundred and fortieth. 
They move down from A to B, and up from B to E. Down 
from E to G, and up from G to I. Down from I to J, and up 
from J to L. Down from L to O, and up from O' to Q. Down 
from QO to S, and up from S to T. Down from T to V, and up 
from V to Y. Down from Y to 2%, and up from % to ©. Down 
from © to ©, and up from © to G=A. The nerve ends lo- 
cated on these sections therefore receive eight shocks during 
the period. 

The fourteen sections from the two hundred and forty- 
first to the two hundred and fifty-fourth do not move down 
from E to G. The nerve ends located on these sections do not, 
therefore, receive a shock between E and I, but receive the 
other seven shocks in the same manner as the two hundred and 
forty initial sections. For the same reasons as in the similar 
cases with which we have met before, it is not probable that 
these nerve ends convey the tone 7, but rather the tone 8 with 
a slight beat occurring once during the period, producing a 
slightly rough tone 8. 

The sections of the partition from the two hundred and 
fifty-fifth to the four hundred and fifty-second move down and 

up five times during the period. Let us 
The tone 5 examine those from the two hundred and 
fifty-fifth to the two hundred and fifty- 
eighth. They move down from A to B, and up from B to E. 
Down from E to J, and up from J to L. Down from L to O, 
and up from O to U. Down from U to V, and up from V. 


116 


100 


Fig. 37. 


UNIVERSITY OF MISSOURI STUDIES 


400 
500 


je} ° 
fe} jo} 
a ior) 


The combination 5 and 8. Compare figure 36 


600 


MECHANICS OF THE INNER EAR I 17 


to Y. Down from Y to %, and up from 2% to G=A. The 
nerve ends located on these sections therefore receive five 
shocks during the period. 
The sections from the four hundred and fifty-third to 
the four hundred and fifty-eighth move down from Y to C, 
and up from C to I. Down from I to K, 
The tone 3 and up from K to M. Down from M to 
W, and up from W to Y. The nerve ends 
located on these sections therefore receive three shocks dur- 
ing the period. 
The sections of the partition from the four hundred and 
fifty-ninth to the five hundred and seventy-second move down 
and up twice during the period. Let us 
The tone 2 examine, for example, the four hundred 
and fifty-ninth and the four hundred and 
sixtieth. They move down from Y to C, and up from C to 
M. Down from M to W, and up from W to Y. The nerve 
ends located on these sections therefore receive two shocks 
during the period. 
The sections of the partition from the five hundred and 
seventy-third to the five hundred and eighty-fourth move down 
from U to K, and up from K to U, The 
The tone 1 sections from the five hundred and eighty- 
fifth to the five hundred and ninety-sixth 
move down from Ai to K, and up from K to A. The nerve 
ends located on these sections therefore receive one shock 
during the period. 
The relative intensities of the several 
The relative tones under the third, fourth, and sixth pro- 
intensities visional assumptions are shown in the fol- 
lowing table. 


Tones |8smooth| 8 rough 5 3 2 I 
Intensities} 240 14 198 6 114 | 24 
Percent- 


ages. .. 40.3 Af || BeoW 


I 18 UNiVERSITY OF MISSOURI STUDIES 


The curve in figure 38 represents the function 
f(#) = sinds’ + 3sin8x. 


THe ota binetion The stirrup movement eight has an ampli- 


Band S)) the tude three times as great as that of five. 
amplitude of 8 The table below contains the:abscissa and 
is three times ordinate values of the maxima, minima, 
that of 5 and inflection points. 


The successive positions of the partition corresponding, 
under the sixth provisional assumption, to the maxima, min- 
ima, and inflection points of the curve are shown in figure 39. 

The four hundred and thirty-eight initial sections of the 
partition move down and up eight times during the period. 

Let us examine those from the three hun- 
The tone 8 dred and eighty-sixth to the four hundred 

and thirty-eighth. They move down from 
A to C and up from C to E. Down from E to G, and up from 
G tol. Down from I to K and up from K to M. Down from 
M to O, and up from O to Q. Down from Q to S, and up 
from S to U. Down from U to W, and up from W to Y. 
Down from Y to Y, and up from 2 to ©. Down from € to G, 
and up from © to G@=A. The nerve ends located on these sec- 
tions therefore receive eight shocks during the period. 

The sections from the four hundred and thirty-ninth to 
the four hundred and fifty-first move down and up only seven 
times, since they do not make a double movement between 
EK and I. In accordance with our former considerations, how- 
ever, in similar cases, it does not seem probable that the nerve 
ends located on these sections should convey any other tone 
than the tone 8 of a slight roughness. 

The sections of the partition from the four hundred and 
fifty-second to the six hundred and forty-seventh move down 

five times during the period. Let 
The tone 5 us examine those from the four hundred 
and fifty-second to the four hundred and 
eighty-ninth. They move down from A to C, and up from 


MECHANICS OF THE INNER EAR 


INTERVAL 5:8, AMPLITUDES 1:3 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Int. 


Max. 


Inf. 


Min. 


Inf. 


Max. 


Inf. 


Min. 


Inf. 


Ordinate | Abscissa | Ordinate eae 
° © 398 W 385 
‘+ 385 120 783 Ww 385 
ar Be 233 454 x 329 
Tm 353 111 Y 343 
— 46 457 352 Z 241 
+ 202 566 600 yt 248 
Ties 671 373 Da) 2247 
an ene 774 149 ity 224 
ar BF 890 456 Dd 307 
+ 360 IOOI 758 & 302 
— 18 1121 380 % 378 
= 3 eee QIAN 380 
= | Ge 1356 356 B 356 
+ 326 1477 724, (o 368 
ap Be 1584 456 D 268 
Ta oe 1697 179 E 277 
i 1800 398 ie 219 
+ 219 1903 617 G BO 
— 58 2016 340 H 207 
G2.) SHE ip od 268 
+ 42 2244 440 J 368 
+ 398 2360 796 K 356 
ap te 2479 416 0, 380 
= g60 2599 38 M 378 
aes 27/20 340 N 302 
+ 249 2826 647 O 307 
7 8) 2929 423 P 224 
EI 3034 196 Q 227 
ar | he 3143 444 R 248 
+ 287 3247 685 Ss 241 
TSS 3367 342 aly 343 
Sa 385) 3480 13 U 329 
o 3600 398 Vv 385 


119 


120 


UNIVERSITY OF MISSOURI STUDIES 


Fig. 39. The combination 5 and 8. Compare figure 38 


MECHANICS OF THE INNER EAR 121 


C to E. Down from E to K, and up from to K to M. Down 
from M to O, and up from O to U. Down from U to W, and 
up from W to Y. Down from Y to 2%, and up from YF to 
@G=A. The nerve ends located on these sections therefore 
teceive five shocks during the period. 
The five sections from the six hundred and forty-eighth 
to the six hundred and fifty-second move down from Y to C, 
and up from C to I. Down from I to K, 
The tone 3 and up from K to M. Down from M to W, 
and up from W to Y. The nerve ends lo- 
cated on these sections therefore receive three shocks during 
the period. 
The sections of the partition from the six hundred and 
fifty-third to the seven hundred and seventieth move down 
and up twice during the period. Let us 
The tone 2 examine those from the six hundred and 
fifty-third to the six hundred and seventy- 
second. They move down from Y to C, and up from C to M. 
Down from M to W, and up from W to Y. The nerve ends 
located on these sections therefore receive two shocks during 
the period. 
The sections from the seven hundred and seventy-first 
to the seven hundred and eighty-third move down from U 
to K, and up from K to U. The sections 
The tone 1 from the seven hundred and eighty-fourth 
to the seven hundred and ninety-sixth move 
down from Ato K,and up from K to @©=A. The nerve 
ends located on these sections therefore receive one shock during 
the period. 
The relative intensities of the several 
The relative tones under the third, fourth, and sixth pro- 
intensities visional assumptions are shown in the fol- 
lowing table: 


122 UNIVERSITY OF MISSOURI STUDIES 


Tones |8smooth| 8 rough 3 2 
Intensities} 438 13 196 5 118 
Percent- 55.0 1.6 | 24.6 .6 | 14.8 

ages 


3:3 


It is interesting to compare the intensities of the several 
tones in the last five cases, all representing the combination 8 plus 
5 of stirrup movement, but differing in the 
relative amplitudes of 8 and 5. The table con- 
tains the percentages of the five preceding ta- 


Comparison of 
the last five 
cases 


bles. 


The first two columns show the ra- 


tio of the amplitudes of the stirrup movements of 8 and 5 
For example, in the first case this ratio is as 3:1 or seventy- 
five to twenty-five; in the fifth case as 1:3 or twenty-five to 
seventy-five. The columns to the right contain the relative 
intensities of the several tones calculated under the provisional 


assumptions. 

Amplitudes 

of stirrup Subjective (theoretic) intensity 
movement 
8 5 8 6 5 3 2 I 
75 25 | 56.6 | —— | 24.6 SONeT4mou|le sis 
67 33 | 42.7 | —— | 33-2 |] 1.0] 19.1] 4.0 
50 50 16.1 | 3.0 | 48.0 1.8 {25.6} 5.5 
33. | 67 | 13-4] 9-7] 42-5] 1-5] 27-2] 5.7 
A OS Wi las Ce) -9 | 23-9] 5.3 


We notice that the tone 8 decreases in intensity from 56.6 
to 42.7, to 16.1, to 13.4, and finally disappears entirely. This 
latter case, however, does not mean that now the tone 5 is 


MECHANICS OF THE INNER EAR 123 


alone audible. We see from the table that even now, in ad- 
dition to 5, the very weak difference tone 3 and the fairly 
strong difference tones 2 and 1 are to be expected by the ob- 
server. 

As to the several difference tones, the most favorable con- 
dition for 6 seems to be, to have the component 5 of the com- 
pound stirrup movement somewhat more pronounced than 8. 
It appears, however, that in no case will this difference tone 
become very conspicuous. The most favorable condition for 
the difference tone 3 seems to be, to have the component 8 of 
stirrup movement about as strong as 5. The difference tones 
2 and 1, on the other hand, appear with a maximum of in- 
tensity when the component 5 of stirrup movement is some- 
what greater than 8. But their intensities are but little less 
in case the amplitudes of the two stirrup movements 8 and 
5 are equal. With respect to all the difference tones taken to- 
gether, it appears that these tones are very unfavorably influ- 
enced by a considerable difference in the amplitudes of the 
component stirrup movements, for no difference tone has a 
maximum intensity in either the first or the fifth case. And 


1Although this booklet is devoted to theory and not to experimental 
methods of research, I cannot refrain from mentioning a way of testing 
the theoretical results just spoken of, because it is so easy for any one who 
possesses a skillful hand and a trained ear, and the observation to be made 
is so pretty. No instruments are required but two good tuning forks on 
resonance boxes, accurately tuned in the ratio of 5:8, and a bass bow. The 
fork 5 must be sounded first, as strongly as possible, and it is necessary to 
have a fork which continues to sound strongly for quite a while. Then 
the bow is applied with the most delicate touch to the fork 8. It is neces- 
sary for the success of the experiment that the intensity of the higher tone 
vibration be increased from zero very slowly and uniformly. If these con- 
ditions are fulfilled, one suddenly hears the low difference tones 1 and 2 
being added distinctly to the tone 5, whereas of 8 no trace is yet audible. 
If now the fork 8 is left to itself, and the fork 5 is stopped by firmly touch- 
ing it with a finger, the tone 5 together with the difference tones disap- 
pears, but immediately one hears with surprising clearness the tone 8, which 
a moment ago was entirely inaudible. No similar observation can be 
made with a strongly sounding fork 8 and a weakly sounding fork 5. Ac- 
cording to our theoretic deduction the lower tone does not become 
inaudible when the amplitude of 8 is three times that of 5, but still has a 
respectable intensity. 


124 UNIVERSITY OF MISSOURI STUDIES 


a prevailing intensity of 8 seems to be even less favorable to the 
difference tones than a prevailing intensity of 5. All these con- 
clusions have, of course, only a relative value, since taking into 
account the various provisional assumptions changes the result 
considerably. 
Let us study one more combination of sinusoidal stirrup 
movements. We have had only one interval greater than an 
octave, the combination 4 and 9. But 
The combination We did not, then, take into account the in- 
3 and 8. The flection points of the curve. Let us do 
amplitude of 3 this with the combination 3 and 8, taking 
twice that of 8 the amplitude of 3 twice as great as that 
of 8. This ratio of the amplitudes is arbi- 
trarily chosen. But the selection of equal 
amplitudes would be no less arbitrary. The curve in figure 
40. represents the function 
f(+) = 2sin3v + sin8x. 
The table below contains the abscissa and ordinate values of 
the maxima, minima, and inflection points of the curve. 


Fig. 40. The combination 3 and 8 


The successive positions of the partition corresponding 
to the maxima, minima, and inflection points are shown in 
figure 41. 

The thirteen initial sections of the partition move down 
from % to B, and up from B to D. Down from D to F, and 


MECHANICS OF THE INNER EAR 


Ordinate 


INTERVAL 3:8, AMPLITUDES 2:1 


Abscissa | Ordinate 


297 
525 
461 
392 
428 
462 
237 

24 
126 
242 
224 
207 
410 
594 
449 


BEAU ME ONHUOMRMSYGERNXKE Tan onENO Z| 


Ordinate 
Difference 


228 
228 
64 
69 
36 
34 
225 
213 
102 
116 
18 
17 
203 
184 
145 
165 
13 
13 
165 
145 
184 
203 
17 
18 
116 
102 
213 
225 
34 
36 
69 
64 
228 


125 


126 UNIVERSITY OF MISSOURI STUDIES 


up from F to H. Down from H to J, and up from J to L. 

Down from L to N, and up from N to P. 
The tone 8 Down from P to R, and up from R to T. 

Down from T to V, and up from V 
to X. Down from X to Z, and up from Z to $8. Down from 
8 to D, and up from D to %. The nerve ends located on 
these sections therefore receive eight shocks during the pe- 
riod. 

Let us examine the sections from the sixty-fifth to the 
sixty-ninth. They move down from § to B, and up from 
B to E. Down from E to F, and up from F to H. Down from 
H to K, and up from K to L. Down from L to N, and up from 
N to Q. Down from Q to S, and up from S to T. Down from 
T to V, and up from V to Y. Down fom Y to Z, and up from 
Z to 8. Down from % to ©, and up from © to %. The nerve 
ends located on these sections therefore receive eight shocks 
during the period. 

The seventieth section moves down from § to B, and up 
from B to E. Down from E to F, and up from F to H. Down 
from H to K, and up from K to M. Down from M to N, and 
up from N to Q. Down from Q to S, and up from S to T. 
Down from T to V, and up from V to Y. Down from Y to Z, 
and up from Z to 8. Down from % to ©, and up from € to §. 
The nerve ends located on this section therefore receive eight 
shocks during the period. 

The sections of the partition from the seventy-first to the 
one hundred and second move down from % to B, and up from 

B to E. Down from E to F, and up from 
The tone 6 F to H. Down from H to N, and up from 
N to T. Down from T to V, and up 
from V to Y. Down from Y to Z, and up from Z to 8. Down 
from % to ©, and up from & to %. The nerve ends located 
on these sections therefore receive six shocks during the period. 
The sections from the one hundred and third to the one 


MECHANICS OF THE INNER EAR 127 


500 
600 


je} ° fo) 
fe} je) fe) 
a Se) + 


Io0o 


Fig. 41. The combination 3 and $8. Compare figure 40 


128 UNIVERSITY OF MISSOURI STUDIES 


hundred and forty-fifth move down from % to B, and up from 
B to E. Down from E to F, and up from 
The tone 5 Eto H. Down from H to N, and up from 
N to T. Down from T to Z, and up from 
Z to 8. Down from $ to ©, and up from € to %. The nerve 
ends located on these sections therefore receive five shocks 
during the period. 
The sections from the one hundred and forty-sixth to the 
one hundred and eighty-fourth move down from % to B, and 
up from B to E. Down from E to F, and 
The tone 4 up from F to H. Down from H to N, and 
up from N to T. Down from T to Z, and 
up from Z to %. The nerve ends located on these sections 
therefore receive four shocks during the period. 
The sections from the one hundred and eighty-fifth to the 
four hundred and fifty-sixth move down and up three times dur- 
ing the period. Let us examine those from 
The tone 3 the one hundred and eighty-fifth to the 
two hundred and thirteenth. They move 
down from % to F, and up from F to H. Down from H to N, 
and up from N to T. Down from T to Z, and up from Z to 
%. The nerve ends located on these sections therefore receive 
three shocks during the period. 
The sections from the four hundred and fifty-seventh to 
the four hundred and sixty-eighth move down from A to F, and 
up from F to M. Down from M to %f, and 
The tone 2 up from % to G=A. The sections from 
the four hundred and sixty-ninth to the 
five hundred and first move down from A to G, and up from 
Gto M. Down from M to %, and up from 1 to G=A. The 
sections from the five hundred and second to the five hundred 
and forty-sixth move down from A to G, and up from G to U. 
Down from U to % and up from 9% to G=A. The nerve ends 
located on these sections therefore receive two shocks during 
the period. 


MECHANICS OF THE INNER EAR 1329 


The sections of the partition from the five hundred and 

forty-seventh to the five hundred and seventieth move down 

from A to G, and up from G to ®@=A. The 

The tone 1 sections from the five hundred and seventy- 

first to the five hundred and ninety-fourth 

move down from A‘ to %, and up from 2% to G=A. The nerve 

ends located on these sections therefore receive one shock 

during the period. 

The relative intensities of the several 

The relative tones under the third, fourth, and sixth pro- 

intensities visional assumptions are shown in the fol- 
lowing table: 


Tones 8 6 | 5 4 3 2 I 


Intensities] 70 32 43 39— «272 go 48 


Percent. THES |] Gozt |l) 4fo2 6.6 | 45.8 | 15.1 8.1 
ages 


We notice that the tone 3 is theoretically by far the 
‘strongest, as is to be expected. Of the difference tones, the 
tones 2, 1, and 5 appear to be somewhat more pronounced than 
4 and 6. Under different assumptions concerning the physical 
properties of the partition these results would, of course, be 
somewhat different. 
Throughout our previous discussions we have never taken 
into account the possibility of the tone intensities being 
further modified by a more central nervous 
Weber’s law condition like the one usually referred to 
in audition as Weber’s law. All our various approxi- 
mations towards the intensities of the ner- 
vous processes take into consideration only conditions in the 
peripheral organ. Whether the intensities thus found are 
modified more centrally in accordance with Weber’s law or 


130 UNIVERSITY OF MISSOURI STUDIES 


not, is a question which at present must be left entirely open, 
like so many others, because of lack of experimental data. 

Whenever we have spoken of “amplitudes” we have 
meant exclusively the amplitudes of stirrup movement. In 

order to make use of our theory in experi- 
Sounding bodies mental investigations we must remember 
and stirrup the fact that the stirrup movements result 
movement from movements of the tympanum, trans- 

mitted by a rather complicated system of 
levers, the auditory ossicles. It is quite probable that the 
vibratory movements of the stirrup—even when these move- 
ments are highly complex—are approximately like those re- 
ceived by the hammer, the ossicle attached to the tympanum. 
But no one knows as yet how close or remote this approxima- 
tion is. We certainly have no right to regard this approxima- 
tion as infinitely close, save by way of a provisional assump- 
tion. 

The movements of the tympanum result from rhythmical 
changes of the density of the external air. These density 
changes, in experimental investigations, are sometimes pro- 
duced by the vibrations of gaseous bodies, as in labial organ pipes; 
more frequently, however, by the vibrations of solid bodies, par- 
ticularly of tuning forks on resonance boxes. Now, we must not 
think that by graphically recording—which is a comparatively 
easy method—the vibrations of a tuning fork, we obtain a record 
of the exact form of the resulting air waves. It has been 
experimentally and mathematically proved that the form of 
the resulting air waves must be more or less different from 
the form of the vibratory movement of the fork or other solid 
body. The cause of this alteration of the form is to be found 
in the fact that the layer of air which adjoins the solid body 
and therefore directly receives the impulses from that body, 
is unsymmetric with respect to its elastic properties, because 


MECHANICS OF THE INNER EAR 131 


it is in contact on one side with a practically unyielding body, 
on the opposite side with the easily yielding air. 

It is of the utmost importance, therefore, if we wish to 
develop the theory by experimental investigation, to keep 
free from the delusion that any of the above theoretic results, 
say, in the case of the combination 5 and 8 with equal ampli- 
tudes, applies to what we hear in case two tuning forks of the 
vibration ratio 5:8, standing at an arbitrary distance from 
our ears and from the reflecting walls of our laboratory, vi- 
brate with equal amplitudes. It is only by way of approxima- 
tion that we can derive any theoretic conclusion from such an 
experiment. The starting point of our theory is the form of 
movement of the stirrup, not of external sounding bodies. 

Under ordinary conditions, it is a great advantage that we 
possess two organs of hearing, some distance apart. In ex- 

perimental investigations, however, for the 
The duality of development of a theory of audition, this 
our auditory fact is often a serious obstacle. Since we 
organ cannot make experiments on audition while 

soaring like an eagle, any source of sound 
is likely to surround our body with standing waves, resulting 
from reflection. Let us regard the velocity of sound as three 
hundred and thirty meters, the distance between our ears as 
about fifteen centimeters. A tone of five hundred and fifty 
complete vibrations, that is, a tone representing the ordi- 
nary human voice quite well, has therefore a wave length of 
about sixty centimeters. The distance between a nodal point, 
where the rhythmic density changes of the air occur with full 
intensity, and a point of maximum vibratory movement, where 
there are practically no density changes affecting the tympa- 
num, is then about fifteen centimeters. That is, it might 
happen with standing waves—if the head was kept perfectly 
still_that the amplitude of one of the components of stirrup. 
movement would be almost zero in one ear, but very large in 


132 UNIVERSITY OF MISSOURI STUDIES 


the other, and every movement of the head would greatly alter 
these conditions; while the resulting consciousness would be, 
of course, the sum total of the tones heard by each ear. It 
is unnecessary to point out in further detail how this fact of 
hearing with two ears complicates the comparison of experi- 
mental results with the theoretical deductions of the present 
study, which refer only to one stirrup and one inner ear, and 
to an unalterable form of the components of stirrup movement 
in a given case. 

The fact that we have two ears would be irrelevant only 
with exceedingly high tones, whose wave lengths in air would 
be so small as to be negligible quantities in comparison with 
the distance between our ears, as the wave lengths of light 
are negligible quantities in comparison with the distance be- 
tween our eyes and even with the sensory elements of each 
eye. 

Every one is familiar with the comparative clearness with 
which the ticking of a watch or the sound of a tuning fork 

is perceived if the vibrating body is firmly 
Hearing without pressed on the head or against the teeth. 
the ear drum Some believe that the physiological func- 

tion of the ear in such a case is not essen- 
tially different from hearing under ordinary conditions; that the 
sound waves, the rhythmic changes of molecular density, which 
pass through the head, naturally pass also through the cavities 
of the head, of which one, the middle ear, particularly concerns 
us here. As soon as rhythmic changes of density occur in 
the air of the middle ear, the tympanum adjusts itself to them 
by rhythmically moving back and forth. The stirrup cannot 
help following the tympanum, and so on. The only difference 
between this case and a case of ordinary hearing consists 
in the fact that the changes of density of the air affecting 
the tympanum originate on the inside of the tympanum in- 


MECHANICS OF THE INNER EAR - 133 


stead of on the outside, and that they must, on the whole, 
be much weaker in the former case. 

There can be little doubt that the process just spoken 
of actually occurs. Some have insisted also on the possibility 
of hearing when the middle ear is destroyed and no movements 
of the stirrup occur. There is no reason why we should a 
priori deny the possibility of a shock being received by the 
nerve ends whenever a rhythmical change of molecular den- 
sity takes its path directly through them. Such a molecular 
wave might originate from a vibrating solid body being pressed 
against skull or teeth, or from sound waves in the air strik- 
ing the head and passing through it. 

We must not overlook the fact, however, that even when 
the tympanum is totally destroyed, if sounds are perceived, 
the perception need not be the result of the sound waves 
simply passing through the nerves. Even in such a case stirrup 
movements are not excluded. If we blow over the mouth of 
a bottle, we cause rhythmical changes of density within the 
bottle, and, as a natural consequence, the air in the 
neck of the bottle rushes back and forth. These move- 
ments may often be observed with the naked eye when a fiber 
adherent to the inside of the neck of a bottle is forced by friction 
to follow the movements of the air. Now, when rhythmic 
changes of density occur in a middle ear whose tympanum is 
destroyed, there must naturally occur a back and forth move- 
ment of the air in the air passage, just as in the neck of a 
bottle. These back and forth movements of the air may 
cause by friction corresponding movements of the hammer 
and anvil and thus of the stirrup. No doubt, stirrup move- 
ments which are caused in this way must be of small magni- 
tude. But no one who knows the surprisingly small amount 
of mechanical energy which is sufficient to call forth a response 
of the auditory organ will deny that they might result in an 
auditory sensation. 


134 UNIVERSITY OF MISSOURI STUDIES 


If not only a part or the whole of the tympanum is de- 
stroyed, but the chain of ossicles is also lost, the mechanical 
processes in the inner ear could be brought about by pressure 
differences on the two windows. An air wave, coming in 
through the external passage and the open middle ear, would 
at any given moment affect the two windows with a slightly 
different phase, arriving at one window a little earlier than 
at the other. This difference of phase means, of course, a 
difference of air pressure on the windows, and a difference of 
air pressure on the windows, according to the laws 
of mechanics, results in a movement of the internal fluid 
from the point of higher to that of lower pressure. It is plain, 
however, that this difference of phase, owing to the small distance 
between the two windows, must be very slight; and hearing which 
results in this way must be rather weak. But its possibility cannot 
be doubted. 

Few cases, therefore, will be found where a sound is 
heard and we have to have recourse to the rather improbable 
assumption that the mere passing of molecular waves of 
density changes through the head and, thus, through the audi- 
tory nerve ends directly results in some weak response of the 
nerves. Nevertheless at least we may admit this assumption 
as possible. To admit it as possible would not cause any diffi- 
culty in comprehending the ordinary phenomena of audition, 
which might thus seem to become more complicated because 
such density waves must, of course, pass through the head 
whenever anybody hears anything. But such effects on the 
nerve ends, granted that they always exist, must ordinarily 
be overpowered by the incomparably stronger stimulations 
simultaneously received by the nerve ends by way of the 
stirrup movement. 

Having studied the function of the human ear, it is in- 


MECHANICS OF THE INNER EAR 135 


teresting to compare this with the organ of hearing of the 

lower vertebrates. Figure 42 indicates the 
Comparative manner of evolution of the cochlea. An 
anatomy of the original pit (Fig. 42 a) as found in a frog is 
auditory organ gradually lengthened and assumes in the birds 

a banana-like shape (Fig. 42 b), showing a 
distinct tendency to coil. In mammals the process of lengthening 
and coiling has proceeded so far that the organ (Fig. 42 c), if it 
were transparent, would appear as a spiral. It is clear that the 
coiling can have little influence,on the mechanical function 
of the organ. The lengthening of the organ, however, is of 
the utmost functional importance. The original pit does not 
differ materially from the other cavities which we find within 


Fig. 42. Evolution of the auditory 
organ 


the labyrinth, communicating with the semicircular canals. 
In this pit movements of the fluid caused by movements of 
the stirrup—or rather columella plate, since the lower verte- 
brates have a much simpler connection of tympanum and 
oval window—produce, probably by mere friction, stimulation 
of the endings of the auditory nerve. The organ of the birds 
must function more nearly like the human organ, excepting 
the difference of function resulting from the fact that the endings 
of the auditory nerve are spread out over a small linear extent, 
whereas in the mammals they are distributed over a long distance. 


136 UNIVERSITY OF MISSOURI STUDIES 


In birds one can hardly speak of some nerve ends being farther 
away from the windows than others. 

It is of some interest, in this connection, to note that ani- 
mals with a short tube, as the birds, do not possess in the par- 
tition of the tube the pillars of Corti. They can get along 
without these pillars. And naturally. The longer the tube, 
the greater is the maximum pressure which may act upon the 
partition near the windows, in case the bulging of the partition 
is forced to proceed far towards the end of the tube. The 
greater the possible pressure, the greater is, of course, the need 
of a skeleton-like support in order to protect the sensitive cells 
from collapsing. Thus the mammals need the pillars because 
of the greater length of the tube. 

What must be the difference of sound perception resulting 
from these anatomical differences in various species of ani- 
mals? We saw that the human ear can 
perceive several tones at the same time be- 


Comparative / ‘ ; 

psychology of cause the linear extension of the auditory 

the sense of organ permits the compound mechanical 
: gan p p 

hearing processes, transmitted from the stirrup to 


the fluid of the cochlea, to be analyzed into 
much simpler mechanical processes taking place in successive 
sections of the partition. It is plain, then, that in the auditory 
pit of a frog no analysis is possible. The result must be that 
the frog’s ear can perceive only one tone at any moment; and 
this tone is most probably, as a rule, the highest of the sev- 
eral tones heard simultaneously under the same circumstances 
by the human ear. 

The bird’s ear, as we have seen, is intermediate between 
the frog’s ear and the human ear. But it does not seem very 
probable that even birds can perceive very many tones simulta- 
neously. The fact that birds sing is no indication to the con- 
trary, since their song does not consist—like orchestral music 
—of simultaneous, but only of successive tones. Of more sig- 
nificance, in this respect, is the fact that some birds, for ex- 


MECHANICS OF THE INNER EAR 137 


ample, parrots, are able to imitate human speech sounds. 
Speech sounds are characterized, according to the present state 
of phonetics, by particular groupings of tones in both simul- 
taneity and succession. It is not certain that the rough imi- 
tation of human speech sounds by parrots is more than an 
imitation of the successive groupings of tones. Granted even 
that the birds possess the ability to perceive more than one 
tone simultaneously, the anatomical facts would make it prob- 
able that this ability is very limited in comparison with the 
human ear which perceives the most varied combinations of 

tones in speech sounds and in harmonic music. 
Let us now briefly look back upon what we have done. 
We have regarded the organ of hearing as a long and narrow 
tube, filled with a practically incompress- 


hheineedios ible fluid and divided lengthwise by an im- 
experimental perfectly elastic partition which is the seat 
data of the auditory nerve ends. We have found 


that the problem of determining exactly, 
for each given form of stirrup movement, the mechanical pro- 
cesses taking place in the tube is from the mathematical side 
an almost hepelessly complex one, made still more difficult 
by the lack of data concerning the mere facts of hearing as 
well as the elastic and other physical properties of the parti- 
tion. In order to overcome the intrinsic and accidental diffi- 
culties standing in our way, we have introduced six simpli- 
fying provisional assumptions; not using all six in every case, 
but now some of them, now others, according as the purpose 
of the moment seems to warrant. We have thus obtained a 
superficial, but for a beginning satisfactory, insight into the 
wonderful machinery by which we analyze the complicated 
sound waves with a result which—for example, with respect 
to the hearing of difference tones—is most surprizing to one 
who knows nothing of the mechanics of the inner ear. 


138 UNIVERSITY OF MISSOURI STUDIES 


The theory thus developed does not pretend to be the 

ultimate solution of the problems attacked. We do not pos- 

sess the data upon which to found a final 

theory. But we shall scarcely obtain these 

The necessity data without the guidance of a the- 

ae ory. Experimental research must be 

systematic, must start from a theory, how- 

ever imperfect this may be, in order to lead to 

scientific advancement. If the theory here offered succeeds 

in stimulating experimental research in a field somewhat neg- 
lected for many years, the author’s hope will be realized. 


APPENDIX 


A list of former publications by the same author concerning the me- 
chanics of the inner ear: 

Uber Kombinationsténe und einige hierzu in Beziehung 
stehende akustische Erscheinungen. Zeitschrift fiir Psychol- 
ogie und Physiologie der Sinnesorgane 11, 177-229. 1896. 

Zur Theorie der Differenzténe und der Gehdrsempfin- 
dungen tiberhaupt. Ibid. 16, 1-34. 1898. 


Uber die Intensitét der Einzeltdne zusammengesetzter 
Klange. Ibid. 17, 1-14. 1898. 


Uber die Funktion des Gehérorgans. Verhandlungen der 
Physikalischen Gesellschaft zu Berlin 17 (5), 49-55. 1898. 

Zur Theorie des Horens. Archiv fiir die Gesammte Physi- 
ologie 78, 346-362. 1899. 

Karl L. Schafer’s “Neue Erklarung der subjectiven Com- 
binationstone.” Ibid. 81, 49-60. 1900. 

E. ter Kuile’s Theorie des Horens. Ibid. 81, 61-75. 1900. 

Zur Theorie der Gerduschempfindungen. Zeitschrift fiir 
Psychologie und Physiologie der Sinnesorgane 31, 233-247. 1903. 


Uber Kombinations-und Asymmetrietone. Annalen der 
Physik (Vierte Folge) 12, 889-892. 1903. 

The significance of wave-form for our comprehension of 
audition. American journal of psychology 18, 170-176. 1907. 


139 


INDEX 


Analysis, 37. 

Anatomy of the inner ear, 14, 69, 
81, 87. 

Beats, 55, 58, 66, 107, 115, 118. 

Birds, 5, 136. 

Brain, 23. 

Clay experiment, 8. 

Cochlea, 1. 

Comparative anatomy, 135. 

Comparative psychology, 136. 

Computation, 24, 28. 

Corti’s organ, 16, 22, 136. 

Difference tones, 37, 59, 68, 84, 123. 

Disappearance of higher tone, 84, 122. 

Duality of the organ, 131. 

Ear, 1, 14. 

Elasticity, 12, 18, 20, 87. 

External ear, 1. 

Fluid displacement, 76, 90, 95. 

Graphic methods, 28, 39. 

Inflection points, 85, 89, 92. 

Inner ear, 14. 

Intensity, 32, 34, 42, 68, 77, 79, 96, 
122; 129. 

Labyrinth, 3. 

Leather seated chair, 12. 

Leverage of the ossicles, 5, 

Mean tone, 56, 58. 

Middle ear, 3. 

Ossicles, 5. 

Overtones, 31. 


Partition, 11. 
Pathology, 132ff. 


Phase, 35, 44, 47ff. 
Pillars of Corti, 16, 136. 
Pinna, 1. 
Pressure on partition, 88. 
Provisional assumptions, 25, 33, 69, 
87, 95. 
Reissner’s membrane, 21. 
Resonators, 19. 
Psychological observation, 82, 137. 
Safety valve, 14, 22. 
Sensitiveness of the ear, 83. 
Snail, 1. 
Sounding bodies, 32, 130. 
Stirrup, 4. 
Subjective tones, 37, 59. 
Tension, 19. 
Tone combinations: 
2and 3; 35, 44, 48, 49. 
24 and 25; 50, 58. 
4 and 9; 62, 77. 
land 2; 85, 93. 
5 and 8; 96, 103, 109, 113, 
118, 122. 
3 and 8; 124. 
Tone intensity, 32, 34, 42, 68, 77, 
79, 96, 122, 129. 
Tympanum, 4. 
Weber’s law, 129. 
Windows, 3, 6. 


UNIVERSITY OF MISSOURI STUDIES 


SCIENCE SERIES 


VOLUME I 


. Topography of the Thorax and Abdomen, by PETER Por- 
TER, M. A., M. 'D., Associate Professor’ of Anatomy, St. 
Louis University. \ pp. vii; 142. 1905. $1.75. 


The Flora of Columbia and Vicinity, *by Francis Por- 
TER DANIELS, Ph. D. pp. x, 319!) 1907. ‘$1.25. 


VOLUME It 


An Introduétion to the’ Mechanics of the Inner Ear, by. 
“Max Meyer, Ph.! D,, Professor of Experimental Psy- 
chology. pp. viii, 140. 1907. $1.00. 


SOCIAL SCIENCE SERIES © 
VOLUME I 


The Clothing Industry in New York, by Jesse E. Porr, Ph. 


abo ve 


D., Professor of Economics and Finance. | pp. xviii, 340. 
1905. $1-25. 
VOLUME If 


The Social Function of Religion, by W1Li1am WILson 
ELWANG, Ph.D.) Zz the press. ; 


LITERARY AND LINGUISTIC SERIES 
VOLUME I 


The Covenant Vivien, Manuscript’ of Boulogne, by Ray- 


MOND WEEKS, Ph. D., Professor of Romance Languages. 
In the press. 


a 


UNIVERSITY OF MISSOURI STUDIES 


VOLUME I 


Contributions to a Psychological Theory of ‘Music, by = 
Max Myer, Ph. D., Professor of Experimental Psychol- ~ 
ogy. pp. vi, 80. Fg0r.. 75 cents. Out of print. 


Origin of the Covenant Vivien, by RAyMonp WmEEKS, Ph. 
D., Professor of Romance Languages. pp. viii, 64. 1902. 
45 ents: Out of print. ; 


‘The Evolution of the Northern Part of the Lowlands 
of Southeast Missouri, by C. F. ‘Marsur, A. M., Professor’ 
of Geology. pp. viii, 63. 1902. $1.25. 


Hileithyia, by Pau V. C. Baur, Ph: D., Nees Professor 
of Classical GSI OE PP- Vi, 90. (1902, ‘$1.00, 


: The Right of Sanctuary in England, by Norman Mac- : 


LAREN TRENHOLME, Ph. D.} Protease of History.’ ‘pp. 


© viii, 106. °1903. 75 cents. 


VOLUME II 


Ithaca or Leueas? by Witttam Gwarumey MAnty, A. 
M., Professor of Greek Language and Literature. BEAM 


52. 1903. D1.00. 


. Public Relief and Private Charity in England, by 


Cuaries A, ELLwoop, Ph. D., Professor of Reciolgey: 
pp. ue ‘96. T9903. 75 cents: “Out of pring. 


The Process of Induetive Inference, by FRANK THILLy, 
Ph. D., Professor of Fatesep hy: its V, 40, 1904. 35° 
cents. - f ; 


Regeneration’ of Crayfish’ Appendages, by Mary f. 
STEELE, M.A. pp. vill, 47. . 1904. 75 cents. 


The Spermatogenesis of Anax Junius, by CaRorine Mc- 
GILL. pp. vili, 15. 1904, 75 cents, Out of print. 


SCIENCE SERIES = = Nowner2> 4 


_ UNIVERSITYOF MISSOURI, | 
i STUDIES | Ne 


EDITED. BY 
W. G, BROWN 
Professor of Industrial Chemistry 


THE FLORA OF BOULDER, COLORADO, AND. 
: VICINITY = Cae 


F BY ‘i ; 
FRANCIS POTTER DANIELS 


fi Professor of the Romance Languages, Wabash College 
Formerly Assistant in the University of Missouri 


WAY 7 v 


a 


\¢ 


Af RECs 
Sonal Wused—~< 


PUBLISHED, BY THE 


UNIVERSITY OF. ‘MISSOURI 


October, 1911 


Prick $1.50 


"UNIVERSITY OF MISSOURI STUDIES. 


Edited Y mee Trey 


VOLUME I 


tr. Contributions to a Psychological Theory of Music, by ey 
(Max Meyer, Ph. D., Professor of Experimental Psychol: 
ogy. pps vi, 80. ee 15 cents. Out of print. is 


2. Origin of the Coronant Vivien, by | RayMonp Weres Ph.” 
D.; Professor of Romance hye PP. vill, 64. 3902; ; 
75 cents. Out of print. 


~The. Evolution of the Northern Part of fhe oyiands a 
of Southeast Missouri, by C.F. MArsur, A. M., Professor _ 
of Geology. PP- viii, 63. 1902. $1.25,\ Out of print. 


G2 


4. Hileithyia, i Paur V. C. BAUR, Ph. D. , Acting Professor 
' of Classical Archaeology, pay: vi, 90. ‘1902. or Qo. Out 
of print: 


5s The Right ‘of Sanctuary in England, by NorMAN Mac- © 
| LAREN ‘TRENHOLME, Ph. \D., Professor of pee PP. 
oes 106, , 1903. 45 cents, Out ra: 


3 ‘VOLUME va 


Ithaca or Tenens? -by. WILLIAM: GwATHMBY Maney An 
M,; Professor of Greek Language and’ Literature. PP Mh 
52 1903. St. 00. Out of print... ° 


(2 Public Relief and | Private Charity in England, me ; 
Cuartes A, Etuwoop, Ph. D. » Professor of Sociology. 
| pp..vili, 96. 1903: 75 Cents. Ont of print. 


3..- The Process of Inductive Inference, by, FRANK THILLy, 
Ph. D., Professor of Philosophy. PP Vx 40. res 35 
cents. Out of print. Ms 


4! Regeneration of Crayfish nppblinges, | “by Mary i 
STEELE, M.A. PP vill, 47- 1904. 75 cents. Out of 
Pree. ‘ ( 


5. The Spermatogenesis of ‘Anax Junius, by CaRouine Mc- 
| GILL. pPpe Vili, 15. 1904. 75 cents. Out of print. 


11 
FLORA OF BOULDER, COLORADO 


= 
pase 


Saat 


ax 


He 
Gay 


Hayy 
a 


hy 


VoutumeE II SCIENCE SERIES NUMBER 2 


THE 
UNIVERSITY OF MISSOURI 


STUDIES 


EDITED BY 
W. G. BROWN 
Professor of Industrial Chemistry 


THE FLORA OF BOULDER, COLORADO, AND 
VICINITY 


BY 
FRANCIS POTTER DANIELS 


Professor of the Romance Languages, Wabash College 
Formerly Assistant in the University of Missouri 


PUBLISHED BY THE 


UNIVERSITY OF MISSOURI 


October, 1911 


500 


Copyright, 1911, by 
THE UNIVERSITY OF MISSOURI 


COLUMBIA MO.: 
E. W. STEPHENS PUBLISHING COMPANY, 
IQII 


a) PROFESSOR T. D. A. COCKERELL 
THIS STUDY IS RESPECTFULLY DEDICATED 


PREFACE 


During the summer of 1906 I was employed by the Depart- 
ment of Botany of the University of Missouri to collect plants 
in Colorado for the Herbarium of the University. I spent, 
therefore, a period of two months and a half in this work. I 
arrived at Boulder, Colorado, June eighteenth, and departed 
thence September third. All the collecting was done in Boul- 
der County, and the greater part of it within a radius of five 
miles from the city of Boulder. I collected altogether about 
1,036 species of flowering plants and ferns. The vernal plants, 
of course, had blossomed before my arrival, but except for 
these the flora of Boulder is fairly well shown in the collection. 

In the list of plants here given there have been included 
all that are known to occur in Boulder County; but inasmuch 
as the boundary between Grand and Boulder Counties lies 
along the summits of the main range of mountains it is impos- 
sible often to tell in what county a given plant has been col- 
lected. Similarly Long’s Peak lies partly in Larimer County 
and partly in Boulder County. In all cases in which plants 
have been cited from a mountain lying partly in Boulder Coun- 
ty, these have been included in the list, unless a definite locali- 
ty in the other county is given. Plants admitted to the list 
because of the citations given in Rydberg’s Flora of Colorado 


al 


xii PREFACE 


are ascribed to Rydberg; it is of course understood that this 
ascription does not imply that these plants were collected by 
Rydberg in the localities named, but merely that by examina- 
tion of the plants or otherwise he is satisfied that they occur 
in those places. In the case of plants collected by myself I 
have added the collection number, so that these can be identi- 
fied at any time. I may add that besides the set of Boulder 
plants in the Herbarium of the University of Missouri, there 
is a duplicate set in the Herbarium of the Michigan Agricul- 
tural College; there is also a set in my own possession. The 
Herbarium of the Missouri Botanical Garden has an incom- 
plete set. As the numbers are the same for all plants of the 
same species, the identification of any of these plants can be 
made out from the number given in the list. 

In the introduction I have sought to present what knowl- 
edge I have of the distribution of plants in Boulder County. 
I have tried to present them in their natural plant-societies. 
I saw, however, too little of the montane, subalpine, and the 
alpine floras to be able to give a comprehensive account of these, 
and it must be remembered that I did not see the vernal facies 
of any portion of the vegetation. 

As to nomenclature I have followed, except where plainly 
deficient in the light of later investigation, that of Rydberg’s 
Flora of Colorado. While I feel that in the case of both 
genera and species there has been an over-multiplication—as 
for instance the splitting up of such a natural group as the 
pines into several genera, yet at the time of the preparation 
of this Flora the only convenient guide was Rydberg’s work. 

It is to Professor T. D. A. Cockerell of the University of 
Colorado to whom I am most indebted for assistance in this 
work. Remote both from the vegetation itself and from an 


PREFACE Xiil 


adequate library, I could not have carried on the work at all 
without his cheerful codperation. He has examined every 
page of the manuscript, and I owe much to his apt suggestions 
and kindly criticism. My thanks are also due to Professor 
Francis Ramaley for his kindness in examining the proof- 
sheets, and to Professor J. Henderson who has perused the 
article on the physiography. Both have given me notes of 
much value. 


ERRATA 


Page 15, line 13, for Chrysopogon, read Sorghastrum. 

Page 18, line 3 from bottom of page, for C. umbellata bre- 
virostris, read C. umbellata brachyrhina. 

Page 26, line 4, for Cogswellia Grayi read Cogswellia orientalis. 

Page 27, line 22, for F. confinis, read F. Kingii. 
Line 12 for Agropyron Vaseyi, read Agropyron spicatum 

inerme. 

Page 31, line 2 from bottom of page, for Trisetum subspicatum, 
read Trisetum spicatum. 

Page 33, line 14, same correction. 

Page 39, line 8 from bottom of page, for Pseudocymopterus 
tenuifolius, read Pseudocymopterus multifidus. 

Page 41, line 9, for Trisetum subspicatum, read Trisetum 
spicatum. 

Page 42, line 6 from bottom of page, for Polemonium scopu- 
linum, read Polemonium pulcherrimum. 


XIV 


INTRODUCTION 


I. PHYSIOGRAPHY 


Boulder, Colorado, lies nestling close to the Rocky Moun- 
tains just north of the 4oth parallel. There the foot- 
hills are strikingly beautiful and high, and only twenty miles 
away Arapahoe Peak, clasping to its bosom the best glacier 
of the southern Rockies, gleams whitely in full view, while 
twenty-four miles to the northwest towers jaggedly Long’s 
Peak, 14,271 ft. high, the highest point in Boulder County, and 
one of the highest peaks of the Rocky Mountains. Away to 
the eastward the plain stretches unbrokenly, save for an oc- 
casional butte, till lost to vision. There is then room for a 
great diversity of vegetation, ranging from the semi-desert 
plants of the arid plains to the arctic plants that grow at the 
wasting edge of the perpetual snow. 

The Continental Divide, which, due west of Boulder, 
touches its easternmost point in North America, is only from 
twenty to twenty-four miles away. It rises as a vast snow- 
covered wall of rock to an average height of from 11,000 to 
12,000 feet; the highest points in the Divide in this region 
are Long’s Peak, 14,271 ft., Mt. Audubon, 13,173 ft., Mt. 
Baldy, 11,470 ft., Arapahoe Peak, 13,520 ft., and James’ 
Peak, 13,283 ft. Due west of Boulder Arapahoe Pass 
crosses the Divide at an altitude of 12,000 feet. It 
will be seen, therefore, that there is an almost impassable 


barrier between the vegetation of the Pacific slope and that of 


149] I 


2 UNIVERSITY OF MISSOURI STUDIES [150 


the Atlantic. Since this barrier is almost everywhere above 
timberline, only a few Pacific species are found on the Atlantic 
side of the slope within the region about Boulder. Perhaps 
the most interesting exception is the occurrence of one of the 
orchids, Piperia Unalaschensis (Spreng.) Rydb., a few indi- 
viduals of which I found in the foot-hills near Boulder, and 
which is not known to occur elsewhere east of the mountains 
of Utah, it having its main range from Alaska to California. 

All the streams of Boulder County flow ultimately into the 
South Fork of the Platte river, and thence into the Missouri 
and the Mississippi. Boulder creek, the chief stream of the 
region, and one of the headwaters of the Platte, is fed from the 
snows ‘of the Divide, especially between Arapahoe and James’ 
Peaks. Just over the other side of the Divide are some of the 
headwaters of Grand river, which flows into the Colorado, 
and thence into the Gulf of California. 

All the matn streams in Boulder County have their sources 
in the wasting snows of the Main Range. These have cut gor- 
ges, in most cases over a thousand feet deep, into the elevated 
plateau between the main range and the foot-hills proper, and 
by means of these deep valleys have transformed this plateau 
into what are now really mountain masses, having an average 
altitude of about 8,000 feet, the eastern and western slopes of 
which are long longitudinal valleys, and the northern and 
southern ones the precipitous gorges cut by the streams. Be- 
tween Boulder and the Main Range there are about four of 
these mountain ridges, the first, or that of the foot-hills proper, 
rising to a height of from 7,000 to 8,600 feet, the others slightly 
lower, having an altitude of about 7,500 to 8,000 feet. Among 
these Sugarloaf Mountain stands out prominently as an 


isolated peak a thousand feet higher, it being a por- 


151 | FLORA OF BOULDER, COLORADO 3 


phyry dike, and thus weathering more slowly than the 
granitic peaks. This whole elevated plateau, cut by 
streams into what now appear as definite mountain 
ridges, we shall call the foot-hills, although the foot-hills 
proper are the ridges of sandstone at the edge of this granite 
plateau. The flora, however, is the same, save for 
a few ferns and other rock-plants which are confined to cer- 
tain kinds of rocks, some to the limestones, others to the sand- 
stones, still others to the granite. 

The main range of mountains as well as the high plateau 
at its base is composed of granite, granite-porphyry, and 
granite-gneiss, gray or reddish in color. Dikes are frequent, 
either of pegmatite or of felsitic porphyry. When the uplift 
or uplifts occurred, which made the Rocky Mountains, the 
sedimentary rocks resting upon the basement of granite, were 
tilted until they stood nearly on end. The jagged crags of the 
foot-hills proper are, then, the ends of these sedimentary layers. 
Thus it happens, too, that the oldest beds lie next the granite, 
while the younger underlie the plains. 

The oldest and lowest, that is, the one lying directly upon, 
or rather against the granite, is a layer of quartzite 550 feet 
thick, and of Algonkin age. This, however, is absent in front 
of Boulder and occurs in but two places in the county. 

The next, and of Pennsylvanian (Carboniferous) age, 
is the red Fountain sandstone, 500 to 1,500 feet thick. 
In the immediate vicinity of Boulder it lies directly 
upon the granite. On the east slope of Green Moun- 
tain it hangs in five triangular blocks of about 500 feet 
in thickness at an angle of about 52°. These, called the 
Flat-irons, are each about 1,000 feet high and about 1,500 
feet wide; the third Flat-iron, however, rises to an altitude 
of nearly 8,000 feet, or about 2,000 feet above the mesa. At 


4 UNIVERSITY OF MISSOURI STUDIES [152 


Boulder Cafion the red sandstone walls are vertical. These 
perpendicular sandstone crags are the most striking feature 
of the scenery of the foot-hills. 

Lying next to the Fountain sandstone, and also of Pennsyl- 
vanian age, is the creamy Lyons sandstone, which is quarried 
in large amounts. It has a maximum thickness of almost 300 
feet. 

Next in order, and still of Pennsylvanian age, is the Lykins 
formation, about 800 feet thick and consisting of sandstones, 
sandy shales, and a little limestone. It is easily weathered and 
is consequently thickly covered with waste. 

The Morrison formation occurs next, and consists of sand- 
stone, clays, and limestone, and is a little less than 600 feet 
thick. It is of Jurassic age. 

Then come various Cretaceous beds, the first of which, 
the“‘Dakota,” is a firm sandstone of about 350 feet in thickness. 
Its resistance to weathering causes the characteristic hogback 
of the foot-hills, consisting of one, two, or even three distinct 
combs, or crags. 

Then follow in succession the Benton shales, 500 feet 
thick; the Niobrara shales and limestones, 400 feet thick; the 
Pierre shales, 5,000 feet thick; the Fox Hills shales, 1,300 feet 
thick ; and the Laramie beds, which’are coal-bearing and about 
115 feet thick. Lastly are the Quaternary deposits of allu- 
vium and terrace gravels. The various shales have weathered 
and eroded rapidly and underlie the plain, while the more 
resistant beds next the granite persist as crags, while the high 
mesas at the base of the foot-hills are shale outliers left by 
stream-erosion and are really stream terraces. 

The soil of the region, outside of the alluvium and ter- 
race gravels, is granitic in the mountains, while in the foot- 
hills it is apt to be brick-red from the detritus of the red 


153] FLORA OF BOULDER, COLORADO 5 


sandstones. The soft Lykins formation yields a very red soil. 
The Jurassic and Cretaceous rocks have layers of sand and 
clay. 


II, CLIMATE AND RAINFALL* 


The climate of Boulder, however enjoyable it may be to 
human beings, can hardly be said to be highly favorable to 
plant-life. At least this is true of the foot-hills, the mesas, 
and the plains. The Main Range, however, is well watered, 
but here the high elevation and the low temperature repress 
plant-life. The montane and subalpine slopes have a dense vege- 
tation, and yet even here the shallow soil and the rapid run-off 
of the water cause portions of them to have the aspect of 
deserts. A subalpine meadow has an opulent luxuriance; an 
adjoining slope may be gray with sage brush. In part the ap- 
parent thinness of vegetation in the mountains may be due to 
the superabundance of naked rock. In many portions of the 
Rockies the greater part of the surface has no soil whatever, 
and only a cranny-and-crevice vegetation is possible. The 
Rocky Mountains are new; their rocks are sharp and jagged; 
even lichens are rare on their surfaces. About Eldora and 
Arapahoe Peak, however, the rocks are beautifully rounded 
by glacial action. 

In the summer of 1906 there were rains almost daily, many 
of them soaking rains, but their distribution was uneven and 
capricious. In general the rainfall decreases as the distance 


from the snowy range increases. The alpine and subalpine 


*For the climatology of the region, consult the article by Professor 
Ramaley on the Climatology of the Mesas near Boulder, Univ. of Colo, 
Studies, 6, 19-35, also, the paper by Ramaley and Robbins on Redrock 
lake near Ward, Univ. of Colo. Studies, 6, 138-147. 


6 UNIVERSITY OF MISSOURI STUDIES [154 


regions receive most; the foot-hills less; the mesas receive 
some from every shower; the plains for five or six miles get 
a portion of the larger showers; but beyond that for several 
hundred miles good rains are very few. The summer 
of 1906 was exceptional,* for even the plains about Boulder 
seemed to receive more water than do many parts of the 
eastern United States in midsummer. When I left Boulder 
the third of September, the native vegetation for five or six 
miles out on the plain was as green as a prevailingly gray 
vegetation well can be; there was no sign of drouth, while 
when I reached Missouri and Iowa, the pastures were parched. 

In fact what I shall remember most about Colorado is its 
exuberance of water. It courses down all the mountain 
cafions, roaring and bubbling and dashing into foam. Springs 
are frequent and of a pureness and coolness that make them 
perfect. On the plains everywhere that one goes, a ditch full 
to the brim runs beside one. From the top of Green Mountain 
a hundred lakes may be seen gleaming on the plain. It is 
plainly a land of abundant rain and water. 

And yet why this feverish haste to irrigate the fields, why 
these ditches, these sluices, these storage-reservoirs? Why 
is land with a water-right worth several hundred dollars an 
acre, and land without one but five dollars? And why, to ask 
a still deeper question, why does nearly every kind of native 
plant have some means of conserving water, or some contriv- 
ance for preventing too rapid transpiration? Why do desert 
plants meet one at every hand: cacti, yuccae, sages, and 
xerophytic grasses? No, this region cannot be a land of 
abundant rain and water, in spite of the fact that I have never 


*In 1906 the greatest rainfall was recorded (26.17 inches), while 1901 
was the driest year (13.67 inches). 


155] FLORA OF BOULDER, COLORADO 7 


seen so much anywhere else, nor anywhere else have had such 
drenchings to the skin. It is a semi-arid land, parched and 
thirsty. And the farmer, whom I saw flooding his land the 
morning after an all night’s pouring rain, knew from long 
experience that there could not be too much water. The 
rapid drainage, the light dry air, the fierce light of the high 
elevation, the hot sun, the soil unfitted for the retention of 
water, all these things parch and wither our cultural plants, 
for while the native vegetation has organs for storing water 
and for diminishing transpiration, the cultivated plants have 
none of these. Nevertheless for the native vegetation in 
1906 there was ample water-supply; it grew with an almost 
incredible luxuriance, so much so that I found the measure- 
ments given in the manuals were often valueless for my pur- 
pose, as many of my plants were taller and larger than the 
books say that they grow. I was told that after the first of 
July there would be no botanizing as everything on the plains 
and foot-hills would dry up; but I remained till September 
first and the plants did not dry up, and I was able to collect 
over a thousand species in about two months and a half. 

The following table, which I use by the kind permission of 
Professor Ramaley, will furnish the data requisite to an under- 
standing of the temperature and rainfall of the region. The 
data holds true only for the city of Boulder. 


8 UNIVERSITY OF MISSOURI STUDIES [156 


TABLE 
COMPILED BY DR. FRANCIS RAMALEY 
Summary of data on temperature and rainfall at Boulder, 
Colorado, for eleven years, ending August, 1908. 


& & | Warmest Coldest =| Greatest R 
rs E,| mean on | mean on ‘S| rainfall on eee mevatel 
MonvH < 3 record. record. |E"g| record. Os! LO 

E E [ear Degs | Year |Degs 2 : Year/Inc’s Year Inc’s 
January arene iar 34... 1|1906/39.0,1905|29.3/0.4 |18gg/0.87 1903 |0.08 
February. ....... 32.9|1907/42 .8|1899|18 0/0. 66/1903]1 . 52 1908 0.09 
March..... .-++ |39.4|1907|48.1]1906|30.2/1.6 |1899]2.79] 1908 |0.23 
EN MK Goard 660000 47 -7|1908)52. 5;1900/45.6/3.58|1900/9.18] 1908 1.71 
May........-- -.|56.4/1898]60. 5}1907)51 -0|3 -02/1904|5 . 35 1899 0.55 
June........ ... |64.6/1902|66.8/1907|/62.1]1.53/1897|3.71/ 1908 0.29 
WMbosAdosscicocnes 70.1}1901|75.3|1906|67. 2/1. '72/1906/3.81 Ig0r_ |0.46 
August. ........ |71.0]1898]73.2/1906/68.0|1.3 |1897!3.3 |1900&1905]/0. 22 
September....... 64.0/1897|66.8}1900)61 . 5)1. 55|1902|2.7 I90I 0.10 
October -is 53 -0|1900|57.2]1905|48. 5|1.47|1903/3.43| I900 0.13 
November....... .|43.0]1904]48. 3]1898/38. 1/0. 59|1906|1 .87/1899&1901/0.00 
December........ 37.0|1906|41 .0]1898|29.0|0. 68] 1902/0. 54/1905 &1g06|0.00 

Annual........ 51.0 18.0 


Highest recorded temperature is 97 degrees, July 15, 1902. 

Lowest recorded temperature is —20 degrees, January 8, 1902, and 
again February 20, 1905. 

Greatest rainfall recorded, 26.17 inches, 1906. 

Smallest rainfall recorded, 13.67 inches, Igor. 


III ZONES OF VEGETATION* 
There are six great zones of vegetation about Boulder, 
which, proceeding from east to west, are: A. The Zone of 


*These zones of vegetation are practically those of Robbins (Cli- 
matology and Vegetation in Colorado, Bot. Gaz., 49, 256-280), who rec- 
ognized (1) plains, (2) eastern lower foothills and mesas, (3) eastern 
upper foothills, 6,000 to 8,000 feet, (4) montane zone, (5) subalpine 
zone, (6) alpine zone. Professor Ramaley, however, would unite the 


mesas and foothills into one zone (Univ. of Colo. Studies, 5, 50-51). 


157] FLORA OF BOULDER, COLORADO 9 


the Plains, CAMPESTRES; B. The Zone of the Mesas, 
MENSALES; C. The Zone of the Foot-hills and Mountain 
Plateau, SUBMONTANABE; fourth, The Zone of the Lower 
Mountain Slopes, MONTANAE; fifth, The Zone of the Sub- 
alpine Mountain Slopes, SUBALPESTRES; sixth, The 
Zone of the Alpine Summits, ALPESTRES. Of these the 
Plains Flora, the Foot-hill Flora, the Montane Flora, the Sub- 
alpine Flora, and the Alpine Flora are primary, while that of 
the Mesas is a transition from the Flora of the Plains to the 
Flora of the Foot-hills. The Alpine corresponds to the Arctic 
Circumpolar vegetation, the Subalpine to the Hudsonian, the 
Montane to the Canadian, the Foot-hill and the Mesa to the 
Upper Transition, and that of the Plains to the Lower Transi- 
tion with some Upper Sonoran forms. 


A. CAMPESTRES 


The plains are not so arid about Boulder as they are far- 
ther east. In fact after riding for hundreds of miles through 
a desert of dried up grass, it is with a feeling of inutterable 
joy that one sees this narrow ribbon of green from six to 
twelve miles wide at the foot of the mountains. This green- 
ness and freshness is due mainly to two causes: First, this 
strip receives more rain than does the rest of the Great Plains. 
The clouds do not quite rain out before reaching the plains. 
These rains are, however, capricious. The clouds are narrow. 
The southern part of Boulder may receive a thorough drench- 
ing, the northern part may not have a drop. One Sunday 
there was a cloud-burst in Sunshine Cafion, farms and bridges 
were washed away ; from three to five feet of water came dash- 
ing through the main street of Boulder, while it scarcely 
sprinkled where I was a half mile to the south. The second 
cause is the abundant irrigation. 


10 UNIVERSITY OF MISSOURI STUDIES [158 


The Plains Flora falls into five main societies: The 
Aquatic (Aquatiles); The Palustrous (Palustres); The Ri- 
parian (Ripariae); The Prairie Meadow, the plains flora 
proper, (Campanales); and the Alkali Flat (Alkalinae). 


a. Aquatiles, The Aquatic Flora is found in lakes and 
streams. It consists of submerged or floating aquatics—pond- 
weeds, duckweeds, water-milfoils, hornworts, water starworts, 
besides various algae. It is seen best in Owen’s lake and 
Boulder lake, which while about twenty feet deep, are very 
brackish. The slower streams also have aquatic plants, as do 
likewise the aqueous nuclei of swamps and swales. The fol- 


lowing is a list of typical species: 


Potamogeton lonchites L. minor 

P. heterophyllus Ceratophyllum demersum 
P. foliosus Callitriche palustris 

P. pectinatus C. bifida 

P. Spirillus Myriophyllum spicatum 
Zanichellia palustris Limosella aquatica 
Lemna gibba 


All the above species occur in the eastern United States. 

b. Palustres. The Palustrous, or Swamp Flora is found 
in bogs, in swales, along ditches, and about the miry margins 
of ponds and lakes and streams. It consists of rushes, bul- 
rushes, sedges, swamp grasses, sweet flags, cat-tails, stick- 
tights, swamp asters, water peppers, and various other plants. 
I have included here the whole subaquatic flora, since the for- 
mation is so slight that it is best treated as a whole without 
separation into amphibious, limose, paludose, and uliginose 
societies. The following are characteristic species: 

Equisetum arvense Typha latifolia 


E. laevigatum Alisma Plantago 


159] 


FLORA OF BOULDER, COLORADO II 


Sagittaria arifolia 
Homalocenchrus oryzoides 
Phalaris arundinacea 
Muhlenbergia racemosa 
Alopecurus aristulatus 
Spartina cynosurioides 
Poa triflora 
Panicularia nervata 

P. Americana 

P. borealis 

Cyperus inflexus 
Scirpus Americanus 

S. lacustris 

S. atrovirens pallidus 
Eleocharis palustris 

E. glaucescens 

E. acicularis 

E. acuminata 

Carex vulpinoidea 

C. stipata 

C. stricta 

C. lanuginosa 

Acorus Calamus 
Heteranthera limosa 
Juncus Balticus montanus 
J. longistylis 

J. nodosus 

J. Torreyi 

J. marginatus 

Iris Missouriensis 


Rumex occidentalis 


R. salicifolius 

Persicaria lapathifolia 

P. emersa. 

P. punctata 

Crunocallis Chamissoi 

Ranunculus sceleratus 
eremogenes 

R. Macounii 

Halerpestes Cymbalaria 

Nasturtium 
Nasturtium-aquaticum 

Radicula calycina 

R. hispida 

Hypericum majus 

Lythrum alatum 

Epilobium adenocaulon 

Cicuta occidentalis 

Berula erecta 

Verbena hastata 

Phyla cuneifolia 

Teucrium occidentale 

Scutellaria galericulata 

Prunella vulgaris 

Stachys scopulorum 

Lycopus lucidus 

L. Americanus 

Mentha spicata 

M. Penardi 

Mimulus Geyeri 

M. floribundus 


Gratiola Virginiana 


12 UNIVERSITY OF 


Lobelia syphilitica 
Ludoviciana 

Iva xanthifolia 

I. axillaris 

Ambrosia trifida 

Xanthium commune 


Aster caerulescens 


It will be noted that all 


MISSOURI STUDIES 


[ 160 


A. Osterhoutii 
Bidens vulgata 

B. glaucescens 
Helenium montanum 
Lactuca pulchella 

L. spicata 


but a very few of the above 


species are common palustrous species of the eastern United 


States. 


c. Ripariae. The Riparian Flora occurs along the banks 


of streams. 


It consists of trees, shrubs, and herbs. 


There 


are no trees nor shrubs proper on the Great Plains, except 


those that grow along the streams. 


tonwoods, box-elders, and willows. 


Here occur various cot- 


The herbs are partly 


marsh herbs and partly plants from the plains, especially 


grasses. 
Equisetum laevigatum 
Eatonia robusta 
Agropyron riparium 
Elymus Canadensis 
E. robustus 
Populus Sargentii 
P. acuminata 
P. angustifolia 
Salix amygdalioides 
S. exigua 


S. luteosericea 


The following are typical riparian species: 


Betula fontinalis (only near 
the foot-hills) 

Urtica gracilis 

Cardamine vallicola 

Rulac Negundo 

R. Texanum 

Vitis vulpina 

Pesedera vitacea 

Solidago Pitcheri 

S. Canadensis 


d. Campanales. The Prairie Flora is that which is 


proper to the greater part of the plains region. 


In aspect it 


is a vast meadow, above which now and then a yucca rises with 


161] FLORA OF BOULDER, COLORADO 13 


its bayonet-like leaves and its large cluster of flowers. But 
this aspect changes according to the season of the year, nor 
is it uniform at any season. As various plants come into 
bloom, so is it tinged red or purple, white or yellow; here it 
is an upland meadow of broom-grasses with purplish leaves; 
there it is dark green with meadow-grasses ; yonder it is white 
and hoar with sages. In early summer it is red, or purple, 
or blue with loco-weeds, beard-tongues, and thistles, yellow 
with golden asters, orange with cone-flowers and gaillardias, 
or white with Mexican poppies. In midsummer the psoraleas 
are numerous; here and there are large clumps of lupines; the 
tall porcupine grasses abound, and sunflowers rear their heads 
of gold. In late summer it is yellow with gumweeds of all 
kinds, with golden-rods and rabbit-brushes, or purple with 
blazing-stars and turkey-foot grasses. In autumn the gray 
sages put forth their inconspicuous flowers, the late composites 
ripen their achenes and whiten the landscape with their pappus. 
But the chief plants of this formation are those not seen— 
the little buffalo and mesquite grasses only a few inches high, 
but forming the turf of these vast plains. There are no shrubs 
proper in this flora. At most there are a few undershrubs 
and suffrutescent plants, such as roses, yuccas, and the like. 
It should be added that the vegetation of the moister por- 
tions of the plains differs, especially in aspect and also some- 
what in species, from that of the drier portions; but while it 
is possible to distinguish these two elements of the flora in 
the extreme cases of moistness and dryness, yet in the greater 
part of the area the two vegetations mingle inextricably. I 
shall, however, arrange the plants typical of the Great Plains 
into two classes, Humidae and Aridae, although the two 
classes occur quite commonly together: 


14 


is 


UNIVERSITY OF MISSOURI STUDIES 


Humidae. 
Andropogon furcatus 
Panicum virgatum 
Agrostis alba 
A. asperifolia 
Bouteloua olgostachya 
Bulbilis dactyloides 
Koeleria cristata 
Poa pratensis 
P. triflora 
P. interior 
P. pseudopratensis 
Festuca elatior 
Bromus marginatus latior 
B. Pumpellianus 
Agropyron pseudorepens 
A. occidentale 
Hordeum jubatum 
Elymus Macounii 
Carex marcida 
C. scoparia 
C. athrostachya 
C. pratensis 
C. festucacea 
Juncus interior 
J. Arizonicus 
J. confusus 
J. Dudleyi 


Sisyrinchium angustifolium 


Argemone intermedia 
A. hispida 


Sophia intermedia 
Potentilla Hippiana 
Drymocallis arguta 
Rosa pratincola 
Lupinus decumbens 

L. decumbens argentatus 
Astragalus goniatus 
Homalobus Salidae 
Aragallus Lambertii 

A. patens 

Psoralea tenuiflora 

P. argophylla 
Petalostemon oligophyllus 
P. purpureus 

P. pubescens 

Poinsettia dentata 
Malvastrum dissectum 
Oenothera strigosa 
Anogra rhizomata 

A. coronopifolia 

Gaura parviflora 

G. coccinea 

G. glabra 

Asclepias speciosa 
Lithospermum canescens 


Onosmodium occidentale 


' Verbena bracteosa 


V. ambrosifolia 
Salvia lanceolata 


Physalis lanceolata 


[162 


163] 


ii, 


FLORA OF BOULDER, COLORADO 


P. Virginiana 
Androcera rostrata 
Pentstemon unilateralis 
Gerardia Besseyana 
Grindelia serrulata 

G. perennis 
Oligoneuron canescens 
Aster commutatus 


Erigeron divergens 


Aridae. 

Schizachyrium scoparium 
Andropogon chrysocomus 
Chrysopogon nutans 
Aristida fasciculata 

A. longiseta 

Stipa comata 

S. viridula 

S. Nelsonii 
Muhlenbergia cuspidata 
Sporobolus airoides 

S. cryptandrus 

S. heterolepis 

S. asperifolius 
Agrostis hiemalis 
Merathrepta spicata 
Bouteloua hirsuta 

B. oligostachya 
Munroa squarrosa 
Eragrostis pectinacea 
Poa crocata 


P. juncifolia 


E. flagellaris 

Ratibida columnaris 
Helianthus lenticularis 
H. grosseserratus 
Gaillardia aristata 
Artemisia gnaphalodes 
Cirsium megacephalum 
C. ochrocentrum 


Agoseris glauca 


P. confusa 

Festuca octoflora 
Agropyron molle 
Hordeum pusillum 
Sitanion longifolium 
S. brevifolium 
Elymus brachystachys 
Carex Douglasii 

C. siccata 

C. straminea 

Yucca glauca 
Eriogonum effusum 
Paronychia Jamesii 
Allionia linearis 
Delphinium Penardii 
Stanleya glauca 
Xylophacos Shortianus 
Amorpha nana 
Psoralea tenuiflora 


Linum Lewisii 


15 


16 


UNIVERSITY OF MISSOURI STUDIES 


Chamaesyce Fendleri 

C. serpyllifolia 
Tithymalus Arkansanus 
Acerates viridiflora 

A. angustifolia 

Asclepias pumila 
Evolvulus Nuttallianus 
Lappula occidentalis 

L. cupulata 

Cryptanthe crassisepala 
Lithospermum breviflorum 
Monarda pectinata 
Hedeoma hispida 
Physalis rotundata 
Quincula lobata 
Pentstemon secundiflorus 
P. gracilis 

P. humilis 

Orthocarpus luteus 
Plantago Purshii 
Ambrosia psilostachya 
Gaertneria tomentosa 
Kuhnia Hitchcockii 

K. glutinosa 

Laciniaria punctata 

e. Alkalinae. 


Gutierrezia longifolia 
G. scoparia 
Chrysopsis villosa 

C. hispida 


[164 


Chrysothamnus pulcherrimus 


Sideranthus annuus 


' S. spinulosus 


Solidago glaberrima 
S. nana 
Townsendia exscapa 
Aster exiguus 

A. crassulus 

A. polycephalus 
Erigeron ramosus 
Wyomingia cana 
Helianthus petiolaris 
H. pumilus 
Thelesperma gracile 
Boebera papposa 
Artemisia dracunculoides 
A. Brittonnii 
Senecio Riddellii 

S. multicapitatus 

S. spartioides 


Cirsium undulatum 


The best examples of the Flora of the 


Alkali Flats occur in the vicinity of Owen’s lake and Boulder 


lake, where large tracts are white as snow with alkali. 


The 


plants are mainly succulent chenopods, but a few other plants 


also occur. The following species are characteristic: 


Distichlis stricta 


Puccinellia airoides 


Polygonum buxiforme 


Chenopodium rubrum 


165] FLORA OF BOULDER, COLORADO 17 


Monolepis Nuttalliana Iva axillaris 

Atriplex carnosa Chrysothamnus graveolens 
A. argentea C. pulcherrimus 

Dondia depressa Solidago gilvocanescens 


Sophora sericea 


B. MENSALES* 


The Flora of the Mesas is a transitional flora; the mesas 
have most of the plants of the plains and in addition many of 
the plants of the foot-hills. There are, however, a considerable 
number of species, which are peculiar to the mesas. These 
mesas are flat tablelands rising abruptly a hundred feet or so 
above the plains in successive terraces. The altitude of the 
plains in Boulder County is from 5,000 to 5,500 feet. The 
lowest mesa, at an altitude of about 5,600 feet, has the 
flora of the plains, but at the next mesa, at an altitude of 5,700 
feet, the flora begins to change, and from then on to the foot 
of the crags, 6,000 feet, the plains plants gradually tend to 
disappear and the foot-hill flora to come in. The highest 
mesas are so filled with waste from landslips from the crags, 
that they may be said to be an integral part of the foot-hills. 
And so, too, the streams have made deep cafions through the 
mesas, the flora of which is not so very unlike that of the 
cafions of the foot-hills. West of Marshall there is a high bog 
on the mesa, but as its plants differ in no wise from the bog 
plants of the plains, it will be dismissed with this notice. 

Six plant-societies are to be found upon the mesas: a. The 
meadow (Pratenses), which differs little from the plains 
meadow, although certain mountain species, such as the Mari- 


*For a detailed account of the vegetation of the mesas, see the pa- 
pers by Dodds, Ramaley, and Robbins, Univ. of Colo. Studies, 6, 11-49. 


18 UNIVERSITY OF MISSOURI STUDIES | 166 


posa lily, the painted cups, and the wool-joints are present. b. 
The cactus mesa (Spinosae). c. The Yucca mesa (Ensi- 
formes). d. The wooded mesa (Sylvestres). e. The 
brush mesa (Arbustales). f. The mesa cafion (Vallicolae). 

a. Pratenses. The flora of the mesa meadow is com- 
posed of an admixture of plants both from the plains and the 


foot-hills. Typical plants are: 


Sorghastrum nutans 
Stipa comata 

S. viridula 
Bouteloua hirsuta 

B. oligostachya 
Atheropogon curtipendulus 
Koeleria cristata 

Poa triflora 

P. interior 

P. pseudopratensis 
P. juncifolia 

P. confusa 

Festuca octoflora 
Agropyron tenerum 
A. pseudorepens 
Elymus brachystachys 
E. villiflorus 

Carex marcida 
pratensis 
straminea 


. straminiformis 


@E@=@- Gro) 


. umbellata brevirostris 
Tradescantia Universitatis 


Yucca glauca 


Calochortus Gunnisonii 
Comandra pallida 
Eriogonum alatum 

E. flavum 

E. umbellatum 
Polygonum Douglasii 
Silene antirrhina 
Lychnis Drummondii 
Delphinium Penardii 
D. camporum 

D. Nelsonii 
Anemone cylindrica 
Pulsatilla hirsutissima 
Argemone intermedia 
Potentilla effusa 
Drymoceallis fissa 
Lupinus Plattensis 

L. decumbens 
Geoprumnon succulentum 
Astragalus nitidus 

A. goniatus 


. Pennsylvanica vespertina Tium Drummondii 


Aragallus Lambertii 
A. sericeus 


Psoralea tenuiflora 


167] 


FLORA OF BOULDER, COLORADO 


P. argophylla 
Geranium Fremontii 
Linum Lewisii 
Tithymalus philorus 
Nuttallia multiflora 

N. stricta 

Epilobium paniculatum 
Gayophytum intermedium 
Meriolix serrulata 
Gaura parviflora 

Gilia candida 

G. pinnatifida 

G. sinuata 

Collomia linearis 
Phacelia heterophylla 
Oreocarya virgata 
Mertensia linearis 

M. lanceolata 
Pentstemon unilateralis 
P. secundiflorus 


b. Spinosae. 


19 


P. gracilis 

P. humilis 

Castilleja linariaefolia 
Campanula petiolata 
Gutierrezia longifolia 

G. scoparia 

Chrysopsis resinolens 
Solidago pallida 
Townsendia grandiflora 
Rudbeckia flava 
Ratibida columnaris 
Helianthus subrhomboideus 
Gaillardia aristata 
Artemisia dracunculoides 
A. Forwoodii 

A. frigida 

A. Brittonii 

Senecio Plattensis 

S. Nelsonii 

S. Fendleri 


The vegetation of the cactus mesa con- 


sists of a few species of cacti, of the prickly Ceanothus Fend- 


leri, and a few other xerophytic plants and undershrubs. The 


principal cacti are: 


Echinocereus viridiflorus 
Opuntia mesacantha 
O. rhodantha 


c. Ensiformes. 


O. polyacantha 
O. fragilis 
O. Greenei 


The best example of the Yucca mesa 


occurs near the entrance of Bear Cafion. There the ground is 


practically denuded, and only sparse clumps of Yuccas and 


20 UNIVERSITY OF MISSOURI STUDIES [168 


bunch-grasses occupy the ground. The two species of im- 
portance are Yucca glauca and Eriocoma cuspidata. 

d. Sylvestres. A good example of the wooded mesa 
lies immediately back of the Chautauqua grounds. There the 
bull pine has descended from the foot-hills and taken posses- 
sion of the mesa. Besides the bull pine, Pinus scopulorum, 
the low juniper, Juniperus Sibirica, is of rare occurrence. 
Of herbs the most noteworthy is Arnica pedunculata, which 
is frequent under the pines. I found also only there Centun- 
culus minimus, perhaps the only known station of this plant in 
Colorado, since it is not included in Rydberg’s Flora of Colo- 
rado. It is growing with Linaria Canadensis, which is like- 
wise an eastern plant. 

e. Arbustales. The brush mesa assumes various forms. 
Ordinarily some cne species is in control. Occasionally it con- 
sists of various haws, as at the entrance of Gregory Cafion, 
or of a thicket of juneberries, wax-currants, and skunk-bushes. 
South of Bluebell Cafion is a mesa covered with the peculiar 
mountain mahogany. Wild cherries and plums are frequent, 
and the hackberry occasional in these shrubby thickets. The 
principal species are: 


Celtis reticulata C. erythropoda 

Ribes pumilum Prunus Americana 

R. longifolium P. melanocarpa 
Oreobatus deliciosus Toxicodendron Rydbergii 
Batidaea laetissima Schmaltzia trilobata 


Cercocarpus parvifolium Ceanothus Fendleri 


Rosa Sayi C. mollissimus 
Amelanchier oreophila C. subsericeus 
Crataegus occidentalis Symphoricarpos occidentalis 


C. Coloradensis 


169] FLORA OF BOULDER, COLORADO aI 


Of herbs the vetches and vetchlings are the most im- 
portant: 


Vicia sparsifolia V. producta 
V. dissitifolia Lathyrus leucanthus 
V. oregana 


f. Vallicolae. The mesa cafion has a bewildering di- 
versity of floral elements, now consisting of thickets of haws 
with extremely vicious thorns, wild briers, the long-beaked 
hazel, and dwarf maples, now with a fontinal vegetation 
strikingly like our own Carolinian. One little gulch at the 
base of Flagstaff Hill has a vegetation composed quite wholly 
of eastern plants. Here occur Phragmites Phragmites, Sani- 
cula Marilandica, Steironema ciliatum, Veronica Americana, 
Eupatorium maculatum, and a form of Apios Apios, the last 
of which was not known to occur west of eastern Kansas 
previous to this collection. Since the streams have cut deeply 
into the surface, the cafion of the mesa resembles greatly the 
cafion of the foot-hills. There are riparian, rupestrine, clivose, 
and fontinal elements compressed within the space of a few 
feet. Mountain forms follow these streams often for some 
distance into the plain. And yet the facies of the flora is dis- 
tinctly eastern. Here are haws, hazels, maples, grapes, wild 
cherries, willows, cottonwoods, dogwoods, nine-barks. The 
herbs, too, have an eastern look—sweet cicelies, false Solo- 
mon’s seals, water-leafs, fragile ferns, avens, bog-orchids. It 
is true that a closer examination reveals the fact that many of 
these plants belong to species which are strictly western, yet the 
fact remains that there is little in the vegetation that impresses 
as strange, one who is familiar only with the eastern flora, 
while all about him in plain, mesa, foot-hill, and mountain are 
utterly unfamiliar types of vegetation. So in this narrow 


22 UNIVERSITY OF MISSOURI STUDIES 


[170 


zone of gulches and cafions is alone to be found the exact 
analogue of the Carolinian flora. The following are the im- 


portant species: 


Filix fragilis 

Phragmites Phragmites 
Carex festiva 

Allium Nuttallii 

A. Geyeri 

A. reticulatum 

Vagnera stellata 

Nemexia lasioneuron 
Limnorchis viridiflora 

L. laxiflora 

Corallorrhiza Corallorrhiza 
Populus Sargentii 

P. acuminata 

P. angustifolia 

Corylus rostrata 

Parietaria Pennsylvanica 
12), 
Humulus lupulus Neo- 


obtusa 


Mexicanus 
Cerastium occidentale 
Ranunculus abortivus 
Thalictrum purpurascens 
Sedum stenopetalum 
Heuchera parvifolia 
Ribes pumilum 
R. longifolium 
Opulaster intermedius 


O. Ramaleyi 


Oreobatus deliciosus 

Potentilla Pennsylvanica 
strigosa 

Geum scopulorum 

Rosa Sayi 

Amelanchier oreophila 

Crataegus Coloradensis 

C. occidentalis 

C. erythropoda 

C. Doddsii 

C. Coloradoides 

Prunus Americana 

P. Pennsylvanica 

P. melanocarpa 

Thermopsis divaricarpa 

Amorpha fruticosa 

Vicia oregana 

V. producta 

Apios Apios Boulderensis 

Geranium Parryi 

Toxicodendron Rydbergii 

Acer glabrum 

Rulac Negundo 

R. Texanum 

Vitis vulpina 

Pesedera vitacea 

Calceolaria linearis 


Circaea alpina 


171] FLORA OF BOULDER, COLORADO 23 


Aralia nudicaulis Mertensia lanceolata 

Svida stolonifera Dracocephalum parviflorum 
Sanicula Marilandica Mimulus Halli 
Osmorrhiza longistylis Veronica Americana 

O. obtusa Galium Vaillantii 
Ligusticum Porteri G. boreale 

Heracleum lanatum G. flaviflorum 

Steironema ciliatum Viburnum Lentago 
Collomia linearis Ambrosia trifida 
Hydrophyllum Fendleri Eupatorium maculatum 


Macrocalyx Nyctelea 


Cc. SUBMONTANAE 


The Foot-hill Flora covers not only the true foot-hills of 
the sandstone crags, but also the lower part of the mountain 
plateau. The flora is rich but monotonous. In most places the 
vegetation is thin; it is mainly a forest, but the trees are 
strewn but sparsely over the steep slopes. The amount of 
naked rock is very great. The altitude ranges from 5,800 to 
8,600 feet. Some of the main streams, such as Boulder creek, 
have cut down to about 5,500 feet. Directly west of Boulder, 
and lying between Boulder and Gregory Cajfions, is Flagstaff 
Hill with an altitude of about 6,500 feet. Southwest of Boulder 
is Green Mountain, lying between Gregory and Bear Cafions 
and having an altitude of 8,100 feet. South of Green Moun- 
tain is Bear Mountain, which attains a height of 8,600 feet, 
and is the loftiest peak in the first range of foot-hills in the 
vicinity of Boulder. 

The Foot-hill Flora merges rather abruptly into that of the 
mesas at the foot of the crags, and melts insensibly into the 
Subalpine Flora as it approaches the Main Range. It reaches 
its maximum development between an altitude of 6,500 and 


24 UNIVERSITY OF MISSOURI STUDIES [172 


7,000 feet. Below 6,500 feet there occur still many species be- 
longing to the Great Plains; above 7,000 feet there is a rapid 
thinning out of species, and subalpine species become occas- 
ional, although it is not rare for such species in cold situations 
to go down to the 6,000 foot level. Yet at the summit of 
Green Mountain (8,100 feet) I found the flora still consisting in 
the main of the genuine foot-hill species. The Foot-hill Flora 
may be gathered into four main societies: a. The wooded 
slope (Sylvestres). b. The foot-hill meadow (Pratenses). 
c. The foot-hill cafion (Vallicolae). d. The crevice and 
cranny vegetation of the rocks (Rimosae). 


a. Sylvestres.* The wooded slope society consists quite 
purely of bull pine and Douglas spruce, with now and then 
a few trees of other species of pine, and spruce, and fir. The 
trees stand usually at wide intervals, oftenest in rows, where 
some fault in the rock enables them to get a secure foothold. 
Occasionally on the north slopes, which are moister than any 
other, the trees stand in such close formation that it is almost 
impossible to make one’s way through them. Ordinarily it is 
the Douglas spruce that behaves in this way, since the bull 


pine prefers a more open formation. Often two rather dis- 


*Young (Bot. Gaz. 44, 321-352) finds the following forest associa- 
tions about Boulder: 1. Populus occidentalis—Salix fluviatilis, riparian 
upon the plains, but extending somewhat up the cafions. 2. Populus 
angustifolia—Salix Nuttallii, riparian in the foothills. 3. Pinus scop u 
lorum, sylvan on the dry slopes of the foothills. 4. Pinus Murrayana, 
sylvan on the dry mountain sides. 5. Apinus flexilis, dry mountain 
slopes up to timber line. 6. Pseudotsuga—Picea Engelmanni, lower 
cafions (submontane and montane). 7. Picea Engelmanni—-Abies 
lasiocarpa, upper cafions (high montane and subalpine to timber line). 
8. Aspen society, throughout (north slopes at low altitudes, all slopes 
higher altitudes). 


173] 


FLORA OF BOULDER, COLORADO 25 


tinct forms of forest are discernible, the one of bull pine, the 


other of Douglas spruce; at other times the two are mixed. 


The Douglas spruce is at its best in moist ravines, and ascends 


to timber-line on the mountains, while the bull pine seldom gets 


above 9,000 feet. The following are characteristic species: 


Botrychium Virginianum 
Pteridium aquilinum 
pubescens 
Pinus scopulorum 
P. Murrayana (rare) 
Apinus flexilis (rare) 
Picea Parryana 
Pseudotsuga mucronata 
Oryzopsis micrantha 
Muhlenbergia gracilis 
Melica bella 
Carex Deweyana 
Toxicoscordion falcatum 
Vagnera racemosa 
V. amplexicaulis 
Piperia Unalaschensis 
Peramium ophioides 
Populus tremuloides 
Betula papyrifera 
Andrewsii 
Chenopodium Fremontii 
Blitum capitatum 
Actaea arguta 
A. arguta eburnea 
Aquilegia coerulea (rare) 


Anemone globosa 


Atragene occidentalis 
Ranunculus abortivus 

R. micrantha 
Cyrtorrhyncha ranunculina 
Odostemon repens 
Erysimum Cockerellianum 
Bosseckia parviflora 
Oreobatus deliciosus 
Batidaea laetissima 
Potentilla Hippiana 
Amelanchier oreophila 
Sorbus scopulina (rare) 
Thermopsis divaricarpa 
T. pinetorum 

Tium alpinum 
Homalobus tenella 

H. decumbens 

Lathyrus leucanthus 
Xanthoxalis stricta 
Ceanothus velutinus 
Viola vallicola 

V. Canadensis Rydbergit 
Lepargyraea Canadensis 
Chamaenerion angustifolium 


Harbouria trachypleura 


UNIVERSITY OF MISSOURI STUDIES 


Aletes obovata 

A. acaulis 

Ligusticum Porteri 
Cogswellia Grayi 
Pterospora Andromedea 
Chimaphila umbellata 
Pyrola secunda 

P. uliginosa 
Arctostaphylos Uva-ursi 
Frasera stenosepala 
Apocynum scopulorum 
Phlox depressa 
Lappula floribunda 

L. angustata 
Scutellaria Brittoni 


Dracocephalum parviflorum 


Prunella vulgaris 
Monarda menthaefolia 
M. mollis 
Scrophularia occidentalis 
Pentstemon oreophilus 
P. alpinus 

P. humilis 

Castilleja linariaefolia 
C. cognata 

C. integra 

C. confusa 

Galium boreale 

G. triflorum 
Sambucus microbotrys 


Linnaea Americana 


Campanula petiolata 
Specularia perfoliata 
Laciniaria ligulistylis 
Oreochrysum Parryi 
Solidago oreophila 
S. viscidula 

S. radulina 

S. trinervata 
Eucephalus glaucus 
Aster polycephalus 
A. laevis 

A. Porteri 
Machaeranthera Bigelovii 
M. aspera 

Erigeron salicinus 

E. macranthus 
Antennaria oxyphylla 
Anaphalis subalpina 
Gnaphalium Wrightii 
Rudbeckia flava 
Achillaea lanulosa 
Arnica cordifolia 
Senecio salicinus 

S. Nelsonii 

S. Fendleri 

Cirsium Americanum 
C. erosum 

Crepis petiolata 

C. angustata 
Hieracium albiflorum 
H. Fendleri 


Symphoricarpos occidentalis Agoseris rostrata 


[174 


175] FLORA OF BOULDER, COLORADO 27 


b. Pratenses. The foot-hill meadow is not very unlike 
the mesa meadow; the species are in part the same, but there 
is no sharp line between the flora of the foot-hill forest and the 
foot-hill meadow, on account of the openness of the former. 
Only where the forest is dense enough to have a truly sylvan 
floor, are the light-loving plants absent. The foot-hill meadow 
society includes various grasses and certain herbs, such as 
painted-cups, fleabanes, Mariposa lilies, anemones, gaillardias, 
and the like. The following are the characteristic grasses and 


sedges: 
Stipa comata B. Pumpellianus 
S. viridula Agropyron Vaseyi 
S. Nelsonii A. Richardsoni 
S. Scribneri A. violaceum 


Calamagrostis purpurascens A. pseudorepens 


Koeleria cristata Elymus ambiguus 
Poa platyphylla E. strigosus 

P. crocata E. villiflorus 

P. longiligula Carex marcida 

P. longipedunculata C. Douglasii 
Festuca brachyphylla C. festiva 

F. confinis C. petasata 
Bromus lanatipes C. pratensis 

B. Richardsonii C. siccata 


c. WVallicolae. The foot-hill cafion society consists of 
dense thickets of hazel, dwarf birch, willows, dogwoods, al- 
ders, and the like. About springs and along small rills is 
found a brief fontinal vegetation, the most delicate of all the 
plant-groups—mosses, liverworts, ferns, tway-blades, adder’s- 
mouths, twisted-stalks, mountain lilies, shooting stars, cresses, 
sedges, and bog-orchids. The foot-hill cafion flora differs from 


28 UNIVERSITY OF MISSOURI STUDIES [176 


the mesa cafion principally in the absence of the chaparral ele- 
ment, the haws and wild plums being absent. Most of the re- 
maining shrubs and arborescent plants are identical—the 
dwarf maple, the birch, the dogwood, the beaked hazel, the 
wild cherries, and the cottonwoods. The following are the 


chief species: 


Equisetum laevigatum 

Cinna latifolia 

Avena striata 

Eatonia Pennsylvanica 

Poa triflora 

Panicularia nervata 

P. Holmii 

Carex tenella 

C. Hoodii 

C. festiva 

C. aurea 

Juncus Balticus montanus 

Juncoides parviflorum 

Allium Geyeri 

A. reticulatum 

Lilium Philadelphicum 
montanum 

Vagnera stellata 

Streptopus amplexifolius 

Disporum majus 

Limnorchis viridiflora 

L. laxiflora 

Ibidium Romanzoffanum 
strictum 

Ophrys borealis 

Acroanthes monophylla 


Populus Sargentii 

P. angustifolia 

Salix caudata 

S. perrostrata 

S. Bebbiana 

Betula fontinalis 
Alnus tenuifolia 
Corylus rostrata 
Crunocallis Chamissoi 
Clematis ligusticifolia 
Ranunculus reptans 
R. abortivus 
Thalictrum Fendleri 
Thlaspi Nuttallii 

T. Coloradense 
Draba streptocarpa 
Ribes Purpusi 
Opulaster intermedius 
O. Ramaleyi 

O. glabratus 

O. monogynus 
Rubus triflorus 
Fragaria bracteata 
Geum strictum 

G. Oregonense 

Rosa Macounii 


177] FLORA OF BOULDER, COLORADO 29 


R. Fendleri Mertensia punctata 
R. aciculata M. viridula 

R. Maximiliani M. lanceolata 
Prunus Pennsylvanica Collinsia tenella 

P. melanocarpa Mimulus floribundus 
Geranium Richardsonii Veronica Americana 
Acer glabrum Distegia involucrata 
Epilobium adenocaulon Adoxa Moschatellina 
Circaea alpina Solidago Pitcheri 
Aralia nudicaulis S. polyphylla 

Svida stolonifera Gymnolomia multiflora 
Heracleum lanatum Rudbeckia laciniata 
Angelica ampla Bahia dissecta 
Dodecatheon radicatum Senecio hydrophyllus 
D. sinuatum S. perplexus 


Amarella scopulorum 


d. Rimosae. The crevice and cranny vegetation of the 
rocks consists of lichens, rupestrine ferns, alum roots, orpines, 
selaginellas, and many shrubs, such as the Jamesia, the wax- 
currant, juneberries, flowering raspberries, salmonberries, 
roses, and gooseberries. The Rocky Mountain red cedar 
stands often in grotesquely gnarled and twisted forms at 
the verges of the crags. It mav be remarked that this flora 
is of prime importance, since so large a portion of the region 
‘consists of naked rock. In fact the foot-hill flora in general 
is more or less rupestrine in character. There is gathered here 


only the strictly rock-loving vegetation. These are typical 


species : 
Polypodium hesperium W. oregana 
Dryopteris Filix-mas Filix fragilis 


Woodsia scopulina Cryptogramma acrostichoides 


30 UNIVERSITY OF MISSOURI STUDIES 


Cheilanthes Féei ~ 

C. Fendleri 

Asplenium Trichomanes 
A. Andrewsii 

Belvisia septentrionalis 
Selaginella Underwoodii 
Sabina scopulorum 
Parietaria Pennsylvanica 
Talinum parviflorum 
Physaria didymocarpa 
P. floribunda 

Sedum stenopetalum 
Heuchera bracteata 
Micranthes rhomboidea 


[178 


Edwinia Americana 
Ribes Purpusi 

R. pumilum 
Oreobatus deliciosus 
Rosa melina 
Amelanchier oreophila 
Xylophacos Parryi 
Androsace puberulenta 
A. pinetorum 
Coleosanthus minor 

C. albicaulis 
Chrysopsis caudata 
Senecio Nelsonii 


S. longipetiolatus 


D. MONTANAE 


The Montane Flora begins at about the 8,000 foot level, 
though, as we have seen, on the isolated peaks of the first 
range of foot-hills the Foot-hill Flora still largely persists even 
The Montane Flora 
extends upward to the approximate altitude of 10,000 feet. 


to the summits, or some 600 feet higher. 
It is for the most part a forest of lodgepole pine. The zone 
includes the slopes of the main range below 10,000 feet, and 
also the higher portions of the adjacent mountain plateau. 
Some of its characteristic species, indeed, tend to spread 
throughout the mountain plateau, and in cold valleys may 
even go as low as 6,000 feet. The montane as also the 


subalpine slopes have abundant rainfall, showers occur- 


ring nearly every afternoon. At least this was true of the sum- 
mer of 1906. The ground is often boggy and springy, and 
cold with snow water. On north and east slopes the snow 


remains in the higher and deeper valleys till midsummer ; 


179] FLORA OF BOULDER, COLORADO 31 


hence the flowering season is short. In a period of about six 
weeks, from the middle of July to the first of September, the 
main part of the vegetation in these cool valleys is brought to 
perfection. Species, which on the mesas had bloomed before 
my arrival on the eighteenth of June, I found just in blossom 
at Eldora on the mountainsides August thirty-first. 

I saw too little of the Montane Flora, since I spent only 
six days in collections, where it occurs, to be able to separate 
it definitely into plant-societies. But the chief types as I saw it 
at Ward, Eldora, and Glacier lake, will be briefly described. 
In the Montane Subzone there are, perhaps, six tolerably 
distinct types of vegetation-association: a. The montane 
forest (Sylvales). b. The montane bog (Paludosae). c. 
The montane lake (Lacustres). d. The arid brush slope 
(Arbustales). e. The montane meadow (Pratenses).  f. 
The montane stream (Amnicolae). 


a. Sylvales. The montane sylva consists of a close for- 
est of lodgepole pine interspersed with some bull pine and 
Rocky Mountain white pine, as well as with the various 
spruces and firs. The spruces and firs occur principally in the 
valleys, while on the barren ridges, the pines assume a scrub- 
like form. On these ridges occur many peculiar species of 
dwarf herbs—golden rods, asters, fleabanes, cat’s-feet, actin- 
ellas, groundsels. A few of the more characteristic species of 


the montane sylva are the following: 


Pinus scopulorum Pseudotsuga mucronata 

P. Murrayana Abies lasiocarpa 

Apinus flexilis Calamagrostis purpurascens 
Picea Engelmanni Trisetum subspicatum — 


P. Parryana Avena striata 


32 


Poa longipedunculata 
Agropyron Arizonicum 
A. andinum 

A. violaceum 

Carex Geyeri 

Cytherea bulbosa 
Populus tremuloides 
Aquilegia coerulea 
Delphinium occidentalis 
Erysimum Cockerellianum 
Draba streptocarpa 

D. aurea 

Ribes lentum 
Potentilla concinna 
Fragaria glauca 
Thermopsis divaricarpa 
Tium alpinum 
Atelophragma elegans 
Aragallus deflexus 
Conioselinum scopulorum 
Eutoca sericea 
Pentstemon oreophilus 
P. alpinus 

Castilleja integra 

C. confusa 

C. lauta 

C. lancifolia 

C. sulphurea 
Pedicularis racemosa 
P. Grayi 


UNIVERSITY OF MISSOURI STUDIES 


[180 


Symphoricarpos oreophilus 
Chrysopsis Bakeri 
Oreochrysum Parryi 
Solidago decurnbens 

S. oreophila 
Eucephalus Engelmannii 
Aster Underwoodii 

A. Porteri 

A. Andrewsi1 

Erigeron multifidus 

. trifidus 

. glandulosus 

. superbus 

. macranthus 

. speciosus 


. subtrinervis 


esi coMes Ie eoIeo ime) 


. eximius 
Antennaria concinna 
A. parvifolia 

A. aprica 

Anaphalis subalpina 
Tetraneuris lanigera 
Artemisia silvicola 
Senecio pudicus 

S. lanatifolius 

S. ambrosioides 
Cirsium Coloradense 
Hieracium albiflorum 
Agoseris Leontodon 
A. humilis 


b. Paludosae. The montane bog is characterized by 


the presence of the quaking aspen and other Hudsonian plants. 


181] FLORA OF BOULDER, COLORADO 33 


The aspen, however, is not confined to the bogs, but forms 
groves in slight depressions throughout the mountains, and oc- 
curs on Green Mountain not much, if any, above 6,000 feet. 
The aspen occurs in the drier portions of the bogs along with 
other uliginose plants. The bog vegetation is very rich in 
species. A fine specimen of the montane bog is found just 
west of Eldora at an elevation of 8,600 feet. The following 


are characteristic species : 


Muhlenbergia simplex 
M. filiformis 

Phleum alpinum 
Cinna latifolia 
Trisetum montanum 
T. subspicatum 
Merathrepta intermedia 
Poa reflexa 

P. Vaseyana 

Carex canescens 

C. occidentalis 

C. ebenea 

C. Goodenovii 

C. utriculata 

Juncus Saximontanus 
Juncoides parviflorum 
Limnorchis stricta 

L. borealis 

Ibidium strictum 
Populus tremuloides 
Salix Scouleriana 

S. brachycarpa 

S. glaucops 

S. chlorophylla 


Betula glandulosa 


Rumex densiflorus 


Polygonum confertiflorum 


Alsine longifolia 
Aconitum Columbianum 
A. insigne 

A. ochroleucum 
Ranunculus cardiophyllus 
R. inamoenus 

R. micropetalus 

R. pedatifidus 
Pectianthia pentandra 
Micranthes arguta 
Parnassia fimbriata 
Dasiphora fruticosa 
Sidalcea candida 

Viola palustris 

V. pallens 

Epilobium adenocaulon 
E. rubescens 

E. anagallidifolium 
Oxypolis Fendleri 
Dodecatheon philoscia 
Anthopogon barbellatus 


34 UNIVERSITY OF MISSOURI STUDIES [182 


Amarella plebeja E. jucundus 
Pleurogyne fontana Gnaphalium palustre 
Allocarya scopulorum Artemisia biennis 
Mimulus puberulus Senecio triangularis 
Veronica Wormskjoldii S. admirabilis — 


Elephantella Groenlandica S. cymbalarioides 
Erigeron minor Crepis denticulata 
E. lonchophyllus 


c. Lacustres.* The montane lacustrine and marginal, 
vegetation I saw only at Glacier lake. Besides some aquatic 
grasses, notably Deschampsia caespitosa, there occur the float- 
ing bur-reed, Sparganium angustifolium, the white water- 
crowfoot, Batrachium flaccidum, and the aquatic mudwort, 
Limosella aquatica. The yellow pond-lily, Nymphaea poly- 
sepala, grows also in some of these high lakes. 

d. Arbustales. The arid brush slope vegetation consists 
quite wholly of the true sage-brush, Artemisia tridentata. This 
community is rare in the region, and I have seen it only be- 
tween Glacier lake and Eldora near Bluebird mine. 

e. Pratenses. The montane meadow is truly a paradise 
of flowers. It is not uncommon to see acre upon acre of 
meadow glorious with purple and blue and red and yellow and 
white and scarlet. Never have I seen flowers anywhere else 
in such profusion nor with such gorgeous hues—monkshoods, 
larkspurs, louseworts, milk-vetches, locoweeds, squawweeds, 
death-camasses, grasses, rushes, sedges, and blue-eyed grasses. 
The following species are typical: 


*For a detailed account of the vegetation of these high Jakes, con- 
sult the paper by Ramaley and Robbins on Redrock lake near Ward 
(Univ. of Colo. Studies, 6, 133-168). 


183] 


FLORA OF BOULDER, COLORADO 


Muhlenbergia Richardsonis Anemone globosa 


M. simplex 

Phleum alpinum 
Agrostis asperifolia 
Deschampsia caespitosa 
Poa pratensis 

P. reflexa 

P. leptocoma 

P. interior 

P. Vaseyana 
Festuca rubra 
Carex occidentalis 
Hoodii 

festiva 

ebenea 


petasata 


AAP asa 


lanuginosa 
Anticlea Coloradensis 
Juncus longistylis 

J. parous 

J. Saximontanus 
Sisyrinchium alpestre 
S. angustifolium 
Delphinium occidentale 
Aconitum porrectum 
A. Columbianum 

A. insigne 

A. ochroleucum 


There is, of course, 


Rupestres, 


able to give an adequate account of it. 


a montane 


Clementsia rhodantha 
Potentilla pulcherrima 
P. Hippiana 

P. propinqua 
Dasiphora fruticosa 
Geum Oregonense 
Erythrocoma ciliata 
Tium alpinum 
Homalobus tenellus 
Aragallus Lambertii 
A. patens 

A. Richardsonii 
Geranium Richardsonii 
Sidalcea candida 
Dodecatheon radicatum 
Castilleja sulphurea 
Elephantella Groenlandica 
Pedicularis Grayi 
Valeriana ceratophylla 
Erigeron Smithi 
Arnica subplumosa 
Senecio scopulinus 

S. chloranthus 

S. pseudaureus 
Agoseris parviflora 

A. laciniata 

A. humilis 


rupestrine 


35 


society, 
but I am too little acquainted with it to be 


I, however, noted the 


36 UNIVERSITY OF MISSOURI STUDIES [184 


austromontane saxifrage, Leptasea austromontana, and the 
glandular phacelia, Phacelia glandulosa. There is also a brief 
‘campestrian vegetation about Eldora, reproducing, in other 
species, the facies of the Great Plains, Campestres; 
I may instance as species: Grindelia subalpina, G. Eldorae, 
Chrysothamnus Parryi, and C. elegans. 

f. Amnicolae. The montane stream vegetation is seen 
at its best about small rills. Along the larger streams it as- 
sumes a typical riparian aspect, much like that of the canon 
society of the foot-hills along the large streams. Since the 
water in these streams is very cold inasmuch as they are fed 
from the wasting snows of the alpine valleys, the montane 
vegetation can scarcely be distinguished from the true sub- 
alpine vegetation of the streams. The list of species will, 
therefore, be deferred until the subalpine stream vegetation 


is reached. 


E. SUBALPESTRES 


The Subalpine zone extends from about the 10000 foot 
level to timberline, and hence coincides with the upper slopes 
of the Main Range. It is in the main a forest of Engelmann 
spruce, with occasional high meadows and bogs. Lakes, too, 
are numerous. 

I have personal knowledge of only two formations: a. 
The subalpine forest (Sylvales). b. The subalpine stream 
(Amnicolae). 

a. Ses.lval. The subalpine forest consists mainly of 
Engelmann spruce, Picea Engelmanni, and balsam fir,Abies 
lasiocarpa. I have but a very slight knowledge of the herbs 
characterizing this formation, but I noticed along the Arapahoe 


Trail the following species, which I had not seen in the mon- 


185 | FLORA OF BOULDER, COLORADO 37 


tane forest: Eriogonum subalpinum, Arnica Parryt, and Sene- 
cio atratus. A large number of the montane sylvan species 
were observed. 

b. Amnicolae. The subalpine stream vegetation is very 
luxuriant. It has on the one hand a very close affinity with 
the montane stream vegetation, and on the other with that of 
the wet alpine tundra. Not only does the snow linger late in 
these high valleys, the water of the streams is also very cold. 


In the list that follows the montane species are included as 


well: 


Poa platyphylla 

P. alpina 

Carex Goodenovii 
Populus balsamifera 
P. angustifolia 

Salix caudata 

S. Scouleriana 
Betula fontinalis 
Alnus tenuifolia 
Bistorta bistortioides 
Alsine Baicalensis 
Caltha leptosepala 
Trollius albiflorus 
Anemone Canadensis 
Ranunculus reptans 
R. inamoenus 


R. micropetalus 


Cardamine cordifolia 
C. incana 

Clementsia rhodantha 
Pectianthia pentandra 
Micranthes arguta 
Parnassia fimbriata 
Sidalcea candida 
Oxypolis Fendleri 
Primula Parryi 
Swertia palustris 
Polemonium robustum 
Mertensia polyphylla 
Mimulus Langsdorfii 
M. puberulus 
Helianthella quinquenervis 


Senecio triangularis 


I am almost wholly unacquainted with the remaining sub- 


alpine formations, such as the lacustrine, palustrous, rupes- 


trine, the subalpine summit and high ridge floras. I saw a 


38 UNIVERSITY OF MISSOURI STUDIES [186 


little of these at Ward and on the high slopes'above Bloomer- 
ville, and on Arapahoe Peak just below timberline, but I am 


unable to give any clear account of the vegetation.* 


F. ALPESTRES}+ 


Between 11,000 and 12,000 feet tree-growth ceases ab- 
ruptly. The spruces and firs bend and hug the ground. The 
willows branch and fork underground and rise to the height 
of but a few inches. The precise altitude of the timberline 
depends somewhat on the exposure, and differs, therefore, 
from peak to peak, but 11,500 feet is, perhaps, on an average 
the lower limit of the alpine zone. I am acquainted with this 
zone only on Arapahoe Peak, where I spent one day, Septem- 
ber first, and collected some 110 species, most of them above 
timberline. The total number of species known to reach an 
altitude of 12,000 feet, or above, in Colorado is 386.4 

The alpine flora may be conveniently gathered into two 
societies: a. The wet alpine tundra (Tundrales). b. The 
dry rock-desert (Alpinae) of the summits. 

a. Tundrales. The wet tundra occupies the region of 
cold water-soaked soil. The water from the wasting snows 


collects in depressions, streams are formed, and along these the 


*T refer the reader to the excellent paper on Redrock lake near 
Ward, by Ramaley and Robbins (Univ. of Colo. Studies, 6, 133-168). 


+Consult for the Alpine Flora Cooper’s Alpine vegetation in the vi- 
cinity of Long’s Peak, Colorado (Bot. Gaz., 45, 319-337). He recog- 
nizes three plant formations: 1. The dry meadow. 2. The wet mead- 
ow. 3. The Krummbholtz. The latter, while striking enough, is rather 
but the upper level of the spruce forest, striving to persist in Alpine con- 


ditions. 


{For a list of these see the article by Cockerell on the Alpine Flora 
of Colorado (Am, Nat., 40, 86-873). 


187] FLORA OF BOULDER, COLORADO 39 


vegetation clings. Often the streams flow concealed under the 
dwarf spruces and firs, their existence there being known 
only by their roaring underneath. Parry’s primrose, saxi- 
frages, globeflowers, white cowslips, gentians, red elephants, 
several sedges, grasses, and rushes are examples of the wet 
tundra vegetation. The Krummboltz of spruce and fir at the 
timberline consists chiefly of Engelmann spruce, Picea Engel- 
manm, and balsam fir, Abies lasiocarpa. The wet tundra con- 
tinues down to the lower edge of the alpine zone, whence it de- 
scends and coalesces with the subalpine stream vegetation. 


The following are characteristic species: 


Lycopodium annetinum 
Picea Engelmanni 
Abies lasiocarpa 
Alopecurus occidentalis 
Trisetum majus 

Poa reflexa 

P. leptocoma 

P. alpicola 

P. alpina 

Carex festiva 

C. ebenea 

C. bella 

Juncus Drummondii 
Juncoides spicatum 
Salix glaucops 

S. chlorophylla 

Bistorta bistortioides 

B. vivipara 

Alsine Baicalensis 
Caltha leptosepala 


Trollius albiflorus 

Ranunculus pedatifidus 

R. alpeophilus 

Thlaspi Coloradense 

Draba Fladnizensis 

Clementsia rhodantha 

Pectianthia pentandra 

Saxifraga debilis 

Micranthes arguta 

Viola Canadensis Neo- 
Mexicani 

Angelica Grayi 

Pseudocymopterus 
tenuifolius 

Kalmia microphylla 

Primula Parryi 

Androsace subumbellata 

A. diffusa 

Anthopogon elegans 

A. barbellatus 


40 UNIVERSITY OF MISSOURI STUDIES [188 


Amarella monantha Erigeron jucundus 
A. plebeja Holmii E. salsuginosus 
Swertia palustris E. superbus 
Mertensia polyphylla Senecio carthamoides 
Veronica Wormskjoldia S. blitoides 
Castilleja Arapahoensis S. pseudaureus 


Elephantella Groenlandica Hieracium gracile 


Pedicularis Parryi 


b. Alpinae. The dry rock-desert lies mingled with or 
above the wet tundra and extends to the summit, wherever there 
is soil not covered with snow. The vegetation suffers from ex- 
treme exposure, and grows close to the ground, seldom, unless 
sheltered by rocks, rising more than an inch or two in height. 
In sheltered places under rocks, even at this extreme altitude, 
I found several beautiful clusters of the blue columbine, the 
state flower of Colorado, with stems twelve to eighteen inches 
high, and with blossoms two inches across. The wooly-headed 
thistle, too, was found of the same height. But in general 
the vegetation is much dwarfed. Next to the wet tundra the 
Krummholtz of spruce and fir still persists, under which I 
detected some fine specimens of club-moss; but farther up 
there is no shrubby vegetation except the underground wil- 
lows. The vegetation grows in little rounded tussocks, and 
consists of the alpine catch-fly, rock-primrose scarcely half 
an inch high, sibbaldia, dryas, alpine clovers, dwarf sedges, 
grasses, and rushes, and, last of all, the little yellow saxi- 
frages and the snowflowers, which are often blossoming at the 
snow-line. Now and then on the high exposed ridges the 
beautiful rydbergia rises five or six inches above the mountain 
turf, its stems and leaves and large yellow flowers swathed 
in dense wool. For what must be the tribulations of this 


189 | 


alpine vegetation at the line of perpetual snow, with the alter- 


FLORA OF BOULDER, COLORADO 41 


nate freezing by night and thawing by day, with the keen light, 
And yet 
It shares the fascina- 


and bleak winds, and the fierce fury of the storms? 
the alpine flora is exquisitely beautiful. 
tion of its sublime mountain home, to which it lends the only 
touch of delicate grace. I append a list of alpine summit 
species, most of which I found on Arapahoe Peak or are known 


to grow there: 


\ 


Trisetum subspicatum 
Poa crocata 
P. rupicola 
P. Pattersonii 
P. longipedunculata 
Festuca brachyphylla 
F. minutiflora 
Agropyron violaceum 
Carex incurva 

. atrata 

. chalciolepis 

. rigida 


C 

C 

Cc 

C. chimaphila 
C. nigricans 
C. Pyrenaica 
C. rupestris 
C. obtusata 
C. capillaris 

Juncus triglumis 

J. castaneus 

Allium Pikeanum 
Erythronium parviflorum 


Lloydia serotina 


Salix pseudolapponicum 
S. petrophila 

S. Saximontana 
Monolepis Nuttalliana 
Oxyria digyna 
Paronychia pulvinata 
Claytonia megarrhiza 
Oreobroma pygmaea 
Arenaria Tweedyi 

A. Fendleri 
Alsinopsis propinqua 
A. obtusiloba 

Silene acaulis 
Aquilegia coerulea 
Ranunculus adoneus 
Thlaspi Nuttallii 

T. purpurascens 
Erysimum nivale 

E. Cockerellianum 
Draba crassifolia 

D. cana 

D. streptocarpa 

D. luteola 


UNIVERSITY OF MISSOURI STUDIES 


D. aureiformis 

D. aurea 

D. decumbens 

Sedum stenopetalum 
Heuchera Hallii 

H. parvifolia 
Micranthes rhomboidea 
Leptasea chrysantha 
L. austromontana 

L. flagellaris 
Potentilla dissecta 
Sibbaldia procumbens 
Erythrocoma ciliata 
Acomastylis turbinata 
A. Arapahoensis 

Dryas octopetala 
Amelanchier polycarpa 
Trifolium lividum 

T. dasyphyllum 
Epilobium anagallidifolium 
Vaccinium scoparium 
Primula angustifolia 
P. Parryi 
Dasystephana Romanzovii 
D. Parryi 
Polemonium scopulinum 
P. delicatum 

P. Brandegeet: 

Eutoca sericea 
Mertensia alpina 

M. perplexa 


Pentstemon glaucus 
stenosepalus 

Chionophila Jamesii 

Besseya alpina 

Castilleja occidentalis 

Pedicularis scopulorum 

Campanula uniflora 

Tonestus pygmaeus 

Solidago decumbens 

Erigeron pinnatisectus 

E. multifidus 

E. melanocephalus 

E. simplex 

E. leucotrichus 

Antennaria media 

. umbrinella 

. imbricata 

. corymbosa 


aprica 


> > > > > 


. anaphaloides 
Tetraneuris lanigera 
Rydbergia grandiflora 
Artemisia spithamea 
Arnica platyphylla 
A. Parryi 

Senecio crassulus 

S. atratus 

S. crocatus 

Cirsium scopulorum 
C. griseum 

Crepis alpicola 


191 | FLORA OF BOULDER, COLORADO 43 
IV. SPECIAL CLASSES OF PLANTS 


Independent of the five great zones of vegetation are two 
special classes of plants: A. The saprophytic and parasi- 
tic plants (SAPROPHYTICALES ET PARASITI- 
CALES). B. The plants which largely owe their presence to 
human agency (ANTHROPOPHYTICALES). These 
consist of the various cultural plants, of weeds, and of es- 
capes. 


A. SAPROPHYTICALES ET PARASITICALES 


Besides the saprophytic and parasitic fungi there are a 
few phanerogams, which are destitute of chlorophyl and are 
true saprophytes or parasites. The following are known to 
occur in the region: 

Corallorrhiza Corallorrhiza (saprophytic in rich soil) 

C. multiflora (saprophytic in rich soil ) 

Razoumofskya Americana (parasitic on lodgepole pine) 

R. cryptopoda (parasitic on bull pine) 

Pterospora Andromedea (parasitic on the roots of bull 
pine) 

Cuscuta curta (parasitic on Iva xanthifolia and other 
coarse herbs) 

C. indecora (parasitic on Thermopsis pinetorum and other 
legumes ) 

Thalesia fasciculata (parasitic on Artemisia frigida and 
other Composites ) 

There are also a few root-parasites with green foliage, 
notably Comandra pallida, Gerardia Besseyana, and the Cas- 
tillejas. 

B. ANTHROPOPHYTICALES 


Only three kinds of anthropophytic plants need concern 
us here: a. Forage plants (Faenales), which have become 


44 UNIVERSITY OF MISSOURI STUDIES [192 


thoroughly naturalized. b. Weeds (Ruderales). c. Cul- 
tural and ornamental plants that have escaped (Fugitivae). 

a. Faenales. Most of the common forage grasses and 
clovers have become thoroughly established about Boulder. 
I have noted the following: 


Phleum pratense Festuca elatior 


Agrostis alba Lolium Italicum 
Dactylis glomerata Trifolium pratense 
T. repens 

T. hybridum 


Medica sativa 


Poa pratensis 

P. compressa 

P. trivialis 

b. Ruderales. In the appended list of weeds only those 
that have been introduced from elsewhere, or, if native, are 
also common weeds in many parts of the United States, have 
been included. However, many native species, such as the 
various gum-weeds and spurges, must often be bad weeds in 
cultivated grounds. But to do justice to the ruderal aspects 
of the native flora would require much special study, such as 
one is unable to make in the course of a few weeks, and es- 
pecially one who is unfamiliar with agriculture as carried on 
in Colorado. I noted the following weeds: 


Syntherisma sanguinale B. secalinus 


Panicum capillare 
Echinochloa Crus-galli 
Chaetochloa glauca 

C. viridis 

Cenchrus Carolinianus 
Avena fatua 
Eragrostis major 

Poa annua 


Bromus brizaeformis 


B. hordeaceus 

B. tectorum 

Rumex Acetosella 
R. crispus 

R. obtusifolius 
Polygonum erectum 
P. aviculare 
Persicaria Persicaria 


Tiniaria Convolvulus 


| FLORA OF BOULDER, COLORADO 


Chenopodium leptophyllum Mentha spicata 


C. album 

C. hybridum 

C. Botrys 

Salsola Tragus 
Amaranthus retroflexus 
A. blitoides 

A. graecizens 
Mollugo verticillata 
Portulaca oleracea 
P. retusa 

Alsine media 

Silene antirrhina 

S. noctiflora 
Vaccaria Vaccaria 
Thlaspi arvense 
Bursa Bursa-pastoris 
Sisymbrium officinale 
Brassica juncea 

B. nigra 


Camelina sativa 


Tridophyllum Monspeliensis 


Medicago Lupulina 
Melilotus alba 

M. officinale 
Erodium cicutarium 
Malva rotundifolia 
Pastinaca sativa 
Convolvulus arvensis 
Nepeta Cataria 
Glecoma hederacea 
Leonurus Cardiaca 


Physalis Virginiana 
P. heterophylla 
Datura Stramonium 
D. Tatula 
Verbascum Thapsus 
V. Blattaria 

Veronica serpyllifolia 
V. Byzantina 
Plantago major 

P. lanceolata 
Micrampelis lobata 
Iva xanthifolia 

I. axillaris 

Ambrosia trifida 

A. artemisifolia 

A. psilostachya 
Xanthium commune 
Erigeron ramosus 
Leptilon Canadense 
Helianthus petiolaris 
Bidens vulgata 
Boebera papposa 
Anthemis Cotula 
Tragopogon pratensis 
T. porrifolius 
Cichorium Intybus 
Taraxacum Taraxacum 
Lactuca integrata 
Sonchus arvense 


S. asper 


45 


UNIVERSITY OF MISSOURI STUDIES [194 


c. Fugitivae. I noted the following escapes: 


Chaetochloa Italica 
Avena sativa 
Triticum vulgare 
Hordeum sativum 
hexastichon 
Asparagus officinale 
Atriplex hortensis 
Saponaria officinalis 
Delphinium Ajacis 
Papaver Argemone 
Armoracia Armoracia 


Brassica campestris 
Koniga maritima 

Raphanus sativus 

Ribes vulgare 

Althaea rosea 

Carum Carvi 

Pharbitis purpurea 
Lycopsis arvensis 

Lycium vulgare 
Lycopersicon Lycopersicon 


V. BIBLIOGRAPHY. 


Allison, Edith M. Bibliography and history of Colorado botany. 
Univ. of Colo. Studies, 6, 51-76, 1908. 


Clements, Frederic E. Formation and succession herbaria. 
Univ. of Neb. Studies, 4, 329-355. 

Cockerell, T. D. A. The alpine flora of Colorado. Am. Nat., 
40, 861-873. 

Cooper, William S. Alpine vegetation in the vicinity of Long’s 
Peak, Colorado. Bot. Gaz., 45, 319-337. 

Dodds, Gideon S. Students of mesa and foothill vegetation, I. 
1. Geology and physiography of the mesas. Univ. of Colo. Studies, 
6, 11-19. 

Ramaley, Francis. Botanical opportunity in Colorado. Univ. 
of Colo. Studies, 6, 5-10. 

Ramaley, Francis. Botany of northeastern Larimer County, 
Colo. Univ. of Colo. Studies, 5, 119-131. 

Ramaley, Francis. Plants of the Florissant region in Colorado. 
Univ. of Colo. Studies, 3, 177-185. 


Ramaley, Francis. Remarks on some Northern Colorado plant 
communities with special reference to Boulder Park (Tolland, Col- 
orado). Univ. of Colo. Studies, 7, 223-236. 


Ramaley, Francis. The silva of Colorado, I. Trees of the Pine 
family in Colorado. Univ. of Colo. Studies, 4, 109-122. 


Ramaley, Francis. The silva of Colorado, IJ. The poplars, 
aspens, and cottonwoods. Univ. of Colo. Studies, 4, 187-197. 


Ramaley, Francis. The silva of Colorado, 888. Woody plants 
of Boulder County. Univ. of Colo. Studies, 5, 47-63. 


Ramaley, Francis. Studies of mesa and foothill vegetation, 
I. 2. Climatology of the mesas near Boulder. Univ. of Colo. Stud- 
ies, 6, 19-31. 


Ramaley, Francis. The University of Colorado mountain lab- 


oratory. Univ. of Colo. Studies, 7, 91-95. 
195] 47 


48 BIBLIOGRAPHY [196 


Ramaley, Francis, and Robbins, W. W. Ecological notes from 
North-Central Colorado. Univ. of Colo. Studies, 5, 111-117. 

Ramaley, Fancis, and Robbins, W. W. Studies in lake and 
streamside vegetation, I. Redrock lake near Ward, Colorado. Univ. 
of Colo. Studies, 6, 133-168. 

Robbins, W. W. Climatology and vegetation in Colorado. Bot. 
Gaz., 49, 256-280. 

Robbins, W. W. Studies in mesa and foothill vegetation, I. 4. 
Distribution of deciduous trees and shrubs on the mesas. Univ. 
of Colo. Studies, 6, 36-49. 

Robbins, W. W., and Dodds, G. S. Studies in mesna and foot- 
hill vegitation, I. 38. Distribution of conifers os the mesas. Univ. 
of Colo. Studies, 6, 31-36. 

Shantz, H. L. A biological study of the lakes of the Pike’s 
Peak region. Trans. Am. Micro. Soc., 27, 75-98. 

Shantz, H. L. A study of the vegetation of the mesa region 
east of Pike’s Peak. Bot. Gaz, 42, 16-47; 179-207. 

Young, R. T. Forest formations of Boulder County, Colorado. 
Bot. Gaz. 44, 321-352. 


FLORA OF BOULDER, COLORADO, 
AND VICINITY 


Subkingdom I. PTERIDOPHYTA, Fern-worts. 


Order 1. OPHIOGLOSSALES. 


Family 1. OPHIOGLOSSACEAE Presl. Adder’s-tongue 
family. 


1. BOTRYCHIUM Swartz. Moonwort. 


1. B, Virginianum (L.) Swartz. VIRGINIA GRAPE-FERN. 
Forested slopes of Green Mt., above 7000 ft.; very scarce, 
only two or three plants discovered (Daniels, 606).* 
Laprapor to British Cotumpia; FLroripA to TExas and 
WASHINGTON. 


Order 2. FILICALES. 


Family 2. POLYPODIACEAE R. Br. Polypody family. 
2. POLYPODIUM L. Potyropy. 


2. P. hesperlum Maxon. WESTERN POLYPODY. 


On a single rock in a cafion on the north slope of Green 
Mt., 7500 ft. (Daniels, 605). 

Montana to British CoLumBiA and WASHINGTON; COoLo- 
RADO to ARIZONA. 


3. DRYOPTERIS Adans. SHIELD-FERN. 


3. D. Filix-mas (L.) Schott  [Aspidiwm Filix-mas (L.) 
Swartz]. MALE-FERN. 

Summit of South Boulder Peak; Bear Cafion; high cafions 

of Green Mt.; Boulder Cafion near Falls; apparently quite 


* See preface for explanation of numbers. 


197] 49 


50 UNIVERSITY OF MISSOURI STUDIES [198 


evenly, but not abundantly distributed throughout in moist 
rocky cafions, 6000-8600 ft. (Daniels, 555). 

Nova Scotia and Micuicgan to ALaskA; NEw Mexico and 
CoLoRADo to CALIFORNIA. 


4, WOODSIA R. Br. 


4. W. scopulina D. C. Eaton. Ciirr Woopsta. 

The most abundant fern of the foot-hills and lower moun- 
tainsides, occurring wherever rocks are exposed to the sur- 
face, 5700-8100 ft. (Daniels, 156). 

Micuican to British CcLumBpia; COLORADO and ARIZONA 
to CALIFORNIA. 


5. W. Oregana D. C. Eaton. Mountain Woopsta. 

With the preceding, but much scarcer, and ranging to the 
timberline or above, 5600-11000 ft. (Daniels, 361). Long’s 
Peak (Coulter in Wabash College Herb.). 

Micuican to British Cotumpia; CoLorApo and ARIZONA 
to CALIFORNIA. 


5. FIIX Adans. BLADDER-FERN. 


6. F. fragilis (L.) Underw. [Cystopteris fragilis Bernh.]. 
FRAGILE-FERN. 
Throughout on the moister rocks; apparently the only 
fern of the plains region, 5100-13000 ft. (Daniels, 23). 
Almost cosmopolitan. 


6. PTERIDIUM Scop. BRACKEN. 


7. P. aquilinum pubescens Underw. Hairy BRAKE. 

Cafions of Green Mt., and gulches at the foot of the Flat- 
irons; Bear Cafion; local, but abundant where found, 5800- 
10000 ft. (Daniels, 277). 

Monrana and Cortorapo to ArIzoNA and CALIFORNIA. 


7. CRYPTOGRAMMA R. Br. PARSLEY-FERN. 


8. C. acrostichoides R. Br. Rock PARSLEY-FERN. 

High ridges of rock, descending on Green Mt. to about 
6500 ft., thence to above 11000 ft. (Daniels, 271). 

Micuican to ALASKA; COLORADO to CALIFORNIA. 


199] FLORA OF BOULDER, COLORADO 51 


8. CHEILANTHES Swartz. Lip-FERN. 


g. C. Féei Moore [C. gracilis Mett.; C. lanuginosa Nutt.]. 
WOOLLY LIP-FERN. 

Growing with Asplenium Andrewsit A. Nelson on the south 
face of a white sandstone (alkaline) cliff extending along 
Boulder creek for a mile or more (Andrews, in Nelson, Proc. 
of the Biol. Soc. of Wash., 17, 175). 

InLrnois and Minnesota to BririsH CotumBia; Missouri 
to Texas and ARIzONA. 


10. C. Fendleri Hook. FENDLER’S LIP-FERN. 
Dry rocks, Boulder, 5900-8500 ft. (Rydberg). 


CoLorapo and TrExas to CALIFORNIA. 
9, ASPLENIUM L. Sprreenwort. 


11. A. Trichomanes L. MaIpDEN-HAIR SPLEENWORT. 
Limestone rocks, South Boulder Canon, 5400-7000 it. 
(Rydberg). 
NortH AMERICA: Europe: AsIA: SOUTH AFRICA: PACIFIC 
ISLANDS. 


12. A. Andrewsii A. Nelson. ANDREWS’S SPLEENWORT. 
Growing abundantly in crevices with Cheilanthes Féci 
Moore (Andrews, in Nelson, loc. cit. pp. 174-175). 
Known only from the type locality as above. 


10. BELVISIA Mirb. Grass-FERN. 


13. B. septentrionalis (L.) Mirb. [Asplemum septentrio- 
nalis (L.) Hoffm.] NorTHERN GRASS-FERN. 
Bald ridges of Green Mt.; south slope of Bear Mt.; South 
Boulder Cafion, 6000-7000 ft. (Daniels, 358). 
Soutu Daxora to Monrana; New MExico to ARIZONA. 


52 UNIVERSITY OF MISSOURI STUDIES [200 


Order 3. EQUISETALES. 
Family 3. EQUISETACEAE Michx. Horsetail family. 
11. EQUISETUM L. MHorserait. 


14. E. arvense L. FIELD HORSETAIL. 

Swales and shores of streams; sandy moist meadows, 5100- 
10000 ft. (Daniels, 260). 

NortH AMERICA: Europe: ASIA. 


15. E. laevigatum A. Br. SMOOTH SCOURING RUSH. 

Along streams and railway embankments in the plains 
and on the mountains, 5100-12500 ft. (Daniels, 392). 

New Jersey to British Co_umpia; NorTH CAROLINA to 
Mexico and CaLrFornia. 


Order 4. LYCOPODIALES. 
Family 4. LYCOPODIACEAE Michx. Clubmoss family. 
12. LYCOPODIUM L. Ciusmoss. 


16. L. annotinum L. StirF CLUBMOSS. 

Under dwarf and procumbent shrubs, hidden almost com- 
pletely from view, Arapahoe Peak, above timberline, 11000- 
11500 ft. (Daniels, 370). 

LaBRADOR to ALASKA; WEST VIRGINIA to COLORADO and 
WASHINGTON: EUROPE: ASIA. 

Family 5. SELAGINELLACEAE Underw. Selaginella 
family. 
18. SELAGINELLA Beauv. LItTtLe cLUBMoss. 


17. §. densa Rybd.[S. Engelmanni Hieron.] DENSE SELA- 
GINELLA. 
Forests, Redrock lake, 10100 ft. (Ramaley & Robbins). 
Soutu Daxora to Montana; NesRaAsKaA to COLORADO. 


174%. §. Underwoodii Hieron. [S. rupestris Fendlert Un- 
derw.]. UNDERWOOD’S SELAGINELLA. 
Common on exposed rocks, 6000-8100 ft. (Daniels, 151). 
Redrock lake 10100 ft. (Ramaley and Robbins). 
CoLorabo to New Mexico. 


201 | FLORA OF BOULDER, COLORADO 53 


Subkingdom II, SPERMATOPHYTA. Seed plants. 
Class1. GYMNOSPERMAE. 


Order 5. PINALES. 
Family 6. PINACEAE Lind]. Pine family. 
14, PINUS L. Prne. 


18. P. scopulorum (Engelm.) Lemmon [P. ponderosa scopu- 
lorum Engelm.]. BULL PINE. 
Common on the higher mesas, foothills, and mountains, 
5700-10000 ft. (Daniels, 97). 
South Daxkota and Nersraska to Montana; Trexas to 
ARIZONA. 


19. P. contorta Murrayana (Oreg. Com.) Engelm. Lopce 
POLE PINE. 
Mountains about Ward, and between Sugarloaf Mt. and 
Glacier Lake, 7000-10000 ft. (Daniels, 302). 
Montana to ALASKA; COLORADO to CALIFORNIA. 


15. APINUS Necker. CEMBRA PINE. 


20. A. flexilis (James) Rydb. [Pinus flexils James]. 
Rocky MOUNTAIN WHITE PINE. 
Rare on high ridges of Green Mt.; also at Ward, 7300- 
11000 ft. (Daniels, 771). 
ALBERTA to TEXAS and CALIFORNIA. 


16. PICEA Link. Spruce. 


21. P. Engelmanni (Parry) Engelm. ENGELMANN SPRUCE. 
Bear Cafion; Boulder Cafion near Falls; common upon the 
main range of the mountains, 7000 (Bear Caiion) -11000 ft. 
(Daniels, 294). 
ALBERTA to British Cotumpia; NEw Mexico to ARIZONA. 


22. P. Parryana (Andrée) Sarg. [P. pungens Engelm.]. 
BLUE SPRUCE. 
Common in cafions throughout, 6500-10000 ft. (Cockerell); 
Fourth of July Mine; South Boulder Cafion (Ramaley). 
Wyomine and New Mexico to Uran. 


54 UNIVERSITY OF MISSOURI STUDIES [202 


17. PSEUDOTSUGA Carr. Rep Fir. 


23. BP. mucronata (Raf.) Sudw. [P. Douglasti Carr.]. 
DOUGLAS SPRUCE. 

Abundant on the foothills and mountains; some trees have 
green foliage, others glaucous blue, 6000-10000 ft. (Daniels, 
142). 

ALBERTA to BritisH CoLumpia; Texas to Mexico and 
CALIFORNIA. 


18. ABIES Miller. Batsam Fir. 


24. AA, lasiocarpa (Hook.) Nutt. WESTERN BALSAM FIR. 
North slope of Green Mt.; Bear Cafion; Boulder Cafion 
near Falls and above them; common on the main mountain 
range, 7000 (Bear Cafion) -11000 ft. (Daniels, 303). 
ALBERTA to ALaskA; NEw Mexico to ARIZONA. 


Family 7. JUNIPERACEAE Horan. Juniper family. 


19. JUNIPERUS L. Juniper. 


25. J. Sibirica Burgsd. MouUNTAIN JUNIPER. 
Mesa at the foot of the Flat-irons, 5700-6000 ft. (Daniels, 
182). Mountains between Sunshine and Ward (Rydberg). 
Laprapor to ALasKka; MassacHusETts and MuicuHicGan to 
Utau: Europe: ASIA. 


20. SABINA Haller. Savin. 


26. §. scopulorum (Sarg.) Rydb. [Juniperus scopulorum 
Sarg.]. Rocky MOUNTAIN RED CEDAR. 
High mesas and mountain crags; some trees have green 
foliage, others glaucous blue, 5700-8500 (Daniels, 217). 
ALBERTA to British CoLumBra; Texas to ARIZONA and 
OREGON. 


203] FLORA OF BOULDER, COLORADO 55 
Class II. ANGIOSPERMAE. 


Subclass 1. MONOCOTYLEDONES, 
Order 6. PANDANALES. 
Family 8. TYPHACEAE Jo Sito Lehi, Cattail family. 


Pal, UM aeo Ib) (Amerie, 


27. 1. latifolia L. Broap-LEAVED CATTAIL. 

Swales and bogs in. the plains, common, 5100-5600 ft. 
(Daniels, 408). 

Nortu AMERICA, except the far north: EUROPE: AsIA. 


Family 9. SPARGANIACEAE Agard. Bur-reed family. 


22. SPARGANIUM L. Bur-reep. 


28. 8S. angustifolium Michx. [S. simplex angustifolium 
(Michx.) Engelm.]. NARROW-LEAVED BUR-REED. 
Floating in a pond at Glacier Lake, gooo ft. (Daniels, 620). 
Also Redrock lake, 1o100 ft. (Ramaley and Robbins). 
NEWFOUNDLAND to OREGON; NEw York to CALIFORNIA. 


Order 7. NAIADALES. 


Family 10. ZANICHELLIACEAE Dumort. Zanichellia 
family. 


23. POTAMOGETON L. Ponpweep. 


29. P.lonchites Tuckerm. [P. fluitans Roth.] Lonc-LEAvED 
PONDWEED. 
Owen’s lake; Boulder lake, 5300 ft. (Daniels, 683). 
NEw Brunswick to WASHINGTON; FLORIDA to CALIFORNIA. 
29%. P.alpinus Balbis [P. rufescens Schrad.]. ALPINE POND- 
WEED. 
Redrock lake, 10100 ft. (Ramaley and Robbins.). 
Nova Scotra to ALasKA; New Jersey to CALIFORNIA. 


56 UNIVERSITY OF MISSOURI STUDIES [204 


30. P. heterophyllus Schreb. VARIOUS-LEAVED PONDWEED. 
Near Boulder, 5100-6000 ft. (Rydberg). 
NortH AMERICA, except extreme north: Europe. 


31. P. foliosus Raf. [P. pauciflorus Pursh]. Lrary PoNp- 
WEED. 
Streams and ditches east of Boulder, 5100-5500 ft. (Dan- 
iels, 736). 
New Brunswick to BritisH CoLumBiA; FLoripa to CaL- 
IFORNIA, 


32. P. Spirillus Tuckerm. SprraAL PONDWEED. 

Swales along railroad between Boulder and Marshall, 
5400 ft. (Daniels, 486). Not included in Rydberg’s Flora of 
Colorado. 

Nova Scotia to MINNESOTA; VIRGINIA to COLORADO. 


33. P. pectinatus L. FENNEL-LEAVED PONDWEED. 
Owen’s lake; Boulder lake, 5300 ft. (Daniels, 681). 
Nort AMERICA: EUROPE. 
24. ZANICHELLIA L. 
34. Z. palustris L. Marsa ZANICHELLIA. 
Owen’s lake; Boulder lake, 5300 ft. (Daniels, 682). Red- 


rock lake, 1o100 ft. (Ramaley & Robbins). 
NortH TEMPERATE ZONE. 


Order 8. ALISMALES. 
Family 11. ALISMACEAE DC. Water-plantain family. 


25. ALISMA L. WatTER-PLANTAIN. 


35. A. Plantago L. ComMoN WATER-PLANTAIN. 

Bogs west of Marshall; swales, ditches, streams, and ponds 
east of Boulder, 5100-6000 ft. (Daniels, 424). 

NorTHERN HEMISPHERE. 


26. SAGITTARIA L. ARROWHEAD. 
36. S. arifolia J. G. Smith. ARUM-LEAVED ARROWHEAD. 
With the preceding, 5100-6000 ft. (Daniels, 441). 
QuEBEC to BriTisH CoLtumBiA; MAINE and MIcHIGAN to 
New Mexico and CaLtFornia. 


205] FLORA OF BOULDER, COLORADO 57 


Order 9. POALES. 
Family 12. POACEAE R. Br. Meadowgrass family. 


27. SCHIZACHYRIUM Nees. BuNcH-GRASS. 
37. §. scoparium (Michx.) Nash [Andropogon scoparius 
Michx.]. BRroom-Grass. 
Common in dry plains and mesas; occasional in the lower 
foothills, 5100-6300 ft. (Daniels, 478). 
NEw Brunswick to SASKATCHEWAN; FLORIDA to TEXAS. 


28. ANDROPOGON L. Berarp-crass. 
38. A. fureatus Muhl. TuRKEY-FOOT GRASS. 
Common on the plains, mesas and foothills, 5100-8000 ft. 
(Daniels, 512). 
Marne to SASKATCHEWAN; FLorIDA to TExas and CoLo- 
RADO. 
39. A. chrysocomus Nash. GOLDEN BEARD-GRASS, 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 
486). 
NEBRASKA to COLORADO; Kansas to TEXAS. 
29. SORGHASTRUM Nash. INDIAN Grass. 


4o. §. nutans (L.) Nash [Chrysopogon nutans (L.) Benth.]. 
NoppincG INDIAN GRASS. 
Frequent on the plains and mesas, 5100-6000 ft. (Daniels, 
655). 


ONTARIO to MANITOBA; FLORIDA to ARIZONA. 


30. SYNTHERISMA Walt. Crap GrAss. 
41. §. sanguinale (L.) Dulac. [Panicum sanguinale L.]. 
FINGER GRASS. 
Along roadsides, and in yards and fields, still uncommon, 
5300-5700 ft. (Daniels). 
Op Wor Lp, thence to the NEw. 


31. PANICUM L. Panic-crAss. 


42. P. capillare L. WutTcH GRASS. 
Along roads and railroads, and in yards and fields, appear- 
ing as if introduced, 5100-6500 ft. (Daniels, 586). 


58 UNIVERSITY OF MISSOURI STUDIES [206 


A form, undoubtedly native, with somewhat narrower 
leaves, slenderer stems, which are branched from the root, 
the sheaths less hairy and less prominently papillose, the 
spikelets acute and greenish, or the uppermost purplish, 
occurs in swales in the plains region, 5100-5500 ft. (Daniels, 
985). An analogous, or perhaps identical form, gathered by 
P. A. Rydberg in the sand-hills of Nebraska, is referred by 
him (somewhat doubtfully) to P. capillare agreste Gatt. with 
the remark that the form is named var. occidentale in the 
National Herbarium with no published description (Rydberg 
U. S. Nat. Herb. Cont. 3, 186). 

Throughout SouTHERN CANADA and the Unirep States. 


43. P.virgatum L. Tat switcH GRAss. 
Frequent on the plains and mesas, 5100-6000 ft. (Daniels, 
397). 


Marne to AssINIBoIA; FLORIDA to ARIZONA. 


43%. BP. Tennesseense Ashe. TENNESSEE PANIC-GRASS. 
Collected by Jones at South Boulder (Hitchcock and Chase). 
Marne to Mrnnesora and UTAH; GeorciA to ARIZONA. 


44. P. Scribnerianum Nash [P. scoparium Auct., not Lam.]. 
SCRIBNER’S PANIC-GRASS. 
Common among rocks on the foot-hills, but occurring oc- 
casionally on the mesas and plains, 5400-7000 ft. (Daniels, gg). 
Maine to BritisH CoLumBIA; VIRGINIA to ARIZONA and 
OREGON. 


32. ECHINOCHLOA Beauv. BARNYARD GRASS. 


45. E. Crus-galli (L.) Beauv. [Panicum Crus-galli L.]. 
COCKSPUR GRASS. 
Common in waste places and along irrigation ditches, 
5100-6000 ft. (Daniels, 741). 
Europe, thence to NortH AMERICA. 


45a. HE. Crus-galli mutica (Vasey) Rydb. 
With the type (Daniels, 997). 
Range of the type. 


207] FLORA OF BOULDER, COLORADO 59 


33. CHAETOCHLOA Scribn. Foxratt. 


46. C. glauca (L.) Scribn. [Setaria glauca (L.) Beauv.]. 
YELLOW FOXTAIL. 
Along streets and waste places, 5100-5700 ft. (Daniels, 
773): 


Europe, thence to NortH AMERICA. 


47. (. viridis (L.) Scribn. [S. viridis (L.) Beauv.]. GREEN 
FOXTAIL. 
With the preceding, but far more common, 5100-6000 ft. 
(Daniels, 507). 
Europe, thence to NortH AMERICA. 


48. C. Italica (L.) Scribn. [S. Italica (L.) Kunth.]. Irartan 
MILLET. 
Escaped to roads and waste places, 5100-5700 ft. (Daniels): 
The OLp Wor Lp, thence to the New. 


34. CENCHRUS L. Bur-crass. 


49. C€. Carolinianus Walt. [C. tribuloides Auct., not L.]. 
SAND-BUR. 
Along railroads and on the sandy shores of streams, 5 100- 
6500 ft. (Daniels, 776). 
Marne to MInnESoTA; FLorIDA to TEXAS and CoLoRApbo. 


35. HOMALOCENCHRUS Mieg. CatTcH-FLY GRASS. 


50. H. oryzoides (L.) Poll. [Leersia oryzoides (L.) Sw.]. 
RICE CUT-GRASS. 
Swales, streams, and irrigation ditches, 5100-6000 ft. (Dan- 
iels, 786). 
Nova Scotia to WasHINGTON; FLORIDA to CALIFORNIA: 
Europe: ASIA. 


36. PHALARIS L. CANARY-GRASS. 


51. P. arundinacea L. RreeD CANARY-GRASS. 

Swales and wet meadows near Boulder lake, 5300 ft. 
(Daniels, 732). 

Temperate NortH AMERICA: Europe: ASIA. 


60 UNIVERSITY OF MISSOURI STUDIES [208 


3614. HIEROCHLOE Gmel. Hoty crass. 


51%. H. odorata (L.) R. and S. [Savastana odorata (L.) 
Scribn; H. borealis R. and S.] SWEET HOLY GRASS. 
Redrock lake, to100 ft. (Ramaley & Robbins). 
Laprapor to ALASKA; NEw JeERSEY to ARIZONA; EUROPE: 
ASIA. 


3¢. ARISTIDA L. TripLe-AWNED GRASS. 


52. A. fasciculata Torr. BusHy POVERTY-GRASS. 
In the plains, scarce, 5100-5700 ft. (Daniels, 777). 
Kansas to CatirorniA; Texas to MExico. 


53. A. longiseta Steud. LoNnc-AWNED POVERTY-GRASS. 
Abundant on the plains, mesas and foothills, 5100-8500 ft. 
(Daniels, 300). Also on the mountains between Sunshine 
and Ward (Rydberg). 
ILLtnoIs to WASHINGTON; TExAs to MExIco. 


38. STIPA L. Porcupine GRASS. 


54. §S. comata Trin. & Rupr. WESTERN PORCUPINE GRASS. 
Common on the plains and foothills, 5100-8500 ft. (Dan- 
iels, 197). 
ALBERTA to ALaskA; NEw MExico to CaLiFornia. 
55. 8. viridula Trin. [S. parviflora Americana Schultes]. 
GREENISH PORCUPINE GRASS. 
Common on the plains, mesas, and foothills, 5100-8500 
ft. (Daniels, 301). Also at Gato (Rydberg). 
SASKATCHEWAN to Montana; Kansas to Uran. 


56. SS. Nelsonii Scribn. NELSON’S PORCUPINE GRASS. 


On the mesas, foothills, and mountain sides, 5700-10000 
ft. (Daniels, 365). 
AssInrpo1A to IDAHO and CoLorapbo. 


57. 8. Scribneri Vasey. SCRIBNER’S PORCUPINE GRASS. 

On the plains, mesas, foothills and mountainsides, 5100- 
g500 ft. (Daniels, 749). 

CoLorapo to New Mexico. 


209] FLORA OF BOULDER, COLORADO 61 


58. S. Lettermannii Vasey. LrTTERMANN’S PORCUPINE GRASS. 
Barren hilltops east of the Flat-irons, 5800 ft. (Daniels, 
184). 
Wyominec to IpaHo; CoLorapo to UTAH. 
39. ORYZOPSIS Michx. MounrTaAIN RICE. 


59. 0. micrantha (Trin. & Rupr.) Thurber. SMatLi-FLow- 
ERED MOUNTAIN RICE. ; 
Rocky soil on the mesas and foothills, 5700-8500 ft. (Dan- 
iels, 260). 
ASSINIBOIA to Montana; NEBRASKA to ARIZONA. 


40. ERIOCOMA Nutt. 
60. E. cuspidata Nutt. [Oryzopsis cuspidata (Nutt.) Benth.]. 
SILKY MOUNTAIN RICE. 
Barren mesa near entrance to Bear Cafion, 5800-6000 ft. 
(Daniels, 765). 
SASKATCHEWAN to WASHINGTON; TExas and Mexico to 
CALIFORNIA. 


41. MUHLENBERGIA Schreb. Drop-sEED GRASS. 


61. M. racemosa (Michx.) B. S. P. [M. glomerata Trin.]. 
MARSH DROP-SEED GRASS. 
Cafion on Green Mt.; subalpine meadows at Eldora, 
6000-10000 ft. (Daniels, 526). 
NEWFOUNDLAND to British CoLumBia; NEw JERSEY to 
New Mexico. 


62. M. cuspidata (Torr.) Rydb. [Sporobolus cuspidatus 
(Torr.) Woods]. PRAIRIE RUSH-GRASS. 
Dry ledges, Gregory Cafion, 6000 ft. (Daniels, 371). 
Manirospa to ALBERTA; Missouri to COLORADO. 


63. M. Richardsoni (Trin.) Rydb. [Vilfa Richardsomi 
Trin.; Sporobolus depauperatus Coulter in part]. Ricu- 
ARDSON’S RUSH-GRASS. 

Subalpine meadows and open bogs, Eldora, 8600 ft. (Dan- 

iels, 840). 

Anticosti to British CoLtumpia; NEw Mexico to Catti- 

FORNIA. 


62 UNIVERSITY OF MISSOURI STUDIES [210 


64. M. simplex (Scribn.) Rydb. [Sporobolus simplex Scribn.]}. 
SIMPLE RUSH-GRASS. 

In shallow water, aspen bogs about Glacier Lake, gooo ft. 
(Daniels, 708). Also mountains between Sunshine and Ward, 
(Rydberg). 

NEBRASKA to WyominG and New Mexico. 


65. M. filiformis (Thurber) Rydb. [Vilfa depauperata fili- 
formis Thurber]. FILiFORM RUSH-GRASS. 
Subalpine bogs, Eldora, 8600 ft. (Daniels, 366). 
Wyominc to OREGON; COLORADO to CALIFORNIA. 


66. M. gracilis Trin. SLENDER DROP-SEED. 

Summits of crags on the foot-hills, thence to subalpine 
mountain-ridges, the most characteristic grass of such places, 
6000-10000 ft. (Daniels, 208). 

CoLoRAbDO to CALIFORNIA; TExas to MExico. 


42. LYCURUS H. B. K. 


67. UL. phleoides H. B. K. Fatse tTImMotHy. 
Meadow Park, 6500 ft. (Rydberg). 
Cotorapo and TrExas to ARIZONA and Mexico. 


43. PHLEUM L. Timorny. 


68. P. pratense L. CoMMON TIMOTHY. 

Throughout the area of cultivation, but has penetrat- 
ed distant cafions, 5100-11000 ft. (Daniels, 504). 

Temperate OLp Wor Lp, thence to all temperate lands. 
69. P. alpinum L. Mountain TIMOTHY. 

Subalpine meadows from Glacier Lake to Eldora; above 
timber-line, Arapahoe Peak, 8500-12000 ft. (Daniels, 632). 

Circumboreal and alpine, Europe: Asta: NortH AMERICA. 


44, ALOPECURUS L. Foxrait. 


70. A. aristulatus Michx. [d. fulvus J. E. Smith]. Swamr 
FOXTAIL. 
Along irrigation ditches and at the margins of ponds and 
puddles, 5100-5600 ft. (Daniels, 246). 
MaINneE to ALASKA; PENNSYLVANIA to CALIFORNIA. 


2it]| FLORA OF BOULDER, COLORADO 63 


7i. A. oceidentalis Scribn. [A. alpinus Coulter, not L.]. 
WESTERN FOXTAIL. 
Above timber-line, Arapahoe Peak, 11000-11500 ft. (Dan- 
iels, 942). i 
ALBERTA to BriTIsH CoLumsBia; CoLorapo to Uran. 


45. SPOROBOLUS R. Br. Dropserep. 


72, §. airoides Torr. HArr-GRASS DROPSEED. 

Alkaline flats about Boulder lake, scarce, 5300 ft. (Dan- 
iels, 731). 

NEBRASKA and TExas to CALIFORNIA. 


73. SS. cryptandrus (Torr.) Gray. SAND DROPSEED. 
Common on the plains, mesas, and grassy slopes of the 
foothills, 5100-8000 ft. (Daniels, 513). 
MASSACHUSETTS to WASHINGTON; PENNSYLVANIA to ARIZONA 
and Mexico. 


74. §. heterolepis Gray. NORTHERN DROPSEED. 

Common along the railroad between Boulder and Mar- 
shall, 5400 ft. (Daniels, 518). 

QUEBEC to SASKATCHEWAN; PENNSYLVANIA to COLORADO. 


75. . asperifolius (Nees & Meyen) Thurber. RoucH prop- 
SEED. 
Common on the plains, 5100-5600 ft. (Daniels, 493). 
ASSINIBOIA to BriTISH CoLumBiA; Missouri and TExAs to 
CALIFORNIA. 


46. POLYPOGON Desf. BEARD-GRASS. 


76. BP. Monspeliensis (L.) Desf. DitcH FOXTAIL. 

Common along irrigation ditches east of Boulder, 5100- 
5500 ft. (Daniels, 676). 

Europe and Asia, thence to NoRTH AMERICA. 


47. CINNA L. Woop REED-GRASS. 


77. C. latifolia (Trev.) Griseb. [C. pendula Trin.]. SLENDER 
WOOD REED-GRASS. 
Deep cafions in shade, frequent; in aspen bogs at Glacier 
lake and Eldora, 5700-8600 ft. (Daniels, 987). 


64 UNIVERSITY OF MISSOURI STUDIES [212 


NEWFOUNDLAND to British CoLtumspiA; NoRTH CAROLINA to 
Urau: Europe, 


48. AGROSTIS L. Bernt-crass. 
78. A.alba L. WHITE BENT-GRASS. REeED-TOP. 

Common about ditches and swales throughout the culti- 
vated area, and already penetrating remote cafions, where 
the smaller forms are quite possibly native. The larger 
cultivated form is A. alba vulgaris (With.) Thurber, 5100- 
8600 ft. (Daniels, 689). 

Mostly naturalized from Europe, and now in all temper- 
ate lands; there are indigenous boreal and alpine forms in 
NortH AMERICA. 


79. A. asperifolia Trin. [A. exarata Coult. in part, not Trin.]. 
HARSH BENT-GRASS. 
Moist meadows throughout, 5100-10500 ft. (Daniels, 376) 
Manirospa and New Mexico to CALiFoRNIA. 


791%. A. Rossae Vasey [A. varians Trin.]. Miss Ross’s BenT- 
GRASS. 
Long’s Peak (Holm). 
BritisH CotumBiIA to CoLorapo and CALIFORNIA. 


80. A. hyemalis (Walt.) B. S. P. [A. scabra Willd.]. Hatr- 
GRASS. 

Common throughout in both dry and moist soil, 5100- 
t1000 ft. (Daniels, 374). Also on the mountains between 
Sunshine and Ward (Rydberg). 

NortH AMERICA, except the extreme north. 


80%. A. tenuiculmis Nash [A. ¢enwzs Vasey]. THIN BENT- 
GRASS. 
Redrock lake, roroo ft. (Ramaley and Robbins). 
Montana to WASHINGTON; COLORADO to CALIFORNIA. 


49. CALAMAGROSTIS Adans. ReEeEp-cRAsS. 
8r. C. purpurascens R. Br.- [Deyeuxria sylvatica Vasey, 
not DC.]. PURPLE BLUE-JOINT. 
Barren ridges in the foothills and mountains, common, 


6000-12500 ft. (Daniels, 700). Long’s Peak (Holm). 
GREENLAND to ALASKA; COLORADO to CALIFORNIA. 


213] FLORA OF BOULDER, COLORADO 65 


82. C. Canadensis (Michx.) Beauv. [Deyeuxia Canadensis 
(Michx.) Munro]. CANADA BLUE-JOINT. 

Along streams in the plains; also in deep cafions and aspen 
bogs in the foothills and mountains, 5100-11000 ft. (Daniels, 
649). 

Lasprapor to British CoLumpra; NorTH CAROLINA to 
‘ CALIFORNIA. 

50. DESCHAMPSIA Beauv. Hair-crass. 


83. D. caespitosa (L.) Beauv. TUurrepD HAIR-GRASS. 

Wet margins of Glacier lake, often in water of some 
depth, 9000 ft. (Daniels, 617). Redrock lake, ro100 ft. (Ram- 
aley and Robbins). 

NEWFOUNDLAND to ALASKA; NEW JERSEY to CALIFORNIA. 


51. TRISETUM Pers. Fatser oat. 


84. T. spicatum (L.) Richter [7. subspicatum molle Gray]. 
NARROW FALSE OAT. 
Mountainsides at Ward, Bloomerville, Glacier Lake, and 
Eldora, 8600-13000 ft. (Daniels, 330). 
GREENLAND to ALaska; NEw HAmpsHIRE to COLORADO 
and CaLiFORNIA: EuROopE: ASIA. 


85. T.majus (Vasey) Rydb. [Z. subspicatwin majus Vasey |. 
LARGER FALSE OAT. 
Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
988). 
Montana to British CoLumBIA; COLORADO to UTau. 
86. T. montanum Vasey. MouNTAIN FALSE OAT. 
Deep cafions and aspen bogs, local, 7000 (Bear Cafion) 
-10000 ft. (Daniels, 631). 
Wyominc to New Mexico. 
52. AVENAL. Oar. 


87. A. striata Michx. PURPLE OAT. 

Rare in deep canons and aspen bogs, usually with the 
preceding; Bear Caton; Eldora, 7000-11000 ft. (Daniels, 
665). 

New Brunswick to British CoLuMBIA; PENNSYLVANIA to 
COLORADO. 


66 UNIVERSITY OF MISSOURI STUDIES [214 


88. A. fatua L. WIzp oat. 

Common along streets and waste places in the city of 
Boulder, 5300-5700 ft. (Daniels, 387). 

Europe: Asia, thence to NorTH AMERICA. 


89. A. sativa L. Common oat. 
Adventitious along railroads, 5300-5400 ft. (Daniels, 479). 
Op WorLD, thence universal in cultivation. 


53. MERATHREPTA Raf. WHI OAT-GRASS. 
go. M. Californica (Bolander) Piper [Danthonia Calfornica 
Bolander]. CALIFORNIA WILD OAT-GRASS. 
Arapahoe Pass, 12000 ft. (Rydberg). 
Montana to BritisH CoLUMBIA ; COLORADO to CALIFORNIA. 


gt. M. intermedia (Vasey) Piper [Danthonia intermedia 
Vasey]. INTERMEDIATE WILD OAT-GRASS. 
Aspen bogs at Glacier Lake and Eldora, 8600-11500 ft. 
(Daniels, 621). 
ALBERTA to BRITISH COLUMBIA; COLORADO to CALIFORNIA. 
92. M. spicata (L) Raf. [Danthonia spicata (L) Beauv.]. 
COMMON WILD OAT-GRASS. 
Common on dry slopes in the foothills, 6000-8000 ft. (Dan- 
iels, 370). Also mesas at foot of the Flat-irons. 
NEWFOUNDLAND to British CoLtumBpia; NortTH CaroLina 
to Louisiana and CALIFORNIA. 


54. SPARTINA Schreb. Corp-Gcrass. 
93. S. cynosuroides (L.) Willd. Tati MARSH GRASS. FRESH- 
WATER CORD-GRASS. 
Swales and bogs in the plains, infrequent, 5100-5500 ft. 
(Daniels, 522). 
Nova Scotia to Mackenzie; NEw JERSEY to TExas and 
COLORADO. 


55. SCHEDONNARDUS Steud. Crazs-crass. 


94. S. paniculatus (Nutt.) Trelease [S. Texanus Steud.]. 
WILD CRAB-GRASS. 
Frequent on the plains and mesas, 5100-6000 ft. (Daniels, 


175). 


215] FLORA OF BOULDER, COLORADO 67 


Manitopa to AssInipoiA; ILLINoIs to TExas and NEw 
Mexico. 


56. BOUTELOUA Lag. Grama-crass. MESQUIT-GRASS. 
g5. B. hirsuta Lag. Harry MEsQuirt. 


Dry plains and mesas, less common than the next, 5100- 
6000 ft. (Daniels, 956). Also at Meadow Park, 6500 ft. 
(Rydberg). 

ILLiInoIs to SourH Daxora; Texas to ARIZONA. 


96. B. oligostachya (Nutt.) Torr. ComMoN GRAMA-GRASS, 
Or MESQUIT-GRASS. 

Common on the plains and mesas; occasional on the foot- 
hills, 5100-8000 ft. (Daniels, 220). One of the most charac- 
teristic grasses of the Great Plains. 

Wisconsin to ASSINIBOIA; Mississippr1 to ARIZONA and 
MEXxIco. 


57. ATHEROPOGON Muhl. Tati mesourr. 


97. A. curtipendulus (Michx.) Fourn [Boutelowa racemosa 
Lag.]. PRAIRIE GRAMA-GRASS. 
Frequent on the plains, mesas and foothills, 5100-7000 ft. 
(Daniels, 299). Meadow Park (Rydberg). 
Onrario and Micuican to Manirosa; NEw JERSEY to TEx- 
AS, ARIZONA, and Mexico. 


58. BULBILIS Raf. Burrato crass. 
98. B. dactyloides (Nutt.) Raf. [Buchloe dactyloides (Nutt.) 
Eng.]. COMMON BUFFALO GRASS. 
Abundant on the plains and mesas, 5100-6000 ft. (Daniels, 
198). 
Minnesota to NortH Daxota; ArKANSAS to NEw Mexico 
and Mexico. 


59. PHRAGMITES Trin. Reep. 
99. P. Phragmites (L.) Karst. [P. communis Trin.]. Com- 
MON REED. 
About a spring at foot of Flagstaff Hill, only three or four 
plants, 6000 ft. (Daniels, 834). 
Europe: ASIA: temperate NorTH AMERICA. 


68 UNIVERSITY OF MISSOURI STUDIES [216 


60. MUNROA Torr. FALSE BUFFALO GRASS. 


too. M. squarrosa (Nutt.) Torr. Muwnro’s crass. 

Dry plains and mesas, 5100-6000 ft. (Daniels, 359). Also 
at Lafayette (Rydberg). 

Nort Dakota to ASSINIBOIA; TEXAS to ARIZONA. 


61. KOELERIA Pers. 


1o1. Koeleria cristata (L.) Pers. [K. mitida Nutt., as to 
some of the forms]. PRAIRIE-GRASS. 
Throughout below 10000 ft., but especially common on 
the foothills, 5100-10000 ft. (Daniels, 133). 
Ontario to British CoLtuMBIA; PENNSYLVANIA to CALI- 
FORNIA. 


62. ERAGROSTIS Beauv. STINK-GRASS. 


io2. E.major Host. SKUNK GRASS. 
Waste places and along railroads, 5100-6000 ft. (Daniels, 
588). Also at Longmont (Rydberg). 
Europe, thence to NORTH AMERICA. 


103. E. pectinacea (Michx.) Steud. PURPLE STINK-GRASS. 
Meadow Park, 6500 ft. (Rydberg). 
MassacHusetrs to SourH Dakota: FLoripA to TExAs 
and CoLoRADo. 


68. EATONIA Raf. Eaton Grass. 


104. E. robusta (Vasey) Rydb. [E. obtusata robusta Vasey]. 
Stout EATON GRASS. 
Along streams and springy cafions, 5100-7000 ft. (Daniels, 
416). 
NEBRASKA to WasHINGTON; NEw Mexico to ARIZONA. 
105. E. cbtusata (Michx.) Gray. BLunt-scatep EATON 
GRASS. 
About Boulder, 5100-6000 ft. (Rydberg). 
MassACHUSETTS to MONTANA; FLORIDA to ARIZONA. 


106. E. Pennsylvanica (DC.) Gray. PENNSyLvVANIA EATON 
GRASS. 
Deep mountain cafions, 5600-7000 ft. (Daniels, 718). 


217] FLORA OF BOULDER, COLORADO 69 


New Brunswick to British CoLuMBIA; GEORGIA to CoLo- 
RADO. 
64. MELICA L. Metic-crass. 
107. M. bella Piper [M. bulbosa Geyer]. BuLsBous MELIc- 
GRASS. 
North slopes of Flagstaff Hill along Boulder Cafion, 
6000-7000 ft. (Daniels, 144). Spikelets often monstrous. 
Monrana to WASHINGTON; CoLoRADO and UraH to 
OREGON. 
65. DACTYLIS L. OrcHARD GRASS. 


108. D. glomerata L. CoMMON ORCHARD GRASS. 
Throughout the whole cultivated district and penetrating 
into shady cafions; 5100-go00 ft. (Daniels, 235). 
Europe, thence to NorTH AMERICA. 


66. DISTICHLIS Raf. Satt-crass. 
1og. D. stricta (Torr.) Rydb. [D. maritima stricta (Torr.) 
Thurber]. Mars SPIKE-GRASS. 
Alkali flats about Boulder lake, 5300 ft. (Daniels, 728). 
SASKATCHEWAN to WasHincton; Missouri to TExas and 
CALIFORNIA. 


67. POA L. Merapow-ecrass. 


110. P. annua L. Low SPEAR-GRASS. 

Roadsides and at the entrance to Gregory Cafion, 5100- 
6000 ft. (Daniels, 250). 

Europe and Asia, thence to NortTH AMERICA. 


111. P. pratensis L. KrNTUCKY BLUE-GRASS. 

Meadows throughout, 5100-11500 ft. (Daniels, 558). Prob- 
ably naturalized in the irrigated district. 

Europe: Asta: NortH America, but only the boreal and 
alpine forms native. 


112. P. trivialis L. RouGH MEADOW-GRASS. 

About ponds and ditches, 5400-5500 ft. (Daniels, 245). 
Not in Rydberg’s Flora. 

Europe, thence naturalized in many places in the UniTED 
STATES. 


70 UNIVERSITY OF MISSOURI STUDIES [218 


112%. P. cenisia All. [P. flexuosa Wahl.]. FLEexuous 
MEADOW-GRASS. 
Long’s Peak (Holm). 
GREENLAND to ALASKA; COLORADO. 


113. P. callichroa Rydb. FAIR-HUED MEADOW-GRASS. 
Mountain-sides at Eldora, 8600-11500 ft. (Daniels, 647). 
CoLoRAbo. 


114. P. reflexa V.& S. REFLEXED MEADOW-GRASS. 
In mountain meadows descending to the slopes of the 
foothills, 6400 (Flagstaff Hill) -13000 ft. (Daniels, 952). 
Montana to New Mexico and OrEGoNn. 


115. P. leptocoma Trin. SMooTH-GLUMED MEADOW-GRASS. 
In mountain meadows with the preceding, 6300 (Flagstaff 
Hill) -12500 ft. (Daniels, 225). 
Monrana to ALASKA; COLORADO to CALIFORNIA. 
116. P. alpicola Nash [P. Jara Thurber]. Mountain 
MEADOW-GRASS. 
Above timberline, Arapahoe Peak, 11500-13000 ft. 
(Daniels, 941). Also on Long’s Peak (Rydberg). 
CoLorAbDOo to UTAH; CALIFORNIA. 


117. P. platyphylla Nash & Rydb. [P. occidentalis Vasey]. 
WESTERN MEADOW-GRASS. 

Along mountain streams, 5600 (Boulder Cafion) -10500 
ft. (Daniels, 150). 

Cortorapo to NEw Mexico. 
118. P. compressa L. ENGLISH BLUE-GRASS. 

Common throughout the irrigated district, but not noticed 
in the mountains, 5100-6000 ft. (Daniels, 242). 

Europe, thence to NortH AMERICA. 


119. P. triflora Gilib. [P. serotina Ehr.]. Fowt MEADOW- 
GRASS. 
Common in swales and wet meadows, 5100-8600 (Eldora) 
ft. (Daniels, 482). 
NEWFOUNDLAND to BririsH CoLumBia; NEw JERSEY to 
CALIFORNIA: EUROPE. 


2 19] FLORA OF BOULDER, COLORADO 7 i 


120. P. interior Rydb. INLAND MEADOW-GRASS. 

Along streams and in wet meadows, 5100-10000 ft. (Dan- 
iels, 28). 

MACKENZIE to WasHINGTON and NEw Mexico. 


121. P. crocata. Michx. [P. caesia strictior Gray]. Woop 
MEADOW-GRASS. 

High mesas, dry slopes of the foothills, and mountain 
ridges, 6000-13000 ft. (Daniels, 154). Mountains between 
Sunshine and Ward (Rydberg). 

LABRADOR to ALASKA; MassACHUSETTS to MINNESOTA and 
ARIZONA. 


122. P. rupicola Nash [P. rupestris Vasey]. CRAG MEAD- 
OW-GRASS. 
Dry tundras above timberline, Arapahoe Peak, 11500- 
13000 ft. (Daniels, 1010). 
Montana to OREGON; COLORADO to UTAH. 


123. P. Pattersonii Vasey. PATTERSON’S MEADOW-GRASS. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 895). 
CoLoRADO to ARIZONA. 


124. P. alpina L. ALPINE MEADOW-GRASS. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 935). Long’s Peak (Holm). 

GREENLAND to ALASKA; QUEBEC to UTAH. 


124%. P. Wheeleri Vasey. [P. cuspidata Vasey]. WHEEL- 
ER’S MEADOW-GRASS. 
Redrock lake, 10100 ft. (Ramaley and Robbins). 
Montana to IDAHO; CoLorRADO to OREGON. 


125. P. Vaseyana Scribn. VASEY’S MEADOW-GRASS. 
Subalpine meadows at Eldora, 8600-10000 ft. (Daniels, 
868). 
COLORADO. 


72 UNIVERSITY OF MISSOURI STUDIES [220 


120. P. longiligula Scribn. & Will. LOoNnG-LIGULATE MEAD- 
OW-GRASS. 

Boulder (E. Bethel), determined by P. L. Ricker of U.S. 
Dept. of Agric., and recorded (as host of a fungus) by Ar- 
thur in Journal of Mycology, Jan. 1908, p. 13. 

SoutH DaxoTa to OrEGoN; New Mexico to CALIFornia. 


127. P. pseudopratensis Scribn. & Rydb. Fatse Kentucky 
BLUE-GRASS. 
About swales and streams in tne plains and mesas, 5100- 
6000 ft. (Daniels, 953). 
SoutH Dakota to NEBRASKA and CoLoRADO. 


128. P. longipedunculata Scribn. LoNG-PEDUNCULATE MEAD- 
OW-GRASS. 
Plains and mountain-cafions, 5100-12500 ft. (Daniels, 503). 
Wyominc to New Mexico. 


129. P. juncifolia Scribn. RUSH-LEAVED MEADOW-GRASS. 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 
905). 
WyomiInG to CoLorapbo and Urau. 
130. P. confusa Rydb. BUNCH MEADOW-GRASS. 
Dry plains, mesas, and mountainsides, 5100-10000 ft. 
(Daniels, 924). 
NEBRASKA to Montana and CoLorapo. 


131. P. pratericola Rydb. & Nash [P. andina Nutt.]. Pratrie 
MEADOW-GRASS. 
Near Long’s Peak (Porter & Coulter). 
NEBRASKA to WyomInG and CoLorapbo. 


68. PANICULARIA Fabr. MANNA-GRASS. 


132. P. nervata (Willd.) Kuntze [Glyceria nervata ( Willd.) 
Trin.]. NERVED MANNA-GRASS. 
About streams and ditches, in swales and at the margins 
of lakes and ponds, 5100-9000 ft. (Daniels, 264). 
LaBprRADoR to British CoLumpBia; FLoripa to Mexico 
and CALIFORNIA. 


221] FLORA OF BOULDER, COLORADO 8 


133. P. Americana (Torr.) Mac M. [Glyceria grandis Wats.]. 
REED MEADOW-GRASS. 
In swales and along streams, less common than the pre- 
ceding, 5100-8600 ft. (Daniels, 969). 
New Brunswick to ALASKA; TENNESSEE to NEVADA. 


134. P. Holmii Beal. Hotm’s MANNA-GRASS. 

Deep cafions on north slope of Green Mountain, 7000- 
8100 ft. (Daniels, 464). Lamb’s Ranch, Long’s Peak, g100 
ft. (Beal). 

COLORADO. 


135. 2. borealis Nash. NorTHERN FLOATING MANNA. 

In irrigation ditches about Boulder; also floating in 
Glacier lake, 5100-9000 ft. (Daniels, 739). 

MaInE to ALASKA; NEw York to CALIFORNIA. 


69. PUCCINELLIA Parl. SALT MEADOW-GRASS. 


136. P. airoides (Nutt.) Wats. & Coult. SLENDER SALT 
MEADOW-GRASS. 

Along water-courses in the mesas, and in alkaline soil on 
the plains, 5100-6000 ft. (Daniels, 383). Also at Longmont 
(Rydberg). 

Maniropa to MACKENZIE and British CoLtumpia; Kansas 
to NEVADA. 


70. FESTUCA L. FeEscue-crass. 


137. F. octoflora Walt. [F. tenella Willd.]. SLENDER FESCUE- 
GRASS. 
Abundant on the plains and arid open mountain slopes, 
5100-goo0 ft. (Daniels, 181). 
QUEBEC to BritisH CoLumpra; FLoRIDA to CALIFORNIA. 


138. F. elatior L. [F. elatior pratensis (Huds.) Gray]. 
MEADOW FESCUE. 
Common throughout the irrigated area, especially along 
ditches, 5100-6000 ft. (Daniels, 785). 
Europe, thence to temperate NortH AMERICA. 


74 UNIVERSITY OF MISSOURI STUDIES [222 


139. F. rubra L. RED FESCUE. 
Subalpine meadows at Glacier Lake, gooo ft. (Daniels, 699). 
LaBRApDoR to ALasKA; NORTH CAROLINA to CALIFORNIA: 
Europe: ASIA. 
140. F. brachyphylla Schultes [F. ovina brevifolia S. Wat- 
son]. SHORT-LEAVED FESCUE. 
Bald ridges in the mountain region, 7000 (Green Mt.) 
-14500 ft. (Daniels, 364). 
GREENLAND to ALASKA; VERMONT to CALIFORNIA. 
141. F. minutiflora Rydb. SMALL-FLOWERED FESCUE. 
Mountainsides at Eldora, and on Arapahoe Peak above 
timberline, 8600-12000 ft. (Daniels, 1oor). 
COLORADO to CALIFORNIA. 


141%. F.ovinaL. SHEEP FESCUE. 

Redrock lake, 10100 it. (Ramaley and Robbins). Long’s 
Peak (Holm). 

NortH AMERICA: EUROPE. 
141%a. F. ovina supina (Schur). Hack. Prostrate FESCUE. 

Long’s Peak (Holm). 

GREENLAND and British CotumeB1a to NEw HAMPSHIRE, 
ARIZONA, and CALIFORNIA. 
142. F. ingrata nudata (Vasey) Rydb. [F. ovina nudata 

Vasey]. NAKED-STEMMED FESCUE, BLUE BUNCH-GRASS. 

Common throughout the mountain region and the mesas, 
5700-12000 ft. (Daniels, 174). The type doubtless occurs, 
but all the material preserved belongs to the variety. 

Montana to BritisH CoLumBiA; CoLorapo to Urau. 
143. F. Kingii (S. Watson) Scribn. [F. confinis Vasey]. 

KINnG’s FESCUE. 

Boulder Cafion, 6500-10000 ft. (Rydberg); Boulder (E. 
Bethel). 

Montana to COLORADO and CALIFORNIA. 

71. BROMUS L. Brome-crass. 


144. B. marginatus latior Shear. LARGE MARGINATE BROME. 
Vicinity of Boulder, 5100-6000 ft. (Rydberg). 
ALBERTA to BRITISH CoLUMBIA; COLORADO to CALIFORNIA. 


223] FLORA OF BOULDER, COLORADO 75 


145. 3B. brizaeformis F. & M. QUAKE-GRASS BROME. 

The commonest ruderal grass about Boulder, and fast 
spreading throughout the plains district, 5100-6000 ft. 
(Daniels, 257). 

Europe and Asta, thence to the UNITED STATES. 


146. B. secalinus L. ComMMON CHESS, or CHEAT. 
In fields and waste places, 5100-6000 ft. (Daniels, 388). 
Europe and Asta, thence to all temperate lands. 


147. B. hordeaceus L. [B. mollis L.]. Sort cHEss. 

Along the railroad between Boulder and Marshall, 5400 
ft. (Daniels, 524). 

Europe, thence to the UNITED STATEs. 


148. B. lanatipes (Shear) Rydb. [B. Porteri lanatipes 
Shear]. LanaTE BROME. 

Common on the mesas, foothills, and mountain slopes, 
less frequent in the plains, 5100-goo00 ft. (Daniels, 346). Also 
at Lafayette (Rydberg). 

COLORADO. 

149. B. Richardsonii Link. RIcHARDSON’S BROME. 

Common on the mesas, foothills, and mountains, 6000- 
11000 ft. (Daniels, 454). 

SASKATCHEWAN to BritisH CoLumBIA; COLORADO to ARIZO- 
NA and OREGON. 


150. B. Pumpellianus Scribn. PUMPELLY’S BROME. 
Frequent throughout, 5100-10000 ft. (Daniels, 382). 
SASKATCHEWAN to ALASKA and NEw Mexico. 


151. B. tectorum L. THatcH CHEAT. 

Waste places about Boulder, 5100-6000 ft. (Daniels, 496). 
Also at Longmont (Rydberg). 

Europe, thence to the UNITED STATES. 


72. LOLIUM L. Darnet. 
152. LL. Italicum A. Br. ITALIAN RYE GRASS. 
About irrigation ditches in the city of Boulder, 5300- 
5600 ft. (Daniels, $39). Not in Rydberg’s Flora. 
Europe, thence to the UNITED SraTEs. 


76 UNIVERSITY OF MISSOURI STUDIES [224 


78. AGROPYRON Gaertn. WHEAT GRASS. 


153. A. Scribneri Vasey. ScRIBNER’S WHEAT GRASS. 
Long’s Peak (Holm). 
Montana to CoLorapo and ARIZONA. 


15344. A.spicatum inerme (Scribn. & Sm.) Heller [4, Vaseyi 
S.&S.].  VaAsEy’s WHEAT GRASS. 
Frequent on the mesas and foothills, 5700-7000 ft. 
(Daniels, 171). 
MontTaANA to OREGON; COLORADO to UTAH. 


154. A. Arizonicum S. & S. ARIZONA WHEAT GRASS. 
Mountains between Sunshine and Ward, 8000-11000 ft. 
(Rydberg). 
CoLorapo to ARIZONA and Mexico. 


155. A. Richardsonii (Trin.) Schrad. [A. unilaterale Cas- 
sidy]. R1cHARDSON’S WHEAT GRASS. 
Mountain meadows, rather local, 7000 (Bear Cafion)-10000 
ft. (Daniels, 830). 
Minnesora to BritisH CoLumspia; Iowa to COLORADO. 


156. A. andinum (S. & S.) Rydb. [4. violaceum andinum 
S. & S.J. Mounrarn WHEAT GRASS. 
Mountainsides at Eldora 8600-9000 ft. (Daniels, 640). 
Montana to COLORADO. 


157. A. violaceum (Hornem.) Vasey. VIOLET WHEAT GRASS. 
Common on the foothills and mountains, 6300 (GreenMt.) 
—12000 ft. (Daniels, 362). 
GREENLAND to ALAaskKA; NEw HampsuireE to UTAH. 


158. A. tenerum Vasey. SLENDER WHEAT GRASS. 

Common on the plains, foothills, and lower mountain 
slopes, 5100-7500 ft. (Daniels, 395). 

LaBRADOR to ALASKA; NEW HAMPSHIRE to COLORADO. 


159. A. pseudorepens S. & S. FALSE QUACK GRASS. 

Common on the plains and in mountain meadows, 5100- 
10000 ft. (Daniels, 511). 

Iowa to ALBERTA; NEw Mexico to UTauH. 


225] FLORA OF BOULDER, COLORADO Wai 


160. A. riparium S. & S. RIPARIAN WHEAT GRASS. 
About ditches in the plains, 5400-5700 ft. (Daniels, 398). 
Montana to CoLorapo. 


161. A. occidentale Scribn. WESTERN WHEAT GRASS. 

On the plains, where it is very abundant; also sparingly 
in mountain meadows, 5100-9500 ft. (Daniels, 402). Also 
at Longmont (Rydberg). 

MANITOBA to SASKATCHEWAN and OreEGon; Missouri to 
ARIZONA. 


162. A.molle (S.&S.) Rydb. Sorr WHEAT GRASS. 

On the plains, where it is especially characteristic of 
alkaline flats, and in the drier mountain valleys, 5100- 
gooo ft. (Daniels, 978). 

SASKATCHEWAN to WASHINGTON and NEw Mexico. 


74. TRITICUM L. Wueat. 


163. T. sativum vulgare (Vill.) Hack. [T. vulgare Vill.]. 
WHEAT. 
Adventitious along the railroad between Boulder and 
Marshall, 5400 ft. (Daniels, 514). 
Op Wor Lp, thence to the NEw. 


75. HORDEUM L. Bar tey. 


164. H. jubatum L. SQUIRREL-TAIL GRASS. 
Common on the plains and in mountain cafions; a fre- 
quent weed in waste places, 5100-11000 ft. (Daniels, 380). 
Ontario to Araska; Missourr to CaLtrorniA, thence 
naturalized eastward. 


165. H. pusillum Nutt. LirrLe BARLEY. 

Abundant on the plains and mesas, and following the 
roads into the mountain district, 5100-7000 ft. (Daniels, 
203). 

Ontario to British CoLuMBIA; FLORIDA to CALIFORNIA. 


166. H. sativum hexastichon (L.) Hack. SIx-ROWED BARLEY. 
Adventitious along the railroad between Boulder and 
Mrshall, 5400 ft. (Daniels, 480). 
OxLp WorLD, thence to the NEw. 


78 UNIVERSITY OF MISSOURI STUDIES [226 


76. SITANION Raf. BristLe GRASS. 


167. S. longifolium J. G. Smith. LONG-LEAVED BRISTLE GRASS. 
Common on the foothills and mountain slopes, 6000-9000 
ft. (Daniels, 363). 
NEBRASKA to NEvApDA; TExas to ARIZONA, 


168. §S. brevifolium J. G. Smith. SHORT-LEAVED BRISTLE 
GRASS. 

Abundant on the plains, and frequent on open mountain 
slopes, 5100-10000 ft. (Daniels, 202). Also on the mountains 
between Sunshine and Ward (Rydberg). 

Wyomine to UTAH; CoLorapo to ARIZONA. 


77. ELYMUS L. Lyme erass. 


169. E. Canadensis L. CANADIAN WILD RYE. 

Common along ditches and streams both in and out of 
shade, 5100-7000 ft. (Daniels, 357). 

Nova Scotia to WASHINGTON; GEORGIA to NEw Mexico. 


170. E.robustus S.& S. Srour wip RYE. 

In swales along railroads and on stream-banks, 5100-6000 
ft. (Daniels, 489). 

SoutH Daxota to IpaHo; Missourt to COLORADO. 


171. E. brachystachys Scribn. & Ball. SLENDER WILD RYE. 
Plains south of Boulder, 5400-5700 ft. (Daniels, 396). 
Micuican to Sour Dakota; Texas to Uran and Mexico. 


172. EH. Macounii Vasey. Macoun’s WILD RYE. 

On the plains and in meadows on the foot-hills, 5100-7000 
ft. (Daniels, 417). 

MAniTopa and SASKATCHEWAN to ALBERTA; NEw Mexico 
to UrauH. 


173. E. condensatus Presl SmooTH LYME GRASS. 
Dry meadows throughout, 5100-10000 ft. (Daniels, 961). 
ALBERTA to BritisH CoLumpia; New Mexico to CAti- 
FORNIA. 


227| FLORA OF BOULDER, COLORADO 79 


174.. E. ambiguus Vasey & Scribn. AMBIGUOUS LYME GRASS. 
Common on the foothills and mountainsides, 5900-9000 ft. 
(Daniels, 158). 
COLORADO. 


175. 4K. strigosus Rydb. STRIGOSE LYME GRASS. 

Common on the foothills and mountain ridges, 6000-8600 
ft. (Daniels, 962). Boulder is the type locality. 

WyominG to CoLorabo. 


176. E. villiflorus Rydb. ViLLous LYME Grass. 

Common on the foothills; occasional on the plains and 
mesas, 5100-8000 ft. (Daniels, 963). Boulder is the type 
locality. 

SoutH Daxora and the Canapran ROCKIES to COLORADO. 


Family 13. CYPERACEAE J. St. Hil. Galingale family. 


78. CYPERUS L. GaALINGALE. 


177. C. inflexus Muhl. [C. aristatus Boeckl.]. AWNED cy- 
PER GRASS. 
Scarce on the plains and foothills in moist sands, 5100- 
6500 ft. (Daniels, 253). 
VERMONT to BritisH CoLuMBIA; FLORIDA to CALIFORNIA 
and Mexico. 


178. C. Bushii Britt. Busu’s CYPER GRASS. 
In sandy soil at Meadow Park, 6500 ft. (Rydberg). 
WISCONSIN to OREGON; Kansas to COLORADO. 


79. SCIRPUS L. BuLrusuH. 


179. §. Americanus Pers. [S. pungens Vahl.]. THREE 
SQUARE. 

In swales, along ditches and streams, and at the margins 
of ponds and lakes, but apparently not following the streams 
very far into the foothills, 5100-6500 ft. (Daniels, 668). 

NortH AMERICA: CHILI: EUROPE. 


80 UNIVERSITY OF MISSOURI STUDIES [228 


180. S. lacustris L. GREAT BULRUSH. 

With the preceding but often in water of greater depth, 
and penetrating farther back into the mountains, 5100-8600 
ft. (Daniels, 414). 

Throughout the NortH TEMPERATE ZONE. 


181. §. atrovirens pallidus Britton. PALE BULRUSH. 

Swales, ditches and streams in the plains and mesas, and 
ascending but slightly into the foot-hills, 5100-6000 ft. 
(Daniels, 490). 

Minnesota to the NoRTHWEST TERRITORY and COLORADO- 


80. ELEOCHARIS R. Br. Spike RUSH. 


182. KE. palustris (L.) R.& S. Swamp SPIKE RUSH. 
Common in swamps, swales, and stagnant pools through- 
out, 5100-10000 ft. (Daniels, 492). 
Nortu AMERICA: Europe: Asta. 


183. EH. glaucescens (Willd.) Schultes [E. palustris glauces- 
cens (Willd.) Gray]. PALE SWAMP SPIKE RUSH. 
Common with the above, but in shallower water, 5100-go00 
(Glacier Lake, Eldora) ft. (Daniels, 733). 
Onrario and the UNITED STATES. 


184. EK. acicularis (L.) R.& S. NEEDLE RUSH. 

Common in limose places throughout, 5100-i0000 ft. 
(Daniels, 254). 

Europe: Asra: NortH AMERICA: CENTRAL AMERICA. 


1844. E. tenuis (Willd.) Schult. SLENDER SPIKE RUSH. 


Redrock lake, ro10o ft. (Ramaley and Robbins). 
NEWFOUNDLAND to MANITOBA; FLorIDA to CoLoRapo. 


185. E. acuminata (Muhl.) Nees. FLat-steEMMED SPIKE RUSH. 
Ditches and swales in the plains, 5100-5600 ft. (Daniels, 


734): 


ANTICOSTI to ALBERTA; GEORGIA to Louisiana and 
COLORADO. 


229 | FLORA OF BOULDER, COLORADO 81 


81. CAREX L. SeEncE. 


186. C. canescens L. SILVERY SEDGE. 
Subalpine bogs at Eldora, 8500-11500 ft. (Daniels, 852). 
Redrock lake, 1o1co ft. (Ramaley and Robbins). 
NEWFOUNDLAND to BRITISH COLUMBIA; VIRGINIA to COLO- 
RADO and OREGON: EUROPE and Astra. 


187. ©. tenella Schkuhr. Sorr-LEAVED SEDGE. 

Local in deep mountain cafions in shade, 6000-11500 ft. 
(Daniels, 610). 

NEWFOUNDLAND to BritisH CoLtumBia; NEW JERSEY to 
CALIFORNIA: EUROPE. 


188. C. Deweyana Schwein. DEWEyY’s SEDGE. 

Only detected in Bear Cafion, where it is very rare, 6000- 
7000 ft. (Daniels, 762). 

Nova Scotia to ManiToBA and OREGON; PENNSYLVANIA to 
New Mexico and Uran. 


189. Carex stipata Muhl. AWtL-FRUITED SEDGE. 

Irrigation ditches, 5100-5600 ft. (Daniels, 237). Not in 
Rydberg’s Flora. 

NEWFOUNDLAND to British CoLumBIA; FLoripA to CaLi- 
FORNIA. 


190. C. vulpinoidea Michx. Fox SEDGE. 

Irrigation ditches, 5100-5600 ft. (Daniels, 745). 

New Brunswick to Maniropa; FLoripa to Trxas and 
COLORADO. 


191. C. occidentalis Bailey [C. muricata Americana Bailey]. 
WESTERN SEDGE. - 
Low meadows at Eldora, 8600-11000 ft. (Daniels, 611). 
CoxLorapo to New Mexico and Arizona. 


192. ©. Hoodii Boott [C. muricata confixa Bailey]. Hoop’s 
SEDGE. 
Grassy meadows, Bluebell cafion, thence to the subalpine 
zone, 5800-10000 ft. (Daniels, 497). 
Montana to British CoLumBiIA; COLORADO to CALIFORNIA, 


82 UNIVERSITY OF MISSOURI STUDIES [230 


193. ©. marcida Boott. CLUSTERED FIELD SEDGE. 
Abundant in dry meadows, 5100-8600 ft. (Daniels, gs). 
ManitTospa to British CoLumBia; Kansas to New Mexico 
and Nrvapa. 


194. C. Sartwellii Dewey. SaRTWELL’S SEDGE. 

Swales along railroads in the plains, 5100-6000 ft. (Dan- 
iels, 971). 

OnTaArIo to BritisH CoLumBiA; NEw York to Ura. 

195. ©. Douglasii Boott. Doucias’ SEDGE. 

Common in dry soil throughout, 5100-11000 ft. (Daniels, 
317). Also near Long’s Peak (Rydberg; Coulter in Wabash 
College Herb.). 

Manitospa to British CoLumpia; NEBRASKA to New MeEx- 
1cO and CALIFORNIA. 


196. (C. scoparia Schkuhr. Broom sEDGE. 

Wet meadows about ditches and streams, 5100-7000 ft. 
(Daniels, 266). 

Nova Scotra to ManiToBa; FLORIDA to CoLoRADO. 
197. C. athrostachya Olney. BRACTED SEDGE. 

Shores of a pond south of Boulder, thence to timberline, 
5500-11000 ft. (Daniels, 258). 

ASSINIBOIA to BRITISH COLUMBIA; COLORADO to CALIFORNIA. 


198. C. festiva Dewey. PRETTY SEDGE. 
Abundant throughout the foothills and mountains in 
cafions and humid meadows, 6000-13000 ft. (Daniels, 103). 
ASSINIBOIA and BritisH CoLtumBia to Mexico. 


199. O©.ebenea Rydb. [C. festiva Haydemana Bailey]. Esony 
SEDGE. 

In frozen ground, alpine valley near snow, above Bloom- 
erville, go00-10000 ft. (Daniels, 324). Also on Long’s Peak 
(Rydberg). 

ALBERTA to BRITISH CoLumBIA; COLORADO to UTAH. 

200. C. petasata Dewey. WESTERN’S HARE’S-FOOT SEDGE. 

Deep cafions, north slope of Green Mt., 7000 ft. (Daniels, 
469). 

ALBERTA to ALASKA; COLORADO to OREGON. 


231 | FLORA OF BOULDER, COLORADO 83 


2o1. C. pratensis Drej. MEADOW SEDGE. 

Gregory Cafion, 6000-6500 ft. (Daniels, 688). Also on 
Long’s Peak (Rydberg). 

Ontario to ALASKA; MicuiGAn to COLORADO. 


202. C. siccata Dewey. DRry-SPIKED SEDGE. 

Common in dry meadows throughout, 5100-10000 ft. 
(Daniels, 972). Also near Long’s Peak (Rydberg). 

Ontario to British CotumBia; NEw YorK to CALIFORNIA. 


203. C.straminea Willd. Srraw SEDGE. 
Common along watercourses and grassy meadows in the 
plains, mesas, and foothills, 5100-6500 ft. (Daniels, 372). 
New Brunswick to Manirosa; NortH CaROLina to OKLA- 
HOMA and COLORADO. 


204. C.straminiformis Bailey. FALSE STRAW SEDGE. 

Dry torrents, high mesas at the foot of the Flat-irons, 
5700-6000 ft. (Daniels, 381). 

CoLorabDo to WASHINGTON and CALIFORNIA. 


205. C. festucacea Schkuhr. FESCUE SEDGE. 

Meadows and swales, frequent in the plains and mesas, 
and in meadows on the lower foothills, 5100-6400 (Flagstaff 
Hill) ft. (Daniels, 185). 

New Brunswick to MINNESOTA; FLORIDA to COLORADO. 


206. (C. stenophylla Wahl. NArROW-LEAVED SEDGE. 

Dry mesas between Marshall and South Boulder Peak, 
5700-6000 ft. (Daniels, 438). 

Maniroga to British Cotumsia; Iowa to CoLoRApDo. 


207. C. incurva Lightf. CURVED SEDGE. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
916). 

GREENLAND to ALASKA; CoLoRApO to BriTISH COLUMBIA. 


208. C. alpina Stevenii Holm. STEVEN’S ALPINE SEDGE. 
Lamb’s ranch, near Long’s Peak, gioo ft. (Rydberg). 
COLORADO. 


84 UNIVERSITY OF MISSOURI STUDIES [232 


209. C. atrata L. BLAcK SEDGE. 

Long’s Peak, 11500-13000 ft. (Rydberg). 

LABRADOR to ALASKA; QUEBEC to CoLorapo and Catt- 
FORNIA. 
210. ©. chalciolepis Holm. BroNzE-sCcALED SEDGE. 

Long’s Peak, 8500-13000 ft. (Rydberg). 

COLORADO. 


211. ©. bella Bailey. BrautTIFUL SEDGE. 
Above timberline, Arapahoe Peak, 11000-12000 ft. (Dan- 
iels, 940). 
CoLorapo to UraH and Arizona, 


212. €. rhomboidea Holm. RuHompBIc SEDGE. 
In swamps near Long’s Peak, 8500-9500 ft. (Rydberg). 
COLORADO. 


213. ©. Goodenovii J. Gay [C. vulgaris Fries]. Common 
SEDGE. 
Subalpine bogs, Eldora, 8600-10000 ft. (Daniels, 851). 
NEWFOUNDLAND to ALASKA; PENNSYLVANIA to COLORADO: 
EUROPE. 


214. C. rigida Good. [C. vulgaris alpina Booth]. Stirr 
SEDGE. 

Arapahoe Peak above timberline, 11000-12000 ft. (Dan- 
iels, 907). 

ALASKA to COLORADO. 
215. ©. chimaphila Holm. WHINTER-LOVING SEDGE. 

Above timberline, Arapahoe Peak, 11000-12000 ft. (Dan- 
iels, 923). Also on Long’s Peak (Rydberg). 

COLORADO. 


216. C. acutina Bailey. ACUTISH SEDGE. 

Boulder Cafion (5400-7000 ft. (Daniels, 556). Also Lamb’s 
ranch, near Long’s Peak, g100 ft. (Rydberg). 

MacKENZIE to ALASKA; COLORADO to OREGON. 


217. C. stricta Lam. EREcT SEDGE. 
Swales along railroad between Boulder and Marshall, 
5400 ft. (Daniels, 418). Not in Rydberg’s Flora. 


233) FLORA OF BOULDER, COLORADO 85 


Eastern UNITED States and Canapa to COLORADO and 
TEXAS. 


21744. C. variabilis Bailey. VARIABLE SEDGE. 
Redrock lake, toroo ft. (Ramaley and Robbins). 
Montana to CoLorapo. 


218. C. aurea Nutt. GOLDEN SEDGE. 

About springs in deep cafions, 6700-11000 ft. (Daniels, 
354). 

NEWFOUNDLAND to BritTIsH COLUMBIA; PENNSYLVANIA to 
UraH and WASHINGTON. 


219. C. Geyeri Boott. GEYER’S SEDGE. 

At edge of snow in alpine valley above Bloomerville,. 
gooo-10000 ft. (Daniels, 311). 

Montana to British CoLumpiA; COLORADO to OREGON. 


220. OC. nigricans C. A. Mey. BLACKISH SEDGE. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 926). Also Thompson’s Cafion, Long’s Peak (Rydberg). 
ALBERTA to ALASKA; COLORADO to CALIFORNIA: ASIA. 


221. C. Pyrenaica Wahl. PyRENAIC SEDGE. 

Above timberline, Arapahoe Peak, 11000-14000 ft. (Dan- 
iels, 925). Also on Long’s Peak (Rydberg). 

ALBERTA to ALASKA; COLORADO to OREGON: EUROPE. 


222. (C. rupestris All. CRAG SEDGE. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 930). Also on Long’s Peak (Rydberg). 

GREENLAND to ALASKA and CoLoraADo: Europe: ASIA. 


223. C. obtusata Lilj. OxsrusisH SEDGE. 
Above timberline on Arapahoe Peak, 11000-12000. ft. 
(Daniels, 931). Also on Long’s Peak (Rydberg). 
NEWFOUNDLAND to BritisH CoLumBi1a and COLORADO. 


224. C. oreocharis Holm. MouNTAIN-GRACE SEDGE. 
Lamb’s ranch, near Long’s Peak, g100 ft. (Rydberg). 
CoLoRabo. 


86 UNIVERSITY OF MISSOURI STUDIES [234 


225. C. Pennsylvanica vespertina Bailey [C. vespertina (Bai- 
ley) Howell]. Western PENNSYLVANIA SEDGE. 
Common on the plains and foothills, 5100-8500 ft. (Dan- 
iels, II). 
CoLoRADO to OREGON and British CoLumBia. 


226. C. umbellata brachyrhina Piper [C. wmbellata breviros- 
tris Boott]. SHORT-BEAKED UMBELLATE SEDGE. 
Dry rocky mesa fronting Flagstaff Hill, 5700-6000 ft. 
(Daniels, 125). 
Marne to British CoLtumBia; NEw Mexico to CALiFoRNIA. 


227. C. Beckii Boott [C. durifolia Bailey]. Brck’s SEDGE. 
Cafion at base of Flagstaff Hill, 5700-6000 ft. (Daniels, 
463). 
Ontario to Manitrosa; New York to CoLorapo. 


228. C. capillaris L. Harr sEpGe. 

Above timberline, Arapahoe Peak, 11000-12000 ft. (Dan- 
iels, 915). Also Thompson’s Cafion on Long’s Peak (Ryd- 
berg). 

GREENLAND to ALAsKA; NEw Hampsuire to Uran: Europe: 
ASIA. 


229. OC. utriculata Boott. BotTLe SEDGE. 

Swales and limose banks of streams, local (Boulder creek 
half way to Falls; subalpine bogs at Eldora, etc.), 5100-10000 
ft. (Daniels, 563). 

LaBRADOR to BRITISH COLUMBIA; DELAWARE to CALIFORNIA. 


229%. C. saxatilis L. [C. pulla Gooden.]. Rock sEpGE. 
Redrock lake, 10100 ft. (Ramaley & Robbins). 
GREENLAND and ALASKA to CoLoranpo. 


230. C. lanuginosa Michx. Woorty sepcE. 

Subalpine bogs at Eldora, 8600 ft. (Daniels, 652). 

Nova Scotia to British Cotumpia; NEw JERSEY to 
CALIFORNIA. 


235 | FLORA OF BOULDER, COLORADO 87 


Order 10. ARALES. 


Family 14. ARACEAE Neck. Arum family. 
82. ACORUS L. CarLamus. 


231. A.Calamus L. Sweet FLac. 

Swales along railroad in the city of Boulder, 5300-5400 ft. 
(Daniels). 

Nova Scotia to MinngEsota; FLormpa to Trxas and 
CoLoRADO: EuROPE: ASIA. 


Family 15. LEMNACEAE Dumort. Duckweed family. 
83. LEMNA L. Duckweep. 


232. L. gibba L. Gippous DUCKWEED. 

Ponds near Boulder, 5100-6000 ft. (Rydberg). 

NEBRASKA to CALIFORNIA; TEXAS to Mexico: OLD WorLD 
and AUSTRALIA. 


233. L. minor L. LrsseR DUCKWEED. 

Springy swales in the city of Boulder, 5400 ft. (Daniels 
748). 

Cosmopolitan. 


Order 11. XYRIDALES. 
Family 16. COMMELINACEAE Reichenb. Dayflower family. 
84. TRADESCANTIA L. SprpERwort. 


234. T. Universitatis Cockerell [T. occidentalis Rydb., not 
Britton]. UNIVERSITY SPIDERWORT. 

Common on the plains, mesas, and foothills, and follow- 
ing the deeper cafions several miles into the mountain re- 
gion, 5100-7000 ft. (Daniels, 44). The vicinity about Bould- 
er is the type locality. Both 7. scopulorum Rose and T. oc- 
cidentalis Britton, according to Rydberg’s Flora, occur about 
Boulder, but the former is a New Mexico plant, while the 
latter is from Wisconsin. 

CoLoRabo. 


88 UNIVERSITY OF MISSOURI STUDIES [236 


Family 17. PONTEDERIACEAE Dumort. Pickerel-w eed 
family. 
85. HETERANTHERA Willd. Mup pLanTain. 
235. H. limosa (Sw.) Willd. Limose Mup PLANTAIN. 
Between Longmont and Loveland, 5100-5500 ft. (Ryd- 
berg), in shallow water or mud. 
Vircinia to NEBRASKA and COLORADO; FLoRIpA to MExI- 
co, the West INpI&s, and CENTRAL AMERICA. 


Orden n2.) ee PAS: 
Family 18. MELANTHACEAE R.Br. SBunch-flower family. 


86. ANTICLEA Kunth. ZycGapENus. 


23514. A. elegans (Pursh) Rydb. [Zygadenus elegans 
Pursh]. SHOWy ZYGADENUS. 

Redrock lake, 10100 ft. (Ramaley). 

SASKATCHEWAN to ALASKA; COLORADO to NEVADA. 
230. A. Coloradensis Rydb. CoLoraDo zYGADENUS. 

In canons and subalpine meadows, locally abundant, 7000 
(Bear Cafion) -12000 ft. (Daniels, 651). 

CoLorapo and New Mexico to Urau. 


87. TOXICOSCORDION Rydb. Poison camass. 

237. T.gramineum Rydb. DEATH CAMASS. 

Mesas and foothills; blossoming in June, 5800-7000 ft. 
(Daniels, 106). 

SASKATCHEWAN to IDAHO and COLORADO. 
238. T. faleatum Rydb. FaLcaTE POISON CAMASS. 

Spruce forests along Bear Cafion, 6000-7500 ft. (Daniels 
759). 


COLORADO. 
Family 19. JUNCACEA® Vent. Rush family. 
88. JUNCUS L. Rusu. 
239. J. Balticus montanus Engelm. Mountain Battic RUSH. 
Along ditches and in swales and wet meadows, 5100-11000 
ft. (Daniels, 3709). 
LABRADOR to WASHINGTON, CoLoRabo, and Urau. 


237] FLORA OF BOULDER, COLORADO 89 


240. J. Drummondii Mey. DrumMonn’s RUSH. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 922). 

Montana to ALASKA; COLORADO to CALIFORNIA. 


241. J. interior Wiegand. INLAND RUSH. 

Common in swales and meadows on the plains, mesas, 
and foothills, and following the main streams some distance 
into the mountains, 5100-6500 ft. (Daniels, 152). 

ILLinors to Wyomrine; Missouri to COLORADO. y 


242. J. Arizonicus Wiegand. ARIZONA RUSH. 

Cry beds of torrents, mesas at foot of the Flat-irons 
5700-6000 ft. (Daniels, 964). 

Texas to CoLorapo and ARIZONA. 


243. J. confusus Coville. CoNFUSED RUSH. 

Swales along the railroad between Boulder and Marshall, 
5400 ft. (Daniels, 421). 

Montana to WASHINGTON and CoLorapo. 


244. J. Dudleyi Wiegand. DupLeEy’s RUSH. 

Swales, meadows, and mountain cafions, 5100-8600 ft. 
(Daniels, 965). Replaces /. znterzor Wiegand in the moun- 
tain region. 

Maine to Wasuincton; New York to Mexico. 


245. J. bufonius L. Toap rusH. 

Wet sandy soil throughout except at the higher eleva- 
tions, 5100-9000 ft. (Daniels, 251). 

Cosmopolitan. 


246. J. marginatus Rostk. GRASS-LEAVED RUSH. 

Irrigation ditches along the Arapahoe Road, 5300 ft. 
(Daniels, 740). Not in Rydberg’s Flora. 

MaINneE to ONTARIO; FLORIDA to COLORADO. 


247. J. longistylis Torr. LoNG-sTYLED RUSH. 
Common in swales, about ditches and ponds, and in wet 
meadows throughout, 5100-10000 ft. (Daniels, 240). 
ALBERTA to IpaHo; NEBRASKA to Mexico and CALIFORNIA. 


go UNIVERSITY OF MISSOURI STUDIES [238 


248. J. trigumis L. THREE-FLOWERED RUSH. 

Above timberline, Arapahoe Peak, t1000-12000 ft. (Dan- 
iels, 1007). 

LasBrapor to ALasKA; NEw YORK to COLORADO. 
249. J. /castaneus Smith. CHESTNUT RUSH. 

Above timberline, Arapahoe Peak, 11000-12500 ft. (Dan- 
iels, 639). 

GREENLAND to ALASKA and CoLorapo. 
250. J. nodosus L. KNOTTED RUSH. 

In swales and along ditches and streams, 5100-6500 ft. 
(Daniels, 735). 

Nova Scotia to MacKENZzIE and BritisH CoLumBia: VIR- 
Ginta to NEVADA. 
251. J. Torreyi Coville. Torrey’s RUSH. 

With the preceding, but more abundant, 5100-6500 ft. 


(Daniels, 495). 
New York to Montana; Texas to ARIZONA. 


25144. J. Mertensianus Bong. MERTENS’ RUSH. 
Redrock lake, rotoo ft. (Ramaley and Robbins). 
Montana to ALASKA; COLORADO to CALIFORNIA. 


252. J. parous Rydb. REDDISH BROWN RUSH. 

Dry beds of torrents, mesas fronting the Flat-irons, 5700- 
6000 ft. (Daniels, 373). 

CoLorapo to New Mexico. 


253. J. Saximontanus A. Nelson [J. xiphioides montanus 
Engelm.]. Rocky MouNTAIN RUSH. 

Aspen bogs at Glacier Lake and Eldora; also a dwarf form 
on Arapahoe Peak above timberline, 8500-12000 ft. (Dan- 
iels, 703). 

89. JUNCOIDES Adans. Woop RUsH. 


254. J. parviflorum melanocarpum (Michx.) Cockerell. Nov. 
comb. [Luzula melanocarpus Michx.]. SMALL-FLOWERED 
WOOD RUSH. 

Cafions on the north slope of Green Mt., 7000-8100 ft. 


239] FLORA OF BOULDER, COLORADO QI 


(Daniels, 332). A similar form was gathered above Bloom- 
erville, go00-10000 ft. Also at Caribou (Rydberg). 

GREENLAND to ALASKA; COLORADO to CALIFORNIA: EUROPE: 
ASIA. 


2s4a. J. parviflorum subcongestum (S. Wats.) Daniels. Nov. 
comb. [Luzula spadicea subcongesta S. Wats.]. DENSE- 
CYMED WOOD RUSH. 
Alpine valley near edge of snow, Bloomerville, 8500- 
11500 ft. (Daniels, 328). 
CoLoRADO to CALIFORNIA. 


255. J: spicatum (L.) Kuntze [Luzula spicata (L.) Desv.]. 
SPIKED WOOD RUSH. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 896). 
GREENLAND to British CoLumpiA; NEw HAMPSHIRE to 
CALIFORNIA. 


Family 20. ALLIACEAE Batch. Onion family. 


90. ALLIUM L. Onton. 


256. A. recurvatum Rydb. [4. cernuwm obtusum Cocker- 
ell]. RECURVED WILD ONION. 

Common throughout the mesas, foothills and the moun- 
tain plateau, 5700-8600 ft. (Daniels, 452). Also in the 
mountains between Sunshine and Ward (Rydberg). 

South Daxora to British CoLumBia and New Mexico. 


257. A. Nuttallii S. Wats. NutraLi’s WILD ONION. 

Aspen bog at Glacier Lake, gooo ft. (Daniels, 336). Also 
southwest of Ward (Rydberg). 

SourH Daxora to WyominG; Kansas to COLORADO. 


258. A. Geyeri S. Wats. [A. dictyotum Greene; A. reticula- 
tum deserticola Jones|. GEYER’S WILD ONION. 
Common throughout in both dry and moist soils, 5100- 
11500 ft. (Daniels, 54). 
NortuH Dakota to WasHINGTON and New Mexico. 


92 UNIVERSITY OF MISSOURI STUDIES [240 


259. A. reticulatum Fraser. FRASER’S WILD ONION. 

Springy cafions in the foothills and the mountain plateau, 
6000-8500 ft. (Daniels, 292). 

SASKATCHEWAN to IpAHO; SouTH DaKoTa to ARIZONA. 


200. A. Pikeanum Rydb. Prke’s PEAK WILD ONION. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, T002). 

CoLoRADO. 


Family 21. LILIACEAE Adans. Lily family. 


91. LEUCOCRINUM Nutt. Sawnp tity. 


261. L.montanum Nutt. MouNnTAIN SAND LILY. 
Along the railroad between Boulder and Marshall, 5400 
ft. (Daniels). Very abundant at Boulder (Cockerell). 
SoutH Daxora to Montana and CoLorapo. 


92. LILIUM L. Luiry. 


262. L. Philadelphicum montanum (A. Nelson)  Cocker- 
ell. Nov. comb. Mounratn tity. 
Springy cafion on north slope of Green Mt., 6500-8000 
ft. (Daniels, 355). Occasionally bearing two or more flowers. 
Montana to CoLorapo. 


93. ERYTHRONIUM L. Avper’s-roncur. Doc-TooTtH 
VIOLET. 


263. E. parviflorum (S. Wats.) Goodding [E. grandiflorum 
parviftorum S. Wats.]. SMALL-FLOWERED ADDER’S TONGUE. 
Above timberline, Arapahoe Peak, 11000-11500 ft. (Dan- 
lels, 888). 
WyomineG to CoLorapo and Urau. 


94. LLOYDIA Salisb. 


264. LL. serotina (L.) Sweet. Late Lioypta. 
Arapahoe Peak, 10000-14000 ft. (Rydberg). 
Monrana to ALASKA and COLORADO. 


241] FLORA OF BOULDER, COLORADO 93 


Family 22. CONVALLARIACEAE Link.  Lily-of-the-valley 
family. 
95. VAGNERA Adans. Fatse SoLOMON’S SEAL. 
265. V. racemosa (L.) Morong [Smilacina racemosa (L.) 
Desf.]. WILD SPIKENARD. 

Boulder Cafion, 6500-8500 ft. (Rydberg). 

Nova Scotia to WASHINGTON; GEORGIA to CALIFORNIA. 
266. V. amplexicaulis (Nutt.) Greene [Smilacina amplex- 

tcaulis Nutt.] CLASPING-LEAVED FALSE SOLOMON’S SEAL. 

Common in shady cafions throughout; at the edge of the 
wasting snows in a high alpine valley above Bloomerville 
July 7, 1906, 5700-10000 ft. (Daniels, 143). 

Montana to British CoLuMBIA; COLORADO to CALIFORNIA. 
267. V. stellata (L.) Morong [Smuilacina stellata (L.) 

Desf.] STARRY FALSE SOLOMON’S SEAL. 

Common throughout; along ditches and streams in the 
plains, and in cafions and wooded valleys in the mesas and 
mountains, 5100-12000 ft. (Daniels, 111). St. Vrain creek 
(Coulter in Wabash College Herb.). 

NEWFOUNDLAND to SASKATCHEWAN and MonrtTaANA; VIRGINIA 
to COLORADO. 

96. STREPTOPUS Michx. TwisTED STALK. 


268. 8S. amplexifolius (L.) DC. CLASPING-LEAVED TWISTED 
STALK. 

Local in deep cafions in the foothills and mountains, 
6500-10000 ft. (Daniels, 456). 

GREENLAND to ALasKA; NorTH CAROLINA to COLORADO 
and OREGON. 

97. DISPORUM Salisb. 

269. D. majus (Hook.) Britton [D. trachycarpum (S. Wats.) 
B. & H.; Prosartes trachycarpa S. Wats.]. Roucu- 
FRUITED DISPORUM. 

Local in company with the preceeding, 6500 (Green Mt.; 
Bear Cafion) -11000 it. (Daniels, 455). Also at Eldora 
(Rydberg). 

MAnitopa to British CoLumpia; NEBRASKA to ARIZONA. 


Q4 UNIVERSITY OF MISSOURI STUDIES [242 


98. ASPARAGUS L. 


270. AA. officinalis L. CoMMON ASPARAGUS. 

A common escape throughout the cultivated district, 
5100-6000 ft. (Daniels, 114). 

Europe, thence to NortH AMERICA. 


Family 23. DRACAENACEAE Link. Dragon-tree family. 


99. YUCCA L. SPANISH BAYONET. 


271. Y. glauca Nutt. [Y. angustifolia Pursh]. Narrow- 
LEAVED SPANISH BAYONET. 

Common in the plains, mesas, and foothills; just north of 
the entrance to Bear Cafion it forms the main facies of the 
vegetation, 5100-6500 (Green Mt.) ft. (Even higher I think 
on the first line of hills). (Daniels, 39). 

NEBRASKA to Montana; Missouri to Texas and ARIZONA. 


Family 24. CALOCHORTACEAE Rydb. Mariposa lily family. 
100. CALOCHORTUS Pursh. Mariposa LIty. 


272. C. Gunnisonii S. Wats. GUNNISON’S MARIPOSA LILY. 
Common in the mesas and mountain meadows, 5600- 
10000 ft. (Daniels, 53). At Ward occurs the forma zmma- 
culatus Cockerell (Cockerell). 
Montana to COLORADO and ARIZONA. 


Family 25. SMILACEAE Vent. Greenbrier family. 
101. NEMEXIA Raf. Carrion FLOWER. 


273. N. lasioneuron (Hook.) Rydb. [Smilax lasioneuron 
Hook.; WV. herbacea melica A. Nelson]. WESTERN CAR- 
RION FLOWER. 

Cafions in the mesas and foothills; especially frequent in 
gulches on the east slope of Flagstaff Hill, 5700-7000 ft. 
(Daniels, 224). The type locality of VV. herbacea melica A- 
Nelson. 

SASKATCHEWAN to NEBRASKA and CoLorapo. 


243] FLORA OF BOULDER, COLORADO 95 


Order 13. AMARYLLIDALES. 
Family 26. IXIACEAE Ecklon. Ixia family. 


102. SISYRINCHIUM L. BLvueE-EvYeED GRASS. 


274. §. alpestre Bickn. ALPINE BLUE-EYED GRASS. 
Mountain meadows at Eldora, 8600 ft. (Daniels, 648). 
CoLoRabo. 


275. S. angustifolium Miller. NARROW-LEAVED BLUE-EYED 
GRASS. 

Common in meadows and about streams throughout ex- 
cept at the higher elevations, 5100-9000 ft. (Daniels, 72). 
Also at North Boulder Peak (Rydberg). 

NEWFOUNDLAND to MackENzIE and British COLUMBIA; 
VIRGINIA to COLORADO. 


108. IRIS L. FLeur-peE-.ts. 


276. I. Missouriensis Nutt. Missouri BLUE FLAG. 2 
In swales and wet meadows about Boulder, 5100-6000 ft. 
(Daniels). Common at 8000-9000 ft. at Eldora, Hesse, Mil- 
ler’s Ranch (Ramaley). Near Long’s Peak (Coulter in Wa- 
bash College Herb.) 
Nortu Dakota to IDAHO; COLORADO to CALIFORNIA. 


Order 14. ORCHIDALES. 
Family 27. ORCHIDACEAE Lindl. Orchis family. 
104. LIMNORCHIS Rydb. Boc orcuis. 


277. UL. stricta (Lindl.) Rydb. NArrRowW-SPIKED BOG ORCHIS. 
Subalpine bogs and springy mountainsides at Eldora, 
8600-10000 ft. (Daniels, 993). 
Montana to ALASKA; COLORADO to WASHINGTON, 


278. L. viridiflora (Cham.) Rydb. GREEN-FLOWERED BOG OR- 
CHIS. 

Common in deep cafions and about springs throughout 
the mesas, foothills, and mountains, 5800-10000 ft. (Daniels, 
69). 

ALBERTA to ALASKA and CoLoRADO, 


96 UNIVERSITY OF MISSOURI STUDIES [244 


279. lL. borealis (Cham.) Rydb. NorrHERN BOG ORCHIS. 
Springs on mountainside at Eldora, 8600-10000 ft. (Dan- 
iels, 842). 
Montana to ALASKA; COLORADO to WASHINGTON. 


280. L. laxiflora Rydb. Loosr-FLOWERED BOG ORCHIS. 
Common in deep mountain cafions, 6500-10000 ft. (Dan- 
iels, 602). 
OREGON to CoLorADOo and UTAH. 


105. PIPERIA Rydb. Piper’s orcHts. 


281. P. Unalaschensis (Spreng.) Rydb. [Habenaria Una- 
laschensis S. Wats.| ALASKAN PIPER’S ORCHIS. 

Under pines on north slope of Green Mt., very rare, 6000- 
8100 ft. (Daniels, 470). Also on South Boulder Peak, 8500 
ft. (Rydberg). 

Montana to ALASKA; COLORADO to CALIFORNIA. 


106. IBIDIUM Salisb. LaptEs’ TRESSES. 


282. I. Romanzoffianum strictum (Rydb.) Daniels. Nov. 
comb. [Gyrostachys stricta Rydb.| Narrow - SPIKED 
LADIES’ TRESSES. 

One plant in a deep cafion on the north slope of Green 
Mt.; common in springy bogs at Eldora, 7000-10000 ft. 
(Daniels, 769). 

NEWFOUNDLAND to ALASKA; PENNSYLVANIA to COLORADO. 


107. OPHRYS (Tourn.) L. Tways ape. 


283. 0. borealis (Morong) Rydb. [Listera borealis Morong]. 
NORTHERN TWAYBLADE. 
Deep cafions on north slope of Green Mt., very rare, 6500- 
8100 ft (Daniels, 607). 
Hupson Bay to MackENzIE; COLORADO to MONTANA. 


283%. 0. nephrophylla Rydb. [Listera nephrophylla Rydb.] 
KIDNEY-LEAVED TWAYBLADE. 
Redrock lake 1oroo ft. (Ramaley and Robbins). 
ALASKA to CoLorADO and OREGON. 


245] FLORA OF BOULDER, COLORADO 97 


108. PERAMIUM Salisb. RATTLESNAKE PLANTAIN. 


284. P. ophioides (Fernald) Rydb. SNAKE-MOUTH RATTLE- 
SNAKE PLANTAIN. 
Densely wooded cafions on north slope of Green Mt., very 
rare, 7000-8100 ft. (Daniels, 827). 
PRINCE Epwarp’s IsLanp to SoutH Daxota; NortH Car- 
OLINA to COLORADO. 


109. ACROANTHES Raf. ApprER’s MOUTH. 


285. A. monophylla (L.) Greene [Microstylis monophylla 
(L.) Lindl.]. ONE-LEAVED ADDER’S MOUTH. 
Deep cafions on north slope of Green Mt., very scarce, 
6500-8100 ft. (Daniels, 342). 
QueEBEc to MINNESOTA; PENNSYLVANIA to COLORADO. 


110. CYTHEREA Salisb. Catypso. 


286. C. bulbosa (L.) House. [Calypso borealis Salisb.]. 
NORTHERN CALYPSO. 
Nederland, Boulder County, 8263 ft. (Miss Zora Phillips). 
LABRADOR to ALASKA; MAINE to CALIFORNIA: EUROPE. 


111. CORALLORHIZA R. Br. Coratroor. 
28044. C. ochroleuca Rydb. YELLOW CORALROOT. 
Redrock lake, 10100 ft. (Ramaley and Robbins). 
NEBRASKA to COLORADO. 


287. ©. Corallorhiza (L.). Karst. [C. innata R. Br.]. Earty 
CORALROOT. 

Cafion in mesa at foot of Flagstaff Hill, only two plants, 
5700-5800 ft. (Daniels, 122). Also at Caribou, 10000 ft. 
(Rydberg). 

Nova Scotia to Ataska; GkEORGIA to CoLorapo and 
WASHINGTON. 


288. C. multiflora Nutt. LARGE CoRALROOT. 

A solitary cluster of plants under conifers at the Royal 
Arch at base of the Flat-irons, 6200 ft. (Daniels, 229). Also 
on North Boulder Peak (Rydberg). 

Nova Scotia to ALASKA; FLORIDA to CALIFORNIA. 


98 UNIVERSITY OF MISSOURI STUDIES [246 
Sub-class 2. DICOTYLEDONES. 


Series t. CHORIPETALAE. 


Order 14-)) SALICALE'S: 


Family 28. SALICACEAE Lindl. Willow family. 
112. POPULUS L. Poprar. Aspen. Corronwoop. 


289. P. tremuloides aurea (Tidestrom) Daniels, Nov. comb.* 
AMERICAN ASPEN. 
Throughout the foothills and mountain region except at the 
higher elevations, 5800-10000 ft. (Daniels, 314). 
NEWFOUNDLAND to Hupson Bay and Ataska; NEw JERSEY 
and TENNESSEE to Mexico and LOWER CALIFORNIA. 


290. P. Sargentii Dode. [P. occidentalis (Rydb.) Britton; 
P. deltoides occidentalis Rydb.]. WESTERN COTTONWOOD. 
Common along streams, ascending Boulder creek as far 
as Eldora, 5100-8600 ft. (Daniels, 820). Also at Lyons 
(Rydberg). 
SASKATCHEWAN to Montana; Kansas to ARIZONA. 
291. P. acuminata Rydb. BLack corronwoop. 

A solitary tree near a stream about half way between 
Boulder and Marshall, 5400 ft. (Daniels, 819). Common in 
all gulches ; there are large trees in Sunshine Cafion, 6500 ft. 
(Ramaley). 

SoutH Daxora to Ipano; NEw Mexico to Nevapa. 

292. P. angustifolia James. NARROW-LEAVED COTTONWOOD. 

Along streams and in cafions on the mesas and in the 
foothills and mountains, 5400-9000 ft. (Daniels, 52). 

Nortu Dakota to WasHinecton; New Mexico to Cattr- 
FORNIA. 


293. P. balsamifera L. Batsam POPLAR, 

Fourth of July mine; Eldora; Allenspark, 8000-10000 ft. 
(Ramaley). 

Laprapor to ALASKA; New ENGLAND to COLORADO. 


*See Appendix A. 


247 | FLORA OF BOULDER, COLORADO 99 


113. SALIX L. WILtLow. 


294. §. amygdaloides Anders. PEACH WILLOW. 
Common along streams; the only willow, except the next, 
of tree size about Boulder, 5100-7000 ft. (Daniels, 90). 
Quesec to WasuHincton; New York to Mrssourr and 
ARIZONA. 


295. S. caudata (Nutt.) Piper [S. Fendleriana Anders. ; S. 
pentandra caudata Nutt.; S. lasiandra Fendleriana Bebb]. 
FENDLER’S WILLOW. 

Along streams in mountain cafions, 5500 (Boulder creek)- 

10000 ft. (Daniels, 807). 

ALBERTA to British Cotumpia; NEw Mexico to Cati- 

FORNIA. 


296. §. exigua Nutt. NarrRoWLEAF WILLOW. 

Marshall; Valmont; Boulder; South Boulder Cafion; near 
junction of Fourmile and Boulder creeks, 5000-9000 ft. 
(Ramaley). 

MACKENZIE to WASHINGTON; COLORADO to CALIFORNIA. 


297. S. luteosericea Rydb. SILKY SANDBAR WILLOW. 

Sandy stream flats in the plains and mesas, 5100-7000 ft. 
(Daniels, 134). 

Nesraska to IDAHO and CoLoRabo. 


297%. S. lutea Nutt. YELLOW wiILiow. 
Redrock lake, roroo ft. (Ramaley and Robbins). 
CaNnapA to CoLorapo and CALIFORNIA. 


298. S. Wolfii Bebb. WotLrF’s wILLow. 
Eldora to Baltimore, 8000-10000 ft. (Rydberg). 
Wyominc to COLORADO. 


299. S. irrorata Anders. BLOOM-BRANCHED WILLOW. 
Gregory Cafion (E. Bethel). 
Cotorapo to NEw Mexico. 


300. S. perrostrata Rydb. LonG-BEAKED WILLOW. 
Common in mountain cafions, 5500-8600 ft. (Daniels, 811). 
Hupson Bay to ALAsKA and CoLoRADO. 


100 UNIVERSITY OF MISSOURI STUDIES [248 


301. §. Bebbiana Sarg. [S. rostrata Richardson]. Brss’s 
WILLOW. 

Cafions and mountain valleys, frequent, 5700-10000 ft. 
(Daniels, 824). St.Vrain Cafion (Coulter in Wabash College 
Herb.). 

Anticosti to ALASKA; New JerSEy to CALIFORNIA. 


302. §. Scouleriana Barratt [S. Nuttall Sarg.; S. flavescens 
Nutt.]. NUurTraLi’s wILLow. 

High alpine valley next to snow, above Bloomerville, 
Boulder Cafion, 5700-10000 ft. (Daniels, 321). Also from 
Eldora to Baltimore (Rydberg). 

Asstnigo1a to British Cotumsia; New Mexico to CAtt- 
FORNIA. 


303. 8. brachycarpa Nutt. Dwarr wiLtow. 
Silver lake, 7000-11000 ft. (Ramaley). 
QueEsec to ALBERTA and COLORADO. 


304. §. pseudolapponicum Seem. FaLts—E LAPLAND WILLOW. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 

iels, 883). Also between Eldora and Baltimore (Rydberg). 
COLORADO. 


305. 8. glaucops Anderson. GLAUCOUS WILLOW. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 937). Also mountains south of Ward, and between 
Sunshine and Ward, (Rydberg). 

ALBERTA to YUKON; COLORADO to CALIFORNIA. 


306. §. chlorophylla Anders. GREEN-LEAF WILLOW. 
Near Fourth of July mine, (Ramaley). 
LasBrapor and New Hampsurre to ALASKA and CoLorabo. 


307. §. petrophila Rydb. [S. arctica petraea Anderson]. 
ROCK-LOVING WILLOW. 
Above timberline, Arapahoe Peak, 11000-14000 ft. (Dan- 
iels, 951). 
New HampsHtreE to British CoLtumpia; CoLoRApO to 
UTAH. 


249 | FLORA OF BOULDER, COLORADO IOI 


308. §. Saximontana Rydb. Rocky MounraIn wIiLLow. 
Above timberline, Arapahoe Peak, 11000-14000 ft. (Dan- 
iels, gOI). 
WyominG and CoLorapo to WASHINGTON and CALIFORNIA. 


Order 16. FAGALES. 


Family 29. BETULACEAE Agardh. Birch family. 
114. BETULA L. Brrcu. 


309. B. papyrifera Andrewsii (A. Nels.) Daniels [B. Andrews 
A. Nels.] ANDREWS’S CANOE BIRCH. 
A few patches in valleys on the north slope of Green 
Mountain (Daniels, 1018). The type locality. 
COLORADO, as above. 


310. B. fontinalis Sarg. [B. occidentalis S. Wats.]. Foun- 
TAIN BIRCH. WESTERN RED BIRCH. 

Everywhere along streams except at high altitudes, where 
the next takes its place, 5100-9000 ft. (Daniels, 149). Also 
Eldora to Baltimore (Rydberg). Near Long’s Peak (Couiter 
in Wabash College Herb.). 

ALBERTA to YuKoN; SoutH Dakota to New Mexico and 
OREGON. 


311. B. glandulosa Michx. GLANDULAR BIRCH. SCRUB BIRCH. 
In bogs, Eldora to Baltimore, gooo-11000 ft. (Rydberg): 
Ward (Cockerell). 
GREENLAND to ALASKA; Maine to CoLorADO and OREGON: 
ASIA. 


115. ALNUS Gaertn. ALprer. 


312. A. tenuifolia Nutt. [A. imeana virescens S. Wats.]. 
THIN-LEAVED ALDER. 

Along streams throughout, 5400 (Boulder creek) -10000 ft. 
(Daniels, 571). Also mountains between Sunshine and 
Ward (Rydberg). 

Montana to ALaskA; NEw Mexico to CALIFORNIA. 


102 UNIVERSITY OF MISSOURI STUDIES [250 
Family 30. CORYLACEAE Mirbel. Hazel family. 


116. CORYLUS L. Haze. 


313. C. rostrata Ait. BEAKED HAZEL NUT. 

Abundant in cafons in the mesas, foothills, and the moun- 
tain plateau, 5600-8000 ft. (Daniels, 116). 

Nova Scotia to NortH Dakota; GEorGIA to COLORADO. 


Order 17. URTICALES. 


Family 31. URTICACEAE Reichenb. Nettle family. 


117. URTICA L. Nertte. 


314. U. gracilis Ait. SLENDER NETTLE. 

Common in stream-flats both in and out of shade, 5100- 
gooo ft. (Daniels, 583). Also mountains between Sunshine 
and Ward (Rydberg). 

Nova Scotia to ALasKA; NorTH CAROLINA to NEw Mexico 


118. PARIETARIA L. PEL.irory. 


315. P. Pennsylvanica Muhl. PENNSYLVANIA PELLITORY. 
Moist places under rocks and in cafions and on shady 
banks of streams, 5100-7000 ft. (Daniels, 498). 
Ontario to British CoLumBiIA; FLoripa to MExtco. 


316. P. obtusa Rydb. OBTUSE-LEAVED PELLITORY. 
Sunset Cafion, 6000 ft. (Rydberg). 
CoLorapbo to UTAH; TEXAS to CALIFORNIA. 


Family 32. CANNABINACEAE Lindl. Hemp family. 


119. HUMULUS L. Hop. 


317. H. Lupulus Neo-Mexicanus A. Nels. & Cockerell. NEw 
MEXICO HOP. 
Rocky banks of cafions and along streams and in waste 
places as along fences, 5100-8000 ft. (Daniels, 573). 
Wyominc to UTan; NEw Mexico to ARIZONA. 


251] FLORA OF BOULDER, COLORADO 103 


Family 33. ULMACEAE Mirbel. Elm family. 


120. ULMUS L. Exo. 
318. U. Americana L. AMERICAN ELM. 

A tree of considerable size occurs in a wild place near the 
entrance to Boulder Cafion, doubtless self-sown from trees 
planted for shade, 5500 ft. (Daniels). 

NEWFOUNDLAND to Manitopa; FLoripa to TEXas. 


121. CELTIS L. Hackperry. 
319. OC. reticulata Torr. VEtNY-LEAVED HACKBERRY. 
Rocky ridges on the mesas and foothills, scarce, 5700- 
6500 ft. (Daniels, 796). 
Texas to COLORADO and ARIZONA. 


Order 184 SAIN APA Ae BS) 
Family 34. LORANTHACEAE D. Don. Mistletoe family. 
122. RAZOUMOFSKYA Hofim. SMALL MISTLETOE. 
320. R. Americana (Nutt.) Kuntze [Arceuthobium Ameri- 
canum Nutt.]. AMERICAN SMALL MISTLETOE. 
On Pinus contorta Murrayana (Oreg. Com.) Engelm. at 
Sunset, 7700 it. (Rydberg). 
British CoLumpia to COLORADO and OREGON. 


321. R. eryptopoda (Engelm.) Coville [Arceuthobium cryp- 
topodum Engelm; A. robustum Engelm]|. HipDEN-FOOTED 
SMALL MISTLETOE. 

On Pinus scopulorum (Engelm.) Lemmon upon high ridge 
well toward eastern summit of Green Mt., 7500-8000 ft. 
(Daniels, 770). Also between Sunshine and Ward (Rydberg). 

Texas and CoLorapo to Arizona and Mexico. 


Family 35. SANTALACEAE R. Br. Sandalwood family. 
123. COMANDRA Nutt. Bastarp TOAD-FLAX. 


322. €. pallida A. DC. Pate BASTARD TOAD-FLAX. 

Frequent on the plains, mesas, and foothills, 5100-8000 
ft. (Daniels, 49). St. Vrain Cafion (Coulter in Wabash Col- 
lege Herb.). 

Manitopa to BritisH CoLumBia; TEXAS to CALIFORNIA. 


104 UNIVERSITY OF MISSOURI STUDIES [252 


Order 19. POLYGONALES. 
Family 36. POLYGONACEAE Lind]. Knotweed family. 
124. ERIOGONUM Michx. Woot-joInt. . 


323. KE. alatum Torr. WINGED WOOL-JOINT. 

Common on the plains, mesas, foothills, and open moun- 
tainsides, 5100-10000 ft. (Daniels, 170). 

NEBRASKA to WyomINnG; TEXAS to ARIZONA. 


324. E. vegetius (T. & G.) A. Nels. [E. flavum vegetius T. 
& G.; E. Jamesu flavescens S. Wats.; E. Bakeri Greene]. 
BAKER’S WOOL-JOINT. 

Mountains between Sunshine and Ward, and at Meadow 

Park, 9000-10000 ft. (Rydberg). 

Wyominc to Uran; NEw Mexico to ARIZONA. 


325. E. flavum Nutt. [E. crassifolium Dougl.]. YELLow 
WOOL-JOINT. 
Common in open places throughout, 5100-12000 ft. (Dan- 
iels, 368). 
SASKATCHEWAN to ALBERTA; NEBRASKA to COLORADO. 


326. KE. umbellatum Torr. UMBELLATE WOOL-JOINT. 

Very abundant in open places throughout, 5100-12000 ft. 
(Daniels, 55). 

Wyominc to IpaHo; Cotorapo to UTAH. 


327. E. subalpinum Greene. SUBALPINE WOOL-JOINT. 

Along the Arapahoe Trail from Eldora to Arapahoe Peak 
and ascending to the timberline, but not above it, 8600- 
11000 ft. (Daniels, 950). 

ALBERTA to British CoLtumBiIA; CoLorapo to NEVADA. 


328. KE. effusum Nutt. Errusr wooL-yornt. 

Plains and mesas between Marshall and South Boulder 
Peaks, and along the railroad between Boulder and Marshall, 
5 400-6000 ft. (Daniels, 439). 

NEBRASKA to MonTANA and CoLorapo. 


253] FLORA OF BOULDER, COLORADO 105 


125. RUMEX L. Dock. 


329. R. Acetosella L. SHEEP SORREL. 

Along railroads and roadsides, and in fields and waste 
places, in 1906 still somewhat scarce, 5100-6000 ft. (Daniels, 
589). Very common now (1910), along railways up to gooo ft. 
and higher (Ramaley). 

Europe: Asta, thence to NortH AMERICA. 


330. R. occidentalis S. Wats. WESTERN DOCK. 
In Bear Cafion, 6000-7000 ft. (Daniels, 710). 
LABRADOR to ALASKA; TEXAS to CALIFORNIA. 


331. R. densiflorus Osterh. [R. Bakeri Greene]. DENSE- 
FLOWERED DOCK. 
Subalpine bogs at Eldora, 8600-10000 ft. (Daniels, 908). 
WYoMING to COLORADO. 


332. R. crispus L. Curty DOcK. 

Fields and waste places and becoming common in ditches 
and swales, 5100-5700 ft. (Daniels, 491). 

Europe and Asta, thence to NortH AMERICA. 


333. R. salicifolius Weinm. WAILLOW-LEAVED DOCK. 

Common in ditches, shallow streams, and in swales and 
low meadows, 5100-10000 ft. (Daniels, 234). 

Laprapor to ALASKA; TEXAS to LOWER CALIFORNIA: Evu- 
ROPE. 


334. R. obtusifolius L. Bitrer Dock. 
Waste places and fields, 5100-6000 ft. (Daniels). 
Europe and Asta, thence to NortH AMERICA. 


126. OXYRIA Hill. 


335. 0. digyna (L.) Hill. Mounrarn sorre-. 

Creek-banks at Eldora; above timberline, Arapahoe Peak, 
8600-12000 ft. (Daniels, 844). 

GREENLAND to ALASKA; New HAmpsHire to ARIZONA and 
CALIFORNIA: Europe: Asta. 


106 UNIVERSITY OF MISSOURI STUDIES [254 


127. POLYGONUM L. KwNorweep. 


336. P. erectum L. Erect KNOTWEED. 
Along the railroad in Boulder Cafion, 5500 ft. (Daniels, 580). 
Marne to ALBERTA; GEorGIA to ARKANSAS and CoLoRADO. 


337. P. buxiforme Small. Box-LIkE KNOTWEED. 

Bear Cafion, and all waste places, 5100-10000 ft. (Daniels, 
698). 

ONTARIO to WASHINGTON ; VIRGINIA to TEXAS and NEvADA. 
338. P. aviculare L. Doorweep. 

Common about houses, along railroads, and in all waste 
places, 5100-8000 ft. (Daniels, 582). 

Asta: Europe: NortH AMERICA. 


339. P. ramosissimum Michx. Bushy KNOTWEED. 

Common along railroads and roads, and in low weedy - 
grounds, 5100-10000 ft. (Daniels, 519). 

MinNEsora to WASHINGTON ; ILLINOIS to NEw Mexico and 
Nevapa; Marne to New Jersey along the coast. 


340. P. Sawatchense Small. SAaGUACHE KNOTWEED. 

High mesas at foot of the Flat-irons, 5700-6000 ft. (Dan- 
iels, 178). 

SoutH Daxora to WASHINGTON; COLORADO to ARIZONA and 
CALIFORNIA. 


341. P. confertiflorum Nuttall [P. Watsonit Small]. War- 
SON’S KNOTWEED. 
About the quarries at foot of the Flat-irons, 5700-6000 ft. 
(Daniels, 660). 
Montana to WASHINGTON ; COLORADO to CALIFORNIA. 


342. P. unifolium Small. ONE-LEAVED KNOTWEED. 
Aspen bogs at Glacier Lake, gooo ft (Daniels, 672). 
Montana to CoLorabo. 
343. P. Engelmannii Greene [P. tenue microspermum 
Engelm.]. ENGELMANN’S ENOTWEED. 
Sandy stream-flats, especially common along the railroad in 
Boulder Cafion, 5100-10000 ft. (Daniels, 568). 
Montana and CoLorapo to British CoLuMBIA. 


255] FLORA OF BOULDER, COLORADO 107 


344. P. Douglasii Greene. DouGLas’s KNOTWEED. 

Common in open, especially sandy places throughout, 5100- 
10000 ft. (Daniels, 958). 

VeRMONT to BritisH CotumpiA; NEw York to New Mex- 
Ico and CALIFORNIA. 


344a. P. Douglasii consimile (Greene) Small [P. consimile 
Greene]. BRANCHED DOUGLAS'S KNOTWEED. 
Gregory Cafion, 6000-6300 ft. (Daniels, 546). Lower Boul- 
der Canon (Rydberg). 
Range of the type? 
128. PERSICARIA Adans. SMaArTWEED.  Lapy’s 
THUMB. 


345. P. emersa (Michx.) Cockerell. Nov. comb. [Polygonum 
Muhlenbergu S. Wats; Polygonum emersum (Michx.) 
Britton]. MUHLENBERG’S LADY’S THUMB. 

Along ditches and in swales in the plains, 5100-6000 ft. (Dan- 
jels). 
Marne to BritisH CoLUMBIA; VIRGINIA to CALIFORNIA and 

MExIco. 


346. P. lapathifolia (L.) S. F. Gray [Polygonum lapathifo- 
lium L.|. Dock-LEAVED LADY’S THUMB. 
Swales and ditches in the plains, 5100-6000 ft. (Daniels, 
506). ; 
Europe: Asta: NortH AMERICA. 
347. P. Persicaria (L.) Small. [Polygonum Persicaria L.]- 
COMMON LADY'S THUMB. 
Common in waste places, and along ditches and in swales, 
5100-6000 ft. (Daniels, 517). 
Europe, thence to NortH AMERICA. 


348. P. punctata (Ell.) Small [Polygonum punctatum ELL. ; 
Polygonum acre H. B. K.].. WATER SMARTWEED. DOTTED 
WATER PEPPER. 

Margins of ponds, in swales and springy grounds, 5100-6000 

ft. (Daniels, 798). 


NortH AMERICA: CENTRAL AMERICA: SOUTH AMERICA. 


108 UNIVERSITY OF MISSOURI STUDIES [256 


129. BISTORTA Tourn. Brsrorr. 
349. B. bistortoides (Pursh) Small [Polygonum Bistorta ob- 
longifolium Meisn.]. OBLONG-LEAVED BISTORT. 
Along Arapahoe Trail and above timberline on Arapahoe 
Peak, 8600-13000 ft. (Daniels, 890). 
Montana to WasHIncTon; NEw Mexico to CALIFORNIA. 


350. B. vivipara (L.) S. F. Gray [Polygonum viviparum L.]. 
ALPINE BISTORT. 

Above timberline, Arapahoe Peak, 11000-12000 ft. (Daniels, 
894). Also Eldora to Baltimore (Rydberg). Redrock lake, 
1o1oo ft. (Ramaley & Robbins). 

GREENLAND to ALASKA; New Hampsuire to CoLorapo: Ev- 
ROPE: ASIA. 


130. TINIARIA Reichenb. Fatse BucKWHEAT. 

351. T. Convolvulus (L.) Webb. & Mog. [Polygonum Con- 
volvulus L.].. BLACK BINDWEED. COMMON FALSE BUCK- 
WHEAT. 

Along railroads and roads; throughout the cultivated area 

as a weed in fields, 5100-go00 ft. (Daniels, 484). 

Europe and Asta, thence to Nort AMERICA. 


Order 20. CHENOPODIALES. 
Family 37. CHENOPODIACEAE Dumort. Goosefoot family. 


131. CHENOPODIUM L. Goosrroor. Lamp’s QuAR- 
TERS. PIGWEED. 
352. C. leptophyllum Nutt. NARROW-LEAVED GOOSEFOOT. 
Common in the plains, mesas, and gullies of the foothills and 
mountains, 5100-8000 ft. (Daniels, 604). 
NEBRASKA to Montana; Missourt to ARIZONA. 


353. C. oblongifolium (S. Wats.) Rydb. [C. leptophyllum ob- 
longifolium S. Wats.]. OBLONG-LEAVED GOOSEFOOT. 
Common in dry places on the plains and mesas, 5100-7000 
ft. (Daniels, 994). 
NortH Daxora to Wyominc; Missourt and Texas to ArRI- 
ZONA. 


257]| FLORA OF BOULDER, COLORADO 109 


354. C. incanum (S. Wats.) Heller [C. Fremonti imcanum 
S. Wats.]. Hoary GOOSEFOOT. 
Frequent on the plains and in waste places, 5100-6000 ft. 
(Daniels, 411). 
NEBRASKA to Cotorapo; NEw Mexico to NEvapa. 


355. C. Fremontii S. Wats. FREMONT’S GOOSEFOOT. 
Bear Cafion in shade, 6000-7000 ft. (Daniels, 829). 
Soutu Daxota to Montana; New Mexico to Arizona and 
Mexico. 


356. ©. album L. WHuite GoosEeroor. COMMON PIGWEED. 
Common in fields, yards, and waste places, 5100-8600 ft. 
(Daniels, 806). 
Europe and Asia, thence a cosmopolitan weed. 


357. C. hybridum L. MapLr-LEAVED GOOSEFOOT. 

Common in shady cafions, and as a weed in gardens and 
waste places, 5100-8600 ft. (Daniels, 6or). 

Temperate NortH AMERICA: EUROPE. 


358. C. rubrum L. [Blitum rubrum (L.) Reichenb.]. Rep 
GOOSEFOOT. 
Along Boulder Cafion near Falls, 6500-8000 ft. (Daniels, 
549). 
NEWFOUNDLAND to BritisH CotumBIA; NEW JERSEY to CoL- 
ORADO: Europe: Asia. 


359. C. Botrys L. FEATHER GERANIUM. JERUSALEM OAK. 
Common in waste places and along railroads in coal ashes. 
5100-8000 ft. (Daniels, 598). 
Europe and Asta, thence to NorrH AMERICA. 


132. BLITUML. B.itre. 


360. B. capitatum L. STRAWBERRY BLITE. 

Frequent in cafions and along mountain roads, 6000-10000 
ft. (Daniels, 545). Also mountains between Sunshine and 
Ward (Rydberg). 

Nova Scotia to ALAsKA; New JERSEY to CALIFORNIA: Eu- 
ROPE. 


110 UNIVERSITY OF MISSOURI STUDIES [258 


133. CYCLOLOMA Mog. 
361. ©. atriplicifolium (Spreng.) Coult. [C. platyphyllum 
Mogq.] WINGED PIGWEED. 

Along the railroad between Boulder and Marshall ; also along 
the railroad in Sunset Cafion, 5400-7700 ft. (Daniels, 485). 
Marshall (W. W. Robbins). 

Ontario to Montana; ARKANSAS to ARIZONA. 

134. MONOLEPIS Schrad. 
302. M. Nuttalliana (R. & S.) Greene [M. chenopodioides 
Mog.].. Nurraty’s Mono.erts. 

Above timberline, Arapahoe Peak, the only ruderal observed 
there, 11000-15000 ft. (Daniels, 918). 

MINNESOTA to WASHINGTON; TEXAS to CALIFORNIA. 

135. ATRIPLEX L. Oracue. 
363. A. carnosa A. Nels. FLESHY ORACHE. 
Alkaline flats at Boulder lake, 5300 ft. (Daniels, 729). 
NEBRASKA to MontANA; KANSAS to COLORADO. 
364. A. argentea Nutt. SILVERY ORACHE. 

Alkaline flats at Boulder lake, 5300 ft. (Daniels, 730). 

NortH Dakota to British CoLtumBiaA; Kansas to CoLo- 
RADO. 

365. A. occidentalis Torr & Fremont. WESTERN ORACHE. 

Dry mesas at Boulder (Rydberg). 

CoLorapo to UTAH; TExAs to ARIZONA. 


366. A. hortensis L. GaRDEN ORACHE. 
Along railroads and in yards, 5100-7000 ft. (Daniels, 679). 
Evurorpr, thence to NortH AMERICA. 
136. EUROTIA Adans. WHITE SAGE. 
367. E. lanata (Pursh) Mog. WooLLy WHITE SAGE. 
Plains at Boulder (Rydberg). 
SourH DaKoTa to WASHINGTON; KANSAS to CALIFORNIA. 
137. CORISPERMUM L. Bucseep. 
368. C. marginale Rydb. MaARrGINAL-FRUITED BUGSEED. 
Valleys near Boulder (Rydberg). 
Wyominc to CoLoRADO. 


259] FLORA OF BOULDBR, COLORADO ITT 


138. DONDIA Adans. SEA BLITE. 


369. D. depressa (Pursh) Britton [Suaeda depressa S. Wats. ]. 
Low SEA BLITE. 

About the shores of Boulder lake, and other brackish lakes 
and pools, 5100-6000 ft. (Daniels, 778). Near Boulder (W. W. 
Robbins ). 

SASKATCHEWAN to MontTANA;-CoLorApo to NEVADA. 


369%. D. erecta (S. Wats.) A. Nels. [Suaeda depressa 
erecta S. Wats.]. ERECT SEA BLIT# 
Calkins lake (W. W. Robbins). 
NorrH Dakota to MontTANA; CoLorApo to NEVADA. 


139. SALSOLA L. Sattrworr. SEA KALE. 


370. §. Tragus L. RussIAN THISTLE. 

Very common in waste places and along railroads, 5100- 
7ooo ft. (Daniels, 419). 

Europe and AsrA, thence to NorrH AMERICA. 


Family 38. AMARANTHACEAE J. St. Hil. Amaranth 
family. 


140. AMARANTHUS L. AmarantH. PIGWEED. 


371. A. Powellii S. Wats. POWELL’s PIGWEED. 
Sandy valleys at Boulder (Rydberg). 
Texas to CoLoraApo and CALIFORNIA. 


372. A. retroflexus L. RoUGH PIGWEED. 

Abounding in fields and waste places, 5100-7000 (clearings 
in Bear Canon, perhaps even higher in the mountains) ft. 
(Daniels, 812). 

TropicAL AMERICA, thence a cosmopolitan weed. 


373. AA. blitoides S. Wats. PRosTRATE PIGWEED. 
Along thoroughfares, and in fields, waste places, and creek- 
sands throughout, very common, 5100-10000 ft. (Daniels, 814). 
CoLorapo to Uran and Mexico, thence to the rest of the 
Unitep States and SOUTHERN CANADA. 


II2 UNIVERSITY OF MISSOURI STUDIES [260 


374. A. graecizans L. [A. albus L.]. WHITE PIGwEED. TUM- 
BLE WEED. 

Common in waste places, especially on the plains, 5100-6000 
ft. (Daniels, 813). 

TropicaAL America, thence throughout NortH AMERICA. 

141. FROELICHIA Moench. 
375. F. gracilis Moq. SLENDER FROELICHIA. 

Along the railroad between Boulder and Marshall; also 
along the railroad in Boulder Cafion, 5400-6000 ft. (Daniels, 
476). 

NEBRASKA to CoLorADo; ARKANSAS to TEXAS. 

Family 39. CORRIGIOLACEAE Reichenb. Corrigiola 
family. 
142. PARONYCHIA Adans. WuitrLowwort. 

376. P. pulvinata Gray. PULVINATE WHITLOWWORT. 
Massif de Il’ Arapahoe, 1100-13500 ft. (Rydberg). 
Wyominc and Cotorapo to UTAH. 

377. P.Jamesii T.& G. JAMES’S WHITLOW-woRT. 

Common in open situations throughout, 5100-10000 ft. (Dan- 
iels, 136). Also mountains between Sunshine and Wee, and 
at Meadow Park and Lyons (Rydberg). 

NEBRASKA to WYOMING; TEXAS to NEw Mexico and MeEx- 
ICO. 

Family 40. ALLIONIACEAE Reichenb. Umbrella-wort 

family. 
143. ABRONIA Juss. 

378. A. fragrans Nutt. FRAGRANT ABRONIA. 

Near Boulder (Tweedy). Valmont Butte, not getting to 
Boulder (Ramaley). 

SoutH Daxora to IpaAHo; Kansas to New MExIco. 

144, ALLIONIA Loeffl. Umpretia-worr. 
379. A. nyctaginea Michx. [Oxybaphus nyctagineus Sweet]. 
HEART-LEAVED UMBRELLA-WORT. 

Plains and mesas, especially about streams, 5100-6000 ft. 
(Daniels, 113). 

ILLInoIs to SASKATCHEWAN ; Missourt to COLORADO. 


261 | FLORA OF BOULDER, COLORADO 113 


380. A. hirsuta Pursh. HaAtRY UMBRELLA-WORT. 

Common on the plains, mesas, and foothills, 5100-7000 ft. 
(Daniels, 353). 

WIsconsiIn and Minnesota to SourH Daxota; Missouri 
to COLORADO. 


381. A. diffusa Heller. Dirrus— UMBRELLA-WoORT. 

On the plains and mesas and rich mountain slopes, 5100- 
gooo ft. (Daniels, 167). 

Nortu Daxora to WyomMIncG; Kansas to ARIZONA. 


382. A. lanceolata Rydb. LANCE-LEAVED UMBRELLA-WORT. 
Between Sunshine and Ward (Tweedy). 
Minnesota to Wyominc; TENNESSEE to TExAs and CoLo- 
RADO. 


383. A. linearis Pursh [Oxybaphus angustifolius Sweet]. 
NARROW-LEAVED UMBRELLA-WORT. 
On the plains, 5100-6000 ft. (Daniels, 960). 
Minnesota to Montana; LoursiANna to Arizona and MEx- 
ICO. 


Family 41. TETRAGONIACEAE Reichenb. New Zealand 
spinach family. 


145. MOLLUGO L. Carpet-weEeEb. 


384. M. verticillata L. CoMMON CARPET-WEED. 

Common on shales with thin soil between Marshall and 
South Boulder Peaks, 5400-6000 ft. (Daniels, 427). Not in 
Rydberg’s Flora. 

TroprcaAL AmerIcA, thence to NortH AMERICA. 


Family 42. PORTULACACEAE Reichenb. Purslane family. 
146. TALINUM Adans. FAME-FLOWER. 


385. TT. parviflorum Nutt. SMALL-FLOWERED FAME-FLOWER. 
Common on shales with thin soil between Marshall and 
South Boulder Peaks; also on rocks in Gregory Cafion, 5400- 
7000 ft. (Daniels, 437). 
Minnesota to SoutH Daxkota; Texas to ArRIzonA and 
Mexico. 


114 UNIVERSITY OF MISSOURI STUDIES [262 


147. CLAYTONIA L. Sprinc Beauty. 


386. C. rosea Rydb. Rosy spRiNG BEAUTY. 

Common at Boulder (Cockerell). 

SASKATCHEWAN to BritisH CoLuMBIA; CoLorapo to CALT- 
FORNIA. 


387. C. megarrhiza Parry. LARGE-ROOTED SPRING BEAUTY. 
Arapakoe Peak, towards summit, 12000-13500 ft. (Daniels, 
889, collected by Mrs. T. D. A. Cockerell). 
Montana and Cotorapo to Uran. 


148. CRUNOCALLIS Rydb. WATER SPRING BEAUTY. 


388. C. Chamissoi (Ledeb.) Cockerell. Nov. comb. [Claytonia 
Chamissonis Esch.]. CHAMISSO’S WATER SPRING BEAUTY. 
Along ditches in the plains, and in deep cafions in the foot- 
hills and mountains ; along streams at Ward and Bloomerville; 
in subalpine bogs at Eldora; and in wet tundras on Arapahoe 
Peak, 5100-11000 ft. (Daniels, 239). Arapahoe Pass (Ryd- 
berg). 
Minnesota to British Cotumsia; New Mexico to Cati- 
FORNIA. 


149. OREOBROMA Howell. Burrrer root. 


389. 0. pygmaea (Gray) Howell. [Calandrinia pygmaca 
Gray; Lewisia pygmaea (Gray) Robinson]. PyGmy sit- 
TER ROOT. 
Arapahoe Peak, 12000 ft. (Rydberg). Redrock lake, 10100 
ft. (Ramaley & Robbins). 
Montana and CoLorapo to CALIFORNIA. 


150. PORTULACA L. Purstane. PussLey. 
390. P. oleracea L. CoMMON PURSLANE. 
Campus of the University of Colorado at Boulder (Cock- 
erell). 
TROPICAL AMERICA, now cosmopolitan. 


391. P. retusa Engelm. RETUSE-LEAVED PURSLANE. 
Along the railroad in Sunset Cafion, 5700-7700 ft. (Daniels, 
V2.2). 


ARKANSAS to NEvADA; TExas to New Mexico. 


263] FLORA OF BOULDER, COLORADO IIc 
Family 43. ALSINACEAE Wahl. Chickweed Family. 


151. ALSINE L. CuickweEep. STARWORT. 


392. A. media L. [Stellaria media (L.) Cyr.]. COMMON CHICK- 
WEED. 
Streets in the city of Boulder, 5300-5600 ft. (Daniels, 803). 
Europe and Ast, thence a cosmopolitan weed. 


393. A. Baicalensis Coville [Stellaria umbellata Turcz.]. LAKE 
BAICAL STARWORT. 

Arapahoe Peak above timberline in wet tundras, 11000- 
13500 ft. (Daniels, 929). Also along mountain streams from 
Eldora to Baltimore (Rydberg). 

Montana to OrEGON; CoLorADO to CALIFORNIA: SIBERIA. 


394. A. longifolia (Muhl.) Britton [Stellaria longifolia 
Muhl.]. LoNncG-LEAVED STITCHWORT. 
In high alpine valley near snow above Bloomerville, gooo- 
t1000 ft. (Daniels, 326). 
NEWFOUNDLAND to ALASKA; MARYLAND to CoLtorapo: Eu- 
ROPE: ASIA. 


395. A. longipes (Goldie) Coville [Stellaria longipes Goldie]. 
LONG-PEDICELLED STITCH WORT. 
Wet meadows at Caribou, 8000-10000 ft. (Rydberg). 
LABRADOR to ALASKA and COLORADO: SIBERIA. 


395a. A. longipes stricta (Richardson) Rydb. [Stellaria 
stricta Richardson]. STRICT LONG-PEDICELLED STITCHWORT. 
Eldora to Baltimore, 8000-11000 ft. (Rydberg). 
Range of the type, but extending to CALIFORNIA. 
396. A. Jamesiana (Torr.) Heller [Stellaria Jamesiana Vorr.]. 
JAMES’S STARWORT. 
Along a stream in the mesa fronting Flagstaff Hill, 5700- 
6000 ft. (Daniels, 26). The plants have fimbriate petals! 
Wyominc to NEw Mexico and CALtrornta. 
152 CERASTIUM L. Mousr-Ear CHICKWEED. 


397. C. occidentale Greene. WESTERN MOUSE-EAR CHICKWEED. 
Common on the mesas, foothills, and mountainsides in 


116 UNIVERSITY OF MISSOURI STUDIES [264 


sheltered places and about streams and springs, 5700 (stream 

in mesa fronting Flagstaff Hill)—12000 ft. (Daniels, 24). St. 

Vrain Cafion, 7000 ft. (Coulter in Wabash College Herb.). 
Montana to CoLorapo and Uran. 


153. ARENARIA L. SAnpwort. 


398. A. Tweedyi Rydb. Twerepy’s sANDWoRT. 

Above timberline, Arapahoe Peak, 11000-12000 ft. (Dan- 
iels, 1003). 

Wyominc to New Mexico and Arizona. 


399. A. Fendleri Gray. FENDLER’S SANDWORT. 

High mesas between Marshall and South Boulder Peaks, 
thence throughout the mountain region, 5700-12000 ft. (Dan- 
iels, 425). Also mountains between Sunshine and Ward, and 
at Caribou (Rydberg). 

Wvyominc to New Mexico and Arizona. 


399a. A. Fendleri diffusa Porter & Coulter. Dirrusr FENnp- 
LER’S SANDWORT. 
Plains and mesas about Boulder and Marshall, and in the 
foothills and mountains, 5100-10000 ft. (Daniels, 423). 
CoLoRADo. 


154. ALSINOPSIS Small. 


4oo. A. propinqua (Richardson) Rydb. [Arenaria propinqua 
Richardson; A. verna aequicaulis A. Nels.]. GLANDULAR 
SANDWORT. 

Arapahoe Peak in dry tundras, 11000-13000 ft. (Daniels, 

754). Also Eldora to Baltimore (Rydberg). 

Hupson Bay to British CotumBraA; CoLtorapo to UTAH. 


4o1. A. obtusiloba Rydb. [Arenaria obtusa Torr.]. OBTusE- 
LEAVED SANDWORT. 

Very common in dry tundras, forming often the main part of 
the turf, Arapahoe Peak, 11000-13500 ft. (Daniels, 913). Also 
at Caribou, 10000 ft. (Rydberg). Redrock lake, 10100 ft. 
(Ramaley & Robbins). 

ALBERTA to British CoLumBia; NEw Mexico to UTAH. 


265 | FLORA OF BOULDER, COLORADO 117 


Family 44. CARYOPHYLLACEAE Reichenb. Pink family. 
155. SILENE L. Campion. CATCHFLY. 


4o2. S. antirrhina L. SLEEPY CATCHFLY. 

Common on the plains and mesas, and in deep cafions for 
some distance in the mountains, 5100-6500 (Boulder Cafion), 
ft. (Daniels, 477). 

NEWFOUNDLAND to BritisH CoLuMBIA; FLortpa to CALI- 
FORNIA and Mexico. 


4o2a. §. antirrhina depauperata Rydb. DrEPAUPERATE SLEEPY 
CATCHFLY. 
Bear Cafion, 7000 ft. (Daniels, 974). 
SASKATCHEWAN to BritisH CoLumpBiA; CoLorapo to ARI- 
ZONA. 


403. S. noctiflora L. NiGHT-BLOOMING CATCHELY. 

Along streets and in waste places in the city of Boulder, 
5300-5600 ft. (Daniels, 815). Campus of the University of 
Colorado (Cockerell). 

Europe, thence to NorrH AMERICA. 


4o4. §. acaulis L. Moss cAmpPion. 

Dry tundras, Arapahoe Peak, where it is abundant and char- 
acteristic, I1000-13500 ft. (Daniels, 902). 

GREENLAND to ALASKA; NEw HAMPSHIRE to ARIZONA: arc- 
tic-alpine in the OLD Wor tp. 


156. LYCHNIS L. 


405. L. Drummondii (Hook.) S. Wats. DrumMoNnp’s PINK. 
Common in open places throughout, 5100-10000 ft. (Daniels, 
173). Also mountains between Sunshine and Ward (Ryd- 
berg). 
Manirtora to British Cotumpia; New Mexico to ARIzoNna. 


157. WACCARIA Medic. 


406. V. Vaccaria (L.) Britton [V. vulgaris Host; Saponaria 
Vaccaria L.]. Cow HERB. 
Common in waste places about Boulder, 5300-5700 ft. (Dan- 


iels, 135). 
Europe, thence to NortH AMERICA. 


118 UNIVERSITY OF MISSOURI STUDIES [266 


158. SAPONARIA L. Soapwort. 


407. S. officinalis L. Bouncine Ber. 

Roadsides and along railroads, 5300-5600 ft. (Daniels, 725). 
Not in Rydberg’s Flora. 

Europe, thence to NortH AMERICA. 


Order 21. RANALES. 
Family 45. CERATOPHYLLACEAE Gray. Hornwort family. 


159. CERATOPHYLLUM L. Hornwort. 


408. €.demersum L. COMMON HORNWORT. 
Owen’s lake; Boulder lake, 5200-5300 ft. (Daniels, 614). 
NortH AMERICA: Europe: Astra. 


Family 46. RANUNCULACEAE Juss. Crowfoot family. 


160. CALTHA L. MarsH MARIGOLD. 


409. C. leptosepala DC. [C. rotundifolia (Huth) Greene; 
C. chionophila Greene]. \WHITE MARSH MARIGOLD. 

Along brooks crossing the Arapahoe Trail from Eldora to 
Arapahoe Peak, where in the wet tundras it ascends above 
timberline, 8600-12000 ft. (Daniels, 880). Long’s Peak (Coul- 
ter in Wabash College Herb.). 

MackKeENzIE to YuKON and ALAsKA; CoLtorapo to NEVADA 
and OREGON. 


161. TROLLIUS L. GLope FLOWER. 


4to. T. albiflorus (Gray) Rydb. [T. laxus albiflorus Gray]. 
WHITE GLOBE FLOWER. 

Along brooks crossing the Arapahoe Trail from Eldora to 
Arapahoe Peak, where in the wet tundras it ascends above 
timberline, g000-12000 ft. (Daniels, 919). Long’s Peak (Coul- 
ter in Wabash College Herb.). 

Montana to WASHINGTON; CoLorApo to Uran. 


267 | FLORA OF BOULDER, COLORADO - 119 


162. ACTAEA L. BANEBERRY. 


4ut. A. arguta Nutt. WESTERN RED BANEBERRY. 

Frequent in deep cafions throughout, 6000 (Bear Cafion at 
entrance )—10000 ft. (Daniels, 970). 

Montana to ALtAska ; NEw Mexico to Cattrornia: Nortu- 
ERN ASIA. 


4tta. <A, arguta eburnea (Rydb.) Cockerell. Nov. comb. [Ac- 
taea eburnea Rydb.]. Ivory BANEBERRY. 
Mountain cafions throughout, 6500 (Bear Cafion)—tr1oo00 ft. 
(Daniels, 468). 
NEWFOUNDLAND to ALBERTA; VERMONT to UTAH. 
163. AQUILEGIA L. CoLumBINeE. 


412. A. coerulea James. AZURE COLUMBINE. 

North slope of Green Mt.; Bear Cafion; common on the 
mountains between Sunset and Ward; above timberline, Arap- 
ahoe Peak, 6500-12000 ft. (Daniels, 350). Nearly extermi- 
nated in the immediate region about Boulder. Also North 
Boulder Peak (Rydberg). The State flower of Colorado. 

Montana to CotoraApo and Utan. 

164. DELPHINIUM L. Larkspur. 


413. D. Penardii Huth. PENARD’S LARKSPUR. 
Common on the plains, mesas, and foothills, 5100-8000 ft. 
(Daniels, 66). 
COLORADO. 
414. D. camporum Greene. PLAINS LARKSPUR. 
Plains and foothills near Boulder, 5100-8000 ft. (Rydberg). 
Texas to CoLorapo and ARIZONA. 


415. D. Nelsonii Greene. NELSON’S LARKSPUR. 
Along streams in mesa fronting Flagstaff Hill, 5700-6000 
ft. (Daniels, 112). Sugarloaf Mountain, 8000 ft. (Ramaley). 
ALBERTA to WASHINGTON; NEBRASKA to Uran. 
416. D. occidentale S. Wats. [D. quercetorum Greene]. 
WESTERN LARKSPUR. 


Rich mountainsides between Glacier Lake and Eldora, 8000- 
roooo ft. (Daniels, 628). 
WyYomMING and Cotorapo to UTAH. 


120 UNIVERSITY OF MISSOURI STUDIES [268 


416%. D. Barbeyi Huth [D. scopulorum subalpinum Gray; D. 
subalpinum (Gray) A. Nels.]. BAarBEy’S LARKSPUR. 
Boulder Cafion (Coulter in Wabash College Herb.). 
Wyominc and CoLorapo. 


417. D. Ajacis L. GARDEN LARKSPUR. 

Escaped into streets in the city of Boulder, 5300-5600 ft. 
(Daniels, 191). 

Europe, thence to CANADA and the UNITED STATES. 


165. ACONITUM L. MonxsHoop. 


418. A. porrectum Rydb. PorrEcT MONKSHOOD. 
Arapahoe Pass, toooo ft. (Rydberg). 
WyYomMING to COLORADO. 


419. A. Columbianum Nutt. CoLumsBra MONKSHOOD. 
Boulder Cafion above the Falls near the Perfect Tree, 7500: 
8000 ft. (Daniels, 540). Also Redrock lake, totoo it. (Rama- 
ley & Robbins). 
Montana to British Cotumpta; New Mexico to Cati- 
FORNIA. 


420. A. insigne Greene. SHOWY MONKSHOOD. 
Subalpine meadows near Eldora, 8600-11000 ft. (Daniels, 


979). 
COLORADO. 


421. A. ochroleucum A. Nels. OcHROLEUCOUS MONKSHOOD. 
Aspen bogs at Eldora, 8600-go00 ft. (Daniels, 980). 
Wyominc to CoLoraAbo. 


166. ANEMONE L. WIdnNpD FLoweERr. 


422. A. globosa Nutt. GLOBOSE ANEMONE. 

Bear Cafion, scarce; common in aspen bogs at Eldora and 
Glacier Lake, 7000-11000 ft. (Daniels, 446). Also at Caribou 
(Rydberg). 

SoutH Daxota to MACKENZIE and ALASKA; COLORADO to 
CALIFORNIA. 


269 | FLORA OF BOULDER, COLORADO T2I 


423. A. cylindrica Gray. LONG-FRUITED ANEMONE. 
Common in the mesas, thence following the streams in the 
plains, and on the foothills, 5100-8000 ft. (Daniels, 186). 
New Brunswick to British CotumpBia; NEw JERSEY to 
ARIZONA. 


424. A. Canadensis L. [A. Pennsylvanica L.] CANADA ANE- 
MONE. PENNSYLVANIA ANEMONE. 
Common in cafions and along streams throughout, except in 
the higher elevations, 5100-9000 ft. (Daniels, 443). 
LABRADOR to ALBERTA; MARYLAND to NEw Mexico. 
167. PULSATILLA Adans. PASQUE FLOWER. 


425. P. hirsutissima (Pursh) Britton [Anemone patens Nut- 
talliana Gray|. AMERICAN PASQUE FLOWER. 

Common in open places throughout, 5100-10000 ft. (Daniels, 
219). Also Sugarleaf, 8500 ft. (Cockerell), and North Boul- 
der Peak, and Eldora to Baltimore (Rydberg). Long’s Peak 
(Coulter in Wabash College Herb.). 

Ittinois to MACKENZIE; TEXAS to WASHINGTON. 


425a. P. hirsutissima rosea (Cockerell) Daniels. Nov. comb. 
PINK PASQUE FLOWER. 
Boulder (Miss Marie Gill). This rose-colored form is due 
to some unusual acidity of the sap, not to a difference in the 
character of the pigment. 


168. CLEMATIS L. Vrrcin’s BOWER. 


426. C. ligusticifolia Nutt. WESTERN VIRGIN’S BOWER. 
Common among bushes in cafions and along streams, ascend- 
ing for a considerable distance into the mountains along the 
principal streams, 5100-8000 ft. (Daniels, 155). 
NortH Daxora to British CoLtumsiA; Missourtr to Cati- 
FORNIA. 
169. VIORNA Reichenb. LEATHER FLOWER. 
427. V. Jones (Kuntze) Rydb. [Clematis Douglasii Jonesi 
Kuntze]. JONES'S LEATHER FLOWER. 
Scarce in the foothills at Orodell along Boulder Cafion, 6000- 
7oo0 ft. (Daniels, 723). Near Boulder (Patterson). 
CoLorapo to NEvapa, 


122 UNIVERSITY OF MISSOURI STUDIES [270 


428. V. eriophora Rydb. [Clematis eriophora Rydb.]. Woot- 
LY LEATHER FLOWER. 

Foothills along Boulder Cafion, 6000-7000 ft. (Daniels, 998). 
Puzzling intermediates between this species and the preceding 
were found at Orodell. 

Wyominc to CoLtorapo and UTau. 


170. ATRAGENE L. BE Lt Rue. 


429. A. occidentalis Hornem. [A. Columbiana Nutt.]. West- 
ERN BELL RUE. 
Very scarce in Bear Cafion, 6000-7000 ft. (Daniels, 761). 
Redrock lake 10100 ft. (Ramaley & Robbins). 
Montana to British CotumsBia; CoLorapo to UTAH. 


171. MYOSURUS L. Mouse rain. 


430. M. apetalus Gay [M. aristatus Benth.]|. BEAKED MOUSE 
TAIL. 
In muddy places, Long’s Peak, go00 ft. (Rydberg). 
Montana to WASHINGTON; COLORADO to CALIFORNIA: 
CuHitt: NEw ZEALAND. 


172. BATRACHIUM S. F. Gray., WHITE WATER CROW- 
FOOT. 


431. B. aquatile flaccidum (Pers.) Cockerell. Nov. comb. [B. 
flaccidum (Pers.) Rupr.]. FLAccID-LEAVED WHITE WA- 
TER CROWFOOT. 

Aquatic in a pond at Glacier Lake, gooo ft. (Daniels, 618). 
Also at Boulder (Rydberg). Redrock lake, ro1oo ft. (Rama- 
ley & Robbins). 

LABRADOR to WASHINGTON; NortTH CaARroLina to LOWER 
CALIFORNIA. 


173. RANUNCULUS L. Crowroor. Burtrercup. 


432. R. reptans L. [R. Flammula reptans (L.) E. Meyer]. 
CREEPING CROWFOOT. 

Common in limose places about Boulder; at Marshall; in 

Sunset Cafion; aspen and subalpine bogs at Glacier Lake and 


271 | FLORA OF BOULDER, COLORADO 123 


Eldora, 5100-10000 ft. (Daniels, 619). Also at Ward (Ryd- 
berg). 
Lasrapor to ALASKA; New Jersey to Urau and OREGON: 
Europe: Asta. 
433. R. ellipticus Greene. ELLIPTIC-LEAVED CROW-FOOT. 
Long’s Peak (Porter and Coulter). 
Montana to British CoLtuMBIA; COLORADO to CALIFORNIA. 


434. R. cardiophyllus Hook. [R. affinis cardiophyllus Gray]. 
HEART-LEAVED CROWFOOT. 

Wet meadows and bogs from Eldora to Baltimore, 8000- 
10000 ft. (Rydberg). 

SASKATCHEWAN to COLORADO. 

435. R. inamoenus Greene. Ucty crowroor. 

Bear Cafion, 7000 ft. (Daniels, 449). Also in meadows and 
along streams at Caribou, and from Eldora to Baltimore, 7000- 
10000 ft. (Rydberg). 

Montana to New Mexico and Uraun. 


436. R. micropetalus (Greene) Rydb. [R. affinis micropetalus 
Greene]. SMALL-PETALLED CROWFOOT. 
Aspen bogs at Glacier Lake, gooo ft. (Daniels, 715). 
Cotorapo to Uta and Arizona. 


437. R. pedatifidus J. G. Smith [R. affinis R. Br.]. Nortu- 
ERN BUTTERCUP. 

Alpine bogs and meadows, Eldora to Baltimore, 7000-12000 
ft. (Rydberg). Near Long’s Peak (Coulter in Wabash Col- 
lege Herb.). 

Laprapor to ALASKA; COLORADO to ARIZONA: SIBERIA. 


438. R. alpeophilus A. Nels. ALPINE CROWFOOT. 

In wet places near the snow at Caribou, 9000-12000 ft. 
(Rydberg). 

Montana to CoLorabo. 


439. R. adoneus Gray. ADONIS-LIKE BUTTERCUP. 
Alpine peaks at Ward (Rydberg). 
Wyominc and CoLorapo to UTAH. 


124 UNIVERSITY OF MISSOURI STUDIES [272 


440. R. abortivus L. KIDNEY-LEAVED CROWFOOT. 

Common in low grounds, 5100-go00 (streams at Bloomer- 
ville) ft. (Daniels, 322). 

LABRADOR to SASKATCHEWAN; FLORIDA to COLORADO. 


441. R. micranthus Nutt. SMALL-FLOWERED CROWFOOT. 
In Bear Cafion, 6000-7000 ft. (Daniels, 828). 
MASSACHUSETTS to SASKATCHEWAN; FLORIDA to COLORADO. 


442. R. sceleratus eremogenes (Greene) Cockerell. Nov. comb. 
[R. eremogenes Greene]. WESTERN SWAMP CROWFOOT. 

Along ditches and in swales about Boulder and Marshall; 
along Four-mile creek in Sunset Cafion, 5100-8000 ft. (Dan- 
iels, 429). 

SASKATCHEWAN to ALBERTA; NEw Mexico to CALIFORNIA. 
443. R. Macounii Britton. Macoun’s BUTTERCUP. 

About irrigation ditches in the plains, 5100-5600 ft. (Dan- 
iels, 236). 

Ontario to ALBERTA: Iowa to CoLoRADo. 


174. HALERPESTES Greene. 


444. H. Cymbalaria (Pursh) Greene [Ranunculus Cymbalaria 
Pursh; Oxygraphis Cymbalaria (Pursh) Prantl; Cyrtor- 
rhyncha Cymbalaria (Pursh) Britton]. SEASIDE cRow- 
FOOT. 

Around ponds and irrigation ditches about Boulder and Mar- 
shall on the plains, 5100-5700 it. (Daniels, 255). Also at 
Ward (Cockerell). Valmont (Coulter in Wabash College 
Herb.). 

NortaH AMErIcA: SoutH America: ASIA. 


175. CYRTORRHYNCHA Nutt. 


445. €. ranunculina Nutt. [Ranunculus Nuttallii Gray]. 
NUTTALL’S BUTTERCUP. 

Rare on the north slope of Green Mt., 6500-7000 ft. (Dan- 
iels, 369). Near Long’s Peak (Porter & Coulter; also Coulter 
in Wabash College Herb.). 

WyoMInG to CoLorapo. 


273] FLORA OF BOULDER, COLORADO 125 


176. THALICTRUM L. Merapow-RUveE.” 


446. T. purpurascens L. PUuRPLISH MEADOW-RUE. 

Springy cafion at the foot of Flagstaff Hill; wet meadows 
between Marshall and South Boulder Peaks, 5400-6000 ft. 
(Daniels, 434). 

Nova Scotra to SASKATCHEWAN ; FLorIDA to COLORADO. 


447. T. Fendleri Engelm. FENDLER’S MEADOW-RUE. 

Cafions on the north slope of Green Mt., 6000-8100 ft. (Dan- 
iels, 532). Also in the mountains from Eldora to Baltimore 
(Rydberg). 

Wyomine and New Mexico to Arizona. 


Family 47. NYMPHAEACEAE DC. Water-lily family. 
177. NYMPHAEA L. YELLow ponp LILy. 


448. N. polysepala (Engelm.) Greene [Nuphar polysepalum 
Engelm.]. MANy-SEPALLED YELLOW POND LILY. WEST- 
ERN SPATTER DOCK. 

Alpine lakes at Ward, gooo-11000 ft. (Daniels). A portion 
of Engelmann’s type material came from the vicinity of Long’s 
Peak, lat. 40°. 

Montana to ALASKA; COLORADO to CALIFORNIA. 


Family 48. BERBERIDACEAE T.& G. Barbeiry family. 


178. ODOSTEMON Raf. OREGON GRAPES. 


449. 0. repens (Lindl.) Cockerell [O. Aquifolium Rydb., not 
Berberis Aquifolium Pursh; B. repens Lindl.]. CREEPING 
OREGON GRAPES. HOLLY BARBERRY. 

Common on the mesas, foothills, and mountain slopes, 5700- 
toooo ft. (Daniels, 471). Long’s Peak (Coulter in Wabash 
College Herb.). 

Montana to IpAHo; NEw Mexico to CALIFORNIA. 


/ 


126 UNIVERSITY OF MISSOURI STUDIES [274 
Order 22. PAPAVERALES. 
Family 49. PAPAVERACEAE Juss. Poppy family. 


179. PAPAVER L. Poppy. 


450. P. Argemone L. RoUGH-FRUITED Poppy. WIND ROSE. 
Escaped into streets and plains near dwellings, 5500-5600 ft. 
(Daniels, 200). 
Europe, thence to the UNITED STATES. 


180. ARGEMONE L. Prickly Poppy. 


451. A. intermedia Sweet. WHITE PRICKLY POPPY. 
Abundant on the plains, mesas, and open meadows in the 
foothills, 5100-7500 ft. (Daniels, 85). 
SoutH Daxora to Wyominc; Texas to MExico. 


452. A. hispida Gray [A. bipinnatifida Greene]. Harry PRICK- 
LY POPPY. 
Plains and foothills near Boulder, 5100-9000 ft. (Rydberg). 
Wyominc to New Mexico and UrtaH. 


Family 50. FUMARIACEAE DC. Fumitory family. 


181. CAPNOIDES Adans. CorypALis. 


453. C. aureum (Willd.) Kuntze [Corydalis aurea Willd.]., 
GOLDEN CORYDALIS. , 

Rather frequent in rocky places throughout, 5100-10000 ft. 
(Daniels, 82). Also in the mountains between Sunshine and 
Ward, and at Ward (Rydberg). Long’s Peak (Coulter in 
Wabash College Herb.). 

Nova Scotia to ALASKA; PENNSYLVANIA to CALIFORNIA. 


454. C€. montanum (Engelm.) Britton [C. pachylobum 
Greene; Corydalis aurea occidentalis Gray]. MouNntTAIN 
CORYDALIS. 

Near Boulder, and in the mountains between Sunshine and 

Ward (Rydberg). 

SoutH Daxkora to UraH; Missouri to Texas and ARIZONA. 


275] FLORA OF BOULDER, COLORADO 127 


Family 51. BRASSICACEAE Lind]. Mustard family. 
182. CARDARIA Desv. 


455. C€. Draba (L.) Desv. [Lepidium Draba L.]. Hoary 
CRESS. 
Near Boulder, (Rydberg). 
Europe and Asta, thence to the Unirep STATES. 


183. LEPIDIUM L. Perpper crass. 


456. lL. medium Greene. MEDIUM PEPPER GRASS. 

Plains and foothills near Boulder, and in Boulder Cafion, 
5000-7000 ft. (Daniels, 123). 

Missourt to Texas and CALIFORNIA. 


457. lL. divergens Osterh. DIVERGENT PEPPER GRASS. 
Common in creek-sands and along roads and railroads in the 
foothills and mesas, 5400-8000 it. (Daniels, 32). 
COLORADO. 


184. THLASPI L. Penny erass. 


458. T. arvense L. FIELD PENNY GRASS. 
Local in waste places; especially abundant along roadsides 
at the entrance of Boulder Cafion, 5100-6000 ft. (Daniels, 163). 
Europe and Asta, thence to NorrH AMERICA. 


459. T. Nuttallii Rydb. NutTTALL’s PENNY GRASS. 

Rocky cafions on the north slope of Green Mt., 6000-8100 
ft. (Daniels, 275). 

Montana and CoLorapo to WASHINGTON. 


460. T. Coloradense Rydb. CoLoRApO PENNY GRASS. 

Gregory Cafion, 6200 ft. (Daniels, 194). Also in wet places 
among rocks, Massif de I’ Arapahoe, 11000-13500 ft. (Ryd- 
berg). 

CoLorRaAbo. 


461. T. purpurascens Rydb. PurpPLISH PENNY GRASS. 
Among rocks on the peaks, Eldora to Baltimore (Rydberg). 
CoLorapo to. ARIZONA. 


128 UNIVERSITY OF MISSOURI STUDIES [276 


185. BURSA Weber. SHEPHERD'S PURSE. 


462. B. Bursa-pastoris (L.) Weber [Capsella Bursa-pastoris 
(L.) Medic.]. ComMoN SHEPHERD'S PURSE. 
Very common in fields and waste places, 5100-9000 ft. (Dan- 
iels, 252). 
Europe, thence now cosmopolitan. 


186. PHYSARIA Gray. DovuBLE BLADDER POD. 


463. P. didymocarpa (Hook.) Gray. CoMMON DOUBLE BLAD- 
DER POD. 

Common under rocks in the mesas and foothills, 5700-7000 
ft. (Daniels, 80). Also Long’s Peak (Porter & Coulter; Coul- 
ter in Wabash College Herb.). 

SASKATCHEWAN to ALBERTA; CoLorADO to UTAH. 


464. P. floribunda Rydb. Many-FLOWERED DOUBLE BLADDER 
POD. 
Plains and foothills near Boulder; Eldora to Baltimore, 
(Rydberg). Also Boulder (Mrs. T. D. A. Cockerell). 
CoLoRADO. 


187, LESQUERELLA S. Wats. BLappDER Pop. 


465. LL. Shearis Rydb. SHEAR’S BLADDER POD. 

On shales with thin soil between Marshall and South Boul- 
der Peaks, 5400-6000 it. (Daniels, 436). Plains and foothills 
at Boulder (Rydberg). 

CoLoRADO. 


188. CAMELINA Crantz. Myacrum. 


466. C. sativa (L.) Crantz [Myagrum sativum L.]. FALSE 
FLAX. 
Along streets and in waste places in the city of Boulder, 
5300-5700 ft. (Daniels, 281). Not in Rydberg’s Flora. 
Europe, thence to NortH AMERICA. 


189. NASTURTIUM R. Br. Cress. 


467. N. Nasturtium—aquaticum (L.) Karst. [N. officinale R. 
Br.; Roripa Nasturtium (L.) Rusby.]. Water cREss. 


277 FLORA OF BOULDER, COLORADO 129 


Frequent in ditches, streams, and springy swales in and 
about Boulder, 5100-6000 ft. (Daniels, 590). 

Europe and Asta, thence to both Norru and SoutH AMER- 
ICA. 


190. RADICULA Hill. YELLow cress. 


468. R. calycina (Engelm.) Greene [Nasturtium calycinum 
Engelm.; Roripa calycina (Engelm.) Rydb.]. Warty 
PODDED YELLOW CRESS. 

Along the railroad near Boulder lake, 5200-5300 ft. (Dan- 


iels, 774). 
Montana to WaAsHINGTON and New Mexico. 


469. R. sinuata (Nutt.) Greene [Nasturtium sinuatum Nutt. ; 
Roripa sinuata (Nutt.) A. S. Hitche.]. SPREADING YEL- 
LOW CRESS. 

On stream banks and in wet ground near Boulder (Ryd- 
berg). 
Minnesota to WasHincton; Missourt to ARIZONA. 


470. R. hispida (Desv.) Moench. [Nasturtium Iuspidum 
Desv.; Roripa hispida (Desv.) Britton]. HaAtry MARSH 
CRESS. 

Along streams, ditches, and in swales, 5100-9000 ft. (Dan- 

iels, 581). 

New Brunswick to British CotumBriA; Froripa to NEw 

Mexico. 


471. R. obtusa (Nutt.) Greene [Nasturtium obtusum Nutt. ; 
Roripa obtusa (Nutt.) Britton]. BLUNT-LEAVED MARSH 
CRESS. 

Massif de I’ Arapahoe, roooo ft. (Rydberg). 
MicHIGAN to WASHINGTON; TEXAS to UTAH. 


472. R.curvipes (Greene) Greene [Roripa curvipes Greene]. 
CURVED-PODDED MARSH CRESS. 
In Boulder Cafion, 5500-6000 ft. (Daniels, 544). 
Wyomine to CoLoRApbo. 


130 UNIVERSITY OF MISSOURI STUDIES [278 


19014. ARMORACIA Gaertn. Horse RaApIsH. 


473. A. Armoracia (L.) Cockerell. Nov. comb. [Roripa Armo- 
racia (L.) A. S. Hitche.; Nasturtium Armoracia (L.) 
Fries.]. COMMON HORSE RADISH. 

Escaped to waysides, Boulder (Daniels). 
Europe, thence to AMERICA. 


191. SISYMBRIUM L. Hence mustarp. 


474. §. officinale (L.) Scop. CoMMON HEDGE MUSTARD. 
Common in waste places about Boulder, 5100-6000 ft. (Dan- 
iels, 256). 
Europe and Asta, thence to NortH AMERICA. 
192. SOPHIA Adans. Tansy MUSTARD. 


475. 8. leptophylla Rydb. FINE-LEAVED TANSY MUSTARD. 
Along Boulder Cafion, 6000 ft. (Daniels, 284). 
WyominG and IpaHo to CoLorapo. 


476. S. incisa (Engelm.) Greene [Sisymbrium incisum 
Engelm.; Descurainia incisa (Engelm.) Britton]. Cur- 
LEAVED TANSY MUSTARD. 

Boulder Cafion at Falls; also in Gregory Cafion on rocky 

banks, 6000-gooo0 ft. (Daniels, 981). 

Wyominec to New Mexico. 


477. §S. intermedia Rydb. WESTERN TANSY MUSTARD. 
Common ™hroughout the lower elevations, 5100-9000 ft. 
(Daniels, 121). 
Micuican to British Cotumpta; TENNESSEE to CALIFOR- 
NIA. 
478. §. andrenarum Cockerell. Hoary TANSY MUSTARD. 
Rather frequent in Boulder Cafion, 5500-7000 ft. (Daniels, 
550). 
Montana to WasHINGTON and New Mexico. 
1938. ERYSIMUM L. Treacte musrarp. 
479. E. asperum (Nutt.) DC. WesTeERN WALLFLOWER. 
Mountains between Sunshine and Ward (Rydberg). 
SASKATCHEWAN to ARKANSAS and CoLorapo. 


279] FLORA OF BOULDER, COLORADO 131 


480. E. oblanceolatum Rydb. OBLANCEOLATE-LEAVED WALL- 
FLOWER. 
Plains and foothills near Boulder (Rydberg). 
Wyomine to CoLorabo. 


481. HE. nivale (Greene) Rydb. [E. asperum nanum Cock- 
erell]. SNOW WALLFLOWER. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Dan- 
iels, 885). 
WYOMING to COLORADO. 


482. KE. Cockerellianum Daniels. Nov. nomen. [E. asperum 
alpestre Cockerell; 4. alpestre (Cockerell) Rydb.~not 
Kotschy nor Jordan]. CoCKERELL’S WALLFLOWER. 

Abundant throughout, 5100-12000 ft. (Daniels, 57). Also 
mountains between Sunshine and Ward (Rydberg). Since 

E. alpestre has been twice used as a specific name (by Kot- 

schy and by Jordan) a new name is necessary for the species. 

CoLorAbo to UTAH; Texas to ARIZONA. 


194. RAPHANUS L. RapisuH. 


483. R. sativus L. GARDEN RADISH. 

Spontaneous along streets in waste places, 5400-5600 ft. 
(Daniels, 772). 

AstA, thence universal in cultivation. 


195. CAMPE Dulac. WHINTER CRESS. 


484. (C. Americana (Rydb.) Cockerell. Nov. comb. [Bar- 
barea Americana, Rydb.]. AMERICAN WINTER CRESS. 
In rich soil, between Eldora and Baltimore, 8500-gooo it. 
(Rydberg). 
SASKATCHEWAN to MontTANA; CoLorapo to NEVADA. 


196. BRASSICA L. Musrarp. 


485. B. juncea (L.) Coss. INDIAN MUSTARD. 

Along Boulder Canon Road about six miles beyond Boul- 
der, 7000 ft. (Daniels, 283). 

AstiA, thence to both NortH and SourH AMERICA. 


132 UNIVERSITY OF MISSOURI STUDIES [280 


486. B. nigra (L.) Koch. BLack MUSTARD. 
Frequent along roadsides and in waste places, 5100-6000 ft. 


(Danieis, 747). 
Europe and Asta, thence to NortH AMERICA. 


487. B. campestris L. Ruta Baca. 
Adventitious along the Arapahoe Road, 5300 ft. (Daniels, 
790). 


Europe, thence universal in cultivation. 
197. ALYSSUM L. Mapworr. 


488. A. alyssoides (L.) Gouan. [A. calycinum L.]. YeEt- 
LOW ALYSSUM. 
Boulder, roadside on University Hill, 5300-5600 ft. (Cock- 
erell). 
Europe, thence to NorrH AMERICA. 


198. KONIGA Adans. 


489. K. maritima (L.) R. Br. [Alyssum maritimum (L.) 
Lam.]. SWEET ALYSSUM. 
Spontaneous on the campus of the University of Colorado, 
Boulder, 5500 ft. (Daniels, 680). 
Europe, thence universal in cultivation. 


199. DRABAL. WHuitLow-crass. 


490. D. Coloradensis Rydb. CoLorADO WHITLOW-GRASS. 
Plains and hillsides near Boulder, 5100-5500 ft. (Rydberg). 
COLORADO. 


491. D.nemorosa L. Woop wHITLOW-GRASS. 

At Boulder, University Hill, on rise opposite base of Flagstaff 
Hill, 5500-6000 ft. (Cockerell). 

Micuican and Ontario to BririsH CoLUMBIA; COLORADO 
to OREGON: Europe: ASIA. 


492. D. crassifolia Graham. THICK-LEAVED WHITLOW-GRASS. 
Above timberline, Arapahoe Peak, 11000-13500 ft. (Daniels, 


928). 
GREENLAND to BririsH CoLumsBIA ; CoLorapo to UTAH. 


281] FLORA OF BOULDER, COLORADO 133 


493. D. Fladnizensis Wulf. WHITE ARCTIC WHITLOW-GRASS. 
Above timberline, Arapahoe Peak, 11000-13000 ft. (Daniels, 
1009). 
Laprapor to BririsH CoLuMBIA; CoLorApo to UTAH: Eu- 
ROPE: ASIA. 


494. D. cana Rydb. Hoary wHITLow-cRASs. 
Massif de I’ Arapahoe, 11000-12000 ft. (Rydberg). 
Laprapor to YUKON and CoLorapo. 


495. D.streptocarpa Gray. TwisTED-PODDED WHITLOW-GRASS. 
Common in barren, rocky places throughout the mountain- 

Gus region 6000-13000 ft. (Daniels, 313). Also Eldora to 

Baltimore (Rydberg). Sugarloaf, 8500 ft. (Cockerell). 
Cotorapo to New Mexico and Arizona. 


496. D. Iuteola Greene. YELLOWISH WHITLOWWORT. 
In spray of Boulder Falls, a decumbent small-flowered form, 
7500 ft. (Daniels, 295). Also Eldora to Baltimore (Rydberg). 
CoLoRADO. 
497. D. aureiformis Rydb. [D. Bakeri Greene]. Baxesr’s 
WHITLOW-GRASS. 
Above timberline, Arapahoe Peak, 11000-12000 ft. (Daniels, 
1004). 
SoutH DaxKora to CoLorapo. 


498. D. aurea Wahl. GoLDEN WHITLOWWORT. 

Common in the subalpine and alpine district, 8600 (Eldora)- 
13000 (Arapahoe Peak) ft. (Daniels, 805). Also Eldora to 
Baltimore (Rydberg). 

GREENLAND to British CoLUMBIA; COLORADO to ARIZONA. 


499. D. decumbens Rydb. DrecumMBentT WHITLOWWORT. 
At snow-line, Arapahoe Peak, 12000-13000 ft. (Daniels, 
914). 
COLORADO. 
200. CARDAMINE L. Brrrercress. 


soo. C. cordifolia Gray. HEART-LEAVED BITTERCRESS. 
Wet mossy tundras above timberline, Arapahoe Peak, 11000- 
12000 ft. (Daniels, 713). Also mountains between Sunshine 


134 UNIVERSITY OF MISSOURI STUDIES [282 


and Ward, and at Caribou (Rydberg). Common everywhere 
above gooo ft. (Ramaley). 
Wyominc to New Mexico and Arizona. 


sor. (C. incana (Gray) <A. Nels. [C. cardiophylla Rydb.; 
C. infausta Greene]. Hoary BITTERCRESS. 
Along an alpine brook at edge of snow above Bloomerville, 
g000-10000 it. (Daniels, 323). 
COLORADO. 


502. C. vallicola Greene. VALLEY BITTERCRESS. 

Dripping rocks under an irrigation sluice, Boulder Cajfion, 
5500-5600 ft. (Daniels, 578). 

WYOMING to COLORADO. 


201. ARABIS L. Rock-cress. 


503. A. ovata (Pursh) Poir. OVATE-LEAVED ROCK-CRESS. 
Common among rocks throughout the mountain region and 
the rougher mesas, 5700-10000 ft. (Daniels, 567). Also from 
Eldora to Baltimore (Rydberg). 
New Brunswick to ALBERTA; GEORGIA to CALIFORNIA. 


504. A. philonipha A. Nelson. SNOW-LOVING ROCK-CRESS. 
Mountainsides at Ward, go00-9500 ft. (Daniels, 954). 
Montana to WASHINGTON ; COLORADO to UTAH. 


505. A. oxyphylla Greene. SHARP-LEAVED ROCK-CRESS. 
Mesas and foothills ; common, 5600-8000 ft. (Daniels, 199). 
University Hill near base of Flagstaff Hill (Cockerell). 
WyomiInc to CoLorapo and Uran. 


506. A. connexa Greene. RELATED ROCK-CRESS. 

Ward 9200 ft. (Daniels, 207). Also from Eldora to Bal- 
timore (Rydberg). 

Montana to CoLtorapo and Utan. 
507. A. Fendleri (S. Wats.) Greene [A. Hoelboellii Fend- 

lert S. Wats.]. FENDLER’S ROCK-CRESS. 

High alpine slope near snow above Bloomerville, goo0-10000 
ft. (Daniels, 318). 

CoLtorapo to NEw Mexico. 


283] FLORA OF BOULDER, COLORADO 135 


508. A. divaricarpa. A. Nels. DiIvERGENTLY PODDED ROCK- 
CRESS. 

North slope of Green Mt., Gregory Cafion, 6400 ft. (Dan- 
iels, 528). Mountains between Sunshine and Ward (Ryd- 
berg). 

ASSINIBOIA to CoLtorapo and Utau. 


202. THELYPODIUM Endl. 


sog. T. paniculatum A. Nels. [7. sagittatum Endl.; T. 
torulosum Heller]. PANICLED THELYPODIUM. 
Near the summit of Flagstaff Hill, 6500-7000 ft. (Daniels, 


223). 
Montana to CoLorapo and UraH. 


203. STANLEYA Nutt. 


sto. §. glauca Rydb. Griaucous STANLEY’S CRESS. 

Along the railroad between Boulder and Valmont, 5200-5300 
ft. (Daniels, 415). 

NorrH Dakota to Wyominc; CoLorapo to UTAH. 


Family 52. CAPPARIDACEAE Lindl. Caper family. 
204. POLANISIA Raf. CLAMMyY-WEED. 


sir. P. trachysperma T. & G. JLARGE-FLOWERED CLAMMY 
WEED. 
Along railroads and in creek-sands, 5100-7000 ft. (Daniels, 


483). 
ASSINIBOIA to Texas and Nevapa. 


205. PERITOMA DC. CLEomeE. 


512. P. serrulatum (Pursh) DC. [Cleome serrulata Pursh]. 
PINK CLEOME. Rocky MOUNTAIN BEE PLANT. 
Sands and waste places, 5100-9000 ft. (Daniels, 286). 
SASKATCHEWAN to IpaAHo; Missourt to ARIZONA. 


5i2a. P. serrulatum albiflorum Cockerell, WouttE CLEOME. 
Sunset Cafion, 7000 ft. (Daniels, 603). 


136 UNIVERSITY OF MISSOURI STUDIES [284 
Order 23. ROSALES. 
Family 53. CRASSULACEAE DC. Orpine family. 


206. CLEMENTSIA Rose. 


513. C. rhodantha (Gray) Rose [Sedum rhodanthwm Gray]. 
RED ORPINE. 

Alpine and subalpine in bogs and along streams, 8600 (EI- 
dora)—13000 (Arapahoe Peak) ft. (Daniels, 848). Also at 
Caribou (Rydberg). 

Montana to CoLorapo and ARIZONA. 


20614. RHODIOLA L. Rose-roort. 


513%. R. integrifolia Raf. ENTIRE-LEAVED ROSE-ROOT. 
Common at high altitudes (Ramaley). Arapahoe Peak 
(Rydberg). 
ALBERTA to ALASKA; COLORADO to CALIFORNIA. 


207. SEDUM L. Orpine. STONE-CROP. 


514. §. stenopetalum Pursh. NaRrROW-PETALLED ORPINE. 
Abundant throughout the mountainous regions in rocky places, 
5600-12000 ft. (Daniels, 104). Also in the mountains between 
Sunshine and Ward (Rydberg). 
ALBERTA to BritisH CotumBIA; NEw Mexico to CALiror- 
NIA. 


5i4a. 8. stenopetalum rubrolineatum Cockerell. 
With the type, but in the higher altitude (Cockerell). 
Rocky MountaIns. 


Family 54. SAXIFRAGACEAE Dumort. Saxifrage family. 


208. PECTIANTHIA Raf. BisHop’s CAP. 


515. P. pentandra (Hook.) Rydb. [Mitella pentandra 
Hook.]. WESTERN BISHOP’S CAP. 
Springy places and along streams, Caribou (Rydberg). 
ALBERTA to ALASKA; COLORADO to CALIFORNIA. 


285] FLORA OF BOULDER, COLORADO 137 


209. OZOMELIS Raf. Murre-wort. 


516. O.stenopetala (Piper) Rydb. [Mitella stenopetala Piper]. 
NARROW-PETALLED MITRE-WORT. 
Springy places, Eldora to Baltimore (Rydberg). 
Redrock lake, 1o100 ft. (Ramaley & Robbins). 
Cotorapo to UTAH. 


210. HEUCHERA L. AtuM-roor. 


517. H. bracteata (Torr.) Ser. BRrAcTED ALUM-ROOT. 
Common in the crevices of rocks, 5800-10000 ft. (Daniels, 
139). Also in the mountains between Sunshine and Ward, and 
from Eldora to Baltimore (Rydberg). 
WyoMInG to CoLoRAbDO. 


518. H. Hallii Gray. HALi’s ALUM-ROOT. 

Rocky places, Arapahoe Peak, 11500-12000 ft. (Daniels, 
881). 

COLORADO. 
519. H. parvifolia Nutt. SMALL-LEAVED ALUM-ROOT. 

Common on banks in the mesas, foothills, and mountains 
throughout, 5700-12000 ft. (Daniels, 98). Also at Ward and 
Caribou (Rydberg). 

ALBERTA to OREGON ; NEw Mexico to ARIZONA. 


211. SAXIFRAGA L. SaxirraGe. 


520. §. debilis Engelm. WEAK SAXIFRAGE. 

Wet rocks, Massif de 1’ Arapahoe, gooo-13000 ft. (Ryd- 
berg). 

Monrana to Cotorapo and Urau. 


212. MICRANTHES Haw. 


521. M. rhomboidea (Greene) Small [Saxifraga rhombor- 
dea Greene]. RHOMBOID-LEAVED SAXIFRAGE. 

Among rocks in the foothills and mountains, Flagstaff Hill, 
6000 ft. (Daniels). Also Massif de I’ Arapahoe, 12000 ft., 
and Eldora to Baltimore (Rydberg). Near Long’s Peak 
(Coulter in Wabash College Herb.). Saxifraga nivalis L., re- 
ported by Ramaley & Robbins from Redrock lake, 1o1oo ft., 


138 UNIVERSITY OF MISSOURI STUDIES [286 


1s probably this plant (cf. Coulter-Nelson’s New Manual of 
Rocky Mountain Botany, p. 240). 
Montana and IpaHo to CoLorapo. 


522. M. arguta (D. Don) Small [Savifraga arguta D. Don; 
S. denudata Nutt.; S. punctata Hook., in part; not L.]. 
SMOOTH SAXIFRAGE. 

In springy places and along streams; mountains between 
Sunshine and Ward; Massif de 1’ Arapahoe (Rydberg). 
Streams near Bloomerville, and on Arapahoe Peak, gooo- 
12000 ft. (Daniels, 308). 

Montana to British Cotump1A; NEw Mexico to CALti- 
FORNIA. 


213. LEPTASEA Haw. 


523. L. chrysantha (Gray) Small [Saxifraga chrysantha 
Gray]. GOLDEN SAXIFRAGE. 
Toward summit of Arapahoe Peak, 13000-13500 ft. (Dan- 
iels, 949, collected by Mrs. T. D. A. Cockerell). 
Cotorapo and New Mexico. 


524. L.Hirculus (L.) Small [Saxifraga Hirculus L.]. Arc- 
TIC SAXIFRAGE. 
In wet places at Caribou (Rydberg). Redrock lake, 10100 
ft. (Ramaley & Robbins). 
GREENLAND to ALASKA; CoLorapo to BririsH COLUMBIA: 
Europe: ASIA. 


525. L. austromontana (Wieg.) Small [Savxifraga bronchia- 
les Torr.; not L.; S. austromontana Wieg.|]. WESTERN 
MOUNTAIN SAXIFRAGE. 

On rocky ledges, Boulder Cafion above the Falls; at Sun- 
set; and above timberline, Arapahoe Peak, 7000-13000 ft. 
(Daniels, 542). Also at Caribou; South Boulder Peak; moun- 
tains between Sunshine and Ward (Rydberg). 

ALBERTA to BritrisH CotumBia; New Mexico to WASHING- 
TON. 

526. L. flagellaris (Willd.) Small [Saxifraga flagellaris 
Willd.]. FLAGELLATE SAXIFRAGE. 

Massif de l’ Arapahoe, 10000-13500 it. (Rydberg). 

GREENLAND to ALASKA; COLORADO to ARIZONA. 


287 FLORA OF BOULDER, COLORADO 139 


Family 55. PARNASSIACEAE Dumort. Grass of Parnassus 
family. 
214. PARNASSIA L. Grass oF PARNASSUS. 
527. P.fimbriata Banks. FIMBRIATE GRASS OF PARNASSUS. 
Springs and springy places, Caribou (Rydberg). 
ALBERTA to ALASKA ; COLORADO to CALIFORNIA. 
Family 56. HYDRANGEACEAE Dumort. Hydrangea family. 
215. EDWINIA Heller. Jamesta. 
528. E. Americana (T. & G.) Heller [Jamesia Americana 
T. & G.]. AMERICAN JAMESIA. 

Abundant in the foothills and mountains in rocky and 
clivose places, 5700-10000 ft. (Daniels, 138). Also at Ward; 
in the mountains between Sunshine and Ward; and from 
Eldora to Baltimore (Rydberg). 

Wyominec and Urau to New Mexico. 


Family 57. GROSSULARIACEAE Dumort. Gooseberry family. 


216. RIBES L. GoosEBEerRy. CURRANT. 
529. R. Purpusi Koehne. Purpus’s GOOSEBERRY. 

Common in mountain cafions, 6000-10000 ft. (Daniels, 290). 
Also in the mountains between Sunshine and Ward (Ryd- 
berg). 

_ Wvyomine to New Mexico. 
530. R. vallicola Greene. VALLEY GOOSEBERRY. 

Along streams and in gulches, 5000-9000 ft., St. Vrain creek 
below Lyons; Pine Glade School (Ramaley). 

Montana to WASHINGTON; COLORADO to CALIFORNIA. 
531. R. lentum (Jones) Coville & Rose [R. lacustre molle 

Gray]. WESTERN RED CURRANT. 

Eldora to Baltimore (Rydberg). 

Wyominec and Cotorapo to CALIFORNIA. 


532. R. parvulum (Gray) Rydb. [R. lacustre parvulum 
Gray]. SMALL BLACK CURRANT. 
Moist places, 8000 to 11500 ft.; Redrock lake, west of 
Ward; Fourth of July mine (Ramaley). 
ALBERTA and YUKON to CoLorapo and UraH. 


140 UNIVERSITY OF MISSOURI STUDIES [288 


533. R. pumilum Nutt. [&. cerewm Coulter, in part]. SMALL 
WAX-CURRANT. 

Abundant on the mesas, foothills, and mountains, 5500-10000 
ft. (Daniels, 84). Long’s Peak (Coulter in Wabash College 
Herb.). 

Montana to New Mexico and Arizona. 

534. R. longiflorum Nutt. [R. aurewm T. & G.; not Pursh]. 
LONG-FLOWERED GOLDEN CURRANT. 

Along stream in mesa at the foot of Flagstaff Hill, 5700 ft. 
(Daniels, 600). 

SoutH Daxota to Wyominc; Kansas to ARIZONA. 

535. RB. vulgare Lam. Rep CURRANT. 

Escaped into a thicket about a pond near Boulder, 5400 ft. 
(Daniels, 265). 

Laprapor to ALASKA; New Jersey to InpraANA and MINNE- 
soTA: Europe: Asta. Frequently escaped from cultivation in 
all temperate regions. 


Family 58. ROSACEAE Juss. Rose family. 


217. OPULASTER Medic. NINE-BARKS. 
536. 0. intermedius Rydb. [O. Missouriensis Daniels]. In- 
TERMEDIATE NINE-BARKS. 
Cafions in the foothills, 5700-6500 ft. (Daniels, 74). Lower 
Boulder Caton, 5600-7000 ft. (Rydberg). 
Ittinois to SourH Daxota; Missourt to CoLorApo. 


537. 0. Ramaleyi Aven Nelson [O. bracteatus Rydb.]. Ram- 
ALEY’S NINE-BARKS. 
Cafions in the foothills, 5600-6500 ft. (Daniels, 693). 
COLORADO. 
538. 0. glabratus Rydb. GLABROUS NINE-BARKS. 
Boulder, along streams, 5000-11000 ft. (Rydberg). 
CoLoRADO. 
539. 0. monogynus (Torr.) Kuntze [Physocarpus Torrey 
Max.]. TORREY’S NINE-BARKS. 
Rocky cafions in the foothills, 6000-7000 ft. (Daniels, 450). 
SoutH Dakota to Wyominc; New Mexico to Nevapa. 


289] FLORA OF BOULDER, COLORADO 141 


218. BOSSEKIA Necker. SALMON-BERRY. 


540. B. parviflora (Nutt.) Greene [Rubus Nutkanus 
Moc.; Rubacer parviflorus (Nutt-) Rydb.]. NurKa 
SOUND SALMON-BERRY. 

Local in deep wooded cafions in the foothills and mountains, 
6500-9000 ft. (Daniels, 533). Near Long’s Peak (Porter & 
Coulter). 

Ontario to ALasKA; New Mexico to CALIFORNIA and MeEx- 
ICO. 


219. OREOBATUS Rydb. FLOWERING RASPBERRY. 


541. 0. deliciosus (James) Rydb. [Rubus deliciosus James]. 
SAVORY FLOWERING RASPBERRY. 
Abundant throughout the higher mesas, the foothills and the 
mountains, 5500-10000 ft. (Daniels, 29). 
CoLORADO. 


220. RUBUS L. BRAmMBLE. 


542. R. Americanus (Pers.) Britton [R. triflorus Richard- 
son]. DWarr RASPBERRY. 
Deep cafions on north slope of Green Mt., 6400-8000 ft. 
(Daniels, 345). Not in Rydberg’s Flora. 
NEWFOUNDLAND to Manirosa; NEw JERSEY to COLORADO. 


221. BATIDAEA Dumort. RED RASPBERRY. 


543. 8B. laetissima Greene. WILD RED RASPBERRY. 

Common in gulches in the mesas and foothills, 5500-8000 ft. 
(Daniels, 212). 

Laprapor to MACKENZIE; NEW JERSEY to COLORADO. 


222. TRIDOPHYLLUM Necker. FIVE-FINGER. CIN- 
QUEFOIL. 


544. T. paradoxum (Nutt.) Greene [Potentilla paradoxa 
Nutt.]. Busy CINQUEFOIL. 
Wet places and along streams, ascending in Sunset Cafion 
to about 7000 ft., 5100-7000 ft. (Daniels, 241). 
PENNSYLVANIA and ONTARIO to WASHINGTON; Missouri to 
New Mexico and Mexico: Eastern ASIA. 


142 UNIVERSITY OF MISSOURI STUDIES [290 


545. T. leucocarpum (Rydb.) Cockerell. Nov. comb. [Poten- 
tilla leucocarpa Rydb.]. \WHITE-SEEDED CINQUEFOIL. 

Wet places in the plains and ascending in the cafions to a 
considerable distance into the mountain region, 5100-7000 
(Bear Cafion) ft. (Daniels, 826). 

Iuirnois to WasHincton ; NEw Mexico to CALIFORNIA. 
546. T. lateriflorum (Rydb.) Cockerell. Nov. comb. [Poten- 

tilla lateriflora Rydb.]. - LATERAL-FLOWERED CINQUEFOIL. 

Foothills at Boulder, 6000-8000 ft. (Daniels, 238). 

ASSINIBOIA to BritisH CoLuMBiIA; CoLoRApDO to ARIZONA. 
547. T. Monspeliense (L.) Greene [P. Norvegica hirsuta T. 

& G.; P. Monspeliensis L.]. RouGH CINQUEFOIL. 

Common in meadows in the plains, mesas, and foothills, and 
in aspen bogs in the mountains, 5100-8600 (Eldora) ft. (Dan- 
iels, 117). 

Laprapor to ALASKA; SouTH CaroLina to Arizona and 
Mexico: Europe: Asta. 

223. POTENTILLA L. Five-FINGER. CINQUEFOIL. 


548. P. concinna Richardson [P. humifusa Nutt.]. Grounp 
CINQUEFOIL. 

Mountainsides at Eldora, and bald ridges at Glacier Lake, 
8600-10000 ft. (Daniels, 989). Also Long’s Peak (Porter & 
Coulter; and Coulter in Wabash College Herb.). Redrock 
lake, 10100 ft. (Ramaley & Robbins). 

SASKATCHEWAN to ALBERTA; CoLorapo to Uran. 

549. P. dissecta Pursh [P. diversifolia Lehm.]. Cur- 
LEAVED CINQUEFOIL. 

Above timberline, Arapahoe Peak, 11500-13000 ft. (Daniels, 
933). Also at Caribou (Rydberg). Redrock lake, totoo ft. 
(Ramalev & Robbins). 

SASKATCHEWAN to BritisH CoLUMBIA; CoLORADO to CALI- 
FORNIA. 

550. P. glaucopyhylla Lehm. [P. dissecta glaucophylla (Lehm.) 
S. Wats.]. GLAUCOUS CUT-LEAVED CINQUEFOIL. 
At Caribou, ggoo ft. (Rydberg). 
Rocky Mountains. 


291] FLORA OF BOULDER, COLORADO 143 


551. P. pulcherrima Lehm. F arrest CINQUEFOIL. 

Aspen bogs and subalpine meadows at Eldora and Glacier 

Lake, 8000-10000 ft. (Daniels, 630). 

SASKATCHEWAN to ALBERTA; NEw Mexico to NEvADA. 

552. P. Pennsylvanica strigosa Pursh. Vi_ttous PENNSYL- 

VANIA CINQUEFOIL. 
Common on the plains and in mountain meadows, 5100-8000 

ft. (Daniels, 31). 

Hupson Bay to ALBERTA; Kansas to NEw Mexico: SIBERIA 
552a. P. Pennsylvanica arachnoidea Lehm. ARACHNOID 
PENNSYLVANIA CINQUEFOIL. 
Near Boulder, 5000-8000 ft. (Rydberg). 
Montana to Uran; New Mexico to ARIZONA. 

553. P. minutifolia Rydb. MINUTE-LEAVED CINQUEFOIL. 
High peaks, Eldora to Baltimore, gooo-13000 ft. (Rydberg). 
COLORADO. 

554. P. Hippiana Lehm. WOooLLY CINQUEFOIL. 

Plains, mesas, and mountain meadows, 5100-10000 ft. (Dan- 

iels, 433). 

Minnesota to SASKATCHEWAN and ALBerTtA; NEw MeEx- 
ico to ARIZONA. 

555. P. propingua Rydb. [P. Hippiana diffusa Lehm.]. Drr- 

FUSE CINQUEFOIL. 
Plains, mesas, and mountain meadows, 5700-10000 ft. (Dan- 
iels, 206). Redrock lake, totoo ft. (Ramaley & Robbins). 
Cotorapo to New Mexico and Arizona. 

556. P. effusa Dougl. BRANCHED CINQUEFOIL. 

Plains, mesas, and mountain ridges, 5100-10000 ft. (Dan- 

iels, 287). 

Assinigo1a to Montana; thence to NEw Mexico. 
224. FRAGARIA L. StTrRAWBERRY. 

557. ¥. bracteata Heller. BracTED STRAWBERRY. 

Common in cafions in the foothills and mountains, 6300- 

11000 ft. (Daniels, 291). 

Montana to British Cotumpi1a; New Mexico to CALIFor- 

NIA. 


144 UNIVERSITY OF MISSOURI STUDIES [292 


558. F. Americana (Porter) Britton |F. vesca Americana 
Porter ]. AMERICAN STRAWBERRY. 
At Boulder, 5400 ft. (Rydberg). 
NEWFOUNDLAND to MANITOBA; VIRGINIA to NEw Mexico 
and OREGON. 


55814. F. prolifica Baker & Rydb. PRoLIFIC STRAWBERRY. 
Boulder Cafion, 8500 ft. (Coulter in Wabash College Herb.). 
COLORADO. 


559. F. glauca (S. Wats.) Rydb. GLAucous STRAWBERRY. 
Mountainsides at Eldora, 8600 ft. (Daniels, 850). Redrock 
lake, 10100 ft. (Ramaley & Robbins). 
MaAcKENZIE to Montana; SoutH DAKoTA to CoLorabo and 
Nevapa. 


560. F. pauciflora Rydb. SMALL-FLOWERED STRAWBERRY. 
North Boulder Peak (Rydberg). Boulder Cafion, 8500 ft. 
(Coulter in Wabash College Herb.). 
Hupson Bay to ALsBerTA; CoLorapo to UTAH. 


225. SIBBALDIA L. 


561. §. procumbens L. PROCUMBENT SIBBALDIA. 

Above timberline in dry tundras near the snow, 11500-13500 
ft., Arapahoe Peak (Daniels, 912). Redrock lake, 1o1oo ft. 
(Ramaley & Robbins). 

Arctic-alpine around the world. 


226. DASIPHORA Raf. 


562. D. fruticosa (L.) Rydb. [Potentilla fruticosa L.]. 
SHRUBBY CINQUEFOIL. 
Subalpine bogs, mostly in aspen zone; but also in bogs in 
the plains and mesas, 5600-10000 ft. (Daniels, 541). 
Laprapor to ALASKA; NEW JERSEY to CALIFORNIA: EUROPE: 
ASIA. 


227. DRYMOCALLIS Fourr. 


563. D. arguta (Pursh) Rydb. [Potentilla arguta Pursh]. 
TALL CINQUEFOIL. 
On the plains and mesas, the flowers yellow as well as white, 


293] FLORA OF BOULDER, COLORADO 145 


5100-6000 ft. (Daniels, 432). St. Vrain Cafion (Porter & 
Coulter). 

New Brunswick to MAcKEeNnzIE; District or CoLUMBIA 
to COLORADO. 


564. OD. fissa (Nutt.) Rydb. [Potentilla fissa Nutt.]. LARGE- 
FLOWERED GLANDULAR CINQUEFOIL. 

‘Common in the mesas, foothills, and mountains throughout, 
5700-12000 ft. (Daniels, 30). St. Vrain Cafion 7ooo it., 
and Boulder Cafion (Coulter in Wabash College Herb.). 

Montana to COLORADO. 


228. GEUM L. Avens. 


565. G. strictum Ait. YELLOW AVENS. 

In Bear Cafion, 7000 ft. (Daniels, 637). 

NEWFOUNDLAND to British COLUMBIA; PENNSYLVANIA to 
Arizona and Mexico: Europe: Asta. 


566. G. Oregonense (Scheutz) Rydb. [G. urbanum Oregon- 
ense Scheutz]. OREGON AVENS. 
Mountain meadows and cafions, 6000-10000 ft. (Daniels, 
634). Also at Arapahoe Pass and Eldora (Rydberg). 
MACKENZIE to British Cotumpia; New Mexico to CAati- 
FORNIA. 


567. G. scopulorum Greene. Rocky MOUNTAIN AVENS. 

In cafions and gulches about springs, 5700-9000 ft. (Dan- 
iels, 68). 

Rocky MounraIns. 


229. ERYTHROCOMA Greene. PURPLE MOUNTAIN AVENS. 


568. E. ciliata (Pursh) Greene [Geum ciliatum Pursh; Ste- 
versia ciliata (Pursh) Don; G. triflorwm Pursh]. THREE- 
FLOWERED MOUNTAIN AVENS. 

Subalpine and alpine meadows at Eldora, 8000-12000 ft. 
(Daniels, 627). Also at Arapahoe Pass (Rydberg). Near 
Long’s Peak (Porter & Coulter). 

LapBrapbor to British CoLtumpia; NEw York to CALIFORNIA 
and Mexico. 


146 UNIVERSITY OF MISSOURI STUDIES [294 


230. ACOMASTYLIS Greene. YELLOW MOUNTAIN 
AVENS. 


569. A. turbinata (Rydb.) Greene [Geum turbinatum (Rydb) ; 
Steversia turbinata (Rydb.) Greene]. TuRBINATE MOUN- 
TAIN AVENS. 

Above timberline, Arapahoe Peak, 11500-13500 ft. (Dan- 

iels, 877). 

Wyominc to New Mexico and Arizona. 


570. A. Arapahoensis Daniels. Nov. spec. ARAPAHOE YELLOW 
MOUNTAIN AVENS. 

Plant 20- 30 cm. high, the stems (about three in number) 
puberulent, becoming softly hairy or villous above; basal leaves 
ascending, about 1 dm. long and 3 cm. wide, pinnate, the lower 
pinnae narrowly falcate, entire, the others mainly ovate in 
outline, deeply cut into 2- 7 cuneate lobes, but with occasional 
little, simple pinnae interspersed with the larger ones; leaves 
puberulent or glabrate, the margins softly ciliate with white 
hairs ; rhachis about 3 mm. broad, the base of the petiole about 
1 cm. broad, becoming chaffy and sheathing the stems; lower 
half of stem leafless, the upper half bearing two leaves, 21%4- 3 
cm. long, pinnately parted into about Io narrow lobes, the 
lowermost broad, stipule-like, and sheathing the stem; pe- 
duncles softly hairy, 3- 4 in number, subtended by leaves closely 
resembling the two stem leaves, but smaller, the peduncles 
themselves occasionally bearing 1 or 2 bracts, simple or 2- 
5 pinnately incised; flowers 2-2'% cm. wide, bright yellow, 
the petals broadly obovate, five in number; sepals and bract- 
lets villous at base, 5 each, spreading, becoming erect in fruit 
or the tips reflexed in age; sepals broadly triangular, about 
twice as high as the narrower bractlets; stamens numerous; 
styles included in fruit, glabrate; achenes softly villous with 
white hairs. Foliage, stems, sepals and bractlets purple-tinged. 

The plant differs from A. turbinata (Rydb.) Greene, in its 
larger size, its softly hairy upper portion, its 3- 4 flowered 
stems, its broader sepals, which are much longer than the 
bractlets, and in its larger flowers. This is probably the 


295] FLORA OF BOULDER, COLORADO 147 


Geum Rossti humilis of Coulter’s Manual, but genuine G. 
Rossti humilis T. & G. comes no nearer than Unalaska, the 
type locality. A. turbinata (Rydb.) Greene is a low plant, 7- 15 
em. high, usually 1- flowered. 

At timberline, Arapahoe Peak, 11500 ft. (Daniels, 906). 


231. HOLODISCUS Max. MErapowsweEET. 


571. H. dumosus (Nutt.) Heller. [Spiraea dumosa Nutt.]. 
BusSHY MEADOWSWEET. 
Boulder County (McFarland). 
Wyominec and Uran to CoLorapo and ARIZONA. 


232. KUNZIA Spreng. Pursuia. 


572. K. tridentata (Pursh) Spreng. [Purslia tridentata 
(Pursh) DC.]. THREE-TOOTHED PURSHIA. 

Rocky hillsides, 6500-8500 ft.; head of Gregory Cafion; 
north of Nederland (Ramaley). Boulder Cafion, gooo ft. 
(Coulter in Wabash College Herb.). 

Montana to Wasuincton; New Mexico to CALIFORNIA. 


233. CERCOCARPUS H. B. K. MountTAIn MAHOG- 
ANY. 


573. C. parvifolius Nutt. SMALL-LEAVED MOUNTAIN MAHOG- 
ANY. 
High mesas fronting the Flat-irons, 5700-6000 ft. (Dan- 
iels, 172). Also from Eldora to Baltimore (Rydberg). 
SoutH Dakota to Montana; New Mexico to Utan. 


234. DRYAS L. 


574. D. octopetala L. WHITE MOUNTAIN AVENS. 
Above timberline, Arapahoe Peak, 11500-13500 ft. (Dan- 
iels, 939). Also mountains south of Ward (Rydberg). 
Arctic-alpine around the world. 


235. AGRIMONIA L. Acrimony. 


575. A. Brittoniana occidentalis Bickn. WESTERN AGRIMONY. 
Plains, and cafions among the foothills, 5100-7500 (Bear 
Cafion) ft. (Daniels, 259). 
SoutH Daxota to Wyominc; New Mexico to ArIzona. 


148 UNIVERSITY OF MISSOURI STUDIES [296 


236. ROSA L. Rose. Brter. 


576. R. pratincola Greene. PRAIRIE ROSE. 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 
58). 


Minnesota to ALBERTA; KANSAS to COLORADO. 


576a. R. pratincola angustiarum Cockerell, n. var. CASTLE 
Rock ROSE. 

Boulder Cafion, 7340 ft. (near Castle Rock), Sept. 22, 1907, 
growing close to kt. Engelmann Wats. 

Low bush. Flowers corymbose, often four together. 

Sepals foliolar-tipped, narrow tomentose, with scattered 
large dark marginal stalked glands, these last present or absent 
on same branch. No lateral lobes. Length of sepals prox. 17 
mm. Sepals in fruit erect. 

Fruit depressed globose, very shiny, with no sign of a neck. 

Long. (mm.) 11. 91%. 11. 10. 10. Meas- 

Five fruits ured while fresh. 

Lat. (mm.) 13. 11. 12. 10 %,. 1014. 

Twigs and peduncles deep crimson. Penduncles minutely 
hairy. 

Branches with straw colored, fairly numerous, straight slen- 
der prickles, the larger ones about 7 mm., long; infrastipular 
prickles normally absent. 

Stipules broad, to 8% mm., margins dentate, more or less 
glandular. 

Leaflets: a series of leaves counted showed leaflets: 11. 9. 9. 
MO} OH OH Fo Wily @; Wits hi Gyy aes) ©e ©), i) Wiis Oy’ B 

Leaflets; cuneate basally, simply and strongly toothed, very 
finely but closely pubescent beneath. Terminal leaflet long. 
26., lat. 1314 mm. 

Frequently one or two leaflets from between auricies of sti- 
pules, as in R. suffulta. Stipules convolute as in R. Woodsu, 
but leaves not shining. (Cockerell, MS., Oct. 1907.) 


576b. R. pratincola setulosa Cockerell. N. var. 
Fruit bristly. Bluebell Canon (Cockerell); 1910. 


297 | FLORA OF BOULDER, COLORADO 149 


577. R. Sayi Schweinitz. Say’s ROSE. 

Common throughout the mesas, foothills and lower moun- 
tainsides, 5500-10000 ft. (Daniels, 47). Also Eldora to Balti- 
more (Rydberg). Redrock lake, 1o100 ft. (Ramaley & Rob- 
bins). 

Quesec to AtBertA; MiIcHIGAN to CoLorapo and New 
Mexico. 


578. R. Engelmannii S. Wats. ENGELMANN’S ROSE. 

High ridges of Green Mt., 7000-8100 ft. (Daniels, 535). 
Also Boulder Cafion above Falls (Cockerell). Eldora; foot of 
Long’s Peak (Ramaley). 

Micuican to Nortu Dakota; TEXAS to COLORADO. 


579. R. melina Greene. ASHEN ROSE. 

Cafions and gulches at foot of Flagstaff Hill, 5700-6000 ft. 
(Daniels, 102). R. Nutkana Presl., reported by Ramaley 
from Marshall; Bluebell Canon; Gregory Cafion; and Pine 
Glade School, is probably R. Melina Greene. 

WyomMiNnG to CoLorapo. 


580. R. Macounii Greene. MaAcoun’s ROSE. 

Along the railroad between Boulder and Marshall, 5400 ft. 
(Daniels, 968). R. Woodsu Lindl., reported by Ramaley 
from Sugarloaf Mt., Bluebird Mine.; and Spencer Mt. at 
Eldora, is probably R. Macouni Greene. 

SoutH Daxota to ALBERTA; KANSAS to COLORADO. 


581. R. Fendleri Crepin. FENDLER’S ROSE. 

Bear Cafion, 7ooo ft. (Daniels, 205). Also mountains be- 
tween Sunshine and Ward (Rydberg). Marshall; above Mag- 
nolia (Ramaley). 

Soutu Daxota to Montana; NEw Mexico to ARIZONA. 


582. R. aciculata (Cockerell) Cockerell [R. blanda aciculata 
Cockerell]. PRICKLY ROSE.. 

Gulches at the foot of the Flat-irons, 5700-6000 ft. (Dan- 
iels, 462). Also mountains between Sunshine and Ward (Ryd- 
berg). 

Cortorapo to NEw Mexico. 


150 UNIVERSITY OF MISSOURI STUDIES [298 


583. R. Maximiliani Nees. MAXIMILIAN’S ROSE. 
Gregory Cafion, 5800-6500 ft. (Daniels, 190). 
SASKATCHEWAN to WaSHINGTON ; CoLorapo to UTAH. 


Family 59. MALACEAE Small. Apple family. 


237. AMELANCHIER L. SwapsusuH. 


584. A. polycarpa Greene. MANyY-FRUITED JUNEBERRY. 
Mountainsides from Eldora to Arapahoe Peak, where it 
occurs at timberline, 8600-11500 ft. (Daniels, 909). 
Wyominec to CoLorapo. 


585. A. elliptica A. Nels. ELLIPTICAL-LEAVED JUNEBERRY. 
Sugarloaf Mountain (Ramaley). 
SoutH DaxKota to COLORADO. 


586. A. alnifolia Nutt. ALDER-LEAVED SHADBUSH. 
Sunshine Cafion and Eldora (Ramaley). 
Nortu Daxota to Montana; CoLtorapo to UTAH. 


587. A. oreophila A. Nels. MouNTAIN SHADBUSH. 
Mesas and foothills, common, 5700-8100 ft. (Daniels, 501). 
WyomiInc to CoLorabo. 


238. CRATAEGUS L. Hawrnorn. 


588. C. occidentalis Britton [C. Colorado Ashe]. WESTERN 
HAW. 
Banks of gulches in the mesas and lower foothills, 5700- 
6000 ft. (Daniels, 835). 
COLORADO. 


589. C. Coloradensis A. Nels. CoLorapo HAW. 


Banks of gulches in the mesas and lower foothills, 5700- 
6000 ft. (Daniels, 767). A form from the entrance to Gregory 
Cafion (Daniels, 838) has the petioles not distally widened. 

North Daxora to Montana; NEBRASKA to COLORADO. 


299] FLORA OF BOULDER, COLORADO I51 


590. C. erythropoda Ashe, 1900 [C. Cerronis A. Nels., 1902]. 
CERRO HAW. 
Banks of gulches in the mesas and lower foothills, 5700-6000 
ft. (Daniels, 794). 
COLORADO. 


591. ©. Doddsii Ramaley. Dopps’s Haw. 

Pole Cafion (the type locality); also various localities in 
Boulder Co., 5000-8000 ft. (Ramaley). 

COLORADO. 


592. C. Coloradoides Ramaley. FAatsE CoLorapo HAW. 

Pole Cafion (the type locality) ; also gulches in the lower 
foot-hills, 5500-7000 ft. (Ramaley). 

COLORADO. 


239. SORBUS L. Mountain AsH. 


593. 8. scopulina Greene. Rocky MouNTAIN MOUNTAIN ASH. 
At entrance of Bear Cafion and very sparingly throughout 

the mountainous region, 6000-10000 ft. (Daniels, 764). 
ALBERTA to WASHINGTON ; CoLorApo to UTAH. 


Family 60. AMYGDALACEAE Reichenb. Peach family. 
240. PRUNUS L. Prum. Cuerry. 


594. P. Americana Marsh. AMERICAN WILD PLUM. 
Mesas and lower foothills, 5700-7000 ft. (Daniels, 795). 
New York to Montana; Fioripa to CoLoRApbo. 


595. PP. prunella Daniels. Nov. sp. PyGmMy PLUM. 
Undershrub, thornless, trailing or ascending, 3-6 dm. high 
with grayish bark, the new twigs reddish; fruits lateral, soli- 
tary in the specimens secured, on slender pedicels 1 cm. long; 
drupes oblong, 1’/4-14%4 cm. long and 1 cm. wide when dried, 
black-purple with but slight traces of bloom; pulp red-purple, 
astringent but sweet and edible; stone oblong 12 mm. long 
by 7 mm. wide, bean-shaped, flattish, rugose, the margins 
slightly winged, the ends plainly so; leaves lanceolate, 3-5 cm. 
long including the petiole, and 12-15 mm. wide in the middle, 
sharply but not deeply serrate, entire toward the acuminate 


152 UNIVERSITY OF MISSOURI STUDIES [300 


base; upper surfaces glossy green, under surfaces paler, the 
midrib white and shining both above and below. Flowers not 
seen. Mesa at entrance of Gregory Cafion and facing the 
first Flat-iron, scarce; 5700-6000 ft. (Daniels, 654). A true 
plum, having perhaps as its nearest ally P. Watsoni Sargent. 
Specific name the diminutive of Prunus. 


596. P. Besseyi Bailey. BrSSEY’s SAND CHERRY. 

One-fourth mile above Chautauqua grounds, Boulder, (Beth- 
el). Also White Rocks (Ramaley). 

Nortu Dakota to Kansas and CoLorapo. 


597. P. Pennsylvanica L. f. WILD RED CHERRY. 

Common throughout, 5100-9500 ft. (Daniels, 327). Also 
mountains between Sunshine and Ward and from Eldora to 
Baltimore (Rydberg). 

NEWFOUNDLAND to NortH DaKorTa; GEORGIA to COLORADO. 


598. P. melanocarpa (A. Nels.) Rydb. [Cerasus demissa 
melanocarpa A. Nels.| BLACK-FRUITED WESTERN WILD 
CHERRY. 

Common along cafions throughout the mesas and foothills, 

5600-8500 ft. (Daniels, 465). 


_ Norta Daxora to ALBERTA and BritisH Cotumpia; NEw 


TRxICcO to CALIFORNIA. 
Family 61. FABACEAE Reichenb. Bean family. 
241. SOPHORA L. 


599. S. sericea Nutt. SmKy SoPHORA. 
Alkaline flats about Owen’s lake, 5200 ft. (Daniels, 664). 
SoutH Dakota to Wyominc; TExas to ARIZONA. 


242. THERMOPSIS R. Br. 


600. T. pinetorum Greene. PINELAND THERMOPSIS. 
Marshall, 5400 ft. (Daniels, 273). Open woodlands and hill- 
sides, Boulder (Rydberg). 
Cotorapo to New Mexico. 


301] FLORA OF BOULDER, COLORADO 153 


601. TT. divaricarpa A. Nels. DivartcATE-PODDED THERMOP- 
SIS. 

Abundant throughout the mesas, foothills, and mountains, 
5600-11000 ft. (Daniels, tog). Also from Eldora to Balti- 
more (Rydberg). 

Wyominc to CoLorapo. 


602. T. arenosa A. Nels. SAND THERMOPSIS. 

In sandy soil, Eldora to Baltimore (Rydberg). Redrock 
lake, 10100 ft. (Ramaley & Robbins). 

SASKATCHEWAN and MonTANA to COLORADO. 


243. LUPINUS L. LupIne. 


603. L. Plattensis S. Wats. PLATTE LUPINE. 

Abundant on the plains, mesas, and foothills, 5100-8000 ft. 
(Daniels, 48). 

NEBRASKA and Wyominc to CoLoRADo. 


604. LL. rubricaulis Greene. RED-STEMMED LUPINE. 
Mesas and foothills, 5600-8000 ft. (Daniels, 394). 
COLORADO. 


6041%4. L. alpestris A. Nels. [L. alsophilus Greene]. ALPINE 
LUPINE. 
Redrock lake, roroo ft. (Ramaley & Robbins). 
Montana to CoLtorapo and UTan. 


605. LL. parviflorus Nutt. SMALL-FLOWERED LUPINE. 

Among pines, Gregory Cafion and slopes of Green Moun- 
tain, 6000-8000 ft. (Daniels, 344). 

SoutH Dakota to Montana; CotorApo to UTAH, 


606. L. decumbens Torr. [L. argenteus decumbens (Torr.) 
Gray; L. leptostachys Greene]. DECUMBENT LUPINE. 
Common in the plains and foothills, 5100-9000 ft. (Dan- 
iels, 704). 
NEBRASKA to MontTANA and OrEGON ; COLORADO to CALIFOR- 
NIA. 


154 UNIVERSITY OF MISSOURI STUDIES [302 


606a. L. decumbens argentatus Rydb. SILVERY DECUMBENT 
LUPINE. 
Plains, foothills, and mountain slopes, 5100-9000 it. (Dan- 
iels, 131). Also between Sunshine and Ward (Rydberg). 
WyYoMING to CoLoRADO. 


244. TRIFOLIUM L. Ctrover. 

607. T. pratense L. RED CLOVER. 

Throughout the cultivated area, 5100-8500 ft. (Daniels, 744). 

Europe and Asta, thence cultivated and naturalized in all 
temperate lands. 
608. T. hybridum L. ALsIKE CLOVER. 

Roadsides and fields about Boulder, 5100-5700 ft. (Dan- 
iels, 244). Not in Rydberg’s Flora. 

Europe, thence to all temperate lands. 


609. T. repens L. WHITE CLOVER. SHEEP CLOVER. 

Common throughout the cultivated area, whence it has pen- 
etrated to distant cafions in the foothills, 5100-7500 ft. (Dan- 
iels, 500). 

EUROPE: SIBERIA: SUB-ARCTIC AMERICA; now in the greater 
part of NortH AMERICA. 


610. T. lividum Rydb. Livin clover. 

Above timberline, Arapahoe Peak, 11500-13000 ft. (Dan- 
iels, 1019). 

Wyominc to CoLorapo. 

611. T. dasyphyllum Torr. GRAy CLOVER. 

Above timberline, Arapahoe Peak, 11500-13000 ft. (Dan- 
iels, 874). Also Eldora to Baltimore and in the mountains 
south of Ward (Rydberg). 

Montana to CoLorapo. 


245. MEDICA Hill. Lucerne. 
612. M. sativa (L.) Hill [Medicago sativa L.]. ALFALFA. 
Throughout the cultivated area, and extending into the 
mountains along the roads and railroads, 5100-7000 ft. (Dan- 


iels, 509). 
Europe, thence to all temperate lands. 


303] FLORA OF BOULDER, COLORADO 155 


246. MEDICAGO L. Mepic. 


613. M. lupulina L. Hop mepic. 

Streets of Boulder, and about the quarries at the base of 
the Flat-irons, 5300-6000 ft. (Daniels, 658). Not in Ryd- 
berg’s Flora. 

Europe and Asta, becoming cosmopolitan. 


247. MELILOTUS Juss. Sweet cLover. MELiLor. 


614. M. alba Desv. WHITE SWEET CLOVER. 

Throughout the cultivated area, and abundant along rail- 
roads, 5100-7000 ft. (Daniels, 591). 

Europe and AstA, thence to NorrH AMERICA. 


615. M. officinalis (L.) Lam. YELLOW MELILoT. 

Streets and waste places, and about the quarries at the base 
of the Flat-irons, 5100-6000 ft. (Daniels, 657). 

Europe and Asta, thence to NortH AMERICA. 


248. GEOPRUMNON Rydb. Grounp PLUM. 


616. G. succulentum (Richardson) Rydb. [Astragalus succu- 
lentus Richardson; A. prunifer Rydb.]. SuccuLENT 
GROUND PLUM. 

Plains and foothills about Boulder, 5100-7000 ft. (Daniels). 
SASKATCHEWAN to Montana; SoutH Daxkora to CoLo- 
RADO. 


249. ASTRAGALUS L. MILK vercuH. 


617. A. Canadensis L. [A. Carolinianus L.]. CANADA MILK 
VETCH. 
Frequent on the plains, mesas, and along cafions in the foot- 
hills, 5100-7000 (Green Mt.) ft. (Daniels, 461). 
Quesec to BritisH CoLtumBIA; FLoRIDA to CALIFORNIA. 


618. A. oreophilus Rydb. MouNTAIN MILK VETCH. 
Plains, mesas, and foothills, local, 5100-8000 ft. (Daniels, 


124). 
COLORADO. 


150 UNIVERSITY OF MISSOURI STUDIES [304 


619. A. nitidus Dougl. SHINING MILK VETCH. 

Cafions, north slope of Green Mt., 7000 ft. (Daniels, 278). 

SASKATCHEWAN to ALBERTA and OrEGoN; MINNESOTA to 
CoLoRADO. 

620. A. sulphurescens Rydb. SULPHUR MILK VETCH. 

Gregory Cafion, and cafions on Green Mt., 6000-7500 ft. 
(Daniels, 613). Also Boulder Cafion and near Boulder (Ryd- 
berg). Redrock lake, totoo ft. (Ramaley & Robbins). 

COLORADO. 

621. A. virgultatus Sheld. [A. hypoglotiis bracteosus Osterh.]. 
BuSHY MILK VETCH. 

At Boulder, 5000-8000 ft. (Rydberg). 

Wyomine to CoLorapo. 

622. A. goniatus Nutt. [A. hypoglottis polyspermus T. & G.]. 
PURPLE MILK VETCH. 

Abundant on the plains, mesas, and along streams in the 
foothills, 5100-9000 ft. (Daniels, 5). 

SASKATCHEWAN to WASHINGTON ; COLORADO to CALIFORNIA. 

250. TIUM Medic. 
623. T. Drummondii (Dougl.) Rydb. [Astragalus Drum- 
mondu Dougl.]|. DRUMMOND’S MILK VETCH. 

Mesas and foothills, 5700-8000 ft. (Daniels, 76). Valmont 
(Coulter in Wabash College Herb.). 

SASKATCHEWAN to ALBERTA; NEBRASKA to COLORADO. 
624. T. alpinum (L.) Rydb. [Astragalus alpinus L.]. At- 

PINE MILK VETCH. 

Boulder Cafion above Falls; Eldora and along the Arap- 
ahoe Trail to timberline, 7000-11500 ft. (Daniels, 857). 

Laprapor to ALASKA; VERMONT to COLORADO: NORTHERN 
Europe and Asta. 


251. ATELOPHRAGMA Rydb. 


625. A. elegans (Hook.) Rydb. [Phaca elegans Hook.; Astrag- 
alus oroboides Americanus Gray]. PRETTY MILK VETCH. 
About Eldora and along the Arapahoe Trail to timberline 
and beyond, 8600-13000 ft. (Daniels, 1020). 
Laprapor and QueBEc to SASKATCHEWAN; IDAHO to CoLo- 
RADO. 


305] FLORA OF BOULDER, COLORADO 157 


252. XYLOPHACOS Rydb. 


626. X. Parryi (Gray) Rydb. [Astragalus Parryi Gray]. Par- 
RYS MILK VETCH. 
On rocks, Gregory Cafion road and other bare ridges in the 
foothills, 5900-gooo ft. (Daniels, 638). 
WyYoMINc to CoLorapo. 


627. X. Shortianus (Nutt.) Rydb. [Astragalus Shortianus 
Nutt.]. SHoRt’s MILK VETCH. 
Dry plains, mesas, and ridges in the foothills, 5100-gooo ft. 
(Daniels, 35). 
NEBRASKA to WyomMING; CoLorapo to ARIZONA. 


2538. HOMALOBUS Nutt. 


628. H. tenellus (Pursh) Britton [Astragalus tenellus Pursh; 
A. multiflorus (Pursh) Gray]. SLENDER MILK VETCH. 
Boulder Cafion above Falls and at Eldora, 7000-10000 ft. 
(Daniels, 539). Also at Ward, and mountains between Sun- 
shine and Ward (Rydberg). 
SASKATCHEWAN to YUKON; MINNESOTA and NEBRASKA to 
Cotorapo and Nevapa. 


629. H. decumbens Nutt. [Astragalus decumbens Gray]. DeE- 
CUMBENT MILK VETCH. 
Valley lying west of South Boulder Peak and Bear Moun- 
tain, 7000-7500 ft. (Daniels, 444). 
WyomInc to CoLoRADOo. 


630. H. campestris Nutt. [Astragalus campestris Gray; A. 
convallarius Greene]. PLAINS MILK VETCH. 
Meadows on Green Mountain, 6500-8100 ft. (Daniels, 316). 
Montana to British CoLtumpiaA; CoLorApo to UTAH. 


631. H. flexuosus (Dougl.) Rydb. [Phaca flexuosa (Dougl.) 
Hook.; Astragalus flexuosus Dougl.]. FLEXILE MILK 
VETCH. 

Near Boulder (Rydberg). 
SASKATCHEWAN to ALBERTA; MINNESOTA to Kansas and 

COLORADO. 


158 UNIVERSITY OF MISSOURI STUDIES [306 


632. H. Salidae Rydb. Satipa MILK veETCH. 
Plains in Boulder, 5600 ft. (Daniels, 4). 
COLORADO. 


254. OROPHACA Britton. 


633. 0. tridactylica (Gray) Rydb. [Astragalus tridactylcus 
Gray]. THREE-FINGERED MILK VETCH. 
St. Vrain’s Cafion (Rydberg; also Coulter in Wabash College 
Herb.). | 
COLORADO. 


255. ARAGALLUS Necker. Loco-weep. 


634. A. deflexus (Pall.) Heller [Oxytropis deflexa (Pall.) 
DC.]. DEFLEXED LOCO-WEED. 
Boulder Cafion; also in subalpine meadows about Eldora 
and along the Arapahoe Trail, 6000-11000 ft. (Daniels, 808). 
SASKATCHEWAN and ALAsKA to NEw Mexico. 


634%. A multiceps (Nutt) Heller [Oxytropis multiceps 
Nutt.]. CESPITOSE LOCO-WEED. 
Boulder Cafion, gooo ft. (Coulter in Wabash College 
Herb.). Redrock lake, to100 ft. (Ramaley & Robbins). 
NEBRASKA to Wyomine and Cotorapo. 


635. A. minor (Gray) Cockerell. Nov. comb. [O-xytropis 
multiceps minor Gray; A. multiceps minor (Gray) A. 
Nels.]. LitrLe Loco-weep. 

Sugarloaf, 8500 ft. (Cockerell). Also mountains between 

Sunshine and Ward, and at Caribou (Rydberg). 

CoLoRADO. 


636. A. patens Rydb. BRoaD-LEAVED LOCO-WEED. 

Plains and foothills near Boulder; below Sunshine and 
Ward; Eldora to Baltimore (Rydberg). Common throughout, 
5500-9000 ft. (Daniels, 333). Boulder is the type locality. 


CoLoRADO. 


307] FLORA OF BOULDER, COLORADO 159 


637. A. Lamberti (Pursh) Greene [O-xytropis Lamberti 
Pursh; Spiesia Lamberti (Pursh) Kuntze]. LAmsBert’s 
LOCO-WEED. 

Abundant on the plains, mesas, foothills, and in subalpine 
meadows, 5100-9000 ft. (Daniels, 15). Also on the mountains 
between Sunshine and Ward, and from Eldora to Baltimore 
(Rydberg). Saint Vrain creek (Coulter in Wabash College 
Herb.). 

Minnesota to Montana; Missourt to CoLorapo. 


638. A. sericeus (Nutt.) Greene [Oxytropis sericea Nutt.; 
Spiesia Lamberti sericea (Nutt.) Rydb.] StrKy Loco- 
WEED. 

With the preceding, 5100-9000 ft. (Daniels, 43). 
NortH Dakota to Wyominc; New Mexico to ARIZONA. 


639. A. Richardsonii (Hook.) Greene [O-rytropis splendens 
Richardsoni Hook.]. RicHARDSON’S LOCO-WEED. 
In mountain valleys from Eldora to Baltimore (Rydberg). 
SASKATCHEWAN to YUKON; and in the Rocky MounTAINs 
to CoLoRADo. 


256. GLYCYRRHIZA L. WiILpD LIQuUORICE. 


640. G. lepidota Nutt. ScaLy WILD LIQUORICE. 
Common along roads and railroads, and in the larger cafions, 
and on the plains throughout, 5100-8000 ft. (Daniels, 160). 
Ontario to WasHincton; New York to Arizona and 
MEXICco. 


257. AMORPHA L. Fatse 1npico. LEAD PLANT. 


641. A. fruticosa L. SHRUBBY FALSE INDIGO. 

Along streams and in gulches in the mesas and plains, 5100- 
6000 ft. (Daniels, 50). Not in Rydberg’s Flora. Prof. Ram- 
aley reports A. angustifolia (Pursh) Boynton from Boul- 
der, but according to Prof. Cockerell the specimen in the Univ. 
of Colorado Herbarium is A. fruticosa L. 

Ouio to MAntropa; FLoripa to Cotorapo and CHIHUAHUA. 


160 UNIVERSITY OF MISSOURI STUDIES [308 


642. A. nana Nutt. [A. microphylla Pursh]. SMALL-LEAVED 
FALSE INDIGO. 
Dry plains between Boulder and Marshall, 5400 ft. (Dan- 
iels, 521). 
Towa to MAnirospa; Missourt to CoLorapo. 


258. PSORALEA L. InprIaAN pBREADROOT. POMME 
BLANCHE. 


643. P. tenuiflora Pursh. FrEW-FLOWERED INDIAN BREADROOT. 
One of the commonest and most characteristic plants of 
the plains and mesas, and in open meadows on the foothills, 
5100-8000 ft. (Daniels, 297). A white-flowered form is oc- 
casional (Daniels, 2974). 
MINNESOTA to Montana; ILLinois to ARKANSAS, TEXAS 
and ARIZONA. 


644. P. argophylla Pursh. SiLver-LEAF INDIAN BREADROOT. 
Local on the plains and mesas, 5100-6000 ft. (Daniels, 189). 
Wisconsin to SASKATCHEWAN; Missourr to New Mexico 

and ARIZONA. 


259. PETALOSTEMON Lam. PRAIRIE CLOVER. 


645. FP. oligophyllus (Torr.) Rydb. [P. gracilis oligophyllus 
Torr.; Kuhnistera oligophylla (Torr.) Heller]. SLENDER 
WHITE PRAIRIE CLOVER. 

On the plains and mesas, 5100-6000 ft. (Daniels, 161). 
Towa to AsstnrtporA; TExAs to Artzona and Mexico. 


646. P. purpureus (Vent.) Rydb. [P. violaceus Michx.; Kuh- 
mistera purpurea (Vent.) MacM.]. ViIoLET PRAIRIE CLO- 
VER. 

Common on the plains and mesas, 5100-7000 ft. (Daniels). 
INDIANA to SASKATCHEWAN and ALrsBertA; Mussourr to 
Texas and New Mexico. f 


647. P. pubescens A. Nelson. HAtry VIOLET PRAIRIE CLOVER. 
Plains about Boulder, 5600 ft. (Daniels, 349). 
COLORADO. 


309] FLORA OF BOULDER, COLORADO 161 


260. VICIA L. VeEtcH. 
648. Vicia sparsifolia Nutt. [V. linearis (Nutt.) Greene]. 
NARROW-LEAVED VETCH. 
Mesas and gulches about Boulder, 5600-6000 ft. (Daniels, 
334)- 
Maniropa and Arzerta to IpAHO; KANSAS to CALIFORNIA. 
649. V. dissitifolia (Nutt.) Rydb. [Lathyrus dissitifolius 
Nutt.].  REMOTE-LEAVED VETCH. 
In gulches and cafions in the plains, mesas, and foothills, 
5100-9000 ft. (Daniels, 107). 
NEBRASKA to COLORADO. 


650. V.oregana Nutt. MouNrTAIN VETCH. 

Common throughout in cafions and along the banks of 
streams, 5100-10000 ft. (Daniels, 78). 

MINNESOTA to SASKATCHEWAN and WASHINGTON ; KANSAS 
to CALIFORNIA. 


651. V. producta Rydb. SMALL-FLOWERED MOUNTAIN VETCH. 
Gulches on east slope of Flagstaff Hill, 6000 ft. (Daniels, 
100). 
CoLorapo to UTAH; NEw Mexico to CALIFORNIA. 
261. LATHYRUS L. VEeEtTcHLING. 


652. IL. leucanthus Rydb. WHITE-FLOWERED VETCHLING. 
Common in gulches and cafions, 5700-7000 ft. (Daniels, 79). 
Cotorapo to New Mexico. 


262. APIOS Moench. GrouND NUT. 


653. A. Apios Boulderensis Daniels. Noy. var. BOULDER 
GROUND NUT. 

Differing from the typical eastern plant chiefly in the some- 
what larger, thinner long-acuminate leaflets, which are nine 
as well as seven in number, the somewhat smaller brownish 
deep-violet flowers, which are densely granular under a lens. 
No pods were secured, nor tubers from the rootstock, only 
one vine being discovered, which it did not seem wise to up- 
root for fear of exterminating the plant in the only locality 
known for the ground nut in the Rocky Mountains. 


162 UNIVERSITY OF MISSOURI STUDIES [310 


One vine in a gulch at the foot of Flagstaff Hill, Aug. 18, 
1906, 5900-6000 ft. (Daniels, 799). 

The species ranges from New Brunswick to ONTARIO; 
FLoripA to Louisiana and Eastern Kansas. 


Order 24. GERANIALES. 
Family 62. GERANIACEAE J. St. Hil. Geranium family. 


263. GERANIUM L. CrANESBILL. 


654. G. Richardsonii Fish. & Traut. [G. gracilentum Greene]. 
RICHARDSON’S CRANESBILL. 
Common in springy cafions and damp meadows in the foot- 
hills and mountains, 6500-8600 ft. (Daniels, 447). 
SASKATCHEWAN to British CoLumBpia; NEw Mexico to 
CALIFORNIA. 


655. G. Parryi (Engelm.) Heller [G. Fremontu Parryi 
Engelm.]. Parry’s CRANESBILL. 

Meadows and gulches in the high mesas and foothills, 5700- 
8000 ft. (Daniels, 64). Long’s Peak (Coulter in Wabash Col- 
lege Herb.). 

WyomInG to CoLorapo. 


656. G. Pattersonii Rydb. PATTERSON’S CRANESBILL. 
Eldora to Baltimore (Rydberg). 
COLORADO. 


657. G. Fremontii Torr. in Gray. FREMONT’S CRANESBILL. 

Abundant on the plains, mesas, and mountain meadows, 
5100-8600 ft. (Daniels, 62). Five miles north of Boulder 
(Cockerell). St. Vrain Cafion (Coulter in Wabash College 
Herb.). 

CoLorapo. 
658. G. longipes (Wats.) Goodding [G. Bicknellii Britton]. 

BICKNELL’S CRANESBILL. 

Waste places, acting like an introduced weed, about Boulder, 
and along Boulder Cafion road almost to the Falls in the’ 
vicinity of houses, 5100-7000 ft. (Daniels, 558). 


311] FLORA OF BOULDER, COLORADO 163, 


Nova Scotia to British CoLtumpia; NEw York to CaA.i-— 
FORNIA. 


264. ERODIUM L. Srorx’s-BiL. 
659. E. cicutarium (L.) L’Her. HeEMLock srorK’s-BILL. 
PIN-CLOVER. 
Boulder (Rydberg), where it is very common (Cockerell).. 
Europe, thence to NortH AMERICA. 


Family 63. LINACEAE Dumont. Flax family. 


265. LINUML. Frax. 
660. L. Lewisii Pursh [L. perenne Lewisti (Pursh) Eat. & 
Wright]. Lrwis’s FLAX. 

Abundant on the plains, mesas, and open mountain slopes, 
5100-8600 ft. (Daniels, 132). 

MACKENZIE to YUKON; Texas to CALIFORNIA and Mexico. 
661. L. pratense (Norton) Small. Merapow Frax. 

Abundant in a meadow north of Boulder (Henderson & 
Cockerell). 

Range of the preceding. 


Family 64. OXALIDACEAE Lind]. Wood sorrel family. 


266. XANTHOXALIS Small. Yerrow woop sorreL. 

662. X. stricta (L.) Small [Oralis stricta L.] Upricur vet- 

LOW WOOD SORREL. 

Common throughout except at the higher elevations, espe- 

cially along roads and railroads, and in yards about houses, 

5100-8000 ft. (Daniels, 572). 

Nova Scorra to SourH Daxora; Froripa to Texas and 

CoLorabo: adventitious in Europe. 


Order 25. EKUPHORBIALES. 
Family 65. EUPHORBIACEAE St. Hil. Spurge family. 


267. CROTON L. Croton. 
663. C. Texensis (Klotzsch) Muell. Arg. TrExas cRoron. 
Longmont and Boulder (Rydberg). 
Itttnotis to Wyomine; ALArAma to ArIzonaA and Mexico. 


164 UNIVERSITY OF MISSOURI STUDIES [312 


268. TRAGIA L. NETTLE SPURGE. 


664. T. ramosa Torr. BRANCHING NETTLE SPURGE. 
Dry soil and under rocks, 5100-6000 ft. (Daniels, 86). 
Missouri to CoLtorapo; Texas to Arizona and Mexico. 


269. CHAMAESYCE S. F. Gray. SPurGE. 


665. C. petaloidea (Engelm.) Small [Euphorbia petaloidea 
Engelm.]. WHITE-FLOWERED SPURGE. 

Along the road and railroad in Boulder Cafion, and in creek- 
sands along Boulder creek, 5400-7000 ft. (Daniels, 775). Also 
at Longmont (Rydberg). 

Iowa to Wyominc; TExAs to CoLoRADO. 


666. C. Fendleri (T. & G.) Small [Euphorbia Fendleri T. & 
G.]. FENDLER’S SPURGE. 
Foot of Valmont Butte, near Owen’s lake, 5300-5400 ft. 
(Daniels, 666). 
NEBRASKA to WYOMING; TEXAS to ARIZONA. 


667. C. glyptosperma (Engelm.) Small [Euphorbia glyptosper- 
ma Engelm.]. RIDGE-SEEDED SPURGE. 
Abundant in sandy places and along railroads, 5100-7000 
(Sunset Cafion) ft. (Daniels, 576). 
Ontario to British CoLtumBIA; TExAs to MExIco. 


668. C. rugulosa (Engelm.) Rydb. [Euphorbia serpylhfoha 
rugulosa Engelm.]. RUGULOSE-SEEDED SPURGE. 
Mountains between Sunshine and Ward (Rydberg). 
Wyominec and New Mexico to CALIFORNIA. 


669. C. serpyllifolia (Pers.) Small [Euphorbia serpyllifolia 
Pers.].. THYME-LEAVED SPURGE. 

Very common in waste places, along roadsides and rail- 
roads, and on creek-sands, 5100-8000 ft. (Daniels, 420). Also 
at Lyons (Rydberg). 

MicHicAn to WASHINGTON; TExaAs to CALIFORNIA and 
MEXxtco. 


313] FLORA OF BOULDER, COLORADO 165 


270. TITHYMALUS Adans. 


670. T. marginatus (Pursh) Cockerell [Euphorbia margi- 
nata Pursh; Dichrophyllum marginatum (Pursh) Kl. & 
Garcke]. SNOW-ON-THE-MOUNTAIN. 

Plains and mesas about Boulder, 5100-6000 ft. (Daniels, 

188). My specimens have flowers with five glands. 

Minnesota to Montana; Missourrt to TExas and CoLo- 

RADO. 


670a. T. marginatus tetramerus Cockerell. BouLDER SNOW- 
ON-THE-MOUNTAIN. 

Very common about Boulder; although in some plants the 
central flower of each umbel has five petaloid appendages, 
the others have but three or four. An occasional form—forma 
inornata has the white margin of the leaves obsolete, or 
nearly so, but my material is too scant to enable me to deter- 
mine whether this is characteristic of the variety alone, though 
a few of my specimens have the central flower with five 
appendages, 5100-7000 ft. (Daniels, 957). 


671. T. robustus (Engelm.) Small [Euphorbia montana ro- 
busta Engelm.]. Stout SPURGE. 
High mesas fronting the Flat-irons, 5700-6000 ft. (Daniels, 
187). Also at Longmont (Rydberg). 
Soutu Daxota to Montana; CoLorapo to ARIZONA. 


672. T. philorus Cockerell [Euphorbia montana Engelm.; not 
Raf.]. MouNTAIN SPURGE. 

Frequent on the plains, mesas and foothills, 5500-8000 ft. 
(Daniels, 16). Boulder Cafion (Porter & Coulter). A 
form,—forma dichotoma (Daniels, 367) from the high ridges 
of Green Mt. repeatedly forks into long leafy branches topped 
by a cluster of two or three flowers, with a few others in the 
axils of the upper leaves, the central cyme or umbel not being 
present. 

CoLtorapo to UTAH; TEXAS to ARIZONA. 


673. T. Arkansanus (Engelm. & Gray) Kl. & Garcke [Eu- 
phorbia Arkansana Engelm. & Gray]. ARKANSAS SPURGE. 


166 UNIVERSITY OF MISSOURI STUDIES [314 


Plains about Boulder, especially on the banks of irrigation 
ditches, 5100-6000 ft. (Daniels, 391). 

Missourt to SoutH Dakota and CoLtorapo; ALABAMA to 
ARIZONA. 


271. POINSETTIA Graham. 


674. P. cuphosperma (Engelm.) Small [Euphorbia cuphos- 
perma. Boiss.]. WARTY SPURGE. 
Plains east of Boulder and along railroads, 5100-6000 ft. 
(Daniels, 692). Tenth Street, Boulder (Cockerell). 
SoutH DaxKota to Wyominc; Texas to Arizona and MEx- 
ICO. 


675. P. dentata (Michx.) Small [Euphorbia dentata Michx.]. 
TOOTHED SPURGE. 
On the plains and mesas, frequent, 5100-6000 ft. (Daniels, 
431). 
PENNSYLVANIA to SourH Dakota; Louistana to UTA and 
MExiIco. 


Family 66. CALLITRICHACEAE Lindl. Water starwort 
family. 


272. CALLITRICHE L. Warer sTARwort. 


676. C. palustris L. MarsH WATER STARWORT. 

Aspen bog, Glacier Lake; also in streams and ponds about 
Boulder, 5100-9000 ft. (Daniels, 248). Eldora lake (W. W. 
Robbins). 

Nova Scotia to BritisH CoLumsBiIA; FLoripA to CALIFOR- 
NIA: Europe: Asta: SouTH AMERICA. 


677. C. bifida (L.) Morong [C. autwmnalis L.]. AUTUMNAL 
WATER STARWORT. 

South Boulder creek, Arapahoe Road, common; in com- 
pany with the preceding species, but more abuncant, 5200-5400 
ft. (Daniels, 738). Not in Rydberg’s Flora. 

QueseEc to MaAniTosa and OrEcon ; MIcHIGAN to COLORADO. 


315] FLORA OF BOULDER, COLORADO 167 


Order 26. SAPINDALES. 
Family 67. SPONDIACEAE Kunth. Cashew family. 


278. TOXICODENDRON Miller. Potson ivy. 


678. T. Rydbergii (Small) Greene [Rhus Rydbergwu Small]. 
RyYDBERG’S POISON IVY. 

Common along streams, roadsides, gulches, and cafons for 
some distance in the mountainous region, 5100-7000 (Bear 
Cafion) ft. (Daniels, 42). 

Montana to British CotumMBiA; NEBRASKA to COLORADO. 


274. RHUS L. Sumacu. 


679. R. glabra cismontana (Greene) Cockerell. Nov. comb. 
[R. cismontana Greene]. CISMONTANE SUMACH. 
Common on the mesas and foothills, 5400-8000 ft. (Daniels. 
221). Magnificently scarlet in the fall. 
Daxora and Uraxn to New Mexico and Arizona. 


275. SCHMALTZIA Desvy. FRAGRANT SUMAC. 


680. §. trilobata (Nutt.) Small [Rhus trilobata Nutt.]. 

THREE-LOBED FRAGRANT SUMAC. 

On the dry banks of streams, and on dry hills and ridges, 
5400-8000 ft. (Daniels, 599). 

ASSINIBOIA to WASHINGTON ; MissourrI to TEXAS, CALIFOR- 
ntA, and Mexico. 


Family 68. ACERACEAE J. St. Hil. Maple family 
276. ACER L. Map te. 


681. A. glabrum Torr. SMOOTH MAPLE. 

In gulches and cafions and along streams, 5400-8600 ft. (Dan- 
iels, 96). Also in the mountains between Sunshine and Ward. 
and from Eldora to Baltimore (Rydberg). 

NeEsBRASKA to Wyominc; New Mexico to Urau. 


681a. A. glabrum tripartitum (Nutt.) Pax [A. tripartitum 
Nutt.]. THREE-LEAVED MAPLE. 
Along Boulder Canon road, 6000-7000 ft. (Daniels, 285). 
Range of the type. 


168 “UNIVERSITY OF MISSOURI STUDIES [316 


277. RULAC Adans. Box ELDER. 


682. R. Negundo (L.) Hitche. [Acer Negundo L. ; Negundo 
Negundo (L.) Karst.; Negundo aceroides Moench]. 
COMMON BOX ELDER. 

Common along streams, 5100-7000 ft. (Daniels, 390). Also 

St. Vrain creek below Lyons (Ramaley). 

VERMONT to IDAHO; FLoRIDA to TEXAS. 


683. R. Texanum (Pax) Small [Acer Texanum Pax; Acer 
Negundo Texanum Pax]. TEXAN BOX ELDER. 
Bear and Bluebell Cafions (Ramaley). Foothills near Boul- 
der (Rydberg). 
SASKATCHEWAN to Montana; Missourtr to ARIZONA. 


Order 27. RHAMNALES. 


Family 69. FRANGULACEAE DC. Buckthorn family. 
278. CEANOTHUS L. New Jersey TEA. 


684. C. velutinus Dougl. VARNISHED NEW JERSEY TEA. 
Common on the foothills, 6000-8000 ft. (Daniels, 272). Also 
mountains between Sunshine and Ward (Rydberg); Eldora 
and near foot of Long’s Peak (Ramaley). 
Montana to BritisH CoLUMBIA; COLORADO to CALIFORNIA. 


685. C. mollissimus Torr. [C. ovatus pubescens T. & G. ; C. 
pubescens (T. & G.) Rydb.] Hatry NEw Jersey TEA. 
Common on the mesas and foothills, 5600-8000 ft. (Dan- 
iels, 65). Eldora (Ramaley). 
MicuHican to SoutH Daxota; Missourt to COLORADO. 


686. C. subsericeus Rydb. SmxisH NEw JERSEY TEA. 

Slopes of Green Mt., 6000-7000 ft. (Daniels, 756). Plains 
north of Marshall, and Boulder Cafion (Ramaley). Appears 
like a hybrid between the preceding and the next. 

COLORADO. 


687. C. Fendleri Gray. FENDLER’s NEW JERSEY TEA. 
Common on the mesas, foothills, and mountains, 5600-9000 
ft. (Daniels, 91). Also in the mountains between Sunshine 


317] FLORA OF BOULDER, COLORADO 169 


and Ward (Rydberg). South Boulder Cajon, and hill north 
of Nederland (Ramaley). 
SoutH Daxota to Wyominc; New Mexico to ARIZONA. 


Family 7o. VITACEAE Lindl. Grape family. 
279. VITIS L. Grape. 


688. V. vulpina L. [V. riparia Michx.]. RiIveR-BANK GRAPE. 
Common along the banks of streams in the plains, mesas, 
and lower foothills, 5100-6000 ft. (Daniels, 110). Certain 
forms with strongly lobed leaves simulate /. palmata Vahl., 
and may be a distinct species. 
New Brunswick to NortH Daxota; WEsT VIRGINIA to 
Texas and CoLoRApo. 


689. V. Boulderensis Daniels. Nov. sp. BOULDER GRAPE. 

Plant weakly climbing, tendrils few, but these stout and 
little curled, bark reddish brown, the young twigs densely 
floccose pubescent, leaves small, at most 6 cm. long and wide, 
exclusive of the petiole, ovate to orbicular, the sinus often 
deep or sometimes shallow, broad and nearly obsolete; leaves 
mostly truncate at the top, the apices of the two shallow lat- 
eral lobes but little shorter than the main apex, the leaves, 
however, occasionally sharply acuminate, the margins coarsely 
dentate, slightly lobed, on slender petioles, which are loosely 
floccose as well as the veins both above and beneath, but be- 
coming glabrate in age; clusters small, mostly in simple ra- 
cemes, or with one or two prominent branches, fruit not set on 
the only vine discovered, and all flowers examined staminate. 

Nearest Vitis Arizonica Engelm. 

Gulch at base of Flagstaff Hill, 5800-6000 ft. (Daniels, 
IIQ). 

280. PESEDERA Neck. VIRGINIA CREEPER. 


690. P. vitacea (Hitchc.) Greene [Ampelopsis quinquefolia 
vitacea (Hitche.) Knerr; Parthenocissus  vitacea 
(Hitche.)]. VWINELIKE VIRGINIA CREEPER. 

Common about streams and along fences, in the latter case 
perhaps the plant is P. quinquefolia (L.) Planch, intro- 


170 UNIVERSITY OF MISSOURI STUDIES [318 


duced; my material which came from cafions in the foothills 
is, however, all of P. vitacea (Hitchc.) Greene, 5100-6500 ft. 
Daniels, 584). 

MicHIGAN to WYOMING; Onto to ARIZONA. 


Order 28. MALVALES. 
Family 71. MALVACEAE Neck. Mallow family. 


281. MALVA L. Mattow. 


691. M. rotundifolia L. Rounp-LEAVED MALLOW. CoMMON 
CHEESES. 
Common in waste places, and following the roads and rail- 
roads, into the foothills, 5100-7000 ft. (Daniels, 587). 
Europe, thence to NorrH AMERICA. 


282. SIDALCEA Gray. WESTERN MALLOW. 


692. §. candida Gray. WHITE WESTERN MALLOW. 

Along irrigation ditches and streams and in moist mountain 
meadows, both at Boulder (rare) and at Eldora, 5400-t1000 
ft. (Daniels, 162). 

Wyomine to New Mexico and Urau. 


283. ALTHAEA L. HotityHock. 


693. A. rosea Cav. COMMON HOLLYHOCK. 

Escaped to roadsides and along streams at Boulder. 5300- 
5600 ft. (Daniels, 746). 

TuRKEY, GREECE, and CreTE, thence widely cultivated. 


284. MALVASTRUM Gray. FALsE MALLow. 


694. M. dissectum (Nutt.) Cockerell. ScarLET FALSE MAL- 
LOW. 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 


204). 
SASKATCHEWAN to: OrEGoN; Iowa to Texas and UTAH. 


319] FLORA OF BOULDER, COLORADO 171 


Order 29. HYPERICALES. 


Family 72. HYPERICACEAE Lindl. St. Johnswort family. 


285. HYPERICUM L. Sr. JouNnsworr. 


694%. H. formosum H. B. K. HanpsomMe St. JOHNSworrt. 
Common in mountain swamps (Ramaley). 
Cortorapo and Uran to Mextco and SoUTHERN CALIFORNIA. 


695. H. majus (Gray ) Britton [H. Canadense majus Gray]. 
LARGER CANADIAN St. JOHNSWORT. 

Along streams in the plains, a dwarf form only a decimetre 
high, 5100-5400 ft. (Daniels, 787). Also foothills near Boul- 
der (Rydberg). 

Maine to British CotumsBiaA; NEw JERSEY to COLORADO. 


Family 73. VIOLACEAE DC. Violet family. 


286. VIOLA L. VZIoLET. 


696. V. palustris L. Marsx VIOLET. 
Eldora to Baltimore (Rydberg). 
Laprapor to ALtasKA; NEw York to CoLorapo. 


697. V. pallens (Banks) Brainerd. PALE VIOLET. 

Caribou (Rydberg). Redrock lake, totoo ft. (Ramaley & 
Robbins). 

NEWFOUNDLAND to BritisH CotumBiA; NortH CAROLINA 
to UTAH. 


698. V. cognata Greene. WESTERN BLUE VIOLET. 
Plains and foothills near Boulder (Rydberg). 
SoutH Daxkota to ALBERTA; NEw Mextco to CALIFORNIA. 


699. V. Nuttallii Pursh. NutTati’s VIOLET. 

Plains and foothills near Boulder (Rydberg). Abundant 
at Boulder (Cockerell). 

Manitopa to Montana; Missourt to NEw Mexico and 
ARIZONA. 


172 UNIVERSITY OF MISSOURI STUDIES [320 


700. V. vallicola A. Nels. [V. physalodes Greene]. VALLEY 
VIOLET. 
Spruce forest, Bear Cafion, 7000 ft. (Daniels, 760). The 
plant in fruit only. 
NortH Dakota to Montana; CoLorapo to UTAH. 


7o1. V. biflora L. Two-FLOWERED VIOLET. 
Eldora to Baltimore (Rydberg). 
CoLorapo: Europe: ASTA. 


702. V. Canadensis Rydbergii (Greene) House [V. Rydbergu 
Greene]. RypDBERG’S VIOLET. 

Common in moist cafions and along streams, 5100-8000 ft. 
(Daniels, 126). Long’s Peak (Coulter in Wabash College 
Herb.). 

ALBERTA to IDAHO; SourH Dakota to CoLorapo. 


7o2za. V. Canadensis Neo-Mexicana (Greene) House [V. Neo- 
Mexicana Greene]. New Mexico VIOLET. 

Common in moist soil at Glacier Lake, Eldora, and Arapahoe 
Peak above timberline, 8000-12000 ft. (Daniels, 864). Also 
Eldora to Baltimore (Rydberg). 

Cotorapo to New Mexico. 


703. V. bellidifolia Greene. DaAisy-LEAVED VIOLET. 

Eldora to Baltimore (Rydberg). Redrock lake, 1o100 ft. 
(Ramaley & Robbins). 

WYOMING to COLORADO. 


287. CALCEOLARIA Loefl. NoppiNG VIOLET. 


704. C. linearis (Torr.) Daniels. Nov. comb. [Jonidium 
lineare Torr.]. NARROW-LEAVED NODDING VIOLET. 
Banks of stream at foot of Flagstaff Hill, 5700-6000 ft. 
(Daniels, 108). 
Kansas to CoLtorapo; Texas to ArIzonA and Mexico. 


321] FLORA OF BOULDER, COLORADO 173 


Order 30. OPUNTIALES. 


Family 74. LOASACEAE Reichenb. Loasa family. 


288. NUTTALLIA Raf. WESTERN STAR. 


705. N. multiflora (Nutt.) Greene [Mentzelia multiflora 
(Nutt.) Gray; Touterea multiflora (Nutt.) Rydb.] 
MANY-FLOWERED WESTERN STAR. 

Common on the plains, mesas, and foothills, 5100-8000 ft. 

(Daniels, 77). 

Texas to CoLoraAbo, ArIzonaA and Mexico. 


706. N. speciosa (Osterh.) Greene [Mentzelia speciosa 
Osterh. ; Touterea speciosa Osterh.]. SHOWY WESTERN 
STAR. 

Near Boulder; also between Sunshine and Ward (Ryd- 
berg). 
WyomMinGc to CoLorapo. 


707. N. sinuata (Rydb.) Daniels. Nov. comb. [Touterea sinu- 
ata Rydb.]. WaAvy-LEAVED WESTERN STAR. 
At Boulder the type-locality (Rydberg). 
CoLORADO. 


708. N. nuda (Pursh) Greene [Mentzelia nuda (Pursh) T. & 
G. ; Touterea nuda (Pursh) Eat. & Wr.]. NakeEp WEs- 
TERN STAR. 

At Boulder (Rydberg). 
NEBRASKA to WyomING and CoLorabo. 


709. N. stricta (Osterh.) Greene [Hesperaster  strictus 
Osterh.]. STRICT WESTERN STAR. 

Along the Union Pacific Railroad, the flowers as large as 
in the next, but the outer filaments dilated, 5200-5400 ft. 
(Daniels, 678). Also at Lyons (Rydberg). 

NEBRASKA to WYOMING; TEXAS to COLORADO. 


710. N. decapetala (Pursh) Greene [Bartonia decapetala 
Pursh; Mentzelia decapetala (Pursh) Urb. & Gilg.; M. 


174 UNIVERSITY OF MISSOURI STUDIES [322 


ornata Pursh; Touterea decapetala (Pursh) Rydb.]. TEN- 
PETALLED WESTERN STAR. 

Near Boulder (Rydberg). 

ALBERTA to MONTANA; TEXAS to NEVADA. 


289. ACROLASIA Presl. MeEnrTzeELIA. 


711. Aa. latifolia Rydb. BRoAD-LEAVED MENTZELIA. 

At Boulder the type locality (Daniels). Between Sunshine 
and Ward (Rydberg). 

CoLoRADO. 


712. A. albicaulis (Dougl.) Rydb. [Mentzelia albicaulis 
Dougl.]. WHITE-STEMMED MENTZELIA. 
Common in dry, especially sandy soil, 5100-6500 ft. (Daniels, 
92). 
NEBRASKA to British CotumsBiA; New Mexico and Urau. 
712a. A. albicaulis integrifolia (Wats.) Daniels. Nov. comb. 
[Mentzelia albicaulis integrifolia Wats.; A. integrifolia 
(Wats.) Rydb.; M. dispersa Wats.]. EENTIRE-LEAVED 
MENTZELIA. 
With the preceding, into which it apparently passes, 5100- 
6500 ft. (Daniels, 88). 
MontTAna to British CoLUMBIA; COLORADO to CALIFORNIA. 


cr Family 75. CACTACEAE H.B.K. Cactus family. 


290. CACTUS L. Batt cactus. 
713. C.viviparus Nutt. [Mamullaria vivipara (Nutt.) Haw.]. 
VIVIPAROUS BALL CACTUS. 
Near Long’s Peak (Porter & Coulter). 
Nepraska and Montana to CoLorapo. 


291. ECHINOCEREUS Engelm. Prickiy CEREUS. 


714. E. viridiflorus Engelm. [Cereus viridiflorus Engelm.]. 
GREEN-FLOWERED PRICKLY CEREUS. 
Common on the plains, mesas, and foothills, 5100-8000 ft. 
(Daniels, 818). Not seen in flower. 
Kansas to Wyominc; Texas to New Mexico. 


323] FLORA OF BOULDER, COLORADO 175 


292. OPUNTIA Mill. PrickLy PEAR. 


715. O. mesacantha Raf. [O. humifusus Raf.; O. Rafinesquit 
Engelm.]. WESTERN PRICKLY PEAR. 
Abundant on the plains, mesas and foothills, the commonest 
cactus about Boulder, 5100-7000 ft. (Daniels, 93). 
WIsconsIn and Minnesota to CoLorapo; Kentucky and 
TEXAS to ARIZONA. 


716. O. polyacantha Haw. MANy-SPINED PRICKLY PEAR. 

On the mesas and foothills, apparently ascending higher than 
the preceding species, 5600-8000 ft. (Daniels, 690). 

Nortu Dakota to British COLUMBIA; OKLAHOMA to NEW 
Mexico and OreEcon. 


717. ©. rhodantha K. Sch. ReED-FLOWERED PRICKLY PEAR. 

On the foothills near the juncture of Sunset and Boulder 

Cafions, 6500 ft. (Daniels). 

NEBRASKA to COLORADO. 

718. 0. Greenei Englm., in Coult. Cont. U. S. Nat. Herb. 3. 
431, [O. mesacantha Greenii (Engelm.). Coult.]. GREENE'S 
PRICKLY PEAR. 

Vicinity of Boulder (Andrews). 

COLORADO. 
719. O. fragilis (Nutt.) Haw. BRritTLe PRICKLY PEAR. 

Common on the plains, mesas, and lower foothills, 5100-6500 
ft. (Daniels, 817). Not seen in flower. 

Wisconsin to British Cotumpia; Kansas to New Mex- 
1co and UTAH. 


Onclse gig IMS CMUSILIVAIE Sy 
Family 76. ELAEAGNACEAE Lind]. Silverberry family. 


293. LEPARGYRAEA Raf. Burrao BERRY. 


720. L. Canadensis (L.) Greene [Shepherdia Canadensis (L.) 
Nutt.]. CANADIAN BUFFALO BERRY. 

Valleys in the foothills west of Bear Mountain and South 

Boulder Peaks, 7000 ft. (Daniels, 445). Also from Eldora to 


176 UNIVERSITY OF MISSOURI STUDIES [324 


Baltimore (Rydberg). Near Magnolia; Sugarloaf Mt.; Spen- 
cer Mt. (Ramaley). 
NEWFOUNDLAND to AtAskA; NEw York and MiIcHIGAN to 


CoLoRADO and OREGON. 


Orden gion!) INDRA ATES: 
Family 77. LYTHRACEAE Lindl. Loosestrife family. 
29314. AMMANNIA L. 


72044. A. coccinea Rottb. ScARLET AMMANNIA. 

Marshall lake (W. W. Robbins). 

Micuican to SourH DaxKota; FLoripa to Mexico: SoutTH 
AMERICA. 


294. LYTHRUM L. LooseEstrirFe. 


721. L. alatum Pursh. WINGED LOOSESTRIFE. 

Common in swales in the plains, 5100-5600 ft. (Daniels, 
413). 

MassacuHusetts to SourH Dakota; KENTUCKY to COLO- 
RADO. 


Family 78. EPILOBIACEAE DC. Willowherb family. 
295. CHAMAENERION Adans. FrIREWEED. 


722. C. angustifolium (L.) Scop. [Epilobium angustifolium 
L.]. GREAT WILLOW-HERB. NARROW-LEAVED FIREWEED. 

Common throughout, especially in burns and in aspen thick- 
ets, 5700-10000 (Arapahoe Trail) ft. (Daniels, 211). Also at 
Caribou, and in the mountains between Sunshine and Ward 
(Rydberg). A. form from the foothills has white flowers 
(Daniels, 196). 

GREENLAND to ALASKA; NortTH CAROLINA to CALIFORNIA: 
Europe: Asta. 


722a. ©. angustifolium platyphyllum Daniels. Nov. var. 
Leaves remarkably large and broad, some being 17 cm. long 
and 4 cm. broad, and merely acutish at apex; lateral nerves 


325] FLORA OF BOULDER, COLORADO 177 


evident, confluent in loops; flowers few, 2-3 cm. wide, dark 
purple, subtended by large leaves ; style pubescent at base. 
Cafions on Green Mt., 6500-7000 ft. (Daniels, 268). 


296. EPILOBIUM L. WILLow-HERB. 


723. KE. occidentale (Trelease) Rydb. [E. adenocaulon occt- 
dentale Trelease]. WESTERN WILLOW-HERB. 
In wet ground at Caribou and Boulder (Rydberg). 
Montana to ALBERTA; SouTH Daxkora to CoLoRADO. 


724. KH. adenocaulon Haussk. NorTHERN WILLOW-HERB. 
Common in swales and along streams in the plains, and in 
mountain cafions and aspen bogs, 5100-8600 ft. (Daniels, 243). 
New Brunswick to WASHINGTON; PENNSYLVANIA to CAL- 
IFORNIA. 


725. H. rubescens Rydb. REDDISH WILLOW-HERB. 

In aspen bogs at Glacier Lake and Eldora, 8600-10000 ft. 
(Daniels, 707). 

CoLoRADO. 


725%. E. alpinum L. ALPINE WILLOW-HERB. 
Redrock lake, 10100 ft. (Ramaley & Robbins). 
GREENLAND and ALaskKa to NEw HAMPSHIRE, COLORADO, 
and CALIFORNIA. 


726. E. anagallidifolium Lam. PrImMPERNEL WILLOW-HERB. 
Mountain slopes above Bloomerville near snow, and above 
timberline on Arapahoe Peak in wet tundras, 10000-12000 ft. 
(Daniels, 325). Also at Caribou (Rydberg). 
Laprapor and Arcric America to ALASKA; COLORADO to 
NevapA: Europe: Asta. 


727. H. paniculatum Nutt. PANICcLED WILLOW-HERB. 
Common, especially on creek-sands and along roads and 
railroads, 5100-8600 ft. (Daniels, 440). 
Lake Huron to ALBERTA and British CoLUMBIA ; COLORADO 
and ArIzoNA to CALIFORNIA. 


178 UNIVERSITY OF MISSOURI STUDIES [326 


728. E. adenocladon (Haussk.) Rydb. [E. pamiculatum aden- 
ocladon Haussk.]. GLANDULAR PANICLED WILLOW-HERB. 
At Boulder (Rydberg). 
SoutH DaKota to WyomInc; CoLorapo to UTAH. 


297. GAYOPHYTUM Juss. GayoPHYTE. 


729. G.intermedium Rydb. INTERMEDIATE GAYOPHYTE. 

Very common throughout except in the high alpine region, 
5100-8600 (Eldora) ft. (Daniels, 159). Also at Caribou, 
Ward, and between Sunshine and Ward (Rydberg). 

MontTANA to WASHINGTON ; CoLORADO to CALIFORNIA. 


298. OENOTHERA L. EVENING PRIMROSE. 


730. 0. strigosa (Rydb.) Blankinship [Onagra strigosa Rydb. ; 
Oenothera biennis strigosa Rydb.]._ Hatry EVENING PRIM- 
ROSE. 

Common on the plains and foothills, 5100-8000 ft. (Daniels, 

137). 

MINNESOTA to WASHINGTON; Missourr to NEw Mexico 
and UTaH. 


731. 0. Hookeri T. & G. [O. biennis hirsutissima Gray ; Ona- 
gra Hookeri (T. & G.) Small]. Hooxer’s EVENING PRIM- 
ROSE. 

Rare on the mesas and foothills, the flowers turning pink 

in withering, 5700-9000 ft. (Daniels, 562). 

IpaHo to CALIForNIA; NEw Mexico to Mexico. 


299. ANOGRA Spach. WHITE EVENING PRIMROSE. 


732. A. albicaulis (Pursh) Britton [Oenothera albicaulis 
Pursh; O. pinnatifida Nutt.]. WHITE-STEMMED WHITE 
EVENING PRIMROSE. 

Common on the plains and mesas, and along the shore-sands 

of Boulder creek, 5100-7000 ft. (Daniels, 141). 

NortH Daxora to Montana; Texas to New Mexico and 

SONORA. 


327] FLORA OF BOULDER, COLORADO 179 


733. A rhizomata A. Nels. RHIZOMATOUS WHITE EVENING 
PRIMROSE. 

Local on the plains, but abundant where found, since it 
spreads fast with its slender rootstocks, 5600-5400 ft. (Daniels, 
393)- 

WYOMING to COLORADO. 

734. A. Nuttallii (Sweet) A. Nels. [Oenothera Nuttallu 
Lindl.]. NutTTALL’s WHITE EVENING PRIMROSE. 
At Boulder (Rydberg). 
Minnesota to IpaHo and CoLorRApo. 


735. A. coronopifolia (T. & G.) Britton [Oenothera coronopi- 
folia T. & G.]. CUT-LEAVED WHITE EVENING PRIMROSE. 
At Boulder (Rydberg). Very common from Boulder and 
Marshall up to about 8000 ft. in dry soil (Ramaley). 
SoutH DaxKota to Wyominc; Kansas to NEw Mexico. 


300. PACHYLOPHUS Spach. ScaposE EVENING PRIM- 
ROSE. 
736. P. montanus (Nutt.) A. Nels. [Oenothera montana 
Nutt.]. MouNnTaIN SCAPOSE EVENING PRIMROSE. 
In eroded soil on Green Mountain and along Boulder Cafion 
road, 6000-8000 ft. (Daniels, 536). 
ASSINIBOIA to IDAHO; CoLoRADO to NEVADA. 


737. P. macroglottis Rydb. LARGE-THROATED SCAPOSE EVEN- 
ING PRIMROSE. 
At Boulder (Rydberg). 
COLORADO. 
738. P. hirsutus Rydb. Harry SCAPOSE EVENING PRIMROSE. 
Mountains between Sunshine and Ward (Rydberg). 
Wvyominc to New Mexico and UTAH. 


301. LAVAUXIA Spach. DeELAvaux’ EVENING PRIM- 
ROSE. 


739. lL. brachycarpa (Gray) Britton [Oenothera brachycarpa 
Gray]. SHoRT-PODDED DELAVAUX’ EVENING PRIMROSE. 
At Boulder (Rydberg). 
Kansas to Montana; Texas to NEw Mexico. 


180 UNIVERSITY OF MISSOURI STUDIES [328 
302. MERIOLIX Raf. 


740. M. serrulata (Nutt.) Walp. [Oenothera serrulata Nutt.]. 
TOOTH-LEAVED EVENING PRIMROSE. 
Common on the plains and foothills, 5100-8000 ft. (Daniels, 


38). 
ManirTopa to SASKATCHEWAN; TEXAS to ARIZONA. 


303. GAURAL. Gaura.* 


741. G. parviflora Dougl. SMALL-FLOWERED GAURA. 
Frequent on the plains, mesas, and lower foothills, 5100-7000 
ft. (Daniels, 263). 
SoutH Dakota to WasHINGTON; LouUISIANA to ARIZONA 
and Sonora. 


742. G. coccinea Pursh. SCARLET GAURA. 
_ Abundant on the plains and mesas, and in meadows on 
lower hillslopes, 5100-6300 ft. (Daniels, 12). 

Manrropa to Montana; Texas to ARIZONA and MEXxIco. 


743. G. glabra Lehm. SMooTH GAURA. 
At Boulder (Rydberg). 
South Daxora to Montana; CoLoraApo to ARIZONA. 


304, CIRCAEA LL. ENCHANTER’S NIGHTSHADE. 


744. C. alpina L. ALPINE ENCHANTER’S NIGHTSHADE. 
Locally abundant along streams in shady canons, 5700-8000 
ft. (Daniels, 279). 
LABRADOR to ALASKA; GEORGIA to COLORADO: Europe: ASIA. 


*«Gaura and allied evening flowering plants have a special bee-visi- 
or, Halictus galpinsiae Cockerell, which has been taken by my wife at 
Boulder. It flies in the evening, at 7:30 p. m., when the other bees 
have retired.’’—Prof. T. D. A, Cockerell, in a letter to the author, Jan. 
23, 1908. 


329] FLORA OF BOULDER, COLORADO 181 


Family 79. GUNNERACEAE End]. Gunnera family. 
305. MYRIOPHYLLUM L. WatTeER MILFOIL. 


745. M. spicatum L. SPIKED WATER MILFOIL. 

Common in Boulder and Owen’s lakes, 5200 ft. (Daniels, 
661). 

NEWFOUNDLAND to SASKATCHEWAN and IDAHO; FLORIDA to: 
CALIFORNIA: EurROoPE: ASIA. 


Order 33. UMBELLALES. 


Family 80. HEDERACEAE L. Ivy family. 
306. ARALIA L. WILD SARSAPARILLA. 


746. A. nudicaulis L. ComMoN WILD SARSAPARILLA. 

Very common in shady cafions, 5700-9000 ft. (Daniels, 341). 
South Boulder Canon (Ramaley). 

NEWFOUNDLAND to Maniropa and IpaHo; NorTtH CAROLINA 
to Missourt and CoLorapo. 


Family 81. CORNACEAE Link. Dogwood family. 
307. SVIDA Opiz. Docwoon. 


747. §. stolonifera (Michx.) Rydb. JRepD-OIsER DoG- 
WOOD. 
Common along streams throughout, 5100-10000 ft. (Dan- 
iels, 289). Sugarloaf Mt.; South Boulder Cafion (Ramaley). 
Maniropa to MAcKENZIE and ALtasKkA; NEBRASKA to CoLo- 
RADO and ARIZONA. 


Family 82. AMMIACEAE Pres]. Parsley family. 
308. SANICULA L. SAnIcLe. 


748. §. Marilandica L. MaryLAND SANICLE. BLACK SNAKE- 
ROOT. 
Common in springy gulches and cafions, 5100-8000 ft. (Dan- 
iels, 71). 
NEWFOUNDLAND to WASHINGTON; GEORGIA to COLORADO. 


182 UNIVERSITY OF MISSOURI STUDIES [330 


309. OSMORRHIZA Raf. SWEET CICELY. 
749. 0. longistylis (Torr.) DC. [Washingtonia longistyls 
(Torr.) Britton]. SMOOTH SWEET CICELY. 
Gulches in the mesas at the base of the foothills, rare, 5700- 
6300 ft. (Daniels, 118). 
Nova Scotia to ASSINIBOIA ; GEORGIA to COLORADO. 


750. O. obtusa (C. & R.) Fernald [Washingtonia obtusa C. 
& R.]. OBTUSE-FRUITED SWEET CICELY. 
Common in cafions in the mesas, foothills and mountains, 
5700-11000 (Arapahoe Trail) ft. (Daniels, 128). 
ALBERTA to New Mexico and CALIFORNIA. 


310. CARUM L. Caraway. 
751. C. Carvi L. Common CARAWAY. 
Escaped in the mountains between Sunshine and Ward 
(Rydberg). 
Europe and the MEDITERRANEAN region to THIBET and Sr- 
BERIA, thence to NortH AMERICA. 


311. CICUTA L. Water HEMLOCK. COWBANE. 
752. C. occidentalis Greene. WESTERN COWBANE. WESTERN 
MUSQUASH ROOT. 
Swales in the plains, 5100-5600 ft. (Daniels, 412). 
Norru Daxorta to IpAHO; NEw Mexico to CALIFORNIA. 
312. HARBOURIA C. & R. Harpour’s HEMLOCK. 
753. H. trachypleura (Gray) C. & R. [Cicuta trachypleura 
(Gray) S. Wats.]. RouGH-RIBpBED HARBOUR’S HEMLOCK. 
At Boulder, and in the mountains between Sunshine and 
Ward (Rydberg). In Boulder Cafion (Porter & Coulter). St. 
Vrain Cafion (Coulter in Wabash College Herb.). Common 
in the foothills. (Daniels, 157, in part.) 
Wyominc to New Mexico. 


313. ALETES C.& R. Mounrtatn caraway. 
754. A. obovata Rydb. OBovaATE-LEAVED MOUNTAIN CARAWAY. 
Very common on naked mountain slopes, 6000-8100 (sum- 


mit of Green Mt.) ft. (Daniels, 145). 
COLORADO. 


331] FLORA OF BOULDER, COLORADO 183 


7os. A. acaulis (Torr.) C. & R. [Deweya acaulis (Torr.) ; 
Carum Hallii S. Wats.]. STEMLESS MOUNTAIN CARAWAY. 
High mesa at entrance to South Boulder Cafion, 5900-6000 
ft. (Daniels, 422). Also in gulch south of Boulder (perhaps 
the same locality as the above), and in the mountains between 
Sunshine and Ward (Rydberg). 
Cotorapbo to New Mexico. 


314. BERULA Hoffm. 


756. B. erecta (Huds.) Coville [B. angustifolia (L.) Mert. 
& Koch]. CUT-LEAVED WATER PARSNIP. 
In a springy puddle in the eastern part of Boulder, 5300- 
5400 ft. (Daniels, 410). 
Ontario to British CoLumBIA; MASSACHUSETTS to TEXAS 
and CALIFORNIA: Europe: ASIA. 


315. LIGUSTICUM L. Lovace. 


757. lL. Porteri C. & R. Porrer’s LOVAGE. 

Common in shady cafions and gulches, 5700-10000 ft. (Dan- 
iels, 83). Also in the mountains between Sunshine and Ward 
(Rydberg). A plant was gathered in a cafion on the north 
slope of Green Mt., with somewhat differently shaped leaf- 
segments; it may possibly be L. affine A. Nels. 

Wvominc to NEw Mexico and Arizona. 


316. MUSINEON Raf. 


758. M. divaricatum (Pursh) C. & R. [Seseli divaricatum 
Pursh; Adorium divaricatum (Pursh) Rydb.]. Leary 
MUSINEON. 

At Boulder (Rydberg). 
ASSINIBOIA to ALBERTA; SoUTH DAKOTA to COLORADO. 


317. OXYPOLIS Raf. WATER DROPWORT. 


759. 0. Fendleri (Gray) Heller [Archemora Fendleri Gray]. 
FENDLER’S WATER DROPWORT. 
In bogs at Eldora and at Bloomerville, 8600-10000 ft. (Dan- 
iels, 310). Also between Sunshine and Ward (Rydberg). 
Wyominc to New Mexico. 


184 UNIVERSITY OF MISSOURI STUDIES [332 


318. CONIOSELINUM Hoffm. HeEmMtLock PARSLEY. 


760. C. scopulorum (Gray) C. & R. [Ligusticum scopulorum 
Gray]. Rocky MouNTAIN HELMLOCK PARSLEY. 
In aspen bogs at Eldora, 8600-go00 ft. (Daniels, 721). Red- 
rock lake, 1o100 ft. (Ramaley & Robbins). 
CoLorapo to New Mexico and Arizona. 


319. HERACLEUM L. Cow parsnip. 


761. H. lanatum Michx. Wootty cow PARSNIP. 

Common in gulches and cafions, 5100-8600 ft. (Daniels, 75). 
Also between Sunshine and Ward (Rydberg). 

Laprapor and NEwFOUNDLAND to ALASKA; NortH Caro- 
LINA to CALIFORNIA. 


320. ANGELICA L. AwNGELICca. 


762. A. Grayi C. & R. GRAy’s ANGELICA. 

In wet tundras, Arapahoe Peak, above timberline, 11500- 
13000 ft. (Daniels, 891). 

WyomMInc to CoLorapo. 
763. A.ampla A. Nels. LARGE ANGELICA. 

Bear Cafion, 6000-7000 ft. (Daniels, 763). 

WyYoMING to CoLorapo. 


321. PASTINACA L. Parsnip. 


764. P. sativa L. ComMon PARSNIP. 

Very common in waste places about Boulder, and along 
Boulder Cafion road well towards Falls, 5100-7000 ft. (Dan- 
iels, 560). 

Europe, thence to NortH AMERICA. 


322. COGSWELLIA Sprengel. Parstey. 
765. C. orientalis (C.& R.) Jones [Lomatium orientale C. & 
R.; Peucedanum nudicaule Nutt. in part]. 
Common in the foothills, 4000-8000 ft. (Daniels, 157 in 
part). 
SoutH Daxota, Montana and IpAHO to Kansas, NEw 
Mexico and ARIZONA. 


333] FLORA OF BOULDER, COLORADO 185 


323. PSEUDOCYMOPTERUS C.& R. Fase cymop- 
TERUS. 
766. P. sylvaticus A. Nels. SyLVAN FALSE CYMOPTERUS. 
Mountains between Sunshine and Ward (Rydberg). 
WYoMING to CoLorapo. 


767. P. multifidus Rydb. [P. montanus multifidus Rydb.]. 
MULTIFID-LEAVED FALSE CYMOPTERUS. 
Arapahoe Peak, above timberline, 11500-12000 ft. (Daniels, 


899). 


COLORADO. 
Series 2. SYMPETALAE. 
OrderaZe) EE RIGAIES: 


Family 83. MONOTROPACEAE Lindl. Indian pipe family. 


324. PTEROSPORA Nutt. PINrE props. 


768. P. Andromedea Nutt. GIANT BIRD’S-NEST. 

Rare under pines on the north slopes of Green Mt., 6000- 
8100 ft. (Daniels, 530). Also on North and South Boulder 
Peaks (Rydberg). 

Nova Scotia to ALASKA; GEORGIA to CALIFORNIA. 


Family 84. PYROLACEAE Agardh. Wintergreen family. 


825. CHIMAPHILA Pursh. Prpsissewa. 


769. C. umbellata (L.) Nutt. UMBELLATE PIPSISSEWA. 
Common in shady cafions on Green Mt., 6500-8100 ft. (Dan- 
iels, 751). Also on north and south Boulder Peaks (Rydberg). 
Nova Scoria to ALASKA; GEORGIA to CALIFORNIA and MEx- 
1co: Europe: Asta. 


326. MONESES Salisb. SINGLE DELIGHT. 
770. M. uniflora (L.) Gray [Pyrola uniflora L.]. ONE- 
FLOWERED WINTERGREEN. 
At Caribou (Rydberg). Redrock lake, 10100 ft. (Ramaley 
& Robbins). 
LABRADOR to ALASKA; PENNSYLVANIA to COLORADO and ORE- 
GON: Europe: ASIA. 


186 UNIVERSITY OF MISSOURI STUDIES [334 


327. PYROLA L. WINTERGREEN. SHINLEAF. 


771. P. secunda L. ONE-SIDED WINTERGREEN, Or SHINLEAF. 
Shady banks of cafions on the north slopes of Green Mt., 
mainly under Douglas spruce, 6500-8100 ft. (Daniels, 531). 
Also in the mountains between Sunshine and Ward (Rydberg). 
Lasprapor to ALASKA; District oF COLUMBIA to CALIFOR- 
NIA: Europe: ASIA. 


772. P. uliginosa Torr. [P. rotundifolia uliginosa Gray]. Boc 
WINTERGREEN, Or SHINLEAF. 
With the preceding, 6500-8100 ft. (Daniels, 534). Also on 
South Boulder Peak (Rydberg). 
Nova Scotia to British Cotumpia; NEw York to CoLo- 
RADO and CALIFORNIA: JAPAN. 


Family 85. ERICACEAE DC. Heath family. 


328. ARCTOSTAPHYLOS Adans. BEARBERRY. 


773. A. Uva-ursi (L.) Spreng. [Uva-ursi Uva-ursi (L.) 
Cockerell. nov. comb.; U. procumbens Moench]. Rep 
BEARBERRY. 

Common on dry slopes, 5800-8600 ft. (Daniels, 453). Also 
at Eldora and on the mountains between Sunshine and Ward 
(Rydberg). South Boulder Cafion; Sugarloaf Mt.; Pine 
Glade School; Copeland’s (Ramaley). Uva-ursi (Tourn.) 
Miller, 1754, has priority over Arctostaphylos Adans. 1763, 
but should such a hyphenated word stand as a generic name? 

Laprapor and Arctic AMeErtca to ALASKA; NEw JERSEY to 
CoLorapo and OrEGon: Europe: Asia. 


329. GAULTHERIA L. WINTERGREEN. 


774. G. humifusa (Graham) Rydb. [G. Myrsinitis Hook.]. 
CREEPING WINTERGREEN. 
Fourth of July Mine, 10000-11000 ft. (Andrews). 
Montana to British CoLumBiIA; CoLoRADO to CALIFORNIA. 
330. KALMIA L. Lamepxitt. 


775. XK. microphylla (Hook.) Heller [K. glauca microphylla 
Hook.]. SMALL-LEAVED SWAMP LAUREL. 


335] FLORA OF BOULDER, COLORADO 187 


Above timberline, Arapahoe Peak, 11500-12000 ft. (Dan- 


iels, 900). Also at Caribou, and on Long’s Peak (Rydberg). 
Camp Albion; Fourth of July Mine (Ramaley). 
ALBERTA to ALASKA; COLORADO to CALIFORNIA. 


Family 86. VACCINIACEAE Lindl. Blueberry family. 


331. VACCINIUM L. Biurserry. BILBERRY. 
776. V. caespitosum Michx. Dwarr BILBERRY. 
From Eldora to Baltimore (Rydberg). 
Laprapor to ALASKA; New Brunswick and New Hamp- 
SHIRE to CoLoRADO and WASHINGTON. 


777. W. scoparium Leiberg. [V. Myrtillus mucrophyllum 
Hoox; V. erythrococcum Rydb.]. RED-BERRIED BILBERRY\ 
Mountain slopes above Bloomerville near snow and on 
Arapahoe Peak above timberline, gooo-12000 ft. (Daniels, 331). 
ALBERTA to BRITISH COLUMBIA; COLORADO to CALIFORNIA. 


778. V. oreophilum Rydb. Myrtle BLUEBERRY. 

Common in coniferous forests at 10000 ft. (Ramaley), where 
it has been collected at Bald Mountain near Ward; Redrock 
lake above Ward; Fourth of July Mine; and at the foot of 
Long’s Peak. 

ALBERTA and British CotumBia to NEw MExico. 


Order 35. PRIMULALES. 
Family 87. PRIMULACEAE Vent. Primrose family. 
332. PRIMULA L. Primrose. 


779. P. angustifolia Torr. NARROW-LEAVED PRIMROSE. 
Arapahoe Peak above timberline in dry tundras near snow, 
12000-13500 ft. (Daniels, 886). 
COLORADO. 


780. P. Parryi Gray. PARRY’S PRIMROSE. 

Along cold streams crossing the Arapahoe Trail, and in wet 
tundras, Arapahoe Peak, above timberline, 9000-13000 ft. 
(Daniels, 921). Also at Caribou, and in the mountains south 
of Ward (Rydberg). 

Monvrana to Cotorapo and ARIZONA. 


188 UNIVERSITY OF MISSOURI STUDIES [336 


333. ANDROSACE L. Rock PRIMROSE. 


781. <A. puberulenta Rydb. PUBERULENT ROCK PRIMROSE. 
Mountain slopes above Bloomerville near snow, 9200 ft. 
(Daniels, 338). Plains near Boulder (Rydberg). 
Maniropa, MACKENZIE and ALBerta to New Mexico. 


782. A. pinetorum Greene. PINE FOREST ROCK PRIMROSE. 
Common under rocks in the foothills and mesas, 5700-8100 
ft. (Daniels, 276). Probably Porter and Coulter’s A. septen- 
trionalis L. from Long’s Peak is this plant, as is Coulter’s 
plant from Long’s Peak in Wabash College Herb. 
MACKENZIE to YUKON ; COLORADO to ARIZONA. 


783. A. subumbellata (A. Nelson) Small. SuBUMBELLATE 
ROCK PRIMROSE. 
Above timberline, Arapahoe Peak, a diminutive alpine form, 
11500-12000 ft. (Daniels, 876). 
Montana to Cotorapo and ARIZONA. 


784. A. diffusa Small. DrIrrUSE ROCK PRIMROSE. 

At Glacier lake, 8500-9000 ft. (Daniels, 714). Also Massif 
de l Arapahoe (Rydberg). Redrock lake, 1o100 ft. (Ramaley 
& Robbins). 

MackENziE to British Cotumpia; New Mexico to Art: 
ZONA. 


785. A. subulifera (Gray) Rydb. [A. septentrionalis subuli- 
fera Gray]. SUBULIFEROUS ROCK PRIMROSE. 
Near Boulder (Coulter). 
Montana to CoLorapo. 


334. STEIRONEMA Raf. LooseEstriFe. 


786. S. ciliatum (L.) Raf. [Lysimachia ciliata L.]. FRINGED 
LOOSESTRIFE. 
In springy grounds and moist cafions, 5100-8000 ft. (Dan- 
1elswi73ie 
Nova Scorra to BririsH CoLumBIA; GEORGIA to ARIZONA: 
naturalized in EuROPE. 


337] FLORA OF BOULDER, COLORADO 189 


335. CENTUNCULUS L. CuHarrweep. 


787. C. minimus L. Least CHAFFWEED. 

Under pines, mesas south of Chautauqua grounds, Boulder, 
5800 ft. (Daniels, 180). Not in Rydberg’s Flora. 

Itt1no1s and Minnesota to BritisH CoLUMBIA; FLORIDA 
to Texas and Mexico: Europe: SourH AMERICA. 


336. DODECATHEON L. SHoorTING sTAr. 


788. D. philoscia A. Nels. SHADE-LOVING SHOOTING STAR. 
In the spray of Boulder Falls and along other deep canons, 
6500-8600 ft. (Daniels, 800). 
WyYoMING to CoLoRADOo. 


789. JD. radicatum Greene. MANY-FLOWERED SHOOTING STAR. 
Common in deep cafions, 6200-8000 ft. (Daniels, 274). 
Also from Eldora to Baltimore (Rydberg). Boulder Cafion 
(Coulter in Wabash College Herb.). 
SoutH Dakota to Wyominc; Kansas to New Mexico. 


790. D. sinuatum Rydb. [D. radicatum sinuatum Rydb.]. 
WAVY-LEAVED SHOOTING STAR. 

Occasional in cafions with the preceding, of which it seems 
to be merely a wavy-leaved form, 6200-8000 ft. (Daniels, 
854). 

COLORADO. 

790%. D. pauciflorum (Durand) Greene. FEW-FLOWERED 
SHOOTING STAR. 
Redrock lake, 10100 ft. (Ramaley & Robbins). 
MAcKENZzIE and SASKATCHEWAN to COLORADO. 


337. DROSACE A. Nels. 


791. OD. carinata (Torr.) A. Nels. [Douglasia Johnstoni Aven 
Nelson]. Jounston’s Douctasta. 
Long’s Peak (Aven Nelson), the type locality of Douglasia 
Johnstoni. 
CoLoRADOo. 


190 UNIVERSITY OF MISSOURI STUDIES [338 


Order 36. GENTIANALES, 


Family 88. GENTIANACEAE Dumont. Gentian family. 


338. EUSTOMA Salisb. 


792. KH. Andrewsii A. Nelson. ANDREWs’s EuSTOMA. 
Near Boulder, the type locality (Andrews). 
COLORADO. 


339. ANTHOPOGON Heck. FRINGED GENTIAN. 


793. A. elegans (A. Nels.) Rydb. [Gentiana elegans A. Nels.]. 
SHOWY FRINGED GENTIAN. 
Long’s Peak (Rydberg). Redrock lake, 10100 ft. (Ramaley 
& Robbins). 
MAcKENZIE to CoLorapo and ARIZONA. 


794. A. barbellatus (Engelm.) Rydb. [Gentiana barbellata 
Engelm.; G. Moseleyi A. Nels.]. BEARDED FRINGED GEN- 
TIAN. 

Aspen bogs at Eldora and along streams crossing Arapahoe 
Trail, 8600-11000 ft. (Daniels, 863). Redrock lake, 10100 ft. 
(Ramaley and Robbins). The type of Nelson’s G. Moseleyi is 
from Boulder Co. 

CoLoRADOo, 


340. AMARELLA Gileb. GENTIAN. 


795. A. monantha (A. Nels.) Rydb. [Gentiana monantha 
A. Nels.]. ONE-FLOWERED GENTIAN. 

Above timberline in wet tundras, Arapahoe Peak, 11500- 
12000 ft. (Daniels, 897). Redrock lake, totoo ft. (Ramaley 
& Robbins). 

CoLoRabo. 


796. Aa. strictiflora (Rydb.) Greene [Gentiana amarella stric- 
ta S. Wats.; G. strictiflora Rydb.] StTRIcT-FLOWERED GEN- 
TIAN. 

Mountains between Sunshine and Ward (Rydberg). 
SASKATCHEWAN to ALASKA; COLORADO to CALIFORNIA. 


339] FLORA OF BOULDER, COLORADO IgI 


797. A. scopulorum Greene [Gentianella Clementis Rydb.]. 

CRAG GENTIAN. 

Common in deep cafions and aspen bogs, 6500 (Green Mt.)- 
gooo ft. (Daniels, 608). Redrock lake, 10100 ft. (Ramaley & 
Robbins ). 

Soutu Daxota to Montana; CoLorapo to ARIZONA. 


798. A. plebeja (Cham.) Greene [Gentiana plebeja 
Cham.; G. amarella acuta Gray, not Hook.]. Low GEN- 
TIAN. 

Ward (Cockerell). 
MackeENziE and ALASKA to CoLorapo and CALIFORNIA. (?) 


798a. A. plebeja Holmii (Wettst.) Rydb. [Gentiana plebeja 
Holmiu Wettst.; Amarella nana Engelm.]. Hoim’s GEN- 


TIAN. 

Above timberline, Arapahoe Peak, 11500-12000 ft. (Dan- 
iels, 944). Also at Caribou (Rydberg). 

Range of the type. 


341. CHONDROPHYLLA A. Nels. 


799. C. Fremontii (Torr.) A. Nels. [Gentiana Fremontu 
Torr.]. FREMONT’S GENTIAN. 
Long’s Peak (Porter & Coulter; also Coulter in Wabash 
College Herb.). 
Wyomine to CoLorapbo. 


799%. ©. Americana (Engelm.) A. Nels. [Gentiana pros- 
trata Americana Engelm.]. AMERICAN GENTIAN. 
Redrock lake, tot0o ft. (Ramaley & Robbins). 
ALBERTA and ALASKA to COLORADO. 


342. DASYSTEPHANA Adans. CLOSED GENTIAN. 


800. D. Romanzovii (Ledeb.) Rydb. [Gentiana Romanzovu 
Ledeb.]. ROMANZOF’S CLOSED GENTIAN. 
Above timberline, Arapahoe Peak, 11500-13000 ft. (Daniels, 
892). Redrock lake, 10100 ft. (Ramaley & Robbins). 
Montana to ALASKA; CoLorapo to UTAH: ASIA. 


1g2 UNIVERSITY OF MISSOURI STUDIES [340 


8o1. D. Parryi (Engelm.) Rydb. [Gentiana Parryi Engelm.]. 
PARRY’S CLOSED GENTIAN. 

Bogs at Eldora, thence along Arapahoe Trail to Arapahoe 
Peak, 8600-12000 ft. (Daniels, 847). Redrock lake, toroo ft. 
(Ramaley & Robbins). Also mountains between Sunshine 
and Ward (Rydberg). 

Wyominc to Cotorapo and UTAH. 

802. D. Bigelovii (Gray) Rydb. [Gentiana Bigelovii Gray]. 
BIGELOW’S CLOSED GENTIAN. 

Dry mesas near entrance to Bear Cafion, 5800-6000 ft. (Dan- 
iels, 766). 

CoLorapo to New Mexico and Arizona. 

343. PLEUROGYNE Eschsch. 


803. P. fontana A. Nels. [P. rotata tenuifolia Griseb.]. Foun- 
TAIN PLEUROGYNE. 
At Caribou (Rydberg). 
Hupson Bay and ALasKa to CoLorapo. 


344. SWERTIA L. 


804. S. palustris A. Nels. MarsH SWERTIA. 

Along alpine streams, Arapahoe Trail, and in wet tundras, 
Arapahoe Peak, above timberline, gooo-12000 ft. (Daniels, 
893). Redrock lake, 10100 ft. (Ramaley & Robbins). 

Montana to Cotorapo and Uran. 

804%. §. congesta A. Nels. DENSE-FLOWERED SWERTIA. 

Long’s Peak (Cooper). 

Montana to Cotorapo and Uran. 

345. FRASERA Walt. CoLumso. 
805. F. stenosepala Rydb. NARROW-SEPALLED COLUMBO. 

On the mesas and foothills, common, 5700-8000 ft. (Dan- 
iels, 168). Also at Ward (Rydberg). 

Wyominc to New Mexico. 

806. F. speciosa Dougl. Suowy coLuMBo. 

Redrock lake, ro100 ft. (Ramaley & Robbins). 

SoutH Dakota to Montana and OrEGon; CoLorapo to 
CALIFORNIA. 


341] FLORA OF BOULDER, COLORADO 193 


807. F. angustifolia Rydb. NARROW-LEAVED COLUMBO. 
Mountains between Sunshine and Ward (Rydberg). 
Montana to CoLorabo. 


Order 37. ASCLEPIADALES. 
Family 89. APOCYNACEAE Lindl. Dogbane Family. 
346. APOCYNUM L. Doapane. 


808. A. androsaemifolium L. SPREADING DOGBANE. 

South Boulder Cafion, and north of Nederland, 6500-go00 
ft. (Ramaley). 

ANTICOSTI to BritisH CoLUMBIA; GEORGIA to ARIZONA. 


809. A. scopulorum Greene. CRAG DOGBANE. 

Common on the foothills, 6000-go00 ft. (Daniels, 231). Su- 
garloaf (Ramaley). 

SASKATCHEWAN and YUKON to COLORADO. 


810. A. lividum Greene. PALE DOGBANE. 
Eldora (Ramaley). 
COLORADO. 


811. A. ambigens Greene. SMOOTH DOGBANE. 

In Boulder Cafion, Bear Cafion, and other valleys in the 
foothills, 5600-8000 it. (Daniels, 515). 

MonTANA to WASHINGTON ; COLORADO to CALIFORNIA. 


812. A. cannabinum L. INDIAN HEMP. 

Along railroads and stream banks, and ascending along the 
cafions and gulches for some distance into the foothills, 5100- 
6500 ft. (Daniels, 348). 

ANTICOSTI to WASHINGTON; FLORIDA to Lower CALIFoR- 
NIA. 


813. A. hypericifolium Ait. CLASPING-LEAVED DOGBANE.. ST. 
JoHNSwort INDIAN HEMP. 
Along the railroad between Boulder and Marshall, and along 
roads in the plains, 5100-6000 ft. (Daniels, 409). 
Onrario to British CotumsB1A; Onto to NEw Mexico. 


194 UNIVERSITY OF MISSOURI STUDIES [342 


Family 90. ASCLEPIADACEAE. Milkweed family. 


347. ACERATES Ell. GreEEN MILKWEED. 


814. A. viridiflora (Raf.) Eaton. CoMMON GREEN MILKWEED. 
Occasional in the plains about Boulder, 5100-6000 ft. (Dan- 
iels, 405). 
MASSACHUSETTS to MonTANA; FLortpa to NEw Mexico. 
815. A. angustifolia (Nutt.) Dec. [Asclepias stenophylla 
Gray]. NARROW-LEAVED GREEN MILKWEED. 
Common in the plains about Boulder, 5100-6000 ft. (Dan- 
iels, 298). 
SoutH Daxkora to Cotorapo; Missouri to Texas and New 
Mexico. 


348. ASCLEPIAS L. Mi_Kkweep. 


816. A. speciosa Torr. SHOWY MILKWEED. 

Frequent in the plains about Boulder, 5100-6000 ft. (Dan- 
iels, 262). 

Manirtopa to BritisH CoLtumpia; New Mexico to CALIFoR- 
NIA. 


817. A. brachystephana Engelm. SHoRT-cROWNED MILKWEED. 
Rare on the plains about Boulder, 5100-6000 ft. (Daniels, 
404). 
WyomiInc to TExAs and ARIZONA. 
818. A. incarnata L. Swamp MILKWEED. 
In swales and along streams in the plains, 5100-6000 ft. 
(Daniels, 671). 
New Brunswick to Manrroza; FLtortpa to New Mexico. 


819. A. pumila (Gray) Vail [A. verticillata pumila Gray]. 
DWARF MILKWEED. 
Local in the plains about Boulder, 5100-6000 ft. (Daniels, 
380). 
SoutH Dakota to Montana; ARKANSAS to New Mexico. 


343] FLORA OF BOULDER, COLORADO 195 
Order 38. POLEMONIALES. 
Family 91. CUSCUTACEAE Dumont. Dodder family. 


349. CUSCUTA L. Donner. 


820. C.curta Engelm. [C. Gronovii curta Engelm.] Suort- 
STYLED DODDER. — 
On Ambrosia psilostachya DC., along Union Pacific Rail- 
road east of Boulder, 5400 ft. (Daniels, 696). 
CoLorapo to UTAH. 


821. (C. indecora Choisy. PrEtTry DODDER. 

On Thermopsis pinetorum Greene. Rocky ledge at Mar- 
shall, 5600 ft. (Daniels, 426). 

Ittiniits to NEBRASKA and CoLorapo; FLorima to CALIFOR- 
NIA; TROPICAL AMERICA. 


Family 92. CONVOLVULACEAE Vent. Bindweed family. 


350. EVOLVULUS L. 


822. E. Nuttallianus R. & S. [E. argenteus Pursh]. Nut- 
TALL’S EVOLVULUS. 
Common on the plains about Boulder, 5100-6000 ft. (Dan- 


iels, 474). 
SoutH Daxora to Cotorapo; TEXAS to ARIZONA. 


351. PHARBITIS Choisy. Mornrnc GLory. 


823. P. purpurea (L.) Voight [P. hispida Choisy; Ipomoea 
purpurea (L.) Roth]. ComMMON MORNING GLORY. 
Escaped along Arapahoe Road, 5300 ft. (Daniels, 792). 
TroprcAL AmeErIcA, thence to NortH AMERICA. 


352. CONVOLVULUS L. Binpwecrp. 


824. C. arvensis L. FIELD BINDWEED. 

Along streets of Boulder, 5300-5700 (Chautauqua grounds) 
ft. (Daniels, 816). 

Europe, thence to North AMERICA. 


196 UNIVERSITY OF MISSOURI STUDIES [344 


825. C. ambigens House. Harry BINDWEED. 

Plains near Boulder (Rydberg). Perhaps only a state of 
the preceding. 

Cotorapo to New Mexico and CALiFornia. 


353. VOLVULUS Medic. BractEeD BINDWEED. 


826. V. interior (House) Cockerell. Nov. comb. [Convolvu- 
lus interior House]. INLAND BRACTED BINDWEED. 
Low flats near Valmont Dike, 5200-5300 ft. (Daniels, 669). 
NEBRASKA to COLORADO; OKLAHOMA to ARIZONA. 


Family 93. POLEMONIACEAE. Jacob’s ladder family. 
354. PHLOX L. Putox. 


827. P. multiflora A. Nelson. MANyY-FLOWERED PHLOX. 
North Boulder Peak (Rydberg). 
Montana to CoLorapo. 


828. P. depressa (E. Nelson) Rydberg [P. multiflora de- 
pressa E. Nelson]. Low PHLox. 
Dry slopes of the foothills, 6000-8000 ft. (Daniels, 105). 
COLORADO. 


829. P. longifolia Nutt. LoNG-LEAVED PHLOX. 
~ Near Long’s Peak (Porter & Coulter; also Coulter in Wa- 
bash College Herb.). 

Montana to WASHINGTON ; COLORADO to OREGON. 


355. MICROSTERIS Greene. 


830. M. micrantha (Kellogg) Greene [Collomia micrantha 
Kellogg]. SMALL-FLOWERED MICROSTERIS. 
At Boulder (Cockerell). 
NEBRASKA to WYOMING; CoLorAbo to CALIFORNIA; SOUTH 
‘America (Cutitt and Bottvia to MAGELLAN Srratts). 


356. LINANTHUS Benth. 


831. L. Harknessii (Curran) Greene [Gilia Harknessu Cur- 
ran]. Harkness’ LINANTHUS. 
Flood-sands of streams, north slope of Green Mt., 6000-8000 
ft. (Daniels, 467). 
Montana to BririsH COLUMBIA; COLORADO to CALIFORNIA. 


< 


345] FLORA OF BOULDER, COLORADO 197 


357. GILIAR.& P. Gita. 


832. G. spicata Nutt. SPIKED GILIA. 
Mountains between Sunshine and Ward (Rydberg). 
NEBRASKA to WyomInc; CoLoraApo to UTAH. 


833. G. attenuata (Gray) A. Nelson [G. aggregata attenuata 
Gray]. ACUTE-LOBED GILIA. 

Foothills and mesas about Boulder, 5700-9000 ft. (Daniels). 
White flowered, but it passes into the following variety 
through a series of forms of all shades of pink from nearly 
white to almost scarlet. 

IpaHo to CoLtorapo and Ura. 


833a. G. attenuata collina (Greene) Cockerell. Nov. comb. 
[Callisteris collina Greene]. FOOTHILL GILIA. 

Alpine forested slopes near Eldora, and also near the sum- 
mit of Flagstaff Hill, 6000-9000 ft. (Daniels, 343). The pink 
of the flowers varies from nearly white to scarlet. 

Range of the type? 


834. G. candida Rydb. [Callisteris leucantha Greene]. WHITE 
GILIA. 

Common on the mesas, foothills and mountain s!opes, 5700- 
gooo ft. (Daniels, 46). Corollas often pinkish, perhaps hy- 
brids with the above. Also South Boulder Peak, and in the 
mountains between Sunshine and Ward (Rydberg). 

COLORADO. 


835. G. pinnatifida Nutt. SMALL-FLOWERED GILIA. 

Common throughout and very variable, 5100-10000 ft. (Dan- 
iels, 45). Also in the mountains between Sunshine and Ward 
(Rydberg). 

NepraskA and Wyomine to New Mexico. 

836. G. sinuata Benth. WaAvy-LEAVED GILIA. 

Common in the plains, mesas, and lower foothills, 5100-6500 
ft. (Daniels, 193). 

Cotorapo and New Mexico to CALIFORNIA. 

837. G. inconspicua (Smith) Dougl.. INconspicuous GILIA. 


On the foothills, 5900-8000 ft. (Daniels). 
CoLorapo and Uran to Artzona and Mexico. 


198 UNIVERSITY OF MISSOURI STUDIES [346 


358. COLLOMIA Nutt. 
838. C. linearis Nutt. [Glia linearis (Nutt.) Gray]. Nar- 
ROW-LEAVED COLLOMIA. 

Very common throughout in shady or half-shady places, 
especially on creek sands, 5100-go0o ft. (Daniels, 51). Also 
at Ward (Rydberg). 

Nort Daxora and Maniropa to British CoLUMBIA; ARI- 
ZONA to CALIFORNIA; introduced eastward. 
838a. C. linearis Boulderensis Daniels. Nov. var. 

Leaves narrower than in the type, sharply acuminate ; flower- 
clusters densely capitate, the calyx-lobes and the bracts strongly 
pungent; a dwarfish form, blossoming earlier than the type. 
Near Gilia linearis subulata Gray. 

Plains about Boulder, 5400-5700 ft. (Daniels, 60). 


309. POLEMONIUM L. Jacop’s LADDER. GREEK VA- 
LERIAN. 

839. P. pulcherrimum Hook. Fatrest JAcOB’S LADDER. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
to21). Also from Eldora to Baltimore, and in the mountains 
between Sunshine and Ward, Brand makes this species a 
synonym of the next. 

COLORADO. 
840. P. delicatum Rydb. DELIcaTE JAcoB’s LADDER. 

At timberline (or just below) under shrubs, Arapahoe Peak, 
10500-11500 ft. (Daniels, 872). 

Cotorapo and New Mexico. 
841. P. molle Greene. Sort JAcos’s LADDER. 

Eldora to Baltimore (Rydberg). 

COLORADO. 
842. P. robustum Rydb. Stour GREEK VALERIAN, 

Boulder creek near Falls, 6500-7500 ft. (Daniels, 296). 

COLORADO. 
843. P. mellitum (Gray) Greene [P. confertwm mellitum 

Gray]. YELLOW GREEK VALERIAN. 
Eldora to Baltimore (Rydberg). 
Wyominc and Cotorapo to NEVADA. 


347] FLORA OF BOULDER, COLORADO 199 


843%. P.confertum Gray. PURPLE GREEK VALERIAN. 
Redrock lake, roroo ft. (Ramaley & Robbins). 
WyoMINnG to CoLorapo. 


844, P. Brandegeei (Gray) Greene [Gilia Brandegéei Gray]. 
BRANDEGEE’S GREEK VALERIAN. 
Mountains between Sunshine and Ward (Rydberg). 
COLORADO. 


Family 94. HYDROLEACEAE. H.B.K. Hydrolea family. 


860. HYDROPHYLLUM L. WaArTERLEAF. 


845. H. Fendleri (Gray) Heller [H. occidentale Fendlert 
Gray]. FENDLER’S WATERLEAF. 

Common along streams in shade, and in deep mountain 
cafions, 5100-8600 ft. (Daniels, 129). Also in the mountains 
between Sunshine and Ward (Rydberg). 

Wyomine and Ipano to New Mexico. 


361. MACROCALYX Trew. 


846. M. Nyctelea (L.) Kuntze [Ellisia Nyctelea L.]. Nycre- 
LEA. 
Along streams and in gulches in mesas, 5100-6000 ft. (Dan- 


iels, 597). 
SASKATCHEWAN to MoNTANA; VIRGINIA to COLORADO. 


362. PHACELIA Juss. PHACELIA. 


847. P. leucophylla Torr. WHITE-LEAVED PHACELIA. 
Mountains between Sunshine and Ward (Rydberg). 
SoutH DaxKota to WASHINGTON ; CoLorADo to UTAH. 


848. P. heterophylla Pursh. VARIOUS-LEAVED PHACELIA. 
Common on the mesas and foothills, 5600-8000 ft. (Daniels, 
40). Also Eldora to Baltimore (Rydberg). 
MontTANna to WASHINGTON ; COLORADO to CALIFORNIA. 


849. P. glandulosa Nutt. GLANDULAR PHACELIA. 
Boulder Cafion above Falls, 7000-8000 ft. (Daniels, 548). 
Montana to TEXAS and ARIZONA. 


200 UNIVERSITY OF MISSOURI STUDIES [348 


850. P. Neo-Mexicana alba (Rydb.) Daniels. Nov. comb. 
Wuite New Mexican PHACELIA. 
Eldora to Baltimore (Rydberg). 


Wyominc to NEw Mexico. 


3863. EUTOCA R. Br. 


851. E. sericea Graham in Hook. [Phacelia sericea (Grah.) 
Gray]. Sirxy PHACELTA. 
Common about Ward, gooo-9500 ft. (Daniels, 312). Also 
Eldora to Baltimore (Rydberg). 
Montana to British CoLumMBIA; CoLoRADO to NEVADA. 


Family 95. BORAGINACEAE Gray. Borage family. 


364. LAPPULA Moench. STICKSEED. 


852. L. floribunda (Lehm.) Greene [Echinospermum flort- 
bundum Lehm.]. LARGE-FLOWERED STICKSEED. 
Frequent in Bear and Boulder Cafions, 6000-7500 it. (Dan- 
iels, 448). 
Manriropa to ALBERTA; NEw Mexico to CALIFORNIA. 


853. L. angustata Rydb. NARROW-LEAVED STICKSEED. 
Common in cafions in the foothills, 5600-7500 ft. (Daniels, 


674). 
CoLoRADO to WYOMING. 


854. L. occidentalis (Wats.) Greene [Echinospermum Redow- 
skys occidentale Wats.] WESTERN STICKSEED. 
Common on the plains about Boulder, 5100-6000 ft. (Daniels, 
6). 
SASKATCHEWAN to WaSHINGTON; MissourrI to NEw MeEx- 
Ico. 


855. L. cupulata (Gray) Rydb. [Echinospermum Redowsky 
cupulatum Gray]. CUPULATE STICKSEED. 
Plains about Boulder, 5100-6000 ft. (Daniels, 9). 
Soutu Daxorta to IpAHO; TExas to COLORADO. 


349] FLORA OF BOULDER, COLORADO 201 


36414. ERITRICHIUM Schrader. MouNTAIN FORGET- 
ME-NOT. 


85514. E. argenteum Wight. SILVERY MOUNTAIN FORGET-ME- 
NOT. 
Redrock lake, 10100 ft. (Ramaley & Robbins). 
Wyomine and Cotorapo to UTAH. 


865. OREOCARYA Greene. MouNTAIN NUT. 


856. 0. suffruticosa (Torr.) Greene [Krynitzkia James 
Gray]. JAMES’S MOUNTAIN NUT. 
Slopes of Green Mountain, 6300 ft. (Daniels, 527). Plains 
and foothills near Boulder (Rydberg). 
SourH Daxora to Wyominc and Coorapo. 


857. 0. virgata (Porter) Greene [Krynitzkia virgata (Por- 
ter) Gray]. VIRGATE MOUNTAIN NUT. 
Common on the plains, mesas, and foothills, 5100-8000 ft. 
(Daniels, 19). 
Wvyominc to COLORADO. 


857%. O. pulvinata A. Nels. PULVINATE MOUNTAIN NUT. 
Redrock lake, toroo ft. (Ramaley & Robbins). 
COLORADO. 


366. ALLOCARYA Greene. 


858. A. scopulorum Greene. MouNTAIN ALLOCARYA. 

Aspen bogs at Glacier lake, 8600-go00 ft. (Daniels, 7or). 
Also at Boulder (Rydberg). 

Montana to WasHINGTON ; CoLorapDo to NEVADA. 


367. CRYPTANTHE Lehm. 


859. C. crassisepala (T. & G.) Greene [Krynitzkia crassise- 
pala (T. & G.) Gray]. THIcK-SEPALLED CRYPTANTHE. 
Frequent on the plains, 5100-6000 ft. (Daniels, 389). 
SASKATCHEWAN to Montana; Texas to UTan and MeEx- 
ICO. 


202 UNIVERSITY OF MISSOURI STUDIES [350 


860. C. Pattersonii (Gray) Greene [Krynitzkia Pattersonii 
Gray]. PATTERSON’S CRYPTANTHE. 
In the spray of Boulder Falls, 7500 ft. (Daniels, 609). 
WYOMING and CoLorapo. 


368. MERTENSIA Roth. LunGwortr. BLUEBELLS. 


861. M. punctata Greene. PUNCTATE BLUEBELLS. 
Bear Cafion, 7000 ft. (Daniels, 716). 
COLORADO. 


862. M. polyphylla Greene. MANY-LEAVED BLUEBELLS. 
Along stream in alpine valley near snow, above Bloomer- 
ville, and in Boulder Cafion above the Falls, 8000-10000 ft. 
(Daniels, 320). Also from Eldora to Baltimore, and at Ward 
(Rydberg). 
Wyominc to CoLorabo. 
863. M. lateriflora Greene. S1pE-FLOWERED LUNGWORT. 
Along streams on mountain slope above Bloomerville near 
snow, 9300 it. (Daniels. 337). Redrock lake, roroo ft. (Rama- 
ley & Robbins). Eldora to Baltimore (Rydberg). 
COLORADO. 


864. M. viridula Rydb. GREENISH LUNGWORT. 
Cafions in the foothills, 6000-8000 ft. (Daniels, 34). 
CoLorRapo. 


_ 865. M. amoena A. Nels. PLEASANT LUNGWORT. 
At Boulder; and from Eldora to Baltimore (Rydberg). 
WYoMING to CoLorRADo. 


866. M. linearis Greene. LINEAR-LEAVED LUNGWORT. 
Subalpine meadows, Boulder Cafion beyond the Falls, 7000- 
8000 ft. (Daniels, 226). Also at Boulder; and from Eldora 
to Baltimore (Rydberg). 
ASSINIBOIA to NEBRASKA and CoLoRADO, 


867. M. lanceolata (Pursh) DC. LANcE-LEAVED LUNGWORT. 
Common throughout except in high alpine places, 5100-9000 
ft. (Daniels, 14). Very variable. 
Montana to Cotorapo and New Mexico. 


351| FLORA OF BOULDER, COLORADO 203 


868. M. Secundorum Cockerell. Harry LUNGWoRT. 

Near mouth of Boulder Cafion (Cockerell), the type local- 
ity, where it was discovered by students of the State Prepara- 
tory School, whence the specific name. 

CoLoRADO. 

869. M. micrantha Aven Nelson. SMALL-FLOWERED LUNG- 
WORT. 

Flagstaff Hill, 6000-6500 ft. (Daniels, 636). Also Sugar 
Loaf Mt., collected by Dr. Ramaley (Nelson), the type local- 
ity. 

COLORADO. 

870. M. perplexa Rydb. PERPLEXING LUNGWORT. 

Arapahoe Peak above timberline, 11000-12000 it. (Daniels, 
645). Also mountains south of Ward the type-locality (Ryd- 
berg). 

COLORADO. 

871. M. alpina (Torr.) Don. ALPINE LUNGWoRT. 

Arapahoe Peak above timberline, 11500-12000 ft. (Daniels, 
1022). 

COLORADO. 


369. LITHOSPERMUM L. Gromwetr. Puccoon. 
872. IL. canescens (Michx.) Lehm. Hoary puccoon. 
At Boulder (Rydberg). 
Ontario to North Daxora; ALABAMA to CoLoRADO and 
ARIZONA. 


873. L. linearifolium Goldie [L. angustifolium Michx.]. Nar- 
ROW-LEAVED PUCCOON. 
At Boulder (Rydberg). 
TIntrinots and Manritopa to British CoLumsBiA; TExas to 
ARIZONA. 


874. L. breviflorum Engelm. & Gray [L. albescens Greene]. 
SHORT-FLOWERED PUCCOON. 
Common on the plains, mesas, and meadows on the lower 
foothills, 5100-6300 ft. (Daniels, 130). 
ARKANSAS to Cotorapo; TExAs to New Mexico and Mex- 
ICO. 


204 UNIVERSITY OF MISSOURI STUDIES [352 


370. ONOSMODIUM Michx. FaLsz GROMWELL. 


875. 0. occidentale Mackenzie. WESTERN FALSE GROMWELL. 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 
183). Also at Longmont (Rydberg). 
Manirtopa to British CotumpBia; Missourt to Texas and 
UTau. 


371. LYCOPSIS L. Buctoss. 


876. IL. arvensis L. SMALL BUGLOSS. 

Roadsides near entrance to Boulder Cafion, 5400-5500 ft. 
(Daniels, 165). Not in Rydberg’s Flora. 

Europe and Asta, thence to NortH AMERICA. 


Family 96. VERBENACEAE St. Hil. Vervain family. 


372. VERBENA L. Vervain. 


877. V. hastata L. BLUE VERVAIN. 

Along streams in the plains, but ascending Boulder creek 
for a considerable distance into the foothills, 5100-6500 ft. 
(Daniels, 579). 

Nova Scotta to British CotumBIA; FLorma to CALIFOR- 
NIA. 


878. V. bracteosa Michx. [V. rudis Greene]. LARGE-BRACTED 
VERVAIN. 

Common in waste places, and on the plains, 5100-6000 ft. 
(Daniels, 2). 

MicuiIcANn to ALBERTA and BritisH CoLuMBIA; FLORIDA to 
CALIFORNIA. 


878a. V. bracteosa albiflora Cockerell. Nov. var. WHITE- 
FLOWERED LARGE-BRACTED VERVAIN. 
Differs from the type in having white flowers. Campus of 
the University of Colorado, July 15, 1908 (Cockerell). 


879. V. ambrosifolia Rydb. RAGWEED-LEAVED VERVAIN. 

At Boulder, and in Boulder Co. (Rydberg). 

SoutH Dakota to Cotorapo; Texas to Arizona and Mex- 
ICO. 


353] FLORA OF BOULDER, COLORADO 205 


879%. V. Canadensis (L.) Brit. [V. Aubletia Jacq.]. Com- 
MON WILD VERBENA. 
St. Vrain river (Porter and Coulter). 
INDIANA to CoLoraDo; FLoripa to New Mexico and Mex- 
ICO. 


373. PHYLA Lour. Foc-Fruit. 


880. P. cuneifolia (Torr.) Greene [Lippia cuneifolia Torr.]. 
WEDGE-LEAVED FOG-FRUIT. 

Along the railroad between Boulder and Marshall, and on 
the sandy shores of Boulder creek for some distance in the 
foothills, 5300-6200 ft. (Daniels, 406). 

SoutH Daxora to Wyominc; Texas to Arizona and Mex- 
Ico. 


Family 97. LAMIACEAE. Dead nettle family. 
374, TEUCRIUM L. GrerMANDER. 


881. T. occidentale Gray. WESTERN GERMANDER. 
Swales in the plains, 5100-5500 ft. (Daniels, 407). 
Ontario to British CoLuMBIA; PENNSYLVANIA to COLO- 
RADO and CALIFORNIA. 


375. SCUTELLARIA L. SKuLLcApP. 


882. S. galericulta L. Hoopep SKULLCAP. 

At Boulder (Rydberg). 

NEWFOUNDLAND to ALASKA; NorTH CAROLINA to ARIZONA: 
Europe: Asta. 

883. 5S. Brittonii Porter. Britron’s SKULLCAP. 

Common on the foothills and mesas, 5700-8000 ft. (Daniels, 
146). Also from Eldora to Baltimore (Rydberg). St. Vrain 
river, as S. resinosa Torr. (Porter and Coulter), unless this 
plant be indeed the next. 

Wyominc to CoLorapo. 


883%. S. virgulata A. Nels. [S. Brittona virgulata (A. Nels.) 
Rydb.]. WAND-LIKE SKULLCAP. 
Along streams in mesas, 5700-6000 it. (Daniels, 33). 
WyYoMING to COLORADO. 


206 UNIVERSITY OF MISSOURI STUDIES [354 


376. NEPETA L. Catnip. CATMINT. 


884. N. Cataria L. Common cCATNIP. 
Common in waste places, and following the roads for some 
distance in the foothills, 5100-8000 ft. (Daniels, 459). 
Europe and Astra, thence to NortH AMERICA. 


377. GLECOMA (GLECHOMA) L. Gnrouwnp tvy. 


885. G. hederacea L. [Nepeta Glechoma Benth.]. GILL-ovER- 
THE-GROUND. 
At Boulder (Rydberg). Found in Boulder, April, 1905, by. 
Miss Tollie Rudd; a specimen was sent to Dr. Rydberg. 
Europe and Asta, thence to NortH AMERICA. 


378. DRACOCEPHALUM L. Dracon’s-HEAD. 


886. D. parviflorum Nutt. SMALL-FLOWERED DRAGON’S-HEAD. 
Common on the plains and foothills, 5100-8000 ft. (Dan- 
iels, 87). 
New York to AraskA; New Mexico to ARIZONA. 


379. PRUNELLA (BRUNELLA) L.  SELF-HEAL. 
HEAL-ALL. 


887. P. (B.) vulgaris L. ComMMON SELF-HEAL. 

Common in damp places on the plains, and occasional in 
remote cafions, 5100-8000 ft. (Daniels, 240). 

Europe and Asta, thence to NorrH America, where north- 
ward it is possibly native. 


380. LEONURUS L. Moruerwort. 


888. L. Cardiaca L. ComMoNn MOTHERWORT. 

Common in waste places, and following the roads for some 
distance in the foothills, 5100-8000 ft. (Daniels, 460). 

Europe and Asta, thence to NorrH AMERICA. 


381. STACHYS L. Hence NETTLE. 
889. S. scopulorum Greene. CRAG HEDGE NETTLE. 
In swales in the plains, 5100-5500 ft. (Daniels, 502). Also 


at Longmont (Rydberg). 
Minnesota, MACKENZIE and ALBERTA to NEw Mexico. 


355] FLORA OF BOULDER, COLORADO 207 


382. SALVIA L. Sacer. 


890. S. lanceolata Willd. LANCE-LEAVED SAGE. 

Common on the plains, 5100-6000 ft. (Daniels, 280). 

SoutH Daxota to Montana; Texas to Arizona and Mex- 
Ico. 


383. MONARDA. L. Horsemint. BERGAMOT. 


891. M. menthaefolia Grah. MINT-LEAVED BERGAMOT. 
Common on the plains and foothills, 5100-8000 ft. (Dan- 
iels, 955). Also mountains between Sunshine and Ward (Ryd- 
berg). 
Itt1nots to MAnrTopa and IpanHo; Texas to CoLorapbo. 


892. M. stricta Wooton. Srricr BERGAMOT. 
At Boulder (Rydberg). 
Wyomine to New Mexico and Arizona. 


893. M. mollis L. Sorr BeRGAMor. 

Common on the plains and foothills, 5100-8000 ft. (Daniels, 
222). 

Missourt to SourH Daxora and Montana; GeorcIA to 
Texas and CoLorapo. 


894. M. pectinata Nutt. [M@. Nuttallii A. Nels.]. PrcrINaTE 
HORSE-MINT. 
Abounding in the plains and mesas, 5100-6000 ft. (Daniels, 
13). Boulder is the type-locality of M. Nuttallii A. Nels. 
CoLorapo to UTAH; Texas to ARIZONA. 


895. M. Ramaleyi A. Nels. RAMALEY’S HORSE-MINT. 
Boulder creek near Boulder, the type locality (Rydberg). 
COLORADO. 


384. HEDEOMA Pers. PENNYROYAL. 


896. H. hispida Pursh. Htspip PENNYROYAL. 
Common on the plains and mesas, 5100-6000 ft. (Daniels, 


195). 
Cotorapo to UTAH; Texas to ARIZONA. 


208 UNIVERSITY OF MISSOURI STUDIES [356 


385. LYCOPUS L. WATER HOARHOUND. 

897. L. lucidus Turcz. WESTERN WATER HOARHOUND. 
Along ditches and streams, 5100-5400 ft. (Daniels, 783). 
Minnesota to British CotumsBia; Missourt to COLORADO 

and CALIFORNIA. 


898. L. Americanus Muhl. [L. sinuatus Ell. ; L. Europeus sin- 
uatus (Ell.) Gray]. AMERICAN WATER HOARHOUND. 
Along ditches and streams and in swales, 5100-6000 ft. (Dan- 
iels, 508). 
NEWFOUNDLAND to BritisH CoLUMBIA; FLORIDA to CALI- 
FORNIA. 
386. MENTHA L. Mint. 
899. M. spicata L. [M. viridis L.]. SPEARMINT. 
Along the Arapahoe Road, 5300-5400 ft. (Daniels, 742). 
Europe and Asta, thence to NortH AMERICA. 


goo. M. Penardi (Briq.) Rydb. [M. arvensis Penardi Briq.]. 
PENARD’S MINT. 
Along ditches and streams, 5100-8000 ft. (Daniels, 164). 
NEBRASKA to MACKENZIE and BriTisH CoLUMBIA; COLO- 
RADO to UTAH. 


Family 98. SOLANACEAE Pers. Nightshade family. 


887. PHYSALIS L. GroUND CHERRY. 


gor. P. longifolia Nutt. [P. lanceolata laevigata Gray]. Lonc- 
LEAVED GROUND CHERRY. 
Boulder Cafion, 5600 ft. (Daniels, 153). 
Towa to Montana; ARKANSAS to ARIZONA and MExIco. 


go2. P. lanceolata Michx. PRAIRIE GROUND CHERRY. 
Common on the plains and mesas in loose or sandy soils, 
5100-6000 ft. (Daniels, 523). 
Micuican to WyomMING; SoutH CaAroLiIna to ARIZONA and 
Mexico. 


903. P. Virginiana Mill. VirGINIA GROUND CHERRY. 

Cultivated fields and roadsides on the plains, and foothills, 
appearing like an introduced weed, 5100-8000 ft. (Daniels, 
684). Also between Sunshine and Ward (Rydberg). 


357] FLORA OF BOULDER, COLORADO 209 


New York to MAnirosa and Montana; FLoripa to TEXAS 
and COLoRADO. 


904. P. heterophylla Nees. CLAMMyY GROUND CHERRY. 

At Boulder and Longmont (Rydberg). 

New Brunswick to SASKATCHEWAN; FLoRIDA to TEXAS 
and UraH. 


905. P. comata Rydb. Hatry WESTERN GROUND CHERRY. 
Plains and mesas, 5100-6000 ft. (Daniels, 403). 
NEBRASKA and CoLorapo to TEXAS. 


906. P. rotundata Rydb. RouND-LEAVED GROUND CHERRY. 
Plains about Boulder, chiefly in loose sands, 5100-5700 ft. 
(Daniels, 487). 
Nortu Daxora to Cotorapo; Texas to New Mexico. 


.888. QUINCULA Raf. PurrPLeE GROUND CHERRY. 


907. Q. lobata (Torr.) Raf. [Physalis lobata Torr.]. Lopep 
PURPLE GROUND CHERRY. 

At Boulder and Longmont (Rydberg). A few miles north 
of Boulder, abundant on the Pierre (Cretaceous) shales, May 
1906 (Cockerell). 

Kansas to Cotorapo; TExas to CALIFORNIA and Mexico. 


389. ANDROCERA Nutt. Bur NIGHTSHADE. 


go8. A. rostrata (Dunal) Rydb. [Solanum rostratum Dunal ; 
A. lobata Nutt.]. ComMoNn BUR NIGHTSHADE. 
Common in waste places, 5100-6000 ft. (Daniels, 384). The 
original host of the Colorado beetle or potato-bug. 
NortH Daxora to Wyominc; Texas to New Mexico and 
MEXICco; as an introduced weed throughout the eastern UNITED 
STATES. 


390. SOLANUM L. NicHrTsHaADe. 


gog. S. triflorum Nutt. THREE-FLOWERED NIGHTSHADE. 
Common in yards, waste places, and loose soils on the plains, 
5100-6000 ft. (Daniels, 282). 
Ontario to ALBERTA; KANSAS to ARIZONA. 


210 UNIVERSITY OF MISSOURI STUDIES [358 


9094. S. interius Rydb. INLAND NIGHTSHADE. 
Near Boulder (Rydberg). 
NEBRASKA to CoLorADO; TEXAS to CALIFORNIA. 


gto. §. villosum (Mill.) Lam. [S. nigrum villosum Mill.]. 
VILLOUS NIGHTSHADE. 
At Boulder (Rydberg). 
Wyominc to British CoLuMBIA; CoLorApo to Lower CAL- 
IFORNIA. 


391. LYCOPERSICON (LYCOPERSICUM) Mill. To- 
MATO. 


git. IL. Lycopersicum (L.) Karst. [Solanum Lycopersicum 
L.]. ComMon TOMATO. 
Adventitious along the Arapahoe Road, 5300-5400 ft. (Dan- 
iels, 791). 
SoutH America, thence common in cultivation. 
392. LYCIUM L. Matrimony vINE. 


giz. L. vulgare L. CoMMON MATRIMONY VINE. 

South of University Campus, Boulder (W. W. Robbins). 
Not in Rydberg’s Flora. 

Europe, Arrica, and AstA, thence to NortH AMERICA. 


393. DATURA L. THoRN-APPLE. 


913. D. Stramonium L. JiImson WEED. 
Waste places, especially common along railroads, and on 
creek-sands in Boulder Cafion, 5100-6000 ft. (Daniels, 810). 
AstA, thence cosmopolitan. 


g14. D. Tatula L. PurpLE THORN-APPLE. 

Streets of Boulder, 5300-5600 ft. (Daniels, 566). Also at 
Salina (Ramaley). 

SoutH America, thence cosmopolitan. 


394. NICOTIANA L. Tosacco. 


g15. N. attenuata Torr. NIGHT-BLOOMING TOBACCO. 
Mountains between Sunshine and Ward (Rydberg). 
Montana to British CotumBia; New Mexico to CALiror- 
NIA. 


359] FLORA OF BOULDER, COLORADO 211 


Family 99. RHINANTHACEAE St. Hil. Rattle-box family. 
395. VERBASCUM L. Mu ten. 


g16. V. Thapsus L. CoMMON MULLEN. 
Waste places and cultivated grounds, 5100-6000 ft. (Dan- 


iels, 457). 
Europe and Asta, thence to Norra AMERICA. 


917. V. Blattaria L. Motu MULLEN. 

Along Union Pacific Railroad, near Boulder, 5200-5400 ft. 
(Daniels, 677). 

Europe and AstA, thence to Norra AMERICA. 


396. LINARIA Mill. Toap-FrLax. 


g18. UL. Canadensis (L.) Dumont. CANADA TOAD-FLAX. 
Common on the mesas in pine groves south of the Chautau- 
qua grounds, 5700-6000 ft. (Daniels, 179). 
Nova Scotia to WASHINGTON; FLORIDA to CALIFORNIA: 
CENTRAL AMERICA: SOUTH AMERICA. 


397. COLLINSIA Nutt. INNOCENCE. 


gig. C. tenella (Pursh) Piper [C. parviflora Dougl.] LirtLe 
BLUE-EYED Mary. 

Shady springs and cafions in the foothills and gulches in the 
mesas, 5700-9000 ft. (Daniels, 267). Also at Ward (Ryd- 
berg). St. Vrain’s Cafion (Coulter in Wabash College Herb.). 

Ontario to British CoLtumBiIA; MIcHIGAN to ARIZONA and 
CALIFORNIA. 


398. SCROPHULARIA L. Ficworrt. 


g20. S. occidentalis (Rydb.) Bickn. [S. nodosa occidentalis 
Rydb.]. WESTERN FIGWORT. 
Cafions, common, 5700-8600 ft. (Daniels, 127). 
NortH Daxora to WASHINGTON; OKLAHOMA to CALIFOR- 
NIA. 


399. PENTSTEMON Soland. Brarp-TONGUE. 


g21. P. oreophilus Rydb. MouNTAIN BEARD-TONGUE. 
Common on the foothills and mountains, 6500-10000 ft. 


212 UNIVERSITY OF MISSOURI STUDIES [360 


(Daniels, 213). Also from Eldora to Baltimore (Rydberg). 
COLORADO. 


922. P. alpinus Torr. [P. glaber alpinus Gray; P. riparius A. 
Nels.]. ALPINE BEARD-TONGUE. 
Common on the foothills and mountains, 6000-10000 ft. 
(Daniels, 214). Also at Ward (Rydberg). 
CoLoraApo to WYOMING. 


923. P. unilateralis Rydb. ONE-SIDED BEARD-TONGUE. 
Common throughout in open places, 5300-8600 ft. (Daniels, 
7). Also from Eldora to Baltimore (Rydberg). 
Wyominc to New Mexico. 


924. P. secundiflorus Benth. SHARP-LEAVED BEARD-TONGUE. 
Common throughout in open situations, 5100-8600 ft. (Dan- 
iels, 8). 
Wvyominc to New Mexico. 
925. P. glaucus Graham. GLAUCOUS BEARD-TONGUE. 
Mountains south of Ward (Rydberg). 
Wyomine to UraH; CoLtorapo to ARIZONA. 


g25a. P. glaucus stenosepalus Gray. NARROW-SEPALLED BEARD- 
TONGUE. 

Arapahoe Peak at timberline, r1000 ft. (Daniels, 936). Also 
Eldora to Baltimore (Rydberg). Redrock lake t1o1o0o ft. 
(Ramaley and Robbins). 

Range of the type, but strictly alpine. 


926. P. gracilis Nutt. SLENDER BEARD-TONGUE. 

Common on the plains, mesas, and lower foothills, 5100- 
8000 ft. (Daniels, 22). 

Maniropa to SASKATCHEWAN; TEXAS to CoLoRADO. 


927. P. humilis Nutt. Low BEARD-TONGUE. 
Common throughout in open places, 5100-9200 (Ward) it. 
(Daniels, 177). Also Eldora to Baltimore (Rydberg). 
Montana and ALBERTA to CoLorapo and NeEvapA. 


928. P. Rydbergii A. Nels. [P. erosus Rydb.]. Rypperc’s 
BEARD-TONGUE. 


361 | FLORA OF BOULDER, COLORADO 213 


Eldora to Baltimore (Rydberg). 
WYomING and WASHINGTON to COLORADO. 


928%: P. procerus Dougl. TALL BEARD-TONGUE. 
Redrock lake, 10100 ft. (Ramaley and Robbins). 
SASKATCHEWAN to BriTIsH CoLtuMBIA; COLORADO to CAL- 
IFORNIA. 


400. CHIONOPHILA Benth. SNow-FLOWER. 


929. C. Jamesii Benth. JAMES’s SNOW-FLOWER. 

Arapahoe Peak above timberline, growing usually near the 
snow, 11500-13500 ft. (Daniels, 911). 

Wyominc to COLORADO. 


401. MIMULUS L. Monkey FLOWER. 


930. M. Langsdorfii Sims. LLANGSDORF’S MONKEY FLOWER. 
Between Sunshine and Ward (Rydberg). 
AssINiIBorA to ALtasKA; New Mexico to CALIFORNIA and 
Mexico. 


g30a. M. Langsdorfii minor (A. Nels.) Cockerell. Nov. comb. 
[M. minor A. Nelson]. Smart LANGSDORF’S MONKEY 
FLOWER. 
Near Boulder, the type locality (A. Nelson). 
COLORADO. 
931. M. puberulus Greene. PUBERULENT MONKEY FLOWER. 
Subalpine bogs along streams, Eldora, 8600 ft. (Daniels, 
853)- 
CoLoRADO. 
932. M. Hallii Greene. HaLi’s MONKEY FLOWER. 
Moist banks of stream at foot of Flagstaff Hill, 5700-6000 
ft. (Daniels, 25). 
COLORADO. 


933. M. Geyeri Torr. [M. Jamesii T. & G.] GeEvER’s MON- 
KEY FLOWER. 
Along streams and irrigation ditches, 5100-7000 ft. (Dan- 
iels, 904). 
Micuican to Nort Daxota; ILLttNots to CoLorapbo. 


214 UNIVERSITY OF MISSOURI STUDIES [362 


934. M. floribundus Dougl. MANy-FLOWERED MONKEY FLOW- 
ER. un 
Common in wet sands along streams and ditches, 5100-8000 
ft. (Daniels, 247). Also mountains between Sunshine and 
Ward (Rydberg). 
MontTana to British CoLtumMBIA; ARIZONA to CALIFORNIA. 


402. LIMOSELLA L. Mupwort. 


935. lL. aquatica L. AQuatic MUDWoORT. 

In shallow water at the margins of Owen’s lake, and also 
Glacier lake, 5200-9000 ft. (Daniels, 662). 

Cosmopolitan in cold and alpine situations. 


403. GRATIOLA L. HeEncE uyssop. 
936. G. Virginiana L. CLAMMY HEDGE HYSSOP. 
Limose places along streams and irrigation ditches, 5100- 
5800 ft. (Daniels, 377). Marshall lake (W. W. Robbins). 
QuesBeEc to BritisH CoLumpBia; FLoripA to CALIFORNIA. 


404. VERONICA L. SprEpDWELL. BROOKLIME. 

937. V. Americana Schwein. AMERICAN BROOKLIME. 

In springs and shallow streams, 5100-8000 ft. (Daniels, 
70). 

ANTIcOosTI to ALASKA; PENNSYLVANIA to CALIFORNIA. 
938. V. Wormskjoldii R. & S. WormsxyoLp’s SPEEDWELL. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
927). Redrock lake, to10o0 ft. (Ramaley and Robbins). 

GREENLAND to ALASKA; New Hampsuire to CoLorapo and 
CALIFORNIA. 


939. V. serpyllifolia L. THyME-LEAVED SPEEDWELL. 

Aspen bogs at Eldora, 8600 ft. (Daniels, 869). Also at 
Caribou (Rydberg). 

COSMOPOLITAN, except AFrricA and AUSTRALIA. 


940. V. Xalapensis H. B. K. XALAPA SPEEDWELL. 

Common in limose places, 5100-8000 ft. (Daniels, 577). 
Young’s V’. peregrina from the forests about Boulder is doubt- 
less this plant. 


363] FLORA OF BOULDER, COLORADO 215 


SASKATCHEWAN to BritisH CoLuMBIA; TEXAS to CALIFOR- 
NIA, 


941. V. agrestis L. FIELD SPEEDWELL. 

Boulder, April, t905 (Chas. Sellers). Not in Rydberg’s 
Flora. 

Europe and Asta, thence to NortH AMERICA. 


942. V. Byzantina (Sibth. & Smith) B.S. P. [V. Buxbaumu 
Tenore]. ByZANTINE SPEEDWELL. 
At Boulder (Rydberg). 
Europe and Asia, thence to NortH AMERICA. 


405. BESSEYA Rydb. 


943. B. alpina (Gray) Rydb. [Synthyris alpina Gray]. AL- 
PINE SYNTHYRIS. 
Massif de I’ Arapahoe (Rydberg). 
Wyominc to CoLorabo. 


406. GERARDIA L. PuRPLE FALSE FOXGLOVE. 


944. G. Besseyana Britton. Brssry’s PURPLE FALSE FOXGLOVE. 
Along irrigation ditches, Arapahoe Road, 5200-5400 ft. 
(Daniels, 789). Also at Longmont (Rydberg). 
Iowa to Wvyominc; LouIstANA to COLORADO. 


407. CASTILLEJA Mutis. Parintep cup. INDIAN 
PINK. PAINT BRUSH. 


945. OC. linariaefolia Benth. ToAp-FLAX-LEAVED PAINTED CUP. 
Very common on the foothills and mountain slopes, and 

occasional on the higher mesas, 5800-9000 ft. (Daniels, 538). 

Also North Boulder Peak (Rydberg). 
Wyominc to New Mexico, CALirorniA and Mextca 


945a. C. linariaefolia filiformis Daniels. Nov. var. FILLroRM 
TOAD-FLAX-LEAVED PAINTED CUP. 

Plant dwarf, 1-2%4 decimetres high, stem purplish, villous 
at the base, leaves filiform, 1 mm. wide, 3-4%4 cm. long, the 
lower with an occasional lobe or two; flowers few with cleft 
bracts, the lower of which are green, the upper crimson, these 
and the flowers puberulent, rather than villous as in the type. 


216 UNIVERSITY OF MISSOURI STUDIES [364 


Barren ridges between Sugarloaf Mountain and Glacier 
Lake, 8700-9200 ft. (Daniels, 976). 


946. C. Crista-galli Rydb. CocKScoMB PAINTED CUP. 
Eldora to Baltimore (Rydberg). 
Montana to CoLoRApo. 


947. C. cognata Greene. YELLOW PAINTED CUP. 

North slopes of Green Mountain; rare, 7000 ft. (Daniels, 
975). Prof. T. D. A. Cockerell suggests that this plant is 
probably a hybrid of C. linariaefolia Benth. and C. sulphurea 
Rydb. 

CoLoRADO. 


948. C. integra Gray. ENTIRE-LEAVED PAINTED CUP. 
Abundant throughout, except on the alpine summits; on the 

plains occurring principally on banks and ridges, 5600-9000 

ft. (Daniels, 169). Also from Eldora to Baltimore (Rydberg). 
Cotorapo to New Mexico, Arizona and Mexico. 


94844. C. rhexifolia Rydb. RHEXIA-LEAVED PAINTED CUP. 
Redrock lake, 1o100 ft. (Ramaley and Robbins). 
ALBERTA and ALASKA to COLORADO. 


949. C. confusa Greene. CONFUSED PAINTED CUP. 

Subalpine meadows, but a few plants were also found on 
a high bank in the mesas at base of the Flat-irons, 5800-10000 
ft. (Daniels, 959). Also at Silver lake and north of Neder- 
land (Ramaley); and from Eldora to Baltimore (Rydberg). 

Wyomine to CoLorapo. 


950. (C. Arapahoensis Daniels. Nov. spec. ARAPAHOE PAINT- 
ED CUP. 


Perennial, the tufted stems, 2-214 dm. high, curved at the 
base, smooth or slightly pubescent below, sparingly villous 


with white hairs above; basal leaves short, purplish, obtusely 
spatulate, 8-10 mm. long, about 3 mm. wide; lower stem- 
leaves, as well as the leaves of the sterile shoots narrowly 
linear 214-334 cm. long, 3-5 mm. wide, acuminate, 3-ribbed, 
puberulent; thence the leaves increase progressively in width 
to the inflorescence, where they are from 14-1 cm. wide, lan- 


365] FLORA OF BOULDER, COLORADO 217 


ceolate acuminate, slightly-clasping at the base, entire, the up- 
permost pubescent, or somewhat villous on the midribs and 
margins, three-ribbed, the leaf-traces visible as prominent 
ridges on the stem; bracts of the inflorescence relatively 
broad, the lowermost 1-114 cm. broad, about 2 cm. long, sub- 
acute; the uppermost shorter and relatively broader, obtuse 
or rounded at the apex; some of the bracts occasionally 
notched toward the apices, or slightly lobed on each side; the 
margins and veins somewhat villous; the bracts, as well as 
the uppermost leaves rosy-pink; calyx with four nearly equal 
subacute lobes, the sinus of the lateral lobes shallow; calyx 
rosy-pink, villous; corolla exserted, 214 cm. long, glabrous, or 
slightly puberulent above, the tip of the galea rosy pink, which 
is thrice the length of the slightly incurved lip; the upper 
pair of stamens more or less extruded from the galea; cap- 
sule black-purple 4-5 mm. long, oblong, abruptly acutish. 

Wet tundras, above timberline, Arapahoe Peak, Sept. 1, 1906, 
11000-12000 ft. (Daniels, 910). 


gsi. C. lauta A. Nels. [C. oreopola subintegra Fernald]. Sus- 
ENTIRE PAINTED CUP. 
Near Fourth of July Mine (Ramaley and Robbins). 
Montana and Orecon to CoLorapo. 


g52. C. lancifolia Rydb. LANCE-LEAVED PAINTED CUP. 
Mountains between Sunshine and Ward (Rydberg). 
ALASKA to OrEGON, MontTANa and CoLorapo. 


953. C. occidentalis Torr. [C. pallida occidentalis (Torr.) 
Gray]. WESTERN PAINTED CUP. 

Above timberline, Arapahoe Peak, 11000-13000 ft. (Daniels, 
884), where also collected by Ramaley & Robbins. Also at 
Ward (Rydberg). A dwarf alpine form (about 1 dm. high) 
occurs on the higher altitudes of Arapahoe Peak, 

ALBERTA and BritisH CoLtumMBIA to COLORADO. 

954. C. sulphurea Rydb. SuLPHuR PAINTED CUP. 

Subalpine mountain-slopes and valleys at Eldora and Glacier 
Lake, 8500-10000 ft. (Daniels, 623). Also at Ward (Ryd- 
berg). 


218 UNIVERSITY OF MISSOURI STUDIES [366 


Soutu Daxota to WyomING; CoLorapo to UTAH. 


408. ORTHOCARPUS Nutt. 
955. 0. luteus Nutt. YELLOW ORTHOCARPUS. 
Abundant on the plains and mesas, 5100-6000 ft. (Daniels, 
352). Also between Sunshine and Ward (Rydberg). 
SASKATCHEWAN to WASHINGTON ; CoLoRADO to NEVADA. 


409. ELEPHANTELLA Rydb. Little RED ELEPHANT. 

956. E. Groenlandica (Retz.) Rydb. [Pedicularis Groenlan- 
dica Retz.]. GREENLAND LITTLE RED ELEPHANT. 

Subalpine meadows at Eldora, thence to Arapahoe Peak 

above timberline, 8500-12000 ft. (Daniels, 625). Also from 
Eldora to Baltimore (Rydberg) ; Ward (Cockerell). 

GREENLAND and Hupson Bay to Britis CotumsBia; LAs- 

RADOR to New Mexico and CALirornia. 


410. PEDICULARIS L. Lousreworrt. 
957. P. racemosa Dougl. RACEMOSE LOUSEWORT. 
Eldora to Baltimore (Rydberg). Redrock lake, 1or1oo ft. 
(Ramaley and Robbins). 
Montana to British CoLUMBIA; COLORADO to CALIFORNIA. 


958. P. Parryi Gray. PARry’s LOUSEWORT. 


Above timberline, Arapahoe Peak, 11000-12000 ft. (Daniels). 
1023). Redrock lake, 10100 ft. (Ramaley & Robbins). 

Wyominc to CoLorapo and UTAH. 
959. P. Grayi A. Nels. [P. procera Gray]. GRAy’S LOUSE- 

WORT. 

Subalpine slopes at Eldora, 8500-10000 ft. (Daniels, 644). 
Also at Ward (Cockerell). 

WyomiInc to CoLorapo. 


960. P. scopulorum Gray. CRAG LOUSEWORT. 
Above timberline, Arapahoe Peak, 11000-12000 ft. (Daniels, 
882). Redrock lake, 10100 ft (Ramaley and Robbins). 
COLORADO. 


367] FLORA OF BOULDER, COLORADO 219 


Family too. PINGUICULACEAE. Dumort. Butterwort 
family. 


411. UTRICULARIA L. BLappERwort. 


961. U. vulgaris L. Common BLADDERWORT. 
Cold marsh near Long’s Peak (Porter & Coulter). 
NortH AMERICA: Europe: ASIA. 


Eamily 101. OROBANCHACEAE. Lind]. Broom-rape 
family. 


412. THALESIA Raf. CANCER-ROOT. 


962. T. fasciculata (Nutt.) Britton [Aphyllon fasciculatum 
(Nutt.) Gray]. CLUSTERED CANCER-ROOT. 

Plains, mesas and foothills, 5100-8000 ft. (Daniels, 18). All 
the plants collected were parasitic on the roots of Psoralea 
tenuiflora Pursh. My plants, as also some collected by Prof. 
Cockerell north of Boulder, have larger calyx lobes (5-6 mm.) 
than is usual in eastern plants. 

INDIANA to YUKON; COLORADO to CALIFORNIA and Mexico. 


g62a. TT. fasciculata lutea (Parry) Britton. YELLOW cLus- 
TERED CANCER-ROOT. 
Boulder (W. P. Cockerell). 
Range of the type? 


Order 39. PLANTAGINALES. 
Family 102. PLANTAGINACEAE. Lind]. Plantain family. 


413. PLANTAGO L. PLantratn. 


963. P. major L. ComMMoN PLANTAIN. 
Waste places and along ditches, 5100-6000 ft. (Daniels, 
675). 
Cosmopolitan. 
964. P. lanceolata L. ENGLISH PLANTAIN. RIBGRASS. 
Waste places and roadsides, 5100-6000 ft. (Daniels, 793). 
Europe and Asta, now cosmopolitan. 


965. P. Purshii R. & S. [P. Patagonica gnaphalioides ( Nutt.) 
Gray]. PurRsH’s PLANTAIN. 


220 UNIVERSITY OF MISSOURI STUDIES [368 


Common on the plains, 5100-6000 ft. (Daniels, 494). 
Ontario to British CoLumsBiA; Missourt and Texas to 
Arizona and Mexico. 


Order 40. RUBIALES. 
Family 103. RUBIACEAE. Juss. Madder family. 


414, GALIUM L. Benstraw. 


966. G. Vaillantii DC. [G. Aparine Vaillant Koch]. Vait- 
LANT’S BEDSTRAW. 
In gulches and cafions, mainly in the shade, 5100-8000 ft. 
(Daniels, 120). 
Montana and BritisH CoLumMBIA to Mexico. 


967. G. boreale L. NorTHERN BEDSTRAW. 

Common on the mesas, foothills and mountainsides, 5600- 
8600 ft. (Daniels, 89). Also between Sunshine and Ward 
(Rydberg). 

QuEBEc to ALASKA; NEW JERSEY to CALIFORNIA: EUROPE: 
ASIA. 


968. G. flaviflorum Heller. YELLOW-FLOWERED BEDSTRAW. 
In gulches at base of the Flat-irons, 5700-6000 ft. (Daniels, 
499). 
Cotorapo to New Mexico. 
969. G. triflorum Michx. FRAGRANT BEDSTRAW. 
Cafions of the foothills, 6000-8000 ft. (Daniels, 466). 
NEWFOUNDLAND to ALASKA; ALABAMA to CALIFORNIA. 


Family 104. CAPRIFOLIACEAE. Vent. Honeysuckle 
family. 


415. SAMBUCUS L. Exper. 


970. S. microbotrys Rydb. SMALL-BERRIED ELDER. 

Slopes at Ward, 9200 ft. (Daniels, 306). Also between Sun- 
shine and Ward (Rydberg) ; Spencer Mountain at Eldora; 
Silver lake; foot of Long’s Peak; Redrock lake, west of 
Ward (Ramaley). 

SoutH Daxora to WyomMING; CoLorapo to ARIZONA. 


369] FLORA OF BOULDER, COLORADO 221 


g71. S. melanocarpa Gray. BLACK-BERRIED ELDER. 
Sugarloaf Mountain and North Boulder creek (Ramaley). 
ALBERTA to IDAHO, CoLoRADO and OREGON. 


416. VIBURNUM L. Arrowwoop. 


972. V. pauciflorum Pylaie. HiGH-BUSH CRANBERRY. 
Sugarloaf Mountain (Ramaley). 
LasBrapor to ALASKA; PENNSYLVANIA to CoLoRADO and 
ALASKA. 


973. V.Lentago L. SHEEPBERRY. NANNYBERRY. 

Gulch south of Boulder (Rydberg). Also Bluebell Cafion, 
if indeed the locality is not the same (Ramaley). 

MAINE to Manrropa; GEORGIA to COLORADO. 


417. LINNAEA Gron. TWwIN-FLOWER. 


974. 1. Americana Forbes. AMERICAN TWIN-FLOWER. 

South Boulder Peak (Rydberg). Also Magnolia; Eldora; 
Spencer Mountain at Eldora; foot of Arapahoe Peak; hill 
south of Ward (Ramaley). 

GREENLAND to ALASKA; NEw Jersey and Micuican to CoL- 
orADO and Uta. 


418. SYMPHORICARPOS Juss. SNow-BERRY. 


975. S. occidentalis Hook. WESTERN SNOW-BERRY. 

Abundant on the higher mesas and foothills, 5700-8000 ft. 
(Daniels, 94). Also between Sunshine and Ward (Rydberg). 
South Boulder creek (Ramaley). 

MACKENZIE to British CoLtumBia; MicuicAn and Mis- 
SOURI to COLORADO. 


976. §. vaccinioides Rydb. HuckLEeBerry INDIAN CURRANT. 
Sugarloaf; foot of Long’s Peak (Ramaley). 
MontTANA to WASHINGTON ; CoLorADO to NEVADA. 


977. SS. oreophilus Gray. Mountain INDIAN CURRANT. 
Eldora to Baltimore (Rydberg). 
CoLorapo to Uran; New Mexico to ARIzona. 


222 UNIVERSITY OF MISSOURI STUDIES [370 


419. DISTEGIA Raf. FLyY-HONEYSUCKLE. 


978. D. involucrata (Richards.) Cockerell [Lonicera involu- 
crata (Richards.) Banks]. INvoLuUcRED FLY-HONEY- 
SUCKLE. 

Common in cool, deep cafions, 6500-goo0 ft. (Daniels, 340). 
Also from Eldora to Baltimore and in the mountains between 
Sunshine and Ward (Rydberg): Allen’s Park; Eldora; Spen- 
cer Mountain; Redrock lake; Ward (Ramaley). 

QueEsBeEc to ALAsKA; MiIcHIGAN to CALIFORNIA and MeEx- 
ICO. 


Family 105. ADOXACEAE. Fritch. Moschatel family. 


420. ADOXA L. MoscHatet. 


979. A. Moschatellina L. Musx-roor. 

Boulder Cafion (Rydberg). 

Arctic AMERICA to WISCONSIN and CoLorADo: EUROPE: 
ASIA. 


Order 41. CAMPANULALES. 


Family 106. CUCURBITACEAE. Juss. Gourd family. 
421. MICRAMPELIS Raf. Barsam APPLE. 


980. M. lobata (Michx.) Greene [Echinocystis lobata 
(Michx.) T. & G.]. WuLpD BALSAM APPLE. 

Fence-rows and waste places, 5100-6000 ft. (Daniels, 743). 
MAINE to MonTANA; VIRGINIA to COLORADO. 


Family 107. CAMPANULACEAE. Juss. Bellflower family. 


422. CAMPANULA L.  BeELLFLOWER. HAREBELL. 
BLUEBELL. 

g81. C. uniflora L. ARcTIC HAREBELL. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
938). 

Arctic-alpine in the NorTHERN HEMISPHERE. 
982. C. Parryi Gray. PARRY’S HAREBELL. 

Foothills and mountain slopes, 6500-9000 ft. (Daniels, ror). 


371] FLORA OF BOULDER, COLORADO 223 


Also from Eldora to Baltimore (Rydberg). 

Wyominc to Uran; New Mexico to ARIzona. 
983. C. petiolata DC. WHeESTERN BLUEBELL. 

Abundant throughout, 5100-9000 ft. (Daniels, 27). Red- 
rock lake, totoo ft. (Ramaley & Robbins). 

MacKenzie to WasHincton; New Mexico to Uran. 


423. SPECULARIA Heist. VENUS’S LOOKING-GLASS. 
984. S. perfoliata (L.) A. D C. [Legouzia perfoliata (L.) 
Britton]. Common VENUS’S LOOKING-GLASS. 
Common on the plains, mesas and foothills, 5100-8000 ft. 
(Daniels, 56). 
Maine and Onrario to British CoLuMBIA; FLORIDA to 
ARIZONA and OrEGON ; MEXIco. 
985. S. leptocarpa (Nutt.) Gray [Legouzia leptocarpa (Nutt.) 
Britton]. WESTERN VENUS’S LOOKING-GLASS. 
Mesas at foot of the Flat-irons, 5600-6000 ft. (Daniels, 
192). 
Missouri to Montana; TExAs to CoLoRAbo. 


Family 108. LOBELIACEAE. Dumort. Lobelia family. 
424, LOBELIA L. Lopetta. 


986. LL. syphilitica Ludoviciana A. D C. LouisIANA GREAT 
BLUE LOBELIA. 
Along ditches and streams in the plains, 5100-5600 ft. (Dan- 
iels, 784). 
Loutstana and SoutH Daxora to CoLorabo. 


Order 42. VALERIANALES. 
Family 109. VALERIANACEAE. Batsch. Valerian family. 
425. VALERIANA L. VALERIAN. 


987. V. ceratophylla (Hook.) Piper [V- edulis Nutt.]. Enp- 
IBLE VALERIAN. 
Subalpine meadows at Eldora, 8500-go00 ft. (Daniels, 626). 
IpaHo to MontTANnA; CoLorapo to UTAH. 


224 UNIVERSITY OF MISSOURI STUDIES [372 


Order 43. CARDUALES. 
Family 110. AMBROSIACEAE. Reich. Ragweed family. 


426. IVA L. MarsH-ELDER. 


988. I. xanthiifolia (Fresen.) Nutt. BURWEED MARSH-ELDER. 
Common on the plains along streams, and in waste places, 
and following the larger streams several miles into the foot- 
hills and mountains, 5100-7000 ft. (Daniels, 821). Also in 
Sunset Cafion (Rydberg). 
Micuican and SASKATCHEWAN to WASHINGTON ; NEBRASKA 
to New Mexico. 


989. I. axillaris Pursh. SMALL-FLOWERED MARSH-ELDER. 
Railroads and waste places, 5100-6000 ft. (Daniels, 832). 
SASKATCHEWAN to BritisH CoLuMBIA; OKLAHOMA to CAL- 

IFORNIA. 


427. AMBROSIA L. Racweep. 


ggo. A. trifida L. GREAT RAGWEED. HoRSE-CANE. 

Common along streams and in low waste places, 5100-6000 
ft. (Daniels, 378). 

QueseEc to ASsINIBOIA; FLoripA to CoLorapo. 


ggoa. A. trifida integrifola (Muhl.) T. & G. ENrTrIRE-LEAVED 
RAGWEED. 
With the preceding (Daniels, 506). 
Range of the type? 


g91. <A. artemisiaefolia L. ComMMON RAGWEED. 
Waste places and fields, 5100-6000 ft. (Daniels, 520). 
Nova Scotia to British CoLtumpBia; Fioripa to CoLoRAbo. 


992. A. psilostachya DC. WESTERN RAGWEED. 

On the plains, especially along railroads, 5100-6000 ft. (Dan- 
iels, 516). Also at Lyons (Rydberg). 

MicHIGAN to SASKATCHEWAN and Ipauo; Loutstana to 
CALIFORNIA and Mexico. 


428. GAERTNERIA Med. 
993. G. tomentosa (Nutt.) Heller [Franseria discolor Nutt.]. 


373] FLORA OF BOULDER, COLORADO 225 


WooLiy GAERTNERIA. 
Along railroads in the plains, 5100-5400 ft. (Daniels, 510). 
SoutH Daxota to Wyominec; Kansas to New Mexico. 


429. XANTHIUM L. Cock Lesur. 


994. X. commune Britton. Common CocKLEBUR. 
Along streams and in waste places, 5100-6000 ft. (Daniels, 
695)- 


Quesec and NEw York to Ura and Arizona. 
Family 111. CARDUACEAE. Necker. Thistle family. 


430. EUPATORIUM L. THoroucHwort. 


995. E. maculatum L. Sporrep JoE-PYE WEED. 

Springy gulch at foot of Flagstaff Hill, 5800-6000 ft. (Dan- 
iels, 801). 

New York to British CoLumBia; Kentucky to NEw 
Mexico. 


431. KUHNIA L. 


995%. K. Hitchcockii A. Nels. Hircucock’s Kuunta. 
Marshall, collected by E. Bethel, (J. C. Arthur, in Mycol- 
ogia, Nov., 1909, p. 233). Host of a fungus, Puccinia Kuhn- 
tae Schw. 
Kansas to CoLoRAbDOo. 
996. K. glutinosa Ell. [K. eupatorioides corymbulosa T. & G.]. 
Sticky KuHNIA. 
Frequent on the plains, mesas, and lower foothills, 5100-6500 
ft. (Daniels, 686). 
Iztino1s to Montana; Kentucky to CoLorapo. 
997. K. Gooddingii A. Nels. Gooppinc’s KUHNIA. 
Plains and mesas, 5100-6000 ft. (Daniels, 727). The type 
is from West Dry Creek, Larimer County, Colorado. 
Cotorapo to Texas and ArIzona. 
432. COLEOSANTHUS Cass. BRICKELLIA. 
g98. C. minor (Gray). Daniels. Nov. comb. [Brickellia grandi- 
flora minor Gray; C. umbellatus Greene; C. congestus 
A. Nels.].  UMBELLATE BRICKELLIA. 
Common on the foothills and mountains, 5800-10000 ft. 


226 UNIVERSITY OF MISSOURI STUDIES [374 


(Daniels, 551). Also mountains between Sunshine and Ward 
(Rydberg). 

Wyominc to NEw Mexico and Arizona. 
gg99. C. albicaulis Rydb. WHITE-STEMMED BRICKELLIA. 

Among rocks and in rocky cafions in the foothills, 6000-8500 
ft. (Daniels, 822). 

CoLorapo to New Mexico and Uran. 

433. LACINIARIA Hill. Biazinc-star.  Burron- 
SNAKEROOT. 
tooo. L. punctata (Hook.) Kuntze [Liatris punctata Hook.]}. 
DOTTED BLAZING-STAR. 

Abundant on the plains, mesas, and meadows on the foot- 
hills and mountains, 5100-go0o ft. (Daniels, 615). Also in the 
mountains between Sunshine and Ward (Rydb.). Very varia- 
ble; an extreme form, gathered in alkali flats near Boulder 
lake, (Daniels, 768) simulates L. acidota (Engelm. & Gray) 
Kuntze. 

Iowa to SASKATCHEWAN and Montana; TrExas to ARrI- 
ZONA. 
tool. L. ligulistylis A. Nels. PURPLE-BRACTED BLAZING-STAR. 

Bear Cafion, 7000 ft. (Daniels, 758). 

SASKATCHEWAN to COLORADO. 


434, GUTIERREZIA Lag. 
1002. G. longifolia Greene. LONG-LEAVED GUTIERREZIA. 


Common on the plains and mesas, 5100-6000 ft. (Daniels, 


595). 
CoLorapo to New Mexico and Urau. 


1003. G. scoparia Rydb. Broom GUTIERREZIA. 
Plains and mesas, 5100-6000 ft. (Daniels, 984). 
WyYomMInc to CoLorapo. 

435. GRINDELIA Willd. Gum prant. 


1004. G. Texana Scheele. TEXAN GUM PLANT. 
Lower Boulder Cafion (Rydberg). 
Texas to New Mexico and Cotorapo. 


1005. G. serrulata Rydb. SrRRULATE GUM PLANT. 


375] FLORA OF BOULDER, COLORADO 227 


Very abundant on the plains, mesas, and foothills, 5100- 
7000 ft. (Daniels, 385). 
WyomINncG to COLORADO. 


1oosa. G. serrulata Rydb. & G. perennis A. Nels. 
Plants apparently intermediate between this species and the 
next were found on the plains in Boulder (Daniels, 837). 


1006. G. perennis A. Nels. PERENNIAL GUM PLANT. 
Plains, mesas, and foothills, 5100-7000 ft. (Daniels, 836). 
SASKATCHEWAN to IDAHO and CoLorapo. 


1007. G. erecta A. Nels. EREcT GUM PLANT. 
Mountains between Sunshine and Ward (Rydberg). 
Wyomine to CoLorapo. 


1008. G. subalpina Greene. SUBALPINE GUM PLANT. 
Common at Eldora, 8500-10000 ft. (Daniels, 845). Also at 
Boulder (Rydberg). 
Wyominec to CoLorapo. 


1009. G. Eldorae Daniels, Nov. sp. ELpora GUM PLANT. 

Plant glabrous, apparently biennial, 3 dm. tall, branched 
from, or near the base, the secondary branches 1-2 headed; 
radical and lower cauline leaves oblanceolate, 3-6 cm. long, 
slender-petioled, remotely toothed or incised; upper cauline 
leaves, linear or narrowly oblanceolate, small and bract-like, 
slightly toothed, subentire, or entire, 1-3 cm. long, 5-8 mm. 
wide; heads copiously glutinous, 1-114 cm. broad; bracts num- 
erous, narrow, the tips squarrose-spreading; rays numerous, 
1-3 mm. wide, barbules of the pappus plainly obvious. 

Eldora, 8500-8700 ft. (Daniels, 859). 

Plant near G. subalpina Greene, but differing in its smaller, 
narrower and less prominently toothed or entire leaves, and 
especially in its smaller heads, which are only about one-half 
as broad. 


436. CHRYSOPSIS Nutt. GoLpEN ASTER. 


to1o. C. hirsutissima Greene. HAtIRIEST GOLDEN ASTER. 
Plains between Boulder and Marshall along railroad, 5400 
ft. (Daniels, 1024). 


228 UNIVERSITY OF MISSOURI STUDIES [376 


NortH Daxota to SASKATCHEWAN ; CoLorapo to ARIZONA. 
t1o10¥4. OC. foliosa Nutt. LEAFY GOLDEN ASTER. 

Redrock lake, 10100 ft. (Ramaley and Robbins). 

MINNESOTA to WASHINGTON ; KANSAS to COLORADO. 
to1r. C. caudata Rydb. CAUDATE GOLDEN ASTER. 

Mesas, foothills, and mountain slopes, common, 5700-9000 
ft. (Daniels, 356). 

COLORADO. 
zor2. C. villosa (Pursh) Nutt. VILLOUS GOLDEN ASTER. 

Abundant on the plains and foothills, 5100-8000 ft. (Daniels, 
I). 

Minnesota to Ipano; Texas to NEw Mexico. 

1013. C. amplifolia Rydb. AMPLE-LEAVED GOLDEN ASTER. 

Foothills and mountain slopes, 6000-8000 ft. (Daniels, 687). 
Also at Ward, and Longmont (Rydb.). 

CoLoRADO. 

1014. C. Bakeri Greene [C. imcana Greene; C. compacta 
Greene]. BAKER'S GOLDEN ASTER. 

Mountainsides at Eldora, 8500-9000 ft. (Daniels, 862). A 
plant was gathered in Gregory Cafion, which appears interme- 
diate between this and the preceding. 

Montana and IpaHo to NEw Mexico. 


1o15. C.arida A. Nels. ARID GOLDEN ASTER. 

Boulder (Rydb.). 

Kansas to Montana; New Mexico to ARIZONA. 
to16. C. resinolens A. Nels. RESINOUS GOLDEN ASTER. 

Plains and foothills, 5100-7000 ft. (Daniels, 293). 

Wyominc to CoLorapo. 
1o16a. C. resinolens obtusata A. Nels. OBTUSE-LEAVED RESI- 

NOUS GOLDEN ASTER. 

Foot of the Flat-irons, and mountainsides at Eldora, 6000- 
gooo ft. (Daniels, 809). Also mountains between Sunshine 
and Ward (Rydberg). 

Range of the type, but usually at higher altitudes. 


i017. C. hispida (Hook.) Nutt. [C. villosa hispida Gray]. 
HISPID GOLDEN ASTER. 


377] FLORA OF BOULDER, COLORADO 229 


Plains about Boulder, 5100-6000 ft. (Daniels, 831). 
SASKATCHEWAN to ALBERTA; NEw Mexico to ARIZONA. 


1018. C. Cooperi A. Nels. COooPEeR’s GOLDEN ASTER. 
Long’s Peak near timberline, the type locality, (A. Nels). 
CoLorAbo. 


437. CHRYSOTHAMNUS Nutt. RassitT-BRUSH. 


ro1g. C. Parryi (Gray) Greene [Bigelovia Parryi Gray]. 
PARRY’S RABBIT-BRUSH. 
Subalpine valley at Eldora, 8700 ft. (Daniels, 866). 
WyomInc to COLORADO. 


1020. C. graveolens (Nuti.) Greene [C. mauseosus graveo- 
lens (Nutt.) Piper]. HEAvy-SCENTED RABBIT-BRUSH. 
Mesa south of the Chautauqua grounds, Boulder, (Rama- 
ley). 
Nepraska to Montana; New Mexico to Uraun. 

1021. C. pulcherrimus A. Nels. FAIREST RABBIT-BRUSH. 
Alkali flat east of Boulder near Owen’s lake, 5200-5300 ft. 

(Daniels, 663). 

Montana to CoLorapo. 
1o2ta. C. pulcherrimus fasciculatus A. Nels. FASCICULATE 
RABBIT-BRUSH. 
Boulder creek, the type locality (A. Nels.). 

1022. C. elegans Greene. HANDSOME RABBIT-BRUSH. 
Subalpine valley at Eldora, 8700 ft. (Daniels, 867). 
COLORADO. 

438. SIDERANTHUS Nutt. Srar-FLOWeERr. 
1023. S. annuus Rydb. ANNUAL STAR-FLOWER. 
Arapahoe Road east of Boulder, 5300 ft. (Daniels, 726). 
NEBRASKA and CoLorapo to TEXAS. 
1024. §. spinulosus (Pursh) Sweet [Aplopappus spinulosus 
(Pursh) DC.]. SpPINULOSE STAR-FLOWER. 
Frequent on the plains, 5100-5700 ft. (Daniels, 473). 
MINNESOTA to SASKATCHEWAN and Montana; TExas to 
ARIZONA. 
439. PYRROCOMA Nutt. 
1025. P.crocea (Gray) Greene [A. croceus Gray]. YELLOW 


230 UNIVERSITY OF MISSOURI STUDIES [378 


PyRROCOMA. 
Boulder (Rydb.). 
Wvominc to New Mexico and Arizona. 
440. OREOCHRYSUM Rydb. Movuwnratn: corp. 


1026. 0. Parryi (Gray) Rydb. [Aplopappus Parryi Gray]. 

Parry’S MOUNTAIN GOLD. 

Slopes of Green Mt.; common in the mountains at Eldora, 
ascending on Arapahoe Peak to the timberline, 7000-11000 ft. 
(Daniels, 752). Also mountains between Sunshine and Ward 
(Rydb.). 

Wyominc to New Mexico and Arizona. . 


441. TONESTUS A. Nels. 


1027. T. pee (T. & G.) A. Nels. [Aplopappus pygmaeus 
(T. & G.) Gray; Macronema pygmaeum (T. & G.) 


Greene]. Pycmy ToNnesTUS. 
Arapahoe Peak above timberline, 11000-12000 ft. (Dan- 
iels, 917). 
Wyominc to CoLorapo. 
442. SOLIDAGO L. GoLpDEN Rop. 
1028. §. decumbens Greene [S. humilis nana Gray]. DEcuM- 
BENT GOLDEN ROD. 
Barren ridges at Glacier lake, and above timberline on 
Arapahoe Peak, 9000-12000 ft. (Daniels, 641). 
WYOMING to CoLorabo. 


1o28a. §. decumbens minuescens A. Nels. DwaArr DECUM- 
BENT GOLDEN ROD. 
Redrock lake, 1oroo ft. (Ramaley and Robbins). 
Range of the type. 


1029. §. oreophila Rydb. [S. humilis Patterson Gandoger]. 
MounTAIN-LOVING GOLDEN ROD. 

Abundant on the foothills and mountains, 6000-11000 ft. 
(Daniels, 529). Also between Sunshine and Ward (Ryd- 
berg). 

MACKENZIE to COLORADO. 


1030. §. dilatata A. Nels. OPEN-TOPPED GOLDEN ROD. 


379] FLORA OF BOULDER, COLORADO 231 


Mountains between Sunshine and Ward (Rydberg). Ac- 
cording to A. Nelson authentic specimens have been found 
from the type locality only, Yellowstone Park. 

Wyominc to CoLorApo. 


rogt. S&S. pallida (Porter) Rydb. [S. speciosa pallida Porter]. 
PALE GOLDEN ROD. 

Mesa at foot of Flagstaff Hill, 5700-6000 ft. (Daniels, 802). 
Also Lower Boulder Cafion (Rydberg). 

Nort Dakota and NesrasKa to COLORADO. 
1032. S§. viscidula Rydb. VuisciD GOLDEN ROD. 

High mesas, foothills, and mountains, 5900-8600 ft. (Dan- 
iels, 375). 

COLORADO. 
1033. S. glaberrima Martens. SMOOTHEST GOLDEN ROD. 

Common on the plains and foothills, 5100-8000 ft. (Dan- 
iels, 616). 

MicuicAn to ALBerta and InpaAno; Missourt to TEXAS and 
ARIZONA. 


1034. 8. concinna A. Nels. [S. Missouriensis extraria Gray]. 
Stout Missouri GOLDEN ROD. 
Plains and foothills, 5100-8000 ft. (Daniels, 977). 
ALBERTA to BritisH CoLumBiA and COLORADO. 


1035. S. Pitcheri Nutt. PircHER’s GOLDEN ROD. 

Along ditches and streams in the plains, 5100-6000 ft. (Dan- 
iels, 505). 

MInNEsoTA to WASHINGTON; ARKANSAS to COLORADO. 
1036. §. polyphylla Rydb. MaAny-LEAVED GOLDEN ROD. 

Along streams in the foothills, especially frequent in Greg- 
ory Cafion, 6000-8000 ft. (Daniels, 823). 

BritisH CoLuMBIA and WASHINGTON to NEw Mexico. 
1037. S. Canadensis L. CoMMON GOLDEN ROD. 

Boulder Cafion near Falls, 7000 ft. (Daniels, 557). 

LABRADOR to MACKENZIE; FLORIDA to COLORADO. 


1038. §. gilvocanescens Rydb. [S. Canadensis gilvocanescens 
Rydb.]. YELLOWISH-GRAY GOLDEN ROD. 


232 UNIVERSITY OF MISSOURI STUDIES [380 


Alkali flats and dry plains about Boulder lake and Owen’s 
lake, 5100-5300 ft. (Daniels, 782). 
Minnesota to NortH Daxota; NEBRASKA to COLORADO. 


1039. S. nana Nutt. DWwarr GOLDEN ROD. 

Dry slopes of Green Mountain, 6000-8100 ft. (Daniels, 825). 
An allied form occurs on the plains. 

Montana to CoLorapo and ARIzoNna. 


1040. §. pulcherrima A. Nels. PRETTIEST GOLDEN ROD. 
Common on the plains about Boulder, 5100-6000 ft. (Dan- 
iels, 983). Also mountains between Sunshine and Ward (Ryd- 
berg). 
Minnesota to NortH Daxota; CoLoraApo to ARIZONA. 


1041. §S. radulina Rydb. HaARSH-LEAVED GOLDEN ROD. 
Plains, mesas, foothills and mountains, frequent, 5600-8000 
ft. (Daniels, 753). Also at Meadow Park (Rydberg). 
CoLorabo to UTAH. 


1042. S. trinervata Greene. THREE-NERVED GOLDEN ROD. 
Boulder Cafion, ascending at least as far as the Falls, 5500- 
7000 ft. (Daniels, 553). 
SoutH DaxKora to WyoMING; CoLorapo to ARIZONA. 


1043. 8. mollis Bartl. [S. nemoralis incana Gray]. Hoary 
GOLDEN ROD. 
Mesas at foot of the Flat-irons, and foothills along Boulder 
Cafion, 5500-8000 ft. (Daniels, 574). 
NortH Dakota to Montana; Texas to COLORADO. 


443. OLIGONEURON Small. 


1044. 0. canescens Rydb. [Solidago rigida humilis Porter]. 
HOARY STIFF GOLDEN ROD. 
Common on the plains, 5100-6000 ft. (Daniels, 781). 
SASKATCHEWAN to MontTAnaA; NEBRASKA to COLORADO. 


444, TOWNSENDIA Hook. 


1045. TT. grandiflora Nutt. LARGE-FLOWERED TOWNSENDIA. 
Common in rough hilly places throughout, 5100-8600 ft. 
(Daniels, 41). 


381] FLORA OF BOULDER, COLORADO 233 


SoutH DaxKota to WyomInc; OKLAHOMA to COLORADO. 


1046. TT. exscapa (Richardson) Porter [T. sericea Hook.]. 
Sirky TOWNSENDIA. 
Common at Boulder (Cockerell). 
SASKATCHEWAN to Montana; Texas to New MExico. 
445. EUCEPHALUS Nutt. 


1047. E. Engelmannii (Gray) Greene [Aster Engelmanniu 
Gray]. ENGELMANN’S ASTER. 

In cafions about Eldora, 8500-10000 ft. (Daniels, 841). 

Montana to British CoLtumBpia; CoLoRADO to WASHING- 
TON. 

1048. E. glaucus Nutt. [Aster glaucus (Nutt.) T. & GJ. 
GLAUCOUS ASTER. 

Hills adjoining Boulder Cafion, and on the slopes of Green 
Mountain, local, 6000-8000 ft. (Daniels, 569). Also moun- 
tains between Sunshine and Ward (Rydberg). 

Wyominc to CoLorapo and UtaH. 


446. ASTER L. Srarwort. 


1049. A. Underwoodii Rydb. UNDERWOOD’s ASTER. 
Cafions and mountain sides at Eldora, 8500-10000 ft. (Dan- 
iels, 1025). Also Eldora to Baltimore (Rydberg). 
WYoMING to CoLoRapo. 


1050. A. Nelsonii Greene. NELSON’S ASTER. 
Subalpine valley at Eldora, 8600-8700 ft. (Daniels, 861). 
WYOMING to COLORADO. 


1051. A. violaceus Greene. VIOLET ASTER. 
Cafions at Eldora, 8600-8700 ft. (Daniels, 554). 
COLORADO. 


1052. A. exiguus (Fern.) Rydb. [A. ciliatus Muhl.] Civiate 
ASTER. 
Common on the plains and foothills, 5100-7000 ft. (Dan- 
iels, 999). Also in Sunset Cafion (Rydb.). 
VERMONT to WASHINGTON; PENNSYLVANIA to ARIZONA and 
MExIco. 


234 UNIVERSITY OF MISSOURI STUDIES [382 


1053. A. crassulus Rydb. THICKISH ASTER. 

Sunset Cafion; common on the plains, 5100-8000 ft. (Dan- 
iels, 720). 

NortH Dakota to IpAHO; CoLorADO to CALIFORNIA. (?) 


1054. A. polycephalus Rydb. MANyY-HEADED ASTER. 

Common on the plains and foothills, 5100-7000 ft. (Dan- 
iels, T1000). 

ALBERTA to NEBRASKA; TEXAS to ARIZONA. 
1055. A. commutatus Gray [A. incanopilosus (Lindl.) Shel- 

don]. WHITE PRAIRIE ASTER. 

Common on the plains and foothills, 5100-7000 ft. (Dan- 
iels, 717). 

MINnNEsSotTA to Wyominc; Kansas to NEvaADA. 
1056. A. laevis L. Smoorn ASTER. 

Cafions and wooded slopes on the foothills, 5800-8000 ft. 
(Daniels, 685). 

Ontario to SASKATCHEWAN; LouisiANA to New Mexico. 


1057. <A. Porteri Gray. PoRTER’S ASTER. 

Abundant throughout, 5100-10000 ft. (Daniels, 697). Also 
mountains between Sunshine and Ward (Rydberg). Very va- 
riable; an extreme form, only 1-1!4dm., high, was col- 
lected on bare ridges at Glacier lake. 

COLORADO. 


1058. A laetevirens Greene. LIGHT-GREEN-LEAVED ASTER. 
Cafions at Eldora, 8600-8700 ft. (Daniels, 858). 
CoLorApo and WYoMING. 


1059. A. coerulescens DC. [A. salicifolius coerulescens (DC.) 
Gray]. CAERULEAN ASTER. 
Swales in the plains, 5100-6000 ft. (Daniels, 995). 
Wyominc to TExAs. 


1060. A. Osterhoutii Rydb. OstrrRHoUT’S ASTER. 

About lakes and swales and along ditches in the plains, 
5100-6000 ft. (Daniels, 779). 

CoLoRAbo. 


383 | FLORA OF BOULDER, COLORADO 235 


to61. A. adscendens Lindl. ASCENDING ASTER. 
Mountains between Sunshine and Ward (Rydberg). 
ASSINIBOIA to COLORADO and NEVADA. 


1062. A. Andrewsii A. Nels. ANDREWS’S ASTER. 
Near Eldora, 9500 ft., the type locality (Nelson). 
COLORADO. 
1063. A. Eatonii (Gray) Howell [A. foliaceus Eatonu Gray ; 
Brachyactis hybrida Greene]. EATON’S ASTER. 


Banks of Boulder creek, 5400 ft. (Daniels, 592). 
Montana to British CoLUMBIA; COLORADO to CALIFORNIA. 


447. MACHAERANTHERA Nees. 


1064. M. Bigelovii (Gray) Greene [Aster Bigelovu Gray]. 
BIGELOW’S ASTER. 

Common on the plains and foothills, 5100-7000 ft. (Daniels, 
724). 

Cotorapo to New Mexico. 
10644%. M. varians Greene. VARYING ASTER. 

Redrock lake, totoo ft. (Ramaley and Robbins). 

Cotorapo to New Mexico. 


1065. M. coronopifolia (Nutt.) A. Nels. WArt-cCRESS-LEAVED 


ASTER. 

Eldora, 8600 ft. (Daniels, 1026). 

SoutH Daxora to Montana; TEXAS to ARIZONA. 

1066. M. aspera Greene. HARSH ASTER. 

High slopes of Green Mountain, 7500-8100 ft. (Daniels, 
209). Also mountains between Sunshine and Ward (Ryd- 
berg). 

CoLoraApo. 

1007. M. Pattersonii (Gray) Greene [Aster Patterson Gray]. 
PATTERSON'S ASTER. 
Caribou (Rydberg). 
CoLoRADO. 
448. ERIGERON L. FLeABAne. 
1068. E. lonchophyllus Hook. LANCE-LEAVED FLEABANE. 


236 UNIVERSITY OF MISSOURI STUDIES [384 


Subalpine bogs at Eldora, 8500-gooo ft. (Daniels, 856). 
SASKATCHEWAN to MonTANA; CoLorRADO to NEVADA. 

1069. E. minor (Hook.) Rydb. SMALLER FLEABANE. 
Aspen bogs at Eldora, 8500-go00 ft. (Daniels, 1027). 
SASKATCHEWAN to BritisH CoLumBIA; CoLorapo to UtTan. 


1070. KE. jucundus Greene [E. acris debilis Gray; E. debilis 
Rydb.]. PLEASANT FLEABANE. 
Massif de 1’ Arapahoe, and Eldora to Baltimore (Ryd- 
berg). 
Hupson Bay to British CoLumMBIA; CoLorApo to UTAH. 


1071. E. pinnatisectus (Gray) A. Nels. [E. compositus pin- 
natisectus Gray]. PINNATE FLEABANE. 
South of Ward (Rydberg). 
WYOMING to CoLoRADO. 


1072. E. compositus Pursh. COMPOSITE FLEABANE. 
Mountains between Sunshine and Ward (Rydberg). Long’s 
Peak (Porter & Coulter; Coulter in Wabash College Herb.). 
Montana to YUKON; CoLorApo to WASHINGTON. 


1073. HE. multifidus Rydb. MULTIFID FLEABANE. 

Ridges at Glacier lake, 8600-9000 ft. (Daniels, 307). Also 
from Eldora to Baltimore (Rydberg). Sugarloaf Moun- 
tain (Cockerell). 

ASSINIBOIA to BriTIsH COLUMBIA ; COLORADO to CALIFORNIA. 


1074. E. trifidus Hook. [E. compositus trifidus (Hook.). 
Gray]. THREE-PARTED FLEABANE. 
Mountains about Ward, 9000-9500 ft. (Daniels, 757). 
ALBERTA and BritisH CotumBiIa to CoLoRApo. 


1075. E. melanocephalus A. Nels. [E. oreocharis Greene]- 
BLACK-HEADED FLEABANE. 
Wet tundras, Arapahoe Peak above timberline, 11000-12000: 
ft. (Daniels, 898). Also at Caribou (Rydberg). 
WYOMING to COLORADO. 
1076. E. simplex Greene [E. uniflorus Auct.]. SIMPLE: 
FLEABANE. 
Wet tundras, Arapahoe Peak above timberline, 11000-12000 


385] FLORA OF BOULDER, COLORADO 237 


ft. (Daniels, 1008). 
LABRADOR and Arctic AMERICA to ALASKA; COLORADO to 
CALIFORNIA: EUROPE. 


1077. HK. leucotrichus Rydb. WHITE-HAIRED FLEABANE. 
Above timberline, Arapahoe Peak, 11000-12000 ft. (Daniels, 

875). Also at Caribou (Rydberg). Probably to be united 

with the preceding, of which it seems but a larger form. 
WyomInc to CoLorabo. 


1078. HK. glandulosus Porter. GLANDULAR FLEABANE. 

High and bare ridges above Sunset between Sugarloaf 
Mountain and Glacier lake, 8500-9000 ft. (Daniels, 642). 
Also Boulder Cafion (Porter and Coulter). 

WyoMING to CoLorapbo. 


1078Y%. E. pumilus Nutt. SMALL FLEABANE. 
St. Vrain creek (Coulter in Wabash College Herb.). 
NortH Dakota to WASHINGTON; KANSAS to UTAH. 


1079. E. salsuginosus (Richardson) Gray. BROAD-RAYED 
FLEABANE. 

Along Arapahoe Trail to Arapahoe Peak above timberline, 
go00-1200 ft. (Daniels, 873). Redrock lake, 1o100 ft. Ramaley 
& Robbins). 

ALBERTA to ALASKA; COLORADO to CALIFORNIA. 


1079a. KE. salsuginosus glacialis (Nutt.) Gray. Ick FLEABANE. 
At Caribou (Rydberg). Redrock lake, 1o1oo ft. (Rama- 
ley and Robbins). 
Wyominc to New Mexico and Urau. 


1080. KE. superbus Greene. SUPERB FLEABANE. 

Rich slopes of Green Mountain, 7000-8100 ft. (Daniels, 
973). Also mountains between Sunshine and Ward (Ryd- 
berg). 

COLORADO. 


1081. KH. salicinus Rydb. WuILLOW FLEABANE. 
Boulder Cafion on the hill slopes, 5700 ft. (Daniels, 288). 
COLORADO. 


238 UNIVERSITY OF MISSOURI STUDIES [386 


1082. E. macranthus Nutt. LARGE-FLOWERED FLEABANE. 
Common in the foothills and mountains, 6500-10000 ft. 
(Daniels, 472). Also at Sunset, and from Eldora to Balti- 
more (Rydberg). 
Montana to BritisH CoLumBIA; CoLorApo and UTAH to 
OREGON. 


1082a. E. macranthus mirus A. Nelson. WoNDERFUL FLEA- 
BANE. 

Boulder County, the type locality (Nelson). 

1083. KE. speciosus D C. SHowy FLEABANE. 
Mountains between Sunshine and Ward (Rydberg). 
Montana to WASHINGTON; CoLoRADO and Uta _ to 

OREGON. 

1084. E. subtrinervis Rydb. THREE-NERVED FLEABANE. 
Mountainsides at Eldora, 8500-9000 ft. (Daniels, 646). 
Soutu Daxota and Wyominc to New Mexico. 


1085. HE. eximius Greene. CHOICE FLEABANE. 

Boulder Cafion above the Falls and on mountainsides at 
Eldora, 7o00-go00 ft. (Daniels, 860). Also from Eldora to 
Baltimore (Rydberg). 

CoLoravo. 

1086. E. Smithii Rydb. SmITH’s FLEABANE. 
Subalpine meadows at Eldora, 8500-go00 ft. (Daniels, 865). 
COLORADO. 


1087. E. ramosus (Walt.) B. S. P. [E. strigosus Muhl.]. 
COMMON FLEABANE. 
Fields and waste places on the plains, 5100-6000 ft. (Daniels, 
570). 
Nova Scotia to British CoLumBIA; FLorIpA to CALt- 
FORNIA. 


1088. KE. Bellidastrum Nutt. Daisy FLEABANE. 
Mesas at foot of Flat-irons, 5700-6000 ft. (Daniels, 691). 
SoutH Daxota to Wyominc; Kansas to ARIZONA. 


1089. E. divergens T. & G. DIVERGENT FLEABANE. 


387] FLORA OF BOULDER, COLORADO 239 


Plains and mesas about Boulder and Marshall, 5100-6000 ft. 
(Daniels, 435). 
NEBRASKA to WASHINGTON; TEXAS to CALIFORNIA. 


togo. KE. flagellaris Gray [E. stolonifer Greene]. STOLon- 
IFEROUS FLEABANE. 
Abundant on the plains, 5100-6000 ft. (Daniels, 3). 
SoutH Daxota to Wyominc; New Mexico to UTAH. 


4481. WYOMINGIA A. Nels. MountTaIn palsy. 


Iogt. W. cana (Gray). A. Nels. [Erigeron canus Gray]. 
Hoary MOUNTAIN DAISY. 
Sunset Cafion (Rydberg). 
SoutH Daxota to Wyominc; NesrAska to NEw Mexico. 


449, LEPTILON Raf. Horseweep. 


tog2. L. Canadense (L.) Britton [Erigeron Canadensis L.]}. 
COMMON HORSEWEED. 
Fields and waste places, common, 5100-8000 ft. (Daniels, 
585). 


NortH America, thence spreading throughout the world. 


tog2a. L. Canadense pusillum (Nutt.) Daniels. Nov. comb. 
[Erigeron pusillus Nutt.]|. DwArr HORSEWEED. 
The common form of the foothills, 144-1 dm. high, and but 
few-flowered, 6000-8000 ft. (Daniels, 694). 


450. ANTENNARIA Gaertn. EVERLASTING. CAT’s- 
FOOT. 


1093. A. media Greene. Meprum cat’s-FOoT. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
1005). 

Monrana to British CoLuMBIA; COLORADO to CALIFORNIA. 


1094. A. umbrinella Rydb. Umper car’s-Foor. 

Arapahoe Peak above timberline, 11000-12000 ft. (Daniels, 
932). 

Montana and IpaHo to CoLorapo. 


1095. A. concinna E. Nels. 
\ 


240 UNIVERSITY OF MISSOURI STUDIES [388 


Alpine forest at Ward, 9000-9300 ft. (Daniels, 304). 
CoLorapo to UTAH. 


1096. A. rosea (D. C. Eaton) Greene. Rosy cat’s-Foor. 
Common throughout the foothills and mountains, and de- 
scending to the mesas and plains along gulches, 5700-9000 ft. 
(Daniels, 775). Also North Boulder Peak and from Eldora 
to Baltimore (Rydberg). 
ALBERTA to YUKON; COLORADO to CALIFORNIA. 


1097. A. imbricata E. Nels. ImpBrIcATE CAT’S-FOOT. 
At timberline, Arapahoe Peak, 10500-11000 ft. (Daniels, 


934). 
Montana to CortorApo and Uran. 


1098. A. corymbosa A. Nels. [A. nardina Greene]. CorymM- 
BED CAT’S-FOOT. 
Alpine forest at Ward, 9000-9300 ft. (Daniels, 305). 
Montana and Orecon to CoLorabo. 


1099. A. parvifolia Nutt. [A. formosa Greene; A. microphylla 
Rydb.]. SMALL-LEAVED CAT’S-FOOT. 
Common on barren knolls throughout, 5100-10000 ft. (Dan- 
iels, 702). 
SASKATCHEWAN to BritisH CoLtumMBiA; NEBRASKA to NEW 
Mexico. 


1100. A. oxyphylla Greene. SHARP-LEAVED CAT’S-FOOT. 
Common on the mesas, foothills, and mountains, 5700-10000 
ft. (Daniels, 115). 
SoutH Dakota to Montana; NEBRASKA to COLORADO. 


1101. A. aprica Greene. SUNNY CAT’S-FOOT. 

Mountains at Ward, a dwarf form, 4 cm. high, goo0-9300 ft. 
(Daniels, 1028). Also Eldora to Baltimore(Rydberg). Piper, 
however, Cont. U. S. Nat. Herb. 11, 605, makes this species 
identical with A. parvifolia Nutt. 

SoutH Daxota to ALBERTA; NEw Mexico to UTAH. 

1102. A. marginata Greene. MARGINATE CAT’S-FOOT. 

Foothills along Boulder Cafion, 6500-8000 ft. (Daniels, 
1029). The plants have leaves glabrous and bright green 


389] FLORA OF BOULDER, COLORADO 241 


above. 
CoLtorapo to New Mexico and Arizona. 
1103. A. pulcherrima (Hook.) Greene [A. Carpathica pul- 
cherrima Hook.]. FAtREST CAT’S-FOOT. 
Long’s Peak (Porter & Coulter). 
SASKATCHEWAN and YuKON to WASHINGTON and CoLo- 
RADO. 


1104. A. anaphaloides Rydb. FALSE PEARLY EVERLASTING. 
Massif de I’ Arapahoe (Rydberg). 
MonTaNna and OREGON to CALIFORNIA. 


451. ANAPHATIS D C. PrARLY EVERLASTING. 


1105. A. subalpina (Gray) Rydb. [A. margaritacea subalpina 
Gray]. SUBALPINE PEARLY EVERLASTING. 

Common throughout the foothills and mountains, 6000-10000 
ft. (Daniels, 552). Also between Sunshine and Ward (Ryd- 
berg). 

SoutH Daxorta to BritisH CoLtumBriA; CoLorADo to CAL- 
IFORNIA. 


452. GNAPHALIUM L. Cupweep. 


1106. G. Wrightii Gray. WRriGHT’s CUDWEED. 

Boulder Cafion near Falls, 7400 ft. (Daniels, 1030). Also 
Meadow Park and at Lyons (Rydberg). 

Cotorapo and New Mextco to CALtrornia and Mexico. 


1107. G. sulphurescens Rydb. SuLPHURESCENP CUDWEED. 
Boulder (Rydberg). 
Wyominc to WAsHINGTON; TExAs to NEw MExtco. 


1108. G, palustre Nutt. MarsH CUDWEED. 
Aspen bogs at Glacier lake, go00 ft. (Daniels, 711). 
Montana to British CoLumMBIA; CoLoRApDO to CALIFORNIA. 
453. GYMNOLOMIA H. B. K. 


1109. G. multiflora (Nutt.) B. & H. Many-rLowerepD Gym- 
NOLOMIA. 

Boulder Cafion near the Falls, at Eldora, and in Sunset 

Cafion, 6000-10000 ft. (Daniels, 565). Also between Sunshine 


242 UNIVERSITY OF MISSOURI STUDIES [390 


and Ward (Rydberg). 
Montana to Nevapa; NEw Mexico to ARIZONA. 


454. RUDBECKIA L. Cone-FLoWER. 
1110. R. flava Moore. YELLOW CONE-FLOWER. 
On the plains and foothills, 5100-8000 ft. (Daniels, 428). 
Nortu Daxorta and WyomING to CoLorapbo. 


1111. R. laciniata L. GrAyY-HEADED CONE-FLOWER. 
GOLDEN GLOW. 
Common along streams, 5100-9500 ft. (Daniels, 561). 
Quesec to IpaAHo; FLoripa to ARIZONA. 


455. RATIBIDA Raf. 


1112. R. columnaris (Sims) D. Don [Lepachys columnaris 
(Sims) T. & G.]. LoNnG-HEADED CONE-FLOWER. 
Abundant on the plains and mesas, 5100-6000 ft. (Daniels, 
21). 
SASKATCHEWAN to BritisH CoLumBiIA; TENNESSEE to 
Texas, ARIZONA and Mexico. 


1112a. R. columnaris pulcherrima (D C.) D. Don. Brown 
LONG-HEADED CONE-FLOWER. 
With the type but much less frequent, 5100-6000 ft. (Dan- 
iels, 201). 
Range of the type. 
456. WYETHIA Nutt. 
1113. W. amplexicaulis Nutt. CLASPING-LEAVED WYETHIA. 
Arapahoe Pass (Rydberg). 
MontTANA to BritisH CoLtuMBIA ; CoLoRADO to NEVADA. 
457. HELIANTHUS L. SuNnFLower. 
1114. H. lenticularis Doug]. ComMoNn SUNFLOWER. 
Plains, mesas and lower foothills, especially in denuded 
soils, 5100-7000 ft. (Daniels, 400). 
Nort Daxora to InpaHo; Texas to ARIZONA. 
1114a. H. lenticularis coronatus Cockerell. REp-sTREAKED 


SUNFLOWER. 
Found by Mrs. T. D. A. Cockerell near her home in Boulder. 


391 | FLORA OF BOULDER, COLORADO 243 


t115. 4H. petiolaris Nutt. PrTIoLED SUNFLOWER. 

Common in waste places and denuded soils throughout ex- 
cept in the alpine region, 5100-9500 ft. (Daniels, 67). Also 
from Eldora to Baltimore (Rydberg). 

MInneEsora and SASKATCHEWAN to OrEGON ; TEXAS to CAL- 
IFORNIA. 


trisa. H. petiolaris phenax Cockerell. 
Boulder, the type locality (Cockerell). 


1116. H. subrhomboideus Rydb. SuBRHOMBOID SUNFLOWER. 
Locally frequent on the mesas fronting the Flat-irons, 5700- 
6000 ft. (Daniels, 656). 
Manrrosa to Montana; NEBRASKA to COLORADO. 


1117. H. pumilus Nutt. Dwarr suNFLOWER. 

Abundant on the plains, mesas, and foothills, 5100-7500 ft. 
(Daniels, 59). 

WyoMING and Cotorapo. 


1118. H. grosse-serratus Martens. COARSELY TOOTHED SUN- 
FLOWER. 
Lowlands and stream-flats in the plains, 5100-5400 ft. (Dan- 
iels, 670). 
New York to WyomiInc; PENNSYLVANIA to TExas and 
CoLoRADOo. 
1119. H. fascicularia Greene [H. giganteus Utahensis D. C. 
Eaton; H. Utahensis A. Nelson]. UTAH SUNFLOWER. 
Boulder (Rydberg). 
AssINIBoIA to ALBERTA; COLORADO to ARIZONA. 
458. HELIANTHELLA T. & G. 


1120. H. quinquenervis Gray. FIVE-RIBBED FALSE SUNFLOWER. 
In cafions and on rich mountain slopes at Eldora and along 
the Arapahoe Trail, 8600-10000 ft. (Daniels, 843). Also EI- 
dora to Baltimore (Rydberg). 
Soutu Dakota to IpAHo and CoLorapo. 


459. VERBESINA L. CrowNeeEArp. 


1121. V. exauriculata (Rob. & Greenm.) Cockerell [Verbesina 


244 UNIVERSITY OF MISSOURI STUDIES [394 


encelioides exauriculata Rob. & Greenm.; Ximenesia 
exauriculata’ (Rob. & Greenm.) Rydb.]. WestTERN 
CROW NBEARD. 
Boulder (Rydberg). In great abundance near Lafayette 
(Cockerell). 
Montana to Texas and ARIZONA. 


460. BIDENS L. Bur-Maricorp. 

1122. B. vulgata Greene. COMMON STICKTIGHTS. 

Along ditches and in low grounds, 5100-5500 ft. (Daniels, 
788). 

Ontario to BririsH Cotumpia; NortH Caro.ina to CALt- 
FORNIA. 
1123. B .glaucesens Greene. GLAUCESCENT BUR-MARIGOLD. 

Along ditches and streams and in swales, 5100-5500 ft. (Dan- 
iels, 667). Hardly glaucescent as it occurs about Boulder. 

SASKATCHEWAN to Montana; Kansas to CoLorapo. 


11234. B. tenuisecta Gray. WESTERN SPANISH NEEDLES. 
Marshall lake (W. W. Robbins). 
CoLorapo to IpAHO; Texas to Arizona and Mexico. 


461. THELESPERMA Less. 
1124. T. gracile Gray. SLENDER 'THELESPERMA. 

Common on the plains and mesas, and occurring also on the 
open mountain slopes, 5100-9000 ft. (Daniels, 233). Also 
between Sunshine and Ward (Rydberg). 

NEBRASKA to Cotorapo; Missourr and Texas to ARIZONA. 


462. PICRADENIOPSIS Rydb. 
1125. P. oppositifolia (Nutt.) Rydb. [Bahia oppositifoha 
Nutt.]. OpposiTE-LEAveD BAHIA. 
Boulder (Rydberg). 
SoutH Daxota to Montana; TEXAS to ARIZONA. 


463. BAHIA Lag. 
1126. B. dissecta (Gray) Britton [B. chrysanthemoides Gray]. 
FINE-LEAVED BAHIA. 
Infrequent along cafions, 6000-9000 ft. (Daniels, 719). Also 


393] FLORA OF BOULDER, COLORADO 245 


mountains between Sunshine and Ward (Rydberg). 
Wvyominec to New Mexico and ArIzona. 


464, TETRANEURIS Greene. 
1127. T. lanigera Daniels, Nov. nom. [Actinella lanata Nutt., 
1841; not Pursh, 1814; Tetraneuris lanata (Nutt.) 
Greene]. WOOLLY ACTINELLA. 


Barren ridges between Sunset and Glacier lake, 7000-9000 
ft. (Daniels, 643), Redrock lake, 10100 ft. (Ramaley and 
Robbins). Pursh’s A. lanata equals Eriophyllum lanatum 
(Pursh) Forbes, a plant of the Pacific coast, hence a new 
name is necessary for Nuttall’s plant. If Actznea Juss. should 
replace Tetraneuris Greene (as the new Gray’s Manual main- 
tains), our plant becomes Actinea lanigera Daniels. 

WyomincG and CoLorabo. 


465. RYDBERGIA Greene. 


1128. R. grandiflora (T. & G.) Greene [Actinella grandiflora 
T. & G.]. LArGE-FLOWERED RYDBERGIA. 
Arapahoe Peak above timberline, 10500-13500 ft. (Daniels, 
878). Also mountains south of Ward (Rydberg). 
Montana to New Mexico and CALIrornia. 


466. HELENIUM L. SNEEZEWEED. 


1129. H. montanum Nutt. MouNTAIN SNEEZEWEED. 

Along ditches and streams in the plains east of Boulder, 
5100-5400 ft. (Daniels, 780). 

Minnesota and SASKATCHEWAN to WASHINGTON; Misstss- 
IPPI to COLORADO. 


467. GAILLARDIA Foug. 


1130. G. aristata Pursh. AWNED GAILLARDIA. 

Common on the plains, mesas and foothills, 5100-8000 ft. 
(Daniels, 37). 

SASKATCHEWAN to British CoLUMBIA; CoLoRADO to ORE- 
GON. 


468. BOEBERA Willd. 


246 UNIVERSITY OF MISSOURI STUDIES [394 


1131. B. papposa (Vent.) Rydb. [Dysodta chrysanthemordes 
Lag.]. FETID MARIGOLD. 
Roadsides, waste places and sandy stream flats, 5100-7000 ft. 
(Daniels, 594). Also at Lyons (Rydberg). 
Ouio to Montana; ARKANSAS to ARIZONA and Mexico. 


469. ANTHEMIS L. Mayweep. 


1132. A. Cotula L. ComMMON MAYWEED. 
Yards and waste places, 5100-6000 ft. (Daniels, 593). 
Europe, thence to NortH AMERICA. 


470. ACHILLEA L. Yarrow. 


1133. A. lanulosa Nutt. [A. MMillefoliwm lanulosa (Nutt.) 
Piper]. WooLLy YARROW. 
Open grounds throughout, 5100-9000 ft. (Daniels, 360). 
Also mountains between Sunshine and Ward (Rydberg). 
ONTARIO to YUKON; OKLAHOMA to CALIFORNIA and MEx- 
ICO. 


47014. CHRYSANTHEMUM L. OxeEyE patsy. 


1133%. C. Leucanthemum L. CoMMON OXEYE DAISY. 
Bluebird Mine, in quantity, 1910 (Miss Pearl Turner). 
Europe, thence to NortH AMERICA. 


471. ARTEMISIA L. Wormwoop. SAcE-prusH. Muc- 
WORT. 
1134. A. dracunculoides Pursh. PRAIRIE MUGWORT. 
Abundant on the plains, mesas and foothills, 5100-8000 ft. 
(Daniels, 833). 
Montana to Ipano; TEXAS to CALIFORNIA. 


1135. A. Scouleriana (Besser) Rydb. [A. desertorum Scou- 
leriana Besser]. SCOULER’S SAGE. 
Gregory Cafion and adjacent mesas and foothills, 5600-8000 
ft. (Daniels, 612). 
BritisH CoLuMBIA to COLORADO. 


1136. A. Forwoodii S. Wats. Forwoop’s sace. 
Abundant on the plains, mesas, and foothills, 5100-7500 ft. 
(Daniels, 992). 


395] FLORA OF BOULDER, COLORADO 247 


AsstnrporA to Montana and New Mexico. 


1137. A. spithamaea Pursh. ALPINE MUGWORT. 
Arapahoe Peak above timberline, 11000-12500 ft. (Daniels, 
920). 
Laprapor to ALASKA and CoLoRADo. 
1138. A. frigida Willd. BaArrENS SAGE. 
Common in dry open places throughout, 5100-10000 ft. 
(Daniels, 451). 
Hupson Bay to ALAsKA; Texas to UTAH. 
1139. A. scopulorum Gray. Rocky MOouNTAIN SAGE. 
Mountains south of Ward (Rydberg). 
WyYominc to CoLorapo and Utan. 


1140. A. biennis Willd. BreEnnrAL WoRMWOOD. 
Boulder Cafion at Eldora, 8600 ft. (Daniels, 846). 
Nova Scotia to MACKENZIE; PENNSYLVANIA to CALIFORNIA. 


1141. A. saxicola Rydb. [A. Chanussoniana saxatilis Besser]. 
ROcK SAGE. 
Long’s Peak (Rydberg). 
WyYomMInG to CoLoRApO. 
1142. A. silvicola Osterh. SyYLVAN SAGE. 

Subalpine slopes and valleys at Eldora, 8600 ft. (Daniels, 
996). 

CoLorapo to New Mexico. 

1143. A. gnaphalodes Nutt. CUDWEED SAGE. 

Common on the plains, mesas, foothills, and lower moun- 
tain slopes, 5100-9000 ft. (Daniels, 755). The original spell- 
ing of the specific name is as above, though the word should 
have been gnaphalhoides. 

North Dakota to Wyominc; ARKANSAS to COLORADO; 
naturalized eastward to New Yorr and ONTARIO. 


1144. A. Brittonii Rydb. Brirron’s SAGE. 
Plains, mesas, and foothills, 5100-8000 ft. (Daniels, 967). 
Cotorapo to UTAH. 


1145. A. diversifolia Rydb. DiIvERSE-LEAVED SAGE. 
Valleys in the foothills, 6000-8000 ft. (Daniels, 966). 


248 UNIVERSITY OF MISSOURI STUDIES [396 


IpaAHo to BritisH CoLUMBIA; CoLorapo to WASHINGTON. 
1146. A. tridentata Nutt. ComMMON SAGE-BRUSH. 

Barren mountain slopes near Bluebird Mine, between 
Glacier lake and Eldora, 8500-9500 ft. (Daniels). 

NEBRASKA and Montana to BritisH CoLuMBIA; CoLoRADO 
to CALIFORNIA. 


472. PETASITES Tourn. Sweer coLtsroor. 
1147. P. sagittata (Pursh) Gray. ARROW-LEAVED SWEET 
COLTSFOOT. 
Eldora to Baltimore (Rydberg). Eldora lake, May, 1910 
(W. W. Robbins). 
Lagprapor to ALASKA; MINNESOTA to COLORADO. 
473. ARNICA L. Arnica. 
1148. A. platyphylla A. Nels. Broap-LEAVED ARNICA. 
Arapahoe Trail just below timberline on Arapahoe Peak, 
gooo-10500 ft. (Daniels, 948). 
Montana and IpAHo to CoLorapo. 


1149. A. pumila Rydb. [A. parvifolia Greene]. Dwarr ar- 
NICA. 
Gregory Cafion, 6600 ft. (Daniels, 903). 
Wyomine to CoLtorapo and UtaH. 


1150. A. cordifolia Hook. NHEART-LEAVED ARNICA. 

In the wooded region throughout, 6000-11000 ft. (Dan- 
iels, 270). Also Eldora to Baltimore; between Sunshine and 
Ward; and Massif de I’ Arapahoe (Rydberg). 

Montana to British CoLumMsBIA; CoLorApo to CALIFORNIA. 


1151. A. Rydbergii Greene. RyDBERG’S ARNICA. 
Eldora to Baltimore (Rydberg). 
Montana to CoLorabo. 


1152. A. subplumosa Greene [A. Chamissonis longinodosa A. 
Nels.].  SUBPLUMOSE ARNICA. 
Boulder Cafion above the Falls, 7000-8000 ft. (Daniels, 537). 
Montana to CoLorapo. 
1153. A. pedunculata Rydb. PEDUNCLED ARNICA. 
Under pines in the mesas south of the Chautauqua grounds, 


397] FLORA OF BOULDER, COLORADO 249 


5800-6000 ft. (Daniels, 176). Gulch south of Boulder (Ryd- 
berg). 
Nortu Daxota to WASHINGTON ; COLORADO to CALIFORNIA. 


1153%4. A. monocephala. Rydb. SINGLE-HEADED ARNICA. 
Long’s Peak (Porter & Coulter). 
Montana and IpAHo to CoLoRapo. 


1154. A. Parryi Gray [A. eradiata (Gray) Heller]. Parry’s 
ARNICA. 

Arapahoe Trail just below timberline, Arapahoe Peak, thence 
well toward Eldora, gooo-1to500 ft. (Daniels, 946). Also at 
Caribou (Rydberg). 

Montana to British CotumeiA; CoLtorApo to WASHING- 
TON. 


474, SENECIO L. Grounpsev. 
1155. §. scopulinus Greene [S. Bigelovii Halli Gray]. Hatv’s 
GROUNDSEL. 
Subalpine meadows at Eldora, 8600 ft. (Daniels, 624). 
Wyominc to CoLorapo. 

1156. §. chloranthus Greene. GREEN-FLOWERED GROUNDSEL. 
Subalpine bogs at Eldora, 8600 ft. (Daniels, 990). 
COLORADO. 

1157. S. pudicus Greene. BASHFUL GROUNDSEL. 

Along Boulder Cafion, and at Eldora, 7000-10000 ft. (Dan- 
iels, 547). Also between Sunshine and Ward (Rydberg). 
COLORADO. 

1158. SS. carthamoides Greene. ALPINE GROUNDSEL. 

Arapahoe Peak above timberline, 10500-11000 ft. (Daniels, 


943). 
WyomING to COLORADO. 


1159. S. blitoides Greene. BLITE GROUNDSEL. 
Arapahoe Peak above timberline, 10500-12000 ft. (Daniels,. 
1006). 
COLORADO. 
1160. S. triangularis Hook. TRIANGULAR-LEAVED GROUNDSEL. 
Common in subalpine bogs and along stream banks at El- 


250 UNIVERSITY OF MISSOURI STUDIES [398 


dora, and ascending to timberline, Arapahoe Peak, 8600-11000 
ft. (Daniels, 635). Also between Sunshine and Ward (Ryd- 
berg). 
ALBERTA to ALASKA; COLORADO to CALIFORNIA. 
1161. §. admirabilis Greene. ADMIRABLE GROUNDSEL. 
Subalpine bogs at Eldora, 8600 ft. (Daniels, 650). 
WyYoMING to COLORADO. 


1162. §. lapathifolium Greene. LAPATHUS-LEAVED GROUND- 
SEL. 
High slope near snow above Bloomerville, gooo-10000 ft. 
(Daniels, 315). 
COLORADO. 


1163. §. crassulus Gray. THICKISH GROUNDSEL. 
Above timberline, Arapahoe Peak, 10500-11000 ft. (Daniels, 
945). Also at Ward; and Eldora to Baltimore (Rydberg). 
Montana to IpAHo; CoLorapo to UTAH. 


1164. S. rapifolius Nutt. TURNIP-LEAVED GROUNDSEL. 
Boulder Cafion near Falls, 7000-8000 ft. (Daniels, 543). 
SoutH Daxora to IpAHO and CoLorano. 


1165. S. hydrophilus Nutt. WATER-LOVING GROUNDSEL. 

Alpine valley near snow above Bloomerville, go00-10000 ft. 
(Daniels, 319). 

Montana to CoLtorapo and NEvADa. 
1166. §. Hookeri Gray. HooKEr’s GROUNDSEL. 

Eldora to Baltimore (Rydberg). 

ALBERTA and BritisH COLUMBIA to COLORADO. 
116614. §. Columbianus Greene. COoLUMBIAN GROUNDSEL. 

Middle Boulder Caton gooo ft. (Coulter in Wabash College 
Herb.). 

This is, in part at least, the S. Jugens Parryi Eaton of Porter 
& Coulter. 

SASKATCHEWAN to ALASKA; MINNESOTA to COLORADO. 
1167. S. perplexus A. Nels. PERPLEXING GROUNDSEL. 

North slope of Flagstaff Hill, 6000 ft. (Daniels, 148). Plant 
too old, the basal leaves gone, perhaps S. dispar A. Nels. 


399] FLORA OF BOULDER, COLORADO 251 


Redrock lake, roroo ft. (Ramaley & Robbins). Middle Boul- 

der Cafion (Porter & Coulter in Wabash College Herb.). 

Also from Eldora to Baltimore, and at Boulder (Rydberg). 
Wyominc and IDAHO to CoLorRAbo. 


1168. §. atratus Greene [S. lugens foliosus Gray]. Leary 
GROUNDSEL. 

Arapahoe Trail just below timberline, Arapahoe Peak, thence 
to Eldora, 8600-10500 ft. (Daniels, 947). Also at Ward; be- 
tween Sunshine and Ward; and Eldora to Baltimore (Ryd- 
berg). 

CoLorabo. 


1169. §. Purshianus Nutt. PuRsH’s GROUNDSEL. 
Redrock lake totoo ft. (Ramaley & Robbins). 
SASKATCHEWAN to BritisH CoLumBiA; TExAs to UTAH. 


1170. §. Harbourii Rydb. Harsour’s GROUNDSEL. 
Mountains south of Ward, the type locality, and between 
Sunshine and Ward (Rydberg). 
COLORADO. 


1171. §. Plattensis Nutt. PLATTE RAGWORT. 

Common on the plains and mesas, 5100-6000 ft. (Daniels, 
36). 

Ontario to SoutH Dakota; Missourt and TExAs to CoLo- 
RADO. 


1172. §, salicmus Rydb. WILLOW RAGWORT. 
Foothills about Boulder, 6000-7000 ft. (Daniels, 1031). 
COLORADO. 


1173. SS. Nelsonii Rydb. [S. rosulatus Rydb.]. NELSON’S RAG- 
WORT. 

Exceedingly abundant throughout, and occurring in a maze 
of forms so confluent that any segregation seems impossi- 
ble, 5100-11000 ft. (Daniels, 210). Also at Caribou; and be- 
tween Sunshine and Ward (Rydberg). 

CoLorabo. 


1174. S. Fendleri Gray. FENDLER’S RAGWORT. 


252 UNIVERSITY OF MISSOURI STUDIES [400 


Plains and foothills about Boulder, 5600-8000 ft. (Daniels, 
10). 

Cotorapo to UTaH and New Mexico. 
1175. S. lanatifolius Osterh. [S. Fendleri lanatus Osterh.]. 

WOOLLY-LEAVED RAGWORT. 

warren ridges, Glacier lake to Eldora, 8500-go00 ft. (Dan- 
iels, 218). Basal leaves very crisp. 

CoLoRADO. 


1176. S. Balsamitae Muhl. [S. aureus Balsamitae (Muhl.) 
T. &G.; S. flavulus Greene; S. flavovirens Rydb. in part]. 
NARROW-LEAVED GOLDEN SQUAW-WEED. 

Long’s Peak (Porter & Coulter). 
Quesec to MaryLaAnp northwestward across the continent. 


1177. §. longipetiolatus Rydb. LONG-PETIOLED RAGWORT. 
Plains at Boulder, uncommon, 5600 ft. (Daniels, 61). 
WyomincG to COLORADO. 


1178. §S. crocatus Rydb. [S. aureus croceus Gray; S. dimor- 
phophyllus Greene; S. heterodoxus Greene]. SAFFRON 
RAGWORT. 

Arapahoe Peak above timberline, and at Eldora, 8600-12000 
ft. (Daniels, 870). Also on Long’s Peak (Rydberg). 
WyYomMInc to CoLorapo. 


1179. §. cymbalariodes Nutt. [S. aureus borealis T. & G. 
NORTHERN GOLDEN RAGWORT. 
Subalpine meadows at Glacier lake, gooo ft. (Daniels, 705). 
MACKENZIE to CoLorapo and Utau. 
1180. S. pseudaureus Rydb. FALSE GOLDEN RAGWORT. 
Long’s Peak (Rydberg). 
Mackenzie to British CoLtumpiA; NEw Mexico to NE- 
VADA. 


1180%. §. mutabilis Greene [S. aurellus Rydb.]. MurTasie 
RAGWORT. 
Redrock lake, totoo ft. (Ramaley & Robbins). 
COLORADO. 


1181. §. ambrosioides Rydb. RAGWEEDLIKE GROUNDSEL. 


4or| FLORA OF BOULDER, COLORADO 253 


Common in the mountainous region, 7000-10000 ft. (Dan- 
iels, 629). Also at Ward (Rydberg). 
NortH Dakota to Montana; New Mexico to ARIZONA. 


1182. §. Riddellii T. & G. [S. filifolius Fremontu T. & G.]. 
RIDDELL’S GROUNDSEL. 
Frequent on the plains about Boulder, 5100-6000 ft. (Dan- 
iels, 481). 
NEBRASKA to CoLtorapo; Texas to New Mexico. 
1183. S. multicapitatus Rydb. MANy-HEADED GROUNDSEL. 
Plains about Boulder, 5600 ft. (Daniels, 401). 
Cotorapo to New Mexico and Arizona. 


1184. §. spartioides T. & G. BrooM-LIKE GROUNDSEL. 
Along Boulder Cafion road, 5500 ft. (Daniels, 804). Also 
mountains between Sunshine and Ward (Rydberg). 
NEBRASKA to WYOMING; TExAs to ARIZONA. 


475. CIRSIUM Hill. Tuist.e. 


1185. (. Parryi (Gray), Cockerell. Nov. comb. [Cnicus Par- 
ryt Gray; Carduus Parryt (Gray) Greene]. Parry’s 
THISTLE. 

Boulder (Rydberg). 
Cotorapo to NEw Mexico and Urau. 


1186. €. scopulorum (Greene) Cockerell. Nov. comb. [Cni- 
cus ertocephalus Gray; Carduus scopulorum Greene]. 
CRAG THISTLE. 

Arapahoe Peak above timberline, 10500-12000 ft. (Daniels, 

887). Also at Ward (Rydberg). 

COLORADO. 


1187. C.- griseum (Rydb.) Cockerell. Nov. comb. [Carduus 
griseus Rydb.]. GRAY THISTLE. 
Ward (Rydberg). 
COLORADO. 


1188. ©. Americanum (Gray), Daniels. Nov. comb. [Cnzcus 
Americanus Gray; Carduus Centaureae Rydb.; Cirsium 


UNIVERSITY OF MISSOURI STUDIES [402 


iS) 
OL 
ass 


Centaureae (Rydb.) Cockerell. Nov. comb.]. KNapweEep 
THISTLE. 

Common in the foothills and mountains, 6000-10000 ft. 
(Daniels, 442). Also mountains between Sunshine and Ward 
(Rydberg). 

WyomiInc to CoLorapo. 
1188a. C. Americanum (Gray), Daniels. C. griseum (Rydb.) 

Cockerell. 

Ward (Rydberg). 

T1884. C. acaulescens (Gray) Daniels; Nov. comb. C. 
Americanum (Gray) Daniels. 
Plains and foothills near Boulder (Rydberg). 


1189. C. erosum (Rydb.) Cockerell. Nov. comb. [Carduus 
erosus Rydb.|]. EROSE-BRACTED THISTLE. 
Boulder Cafion, 7000-7500 ft. (Daniels, 1032). Bracts 
merely erose, otherwise like the preceding. 
COLORADO. 


1190. C. Coloradense (Rydb.) Cockerell. Nov. comb. [Carduus 
Coloradensis Rydb.]. CoLoRADO THISTLE. 
Subalpine valley at Eldora, and frequent along the Arapahoe 
Trail, 8600-10000 ft. (Daniels, 855). 
COLORADO. 


1191. C. Plattense (Rydb.) Cockerell. Nov. comb. [Carduus 
Plattensis Rydb.]. PLATTE THISTLE. 
Plains about Boulder, 5100-6000 ft. (Daniels, 63). 
NEBRASKA to COLORADO. 


1192. C. undulatum (Nutt.) Spreng. [Cwicus undulatus 
(Nutt.) Gray; Carduus undulatus Nutt.]. 
- Common on the plains, 5100-6000 ft. (Daniels, 673). 
MicHIGAN to AsstnrBoriA and Montana; Texas to UTAH. 


1193. C. megacephalum (Nutt.) Cockerell. Nov. comb. [Cni- 
cus undulatus megacephalus (Nutt.) Gray ; Carduus mega- 
cephalus Nutt.]. LLARGE-HEADED THISTLE. 

Plains about Boulder, 5100-6000 ft. (Daniels, 986). 


403 | FLORA OF BOULDER, COLORADO 255 


SoutH Daxora to Ipano; Missourt to Texas and CotLo- 
RADO. 


1194. €. ochrocentrum Gray [Cuicus ochrocentrus Gray; 
Carduus ochrocentrus (Gray) Greene]. YELLOW-SPINED 
THISTLE. 

Plains, 5100-6000 ft. (Daniels, 1033). 
NEBRASKA to CoLorApo; TExas to ARIZONA. 


476. CENTAUREA L. Srar THISTLE. 


1195. C. Cyanus L. BLuEBoTrLe. CoRNFLOWER. BACHELOR'S 
BUTTON. 
Escaped into roadsides and streets about Boulder, 5300-5600 
ft. (Daniels, 140). 
Europe, thence to NortH AMERICA. 


Family 112. CICHORIACEAE. Reich. Chicory family. 
477. PTILORIA Raf. 


1196. P. ramosa Rydb. BRANCHING PTILORIA. 
Boulder (Rydberg). 
Nepsraska and Montana to CoLorAbo. 


1197. P. pauciflora (Torr.) Raf. [Stephanomeria runcinata 
Nutt.]. .FEw-FLOWERED PTILoRia. 
Plains about Boulder, 5100-6000 ft. (Daniels, 475). Also 
between Sunshine and Ward (Rydberg). 
CoLtorapo to Nrvapa; TEXAS to ARIZONA. 


478. TRAGOPOGON L. Satsiry. 


1198. T. pratensis L. YELLOW GOAT’S-BEARD. 
Boulder Cafion road and about Boulder, 5100-7000 ft. (Dan- 
iels, 559). 
Europe, thence to North AMERICA. 
1199. T. porrifolius L. Sausiry. Oyster PLANT. 
Common about Boulder, 5100-6000 ft. (Daniels, 17). 
Europe, thence to NortH AMERICA. 
t1gga. T. porrifolius L. x T. pratensis L. 
Aurora St., Boulder (Cockerell). 


256 UNIVERSITY OF MISSOURI STUDIES [404 


479, CICHORIUM L. Curtcory. 
1200. C. Intybus L. Common cHIcory. 
Along roadsides and in waste places, 5100-5600 ft. (Dan- 
iels, 1034). 
Europe, thence to North AMERICA. 
480. LYGODESMIA D. Don. 


1201. L. grandiflora T. & G. LARGE-FLOWERED LYGODESMIA. 
Roadside at entrance to Boulder Cafion and along the streets 
in Boulder, 5300-5600 ft. (Daniels, 166). 
Wyomine to IpAHO; CoLorApo to ARIZONA. 


12014. L. juncea (Pursh) D. Don. RusH-Lixe LyGopEsMIA. 
Common about Boulder (Ramaley). 
MINNESOTA to SASKATCHEWAN and ALBERTA; MIssourRI to_ 
New Mexico. 


481. CREPIS L. Hawkx’s-BEarD. 


1202. C. petiolata Rydb. PrTIOLED HAWK’S-BEARD. 

Gregory Cafion, and aspen bogs at Glacier lake, 6800-go00 
ft. (Daniels, 351). Redrock lake, roroo ft. (Ramaley & Rob- 
bins). 

WyomineG and CoLorapo. 


1202%. C. glaucella Rydb. GLAUCESCENT HAWK’S-BEARD. 
Redrock lake, roroo ft. (Ramaley & Robbins). 
Montana to CoLorabo. 


120234. §. perplexa Rydb. PrRPLEXING HAWK’S-BEARD. 
Redrock lake, 1o1co ft. (Ramaley & Robbins). 
NortH Daxorta and ALBERTA to NEBRASKA and COLORADO. 


1203. C. runcinata (James) T. & G. RUNCINATE HAWK’s- 
BEARD. 
Ward, 9200 ft. (Cockerell). 
Norru Daxota and ALBERTA to COLORADO. 


1204. C. denticulata Rydb. ToorTHEeD HAWK’S-BEARD. 
Aspen bog at Glacier lake, 3500-9000 ft. (Daniels, 706). 
Wyominc to CoLoraApo and Uran. 


405 | FLORA OF BOULDER, COLORADO Diet) 


1205. C. angustata Rydb. NARROW-LEAVED HAWK’S-BEARD. 
North slope of Flagstaff Hill along Boulder Cafion, 6000 ft. 
(Daniels, 147). 
Montana to WASHINGTON; CoLoRADO to OREGON. 


1206. C. occidentalis Nutt. WersTERN HAWK’S-BEARD. 
Boulder (Rydberg). 
Montana to WASHINGTON ; CoLoRADO to CALIFORNIA. 
1207. C. alpicola (Rydb.) A. Nels. ALPINE HAWK’S-BEARD 
Long’s Peak, r1000 ft., the type locality (Nelson). 
Rocky Mountains. 
482. HIERACIUM L. Hawxkweerp. 


1208. H. gracile Hook. SLENDER HAWKWEED. 

At and above timberline under dwarfed spruce, Arapahoe 
Peak, Colo., 10000-12000 ft. (Daniels, 871). Also at Caribou 
(Rydberg). 

Montana and ALasKa to CoLtorapo and CaALirornia. 


1209. H. albiflorum Hook. \HITE-FLOWERED HAWKWEED. 
Wooded banks, Bear Cafion, and other deep cafions in the 
foothills, 6000-8000 ft. (Daniels, 750). Also mountains be- 
tween Sunshine and Ward (Rydberg). 
YuKOoN to Cotorapo and CALIFORNIA. 
1210. H. Fendleri Schultz Bip. FENDLER’s HAWKWEED. 
Under pines, east slope of Flagstaff Hill, 6000-7000 ft. (Dan- 
iels, 215). 
Sout Daxota to New Mexico and Arizona. 


48214. NOTHOCALAIS Greene. 


12104. N. cuspidata (Pursh) Greene [Troximon cuspidatum 
Pursh]. Cusprpate TROXIMON. 
St. Vrain Canon (Coulter in Wabash College Herb.). 
Itt1noIs to SourH Daxora; Missourr to COLORADO. 
483. AGOSERIS Raf. 

1211. A. agrestis Osterh. FIELD AGOSERIS. 

Common on the foothills and mountains, 6000-9000 ft. (Dan- 
1els, 1035). 

COLORADO 


258 UNIVERSITY OF MISSOURI STUDIES [406 


1212. A. Leontodon Rydb. DANDELION AGOSERIS. 
Mountainsides at Eldora, 8600-10000 ft. (Daniels, 991). 
Sout Daxora to Montana, CoLorapo to ARIZONA. 


1213. A. glauca (Nutt.) Greene [Troximon glaucum Nutt.]. 
GLAUCOUS AGOSERIS. 
Abundant on the plains, 5100-6000 ft. (Daniels, 20). 
SASKATCHEWAN to WASHINGTON ; CoLorApo to UTAH. 


1214. A. parviflora (Nutt.) Dietr. [Troximon glaucum parvi- 
florum (Nutt.) Gray]. SMALL-FLOWERED AGOSERIS. 
Frequent about Boulder, and in meadows and grassy bogs at 
Eldora, 5100-8600 ft. (Daniels, 622). 
NortH Dakota to ALBERTA and CoLoRAbo. 
1215. A. laciniata (Nutt.) Greene [Stylosanthus laciniatus 
Nutt.]. CUT-LEAVED AGOSERIS. 
Boulder (Rydberg). 
Wvyominc to IDAHO; CoLoRADO to CALIFORNIA. 
1216. A. humilis Rydb. Low acoseErts. 
Bogs at Eldora, 8600-9000 ft. (Daniels, 633). 
WyYoMING to COLORADO. 


1217. A. rostrata Rydb. BEAKED AGOSERIS. 

Abundant on the mesas and foothills, 5700-9000 ft. (Daniels, 
232). Also mountains between Sunshine and Ward (Ryd- 
berg). A plant was gathered in Gregory Cafion, which bore 
two heads of flowers. 

COLORADO. 

484. TARAXACUM Hall. Danpetion. 
1218. T. Taraxacum (L.) Karst. [T. officinale Weber]. Com- 
MON DANDELION. 

Common in fields and along roadsides, 5100-7000 ft. (Dan- 
iels, 261). Ward, 9200 ft. (Cockerell). 

Europes, thence to NorrH AMERICA. 


1218%. T. montanum Nutt. Mountain DANDELION. 


Redrock lake, 10100 ft. (Ramaley & Robbins). 
Montana to CoLorapo. 


485. LACTUCA L. Lerruce. 


407 | FLORA OF BOULDER, COLORADO 259 


1219. L. integrata (Gren. & Godr.) A. Nels. [L. virosa 
Auct., not L.] PRIcKLY LETTUCE. 
Common in waste places, 5100-6000 ft. (Daniels, 653). 
Europe, thence to North AMERICA. 


1220. L. Canadensis L. CoMMON WILD LETTUCE. 

Boulder Cafion, and along other streams in the foothills, 
6000-7000 ft. (Daniels, 564). 

Nova Scotia to SASKATCHEWAN; FLORIDA to COLORADO. 


1221. L. Ludoviciana (Nutt.) DC. LoumstANA LETTUCE. 
Between Sunshine and Ward (Rydberg). 
NortH Carorina to Missourt and CoLorapo and Texas. 


1222. L. pulchella (Pursh) DC. Swowy Lerruce. 
Plains about Boulder, 5100-6000 ft. (Daniels, 399). 
SASKATCHEWAN to WASHINGTON; Missouri to CALIFORNIA. 


1223. L. spicata (Lam.) Hitche. [L. leucophaea Gray]. 
COMMON BLUE LETTUCE. 
Sunset Cafion, 6300 ft. (Daniels, 982). Also Boulder (Ryd- 
berg). 
NEWFOUNDLAND to Manitosa; NortH CARroLINA to CoLo- 
RADO. 


486. SONCHUS L. Sow-ruisttLe. 

1224. §. arvensis L. FIELD SOW-THISTLE. 

Waste places in Boulder, 5300-5600 ft. (Daniels, 1036). 

Europe, thence to NortH AMERICA. 
1225. S.asper (L.) Hill. Harsu sow-THISTLeE. 

Boulder Cafion road, and Gregory Cafion road, 5600-6000 ft. 
(Daniels, 458). 

Europe, thence to NortH AMERICA. 


MAN 


ae 


aiai 


MOF 
qu) 


BIBLIOGRAPHY 


Allison, Edith M. Bibliography and history of Colorado botany. 
Univ. of Colo. Studies, 6, 51-76. 

Ashe, W. W. New North American plants; some new species 
of Crataegus. N. C. Agric. Exper. Sta. Bull. 175, 1900. 

Bennett, Mrs. Cora. List of Colorado trees. Plant World, 11, 
66. 

Brandegee, T. S. The flora of southwestern Colorado. Bull, 
U. S. Geol. and Geog. Surv. of the Territories, 2, 227-248. 

Brandegee, T. S. New species of western plants. Bot. Gaz., 
27, 444-457. 

Butler, A. A. Ferns near Colorado Springs, Colo. Am. Nat., 30, 
750, 751. 

Cassidy, James, and O’Brine, David. Some Colorado grasses. 
Bull. Colo. Agri. Coll. Exper, Sta., 12, 5-138. 

Cockerell, T. D. A. Notes on the Flora of Custer County, Colo- 
rado. West Amer. Scientist, Sept. 1888, 5, 6; Oct. 1888, 10-12; 1889, 
10-12. 

Cockerell, T. D. A. Notes on Castilleia. Bull. Torr. Bot. Club, 
17, 34-37. 

Cockerell, T. D. A. Contributions towards a list of fauna and 
flora of Wet Mountain valley. West Amer. Scientist, Nov. 1889, 
153-155. 

Cockerell, T. D. A. The North American species of Hymenoxys. 
Bull. Torr. Bot. Club, 31, 461-509. 

Cockerell, T. BD. A. The alpine flora of Colorado. Am. Nat., 
40, 861-878. 

Cockerell, T. D. A. The genus Crataegus in Colorado. Univ. 
of Colo. Studies, 5, 41-45. 


Coulter, John M. Manual of botany of the Rocky Mountain 
region. 1885. 


409] [261] 


262 UNIVERSITY OF MISSOURI STUDIES [410 


Coulter, John M. New manual of botany of the Central Rocky 
Mountains. Revised by Aven Nelson. No date (c. 1909). 


Eastwood, Alice. A popular flora of Denver, Colorado. No date. 


Gray, Asa. Enumeration of the plants of Dr. Parry’s collec- 
tion in the Rocky Mountains in 1861. Am. Journ. Sci., Ser. II, 33, 
237-248; 404-411; 34, 249-261; 330-341. 


Gray, Asa. Enumeration of the species of plants collected by 
Dr. C. C. Parry and Messrs. Elihu Hall and J. P. Harbour, during 
the summer and autumn of 1862, on and near the Rocky Mountains, 
in Colorado Territory, lat. 36°-41°. Proc. Phil. Ac. Nat. Sci. 1863- 
55-80. 

Gray, Asa. Classification of botanical collections made during 


the San Juan Reconnaissance of 1877 in Colorado and New Mexico. 
Ann. Report of Chief of Engineers, 1878, apx. SS, 1833-1840. 


Greene, Edward L., and Baker, Carl F. New or noteworthy 
plants from the Gunnison water-shed, Colorado. Plantae Bakerianae, 
3, Fasc. I, 1901. Dr. Greene has also published numerous articles 
dealing with the Colorado flora in the various volumes of Pittonia, 
and also in his Leaflets. 


Holm, Theodor. The Alpine Gramineae of Colorado. Bot. Gaz. 
46, 422-444, 

Holzinger, John M. Descriptions of new plants from Texas 
and Colorado. U. S. Nat. Herb., Contrib. 1, 286-287. 


Melvill, J.C. Notes on a small collection of plants collected in 
southwest Colorado by Mr. J. Cardwell Lees. Mem. and Proc. 
Manch. Lit. and Phil. Soc. Ser. 4, 7, 214-219. 

Nelson, Aven. Analytical key to some of the common flowering 
plants of the Rocky Mountain region. 1902. 


Nelson, Aven. Contributions from the Rocky Mt. Herbarium. 
II. Bot. Gaz. 31, 394-409; III. ibid., 34, 21-35; IV. ibid., 34, 355-71; V. 
ibid., 37, 260-279; VI. ibid., 40, 54-67; VII. ibid., 42, 48-54. 

Nelson, Aven. Plantae Andrewseae. Proc. Biol. Soc. Wash., 
17, 178-180. 


411] FLORA OF BOULDER, COLORADO 263 


Nelson, Aven. Some western plants and their collectors. Proc, 
Biol. Soc. Wash., 20, 33-40. 

Nelson, Elias. Revision of western North American Phloxes. 
1889. 

Osterhout, G. E. New plants from Colorado. Bull. Torr. Bot. 
Club, 26, 256, 257; 27, 506-508; 28, 644, 645; 30, 236, 237; 32, 611-613. 

Osterhout, G. E. Notes on Colorado plants. Bull. Torr. Bot. 
Club, 21, 357, 358. 

Osterhout, G. E. Colorado notes. Muhlenbergia, 1, 139-143. 


Pammel, L. H., and Scribner, F. Lamson. Some notes on 
grasses collected in 1895 between Jefferson, Iowa, and Denver, 
Colo. Proc. Soc. Prom. Agri. Sci. 17, 94-104. 

Parry, C. C. Catalogue of plants. U. S. Geol. Surv., Ann. Re- 
port, 4, 484-487. 

Penard, E. An enumeration of the plants collected by M. E. 
Penard in Colorado during the summer of 1892. Herb. of Colum- 
bia Coll., Contrib. 75. 

Penard, E. (List of plants collected in Colorado, 1891). Bull. 
Herb. Boiss. 3, No. 5. 


Porter, T. C. Catalogue of plants. U. S. Geol. Surv. of Wy. and 
Contiguous Terr., 4, 472-484. 

Porter, T. C., and Coulter, J. M. Synopsis of the flora of Col- 
orado. U.S. Geol. Surv. of the Terr., Miscell. Pub. 4. 

Ramaley, Francis. Plants of the Florissant region in Colorado. 
Univ. of Colo. Studies, 3, 177-185. 

Ramaley, Francis. Scientific expedition to northeastern Col- 
orado, 8. Botany, account of collections made. Univ. of Colo. 
Studies, 4, 161-164. 

Ramaley, Francis. The silva of Colorado. I. Univ. of Colo. 
Studies, 4, 109-122; II, ibid., 4, 187-197; III. ibid., 5, 47-63. 


Ramaley, Francis. New Colorado species of Crataegus. Bot. 
Gaz. 46, 381-384. 

Ramaley, Francis, and Robbins, W. W. Redrock lake near 
Ward. Univ. of Colo. Studies, 6, 133-168. 


264 UNIVERSITY OF MISSOURI STUDIES [412 


Rothrock, J. T. Catalogue of plants. U. S. Geog. Surv. west 
of the 100th meridian, 6, 58-352. 


Rydberg, P. A. Studies on the Rocky Mountain flora. I. Bull. 
Torr. Bot. Club, 27, 169-189; II., ibid., 528-538; IIL, ibid., 614-636; 
IV. ibid., 28, 20-38; V. ibid., 266-283; VI. ibid., 499-513; VII. ibid., 
29, 145-160; VIII. ibid., 232-246; IX. ibid., 680-693; X. ibid., 30, 
247-262; XI. ibid., 31, 399-410; XII. ibid. 555-575; XIII., ibid. 631- 
666; XIV. 32, 123-188; XV. ibid. 597-611; XVI. ibid., 33, 137-161; 
XVII. ibid., 34, 35-50; XVIII. ibid., 417-487; XIX. ibid., 36, 531-541; 
XX. ibid., 675-698; XXI. ibid., 37, 127-148; XXII. ibid., 313-335; 
XXIII. ibid., 443-471; XXIV. ibid., 541-557; XXV. ibid., 38, 11-23. 

Rydberg, P. A. The oaks of the Continental Divide north of 
Mexico. Bull. N. Y. Bot. Gard., 1901. 

Rydberg, P. A. Astragalus and its segregates as represented 
in Colorado. Bull. Torr. Bot. Club, 32, 657-668. 


Rydberg, P. A. Flora of Colorado. Bull. 100, Colo. Agric. Coll. 
Exper. Sta. 

Rydberg, P. A., and Shear, C. L. A report upon the grasses 
and forage plants of the Rocky Mountain region. Bull. 5, Div. of 
Agros., U. S. Dept. Agric. 

Sudworth, G. B. Forest flora of the Rocky Mountains. Bull. 2, 
Div. Forest., U. S. Dept. Agric. 

Thacher, Mrs. G. W. Alpine flowers of Colorado. Appalachia, 
5, 284-291. 

Torrey, John, and Gray, Asa. (A botanical report of plants 
collected by Mr. F. Crentzfeldt). Pacific Railroad report, 2, 125- 
131. 


Vasey, George. Report on grasses of Kansas, Nebraska, and 
Colorado. Bull. 1, Botanic. Div., U. S. Dept. of Agric. 


413 | FLORA OF BOULDER, COLORADO 


iS} 
O”’ 
UL 


APPENDIX A. 


Tidestrom in the Am. Midl. Nat. 2, 35, has described as a new 
species this aspen under the name of P. aurea Tidestrom, with 
the remark that it forms forests throughout Colorado, Utah, and 
adjoining territory. But the differences relied upon to separate it 
from Michaux’s species seem to me to be at most varietal, and 
hence I prefer to call the Colorado tree P. tremuloides aurea (Tide- 
strom) Daniels. See page 98. 


INDEX 


INDEX 


References to the Flora are in brackets [ ] 


PAIDIE Seog aires aint ms NN hone [54] | Adder’s-mouth........... 27, [97] 
lasiocarpa... ..24, 31, 36,39, [54] ‘one-leavedse eee eae [97] 
PATON are abe eie aap eoeie eine [112] | Adder’s-tongue.............. [92] 
frACrans asi ais aeieleeveu sree (112) small-flowered............. [92] 
Albroniayiracrant-s <5 4a er [112] | AppER’s-TONGUE FAMILY...... [49] 
PAIGE Tyee wees ark Se hace OnLy) RON NG lopeavn olan icbtuminmolglamlouin yan 222 
GIA HENS 456.56 50 ey Os OZ Moschatellina.... . 29, [222] 
(MATING Soibo og adoebe MO} | ANDYOR NGOS oo oo cekcbuecoss [222] 
NOZGH MDA 5 cco eseoned hd be LO AGGESHS: scoousddondoocusece (257] 
CLAM UNT toes Soha eiersoe [168] ASTESEIS Mean eater ine Tae 257 
HO RUPT oo oo be ope toaob oc [167] PTA UGAl Many ner snanta he ieee 15, [258] 
INCE RAGEAIE ate tise olen [167] Mowe o 506 oso0 80 55 32, 35, [258] 
ENCE ALES Hee sls Srobieate eens [194] laciniataseeeen eee 35, [258] 
ANSUStILOliaseeee eee 16, [194] Weontodonmne noes eee 35, [258] 
Vili Cet OLaeeee ar eeree eee 16, [194] Dalvillorayeeee ee aes 35, [258] 
PAT Hal eae rae tior cies cases cyeve roves [246] TOstratar ss weaeyaeeaee 26, [258] 
lamimlosaseeetcie crores 26, [246] | Agoseris, beaked..............[258] 
Millefolium lanulosa.........[246] Gut-leaviedee ee [258] 
INComasiy lisse eee ene nine [146] dandeliontits verse cpeiseatas [258] 
Arapahoensis...........42, [146] freld ei ees he eee eee [257] 
GuLbIna tae eee eer 42, [146] HEMEL Ecc ossooboasoneuse [258] 
AGG esa coausoeoogaas oc [120] LO wea te OA ace aed sale [258] 
Columbianum....... 33, 35, [120] small-flowereden eee any: [258] 
rks KetrSoiou oginuisleedat Sono 4 2 Ot PAgrimoniaeeeee eerie ee [147] 
ochroleucum........33, 35, [120] Brittoniana occidentalis... .[147] 
LOMOSANMSs ocoogadoons 35), (ANG H] || ZAG INO aoe co oo oon Goonsn oe [147] 
INGOTS Net eer etre eet [87] Western. ise ae ee [147] 
Galamustsayase ancien Th. SZA) |) ANOONARONES seo Go akon obod cs [76] 
AGHOEYMEINGS., oouoscaaceaseges [97] Eyaehinites 5 occoooccosns 32, [76] 
MOnophyllae eee eee one Lal ATIZONIGUIME Eee eae BA lik 
(Acrolaisiaei nitrite eet ee (174] MO lester vac eA 15, [77] 
AleAwINS os cascacdaoo snes (174] occidentales sei idl 
THIEN Boss scacogqcccos [174] |} pseudorepens.....14,18,27, [76] 
OMAL DOM cos eecandes sods [174] | Richardsonii........... 27, [76] 
latifoliatyjacvae so eens [Oe panc time epee 12, lara 
A Gtaealst at iieacis oasis ark clei TO} | Sera obookeossoeoce se [76] 
ALOU bas. eysjescietestsey sheen bie 25, [119] spicatum inerme........... [76] 
eburneasssacisscoce 25m [Oil tenerumbn sear en eee 18, [76] 
CUUTME AE teen tN enemy shinee MMO | CMA gos c nce es do we oo [76] 
Actinea..... [245] VASES Pigg bere tow saloia Co eh 27, [76] 
Jani vera eave tye eee [245] | violaceum.......27,32,41, [76] 
Actinella, grandiflora. .. [245] | CHOU eee [76] 
lei por PAC On we Ae oam Borda PES | NGOS coocc cos soosaos sacs (Hl 
Actinella acter iciecta nl aes no alba. scr bisiindels lap 4a LOA] 
Woolbjsosowadceedocupea dl HA | CAG TO TS:s2 goo dedisiooces Oe 
417] 269 


270 INDEX [418 


References to the Plora are in brackets [ ] 


asperifolia.......... 14,35, [64] longipes saeiichehis coer [115] 
GURUBesoaodonen6o00600,a% [64] SthiCtasaeeeei ennai (115] 
hyemalisncryejiienerriel rts 15, [64] Median damp eee eee 45, [115] 
Rossa ence incest [G4] 7|PAlsinopsiseceeee eee eee ee [116] 
SCOORG ROA ee one ea RAE [64] obtusiloba............. 41, [116] 
fenuiculmisee aera [64] PLOPInquaeeieeeeeeese 41, [116] 
LEMUUS AN Rete Rent ETO [(@es]] || ANTEC Soo bo bods ooob oC ou ks [170] 
DOTEGISH Meds eo eens 64] ROSCA Ae geh eatirahe rye A Nae 46, [170] 
Vallala Raven el aa Och caNtcy arta ay Zip LOU eAluim=rooty nee eee 29, [137] 
thin-leaved yn cly-rsevlneeie eit: {101] bracted ssc seinenacnoer ee (137] 
IIE TESS e Oe eee [182] El all ese ean ae ape ibe aee [137] 
ACAULIS HA eee 26, [183] small-leaved.............. [137] 
Obovatateeroec eee ZA), SS] || ANGERS bio ob doo cd aa aos od [132] 
AN are rn epee eva aha TOM ally ssoidessyeee py nee eae [132] 
INSURE O bien ood aooK ond odEoo [56] Caly cine nee [132] 
Rlantagopeeeecsceiccier 10, [56] MOVUIMUMe eee [132] 
IALISMACEAE\ eiaeiciacie tie: [56] hy Ssumsiswieet-eny eee [132] 
VATETSMIAT RS. erre un unre eee [56] ello ware y MeL ind Me Mane [132] 
Alicalinflatitlorasnncrercrtecs NOK: TOW) Aree oo sles Gude doc on os [190] 
ALKALINAE............. 105) 16 monantha wesc 40, [190] 
INGA ND do oda boaadece coda, Mul Hr eiee ev Oia a usa: Akai a [191] 
Alllioniay ee yeaa cern eben entaye {112] plebejaic ee eae 34, [191] 
GUthUSals ee eee ree tien [112] Flolimin get eases. 40, [191] 
INGA Ss oovvoscedooos von allasl| scopulorum............29, [191] 
lan'ceolatatrcMierr a narrnnie [113] StrGbill Ora eee [190] 
lineaniswe aaa 15))[0 13]; |VAMARYEEIDAL ES.) ) 2) ora [95] 
My Ctagdnearjaweis aes ete (LVAN |) enRNEONS 45 dob bobo bons o6 4 {111] 
ALLTONTACEAB acm rican. [112] | AMARANTH FAMILY.......... {111] 
PNT ia vies eer eee aKa Bat [91] | AMARANTHACEAE............ {111] 
cernuum obtusum.......... [9a}|yAtmaranthuse set) ({111] 
GIGI OLUIER Ee eee (91] albus. Panag rr et in {112] 
(Geverieee eres: 22,28, [91] Dittoidestaa ener 45, [111] 
INURE MSG s'5'5.6 bo 6,46 60 lb 22, [91] SrAeCIZANSHM Ve 45, [112] 
THECURVAEUIM elle eine [91] Powellticeusc nici {111] 
reticulatum.........22,28, [92] GELLOMEXUSH ener ee 45, [111] 
reticulatum deserticola....... [91] | Ambrosia................... [224] 
Allocanyarcneet tna eude [201] artemisiaefolia..........45, [224] 
scopulorum............ 34, [201] psilostachya.........16, 45, [224] 
Allocarya, mountain......... [201] Eri ase vee ae 12, 45, [224] 
PAU ES IO a eres a a Ei {101] INCCOTILO lia eee [224] 
incana virescens............[101] | AMBROSIACEAE..............[224] 
CeMUIOliane mine 2 OHS LLOL Miipamelanchiersn eileen reiee [150] 
Alopecunus:4-4 ae ee LO alnifolian ye aes eee [150] 
Alpin Use eee [63] ellipticanceueenalmenieiee [150] 
aristulacus serene renee 11, [62] oreophila.....20, 22, 25, 30, [150] 
AULD US eee Nera ae Rae [62] polycarpakeron cere 42, [150] 
occidentalis\sannenenicre SOO) [OSI], | evoniewerels Go ooo bed du polo oF [176] 
ALPESTRE Sie iene nae 9, 38 COCCIN GA MT en rae [176] 
/NABUNY NING G 6 e646 bo 684.60 38, 40 | Ammannia, scarlet...........[176] 
Alpinesfiorassaee teens Oks GEL I GANENGUNCIDNDS Geb cb od ono oe o ol Lehil]] 
Alpineitundrassee ieee 38 | AMNICOLAE........ 31, 36, 37 
Alpine zone............. GO) 1 Bi) | YNioolioooosadoosooboes code (159] 
JAUSINACEAB Seneca tee {115] angustifoliasds seeec eee [159] 
Asin ery eae MiMiais seubour eieseneu [115] WAMBO ois Golcialbo bpd e0 22, [159] 
Baicalensis..........37, 39, [115] MIUCKOPNYLUG reece els [160] 
Jamesianayn meri aia {115] DENTE Saat GeNalad olan idoiiecs 15, [160] 
longifolia 33, [115] |) Ampelopsis quinquefolia vitacea[169] 


419 | 


INDEX 


References to the Flora are in brackets [ ] 


AI GDAT ACE AE sya piirtste (151] 
Anaphalis... sco co El] 
margaritacea subalpina... . [241] 
SUubalpinave-.- a5 ane 26, 328 a 
Androceran nae ic seen mk [20 
LODO Ses pera ieee davon sia eR oe {309 
GOSELACAN sels tessiateedoe 15, [209] 
ANNGhO DHA Mocc oo coco odGaanS [57] 
cGhinySOcomas-eeeire 1S sol 
MLIKGCAGUS Heer eeser nile 14, [57] 
QROSOMO Beng oosodeod 600060 [57] 
FATT OSACE eee er eae rh ari ie [188] 
Giffiisayey recess eecdeie cients 39, [188] 
INetOnUIMs. ee sees 30, [188] 
pubeculemtasee ae sect 30, [188] 
septentrionalis............. [188] 
SHDULULET Oe [188] 
subumbellata...........39, [188] 
ATeMOne Rae yes [120] 
Ganadensistmeni eee 37, [121] 
Gylindricaeemrrrerare 18, [121] 
PlObosaeeenrrrcee 25, 35, [120] 
Ren SNUG ICOM teas [121] 
[ND@TICMOs 556 shoo ce bods cay MAO) 
ama asus shies rayerneenyenae {121} 
PILODOSE Mr tee renee [120] 


Long—triitecdsrayin very aelersier 


Bennsylvania-.0-y. 42ers] 
PAIGE i Casey eeu setsicut citer abren [184] 
VaR) Blas cre twee CeO en to mEN [184] 
Gewese oe come sees [184] 
ANGIOSPERMAE.............. [55] 
NDOT SG Horas SO OID De EES [178] 
AbiGaulisha emer ner {178] 
coronopifolia...........14, [179] 
Nittany tebe eec idl cisors {179} 
AI ZO Ra cae eye eee 14, [179] 
AMMISMMEINE ono gGoccse boob aS [239] 
anaphaloides........... 42, [241] 
AUDI CAN ease epse nec pas 32, 42, [240] 
Carpathica pulcherrima..... (241 
Concinna= pee 2, 2, [239] 
COnMMPOE ooo wadooooeds 2, [240] 
OMMOS Gy Verrest ee Ve [240] 
heMloyANo i clo oso cae Hobe 42, [240] 
MAAN o cobooueaoob 446 [240] 
Media Wee aM ene cde ea eUn oe 42, [239] 
TUCKOP NIC ee [240] 
MATIN Ay ern ieuerte ans tvecsice neon [240] 
Oxy p Diy aseerseaciereat rae 26, [240] 
Patwiloliaeneee cia eee 32, [240] 
pulchesmmaeeese eee [241] 
ROSCA i Menstas ec actlctaces ey. (240 
wind one cssedoncoooc 42, [239] 
ENGINES coco oncocco no cs sel HO 
Cotulaten was stepwise 45, [246] 
TIE HO POZOU-- melee ne [190] 


271 

barbellatus.......... 33, 39, [190] 
elegans. )sciynystesusieiee otc 39, [190] 
Anthropophytic plants....... 43 
ANTHROPOPHYTICALES.. 43 
Amticleat sarc raevs se yeains Mette [88 ] 
(Coloradensisnee eae (88] 
elepan sr 2G Miata [88] 
BAND UTLTES MA yarns te ee en oar tie ae [53] 
flexilis. . 24, 25,31, [53] 
ADIOS Ha sucka eee ees [161] 
INDIOS en Us aqyoks taets rata eto 21 
Boulderensis......... 22, [161] 
Aplopappus, croceus.......... [229] 
OHTV isa aera eee oe [230] 

DY SING CUSE ere tere te aaa [230] 
SPULULOSUS HEE eae [229] 
IAP OGVINAGE AB) Peary [193] 
FSD OGY ey ite ete [193] 
AMbIgENnS reteset ee [193] 
androsaemifolium..........[193] 
CAMEO 5 6dosnoocoube [193] 
hypericiolum-e eel LoSl 
live dummies Aenea ee: [193] 
SCOPHLOGIIne ener 26, [193] 
LNB IAW ooo ooo oe oo or [150] 
ANGUS 1 igonoonovoncades 10 
INOUUMN IMIS 56 oo coccoccoas 10 
INGTUS EVs bdiaoes on donb [119] 
coenuilearaeeeerioe 25, 32, 41, [119] 
IAT AD ISIN aiaheniaiaue eee ores [134] 
Connexaninse arenes [134] 
divanica, panne eee eee [135] 
Rendleria. tee aca ae [134] 
Hoelboelit Fendleri......... [134] 
Cilla oun e ctosdonig- ota ie ac [134] 
oxy phivllaeer een it [134] 
poilont phase eeaeenree ere [134] 
INRIAICEAB Ascii aoc eee [87] 
Aragallus. . eed Oa cso tia. 
deexusine sacha aes igo [158] 
Lamberti. . . 14, 18, 35, [159] 
THinOe he _. [158] 
HOMME aiooacdoscovebn us [158] 
WEN OPM aVebetetnee ee ee [158] 
DAtens! Wie ees 14, 35, [158] 
Ruchardsontineeee eee 35, [159] 
SCLICEUS Yea) Wi abate rates 18, [159] 
IARIATE TS Ouz yell HE) RADE eS ALO Rea a ae [87] 
Ara liaiyn Ops cen melee neeteentae [181] 
MUGiGaulismee ire 23, 29, [181] 
ARBUSTALES..... 18, 20,31, 34 
Arceuthobium Americanum....[103] 
canum. Set Graeesit ete LOSI] 
cryptopodum . 3 Sid hip arco [103] 
GLOUULSTLT [103] 
A ctostapnylosseneehe enone [186] 


INDEX [420 


References to the Flora are in brackets [ ] 


272 
Arenaria.. .[116] 
Fendleri.. 41, [116] 
CobhaRbIS Tend mil uty Nl cl gina atclcl alo [116] 
ODEUS Cs ON MPN Me ECAR IE Ay ({116] 
PLO PUNGUC Naw Atalay elt ets [116] 
Mweedyiseae ails aeons 41, [116] 
verna aequicaulis........... {116] 
AT ZEMONE A AM en [126] 
bipinnatifida.............. 126] 
hispida anaciyusr 14, [126] 
intermedia.......... 14, 18, [126] 
Arid brush slope society....31, 34 
ARID AB cys ae NSS 
Aristida esac se eee [60] 
fasciculatasnnseeeeenee 15, [60] 
longisetasseciei ici ioe 15, [60] 
INGORE soe docdenoccoocoes [130] 
Armoracias-eeiserieece 46, [130] 
ANT TI Gans a ets vetial ae eau age [248] 
Chamissonis longinodosa.. . .[248] 
cordifoliasnneene seer 26, [248] 
CLACTCLO PE ARs [249] 
monocephala..-3.54..45..- 249] 
Palriyateos so cide) son 425 (249) 
PATUU OLN eee [248] 
pedunculata........... 20, [248] 
platyphylla............42, [248] 
OMG GetTT FRAG aie aI OU Ian loa [248] 
RMyoloysgubessan daopapioccs vo [248] 
subplumosa............35, [248] 
Anni Gakeeg eine sar sisteicleae) pares [248] 
broad-leaved [248] 
Gowralriteed era po en ute eaters [248] 
heart-leavedimuireiiaceii (248] 
PATEyASeisioeys soe sacle ate aie [249] 
peduncled erica: [248] 
Riydibereeshaey en iaaereceiee [248] 
single-headed.............. [249] 
subplumosesya eee niece [248] 
IAT LOWWOOC EA iu peladleye tile) fisiaots [221] 
Airée misiaZem niin aby inna eeis [246] 
brenni sear elas 34, [247] 
Brittonii............16, 19, [247] 
Chamissoniana saxatilis.....{247] 
desertorum Scouleriana......(246] 
diversifoliaige seein 247] 
dracunculoides...... 16, 19, [246] 
Forwoodii............ 19, [246] 
fricidaeener sori: 19, 43, [247] 
gnaphalodes........... 15, [247] 
Saxicolarien iii irae te atts (247] 
silvicolamameiiciinilicieie 32, [247] 
Scopulonumeny tees 2a) 
Scoulerianassoeee eee [246] 
Spithamacasyn nicer 42, [247] 
tridentata miaterie ee 34, eee! 
ARUM FAMILY........... . [87] 


ASCLEPIADACEAE............ [194] 
ASCLEPIADALES.............. [193] 
INScle piaSHya aor einial aeeae {194] 
Does eb ane See AOU [194] 
incarnata. BAe eyeleuene LOA] 
PUmMilas ac siey ate 16, [194] 
SPECIOSals siecle 14, [194] 
Stenophiyllans sss arian eon [194] 
verticillata pumila.......... [194] 
IAS para gusi nes iin yaa ne [94] 
Officinalissea aes 46, [94] 
Asparagus, common.......... [94] 
ASpenHes yo on eee 33,47, [98] 
American................. [98] 
quaking anaes 32 
Aspen society..............- 24 
Aspidium Filix-mas.......... [49] 
ASpleniumyeee ieee eer [51] 
Andrewsii.............. 30, [51] 
septentrionalis............. [51] 
Trichomanes...........30, [51] 
INS HET aa lata eiai trey a alaeecel areas [233] 
adscendens..............-- [235] 
Andrewsii.............. 32, [235] 
BUG CLOUIT tance [235] 
CULALUS eee ee onehe keene [233] 
coerulescens............12, [234] 
commutatus........... 15, [234] 
crassulus..............16, [234] 
Eatoniinasnenc ie Soccer [235] 
Engelmannit.............. [233] 
EXd PUSS S cep a ntens 16, [233] 
foliaceus Eatonit........... [235] 
QIGUCUS naire oat ala anal [233] 
incanopilosus..............[234] 
laetevanens i444 sere [234] 
IGN 6 oso albedo 6 doo 0 020, (ASE 
INKS ropebtigind a adorei pelivialo trains 0 [233] 
Osterhoutii............ 12, [234] 
IPOiEVSONLU Ae penne 235 
polycephalus........ 16, 26, [234] 
Rotary een 26, 32, [234] 
salicifolius coerulescens.. [234] 
Underwoodii. . AMG ian) [233] 
WiOEGSNGG dalbadebucaddeces [233] 
INSEE RIOR ais eee Uap ea ed poses ea aan 31 
ATIGRE WSESUElonitnetsr ener rete [235] 
ascending wn a see 2S) 
Bigelow Ssce eee ecoenns [235] 
Coeruleanee nen eae 2o-s] 
(UIE ais ares Ube elo aa ow did0.0 [233] 
IDENOMVGhop Bobo don accan 4oo [235] 
Engelmann’s ECE ein 23'S) 
goldentearmm nae oii eer [227] 
HENCOUEhescciciicecoocsoou [233] 
MeNgbNa MES a ee MHY Baldiaia a o/c [235] 
light-green-leaved...........[234] 


421] 


INDEX 


References to the Flora are in brackets [ ] 


many-headed.............- [234] 
INelSonys ays eciscar acters stots [233] 
ORBNOUIE Sao cocccodunacc [234] 
IRaGteLSOULSH eae eine ciel [235] 
RortensSteiccn vies creates [234] 
Lainie Whe.) ee eel [234] 
SMOOUM rye ane eee eres [234] 
EDI CKISH MeN eee ia atede yaya [234] 
Wrderwood’ssy i eeeierae [233] 
SVU LTI OF ori ai tails tevshayal er aparet teen [235] 
RUT OLE Ceneeie teh starsat srolerseereyetenstises [235] 
wart-cress-leaved.......... [235] 
white prairie..............[234] 
MATEUS Boo pollo ce sonia cas [155] 
MOLE Sada wid oles ao oe S60 [156] 
GOMUpESITA Seen ee aceeeeers [157] 
Ganadensisten ener [155] 
Carolintanuss--ace ee ose [155] 
GEGIINUCN SPREE race: {157] 
DUUMMONG ite ee ee [156] 
ILE SGILO SUS Heda n lsteslehstaye [157] 
POMIALUS Heian el-ts 14, 18, [156] 
hypoglottis bracteosus....... {156] 
DUNS PATE oan so aaadne es [156] 
MBG ggasdeuodecadne 18, [156] 
oroboides Americanus.......[156] 
ICT TSS Se OO aa (157] 
SWOTIOPISs 05050 00 c00008b0 {157] 
sulphurescens............. [156] 
LOMELLUUS HRC HUNIS oak aslo orcuep oe jess ee [157] 
PACACLYLUGUS ME eie einen [158] 
VATS ULEACUSH etter stn tans cio [156] 
Atelophragimalenminn see [156] 
elesamsaeianatnsyeneayernsse 32, [156] 
LNINSCO VOOM cos coocodudee oo [67] 
curtipendulus.......... 18, [67] 
INGTARETICN one ecinnere ie cries {122] 
COMMUTUDOS 5 05d00c0060004 [122] 
occidentalissa-s- ee 25, [122] 
IAtErI plese ae err en pe teen ees [110] 
argenteasan ences 17, [110] 
CALNOSA semis sytonecse ie 17, [110] 
IMOAWANS Tso oodcoaooacss 17, [110] 
occidentalisee-ee erate {110] 
LUSTER SE ides o AEG DE GIRC een iO [65] 
Patras cee ere sires 44, [66] 
SAUL AN ere i pte 46, [66] 
Strata ie seisrsies 22,31, [66] 
PAVED Samiene ie ieire aie ino 21, [145] 
mountain, purple.......... (145] 
three-flowered........... [145] 
tunbinateccae ase eae [146] 
WHILE Minicabs aera [147] 

y ellowsesasisartag eevee [146] 
Arapahoe sear nie [146] 
Oregon ents haattiic keine [145] 
Rocky Mountain.......... [145] 


273 

Vie llowaae eet eee [145] 
Bachelor’s button..... [225] 
Bahia spay omecastoe atcvsa ee [244] 
chrysanthemoides........... [244] 
GISSECtA we Seas elena 29, [244] 
oppostizfoltaye ry. entre [244] 
Bahia, fine-leaved............ [244] 
opposite-leaved............ [244] 
Balsam-appleneerioce cece [222] 
Wl ee GPO A EL ena [222] 
Balsamittire-n eee: 36, 39, [54] 
WESECDI Ao shud ep alecaeel jee [54] 
Balsamipoplarsqeeees eee lool 
Bane berryncoasaeias cere dete [119] 
VOL Ysera ne ence chats [119] 
KEG MWEStEEN ama ae [119] 
WUESTCU MEL C Oat ae errs [119] 
Barbernyapbollyessemeeriae secs {125] 
BARBERRY FAMILY...........[125] 
Barleyacciis elon gaa teers cea [77] 
Het eee tN sede manta [77] 
SIx-TOWeEd seats ate cise) eerie [77] 
Barnyardigrasssee sere acer [58] 
Bastard toad-flax............ [103] 
Daler A rrlps Sis nuiice sys aayate [103] 
Batidaeaacuse semen ieee 141] 
laetissima...........20, 25, [141] 
Batrachiwm-ae ieee (122] 
aquatile flaccidum......... [122] 
LOCCLO Ue 34, [122] 
IB OVAIN, IVNMITUN Gog goa moo ad ec [152] 
Bearberny eile screen iene [186] 
TEC set Th Sa AN Ree Say [186] 
Beard-crassaee eet [57], [63] 
FOlden yyy Nea ey Aen aie [57] 
Beard-tongue............ 13, [211] 
all PINE): s ane LRT oy ce nee [212] 
MECH eco gedcboloesasae [212] 
LO Wisi hscenac cheater eee [212] 
ROU S paouccodgagee cc [211] 
narrow-sepalled............[212] 
one=sidedeperrenaeiaeeriie [212] 
Rey. dibpercrs seni cieiere [212] 
sharp-leaved:............- [212] 
slender.(e)s. vain [212] 
12 | LES eA Net OSES biotch ic [213] 
Bedstrawres sisi eeterters [220] 
fragrantece re een Le ZO 
NOFtH|eRM. a eee pane hae [220] 
Naillantiss cen sends rice [220] 
yellow-flowered............ [220] 
Bee plant, Rocky Mountain... [135] 
Bellflower eee eee [222] 
BELLFLOWER FAMILY......... [222] 
Bellyruesa eats cere ee [122] 
WESLELD ss parenrreusinertee tei: [122] 
Belvisia sesh ee tiatesiree [51] 


INDEX 


References to the Flora are in brackets [ ] 


274 
septentrionalis............. [51] 
Bent-orassyip joie atria [64] 
harsh eis rascals alg sae [64] 
INITSSWROSSISHEEntnie Oo eeaete [64] 
ESN OG abeiried (Uren LUND tai [64] 
WTEC R ORAS re ale oar [64] 
BERBERIDACEAE............. [125] 
Berberis, Aquifolium......... {125] 
TE PENS same eae rate uae eee [125] 
Bergamot-vernerinins eee 2 Ol 
mint=leaviedsoe eee TZ Ol 
SOLES cosas leat Greys (207 
strict BM (207 
Benulayeeeania area ae SS 
Ongustifolva wees retel {183] 
ErECtay isin dauee pee 11, [183] 
Besseyayenieai ter. ieleavens an aleriabe (215] 
Bho S as alata ninils Wi Gig ols ors 42, [215] 
IBeGula erty isan sat aya Sa {101] 
AGT EW SU eee ean 101] 
fontinalis........ 12, 28, 37, [101] 
glandulosa................[101] 
occidentalis ere ae LO 
papyrifera Andrewsii....25, [101] 
BERULACEAE RACE 101] 
Bibliography....... 47-48, 261- 264 
IBiGlen Sena Anise ake ei ence alate [244] 
glaucescensie inert ne 12, [244] 
EETMUISE Chale oii sramne ete [244] 
NAWUKEN Hos dial bib \e b'ova 6 12, 45, [244] 
Bilbermyeenaueiee ore peice [187] 
Giwartei ee Wena eke nian [187] 
red-berried................[187] 
Bindweed ana geeicce sistepe cise [195] 
[oy Vol es pare NRSC ae SU [108] 
bracted far aiensegusnyr iyaubate [196] 
Thal eevalanta clogiorgtove a oaiG Oo: [196] 
hairy.. . [196] 
Birch een anne ie 28, [101] 
Andrews’s canoe...........{101] 
canoe, Andrews’s.........- [101] 
Gira E ESRI ay ely Deaton ni gr 27 
FOUNTAIN ee dose ie py atae {101] 
glandulanw ricer iil: {101] 
LEG awestenne- coma e LO 
SCHUD er tiie ia SEU aire {101] 
westerm requis cry cil etetneleoens {101] 
BIRCHVRAMIIAVE Aarti [101] 
Bird’s-nest, giant............ {185] 
Bishopysiicalpraq acacia [136] 
WEStEMM As vtishetienn roealae [136] 
Bistontjn ie eeeeseg sinners [108] 
Alpine rsnanoii emer oa [108] 
oblong-leaved:............ [108] 
Bistor ta ey ees tain ar Abana 108] 


bistortoides......... 


.37, 39, [108] 
ViLVAPATAerelcrener eres 


39, [108] 


Bittercresssse eerie oer [133] 
heart-leavedit.. sae asaeeee [133] 
hoary ees AOS UAE ING iene {134] 
RUEUU LEN cRReA SRG SAN chal Esai rey i [134] 

Bittersnootsc cj ane icles [114] 
PY SIN eee sel eee ees (114] 

Black currant, small......... [139] 

Bladderferneeen eee [50] 

Bladderspodeer mein sore ({128] 
doubles vanauk ay ene atte {128] 

COWRIMO MN bo'bcdb 00 co 6 5 {128] 
many-flowered.......... [128] 
Sears aaa ey Ny anos {128] 

Bladdenwortsneeee eae [219] 
COMMMO Ne bb bio ou do damocdos 219] 

Blazing-starss4 oi ae 13, [226] 
COtCER lava Ayn M naman (226] 
purple-bracted............ [226] 

Bilite ree ee Saale ({109] 
SO ae Te Rear aie {111] 
strawberry..... eee A LLOD 

Bilt aye oe en aD [109] 
capitatum.............25, [109] 
TUDT ALU am cea Cera [109] 

Bluebelle Ver een et era tes [222] 
WESLEEM arc sitchen Goya [223] 

Bluebellsy yee eee ae anaes 202] 
mianiy-leavedmani ile ates 202] 
PUNCCALC AG eee eae [202] 

Blueberry eee eae aie we [187] 
uehtAce (Lanai MenR ARN Al atdiglglty ie [187] 

BLUEBERRY FAMILY..........[187] 

Bluebottles- haan ccn sore er [255] 

Blue-eyed grass........... 34, [95] 
alpine: Backes Heo RGre ool 
narrow-leaved............. [95] 

Blue-eyed Mary, little........[211] 

Blue flag, Missouri........... [95] 

Blue-grass, English.......... [70] 
false Kentucky............ [72] 
Kentuckyze seer ee eeniciens [69] 

false dios elie iey eM Penta ana [72] 

Blue-joint, Canada........... [65] 
PUPP le A [64] 

Blue-lettuce, common........ [259] 

Boeberay tannic arin nn dane narnia [245] 
PaApposarmane ee 16, 45, [246] 

Bogyorchidssse) ene Dil Qi 

Bosvorchiss=-se eee [95] 
green-flowered............. [95] 
loose-flowered............. [96] 
NOKCHELIP A oe [96] 

BORAGE FAMILY............- [200] 

BORAGINACEAE...........-.- [200] 

Bosseckia seis earners ({141] 
Panvillorasees ween 25, [141] 

Botny.chiumee seek [49] 


423] 


INDEX 275 


References to the Flora are in brackets [ ] 


Wit Aine yb ss coco cow. 25, [49] 
Bouncing Betis 42 eaeies {118} 
Bowtelouaa wasn ceiver ee [67] 

Iver Slagle we alates 15,18, [67] 

oligostachya..... 14,15,18, [67] 

RO GETOSG Na eusiaisiehy Seer ee 67 
IBOX#eLA Er ai cryersneiiee cere 12, [168] 

COMMON eee ae 168] 

TPE Sid SRS ea GI eet ota [168] 
BraGke nen gtshestsnsancesst sea Aeonete [50] 
Bracted bindweed........... [196] 

hal EnioYa log sanvaolaiarei OR ead aieectere [196] 
Brakewmhainyaciesacisco cheer [50] 
Barb leteyayiiecrsiche ee cia s.accelals © [141] 
SASSI GA eM iqraredaiitcialsccaslcnee eee {131] 

GAMIPEStEISm easier sie oe 46, [132] 

LIM Gears acsieviaie) core une ne 45, [131 

Tell sic lacie ican eh See eRe 45, [132] 
BRASSTOAGE AUS eee ene Lard 
Breadroot, Indian............[160] 
Brickellia, grandiflora minor. . .|225] 
Briokelliameier) iiss citns seas nuke [225 

Time llateweererre errr L225) 

white-stemmed............ [226] 
Bier erica vWekatecriie. vols M48] 
Bristle-grassine eisce ene ee [78] 

long-leaved!. ose. = Hie [78] 

Short-leaviedreeic sisi eine [78] 
Brome-crassemee ei ets [74] 

Derr aCe suey Neen ay Arseetin) eyicee [75] 

large marginate............ [74] 

marginate, large........... [74] 

Punch, aqdoedeocsdoese [75] 

quake-crasstesneereeeniZol 

RIcKAaLdSOnYSHEeR ee cies [75] 
BROMUS tard jena karan act shouts [74] 

brizaeformiss. eee 44, [75] 

hordeaceuseae ee eee 44, [75] 

lanatipesiryae) choc ser Hi, |S 

marginatus latior.......14, [74] 

MLOLLUS merase ay Nore eeimie eS [75] 

Porteri lanatipes........... [75] 

Pumpellianus....... Ne De {lS 

Rechandsonieeeeee ee Die iH 

Ssecalimlls.aneee cen 44, [75] 

UACHOMUNNG Go Scosancvads 44, [75] 
Brooklimessrcronoeeon one [214] 

Amenicantenaiea eee LL] 
Broom-rrassaesnee eee ae Toe Si] 
BROOM-RAPE FAMILY......... [219] 


Brunella, see Prunella 
Buchloe dactyloides........... [67] 


BUCKTHORN FAMILY.......... [168] 
Buckwheatitalsesenereeeire [108] 
GOMNMOS oshdccouvsvcseeo [108] 
Buttalolbernyeqs5 ao ceer eee [175] 
(Canadiantaee ere een rit [175] 


Buitaloyenass serene 13, [67] 
COMIN Ls sotceoogucoaaaee [67] 
fal seeba Aneesh oeeicen. Metter gs ede [68] 

Buglosssyarrenitactarvacie cert [204] 
Smale yee haa dene teas [204] 

Bugseediva-rayersr sey sicctyeri tere [110] 
marginal-friuted...........[110] 

Bulbilisseva saree seen ere [67] 
dactyloidesmanreecri irr [67] 

Bull pine....... XO ES De, Sil, [ISS 

Bulrusht enya nee 10, [79] 
GLA te ss) lavas atennteleseeveteiens rs [80] 
Dales er ny cians Heiner mat [80] 

BUNCH-FLOWER FAMILY....... 88] 

Bunch-grasseae ree 20, [57] 
IB) AP Le eto Ste Sore IU te TE Ieuaty ce [74] 

Bur grass ere eee [59] 

Buremanigoldserwereree rie [244] 
glancescentame en eeeeene [244] 

Bln nightshade: sree reir ek [209] 


(Combi conok coon doshbood 


Bur-reed? seg encteedtasete ee (55] 
narrow-leaved............. [55] 
BUR-REED FAMILY........... (55] 
Bigsarvys Sey soe Goes Mini ecient ({128] 
Bursa-pastoris..........45, [128] 
Buttercup see ase [122] 
Adonis-liker se pperieeeneene (123] 
IMICOUR' Sos oc oo no db0a 000 [124] 
NOKtHEnM eset {123] 
BUTTERWORT FAMILY.........[219] 
Button-snakeroot............[226] 
CACTACHABS Herne [174] 
Cactus ase onatteagee sone [174] 
WinawoENscaaoacroeucuouse [174] 
Backus ue) see @, | als) 
Bande ele) Senay cheysee sane [OLA] 
WNAENROMScocodcachodva calli iy 
CACTUS} RAMID, Van eeieeieieees Lal 


Cactus mesa society.......18, 19 


Galamagrostish-)-)-)ie isis [64] 
@anadensisHaEee eee [65] 
purpurascens........27, 31, [64] 

Gallaimus sheers eer eueee oe e [87] 

Calandrinia pygmaea......... ({114] 

Galceolaria: tim. ace {172] 
lineanissee oa eee 22, [172] 

Callasteris colling...=.)..-.).... (197] 
Leuconthqeenee ee eee [197] 

CALLITRICHACEAE............[166] 

Callitricheeeee eee ner ILO] 
CULUTUNGLISN Ee [166] 
bifiidaysc Gris asabas 10, [166] 
DANIStHIS Oe ee Eee 10, [166] 

CALOCHORTACEAE............ [94] 

Galochoriis aera os 


Gunnison eee 18, [94] 


276 INDEX [424 


References to the Flora are in brackets [ | 


Garlehasy ii benga ile Pay alii [118] IROT Ly Os RR elie Ruste vat aenole [253] 
Chrono philas imi onie ne la: [118] I ZUBMOPSIS: 606 olb o\0i8/a'6a 6looo [254] 
leptosepala.......... 37, 39, [118] SCOPULOLALIMAe eae E tae [253] 
LOLUNATPOILONN Ee ae {118] UNGULGLUS Hae ee ee [254] 

Calypsolvoredliss nse ee [QT si Eanextiy i aN ae nie ee anaes [81] 

GCalyPSONOr spine Moret [97] acubinal- Eee Ene ee ro aee [84] 
MOMANITMGs vo sdooonomasn eae OZ alpina Stevenii............ [83] 

Camass, death........... 34, [88] athrostachya...........14, [82] 
POISON EA MEBs LANE Gace [88] Atra ta tA aon 41, [84] 

FalCate nig nGN a EMO [88] DUNS Ns PUA ang eas 28, [85] 

Gatmmel imalyana nies tise eye eie 128] Beckisciianieiel euler ga [86] 
Sativau ene la noha 45, [128] bel Tan nee Ry aise dees 39, [84] 

CAMPANALES........... LO 2 Camescensssesee eee 33, [81] 

Camipanulaliene eer rire [222] capillanishsr reece 41, [86] 
Rialrnysiih syne re estar [223] chalciolepis............ 41, [84] 
Detiolatars nm icirprets 19, 26, [222] chimaphilawenee nee 41, [84] 
WUniHora eee ey 42, (222] Deweyana).......-...2.25; [81] 

CAMPANULACEAE........-... [222] Douglas sepa Loew Lez 

CAMPANULALES..............[222] CHAM ng 54'3,0,4 BoB widld obo 4 6 [86] 

Calm pene eerie ai aeUn nS HED {131] ebenea.......... 33, 35, 39, [82] 
Ameri cananeeirscc cen {131] festiva....22, 27, 28, 35,39, [82] 

CAMPESTRES ..........9, 36 Haydentana............. [82] 

campestrian vegetation....... 36 festucaceas aire 14, [83] 

Campion see oe {117] Geyeri see yeahs 32, [85] 
TOSS V EVM ace yan Uhl aiuto TNS {117] Goodenovii......... 33,37, [84] 

Canadian vegetation......... 9 Hoodiityy eee. 28,35, [81] 

Cankinyeeariccigod auocweuad sla) oo LNCURVASS eet lelanet oe 41, [83] 
TEE Cee atl ce naapee hep spe Nea aya [59] lanuginosa.......... 11,35, [86] 

Gancer-rootsnerenennerne [219] marcida......... 14,18, 27, [82] 
clusteredee an neeio ee oe [219] muricata Americana........ [81] 

Yellows aL] CONPGE eyecare [81] 

CANNABINACEAE.............[102] MI SEICATS Sane ee Eee 41, [85] 

@APERURAMILVAC SEE ae iP stae [135] Obgusalta wey hyalina reer 41, [85] 

Gapnoidestare nae ee ee {126] occidentalis.........33,35, [81] 
AULEUM Somer eee ee [126] oreocharissee ey ieee ane [85] 
MON CATS esas dR Res [126] Pennsylvanica vespertinal8, [86] 
PAGHILOOUIMIN Ee My Heiney [126] petasataysacisen te 27,35, [82] 

CAPPARIDACEAE............- {135] pratensis........ 14,18, 27, [83] 

GCarawaye eer eee eee eee oz) MUS sesiguedoooosoe ces ao | ko 
COMMON ALG ee Tea [182] Byrenalcas ne leno 
MOUNtAIM Ae nee eels LOD] Ehomboideay ene [84] 

Cardaminey shane eee) PU LOL WAU a aie WG a al ete 41, [84] 
cardiophylla...............[134] LUPEStHIS seo e lee 41, [85] 
cordifolia wie eee AS lLoSt Sartwelliiseee aero ee 
INCANaneem eee 37, [134] GEES, s epoabeddoado ds oo ISO 
CATS sibiak ae oo ob NewooL [134] SCOpariaysaeierseerenoees 14, [82] 
Vallicola seem nee 12, [134] SiCGatae cua Nabi 15,27, [83] 

Cardariaey yin ynnunt aie MMe L274] stenophylla............... [83] 
Dralbarc egy e i neis Mieiu wae ent: [127] Stipatar lene ain 11, [81] 

CARDUAGCEAE Yanna eel 2201 Stramineas sae 15,18, [83] 

GAR DUIAT RSAMM TM eep ae miata [224] straminiformis..........18, [83] 

Carduus Centaureae..........[253] Stricta ys Macnee eee 11, [84] 
Coloradensis..............-.[254] tenellae iene 28, [81] 
CTOSTIESAN ee ee ae [254] umbellata brachyrhina...... [86] 
LRUSCUS nM eur na wa a [253] brevirostras..... 6.2655 18, [86] 
MMEZACEPIALUS i areas eta [254] UcrICMlacayevsnn sete 33, [86] 
OGHTOCENIT US eee Z OO Warlalbilisuiseer meta nele er: [85] 


425 | INDEX 277 


References to the Flora are in brackets [ | 


DESPELLUILG seer cteeiieie [86] mollissimus............ 20, Heel 
VULSAMES Se rerse ies wey earner [84] ovatus pubescens........... [168] 
GLb Una Nee UA Aaa T NR [84] DUDESGENSH EAE ere cei {168] 

Vl pIMOld eas cweiaeleeicrae 11, [81] subsericeus.............20, [168] 
Carolimanyiorassese eee Lee WEAN oe Slama cule d 25, [168] 
@arnpetsweed yee el as [113] | Cedar, Rocky Mount’nred.29, [54] 
COMMING oececeoouwe poo [iS ire | Sehr See ae AIS Mine Dire CVV orate aieed eee [103] 
Garrionifower- nee eee Los] Leticulatas ere wie a eee 20, [103] 
WESLEDI slim ni dese t ars TA reas [94] MGenchrustee a elas ciksevaniee [59] 
Ganuimbees Weenie eee eine ({182] Garolinranuisheee arene 44, [59] 
(CEA TIS cee en asa uta 46, [182] PADLIOTCeS eee ano aee [59] 
JEL ES AEC RS IRIS [S3)s | kGentaureacteiseemrrsa eer [255] 
CARYOPHYLLACEAE........... {117] Gyanuseeneee ree [255] 
GASHEWARAMID eH ieee Onl Centuncnlisnar hip enas [189] 
Gastillepay ses ecco) sires [215] iebbovpoEee sds dusneoas oe 20, [189] 
ATApanOensis ee eer +O 2] mCerasti meee eae [115] 
COMMA sd bee eengus occ 26, [216] occidentale.. 22, [115] 
(COULUSA A sete e202 (2 L0])|) Cerasas demissa melanocar pa....[152] 
Grista-valllitcss ise eee [216] | CERATOPHYLLACEAE.......... [118] 
NUKIS EA AS SOO ROE 26, 32, [216] | Ceratophyllum..............[118] 
lanreitolianemnee ree Cie 32, [217] Gemersumanr seer 10, [118] 
Navritalye ener vens ete hats cue S2e (2 yilininGexcocarpuss4e eee LAr 
linariaefolia..19, 26, [215], [216] PAnvatolnisey eye eee ONL ul 
MiiOmveocoasbeeodabeve (215] | Cereus virtdiflorus............ [174] 
occidentalistmenr eee 42, [217] | Cereus, prickly..............[174] 
oreopola subintegra  ...... [217] green-flowered.............[174] 
pallida occidentalis ...... Zid Rehactochloayeee eee eeeee eee [59] 
RHexitOlaee ee eee [217] ClAUCA Areas Cae MOO 
sulphurea.....32, 35, [216], oe Ttalicae eae ee Oo 
Gastilleyar ee nae VARI CIS VR ae see 44, [59] 
(Coie) WER VGAE alain ae Mares ia ciety a4] Ghathweedansaaner rena Loo] 
ALPINE SC Nc ey encicte i Seetelctonece 49 Least iii eye eee eeeg a tue [189] 
night-blooming............[117] | Chamaenerion...............[176] 
SIEEDY ates Musiseueratsielapainans (117] angustifolium..........25, [176] 
depauperate=s soe e eee [117] platy phyllumen renee [176] 
Catch-fysigrassiene iri eyes 9h e@Chamalesyceleeeeeee eae eee [174] 
(CRrieieat MER Hy Neste AIAG Ce A ee tee [206] Hendleris sass eee ee Loy LO4] 
(CEMsev ina eia.a ols ier suthhel Nin bya [206] glyptosperma.............[164] 
COIMMOGMa(ccaghoordoccoses [206] petaloideas ener renee eee (164] 
Catis-foope tec ey 31, [239] TUS ULOSA esa Meee et vee ates {164] 
Gonyimoecheracsscndoousd so [240] serpyllitoliasseemeaeee nos 16, [164] 
PAILES Pees ere ieee 2420) | heat Conmilmm Ont aii tae [75] 
falseipearlyacey tae ees AU) |) MEN ood oo ches sb a6 os ac [75] 
Imbricatengeec one [240] | Cheilanthes. . [51] 
rN Goo Ao ue Wend So [240] 1 REY) Tepe ESHA aS 30, [51] 
ANE GLU ITH Seen Ney ot nee tara [239] Hendleneereneniee eno Ose oui 
peanlyatalseeeeeee Ce Zee fi dted OSes che Mermreninlnaola acid dole [51] 
PRONE Wohin. bea cee toilse aia a 6 be [240] LaNUSINOSG= eee een Loe 
sharp-leaved.............. [240] | CHENOPODIACEAE............[108] 
Small leavedueeesice rite [240])\ | GHENOPODIALES? = coe meeane [108] 
SUNMY, po stene a tsteei aorta [240]) | "Cbedopodinminy ase ase {108] 
EBD soll OSS copies CoV esc a ie nee nich cea aly [239] Biloyiins eb Gaby cao ddan ofton IKON] 
Eatta ee ors See 10, [55] Botryss ne uvasioual wns enen 45, [109] 
broad-leavedaeee ieee neren ool RGeMOuEH ieee eee ee 25. [109] 
CATTATHINAMDAY EEE einer eee ol TNCONUM eee [109] 
Geanothuses aeeeesacelne [168] hybridum..............45, [109] 
Hendlexiueee errr eee 19, 20, [168] MCE TCG S oluvolbeoneo cc onli 


INDEX 


References to the Flora are in brackets [ ] 


278 
leptophyllum........... 45, [108] 
oblongifolium............{108] 
oblongifoliummeeeenoeeeios 108] 
RUDKUIM eee eee eee LOM LO9] 
Chenopods Wee nen eee 16 
Cherny oeerspvawioeis aera {151] 
fearolhaKa oso ico lnidla toes [208] 
Fed cwild/ acre iaay a aeyremtea [152] 
sand, Bessey’s............. [152] 
wild.. 2.0% an 28 
black- fruited, ‘western. [152] 
Chess, common. ee [75] 
SORE Use mune Meese tie blea a [75] 
Ghickwee diese ie) Eada ie 115] 
COMMON Pee Eee ia Lao 
MOLUSe-Careneee eee {115 
WESCE RMON Nhat puncte miele {115] 
Ehiconyaen ecco cee te [256] 
Commonteeeee eee een 250) 
(Chimaphilaysannae seen nae [185] 
umbellatav eae 2 Or Loo) 
Chionophilassneseneaeeeriee 213] 
James eA Raed ee 42, [213] 
Ghondrophyllaveee yee {191] 
Americana: anneineee iors {191] 
Kremontis nee eeneooe tee {191] 
(CHORIPETAT AR neds e ee [98] 
Chrysanthemum............. [246] 
Leucanthemum............[246] 
Chrysopogon nutans....... 15, [57] 
(Chimysojostisousicgaddesovncdac [227] 
amplifolias.eeer ecco eIe2 5) 
Fe Rake ay vr aerogenes 228] 
Balkericpys re ie ON eee 32, [228] 
Caudatanyaracnonenie set 30, [228] 
COMUPUCLE ears [228] 
Cooper ee Vela (229] 
LOLOSAT ASN ote AeA ener AU (228] 
hinsucissimas ya eee ei [227] 
hispidalsse ware eee 16, [228] 
BAN cs bainsias ooadiss cas sls 
Tesinolens ae eee lO Zao 
Obtusatal eee eee ee [228 
vallosarios eink anna rye 16, [228 
LUSPid ane ie ee eeee [228] 
Chrysothamnuseatie noe 229] 
CABIN AS os bss oo belo oOOy LLLO 
gSraveolenss ee ener Z2ol 
nauseosus graveolens........[229] 
Parnydesene a iaaeeecatae 
pulcherrimus.. Se al Oval [ 229) 
fascicularis.. BE AD2.O)] 
Cicely, Swe a CNT 182] 
CICHORTACEAE aaa ZO) 
Cichoritimeee ee eee eee 256 
IiMAVIOUES Gargo's 4 64 \dosde ve 45, [256] 
Gicutars rissa eee ae te Loa 


[426 


occidentalis............ ili en 
Canina raya ats eh oui sep papa [63] 
latifolia see eee eae 28, 33, [63] 
Pencila yy eee eae [63] 
Cinguetol eee ene [141], [142] 
branch edi yaar eee [143] 
DWM eodnccoobsoonoodos oolUZil]| 
Cut-leaviedianaeeeeneene: {142] 
glaUCOUS See re [142] 

Gi UISC Sh SS LT RN Rte [143] 
fairest sonny ee ae [143] 
glandular, large-flowered.. . .[145] 
SROUNGH MG He eee LS eRe [142] 
lateral-flowered............[142] 
minute-leaved............. [143] 
Pennsylvania, arachnoid... .[143] 
WallOoUss ae verse [143] 
GOW LS ote aa ei aes [142] 
shrubbyeee eee ee eee [144] 
1a) Ua RISE AR A ER he A pi ({144] 
white-seeded.............. ({142] 
Woolly Awa NE Reale marae Ne [143] 
Cireaea tie Fay Mas Aan Ae {180] 
al pina ssa ne een nee 22, 29, [180] 
Circumpolar vegetation....... 9 
Cirsium eR eae a ne eu [253] 
acaulescens X Americanum..[254] 
iAmericanumerneeea eZ ONlZoo) 
Americanum X anante . [254] 
Centaureae.. (253), [254] 
Coloradense.. 32, [254] 
ELOSUT eon Ene eae 26, [254] 
STISEUM ede ate eM eee 42’ [253] 
megacephalum........ 15, [254 
ochrocentrumeenaeeaene 15, [255] 
Batenyate suet ee ee [253] 
Plattense ah cm esnne near 254] 
SCopulonumien sain 42, [253] 
undulatum.............16, [254 
Clammy-weed............... [135] 
large-flowered............. [135] 
Claytoniae eee eee rae [114] 
Chamissontss eee eee {114] 
Megarnhizace eee 41, [114] 
TOSCA A sey estan SHAM EMT a eR {114] 
Glemaeis ene een UN MStE May aeINRt (121) 
Douglasit Jonesit.......... [121] 
CRLOD ROTO Eee ere [122] 
ligusticifolia.....:.... ..28) [£21] 

| Cleome serrulata............. [135] 
Cleome sey line Maen [135] 
BOLTS veyed eRe Uy pe hee OR [135] 
WI TES Hee hte La Sad theta [135] 
Climate and rainfall..........5- 8 
Climatology.. ‘ 5 
Clivose vegetation.. 21 
@losedigentiantr sees {191] 


427 | 


INDEX 


References to the Flora are in brackets [ 1] 


BHAI OW Eoooocopeandacooue [192] 
RAG YUSH tc tocisteiot icine {192] 
RomanzowSeeerne eae {192] 
Glovieritiversecci Ns coistereisisieiavene 44, [154] 
Al PID Omer years erses corel icueciers 
ASI K@svenyecns cise eieuctcrtis scious [154] 
ARNT ore Deo IGIOORT OE IGAIS [154] 
Ih fat leauigig eecreeovernaitere acne a [154] 
POR AITIC es. Sepauey hoy useusha eye {160} 
REG era a were eos swears cinteo wane He [154] 
SHEED ese) soda ichsrensisunialncs [154] 
SWEEG Memes ae rakes onsnaatee [155] 
WIMaso5 Soe ROGER ose e [155] 
WILE Seats ttenevais eueesititer ease [154] 
Clib=mosskeyarieee acts at 40, [52] 
NEEL Eten ear eae salcrelsisopana {52] 
SEL yea rate ceeosees omer aye [52] 
CLUB-MOSS FAMILY........... [52] 
G@ancerrootnaatoia toca: [219] 
GlUStEKedesinie sees keke ceroreys 219] 
VETO Were re rep stacy s,cceichauenat [219] 
Cnicus Americanus...........[253] 
ChLOGEPHGLUSHA eee see 209) 
CAMOGAINDSs bob gan coeaas oo 255] 
POLY NUON foots iets lay eciraiaete 253] 
DiI AIDS so oie ova obad es 6 A [254] 
megacephalus...........- 254] 
Cockleburaee inetd ceases 225] 
COMMON eae ae (225] 
Cockspurgerasseesee eee [58] 
Gogswellidemanmieci occa: {184] 
Onlentalisennemier ace: 26, [184] 
Coleosanthussaeee nice cee [225] 
AN CAANS,scccca non ec cos} LAO 
GONZESTLUS Meera epee {225] 
MMITIOGE Seer elaine eens ches 30, [225] 
PDUGVOIID: o sonccnceaaecee [225] 
(Colliers abo wecouesodmadee 211] 
MUTANT Bo coossnhaanoevdase (211] 
tenellay ee aceeeeatnc 29, [211] 
Collomian ere [198] 
linearis. . .19, 23, [198] 
Boulderensis........-..- {198} 
WME h nos obooanooeaadue [196] 
Goltsfootsweets.-4456 47 [248] 
Coltinibineaanerer oon cee [119] 
AZULGs esp yoreucten eebeeoversucneuey NER {119] 
blue Hirer aemeecralscmeran eter 40 
Columbos ern ese eae [192] 
narrow-leaved...........-- {193] 
narrow-sepalled............ {192] 
SHOW ieee tere neces [192] 
Gomandraaer eye ee eerie [103] 
pallidaseeyerrasacue 18, 43, ee 
COMMELINACEAE............. [87] 
Gompositestaeceme acer 13, 43 
Gone-flowernaeeaeeee oes 13, [242] 


gray-headed...............[242] 
long-headedieyiatrclenr-tter [242] 
Browns, leis coe igenecs [242] 
Vellowswenaateyso ee ee [242] 
Gontoselinwmery ye [184] 
SCOPULOGUIMEN sire ieterer 32, [184] 
CONVALLARIACEAE. ......... [93] 
CONVOLVULACEAE........... [195] 
Convolvulusieri eee [195] 
ambigensmyjcise ee aoe 196] 
ALVESISHe ara eerie ae 45, [196] 
ANLETUOTE AAP cha enor [196] 
Corallonhizaseeeeee cee [97] 
Corallorhiza.........22,43, [97] 
DILNGLE yes eK ume NOG [97] 
MBIA wa cog bed bb Os 43, [97] 
Ochroleucaseree neers 97] 
Cord-crassnee ee ee oe [66] 
Freshwater OO 
Conispegmiumnn eee eee [110] 
MAHA osoossogcccons WoltilO)| 
CORNACEAB Ste orci vsen ene [181] 
Cornflower.. eae [255] 
CORRIGIOLA FAMILY.. ER atlayane eS {112] 
CORRIGIOVACEAD oer ee: [112 ] 
Gory dalysvauned arr eee [126] 
aurea occidentalis.......... [126] 
Conydalisenc Ae sci e el: [126] 
goldemiaay vader mele {126] 
AMMEN 5 oo nooo danscevollAO| 
(CORAAY/NGIIND 555 cb 0cbeco ss coll] 
Conylustindits ccna tee eee [102] 
TOStratas ete .22, 28, [102] 
Cottonwood... 1, Di, 28, [98] 
black.. : . [98] 
narrow- -leaved.. BAe ole giant exe [98] 
W.ESEELM: setts vercespaciera secre [98] 
Cowbaness eee eee oe 
WESLERD aya sha centeneieen [182] 
Cowsherbsjcae ect one [117] 
CowapaTsnp sii eee erent [184] 
woolly... 5 [184] 
Cowslip, white. 39 
Grabscrass- eerie 1571, [66] 
wild.. ae . [66] 
Cranberry, high-b Ushi beeen [221] 
Cranesbill . o60 coo oll@| 


[ 
Bicknell’s.. GR Sa ONT 
Rremiontis eel eee nTTGa 
ParnyAS ec eee 
Rattersonisecemeericee eae 
Richardsonisse saree ere 
Cranny and crevice vegetation. 5 


GRASSULAGEARA a nies [136] 
Grataecusys tree rns eee {150] 
Cerronts as ecru eeu nee {151] 


Coloradensise eee 22) oO] 


INDEX 


References to the Flora are in brackets [ ] 


280 
Golor adore iene menial [150] 
Coloradoides........ 20, 22, [151] 
Doddsitete ae 22, [151] 


erythropoda.........20, 22, [151] 


occidentalis.........20, 22, [150] 
Creeper, Virginia............ [169] 
Grepis setulae memati [256] 

alpicolay cee yen anon 42, [257] 

angustata-gee sy AceeG ieee [257] 

denticulata)..))53).).- 26, 34, [257] 

glaucellamewe jie sean eae, [257] 

occidentalis............... [257] 

penplexae ce recrniaokrrelaiats [256] 

petiolatay ween ZO (200) 

RUNCIMAtA emer ey Ulead [256] 
Gress Sa Laat Meas 27, (128] 

OA TA NE Mae [127] 

MATS hie Suva ie cr REM oe [129] 

blunt-leaved............ [129] 
curved-podded..........[129] 

TOOK paiudennenesas one ueoleye [134] 

Stamleyiseis esac Mica at alisha [135] 

MENKCONERGs giao saga od vol [135] 
NILES Cea Na cus AUER ANH Cae ({128] 
WiIntensa tn he nie cory lont ees {131] 

Americal aeece elaine: 131] 
yiellowagmeryenccr renee 129] 

Spreadinoeemimreeiciere [129] 

warty-podded........... [129] 

Crevice and cranny vegeta- 

CLOT epee eee eysuaray ncaa 29 
Groton ence pin aha lM i seumans [163] 

MREXeENSi sy eC UNM nay, [163] 
Croton ey ceca mos irae eae 163] 

WMexa stay yeaa ys ee 163] 
Growlootee en Aue ana Niels rae 122] 

all ITE Aerator eNO Edad ([123] 

Creeping eee aeons E2SI 

elliptic-leaved............. {123] 

heart-leavied shana Wales ae [123] 

kidney-leaved.. .......... [124] 

INeattalllis ea eral {124] 

Seaside nye ac uinen yaya ye 124] 

small-flowered...........-. [124] 

small-petalled.............[123] 

swamp, western........... {124] 

Lis bea car Seg ny eat Ala eal {123] 

western swamp............ [124] 

white water............ 34, [122] 

flaccid-leaved........... [122] 
CROWFOOT FAMILY......... {118 
GCrownbeardesenenysei sore [243 

WTO Case puibuien eo oioce a [244] 
Grunocallisheysaee nee {114] 

Chamissoi........ 11, 28, [114] 
Gry ptanthesa sores (201] 


crassisepala..........16, [201] 


Pattersonie arene [202] 
Cryptogramme... .......... [50] 
acrostichoides ....... 29, [50] 
Gud weedy en sennhayy swan agEe [241] 
paaveh ee iy ais ora erate Ale bias [241] 
sulphurescent ............ (241] 
Wirigh tisuinioire sie aera teats [241] 
Cultivated plants............ 7 
Cultural (plants seen. 7, 44 
Cupra nt e ya e iin eek eA ery eau les [139] 
blackismall ee ewer ee [139] 
golden, long-flowered.......[140] 
TOC HS RTA LOR EUR ay AS ae [140] 
western..... se xo lllso)| 
Weaken esac cepa a aes 20, 29 
smallish ore [140] 
Guscutay ance Hevea [195] 
GN Aon dla wecods pooh (LOSI 
Gronovit curta............. [195] 
indecorasse lee eon LOS 
CUSCUTACEAE...............[195] 
Cut-grass, rice.............-- [59] 
Gy clolomaneeennaecrionnoa: [110] 
atriplicifolium............. [110] 
platy phyllum: se oe. ae [110] 
Cymopterus, false........... [185] 
CYPERACEAE................ [79] 
Cypeqierassseor merce eters [79] 
EKTiMIGwod ge odeoeuedaae co, ICO 
IBArshusiiais accu eauae are enn coae (79] 
GQyoxmssessevoddousseoulowas) (ZO 
GEGHOSssobebacsoaocancsies, dO 
Bushs sie sey wean teenie [79] 
IMAEXUIS 7-4 Glee icene aeeeae 11, [79] 
Cyrtorchynchapreceaeeeee 25, [124] 
CAMO 6156 d)4 30 obs 3.6 0:5 (124] 
LAnuNGwlinay avian [124] 
G@ythereary sine sang ees Wana [97] 
DulboOsameie sen 32, [97] 
Da cty lis aie ahaniiual aye nats [69] 
glomlenatainn eer eiehicier: 44, [69] 
Daisy, mountain............. [239] 
Cop Conan Hiota Misia eicinleraa la e\Nro'bb53 [246] 
Daisyifleabaneseren aes [238] 
Dandelionteya neon eeiceieies [248] 
COMMONS Ae eee enor [248] 
MOLINE Wigalatleg aelao oo co [248] 
Danthonia, Californica........ [66] 
OOARLEAHM Os 6 be 6 aoa be b09 06 0 [66] 
SOUCOGI. s clnioiciaigasio'oo as.2.0106 [66] 
Darnel BRIT NE RT so MtRCe ea ITER 
Dasiphorataeren eee [144] 


fEUtlCOSasee aceon 


Dasystephana......... 


Bigelovil........... 
Rarnyiscicescaeos 
Romanzovii........ 


33, 35, [144] 
Sead salut 


rota 
eae 92) 


91] 


429 | INDEX 281 


References to the Flora are in brackets [ ] 


Daturarcncre sclessvetresec co uoaes [210] | Dog-tooth violet............. [92] 
Seramoniwmene ssc 45, [210] Dogwood BE lee Pil XU, RS; Feat 
Miabala ee cps etal 45, [210] TEC-OSLET taverns es nl eke [181] 

DAYFLOWER FAMILY.......... [87] | DoGwooD FAMILY............ {181] 

DEAD NETTLE FAMILY........ POS) | IDG .oconaecboocgodeones {111] 

Delavaux’ evening primrose...[179] Gepressarisciisieieiea lai ays 17, [111] 
short-podded..............[179] EKeCt a MMU EE Neate [111] 

Delphinium-pe eee LLL On Doubleibladder pods a-aeae [128] 
INV AGIS ary ees eye 46, [120] COUNMOMG oo docadvcaagavec [128] 
BEE Bolooue Oecd ccna ol AA0)| many-flowered............ {128] 
camporum.............18,[119] | Douglas spruce........24,25, [54] 
INelsoniis eesti nets 18, [119] | Douglasia Johnstont.......... {189] 
occidentale.) .. 2... .. By SO (MNO|[ | IDNA Ass coco oadecoagnesaouse {132] 
Benandilerey eis ae 15, 18, [119] AUDA reo eee 32, 42, [133] 
Quercetorumes.--sreiee eee [119] aureiformis............42, [133] 
scopulorum subalpinum..... [120] BORE rye ie Wash ava cuuUN a ets [133] 
Slibal pintimeeens ei eee LZ Ol] CEnE cid mimelornoinelced alae are 41, [133] 

Deschampsia-eemnie. nace cee: [65] Coloradensiseee eerie ({132] 
caespitosa.......... 34,35, [65] Crassitoliaseeeeeeeeee 41, [132] 

Dewey apacaulysn nee eee LOS] decumbens.............42, [133] 

Deyeuxia Canadensis......... [65] inladmizensismneen eee 39, [133] 
STATA ass oo Meee O Dai [64] Iteo ae cies es 41, [133] 

Dichrophyllum marginatum....[165] MEMOLOSA eee (132] 

DICODYEEDONES Hs) es 98) streptocarpa..... 28, 32, 41, [133] 

Disponumseeesecee eee 28 [93] N | PORA CARNAGE AH ise neene [94] 
MAbs occddnssaccaeeksy (MSI ||) IDrEeocaolmalliins 5 oo seco 5000 boot 
TAKE NEU 7D ion 0.0 6 clo dao a0 ee [93] parviflorum. Seer on On 200) 

Disporum, rough-fruited...... [93] | Dragon’s-head.. pieces ’ [206] 

Wiste pian ay soe ees sie ciel ce [222] small-flowered............. [206] 
WOMAN ooo oboe cecs 29, [222] | DRAGON-TREE FAMILY........ [94] 

DIStiGhhseee eerste [GOA sDropsecdeeeeaeeeeeeecrnee [63] 
maritima stricta............ [69] hair-prassiesissae seseee [63] 
StrIGta yaaa ee ete euesiete 16, [69] MOAI s.5doa0d5d000n noc 63] 
OG ey sss ieia esha sien ghouls [105] TOUSH Ne a steamer 63] 
IDI BEC Te ey ee ier ues oe {105] SAT Cee Sew eae yan aeae 63] 
GUT yer akss ann aac a [105] | Drop-seed grass............. [61] 
dense-flowered............. [105] Marsh ye ayer {61] 
spatter, western........... [125] slenderd.s 5) sneer ee [62] 
western.. eRe eae LOS) ilimOnopwortwwatenem eee [183] 
willow-leaved............. [LOS]: |/Drosaces 2.44 2 asec aeianiee [189] 

Od ener seen ener abe [195] Canimataeree eee Soy] 
(AA Gon dbo cuarurakae dad LOST iD pyase civic seuss la cayenne {147] 
Short-styledsanneeeirae eee [195] octopetalassjeerceeneee 42, [147] 

DODDER HAMIL Vermette MOSM iDryalsls eicls 4 els se) eeesna els eieres 40 

Dodecatheon-s eee eee [SSP Dnymocalliseeeene eine [144] 
PANCITOGUIM eye eee [189] Elaedb tine mnerrosremole icote 14, [144] 
Paoiloscia eee eo LOO)| fissaite ns Aa eae ae ee 18, [145] 
TaAdicatumeneee eee PK), Sy, [MEO] || IDO OUST Goa cdovasiasoleo0s5 [49] 

SUIVLOLIUI Eee eee [189] Bilix-maseenueie vane eee a Leo 
SIDUACUMERS Eee cece ZO MSO eDuckweeds saree nee 10, [87] 

Dogbaneowenel aoe seneee [193] Mil oCMlEragucodda ds souisoooe [87] 
clasping-leaved... . .[193] TESSE DE ae ate Ea [87] 
CHASTE NCE Dyin hae ie [193] | DucKWEED FAMILY.......... 87 
pale......................[193] | Dysodia chrysanthemotdes..... [246] 
STOOL A ates otnetet ee MSSlhPEatonverassee eee eee [68] 
SPLEAcin Cae eee en eae [193] blunt=scaledieeeerenecr cee: [68] 


DOGBANE FAMILY............[193] Pennsylvania.............. [68] 


282 INDEX [430 


References to the Flora are in brackets [ ] 


SEOU Cae are eya ene Ee [68] paniculatum........... 19, [177] 
Ratoni eae Wee a ea ee [68] TUbescens ae ae SON LWA 
ObDEUSa tas a ey MONE ius eS Hania [68] | EQUISETACEAE.............. [52] 
TOOUSED AHN ee EN eae [68] | EQUISETALES................ [52] 
Pennsylvania........... 28 OS tl EG UISeCUIM A eis see [52] 
TODUStaLee reer eee 12, [68] arvense. ; -10, [52] 
Echinocereus sapere [174] laevigatum... “10, 12, 28, [52] 
VITICIMORUS eee ent: 198 [Aa EragKrostishameen err neee [68] 
Echinochloamasneaeieernicienc [58] TAY ORV Area eee 44, [68] 
Grusscallicnee ere 44, [58] Pectinaceayn eet 15, [68] 
MULT CAA ees [SSI MERICACHAR Se erin saree [186] 
Echinocystis lobata........... [22:21 p|MESRT CARESS ae ene eerie eee [185] 
Echinospermum floribundum...(200] | Erigeron.................... [235] 
Redowskyi occidentale... ... .[200] acris\ debits... 0.022) se 230) 
CUPULGLUIM Ea ete ae [200] Bellidastrumten eee [238] 
Edwina ee eau ote ree [139] Canadensis anne ee [239] 
Americana ieee 30, [139] COMUS EN Oar ns Mea aus aL aaa (239] 
EPABAGNAGCEAB Wane tn Ee {175] COMPOsitUs: eee eee [236] 
1B Kalas coy iciee an aMee an MU HAUNT [220] DUNNO SeCLUS Hes eee [236] 
black-berried.............. (221] RAE adele ine cigiea Soto 6 [236] 
Ox ese see OU 2 LOS] QT TICS RM tet eit avi igs a [236] 
MATS Hy ES ceh srs Gne aan aaa [224] divergens..............15, [238] 
small-berried.............. [220] EMTS See ee a ae 32, [238] 
Eleochanisea eee eee [80] flagellaristasonoeeer ea LomIZool 
aciculanissennusriceeinore 11, [80] clandulosustesee ane eeeE 32, [237] 
acuminata rt ie ee 11, [80] jucundussaneMne ey 34, 40, [236] 
glaucescens............ 11, [80] leucotrichus............42, [237] 
PAlustrish yy ecw Cote 11, [80] lonchophyllus.......... 34, [235] 
laUcescens-ee renee [80] macranthus.........26, 37, [238] 

EE RTULIS HE Sey ee aaa Muted Me ten [80] TTUITAULS OA peers a NL ene eae [238] 
Elephant, little red....... 39, [218] melanocephalus.........42, [236] 
Elephantellaneunee eons 2Lel TTMTLOR a a ence 34, [236] 
Groenlandica.....34, 35, 40, [2 pis] MAUI. soneecoc00cs 32, [236] 
Eelam aati s ale ee ate eT Geeta [103] OLEOCHATISHMA ante [236] 
ENIAC go) o.o10.4 ano a0 Bop. [103] pinnatisectus...........42, [236] 
IDC IWAN, ob ola bo ole bao 50 [103] PUM US ee eae ans [237] 
Fe lymisy saree eels [78] PUSULUS Noein ae [239] 
aimMbiguusesae eee 27, [79] TAM OSUSMA ei ne 16, 45, [238] 
brachystachys.......15,18, [78] Salicinustsseeeeen eee ZOOM IZ orl 
Canadensisse peer 12, [78] salsuginosus............40, [237] 
Condensatus mane oer nlaSll glaciallis neni ii wes arsiaied [237] 
Mialcoumiit syennyan erie 14, [78] Simplex naenenaseieeiae 445 (25.0) 
TODUSGUS Ae ets en eae 12, [78] Smithers 36, [238] 
StH COSUS Ee eee emo] SPECIOSUS SMe ae ars 32, [236] 
Williflorus-aaeeisecere 18,27, [79] SLOLONA CTA eee aerate [239] 
Enchanter’s nightshade....... [180] SHULOSUSs o3o.0b 0664 c006 25 volZSe| 
al DINE Sa aM Ne noes {180] SUbtrINeRVIsMe ree 32, [238] 
ENSIFORMES.......... 18, 19 SUPeEEDUS ee oes ON Zsa 
EPIVOBTACE AE Saharan [176] WAUNGIBISs bo ob 4005 0600 noe KO 
EB pilobiumeasreeee eee eee {177] UNTLOLUS eee eS 
adenocaulon..... NO SOD NI aoYeOre ss cada occ sono bees [61] 
OCCT Ent aleMne ee eee (177] Cuspidatay nana ee On Ol] 
adenocladonea eae eae ees [LSI GETiogontuin i eae [104] 
alpinum en Ae eee: [177] EVEN A bboge ma laiglbra Glog Aine G 18, [104] 
anagallidifolium..... 33, 42, aa BORG Saar Nene ne LOA 
angustifolium........ [176] crassifolium...............[{104] 
occidentale Mannan ae ene {177] eihUS WUT Reiser st [104] 


431] 


INDEX 


References to the Flora are in brackets [ ] 


NEN bilan asidaoor daaaco 18, [104] 
VELEMUS ays ete Ss ackeae [104] 
Jamesit flavescens..........[104] 
Subalpiniimer ase eee 37, [104] 
Tm be llatum-aseeeee ere 18, [104] 
Eriophyllum lanatum.........[245] 
ID MMOs adicaododaacos oo (201] 
ALSeNCeUME ene ee hei aici {201] 
Idrocbitinsnego dans oe emee en 5S [163] 
CHOMMATTIT oS oo 6 ons anos 45, [163] 
IDSAPin Lib aolmeede deo domo oo [130] 
GUpes tiers vars sede cps) keeles [131] 
ASP EGU seater, sro cusranee aise [130] 
Gl pestre varies tier oleae (131] 
THEO les too EROS EC oon {131] 
Cockerellianum...25, 32, 41, [131] 
MUL Vall Coys tos cts eey oe ay es alae sc) ois 41, [131] 
oblanceolatum............. [131] 
ID AYU NMOCOMMscagaadggesugonee (145] 
GUT AUEISS Weis eran nar 35, 42, [145] 
IDRUOTOMMTTNGS oo Gaga cab oeoo [92] 
grandiflorum Barone: [92] 
parviflorum....... al [92] 
FEESCADE Shy ewe ersyeysi seks tel cis) overeN: 43, 46 
Byrcephalusteey yer cceiee een [233] 
Bnigelmannitsee see oe 32, [233] 
BlAMIGUSSap ite aoas Niekersiee 26, [233] 
BP PLOS MSS Soodecaceaasa 5 alN) 
MACWEIMNS 5 cone oooeKe 21, [225] 
Euphorbia Arkansana........ [165] 
CODING POT Bd 6 oe seen s00acC [166] 
EMAL Manny vaereosio teres ks [166] 
en der abe essseveusha is y-8A cusps sets ({164] 
GY POS HEA Bae co bgeceasu se [164] 
TULA occ oocnoon es oo 0 allOS| 
COI LOS eg DO ORO Oe [165] 
TODUSLO isis nT ut EN oGin prone [165] 
HM Atins 6 oo 2G ades bose a0 [164] 
Sa AODs on s00ccbonocer {164] 
MU CULLOS Os ee ea ree [164] 
EUPHORBIACEAE............. [163] 
EUPHORBIALES aes crieeienee [163] 
IDibidoln clnsatnein a aeio Alecia {110} 
lanata.. [110] 
Bustomaysaumysuericyyraritacser [190] 
Andrewsii SAGE easton ee LOO] 
IBSISCOMAl yer ey peep eas [190] 
Atnidrewsisistyericia scree [190] 
EW OCAS IS faye tees ose hers cee eeteve [200] 
SETICC AN inka e 32, ae [200] 
Evening primrose... . . .(178] 
Delavaux sae bcuseae {179] 
NAIL Act e Lee Se LLL 
FOO Ken Sif hy setae che [178] 
SCAPOSES saa yyy ererse eave lees [179] 
tooth-leaved! == .3.4-.--.- [180] 

WHI GENN corres ira rte Acetone [178] 


283 

EVerlastinceeenrcr eee Zoo 
Pearly yoreein ja nnictecarouheeon [241] 
false aeiva actin. ae See [241] 
Byolvulissserecenen eee oe [195] 
CYZCNICUS Eee eee [195] 
Nuttallianus............16, [195] 
ABA CHAR Huanias ata.k snr ee [152] 
FAENALES 43, 44 
IA GALES Seen aenisce ces eee {101] 
False buckwheat [108] 
COMMON ee eee Pa ere [108] 
False buffalo grass........... [68] 
False cymopterus............ ({185] 
multifid-leaved............[185] 
Sylvanite i soir aig ee hae {185] 
Hallsetflancsert pase sinseen se eee (128] 
False foxglove, purple........ (215] 
Ralsesoromuwe lle eye seer [204] 
WESTERM Ath vy so srecucereey a foal [204] 
Rallsesindi :ox-sfaeeiinie e eee [159] 
ww oacoocurss soscans SO 
small-leaved.............. [160] 
Ralsevoate inertia [65] 
LAGS ET ats mee ey ere eee cee [65] 
TNOMUMADINS 5 56 dno0ou00 0d ee [65] 
narrow.. .. odoae. OSI 
False pearly everlasting. pope [241] 
False Solomon’s seal......... [ 93] 
clasping-leaved............ [93] 
Starny iy aetain eae eee eee [93] 


False sunflower, five-ribbed.. . 
Halsextimothycamne sere ere 
Hame-flowereaaecseon ene 

small-flowered............. 
Feather geranium............ 
Merm’stsi: fy ivegsiteaee syccs echoes Sj 2 


Shieldecsiiva 3. asa poe ee 


Hiern WOrts)sys/s sss ser eee 
Hescue-grassuy-iiaisy ae 
[rGhaley CROWES ema Seles ota oo 


small-flowered.. 
Festuca. 

brachyphylla.. 

CONSULTS eet ey ee 27 


INDEX 


References to the Flora are in brackets [ ] 


284 
elation canner 14,44, [73] 
DIGlEnSISonytiiveriMeree [73] 
ingrata nudata............ [74] 
SGT NO winlo Sly Sta bid Glegia Alb [74] 
minutiflora............. 41, [74] 
octoflora 15,18, [73] 
OVATIA Nasa Siete Mae Ee aed [74] 
Onevapolsa eae err ier (74] 
UG GLAY INE Natacha Sa (74] 
SUPINA. Ae ena Anne [74] 
TAU iGiae A iNade ola bold ore 35, [74] 
Lene lla aE eiel dale tenons [73] 
AO Enid co ce saw osc booed oc [211] 
NCSU Dog cies aapsidd. oH 06 (211] 
FIGWORT FAMILY............ (211] 
PHONO 5 soohedsoegoob os [49] 
LDTItb ee Mig enatanneti cy Sa) ex aibo 50] 
fra cilisheeee eerie 22,29, [50] 
Finger grass: orto L etl a tala eres [57] 
Bienes 24, 31,38, 39, 40 
Banlerea ana Gae Oa uRA 36, 39, [54] 
Frac aN ar at aa ARCO Aten eC He [54] 
Bineweedemeneiniencane cree {176] 
narrow-leaved............- {176] 
Five-finger............. {141], [142] 
BY eb een eID Cuah eM sa nv rahe atc en beat inop [163] 
falsene wane An erloceeine [128] 
We WSUS EIN Wy Ae At lestatneeu ste bein [163] 
meadow. [163] 
IO CASS INN GINS dato aiaoold 6. b/0l5 0 [163] 
Filealbanesanerisinies 27, 31, [235] 


black-headed............../236] 


broad-rayedeawne eee een IZoal 
CHOICES res ae UNA NES US en [238] 
COMMONER A ee eee [238] 
COMPOSite sine eile [236] 
Galisy Maen pevarlennyaeial shaper [238] 
Givercentyse nelle evita: [238] 
glandular................. [237] 
ice. PSS De ee 2S] 
lamees leaved AR NPA VCS [235] 
large-flowered............. [238] 
ronibU DITA Sia.bis ain Gg osiorelain ido [236] 
PINNAtE LEE aA Ee eS 
Dleasam ee aa nen aleniae [236] 
ANOWARGW bide oda ocimloo doce aolAerell 
Then eyoawyaa saa aidedoidwicdio's [236] 
STM ee eee a iN) aioe [237] 
smaller sence etal anos 236] 
Smithyss ary Meee ape note [238] 
stoloniferous.............- 239] 
Superbyyy sees lei de renedsichen: [237] 
three-nerved.............- [238] 
three-parted.............. [236] 
white-haired.............. [237] 
willoweenec eo reet (237] 


Fleur-de-lis................. [ 
Flora of Boulder, Colorado.... [49] 


Flowering raspberry.......29, [141] 
SAVORY cee eu iaia eaosinaeior eats [141] 
Fly-honeysuckle.............[222] 
involucrediis je saci oie [222] 
Bogetrutt ein sme ercn Gavel [205] 
wedge-leaved.............. [205] 
Fontinal vegetation. . Boils ZU 
Foot-hill cafion society... We Dip 36 
Foot-hill flora 9, 17, 23,.. 24, 29° 30 
Foot-hill meadow society feats 2A. 2 
Forage plants. . lealolal arose Soy ee 
Foxglove, false Ge Oh aa [215] 
Boxtailie sve sane [59], [62] 
abhiel slanenet iar ecn una Stale tl act [63] 
SHEEN earner nae eho [59] 
Guichen) amieisinemiols ciainlarsic laine [62] 
Westerner cee [63] 
Vellowease eee [59] 
Bragariase rican) eee [143] 
Americana eicieeeenin {144] 
bracteataeen ss aan caer 28, [144] 
elaiucaysi tice. 2 klar nian ({144] 
Paucitlorasne eee [144] 
proliticas 44a eae Lee 
vesca Americand........... [144] 
Hragile-ferns4eeeaieeweeer 21, [50] 
Fragrant sumach............[{167] 
three-lobedixiiekiiaed oan (167] 
FRANGULACEAE.............. (168] 
Franseria discolor............{224] 
Brasera secs h ea ee need ae [192] 
angustitoliay.e nie [193] 
SPECLOSA aime nA eon teen etapa [192] 
stenosepala............ 26, [192] 
EUIGIDIVAR A seen: 44, 46 
FUMARIACEAE...............[126] 
FUMITORY FAMILY........... [126] 
Fungi, PaaS AIH i ano 43 
saprophytic. . Baa nt pa kcal ihs a9) 
Gaentneniasiccueeniaeiad ae [224] 
tomentosan sane een ensEi 16, [224] 
Gaertneria, woolly...........[225] 
Gaillardias eri or ae nner (245] 
anistatarcunme mera 15, 19, [245] 
Gaillarcdias arate Ss anmeatif 
AWE Cee eM ee Si An [245] 
Galingale:yiaein crises [79] 
Gali: MEA EEE UE ae eae ei [220] 
Aparine Vaillantit......... [220] 
boreale.............23, 26, [220] 
Havitlorumlnre ese 5D. [220] 
EnIMOTUIMeeee eee 26, [220] 
Maillantiiaeeiaeeiier 23, [220] 
Gaultheriay Seer [186] 
humitusasse eee [186] 


INDEX 


285 


References to the Flora are in brackets [ 1] 


433] 
WETS ZOD aor 0 36-800 oon a0 06 [186] 
CANIIRE as on eo CHO TTC ei om eeont [180] 
GOCCINeaMe ny dance pers 14, [180] 
Salma reese) cleus eee 14, [180] 
parviflora.... 14, 19, [180] 
(Gali ine Easioten Geleigaeebiae [180] 
Cale ten se iesleteeley cuataccus arian [180] 
small-flowered [180] 
SIMOO LMM tPA esterase edie {180] 
Gavophiytersn\issscienecane [178] 
TinWeereNGG FENCES ob bio dia lo os a6 {178] 
(Gavophytumen eee [178] 
intermedium........... 19, [178] 
Gerrans. ieee 39, [190] 
meniGaneepeseeaeiopeian ta as [191] 
closed...... [191] 
Bigelow’s [192] 
ATTA Sees ences aier yo nyo veseilel [192] 
IRGmAMADUS ocd ugg cn ac {191] 
CHB oid oa OS Sia HSM CIERRA E [191] 
IPRENOMIE So ola oproblae Osiold de [191] 
PRIN SECA Pai att eh a cle ul {190} 
eanc ec ea rres tad clita an [190] 
showy {190] 
Holm’s RUM Ee [191] 
LOWES sia eu seve ee ae. ee eitecenciebaks {191} 
Oue-Howereduameeacnin dese. {190] 
Strict-lowenredsnnss sea) 4 [190] 
GENTIAN FAMILY............ [190] 
‘Gentiana amarella acuta.......{191] 
amoarella stricta.....:.....- {190] 
WADA, 6 3.5 d)ad ole Boje 60 bc [190] 
IEAM ioocoae cocoooasue solOAl| 
GATED RS Ses BOO aE OE ae ole [190] 
LCRDO Diss 6 So obd000 80 obon [191] 
ORCL ee eee [190] 
WIOSHEMaocolscos boat div 6o [190] 
CRONIN USA oye erate, retest can wien [192] 
DICE] Ova era ager ate. [191] 
LOUD aan Eee eee [191] 
prostrata Americana........ [191] 
ROMAN ZOUUL Ee ee ae {191] 
SIVICLUILOT Oe era LoL] 
(GENDIANAGCE AR heer ierae [190] 
GENDTANAL ESE pe eaenne ner [190] 
Genitianella Clementis......... [191] 
Geoprumnonsseeee eee [155] 
succulentum...........18, [155] 
GERANTACEAEA LEE Eee ee nee LLo2)| 
GERANTAT-ES eye yaa ep ohare [162] 
(Greens go udagoevodooocd [162] 


Bicknell nytt eel 


PrrQnOrMsiccgdcisscodess 19, [162] 

OKLA Sete) ae3 Gee Re Oe [162] 
GOCHWARITD oon ccesocosorne [162] 
lonigipestae i acuneriee aie [162] 


Parry ee oh cane 22, [162] 


Patterson eee eee [162] 
Richardsonii........ 29, 35, [162] 
Geranium, feather........... [109] 
GERANIUM FAMILY...........[162] 
Gerardiany yy One aR ie) wale [215] 
Besseyana.......... 15, 43, [215] 
Germandersernen ase cick [205] 
WEStER MN al pataeen Wlcers Mas [205] 
Gem eiae Seeley chalk an eas [145] 
CLLOLUMNS Meer ei eva 1145] 
Qregonense......... 28, 35, [145] 
INoOssiighuimailiseaeee eee [147] 
scopulorum............22, [145] 
Suse aos ovodaoeded 28, [145] 
LAONUT eee ce oe eo 
CATA ac 565000600530 00 [146] 
urbanum Oregonense........[146] 
Gila ys ris LeU CE ONE gail [197] 
aggregata attenuata.........[197] 
aucenuatala- mie eee {197] 
Collinge yi ime oiocrarohy on [197] 
IBY ONCE SECT EEE Ep eee [199] 
candid amen eee 19, [197] 
INCOUSPICUAEE eee ee [197] 
TAO Se eloscalGeke eh oc erel iota che [198] 
Pinnatio daseeee eer eee 19, [197] 
GMA. oooncotoapocss 19, [197] 
Spicatarre circ ethet eu ee [197] 
Giltarnyye Sie aea ae seo uasaemiags [197] 
acute-lobed........... no oll Z/]| 
foothill Be eva [197] 
HN CONSPICUOUS Meee [197] 
small-flowered............. [197] 
Spiked eather sae. [197] 
wavy-leaved...........-.- [197] 
WT Ge ee ee Ce yee eee 197] 
Gill-over-the-ground......... [206] 
Glechoma, see Glecoma. 
Glecomaete eee eee ees 200 
hederaceal-ae- eee 45, [206] 
Globe-flower............. 39, [118] 
Vid ub WOW tena ner eae a) nal a sie [118] 
Clyeynnhiza-e eee eee ers LoS 
lepidotalen Hauer [159] 
Gnaphalinm see eee 241] 
PAlUsStre res Ainslie 34, [241] 
Sil phurescensas see eetee (241] 
WEGMBSo doce ssvacces 26, [241] 
Goatsbeard, yellow......... [255] 
Goldiimountaimneee eee [230] 
Golden’aster..-20- 4485" 13, [227] 
ample-leaved..... [228] 
ATIC Hae ei ONS R Oa [228] 
Balkerssii (sce ay terrae eats [228] 
Caudate sek tia ie detects [228] 
Coopers eee e229] 
hairiesti3 32s seen [227] 


INDEX 


References to the Flora are in brackets [ ] 


lanspo Noles oatyorda wahin oti bio /o-4 [228] 
Leaty aoa ie eh ccoehs (228] 
obtuse-leaved............. [228] 
TESINOUS Hae eciyaae aie tae [228] 
VilloUStee enero anae keener [228] 
Golden currant, long-flowered..[140] 
Goldentglows- ener [242] 
Goldentrode eee ee 13, 31, [230] 
COMUMOMds c¢00000000n0ed00 [231] 
decumbent --hqee seme [230] 
Giwarrke iss ao rei a [230] 
Gwar hiya isms nye wettest eis [232] 
harsh-leaviediuicieek sen [232] 
hoanyeye lacks vias one [232] 
many-leavedeynenaeei aoe [231] 
Missouriistouteere eee [231] 
mountain loving........... [230] 
open-topped.. j...)........ [230] 
Daler cate eae aes 1231] 
Pitchers acme ei [231] 
DRE CELESt ye en uel [232] 
SMOOLNESE PEs ee [231] 
Stiftsphoalnyeaeeec icici (232] 
three-nerved.............. [232] 
VISCUM eRe Ei eee [231] 
yellowish-gray............. [231] 
Gooseberry eee sone. 29, [139] 
PUL PUS Soya i scsi erasers [139] 
Valle syne ee een RL Onde [139] 
GOOSEBERRY FAMILY......... [139] 
Gooseloot enc seeiccicets sacioene [108] 
Hremontishaea ee [109] 
OAT YA eles come auaia ee [109] 
maple-leaved.............. [109] 
narrow-leaved............. [108] 
oblong-leaved.............[108] 
TEC epee reece bat tinal saat [109] 
WIT EO etre eat et eh Ea AU [109] 
GOOSEFOOT FAMILY.......... [108] 
GOURDIRAMIE VE etn [222] 
(Grama-onasshenemneeee eae [67] 
COMMONER [67] 
jana (eo ug dialon Olio qe gains oa [67] 
Grapes aiian Ginianpar elon 21, [169] 
Boulderctn cee ra wenn eae [169] 
BHKATIOENMGb Gh aancodadoo ae [169] 
GRAPE RAMILWe iy riences [169] 
Grape-fern, Virginia.......... [49] 
Crapesw Oregon nee eer [125] 
Grass. .6, 10, 12, 27, 34, 39, 40, [44] 
Des eMly aig gous dodo. co msi [58] 
beard ennai [57], [63] 
[DY Shr oata ts rive ase an Cay tats io ros [64 
blue..............[69], [70], [72] 
blue-eyed.............. 34, [95] 
bristlenniseieerea ern anae [78] 
doh era giaicig Mab Kai miow no aioe [74] 


[434 

brooms eerste 13, [57] 
buttalopeePeeinerner 13, [67], [68] 
bunchiseenornracoer ,o7, [74] 
ID UT ete Wy PSOE TS Da [59] 
CWS Gla Gi Maat) AS crtatto [59] 
catch thy seit here gama [59] 
Cockspurweeemioneee ee oes [58] 
COT yea Rye Pn a ae [66] 
Crab eeu ae ey ae ears [57], [66] 
(oD oaN oie ick ore eal evra cits c [59] 
CYIDET Aeun ey uae ete ae ee [79] 
Gropsee desta etars miseaiae [61] 
Baton averse elcome [68] 
FESCUE ye le) Gat eet ena Ons ae [73] 
finger [57] 
STaimascseidsiaeeeion eee [67] 
hair [64], [65] 
Ole eee ele a heyhey en [60] 
I BaXeh ena oy ia ere sigle cas os [57] 
WAsrlona a maraeeier aot a tne iG [78] 
jpohobeieryd alain at mtaly Binks olGih [72] 
MATS WS cae sev ecto eee ee eras [66] 
AMEACWYoccaccvdvovvccs 14, [69] 
mele eee CN a [69] 
MESGUIE- We eerie een 13, [67] 
Miuninalsigaucvaace cece oe [68] 
Oa Ee us SOS eS a are [66] 
orchard. eos 
panic... .. (57], [58] 
DED Per NUS ROL 27] 
DENIM yee Wem elses retaever stele {127] 
POLCUPING AEE eee 13, [60] 
DONEMAYo ods c'osinida do.Qa-cn.e 6 [60] 
PLAIDLES Aohege Gaenoseseckoee neta [68] 
quack. edioc (Z| 
Fist Ao ae el ey need aateg Oy [63], [64] 
TUSH ice te eee {61], [62] 
BY Oeste aay e ioeat alee ne {75] 
SAE aise) ay Sieilenet me peeeetete [69] 
salt meadow.............. [73] 
Skunks Re Pea ee [68] 
SPOAL aie) sip hacer larendoieue eta [69] 
Spiker ee ME AU NDA an [69] 
squirrel-tarleseee eee [77] 
Stim oon. Pts ieee [68] 
SWite hye ec UNS [58] 
triple-awned.............. [60] 
turkey-foot............ IS, Sz] 
WiHea ER ee ee ETA UI aura [76] 
WiHLGLO Wie scl eaeeeu ce mete [132] 
Wit Cae RYN AEH gaa [57] 
GRASS FAMILY............... 157] 
Grass-fenm.. cvaltacuiec cote veut (51] 
Grass of Parnassus..... [139] 
fimlbriates nae ieee [139] 
GRASS OF PARNASSUS FAMILY..[139] 
Gratiolayeyn see eas eRe ] 


435] INDEX 287 


References to the Flora are in brackets [ ] 


Wirginianan sence 11, [214] 
Great blue lobelia, Louisiana... [223] 
Greektvaleniania gee eneeece [198] 

brandereelssaneir itt [199] 

BURD LEM ae tericeievolesseasiele [199] 

SOV S Aarau OO Aes Ae [198] 

eNO witssce esuare cusses haslnetebarens [198] 
GREENBRIER FAMILY ...... [94] 
Green milkweed  .......... [194] 

COMMMOT Eg .yehevesersee er eye [194] 

narrow leaved. ........... [194] 
(Graindelial eteryaciegst ors aes wioevens [226] 

Pel donae src aiaiercrakeesscos 36, [227] 

CLEGLARE ET Tie yercisisiorae cierers [227] 

PCKENMISG-piee crevasse 15, [227] 

SEEGU lartalecshaa tne ives eieerve 15, [226] 

serrulata X perennis....... [227] 

Siipal pina see ieee 36, [227] 

Weare gayi =. si buelsists\ echo [226] 
GROSSULARIACEAE.. ........ [139] 
(Gromwe lle cent ravens [203] 

IONBGs a6 oo ROS UO OR Ene [204] 
Groundiichertyne. 24522-4606 [208] 

Genin ono bond sncoesneas [209] 

NATTY Relates nee ese Sa, hayes [209] 

fongcleavediies ecru tate [208] 

DRANTIOso.0.0.0.09 plnide Hoey oma [208] 

DULDIE Neer ec sess ake [209] 

rroualieEnKaAGk. po onscacabes [209] 

Ike] ovata alight Meneses [209] 

Waroaiiatenyajacne rt eus cies crete G [209] 
Groundhivyeene eee ZOO! 
(GiroenGl wos cb noudueboccos {161] 

BOuIderntaryucc mt teree crite [161] 
Growndiplumemrry sees eee {155] 

SGM ENE a5. od. 50 dodoouduue [155] 
(Groundsele eerie a 31, [249] 

admirable=eeeneermernr [250] 

Alpines sieimcch yaecene ose [249] 

bashhuless cre cnrec cise ees [249] 

|n) Fhweys ac ecetre Ch ee Res [249] 

lpre OMS, daonocomanoodcs [253] 

Columbianteasee eee eae [250] 

Ren dlerisajeistonverisesaice ichcy: [251] 

green-flowered............. [249] 

Place seein ue hanes oe nee [249] 

Harbounmsseeee ee eco rear. [251] 

Hooker'siis accion csc [250] 

lapathus-leaved............ [250] 

leafivaWeeins thew rs waeiehie ere [251] 

many-headed..............[253] 

DAPSONE, oc codescosoans [250] 

Purshisseine eicrcrackorse lorena (251] 

ragweed-like .............[253] 

Rid delivsssmeniemee ee [253] 

bhickishetay sion wernt sie oy are [250] 

triangular-leaved.......... [249] 


Pnounnip-leavedeneenney-r rit [250] 
water-loving.............. [250] 
Giimplanteeeeee reer 220) 
Bildorar ae ievccenruet teers [227] 
CLEC EU sess reuerennee [227] 
DELEN Mal Meier teeter ke (227] 
Sennulatescce, cpa nce seers [226] 
AHO Lone ooo donns occ [227] 
MORAN peers iets ee ee [226] 
Guimweed= anne nnn 13, [44] 
GUNNERA FAMILY...........- ({181] 
GUNNERAGEAB AS ree ace ee [181] 
GutierreZziaey eee eee ers [226] 
longitoliasareeieeiseee 16, 19, [226] 
SCOPAatla nee Ee 16, 19, [226] 
Gutierrezia, broom........... [226] 
longeleaveduaianirceia [226] 
Gy mnolomian eee eee (241] 
MIKO sdoadagccoce 29, (241] 
Gymnolomia, many-flowered.. [241] 
Gyrostachsysustngota.eey tin ae [96] 
Habenaria Unalaschensis...... [96] 
Hackbernyeaceeree meee 20, [103] 
veiny-leaved.............. [103] 
InENie GIS oo cdocucue0s [64], [65] 
tufted eee eee ee ee [65] 
FlallerpeStes nicer: fnioiete tokerey ere [124] 
Gymbalaniateesan eer 11, [124] 
Halictus galpinsiae...........[180] 
lanbourias ecient eee [182] 
trachypleuraseaeeereeene 25, [182] 
Harbour’s hemlock........... [182] 
OWATONNA yaa cabooneaac {182] 
Harebell?a- see ee ee [222] 
IAT CLIC ASA haNa came U eR eE eRe: (222] 
Panny Sica opera eeu 222 
Flaws vstigsca fischeri 20, 21, [28] 
Eero’: aah n)5 Shame eee 51 
COORGCDsscbuddnoseoccove [150] 
alS@n ie) paeiechstuadesereeonae {151] 
Doddds---saseosc Nee tees {151] 
WESUEDM 21.) 45 ciate RIE Cree {150] 
lARdn@na@.ccacakcoconodg co's cll SG] 
Hawikis-bearderceeee eerie [256] 
alpine se Wie. yaa ere eee (257] 
glaucescen tase eee rier (256] 
MATEO Wsleav.ed eee (257] 
PELplexingejcri-y tae ene ee [256] 
Petioled hee ene eee [256] 
HUNCIN ATEN eRee ere [256] 
LOOLHEG cee pee ern eens [256] 
WESEEDIIS.. Wome RGR oes (257] 
Hawkweedtacasececnennr men Zou 
Rendlers7 ema ee eine al 
Slender. ce isiaen civ eee (257] 
white-flowered............. 257 


INDEX 


References to the Flora are in brackets [ ] 


288 
long-beaked............ 21, [28] 
HAZEL FAMILY.. solo sole oll] 
Hazelnut, peaked aie cian 102] 
TRICE ERIN A ANA aid ale We otal Bicdlad [206] 
IEbDYNaney ROA BIEN GG 314 6 dloigia.0 o.c' 410 [186] 
Fedeomaninena ei eel [207] 
hispidage ayaa aia ncaimeesr 16, [207] 
Je DT RIAC RANE sey pubis sie se [181] 
Hedge hyssop............... [214] 
clammy arene rieicenchete (214] 
Hedge mustard.............. [130] 
COMMON Saree eerie eee [130] 
Redicemetties ener aeeeese 206] 
Cra ge ML AUER Ce ie [206] 
Helentum sven yer tek [245] 
MONtANUMs seis oie 12, [245] 
Helianthellaueeeee ere mee [243] 
quinquenervis.......... 37, [243] 
Helianthustaaqoen nee oer [242] 
fasciculariap meee aeoe nae [243] 
giganteus Utahensts........ [243] 
grosse-serratus......... 15, [243] 
lenticularis)..2)...)....15, [242] 
CORONATUS eee [246] 
Detlolanissaseneeae 16, 45, [243] 
phenax.. Bieta is .(243] 
DUTT, 3 is\)o page va ao o ioe [243] 
subrhomboideus........19, [243] 
(OH IGISISS ab do ooecdeaecc6 [243] 
Hemlock, Harbour’s......... [182] 
Watery huni eA, eis danas {182] 
Hemlock parsley............- [184] 
Rocky Mountain.......... [184] 
lemprelindianta aera [193] 
ELE MP AMIL Vere email ir [102] 
Rleracleums- sania ecieies [184] 
lana enya eineteitiae 23, 29, [184] 
Hesperaster strictus........... [173] 
Heteranthera yy sees. [88] 
IMO Saye Ry Ae ey 11, [88] 
eu chieraa nena wee eee (137] 
bracteatay an oa aacennis 30, [137] 
Leite DET aay ttountaias 6 Wom uibteG 42) [137] 
Panvatolials eee set 22,42, 3H] 
EN eraciuimee een eee (25 
albiflorumane ae: 26, 32, Boat 
Render aneneennecne 26, [257] 
eracile yee Nan wanaeieaiets 40, [257] 
Eierochloeaeee eee eee [60] 
Dor ealisn eye suse Weve ain ee tet [60] 
odorata s a Mek etait [60] 
High ridge flora............. 37 
Hoarhound, water........... [208] 
Hoanyacresssaarin canis {127] 
Holly barberry.............. {125] 
Hollyhockeaseemenmanonnrest [170] 


COMMON...............+--- 


Holodiscusss-4aee eee neers [147] 
dumosus- en ane ee (147] 
Homalobusteaseaeoae eee: (157] 
CaImMpestnisv amen [157] 
decumbens.............25, [157] 
TEXT OSUSISE REDO IE Rattle [157] 
Salidaen rn esse 14, [158] 
tenellus............. 25, 35, [157] 
Homalocenchrus............- [59] 
oryzoides..... 11, [59] 
Honeysuckle, ffly.. ue [222] 
HONEYSUCKLE FAMILY... [220] 
Dla) oye ecru NEMS CL [102] 
New, Mexicosa. arcane ce [102] 
Hordeum sane one [77] 
PULBUUINNE SY Go gabeocous se 14, [77] 
pusillim sean 15, [77] 
sativum hexastichon.....46, [77] 
IEAM Po doo oos cobs co bo NM), [lis] 
COMMONS oboo000¢cqs000b0 {118] 
HORNWORT FAMILY.......... {118] 
Hlorse-canesnnneenio eee [224] 
Hlorsemint.«.) s,s ues eee oe 20M 
DEctinaten ene ZOzl 
Namaleyisseneoenoee eae [207] 
Horsemradishwene eee een [130] 
COMmmMon eee ee [130] 
Horsetaile aaa cine one [52] 
(2) Ca ENS rena erraal aes ennai ea a [52] 
HORSETAIL FAMILY........... [52] 
MOrse weedeat cee lesol 
COMMON Eee eee [239] 
iwar feral e ens eau alae [239] 
Hudsonian vegetation....... 9, [32] 
HUMIDAE................13, [14] 
lndiinmUhiSoos seed oobeodonvoes [102 
Lupulus Neo-Mexicanus.22, [102] 
HYDRANGEA FAMILY.. Ae 1139] 
HYDRANGEACEAE.. 4 [139] 
HyDROLEA FAMILY.......... . [199] 
HYDROLEACEAE............-. [199] 
Hydrophyllum..............[199] 
Mendlenriernweineieeigs 23, [199] 
occidentale Fendleri.........[199] 
FivPERIGAGHEAR Aan ee ee ee Lia] 
FIVPERICAILES Hey ani eer aie (171] 
Eby pericumhner eerste eae (171) 
Canadense majus...........[171] 
HOFMMOTNos boos oodooduy oe (171) 
MAPUS BAe Aes gece 11, [171] 
Hyssop, hedge............... [214] 
op yaliiubonweacsie meteictaidtaia ait aie edials [96] 
Romanzofhanum strict- 
(ohne helt nia acinodie 28, 33, [96] 
Indian breadroot............ [160] 
few-flowered..............[160] 
Sihramlwissogceoaougoo.a006 [160] 


437] INDEX 289 


References to the Flora are in brackets [ 1 


Indian currant, huckleberry.. .[221] elliptical-leaved............ 150] 
MObAVEG 5 sadneedodoogse [221] MaMy=LnUItedeeiedacye ey seer {150] 
Incdiangerassere ieee ESralieitinipertee See ia sey ak [54] 
MOU CIN GA Ate eam teet oe [57] LOW eet AEH cn cca Nea 20 
Indranvhempreeee meet eeeee [193] MUONS Gh obonocodene do [54] 
Stam obnswortaeeecieeeaer [193] | JUNIPER FAMILY............. [54] 
Unidiarpinkse ys eae eres [21S iONTPERACE AES sae elev leoe [54] 
INDIAN PIPE FAMILY.......... [185] SCOPULONAULTII eee [54] 
IMMCCENGAs 550 bo coedcoobeo neil) SibDInIGa aeRO 20, [54] 
MmtrOductloneaaeeee eee La Kalen sean eine hyp lripotes Aere hii bey {111] 
Tonidium lineare............. [2 Kalimiateann seen eee [186] 
Ipomoea purpured............ [195] glauca microphylla......... [186] 
IT Se 9a gh Batare Ge CE aC ee eREIOnCtS [95] MAcLOp hyllasseeane eee 39, [186] 
Missouriensis........... Tal [ROSH || Um@ernseealoc cdc gblowoucdebos [106] 
LHS Aa aS BA A ee 224 Doxslikcens eee a tea abita ae [106] 
@xillariseerite 12,17, 45, [224] bushy eae sa eae yest ron [106] 
xanthifolia.......12, 43, 45, [224] Moupglasissen aca seie sea [106] 
Itai Pacobblays wElolnis uu bledee as [206] branched serene ae [106] 
DOOM ada wig ae oreo eee ie [167] Pngelmannvsis earners [106] 
TWAS IAG TINA Biaala ie nee ena [181] CROCE rM A Nene nun gue tatiana [106] 
IDSON IPAM TIONS U oleic oars Ennio [95] one-leaved..... [106] 
IXIACEAE..... [95] Saguache... [106] 
Jacobysiladdertaneee seen [198] WIdIESOTIS era nance nent [106] 
delicate... [198] | KNOTWEED FAMILY.......... [104] 
PAITES te ee hee ee [LOST iiioelentalyeeys ar eaters area 
SOV ES oe Aa CNN Seal De Uo [198] Chistata-ee sea S427 [OS 
JACOB’S LADDER FAMILY.... ..[196] TIGL ayia red Myoeasene ache ale [68] 
Jamesia Americana.......... MESSI NKonigasersaen eo se ore ce [132] 
JAMIOTAS oS be oe eoe one 29, [139] TAT ELT eee ee 46, [132] 
PNTTIERI CAT eee eee [139] | Krummbholtz...........38, 39, [40] 
equsalemloak* trac ences: [109] | Krynitzkia crassisepala....... [201] 
iiimiSonaweedene nena s cane. [210] TOMESTIS A aly oars ha ieeeees [201] 
Joe-Pye weed, spotted........[225] IPO erSOniipe eee ee [201] 
IUINCAC TAR SNS ei eo hs [88] CALs e oe acicavoodgaccose (201] 
Jlancoidestha sania ei ery XO |) UGE so oos wooo do odouas cade 1225] 
Pabvitlonumley eee 2-295 [39] eupatorioides corymbulosa... .(225] 
melanocarpumlse) sys ace [90] glutinosasye eee eee 16, [225] 
subcongestum........... (91] Gooddingi eee eee ee (225] 
SPICAUUTA EE Neer 39, [91] Eitchcockis seen 16, [225] 
Af CRAKS hes Bight Wig eee nN es sis [88] | Kuhnia, Goodding’s..........[225] 
LNEVOMOUES oacan aden odes 14, [89] Inbtel Coho gocoechaoea as [225] 
Balticus montanus.....11, 28, [88] Stickyeenao as ance tee 
[DUO 6 Hoe oc ounless dco [89] | Kuhnistera oligophylla........[160] 
Gastaneussaneeaeiaei eee ley [9,0] DULDULEG.) AT eae a eae [160] 
COMES noagoocds cocoa olZh (IO I IRMA AEISs cigs ciouo boenso solo ol lb 
Drummondii............39, [89] tridentata ieee eee [147] 
Dudleyiesi teas oll mzaciniarian ene een teeter [226] 
ROA ono deovadoseca collet, IK lig listy lisse eee 26, [226] 
longisty lista eeneetion 11, 35, [89] PuNnctatamscece eer 16, [226] 
MANGAN S ooccosooceccollil, (Oi |) ACARI Le coc édcoulod oc 0d65 50 [258] 
IMeqrensianlitissaeree rene [90] Canadensisheee eee eee [259] 
MOGOSUSH yea aes 11, [90] LUbeE grata ne eects 45, [259] 
PALOUS ence ete eho 35, [90] Mudovicianarencreieeeciecee [259] 
Saximontanus........ 33, 35, [90] pulchellayar einer 12, [259] 
MOLE y Alessi terse ee 11, [90] Spicatals vrais yon ees 12, [259] 
Caplin ocsccecodoosoos 41, [90] | LACUSTRES..............31, [34] 


iunebernyon niece 2029] hiMGacustrinesoras seers [37] 


290 _ INDEX [438 


References to the Flora are in brackets [ ] 


Wadies! stressesassee oes [96] prickly java ho ees [259] 
narrow-spiked............. (96] Showyctsi. Cea case eee [259] 
Vady/sthumbeeewererreeie MO7It Peecocrinumesee ee ene e ee [92] 
COMMON a ee {107] MO LtATIULITI eee ee [92] 
dock-leaved............... [107] | Ltatris punctata..........5... [226] 
Muhlenberg’s............. MON ILFOMEMEGy Cae loo dodo duoceelee 29 
Bamblall ee ee yoni eer eee MS Ole etgusticumpem serene [183] 
Lamb’s quarters............. [108] ALAMOS eeNiica ves aerator ee [183] 
VAMTACE AE ei nti hare ae rae [205] Pontentany..yeee eee 23, 26, laid 
Lappulais eine oe Sie eae [200] SCOPULONIUN Eee ene [18 
angustata seem enter 2 On (200) i fen A GE AE Sees pinnae 1924 
cupulatay: nance: HOM (200) 0 METETADES Te nice aaa [88] 
floribunda eee ZOMZOO]e Meilium pee eer ene [92] 
occidentalis 16, [200] Philadelphicum montan- 
Barkspuragnuceiio eee 34, [119] THT GES es Ba cea 28, [92] 
Barbeycci suey iien wir caeain PU ZO TST lycra NENG ME Onis [92] 
CANA eM iis ey wele o iteasosnwennnieas {120] Mariposa........17, 18,27, [94] 
Nelsons sione ene apie. [120] MOUntaIN EE eee 27, [92] 
Renardisn ye iiivci ii acpi ats [120] j OX a a ES ANY ea algerie Gel a 34, [125] 
PLAINS EM ech neee eeewerceei a [120] San de cieve cae eee eae [92] 
WESEORIG steranever-veniicds miansepeegs AAO)) |), LEM IRAINGIRN So po oaadoooc se bo [92] 
Wath ynusieevoiacpeer eee [161] | Lity-oFr-THE-VALLEY FAMILY... [93] 
leucanthus.......... 2ilewd/ Spa [Ort a |ieleimanonrchisteee eee eee [95] 
Laurel, swamp..............[186] borealis: eee eer aoo ye SO) 
ava xialieerciete weer torte (179] laxahl orale eras 22,28, [96] 
brachy.carpareenn ee tar ianer [179] SEnICta sae riarei on ene 33, [95] 
Weadiiplanteey wer inva cnnaees [159] viridiflora...........22,28, [95] 
Leather flower............... [121] | Limose society.............. 10 
MOMS TS Weta wtele ns Gee Hee eae Rane [2s etme sellaya eee peer eae [214] 
WO Olly. ie Lareico eo [121] EUGWENBISAIab 15 6 66 dl0.6.00.6 10, 34, Cee 
Leersia oryzoides............. GD] | ILMNACINND obo odooodEdouso oo [163] 
Derm may eke eressieeeneeeashe) ae Re (Siieleinanchussee cence ieee [196] 
gibbagrcuncmeca see 10, [87] Hankirvessilsssewi ioc [196] 
IMINO LA eoee see 10, [87] | Linanthus, Harkness’........ [196] 
BEMNACEAE Sata sce bien [Sidi pleinariase ier eee (211] 
Beonurnussssc hen eee [206] Ganadensiseaeee eee 20, [211] 
Gandiacaleee een eee AS 206) hl mleinnaecaser rarer tenet 221 
Mepargymndleaivie easton {175] Americana ene eee 26, [221] 
Canadensis............ Pass SMM Ml bebolibonvcc iy ohota'e Ase nicl bit Ao.aio osc [163] 
Wepidium eee eitsp rans [127] Lewisii. . Helen ORLOM ee 
divercens:: eee ennai [127] perenne Lewisti i Spat A a 
DRAPER AG SAN a a aiete ae g E [127] pratensesir.j scores tr 63] 
MeciumMenee Ree {127] Ipsfernel Oe Di ea anna [51] 
eptasealn nents sees [138] Fendlertsi yey aeye acces [51] 
austromontana......36, 42, [138] Woolly sacs epg aa [51] 
chrysanthas perenne 42, [138] | Lippia cunetfolia............ [205] 
flagellaristeee tere erick AQ [138] |) Lequoniceswildieess. cele [159] 
lnbiecmlbhono Gd oclooon nods oullloksll | VLeads WOATIG4 5 s64 bois baeooe [96] 
Weptilom ee ew ae ere pene [239] Mephropny lane Hee [96] 
Ganadensevann nein 45, [239] | Lithospermum.............. [203] 
pusillumyeaeee AAEe eae Zool albescensen eee re [203] 
Mesquerellasvenic see cee [128] ANUGUSLUTOLIUT EER eee [203] 
Sheanisa wise coe ekenatare [128] brevitlopumea eee eee 16, [203] 
HES EEUU CeO a Rue ete ae Ee [258] canescens. .............145 [203] 
commonybluetceuen eae es [259] linearitoliumiyy eee ne [203] 
common wild..............[259] | Little red Ane PNG cuhovics [218] 


ouisiana shee ee [259] Greelandieieeeeen oneal ZLel 


439 | 


INDEX 


References to the Flora are in brackets [ ] 


MIVeRWORbeca vanat a wie geheetenes 27 
BT sy. icia'ste sonra ha chs sat oy eee [92] 
SCLOLINAg | ceed cee 41, [92] 
loydia lately vscusdcenctacrvee [92] 
HOAGAERAMILAW nue eee an [173] 
ILOMGAG UMD bin-nio dle ean OLS {173] 
IL@ a ITAR Se eriaer Ges one ress [223] 
syphilitica Ludoviciana..12, [223] 
WObeliavwcts sins see tidatlos [223] 
Louisiana great blue....... [223] 
BOREL VAMHAMTE Van an ce sles [223] 
WOBBITA GEAR) ics) jccre casts reiticaye [223] 
Woco=weedsy. sts e.6 = 13, 34, [58 
broad-leaved.............. [158] 
GESPILOSE ker ene ces Sane [158] 
Geflexedberet ake eases Giae [158] 
WamibentiS amen acacia: ce [159] 
IGS os ee Oe [158] 
RiGhardsonussemeeaceye re [159] 
CHEST 5 Souslo.cictas oReDe eee anata: [159] 
Holnimisenty ees seen eis tee [75] 
lfeallicrimasseeerenere crear 44, [75] 
Woman Grate. s sods 2s [184] 
Long-headed coneflower......[242] 
IDLO W Neer a a iennelacie ads ales [242] 
Looking-glass, Venus’s....... [223] 
Woosestrifer..5 40-205 .4- [176], [188] 
Pring eden ce eue = lca abe [188] 
Wane Cre mys rs aint eaeats sen [176] 
LORANTHACEAE.............. [103] 
IL@ESERWIOito po woe we cEaoo. 34, [218] 
CLARA Hain he dua nustereia sutiaaueinns [218] 
(Cie Ae oecee ie Pate tc a heed [218] 
IBA EYES aarti e Mer aie cranes Suet [218] 
FAKEOMOSE>s sooo bo aacoos eco 218] 
WOVva gern cuss nasa kites eorenls [183] 
ROGtEMSs paca sicko sens etree [183] 
Lower Transition vegetation. . 9 
MG UGERN ES wares vie seee sp eeteatenie sete [154] 
Bungwortercc sce rice een (202) 
allpines ye Ne eye eye [202] 
STEEMISM LAs pes sre isaevons cierto [202] 
airy see al hed hetobey ova cate teeter spa [203] 
lance-leavied nei arse en [202] 
linear-leaved.............. [202] 
DEGDIexi noe et ten eet [203] 
Dleasantameterceynce ieee rs [202] 
small-flowerede.. se -6-)ee [203] 
Pupils ines aaa tae ec ere 13, [153] 
Alpine yee ne hears eee erect [153] 
decumbentss. en eer [153] 
SUVERYcS odcinek [154] 

1 et Soe eieantereraniicin a aeciatccotrns [153] 
red-stemmed.............. [153] 
small-flowered............. [153] 
ILW PMN s5 o scocccaccb coco sollilSsill 
AEs cooosaoocouoda {153] 


201 
alsophilus.. 53) 
argenteus decumbens.. [153] 
decumbens, defecssas eens 14, 18, [153] 
argentatus. | 5... 14, [154] 
Leplostachs) Smears [153] 
DAV OR Semen etter [153] 
Plattensismecrraarecie 18, [153] 
MUllyaKeRIEGo bo oooaca cence [153] 
Luzula melanocarpus........- [90] 
spadicea subcongesta........ [91] 
SPUCCLG ai rsisy etaye oe sh susterersy eae [91] 
Wy Chisels grees sae semen tee (117] 
Drummondii 18, [117] 
Ey ciuan ey ae cio ve sensei eee [210] 
WLS Aes eile clades sees 46, [210] 


Lycopersicum, see Lycopersicon 


LEyCGOpPErsiCOnner waite [21 
Lycopersicum ....... 46, [210] 

EVCORODIAGCEAES Eee [52] 

ILMCORODWNUDS sod uelocgo ec ne [52] 


ILAAOO OGM o obncoo obese a. IS 


AMON, condagousc 39, [52] 
TSVCOPSISy Ua cleiiie sxe nents eee [204] 
AGVENSIS Satara eo 46, [204] 
ey COPUS Meir ete sails sete [208 
Americanusse secs 11, [208] 
Europeus sinuatus.........{208] 
Lucidtisn aaa ter 11, [208] 
SULUGIUS A HAS Lo ee [208] 
WAU Ss gocooneooadvaccos ce All 
phleoideswasneee eee eer [62] 
Eyvcodesmitase aerate [256] 
PACH, cove esono0c ear [256] 
juncea.. . [256] 
Lygodesmia, large- flowered... .. [256] 
rush-like. . Moiiointctoanion [256] 
Lyimegrasss yada ieee [78] 
AM DIS11O USHA eee [79] 
SMOOUCHS 3 fi etnd sane eee eae [79] 
SUFIZOSCs5 0 8 Se Ute ee [79] 
VALGUS vers susan Aichossy Saw toere tenes [79] 
LYTHRACEAE [176] 
Lythrum fan sed nee tert [176] 
alabums eyo erences 11, [176] 
Machaeranthera............. [235 
aS Dera dina asrertasionienet 26, [235] 
Bicclovienenmneee rere OFlZo5)| 
Coronopitoliasen sneer aeZo5) 
PAtteLsOni seer eee eee Zoo) 
Varian ssi fcc 3s Webs abacheluavarhens [235] 
Macrocaly.x-an nee ene ooo) 
INwvcteleatiiascnaueieeins 23, [199] 
Macronema pygmaeum....... [230] 
MADDER FAMILY............ [220] 
Miadwortinacanadcce nace [132] 
Mahogany, mountain........ 147] 


IMMATIACE AE NS Rona eod seeker te [150] 


INDEX 


References to the Flora are in brackets [ 1 


2092 
Malle-ferneey ss easier as [49] 
IMatlloweeeseiicice er eee Ol) 
Fallse eevee MN aaa at arte ee [170] 
scanletenyiis sie hae ({170] 
round-leaved ace [170] 
WESEE RI Ae a yi en eal whanau {170} 
Whites wisn etree {170] 
MALLOW FAMILY............. {170] 
Mallia ian ciceiNte Meee ile gay nea 170 
rotundifolia............ 45, [170] 
MUNN PNGDINONOS SSG Hn Sie abaldod [170] 
INVAD VATS ery epslorstebietaier oyna [170] 
Miallyais taut tein ernst 170 
dissectumen ys enie ae 14, [170] 
Manna=orassa inner eine [72] 
floating, northern.......... [73] 
lo limis aa asia at ie pa Maco e [73] 
MET VEC HA ohne te Naa [72] 
Miaples siya cnaianl Myr Shean ..21, [167] 
dwar ee BUSS Uns aie ian 1 
STOO EMMA Mercenaries aa [167] 
three-leaved............... {167] 
MAPLE PAMILY..............[167] 
Messe unsere [244] 
fetid.. pinata [246] 
FEV aS He RUAN en oa [118] 
Mariposa lily.......17, 18,27, [94] 
Cunnisonyss panera [94] 
MARIPOSA LILY FAMILY....... [94] 
Marsh cress, blunt-leaved.... .[129] 
curved-podded............ [129] 
aI Tey ee hermit sy alanine ened {129] 
Miarsh=elderi)js sys inca cee [224] 
Bur weeds Ayaan niece [224] 
small-flowered............. [224] 
Marshvgrasssitallpa sean ne [66] 
Marshwmarigoldtee mre aie: [118] 
WHILE EIS chews Mee [118] 
Mary, little blue-eyed........[211] 
Matrimony vine............. [210] 
COMMON A Saat [210] 
Miaryweedeii eye bsiuarssi unr ae lin [246] 
COMMING Graocdododeoosue 246] 
Meadow-grass.. 13, [69] 
Alpines isteley cia eleee pean anal es {71] 
JoXeeVe NINH H BIO Ia ee hi ete Oe [72] 
(Oeabee Mitt ee el aie eligi orien cic: G (71] 
fair=huedaeei se seer nears [70] 
MexOUS ee EAR eevee aes [70] 
Ho) EA Sena eb tum ae Oh [70] 
AMlan ds ya ON Aue enl rip (71] 
long-ligulate.............. [72] 
long-pedunculate.......... [72] 
MOMMA NG soolsoob so aso ooM [70] 
Rattersonisp iar an sepes ae (71] 
PLairie ie OR ANE ca heen [72] 
Keflexed yA Neh eS a Mana [70] 


fel ex0 CA Naas epee Hana MATS \ I [73] 
TOUS eleva sack eR ea [69] 
RUSH leavieduni eet ree [72] 
Salley eA ett ee [72] 
smooth-glumed............ [70] 
Vialseyis ly sien iA asa [e719] 
WeStEEMsa elton nies [70] 
Wiheelerist occa merece [71] 
WOOG Ay Hace WLU ta {71] 
Mieadow-rues peer [125] 
BendlernisheyQusn ann san in (125] 
pPUuTplisher yy were eee [125] 
Meadowsweet............... ([147] 
ushy...... (147] 
Medi cya Ue AAD [155] 
1aX0) ODS eat sem HATA GH) [155] 
Medica ei ai ha ae UASu eae [154] 
SAtiVvaan en ehe sees 44, [154] 
Miedicag ov asn aise hate ei aoe [155] 
lupulina Rea etary SCA 215, Lars) 
RYT MOA MA et a tata te [154] 
MELANTHACEAE............. [88] 
Mielicaia, } 25 So eeu UR Saad [69] 
bella py ncoeise cee ane an ean 25, [69] 
DULDOSa RE Se Ee [69] 
Melic-grassaee ene [69] 
IUNTXONOSS J 6sabcatoardcness [69] 
Mello tai iie rary UE oe [155] 
NINO eal iguacatacneta a ally ereuareca i (155] 
Melilotusheenenee ron ne (155] 
all Dar Rye A au 45, [155] 
Oficinaliskeese ee eee 45, [155] 
MENSALES Hees nlne seer 9, [17] 
Mentha ee ia Ae [208] 
arvensis Penardy  ........ [208] 
Renardithwrava seri ente 1, [208] 
spicata.. iersan testa nig [208] 
ULTLA TS oteser ene EN AA a [208] 
Mentzelia albicaulis . oe Al 
albicaulis integrifolia....... [174] 
decapetalas nen ee [173] 
AUS Pensa ree aay ue (174] 
MULT LOZ eae [173] 
CU TENCHRALEANS emi nsaryes uae aN aia [173] 
ODay Oe dighiodia big oe [173], [174] 
SPECLOS Gina) etna nel Ain Can [173] 
Mentzeliaseene nna eet Lis] 
broad-leavedsa see [174] 
entire-leaved.............. (174] 
white-stemmed............ ({174] 
Mierathrepta reece [66] 
Californicaseaee eee ene [66] 
intermedia............. 33, [66] 
Spicarta) je Mehaes eames 15, [66] 
Meniolixtvenanyacstace earns [180] 
Sernulatase ee eee eee OM ool 
Mertensiay i eee aes [202] 


441] 


INDEX. 


References to the Flora are in brackets [ ] 


Alli, can coocas sacos 0! | ZO 
EMianYoycha¥ ect ous) ONE aacts Boe (202] 
lanceolata... ..-- 23, 29, Be 
lateriflorav a ais 2ecler actise [202] 
MINE ATISNa ea cae 19, [202] 
MICLantharyepryer ene seats [203] 
perplexainn sa eislscheie 42, [203] 
polyphylla..........37, 42, [202] 
Punctatar meyers cine 29, [202] 
Secundoqumpeee seen eee [203] 
Wate GDI ELS oo cis bente nig aus a eis 29, [202] 
Miesanflorar/s 22s 18.08 SAGAR 9, [17] 
Mesa cafion society... ...18, oie [28] 
Mesa meadow society... : Ae {18] 
Mesquit-grass............ 1 aat [67] 
COMMO Tete ray aie [67] 
hairy.. [67] 
Cal DW erettvak st citiayissci sia eee eet [67] 
Mexican) poppy-s-4J- skies ee 13 
Mitcramipelisseerinmen eae (222] 
LOD altaya ptescrsnpe seat ase 45, [222] 
IMircranthessery arenes eran ae [137[ 
AL Utaee OO OM OOM LSS] 
rhomboidea......... 39, 42, Heel 
INiicrOStenismenec ates [196] 
VGA MEIB gocccebecanccs oe 196] 
Microsteris, small-flowered.. . .[196] 
Wihibionl, Werc6 5 doc Foe oec 10, [181] 
Milk vetch.. 34, [155] 
ADIN er pasciere he eeu since chars [156] 
Hauspie seve steccussy nl ve Were [156] 
Canadas gas eisreyesinistolek (155] 
decumbent-sere ere 157] 
Drummondisss-e yee [156] 
HeExiles aunts a cmaaee et [157] 
MOMMA ee [155] 
IBArryase nay vate cit eye aye {157] 
DIAINSEM LR Ee ae ee [157] 
FMAM rerio non amie e tO crororole [156] 
DUTP learcaletoes phew shaveeny Savona [156] 
Salidasrer-ettepet atari {158] 
Shamim Seyeyae oper eee sees [156] 
Shortissyasccsace rae {157] 
slend en aediisicce cae (157] 
Gul N Ro sookcoucoecanco solllS@| 
three-fingered.............[158] 
Malkweedie cava vorecsyetsieos ees [194] 
Ghigid oid noemeeo ee mee nos [194] 
PTEEMSy4 yc epse rane [194] 
short-crowned [194] 
SHO Wiyicpretorderatoy aes tee eee tate [194] 
SWa1l Dace ricer {194] 
MILKWEED FAMILY........... (194] 
NMilletwitalian eerie [59] 
IMM. bes bobbie bodase oes 213] 
HOLDING USee eee eee 11, 29, [214] 
Geyerige es Ga see 11, , [213] 


293 
ISIN TIE G ng, croveebre aicteeentrl sic 23, [213] 
NOGLOS Bac.3 10 60.6 100 6066 BGI04 3 [213] 
Wangsdoriineeeea ee OMe 2 Lol] 
AMET OG ees spar ai stiaea alstisenionse (213] 
NUN OVATE Ao [213] 
puberulus........... 34, 37, ae 
IMEI NESS Spscavetaieie aecei el asshole (20 
Renardists eave eee Bae 
Mistletoe) smallies essen: [103] 
MISTLETOE FAMILY.......... [103] 
Mitella pentandra............ [136] 
SPRATT Sos coeedoos oe se {137] 
IMGT OO) ese pis-ouoc odne be as [137] 
narrow-petalled............[137] 
Mollugo....... sp Mae aika (ube ny paees {113] 
werticillatan sme eee 45, [113] 
Mionardas sane is eee [207] 
menthaefolia..........- 26, [207] 
MO] TSH meas oa 26, [207] 
INCE 60.06 66:60 9.6 02.0-4 80 [207] 
pectinataseamet aor 16, [207] 
Ramaleyi-eaycrsa nese [207] 
SELIG Ay Vee eee eae (207] 
Moneses sii etyatve anaes [185] 
uniflora sae le eee [185] 
Monkey-flower............-. [213] 
Geyen'sire aia jee ee [213] 
ase ans ee a Seer aera [213] 
angsdorfs seer (213] 
Small Vek a esesiee eee ee [213] 
many-flowered............ [214] 
puberulentseeeerie eee [213] 
Monkshoodeneeninaeieneee 34, [120] 
Colimbiaeeee eee [120] 
ochroleucous.+-.5--.2.-4.- [120] 
POrrect= 245 Ho aoe eee {120] 
SHOW yserseuceh otf eee [120] 
MONOCOTYLEDONES.......... [55] 
IMonolepisse see eee LO 
chenopodioides............. {110] 
INtttallianaseee nce [110] 
Monolepis, Nuttall’s......... [110] 
MONOTROPACEAE.. sao eal lilS]] 
MONTANAE.. se acoesy (SO) 
Montane bog association . .31, [32] 
Montane flora.......... 9, 30, [31] 
Montane forest........ 31, 36, [37] 
Montane lake association. .31, [34] 
Montane marginal vegetation. [34] 
Montane meadow.........31, [34] 
Montane rupestrine society.... [35] 
Montane stream ass’n..... 31, [36] 
Montane subzone...........- {31] 
Montane sylva........... 31, [37] 
Moonworte- eee eee [49] 
Moxningiglonyeceiei ree [195] 


COMMON. 3 ee w= 


INDEX 


References to the Flora are in brackets [ } 


204 
MORNING GLORY FAMILY...... [195] 
MoschatelQannnennicne rie [222] 
MOSCHATEL FAMILY.......... [222] 
Miossesiinit yah tiie) aaa a 27 
Motherwort...... (206] 
COMMON Ae ee [206] 
Mountamntashseeee eee eee (151) 
Rocky Mountain.......... {151] 
Mountain avens.............[145] 
PUEple eRe Re ee [145] 
three-flowered............. (145] 
cunbinatey Mey nee ee [146] 
WES a ete RT AUS Shahn aa [147] 
VITO WEEE HAM Pa ent Aaa Su [146] 
Arapahoewa anna e nie [146] 
Mountain caraway...........[182] 
obovate-leaved............ [182] 
Stemlessenee eee ae [183] 
Mountainidaisyserenenennne [239] 
NOaTy aij valerian eee [239] 
Mountain forget-me-not ....[201] 
Silvery ye etclavee yee eae (201] 
Mountaingoldl) Soe) es [230] 
Barry eS st Nant cee p aps [230] 
Mountain mahogany. ....20, [147] 
smalll-leaved see entenee {147] 
Mountaintnute eee eee (201] 
NAMES KSA ai AAS Ne [201] 
Pulvinatese eae eee [201] 
VIR gate avi N anew) [201] 
Mountainirices pee ene [61] 
SI Rey Bin HN ai cee [61] 
small-flowered............. [61] 
Mountain sorrel............. [105] 
Mouse-ear chickweed.........[115] 
WEAMse beadooessove nba ols] 
Mouseytallae eee an [122] 
Dealkedd is Oey Ne a Sie tsa {122] 
Mudiplantainey ane Sol 
HimosesAy sence [88] 
Mudworteeneenonee eee [214] 
EGIMENRISS So acacudbu sabe 34, [214] 
Miugwortipe ee eee [246] 
al pin ee Sen a eas [247] 
PEAT Cae Ae wee lesa [246] 
Miuhlenbergialeee eerie [61] 
cuspidata seen 15, [61] 
filitOrM See ee ee 33, [62] 
glomeratas eee [61] 
Sracilissmy sano Les 25, [62] 
TaceMmosawuee eee 11, [61] 
Richardsoni soe Koall] 
simplex) hyo aus 33,35, [62] 
Mallen ea yan iniaht pees 211] 
COMMON eee ees (211] 
paeCold eg inimenaemrare muainey ariel rity 2 [211] 
Min roantsiicieninnpiin aan these tehrmn [68] 


squarrosa..............15, [68] 
Miunnrolsigrassy eerie een [68] 
IMUTSUNEOM ccoooocodadodce os cos 

divaricatum. eee ee LOS 
Musineon, leafy............. [183] 
Miuskroothnisskice ie eee [222] 
Musquash root, western...... [182] 
Mustard seen eye ene {131] 

latches Ree ho ny a [131] 

hed ey) yeaa ons ana [130] 

Lindiaini eyes rn aera ae a [131] 

LENG NAsclaa Pale nea se Gaicis uate b [130] 

treacley Aa ie ieee eee [130] 
MUSTARD FAMILY. .......... [127] 
Myagrum sativum. ......... [128] 
Miyalonunpeniany pena ae (128] 
IMGYORUWIAEEhes gods bop obSobobec [122] 

apetallusi cepaecie nie acts paar [122] 

GAVOMSsos00c80q00000800¢ [122] 
Myriophyllumaa-eeeaeeeene {181] 

SpICAGUIMN Eee 10, [181] 
IMEI RIND 5 55.06 oad ooo o0 {176] 
Nannyberry............:.... (221] 
INEASENTMIINS Cobo gobo bob Uo DOE [128] 

AVAWOMEHO> fo 3500600450010) 

GUBIEDEPacc59 05 00b00Db005 {129} 

[BSDWIOS 09-6. 6'9'9 5.6.0 010.0 0G oe {129] 

Nasturtium-aquaticum...11, [128] 

ObLUSUTIRA Rae cee [129] 

OQUPCHHM2.5 Joico sehoocsodeese [128] 

RUED Bo soocosobecediocco [129] 
Negundo aceroides. ......... [168] 

NCB s.0000 6006505000 colll@S| 
INGmexda a2 bith: ses ee [94] 

henbacea) melicanmccaaeeeee [94] 

lasioneuron............ 22, [94] 
INE peta eae ak ates (206} 

Cataria... [206] 

Glechomanene ene eee ee [206] 
Nettle ene ae a neae {102] 

(a L320 |e rre l aeraneg ee ene [205] 

hedge... . [206] 

Slen'densvaeh ie eerily ae [102] 
INR IVAN ica ool oo oo co GO [102] 
INettleispurgessncn seen [164] 

branchin gene ecioeeeecines [164] 
New Jersey tea.............. [168], 

Kendlerishie aussie [168] 

hainyeeer {168] 

Silkishye nag eis ea eee [168] 


varnished....... 
NEw ZEALAND SPINACH FAMILY[113] 


INicotianasne see eee ALO} 
attenuata rer rnneneie (210] 
Nightshade seems heretics [209] 
burycommons ieee [209] 
enchanternSiacomnoee eee [180]. 


443] INDEX 295 


References to the Flora are in brackets [ ] 


inland a.4 it ee atseuereite [210] borealiseet ene ee eee coool 
three-flowered.. .......... [209] mephropliyllaseseeeeeee eee [96] 
WillOuSs) ancien nsec PO RO pulastersaseeceee tere [140] 
NIGHTSHADE FAMILY.........[208] WPODABT BS scdobdodscadcsass [140] 
INimesbanicsSan semen reriere 21, [140] glabratusteeeen ec . 28, [140] 
glabrousis. issm aac rioe {140] intermedius......... Oy, 28, {140} 
AMtCLMedIAtes see eee [140] Missouriensis....... . [140] 
Ramaleysshecas sence sere LLL Ol MONO Gy S eerie 28, {140] 
POrrey/Sios cece some ees [140] Ramaleyitenes sere 20, 28, [140] 
Nodding violet.. 22.5. .s460- 26 hO puntiageeem see eee 175] 
narrow-leaved. ...........[172] fragilistysteascrsse sae 19, [175] 
INothocalaiswanaeaees eee [257] Gréeneleeehist sos oe 19, [175] 
GUSPIGataryscicuslncis oe see [257] (PAE TSOS J iciecaoo0808 085% {175] 
Nuphar polysepalum......... [125] MLeSAcanth asm eee 19, [175] 
INUttallia ye saey estes ae oe ete [173] Greenet nen sone [175] 
decapetalay ss caine ses oees [173] polyacanthaserin- sae 19, [175] 
AULA OLa ae seye oie ee [173] ROS MESCUI AN eee eres iio) 
SNGEIS" S Sio tone oI eine cme [173] Ghodanthasnne ee eeprom iS) 
SIMUMAtAs) eres se acacia stharaleve | |) QHURMWNDE 5 ooloocoosuuasoe [173] 
SPECIOSAls nats trom Aeiecat eee (dS ROracheta nae sere eee [110] 
SEMIC tana cyst eis edi cee [173] Mesh yeti oracer eee: [110] 
INvcteleaiasaccics Acad vc eeeeas [199] Pardeninsvea aes seiacun one [110] 
INiy ti Ae ale iliac) a <aituses vase [125] SilVeryeoyesies dace Meee [110] 
Polysepalas-n ease 34, [125] WESEOD Desc us cy cnntanees ancy en rae {110] 
DAE NAD eisicne isle wainrs eee [OSi# MOxchardicrass eerie [69] 
COMMON Naar [65] COMMONS Ae Lee eer [69] 
LAISE Nahm cm evceean (ie eva eee [CS]t | RORcHIDACE AES eee [95] 
UTP lever cveracveysewveucia revert [CS] R WORGHIDAEES See ee [95] 
pW Ll Seen eres see Jone hcceanreeas OS |) Orel cote snlacécccescsne 2 
Q@at-rrassawilduean see lool BOS ze cutee ree ee il, Pf 
Odostemoneenenene renee 251s ROrchistboceeeem ere [95] 
HPO Bo oc s'co0ecan0 0b. {125] Piper Stake ae ee [96] 
iaolanHan Ebomonmente aoe 2525) RORGHISEOAMIN Vere eee [95] 
@enotheray SoMa eee: Mish) Oregon! erapess-- ne eenee ee (125] 
albicaulisan ci ere [178] CREEPING sca cis lee [125] 
brennis hirsutissima........(178] | Oreobatus..----:---+-----.- 141] 
SEED OS Onc oe Ne [178] deliciosus.....20, 22, 25, 30, aa 
RUSCH. 5000000007 0006 [SR ROreobroma--neenee eee {11 
GOYONOPUfOld. 24-42-22 {179] Py emMaca eee eee 41, {114 
LOO Ker setae stasis DAS) WOMSOCRINEl o Gc Sccdnadsocssuc (201] 
MONLAN GN Payette eee [179] pulvinatatny vase eee (201] 
INPUT io bon ee ede Goue oe ob [179] Sufinuticosas. see eee 2OLi| 
PUL GMFICC i ae) ee [178] Wireeialsorade coe cede coo cl, Oil] 
SOMMULGLD =, cvsiarereie oe ei yes SO} || Creoeerpsiinticosnocoasccense [230] 
SETS OSA seis ae terial tole 14, [178] Bannyinnecscn ene 26, 32, go 
Oligoneuronte-- eee Zoe lle Oxnnamentala plants see 
Ganescensia-)4-1s- see 15, [232] | OROBANCHACEAE............ p19} 
Onagra Hookert.............. [SIR hOxophacasese eee eee eee [158] 
SUALOSOs se) ih tonaese ei ee [178] tridactylicas-meeme eee {158] 
Onions facies ee (SU \MOxpine se atecin eae 29, [136] 
WAL step cccssircesrsrsoreOsatslerns [91], [92] narrow-petalled............ [136] 
ONION RAMILVe eerie ae [SU] | MORPINE RAMILYA. 4-5 see ere [136] 
Onosmodiuneeeee eee ere ZO MOxthocarpusseeere eee ee [219] 
occidentaleseninmeneeia. 14, [204] luteus yee eatin ee 16, [218] 
OPHIOGLOSSACEAE........... [49] | Orthocarpus, yellow.. . [218] 
OPHIOGLOSSALES............. EN || ORAS Ecco co coondndesese [61] 


206 INDEX [444 
References to the Flora are in brackets [ ] 

micranthaswrodecc ook 25, [61] SOEs ob odaabobooso ss (57], 
@Osmorrhizanyaye ee nee [182] SCOPOTLUTI NE EE ele [538] 
longisty lish in eis san sae 23, [182] Scribnerianum............. [58] 
ODtUSA sms emaseuteey: 23, [182] Tennesseense.............. [58] 
OXATIDACEAE Satan eee [163] Vingacumse eee eno 14, [58] 
Oxalisistractay eee [OSTh WRalpaversias nee eee [126] 
Oxeyerdaisyseaeecivere ice [246] ATL eeMonen errant: 46, [126] 
COMMONER [246] | PAPAVERACEAE.............. [126] 
Oxy polish anna serena [183] | PAPAVERALES............... [126] 
Fiendilermeyeyaen teen 33, 37, [183] | Parasitic plants.............. 43 
Oxyriaig Nee Saya [105] | PARASITICALES........... 43 
Gigynane eerste terse AAO Sil Rarasitessste ee eee eee 43 
Oxytropis deflexa............. [SSR tParietariassseeee nee ee nnee [102] 
TOA AA Ol BOO LIS NO8 [159] Obtusaeee asereaeeas 22, [102] 
MUULLLLCED SHAR eae ere [158] Pennsylvanica....... 22, 30, [102] 
MLO ue anne [USS a vBarnalssiaeee nena eas [139] 
SCKECEC SEPA AEN A Ye art RONAN [159] fimbriatay. eens sen 33, 37, [139] 
splendens Richardsonit......[159] | PARNASSIACEAE............. 139] 
Oystersplantyaree eens [255] | Parnassus, grass of........... [139] 
OZomelistp se noe ae [Sila iearony.chiaewe yeaa (112] 
stenopetalannti eae [137] Jamesins su yen ee 15, [112] 
Pachylobusthiinietre secre [179] pulvinatals anon eee 41, [112] 
HIGSUGUS ease clonal DD eRarsleyaenear seen eine [184] 
macroglottis......--2...40.% [179] Grays es ane eal a [184] 
MONCAMUS tenets {179] hemlock 3 [184] 
Raintibnush eens pen eee [215] | PARSLEY FAMILY.... ({181] 
Painted cup........... 1S P27 M2 ola barsley-tern ea erie [50] 
Arapahoersovsnisiia <tcseieey vee [216] ROCK ee APU ec SURRY a [50] 
cockscombinmenine eae: (ALO Wi eevee seco edah cco oa ous [184] 
Copmingaalvios a aipaou ode solo [216] GOMNIMG Rs soopeasoracocooose [184] 
entire-leavedssnnicnei eee [216] cow.. Ba a a [184] 
lance-leaved............... [216] Wal tera Wire schaumaste MILE Ve VaNe ee [183] 
Rhexia-leaved............. [216] | Parthenocissus vitacea.........{169] 
SUDERLIne MAROC een [216] | Pasque flower............... [121] 
Sul ph ura Herp lence [216] American senor teie {121] 
toad-flax-leaved........... (215] Jo}Ou coil PRIaNEMIB ATU Ie Bibldta ein ah [121] 
mpi a bo sana daneon oe [BiSl| | PASE obs duocedsboc oe [184] 
WEStERM ennui rae: Cuevas [216] Sativa: is. sisi 45, [184] 
Mello went VAL aurie nays [216] i REACH MAMET veso0 tee esl oii 
PALUDOSAE ............ SiS 2u eaten prickly aan any a aaa [175] 
Paludose society.............. 10 | Peraly everlasting........... [241] 
PAGUSTRESHe ede) solotacneienienou 10 Parl Sere aA ORLEANS ena [241] 
Palustrous flora..........,10, 37 suballpiness ana eee (241] 
RANDANALESS aspen ieee [SSIil tRediculariare seme nae [218] 
Panic-grasseeeen eee ener [57] Grayi d’a\g bo Heyyy Soy, [SI] 
Seribnenisy rier sheets ou [58] Balerya steerer ee de tauoes 40, [218] 
Tennessee ic ede ee [58] DYOCETON ant ickalee eu NC ane [218] 
Raniculaniaseeienoeeeee ene [72] PAG SNO cio beduoce buco 32, [218] 
Americanaleiscviy ae cia 11, [73] scopulorum............ 42, [218] 
borealis enero LIS plRectianthiareen ean nme e ee [136] 
JE bitiG GaSe oso men b eS 28, [73] pentandra....... 33, 34, 37, [136] 
NenVvatayeewerne Heda Summ izih Me llit one at wae [102] 
Panicumsniyeyaeue Se ae (Sz obtuse-leaved............. {102] 
Capillanesiec cores 44, [57] Pennsylvanians csieiseeeies [102] 
ABTESEE Mies oven eee [SSiti@Rennyjenasssey eens ees (127] 
occidentalevyas aij elon [58] Coloradote Syst ya ake ai (127] 
(CATS COHIS 5 Gig 6 B.ca elo om olo¢ [57] fel dea oO es Mein ae ea NTA 


445] 


INDEX 


References to the Flora are in brackets [ ] 


INU EteULIYS Mitbs yatrsrc sreseienepeucteee [127] 
DEEDES Syaoobonomeseee oe [127] 
Renmyroyalleriece.s cee ctaee [207] 
LVGiOsb. o.d-cig EGR RE See [207] 
IPEDESEEMONG.\4 ie0s' = ess ioc ses [211] 
AIDS epee es. Sav e)e) 3 26, 31, [212] 
GONG. co.cc odondo dO so bOUE [212] 
labersalpinuss .2..4..0 2 4. [212] 
PH ALIGUS Step soerevexeus's midusiocete (212] 
stenosepalus......... 42, [212 
MACIGs64 00 dod bees 19, 26, [212] 
uma lisseeee eee. 16, 19) 26, [212] 
oreophilus.......... 26, 32, (211] 
LOCELUS semen oer cis) sis tensveres sie [213] 
TOTES sooo boo ete eee (212] 
LSS al DEI ett bon colgled BIER eee [212] 
secundiflorus........16, 19, [212] 
unilateralis.......... 15, 19, [212] 
IREppemerassMpe ic oka (127] 
ivergentacnniicccts sis. ec {127] 
MACHU, 5 4 podeobbee eee oe {127] 
eran iinepe ret acios ail acteclc ne [97] 
QAIMVOCES 4 6obceobooeds 25, [97] 
[RET IOI ciao cia poe ee ee [135] 
SCLRUIACUIMIS ese cies cne [135] 
alloiiemnan, ) podgocucouecdae [135] 
IPEEICAT Egos oc 6.6 id Gee Dae [107] 
GHIGIEESs oslo OO COO OU Or 11, [107] 
lapathitoliaaeeeee cee. 11, [107] 
ersicaniansperinnecinw a 44, [107] 
DUM oo oobo0nKOnOE 11, [107] 
ESEG ELevece sus ence ore cbetat letersi. ele [169] 
quinguefoliazeenneecria eee [169] 
WCC po boo cose 12, 22, 169, eh 
Betalostemonmene none asc a: [160] 
gracilis oligophyllus........ [160] 
oligophyllismes sy. 4.5 0s. 14, [160] 
pubescens ee weciee 14, [160] 
DUGDULCUSHAe eee ee ae 14, [160] 
ULOLECE ES IEEE er he eee [160] 
TPERNSTCS 2 o Glove Os rCROS oi ar Ea [248] 
SACMELAL Ary a erusishe aevencaaee [248] 
SHED GAMIS 666s bo0bb0c0000 [156] 
SILEDLOS Cote iensy sve lepareval en) aceite [156] 
BAGEL Aros ierses ches seseun wictonas [199] 
glandulosavaneneisierinc 36, [199] 
heterophylla......... -..19, [199] 
hencopbyllaseerrnieeecie ee [199] 
Neo-Mexicana alba........[200] 
SEMLGCE Ms necilc ty Ve aians sans ateresiens [200] 
phaceliatie were crcton Gials so nes es [199] 
glandinlarseerirecirttirs 36, [199] 
New Mexican, white.......[200] 
Silky aiians Se cists gees sree [200] 
various-leaved............. [199] 
alaTisacern sexes rere eeaie er [59] 
arundinacea............ 11, [59] 


297 

hanerogams spreader 43 
Bhanbitrs eerie [195] 
RUS Prd Ns yvueuss) c/s ions e fetes [195] 
PULpULea ere torcclor 46, [195] 
Phloem ey yy warera cla chee tees [62] 
al lpinuimeneeeeeeeiee 33,35, [62] 
Pratense:srieeieii eis 44, [62] 

Led U lop aA R NN athe ote chee enka Stas [196 
depressassieiieisinavenions 26, [196] 
longifoliapeeeee eee [196] 
MUle OLA eerie oe [196] 
GEPTES SAIS Mi tiarelsetn naire [196] 
Bhloxe taco ic eee [196] 
long-leavediyeisasccocine ie [196] 
OW? seas eu ctenaa aicketotkeianeeiees [196] 
many-flowered............ [196] 
Phracimitesseeneee eee ene [67] 
COMMUNES EECA ne [67] 
Phragmitessyeeeri 21,22, [67] 
Phy laa aceiecalniy on a aes ee ne [205 
cuneifolia 11, [205] 
Phy salisteeeeey sae eee [208] 
COMMENE a AdGCGoSO oO bb Kodo 209 
heterophylla........... 45, [209] 
lanceolatamer nr eee 14, [208] 
OGTECHT obs cenn00ba0060 [208] 
QD LEN Scns S Oromo that oer [209] 
longitoliaeaneeReenee eee (208] 
ROcuNGata- serene 16, [209] 
War ciniananeren rire 15, 45, [208] 
Physaria2 ei ocp su erga ({128] 
didymocarpa...........30, [128] 
WOAMOINGES so cueccccccs 30, [128] 
Physiographiyaeeee eerie 1 
Picea yo eiashinc aaa ee ee [53] 
Engelmannii. .24, 31, 36,37, [53] 
Rarny ana eeerie As) Sil, ISS3| 
DUNGEONS A). /zcpetae eye [53] 
PICKERELL-WEED FAMILY..... [88] 
Ricradeniopsis:-6i-) nee rie [244] 
eppesiiolie: aa 
Pigweed.. [108], Loa 

GOUMMIO TN: AUER Ee 

Powell’s. Peet 
prostrate. . MR Hinata nines Burners [111] 
TOUPD seye circles elon oem [111] 
WihikE Yeisen oars {112] 
VEU OS conboodaoa econ oa lilOy| 
Rin-clovenseeoee ee eee Losi 
IP RINNE G5 do ooboucopoo dea. [Sel 
PINABES Syrians rele bred eee [53] 
Piney elas sevieaierebeas 24, 31, [53] 
IGS 6 coc 20, 24, 25, 31, 43, [52] 
Gembrarnwnliny cethvasceie cane [53] 
lodgepole. . . 30, 31,43, [53] 
Rocky Mountain white..31, [53] 
PINE FAMILY. 2 ee 1S6)l| 


INDEX 


References to the Flora are in brackets [ ] 


298 
PINGUIGULACEAE. yo: sass [219] 
Pink, Drummond’s.......... [117] 
PINK} RAMID Yen iia. pahy miei tr {117] 
Pins stata aires [53] 
contorta Murrayana.. .[53], [103] 
WLERTLS PANINI erie Oe Nera [53] 
Murrayana.. .24, 25,31, [53] 
ponderosa scopulorum.. [53] 
scopulorum 20,24,25,31 [53], [103] 
Pipeniassnor cen cesooo eee [96] 
Unalaschensis........2,25, [96] 
Pipers orchis\sacciey ee eae [96] 
iAilais kalnyeye irae secu han ieee [96] 
Pipsisse way y)-/ijlersedee curse leniele [185] 
umbellateiwaucie cineca Lool 
Plainsitloraeeeiaeeotnstniae 9, 10 
PLANTAGINACEAE............[219] 
PLANTAGINALES..:.:....-... [219] 
Blantagoee ance aceenas (219] 
lanceolata. ~ 2... -\-).. +... 45, [219] 
MAJOR.) jancsran nee 45, [219] 
Balgsonieg, SEs [219] 
Purshii. . Beenie arla (219] 
Blanca an ere nere {219] 
COMMON ees acinar (219] 
IB Aca dsWacu cas aln aos [219] 
FoOUTTO RANG MUNN Terma a aN RUA [88] 
LEAD ec) NSY LS sane yen otellazataie cts ic [219] 
rattlesnakes ive amieene cele [97] 
PLANTAIN FAMILY............[219] 
Pleunogy ners acne ee [192] 
fontanaryaaeniia cates i ats 34, [192] 
rotata tenutfolia............[192] 
Pleurogyne, fountain......... [192] 
JET iNoolap ayaa Mig mtaane ela esta BB 20, [151] 
American wild............. [151] 
hfs onic aps oonueios oa oc {151] 
WAKO bo ua a ioioidinislG de Sic Oo\nls 28 
An ericantnmaane mci {151] 
1 ELOY Va UMS SAN ale) cee el donde [69] 
allprcolayene ian aan ian 39, [70] 
alpina swine 37,39, [71] 
CHO Blan UO Giosieia sae aia 8 [72] 
ANIM Uae AU ie yaar ne abe 44, [69] 
Cdestastractiora a ee aL] 
callichroa tend eioee eels {70] 
CeNnisiagy in aaen eerste [70] 
ran UNE aca ae a 44, [70] 
confusa.. is .15,18, [72] 
Crocata-eeeanrine 15, DEAL [71] 
flexuosa... A . [70] 
INteHIOT eee 14, 18, 35) (71] 
juncifolia. . Suites "15, 18, [72] 
GK AG RY ARES Aah eal dy pia PAC AL ta [70] 
leptocomaiquneiniee 35, 39, [70] 
longiligulay ones POE NGAI 
longipedunculata . 27, 32, 40, [72] 


Occidentalissenn4 ae eae {70] 
Pattersonii.. pede AOA TAG 
platyphylla.. Paella aie 27,37, [70] 
pratensis........ 14, 35, 44) [69] 
pratericolawian ence ec [72] 
pseudopratensis..... 14,18, [72] 
Tenlexalenne einen 32, 35, 39, [70] 
FUNG Seo Ob bao Rd ooo ot [71] 
oan ALANS UN IU GAT ea 40, [71] 
serotina.. [70] 
triflora.. LB aM 18, DR. (70] 
enivaalish eng e e e yet 4, [69] 
Vaseyanai een 33,35, [71] 
Wiheel erie en a ea [71] 
RONCE AEN ia Ulva hee anata [57] 
TEXOVN GA DSR ane Gyamesi HRS lea [57] 
Pomsettiann vane ae [166] 
cuphosperma.: scene nine [166] 
dentata ye oe aaa 14, [166] 
Roisonycamassteeennnnerinnaee [88] 
falcata cry Ob raie easiness [88] 
IPOSON INAVoo odo oso dodo dcl06e (167] 
Ry dbergisewee pase maces [167] 
Rolainisia eeepc ie tons [135] 
trachy Spermannnie reels [135] 
POLEMONIACEAE...........-. [196] 
POLEMONTALES > de ye ve cise [195] 
PRolemoniumlsee eee [198] 
Brandegeei............. 42, [199] 
COMPETE ene [199] 
VILELLOLUTI eee ttn eee [198] 
delicatumeyeaaee eee [198] 
meliittumibee arn eee [198] 
TILO LT Ore Ae se NAME UP ae [198] 
pulcherrimum..............[198] 
TODUStUIME neon LOS 
SCOpUlinUTm mre eee 4 
ROLEvGONAGCESE See eeineooe (104] 
POLYGONALES...............[104] 
Polygonuimebnee icici [106] 
CHAO AA a SIT aelne.clsis) ca: ale {107] 
aviculanelen Hence nitiae 44, [106] 
Bistorta oblongifolium.......{108] 
buxitonmes semen 16, [106] 
confertiflorum.......... 33, [106] 
CONSINIIIER eee een {107] 
GColvolouluisse saree ae een [108] 
Douglasiteranimceecet 18, [107] 
Consimilesneee ee eece [107] 
COLES LIT eect aN [107] 
Engelmanniine je iceaeerier [106] 
Grable sasosaoouoooas 44, [106] 
lapathifoliums. 4) 14-0): [107] 
Muhlenberg... ......-.-: [107] 
IRAP FUGOs 6 bb 0 U'd ob8.e!9.9\6 [107] 
DUNCEALU UNE Coli sieenns (107] 
ramosissimum, ........... [106] 


447] i INDEX 


References to the Flora are in brackets [ ] 


Sawatchense ............. [106] 
tenue microspermum........ [106] 
io MNS doo opaneous so colllOol 
DGHNOLY Oro ad dead pavace ao [108] 
WAGES ON. 5 ose atsiee eens eee [106] 
IROLYPODIAGEAES: seer koe [49] 
Rolypoditimtenn eae [49] 
eS peniume eee eee 29, [49] 
THE FBA AOS Gana od Osta Bion [49] 
Roly podiy itis are Sepepatsy sive caine [49] 
WEStEEMYs ee dnlaie eich ees ener La 
Roly pogoneeree eee eerie [63] 
Monspeliensis............. [63] 
Ronmmelblanchesserias ee [160] 
Pond lily, yellow......... 34, [125] 
Rondweedtnrimntarrira aie 10, [55] 
Cuber a dle cieiota ci oct oicua abe [55] 
fennel-leaved.............. [56] 
long-leaviedenenrinnricni tt [55] 
Meer tiygerieteoryeieorte nso geyG) EAI tue [56] 
Spinal vragen s ev vetocsshie eens [56 


various-leaved............. [56] 
PONDWEED FAMILY........... [55] 
PONTEDERIACEAE............ [88] 


IBoplaiiianrscitadieesewereener set [98] 
av Sarrnwlomshrct ANA aie ib Abe ie 98 
IBODDYA Ae eee eke nlc [126] 
IMiexicain ieee sataitenevle mats 13 
Dahyocooudoooobeesemnio [126] | 
rough-fruited..............[126] 
IRORPWARAMIE Ny arlcieteiatielciiete [126 
FOUN o hoc aa noEooe bene oe [98] 
AUCUIMIAT Atay elteeneel el: 12,22, [98] 
angustifolia.12, 22, 24, 28, 37 [98] 
QUT EO say des at anat chee ter 98 
Dalsamiteraseee eee 37, [98 
deltoides occidentalis........ [98] 
GMC TAS 3300.0 a. 000 9000 a6 [98] 
Sareentiineee ane 12, 22,28, [98] 
tremuloides...... 25, 32, 33, [98] 
AUNCAse cused erie tee 98] 
Porcupine grass.......... 13, [60] 
HAS MINGso op cede yanoo [60] 
Wettermannys cee eer {61] 
INIGIBOHVERG IS cian von abesocode [60] 
Scribmenissacriacicn ae ee [60] 
WESECRI es tices esse ee hoeneed ens [60] 
POEs ooacaoodudopadagn [114] 
oleracea sa cieruy reine 45, [114] 
TECUSAL. 4) siesta cieneyerets 45, [114] 


PORTULACAGCEAE epee see els 
Potamosetoneee eee eee lool 


Vi IME Jbovasaccaddsuanos [55] 
ELBE Sac 3.6. b.00'9.018.90000 0926 [55] 
FOLOSUSH Ae ent oracle 10, [55] 
heterophyllus.......... 10, [56] 
lonchitessss- semen: 10, [55] 


299 
OUCULONSHA Ere eee [56] 
pectinatusseeeee eer 10, [56] 
(PUYIGTTALOS dob o0dcddoaoo sc [56 
Spintllusteeeeeeeeeeeee 10, [56] 
Rotentillaseneeerin eee [142] 
UEKI. oc oo adeeddcdaseeac [144] 
COncinnayee eae ere 32, [142] 
dissecta. . PRN RAD LAD 
glaucophylla. Re raetetateved Noseee [142] 
diversifoliaeeeeeoce eee (142] 
MUSA a Peete sie minmeiaeste 18, [143] 
MPSS Ose te Msi} eae re eee ate {145] 
IP MULELCOS Gey fraps avey eet en sneha ody [144] 
glaucophyllasesaene ears [142] 
Huppianayeeeae 14, 25, 35, tre 
GUUS OF Re Oats Reba 
[PUTPAOXE eoodosobvvigsacue Ha 
UMAAPOO Saoaclogassso0¥0 [142] 
2D EDABARXD 65 604.456 ovo cin 0 ¢ (142] 
MPM NGO ca ggaobdoomoo¢ {143] 
Monspeliensis.............[142] 
Norvegica hirsuta.......... [142] 
POTHLOAO 6 66°30 406 bo 06 dacs [141] . 
Pennsylvanica arachnoidea. [143] 
StI ZOSae Renee 22, [143] 
PLOpinguare ae eeee roe 35, [143] 
pulcherriman ssi 35, [143] 
Poverty-grass, bushy......... [60] 
long-awned err asee eee [60] 
Prainieicloveneeri-eiiae ines [160] 
slender whites-en aoe [160] 
VIOlets ine ois ake a [160] 
hagryes tera ee ea [160] 
Prairie flora.. 12 
Brairie-orass ay asa eee [68] 
PRATENSES 17,18,24, 27,31, 34 
Bricklyicereus see eee eee ee [174] 
green-flowered............. (174] 
Bricklyspeate. eee eee {175] 
brittless oe c\lia neat eloere eens [175] 
Greene's:i oye ae ee {175] 
Many-Sidedsiys nce ae [175] 
TFed—tloweredssaa eer [175] 
WESEEDIMS syne ncvsieherore ne epee {175] 
Brcklyspoppyaseeneneeeeeee [126] 
BIT 23 tea AC eee [126] 
WD TEC TA .\ siete Deane iter ae [126] 
Prim nose tis eta eR rae [187] 
Evening ea Vea cone [178] 
Delaivaxe.s ee aoe (179[ 
SCAPOSENy seein erepa) see [179] 
tooth-leaved ...........[180] 
Wi LLO seperate as eRe pee [178] 
narrow-leaved. ........... {187] 
Parry) Simin cerns alten ees 39, [187] 


rock... 


PRIMROSE. FAMILY... Wea As 


INDEX 


References to the Flora are in brackets [ ] 


300 
IBshiile ys bs So aols gid sido ciao wie {187] 
angustifolia. . .42, [187 
Parryi.. Wai 39, 42’ ee 
PRIMUUACHAE Lia Moa aminanis {18 
PRIMULATES ashe e tiie Her 
Prosartes trachycarpa......... [93] 
Prunella ua sees nia ae a [206] 
Viulgarish ee an ian 11, 26, [206] 
IPTUNUSHAe ee teen [151] 
Americana.......... 20, 22, [151] 
Bessey ae eieideitustieneiaieket [152] 
melanocarpa..... 23, 29, 30, [152] 
Pennsylvanica....... 22, 29, [152] 
Prunella ee Renee ane {151] 
NWViAESOnIgNe a Renee [152] 
Pseudocymopterus...........[185] 
montanus multifidus........ [185] 
footihanschiGe 6 gmoulco cl oo o0 86 [185] 
Sylvaticussy sree ioe ciee [185] 
TENUOUS HA eee oD 
Pseudotsugannaontcaeieiiere 24, [54] 
DOMAOSBG Sobbodo4o0edgb eos [54] 
mucronata.......... 25,31, [54] 
Psoraleara sein a [160] 
argophylla.......... 14, 18, [160] 
tenuiflora........ 14, 15, 18, [160] 
Psoralea eens ANN ie subdues 13 
Ptericiumee eee eee (50] 
aquilinum pubescens....25, [50] 
PTERIDOPHYTA.............. [49] 
PUTO DOM odboedooseasaade [185] 
Andromedea........ 26, 43, [185] 
Ptiloniaeee tee eee Zool 
paucihonra eee eee eee 255] 
HAMLOSA ee Arh te) arereueM steer: [255] 
Ptiloria, branching...........[255] 
few-flowered.............. [255] 
Puccinelliaseee ae Ee [73] 
AIGOI eS Seen ee 16, [73] 
PUCCOON EE eos [203] 
HoOaTyiaey a Ae aReu ate [203] 
narrow-leaved [203] 
short-flowered............. 203 
IFAM ERNIE Wig ho adiod wold ooo 4 6 121 
hirsutissimare sick ee 18, [121] 
TOSCA Aart AUC eLeEat nets {121] 
Purple false foxglove......... [215] 
Bessey’s. . Bis ord aie gil PAaes) 
Purple ground cherry BS CMa [209 
LO Ded ee een a eae [209] 
Purshia tridentata............[147 
Purshia.. WESC CONGR Bn LAST 
three- toothed Ba An ra tbe ea [147] 
Purslanencenrac einen [114] 
common. Ne aN NSS {114] 
retuse- leaved.. POR SaRaTAtenat one {114] 
PURSLANE FAMILY........... {113] 


Pussleyaaea ea selene {114] 
Pyro lace iets Mi Ata bil vena [186] 
rotundtfolia uliginosa....... [186] 
SECU AME MCSE Enie 26, [186] 
Wliginosaeyenja once aes 26, [186] 
UNULONG err tel eee [185] 
PY, ROUAGEAE wae ae eee [185] 
Ry rrocoma seer cine [229] 
CLOGEA ie iailiare ere saree [229] 
Pyrrocoma, yellow...........[229] 
Quack grass, false............ [76] 
Oirhvetlkys seonasecaqsacacgion 209] 
lobata eyes ay leven rey 16, [209] 
Rabbit-brush 13, [229] 
fairest eS ee aS [229] 
fasciculatess eae [229] 
handsome:eae ener [229] 
heavy-scented............. [229] 
[EE NO AACN ioIatE eee Gioia diglad [229] 
Radi culls niece elated tah ts {129] 
cally cinabenemaeeinin 11, [129] 
GUEVADES )s5seisave amoeisalones [129] 
Hispidaneen erste or 11, [129] 
Ob tulsa see Cee eae [129] 
SINUAtA ee aeons [129] 
Readishu pyciiGee hyena, Cor ain le (131] 
Gard emyite ise se seckeve eons {131] 
Ragweed secu yen any paniue Huan (224] 
COMMON ee [224] 
entire-leaved..............[224] 
PTE Aten kOe Ue Ue [224] 
WEStELM state i penelienaten eat p as (224] 
RAGWEED FAMILY... ........ [224] 
Rainfall ea Tevet a a aia 5- 8 
RVANALES Hes hee ne aera sect dono) 
RANUNCULACEAE............[118] 
Ranunculusmeci eee [122] 
abortiviuls: eee eee 22, 28, [124] 
AGOWMEAWISS 6 oo oaddoan od oe 41, [123] 
OPN US eae RU ON Learn ems [123] 
cardiophyllus............[123] 
micropetalus.............[123] 
alpeophilusase eeeien car 39, [123] 
cardiophyllus........... 33, [123] 
Cymbalarnca syle asic (124 
ellipticu seen aeani kena [123] 
eremogeneS...... {124| 
Flammula reptans.. . [122] 
inamoenus. A 33) Bin [123] 
Macounii..... . SER SIC IAS pects [124] 
MUcranthuUSH ee eer [124] 
micropetalus. . Op Sd, a 
INOHOUG.6 coobe dbacoss coos {12 
pedatifidus.. 31h GOO [123 
Teptans eee eee 28, 37, [122]. 


sceleratus eremogenes. ..11, Hea 
IREVOMAMING 5 gugcooldoabosoe on {131] 


449] 


INDEX 


References to the Flora are in brackets [ | 


SACIVIUS SS coi ererern earn 46, [131] 
Raspberry, dwarf............ [141] 
HOWELIN GME 29, [141] 
hor Gorancnno DEE Aaa [141] 

inthe s ons MbloO Matonto ca clot o [141] 
Vist olererona ata cteioucstotoneeclone sc (141] 
Rati id acne yendieessryrace te era [242] 
columinarise isi 15, 19, [242] 
pulchercima. pee [242] 
Rattlesnake plantain......... [97] 
snake-mouwchy sen sie cael {97] 
Razonmots kaya sera rere [103] 
PNIMELICATIA shy alae ere 43, [103] 
CEypLopodan sesame ce 43, [103] 
Red cedar, Rocky Mount’n 29, [54] 
Red cherry, wild.. ae [52] 
Redtelephamtssuemoreeeceie 39 
DEEL vane Ya Heats cay ata [218] 
RG Ai iraepaeuc ie sy Lisa ate cena ierctens [54] 
Rederaspbernysee see sacle [141] 
seve cepts a LA i Ee a cr re a [141] 
INEC=tO persicae tol een [64] 
Ree dere ay sos arc oate raises sie leieas te [67] 
[DRED eS erietatnond RERanerOIN eR ntnars Bia [55] 
COMMON ele nuc hes [67] 
Reed=orassisc ene teeatiee sae oe [64] 


WOO Cistrerereucen tact peaie nue aia sacle 
IRFANMINAT ESS: ees) ejeieieenes es ae LOS] 


RHINANTHACEAE............. (211] 
Rihodiolakieeyen incite eu. [136] 
MEERA as oaadoe acwooe [136] 
IC b cia oto Sie CEC OIE CERO CNC {167] 
CUSIMONLO RO En ee eae [167] 
glabra cismontana.........[167] 
TRAN Tse Nols the pie He epee {167] 
THOUS J bac ccogonged eon [167] 
RUDE se oes cisieon sc oisea ba ie lnee [139] 
CUTEUTU SN Pe onsets seis [140] 
CONC UITINUIN aes Street feyet actich Asan ([140] 
lacustre molle Soeie ae nL 39] 
ral efOb Gipsy gneteenicn cheat ech eakenes [139 
longiflorum......... 20, 22, [140] 
PERV W ons no padopagaaned [139] 
pumilum........ 20, 22, 30, [140] 
IPL 6 o's a0 bolo ale 28, 30, [130] 
Wallicolaraecs eaten eis liete [139] 
WALL Caeser penis tetas ials 46, [140] 
Rub erassaasieat cee erste ets [219] 
RIGeCut=erassse ees aoe [59] 
RTM O SAB ais seus sense Z4, 29 
RIPARIAE...... sO, ly 
Riparian flora. .. “il, 12, 21, 36 
IROGK=Gresst is eiscieacsaes es [134] 
divergently podded........ [135] 
Bemdlerssws cise ee tty very earths [134] 


301 
sharp-leavedee meric aeriariae {134] 
snow-loving...............[134] 
Rock desert formation..... 38, 40 
Rock primrose.............40, [188] 
diffuse ake nee aero [188] 
DINEMOLeES EME eae rie acelin [188] 
WIMNAA Sito cscowskoouaaes [188] 
subumbellate.............. [188] 
Roripa Armoracia............ {130] 
COLIN CANO ee oe {129] 
GUNULDES veins) \eictsesepercie hits {129] 
RUS PLd Ge Sires Pia ey Ere elles g {129] 
IMPORT boo boo oe oh odes {128] 
OOLUS Ais eae ss eee tere eee [129] 
StMUALD Wee acne ey sae eio evens [129] 
RO Sas is ara acter et atin Geng [148] 
aciculatanmrmem neni rs 29, [149] 
blanda aciculatare.. ae: [149] 
Engelmannii......... ian [149] 
Rendlent heen eaiee oe 2o no) 
Maicounnite ieee: | De, [149] 
Maximiliani............29, [150] 
MEIN AAV ante 30, [149] 
Nutkanay i Oue tire aa [149] 
Pratincolaeey sere 14, [148] 
angustianiimnae ee ene [148] 
SCtUlOSAs shipeyen eee eae [148] 
AYA hae eae eee 20, 22, ae 
suffulta.. 

Wieoalsts So éscabedcbouus ase 
ROSAGCBAB ee yaiely Mine ener gee [140] 
ROSAEES 334/25. dis been mate [136] 
Rose. . ee .13, 29, Nice 

ashen. TENURE A cAI fa ts Sy et [14 
Castle Rock.. Te StS ee 
Engelmann’s.. NODS UG AO EN lee [149] 
rendler sins eee eee [149] 
Macounts}-.-e eee hone [149] 
MaximilianiSseeeeeeeeeiee [150] 
PLAITIe A Dee eee IEE (148] 
pricklys che tie ore elements [149] 
Say. Stace cave Meee be eae [149] 
ROSE HAMIL Y.s-ce eee ee ai LO) 
INOS€=rOOts. sc eRe eae [136] 
entire-leaved..............{136] 
Rubacer parviflorus........... {141] 
RUBIACHAER rian ook [220] 
IRUBIATES Us shesseeiepe stereos [220] 
Rubus Ase see ate ({141] 
Americantiseeenienice etn lean 
GeliCiOsuUs eee eee ete [141] 
NA RANUSy eet: {141] 
UgOrUsseniee eee 28, [141] 
Rud beckian seta eieri-wer reeds ete [242] 
flava acc! a sisueye caine 19, 26, [242] 
laciniata.. bit 29, On 
RUDERALES Melee in uals 


INDEX 


References to the Flora are in brackets [ ] 


302 
PROS A in ab a ong olaale [168] 
Negundosee)-n- or 12, 22, [168] 
Texanum...........12) 22, [168] 
FRAME XA een nace el nananeta the [105 
Acetosella............- 44, [105] 
BORETE Me RAP ele sete aE an [105] 
CHISPUSHU Aa Rie Naess 44, [105] 
GenisimlOTUSM wie oilseed ete [105] 
obtusifolius .......... 44, [105] 
occidentalis ......... 11, [105] 
Saliciholiusyiienieylstener: 11, [105] 
RUPESDRESE yo oeeenee 35 
Bupestine | ior Wo pea AO ANS Se 
Rush. .10, 34, 39, 40, [88] 
TER arava a OMA ae [89] 
Baltic, mountain.......... [88] 
Chestnut seca eters [90] 
Confused See eee [89] 
Druimmondyssy i eeien er ({89] 
IDyGlENASY deo oclgedicoo0.50'Go [89] 
grass-leaved [89] 
ted eivoa yeh a eib is a Bisse ore /o0'0\0'8 [89] 
KO EEEGIS eel creineen tatdeaerens [90] 
long-styled.. ............ [89] 
IMertenys eeomiaecrnie [90] 
reddishybrowily heise eiee [90] 
Rocky Mountain.......... [90] 
SCOUTIN SA Pk eer tat: [52] 
Spilcevnys span aerate ava [80] 
MOnKe VES ey Ato eaee: [90] 
three-flowered [90] 
LOA a NT Adda [89] 
WOOC Ea SMT aun Ene ahage [90] 
RUSH RAMETS sry sleiel tet snyar ale [88] 
Rush-grass, filiform. ....... [62] 
PUALLS A sania atte R Maltw EN [61] 
Rucharcdsonvssyeeianieee tee [61] 
Sasha) SO aaio mala Wistolsigiaidiaty's [62] 
RutavBalgasyaann iiss [132] 
Rydbergia................--[245] 
granditlorascyaaeiierie vein 42, [245] 
Ry dibergiane sae renin tiene O 
large-flowered.............[245] 
Rye vy iwal dayne ce naisioey ae [78] 
Rye-grass, Italian............ (75] 
Sabina. Ris (54) 
scopulorum.. WSS eMac 30, [54] 
SECO RIM TA SIGN GING) ABS A eIH G 13, [207] 
barrens:eae eee wy ee es LAAT 
Brictonysy ease kee [247] 
cudweed.. (247] 
diverse-leaved............ [247] 
orwood!siat sais) aes [246] 
lance-leaved...............[207] 
OC HSI ULE MARE Seas [247] 
Rocky Mountain..........[247] 
Scoulenis ye iene ieee [246] 


sylvan acre bees [246] 
sw nabele ee a ae dicen ae 110] 
Salige-brushin nian ane 5, 34, [246] 
COMMON aye me hea ea [246] 
SHENG sun d's BAG os amo xo MSO 
AudbOVem wabaimaias ou eae pls 11, [56] 
SEI OhNSwonthawes eee [171] 
Canadian, larger...........[171] 
handsomeseee seen {171] 
ST. JOHNSWORT FAMILY.......[171] 
SVNGIOUNGIINO SN big Gog aalorone Bis [98] 
SATTC@ATERS uaa Unni Aa een [98] 
Sallie nye a eT SENG [99] 
amygdaloides.......... 12, [99] 
COMED, JABAL 010 6 Boo'd 60 [100] 
Bebbianasan aaneeer ete 28, [100] 
brachycarpasanenccece 33, [100] 
catidaitala eens 28,37, [99] 
chlorophylla........... 39, [100] 
exigua.. Bias .12, [99] 
Fendleriana. rohan A RULE [99] 
Haviescensseance ieee [100] 
WENBENMES ols b dodo clo od Oe e 24 
glaucops..07.04)..0-)- 33, 39, [100] 
WHOM aos Cele hb oaooboo bo So [99] 
lasiandra Fendleriana.. [99] 
INTEC SraNA MR rah SaaS a te [99] 
luteosericea............ 12, [99] 
INERT Gob s:o'e ois ovo d oc 24, [100] 
pentandra caudata.......... [99] 
DELLOStLata-saane ena 28, [99] 
petrophilaneey seine 41, [100] 
pseudolapponicum...... 41, [100] 
TOSIT GLA a Le {100] 
Saximontanace)) sonia ena Ona 
Scouleriana......... 33, 36, [100] 
AVON Gite AN areca eRe [99] 
Salmon-berry............ 29, [141] 
INutkalSoundscrmciee eine {141] 
Sallsutyi eyes Meni vein ca a [255] 
Sallsolayie ese vans enh eer {111] 
Mra Suse eran aeons 45, [111] 
Salltconasssaa eee eee [69] 
Salt meadow-grass........... [73] 
slender ic eee [73] 
Saleworteene 20 ean penta ena {111] 
Sall via Seige nee eea gg ie ein tees [207] 
lanceolatan nner oer La 2 Od 
Sam bDUCUS Mee aee eo (220] 
melanocanpavciy tse ae 22H 
Microbotrys.s.s ses ZO n220) 
SANDALWOOD FAMILY.........[103] 
Sand-bur.. ‘ Ae See aU S Ol] 
Sand cherry, Bessey’: Bole so oa USAT 
Saindililysecimaaw arse dati [92] 
MOUNCtAIN PaO ee eee [92] 
Sandworteaceort tore ocroon {116] 


451] INDEX. 303 
References to the Flora are in brackets [ 1] 

Rendlenis eters smet trace rer [116] Americanus st). =!) oe) 11, [79] 
GMs dodos bho code o alktH()| atrovirens pallidus...... 10, [80] 
HEMCWEB eS Bio coso oe be ae 6 [116] HEV 6 ind osieoogocdo 10, [80] 
obtuse-leaved............- [116] DUNZENS Meshal aianieestrc eee {79] 
ANSGCCOY Soasaonmaeenina doles {116] | Scouring rush, smooth........ [52] 
Samicle. Me eisscisiesce Sl oesieciets WSiisieScrophulaniaseaeeee see: (211] 
IMarylandeenerr ere erreer {181] nodosa occidentalis......... [211] 
Samicilaranccmct tates cree eens {181] Occidentalisa-ne aie 26, [211] 
Mam EMEhe poo on cool, AK [Sill || SomaBleisesccoadsocencbsoges [205] 
SARMALACIADD Sisp con boos cos [103] Britlontieaee eee ee 26, [205] 
SIANNDAT ES Sen epyanice sceneries [103] ULL SU OO eae [205] 
SAPTINDIAT BS sea aerer) salieri [167] galericulatar-eneeaeee 11, [205] 
Saponanian eee toi [118] TESINOSAL nahin) emleiseys ata [205] 
Oficinalis=eee eee eee eos uts)] WHA po osdoonaocoon te [205] 
WiGecarta sickened (ULE Seat birtera a ae Uatuny sy ical apy tas 111] 
Sapro phy teste alert sere ct 43 EHECEAM aes weather {111] 
Saprophytic plants........... 43 LOW) SEAN at A TO ea URED Te EE {111] 
SARPROPHYTICALES We) Wau Wa onlisearkalenee nese anu wae {111] 
Sarsaparillary waldeia tet ita [181] | Sedge....... 10, 27, 34, 39,40, [81] 
Savastana odorata............ [60] EVs Ho esi et bis oly anhete [84] 
Se rihak sll es Wel eet aya eset RSNA [54] Bindeirwieedlso does edesbedebe (81] 
Saxifma sane sor ncreesieiry a seus [137] eater Peer rs eee [84] 
AG CULER erage stole) ehciisyaveleialalsvopeo siete [138] Beck Sy aa enna S Ol 
austromontana............- [138] Lee ees Nee see ny ck RO ee [84] 
DLOMCHLGLES inne ee eee [138] pla ckish aan fees ars wo peei aia [85] 
NTU Sa caoosadenedae {138] (efoyciel (aarti OR Cre ae ee alte [86] 
Gebiliss ests Seisuieuaey 39, [137] bracted cue aes eine [82] 
GENE OLO a Eee [138] bronze-scaled ae anaes [84] 
UGS sa gag Ob COB A) [138] broom eae aa re ie [82] 
LAr CULUS AT Noe ee orks [138] Glustere dene eee [82] 
MWA sed eos kbuouiceoenes {137] COMO G5 chobbdsasdouns [84] 
DUNGLOLOM RNR seit rN cone: [138] CEA cae te ea aa [85] 
rhomboidea...........----- [137] Ciaene sere coenesewas [83] 
SASINRAGACE ARE eran aan: [136] Deweyis nnn ne ee eee [81] 
Samitrag en niermicta aioe 39, [137] Douglass eee eee [82] 
EMT CLT O eve ERA RA OEE RE ee [138] Ciyespiked eee eerie [83] 
austromontane...........- 36 EDONVE ee eT ete [82] 
acellate arent rier [138] Chaz BAP GIS ey brotci eaalauaaalaNsiers [84] 
FOlMEeMsse emis ere eel seats [138] FESClie eRe eee [83] 
rhomboid-leaved...........[137] oy SRM alba eddy atcia [$1] 
STOOL aE Ce Eon [138] Geyer sie) ae eee. (85] 
Titazl lon sls meatal au (137] Polder ee eee an mceeeaytts [85] 
western mountain.......... [138] ara Sa EA IR SN sai [86] 
Veo Was ecient eees Samer 40 hare’s-foot, western........ [82] 
SAXIFRAGE FAMILY...........[136] Elood’Sh et eee ane oie [81] 
Scapose evening primrose. ....[179] meadow Rae (8S 
Fairey sto) panne titres eter [179] mountain-grace........-..- [85] 
large-throated............. [179] narrow-leaved............. [83] 
MOUtATR Ee eee nice {179] ODLUSISH EEE Eee eee ee [85] 
Schedonnanrduss- inner ener [66] Pennsylvania, western...... (86] 
PRMVCHIERHS. seccedcos5Genc [66] DEELEY eee eee un SZ 
EOL OIVUS US Pee ee oake [66] Ry renaice erties rel [85] 
Schizachyxiume eee ier (57] THOMDIC EEOC ee [84] 
SCOPAn UME eeet eit 15, [57] TOC Ke eee eee bake ease eh oo Ma [86] 
Schimaltziasee ere ete eee [167] Sartwellistaurres seu sceaare [82] 
IO MB pdossapodoencds 20, [167] SIhiaaiaseisinih cid @ cation pie (81] 
SOiMNSs osaacasebsoosooegde [79] SOftleaved epee ee eee nl oul 


304 INDEX [452 


References to the Flora are in brackets [ 1 


Stevens Given inane hie [83] 
SC Like sy Meas UDA Ae Pa ote [84] 
SENAWio corals stem nereioile [83] 
falseny sinh SMa Se Mee nae [83 
short-beaked.............. [86] 
Variable sae yeitataa iain es [85] 
WESEE RM nie) toniey Nansen ee einer (81] 
winter-loving.............. [84] 
WOO] ymcri cea ene Reins [86] 
SEDGERPAMIUL Ven seer an eniae [79] 
Sedume eeu eecin arouses eae [136] 
ACU DIKIT AS 5 Ob oo od peloo Ae 136] 
stenopetalum... ..22, 30, 42, ite! 
rubrolineatum.......-... [136] 
Seediplantssemee meine [53] 
Selaginellaeaneeiaises hice (52] 
GETS a A eA AE RIS [52] 
EN Gel Mannie nae oe [52] 
rupestris Fendlert.......... [52] 
Underwoodii........... 30, [52] 
Selaiginellaneeeeeariac eater mne®) 
GEMS pe enue a ST [52] 
Winderwoodistisanier cee [52] 
SELAGINELLA FAMILY......... [52] 
SELAGINELLACEAE........... [52] 
Selfcheal anaes ee eee 206) 
COMMON eee ee 206 
Senecio neem eer 19, 26, 30, [249] 
adiminalbilisw. J.) sl ices 34, [250] 
ambrosioides........... 32, [252] 
ALLALCUS iene Nera evan 37, 42: [251] 
aurelluseee eynenueeise isi [252] 
aureus Balsamitae...........[252] 
ORECITS Ree Te aMa [252] 
Croceus Halli... a2 202) 
Balsamitaese eae eee [252] 
Bigelout Halli... .....-.-: [249] 
blitoidesaeeecen ae ee ee ON(249)] 
carthamoides...........40, [249] 
chiloranthushes sea 35, [249] 
GColumbianusanaesreeeee [250] 
crassulusia sion aeons 42, [250] 
crocatus. aa eretyiey ecereiae CA eS Yl| 
cymbalarioides. ENON MeSH 34, [252] 
dior hep iis, MINUS I are [252] 
Fendleri. . wee O26" pet 
Lanatusseee eee nee [252] 
fililfolius Fremontit.........[253] 
PLAVOUIZEN Sse Ze 
WLAVULUS SAS Hotes [252] 
Mar bouriite eee ene eee [251] 
heterodoxus... Seicio o's SolASAl| 
Hookerih yay sea [250] 
hydrophilus............ 29, [250] 
lanatifoliusys eee 32, [252] 
lapathifoliamanns aoe [250] 
longipetiolatus......... 30, [252] 


lugens foliosus..............[251] 


RAMEN IG elac eyotne eh era eek [250] 
multicapitatus.......... 16, [253] 
MUtabilisyeraaeeieee eee (252] 
Nelsonii......... 19, 26, 30, [251] 
Perplexuseeeaeeee ee 29, [250] 
IPlattensis serene neenon 19, [251] 
pseudaureus.. .35, 40, [252] 
DUGICUS ARR 32, [249] 
Ipurshiants eee eee [251] 
PANES. soadbdacdcasoous [250] 
Riddellissnaeeee eee 16, [253] 
FOSUIAtUSH THe eee (251] 
Sallicitus:2).c05 ceil eee 251 
Scopulinusseys sien aeelee 35, [249] , 
Spantioides.e 4 ce een 16, [253] 
triangularis. . 34, 37, [249] 

SHE HOYER co seooes bases [59] 
Wt GHiCa sae ee [59] 
DLUL AUS Neenah [59] 

Shadbushte ane nereee ere {150] 
alder-leaved............... [150] 
THOME NN, cuolsooodudduces [150] 

Sheepberry ese ser eee [221] 

Sheeprsonrel eee eee eee [105] 

Shepherdia Canadensis........{175] 

Shepherd’s purse............ {128] 
COMMONS ene [128] 

Shield-ferne se erieimeeee ie [49] 

Shinleaty esos ua see re [186] 
bog.. ied Ansa Nanay al Leo) 
Gnersidede ey yet AM [186] 

Shootingistansaneree eee 27, [189] 
few-flowered.............. [189] 
many-flowered............ [189] 
shade-loving.............. [189] 
wavy-leaved.............. [189] 

Sibbaldiasaaeeeeeeeeeearree [144] 
procumbens............ 42, [144] 

Sibbaldiatea eee ere 40 
PLOcumMbent waar eee [144] 

Sidalcean scan nev anye wea [170] 
candida aeninnae 33, 35, 37, [170] 

Sideranthusssee eee eee nee 29] 
ANNUUSH Eee 16, [229] 
Spinulosustenee eee 16, [229] 

Silene sane Ra Aa Ane {117] 
acaulis san envs Pye 41, [117] 
antirrhina.......... 18, 45, [117] 

depauperata............ ({117] 
MOCLIDOTA Se Reee eee 45, [117] 

SILVERBERRY FAMILY.........[175] 

Singlejdelightsaaeemmuearcies [185] 

Sisyanbritum eee: [130] 
ANGUSU IM. Seminar RTE [130] 
officinale miacismrionee 45, [130] 

Sisyrinchiwumyne eee [95] 


453] 


INDEX 


References to the Flora are in brackets [ 1] 


alpestre. 8.4 ssuef claire 35, [95] 
angustifolium.......14,35, [95] 
Sitamionee Sars wine eosin tee [78] 
brevatolimm=sneeeeeniee 15, [78] 
longifolium(e):)). eet 15, [78] 
Skullcap sentry in see ween [205] 
Brieconyspee nore ae [205] 
hooded se esissciwecs Seen se [205] 
Wan dali kespeyqsiry tetera crore [205] 
Skumk=bush emcee error 20 
Skunk=prasseaseie as cecacn ee [68] 
Small mistletoe.............. [103] 
AIMETICANs tides aioe [103] 
hidden) footedepean asses ee [103] 
Smartweedsenen wuts sa calenen [107] 
WENN 4 to NCOO CSI ERES SRE oie [107] 
SMIDAGHAIE ae ania tie esr 94] 
Smilacina amplexicaulis...... [93] 
MECEMOS Oa eee [93] 
SLELLOEC ry Nosh rere nevanmoes ear al eter [93] 
Smilax lasioneuron........... [94] 
Snakerootyblacks-.jeaenneae [181] 
DUtEOTIE cr arkoomierece sues [226] 
Sneezeweed oes.) s6 secs eee [245] 
MMOLIMEVI osoadapoaumod ue [245] 
Snowhernynece neuer [221] 
WESEELM sete rae nue ett aie bees (221) 
SNOWHOWELSEcmmcaac ce 40, [213] 
ia@MeES (Sens mest cses creer see [213] 
Snow-on-the-mountain....... [165] 
Bowlderaaeiceisic tects oie scree [165] 
Soapwonttescs seca cence es ({118] 
SOLARINGIING Sd saloouaounada06 [208] 
Solanutmencny aise aya aeereser [209] 
LMEERIU SH coeyeneved even sheer areiaie ts [210] 
WEN GOPELSUCILIN eee [210] 
nigrum villosum...........- [210] 
HOSTUM Boocgoasco0nee5006 [209] 
CriAOGUMMs cue ose ate [209] 
Solidagolttmucsmpeceane eee [230] 
Ganadensishaaeseeeee ee 12, [231] 
gilvocanescens............ [231] 
COncinnas.ceee eee ene [231] 
decumbens..........32, 42, [230] 
MINWESCENS HEE ee eee Zool 
dilatatare ecw eee [230] 
gilvocanescens.......... 17, [231] 
Slaberrima-reneree eer Onlzoul 
PIAS (Li Bososnaosdaoo00 [230] 
Pathersonttaeene ache [230] 
Missouriensts extraria......[231] 
MOLISE chy eco iSroee lente [232] 
MEMES cadciy ond aon Oc 16, [232] 
nemoralis incand.........-. 232] 
oreophilayeee eae 26, 32, [230] 
pallidakrercey-semece er 19, [231] 
PONTE 5 Gacog0d000 12, 29, [231] 


3095 
poly phyllavewrerartee 29, [231] 
pulchernma ear ae [232] 
Ladulinayepee ee aeteie 26, [232] 
TUT WUMAS os ee ee el [232] 
speciosa pallida............ [231] 
trinenvatanrre tree 26, [231] 
VISCICU aera 26, [231] 
Solomon’s seal, false...... 21, [93] 
Sonchussjecnsey eee [259] 
ALVENSIS iia nse eis eee 45, [259] 
ASPENS eines Teese tte 45, [259] 
Sophiattiew acre {130] 
andrenaniineeeeri eee eis [130] 
hash CRIBS Aiba ni ae Bice cay Mots [130] 
IN cenMedia-e eee eee 14, [130] 
leptophiyllamemeiaarieen en [130] 
Sophoraictyec ote seem ae cee [152] 
SELICCA sy ects 7 ISA 2 
Sophoranisilkysseeere ene [152] 
Sorbus se Ee a [151] 
SOOM Ed socodaceooo 25, [151] 
SOMA co asoaccovasd call OY 
TUtan sae reer 18, [57] 
SOLLelsaMountain=ae eee [105] 
SHEED ieee ene ao ee [105] 
WOOK si iied my eats vemaetne [163] 
Vellowe ee Ane eee ie [163] 
Sowithistles. asc [259] 
Held a sein A ae cee eae [259] 
Harsha) os sce aerney ete: [259] 
Spanish bayonet............. [94] 
narrow-leaved............. [94] 
Spanish needles, western...... [244] 
SPARGANIACEAE............. [55] 
Sparganitine eee eter nr [55] 
‘angustifolium.......... 34, [55] 
simplex angustifolium....... [55] 
Spartina.) [66] 
cynosuroides .......... 11, [66] 
Spatter dock, western........[125] 
Spearmint. aceon [208] 
Special classes of plants...... 43 
Speculiariaeaeeeeiee eerie (223] 
leptocarpa- eee eee [223] 
perfoliata... a. assess ene 26, [223] 
Speedwellis- eaten veel eee [214] 
Byzantines eee eee [215] 
field. AP or eon eee [215] 
thyme-leaved............. (214] 
Wornmskjoldes eens: [214] 
Kallapaisslosenien seca eee [214] 
SPERMATOPHYTA............. [53] 
Spiderworteeeeecrneoecnen Loal 
Wniversityanere meee [87] 
Spiesia Lamberti.............{159] 


Lamberti sertcea........... [159] 
Spike-grass, marsh........... 


306 


INDEX 


[454 


References to the Flora are in brackets [ ] 


Spike srushyo eae estan reel oy 
flat-stemmed.............. [79] 

bot stata KOM Sel A uMiA ag RENT atiee ie {79] 
Slendersisa aii os lucida arenes [79] 
SWAT Py a eC IE nana atniels [79] 
Dale ree via yay Mia WA a [79] 
SPINOSAB ao eeeeieysue 18, 19 
Spiraea dumosay iis eile eee [147] 
Spleenwortaaice eee [51] 
ATI Ge WSIS CNM ee iaetel ate (51] 
maiden-haireqaws aces [51] 
SPRONDEAGEAE ea a eee noe [167] 
Sporobolus see eae eieee eee [63] 
AITOLdeESeaaEae ee 15, [63] 
asperifolius............ 15, [63] 
cnyptandruse eco. Lon 103) 
CUSPLdGtUS iar jer [61] 
depauperatus.............- {61] 
heterolepis............. 15, [63] 
SUNUDIC CMG Epa un ara EAS [62] 
Springybeautyaseeee alee {114] 
large-rooted............... {114] 
THOS nee Ue ses tueana {114] 
SW) DE TAIN A AN Mu Sn ae Eero {114] 
C@hamissojsse seein {114] 
Spruce ssc 24, 31, 38, 39,40, [53] 
Bree ae OTe ae aN [53] 
Douglas eee seen 242 5a [OS 
Engelmann.........36,39, [53] 
SPULZO Tee eee aan 44, [164] 
Arkansas tenements [165] 
Benders anni sen raion [164] 
MOUNTS Ay ob plasisie alee 60 [165] 
FOSRELeI CHAU MIRA ARS MUA nt ate [164] 
ridge-seeded............... {164] 
rugulose-seeded............[164] 
SEO UCASE MAPA testers Se Earn [165] 
thyme-leaved............. [164] 
reoYaye eYetoliy een eta Maal ey ana [166] 
SEMTUNZ nid Genie RNB oulol slates [166] 
white-flowered............. [164] 
SPURGE RAMIEY einen Nene {163] 
Squaiwiwe edie cabin enue 34 
Squirrel-tail grass............ [77] 
SHV DVA uid a bus olald gine asarcidlallp b [206] 
scopulorum............ 11, [206] 
Stanley aaisiua avarice seus [135] 
lau Caaanminmetencueyiis 15, [135] 
Stanley’s cress, glaucous...... [135] 
Star-lowervee ne aeons (229] 
ann alan see e Ce SI ae ee (229 
Sspinulose cya eee alae [229] 
Stanithistle sy wan eee [255] 
Stanwonre seen eee {115], [233] 
NJAATIES YS! EOIN LAB Aen {115] 
alkeyBaicalleyaetsyan plete {115] 


State flower of Colorado.... 


Steijoneman nana [ 
eliatiumaeee aan 21, 23, [188] 
Stellaria Jamesiana.......... [115] 
UO EON 5 3'5 Calais be bla\ 6 60 (115] 
LOGE IOS Six dato dloicia'a a. casld, 66 (1135] 
GAUGING Raa aI EA Si {115] 
SETECED so star dneyainrd Cen evap {115] 
UMUC GLE eee ee [115] 
Stephanomeria runcinata...... [255] 
Stickseedinicni is mine eae [200] 
Cupulatesaern see eeent ior: [200] 
large-flowered.............[200] 
narrow-leaved............. [200] 
western ?ccn anita een amie [200] 
Sticktightsssaeme aceon 1 
COMMONER eee eee [244] 


Stiff golden rod, hoary........ 


Stinks crass en eerie ota [68] 
UI OMEbecd do nsoeedod ba noose [68] 
S fi pan cance eG I Mi aaa [60] 
Gomatasaee ene 15,18,27, [60] 
Wettermannit.s24. 96 eee [61] 
Nelsonii............15,27, [60] 
parviflora Americana....... [60] 
Sceribnerigncs saeco ene 27, [60] 
ViriClulaepeeee ser 15, 18,27, [60] 
Stitchwort, long-leaved.......[115] 
long-pedicelled...... ..[115] 
Gide leona Rta aa ast to emi At uAate ({115] 
SOME Vas sicosdsaas saeoloc [136] 
Stornksbill Peas erGe eer LOSI 
hemlock wenn ee eee a LOS) 
Stra wbernyeen cc ccior ace [143] 
LMONKIMEUNSS bo agocudh ov woes [143] 
bracted.. 4 {143] 
PIAUCOUS Ae amie eset {144 
PrLOliNGs wey sees Cee ae [144] 
small-flowered.............[144] 
Streptopussqama ascii [93] 
amplexifolius............28, [93] 
Stylosanthus laciniatus........[238] 
Suaeda depressa............. {111] 
depressaenectane a yen ats {111] 
SUBALPESTRES............9, 36 
Subalpine flora............9, 23, 36 


Subalpine forest formation..... 36 
Subalpine stream formation 36, 37 
Subalpine summit flora....... 37 


Subalpineizoneten eee ik 36 
Subaquaticiloraseewinee rer 10 
SUBMONTANAE...........9, 23 
Sumachoriantiacccacen teenie. [167] 
CiSMOntaneae see eee [167] 
fragranteee inert ieee (167] 
three-lobed............. {167] 
SUNMOW Ene eee eos 13, [242] 


455] 


INDEX 


References to the Flora are in brackets [ ] 


coarsely toothed........... [243] 
COMMON eee see (242] 
GWArh wees eu ysis.cteon suvenetsean: [243] 
false, five-ribbed...........[243] 
petioledins eyicnis mys cee [243] 
red-streaked..............[242] 
Subrhomboid-anee ees [243] 
Wat ere eed abt cabal’ [243] 
Sis EV ates ae Men Eee er eet Oict oe [181] 


stolonifera..........23, 29, [181] 
Swampitloraseenerier eee 10 
Swamp laurel, small leaved.. . . [186] 
Sweet ciceley...... 


obtuse-frurtedse jie eae ack [182] 
STOO UI Re ir cee ie eae ata [182] 
Sweeticloverznivse sea alae [155] 
WIRTEE LAT Pare) acne lola neces earpiece {155] 
Sweet coltsfoot...............[248] 
Boro Enealogacns cs asacox [248] 
Sweetihaee eats ryeeacue eee i0, 87 
SS ACIATE I on ser pee ig ote Alcea emenoet ey lt Ke)74T| 
COMBE Ho ecard bie sclalc [192] 
Palustristeiseeeee 34, 40, [192] 
SHIGE SG a sinte onteeeerei teri cart oer [192] 
dense-flowered..... [192] 
TENE NES Neeliaia WHat Geka elena lebeecte [192] 
Swicehyorassecall eee ere [58] 
SIVA VAIE Sees cereale: Bil) BO 
SYLVESTRES..........18, 20, 24 
SPADE NID AD Meee Gite Bini 8G [185] 
Syiphoricanpose.4 ee. [221] 


-20, 26, [221] 
13-5 2, (22M 


occidentalis........ 
oreophilussee ees: 


WACSMOC~E OG sa goocbe be oe [221] 
SiyAlelenismeasey sapere ae (57] 
TAMMIE 55 46 50cG done 44, [57] 
Synthyris alpina.............[215] 
Syuthyrissalpines see. [215] 
Atal kiaiiirlsa a aiololoras Hecliacme cle [113] 
Eagvillonumeree nee e305 lS 
(tansyemilustanrd eae eee [130] 
Gut-leaved Barre eis cia ois [130] 
iene -leavied eye shen oh elas ya the [130] 
noaiys earn elie miaay NA de At {130] 
WESEORM Sa spaepen i Mehiaerene. cs {130] 
MaraxacumlmenyAckoecaeetec! [258] 
PHO MAM G 65 co oo boaueHoS [258] 
OPC Bow 6 odiecod de enos 5 olOSs}} 
(liaraxacumnner ae see 45, [258] 
Temperature and rainfall...... 88 
MEDRAGONTACBAR. 64)... 525. 2) [113] 
Metranetinissee eee eee eZa5 
HOURS SAG Gino oie rOenete rome Veo 
lanigeraeye eco 32,42, [245] 
UGUCHITIR ob Bo oars easdeaceos| AOS 
ccecidentalesaaeenrcicee 11, [205] 


pH alesiaw remeron wen ies. ccisy nose [219] 


307 
fasciculatassaeeeeee ee 43, [219] 
lutea a sis saan wean [219] 
(chalictrum-eeer eee rete (125] 
Mendlertsocc ee) settee 28, [125] 
purpurascens........... 22, [125] 
(hielespermasaae eee eee ee er [244] 
race eae ye Naan 16, [244] 
Thelesperma, slender.........[244] 
ihhely podiums eee ieee [135] 
paniculacimeree eee ee [135] 
SOZULLCLU TI Cee [135] 
LoGulosume eee eee [135] 
Thelypodium, panicled....... [135] 
(Rhermopsisuneeoree re eee [152] 
ATEN OSaé a Ae Ay eae [153] 
divaricarpa...... PY BS. S(t S3SHI 
pinetorum.......... 25, 43, [152] 
Thermopsis, divaricate-podded[153] 
pinelandseeer eee (152] 
SET Aes ae) NAD eth ea [153] 
Myhistlen eae : 13, [253] 
Colorado see eee eee eee [254] 
(ol ge =a SPA me Rta ee I rou [253] 
erose-bracted...:.......... [254] 
STAY, Lei ie ea aeasaye Vaan [253] 
Knaip weeds aca ceeeee [254] 
large-headed.............. [254] 
Parryys: a yevisnieeiceneeerlae [253] 
Platters uy ave ae eey ey, [254] 
Russian? eee See eee [111] 
SOWG Mdina eee OSG eas [259] 
Stars she hind aon sieve os kepeeons [255] 
woolly-headed............. 
yellow-spined............. [255] 
PDAISTE ES AMIL Verrier ieee) (22,5) 
Thlaspiss ices eee eae eines (127] 
Barbecue sdococav soso AM 
Coloradense.........28, 39, [127] 
INimt¢allivees eee 2 les tes [eral] 
purpurascens........... 41, [127] 
(ihorn=applese see eee eee [210] 
PUNPlE=5 he:< sie A cictiseneeieiek: [210] 
(Rioroughwortieeeee ieee (225] 
Mhreevsquaneyie ice [79] 
(DAVMELTATES yey ieee ee [175] 
Dimothy. esto ckeyeee atte etek [62] 
COMIN ON See een aan [62] 
failses 0 NYS SER Aer aaa [62] 
MLOUNtAIM eee r heer rere [62] 
Miniarias acted sie eer nee [108] 
Conwolvulusteeee cece 44, [108] 
Pbithyamalushes eee ets [165] 
Arkansanusue-j ieee cel On liLooll 
MAL CUMMALUSaee seer LLOO| 
LetLamMerus ayer dares [165] 
philorussyienn Geseeee 19, [165] 
dichotomalanenarereerricr [165] 


308 INDEX [456 


References to the Flora are in brackets [ ] 


TODUSCUSS ee eee LOS) MOTUS Ae ee OORT 
ARDS cole iaha aati eMusic [156] COURS Seo snicliodeed sous o, KOSI] 
all pinuimeeeeee PR CH Sop (MOGI || Atanas so de soe cook noeey (77] 
Drummondii........... 8, [156] sativum vulgare 77] 
foald= fan ayy nema ltenacttete [211] UULCAT Ee eA eye eae 46, [77] 
bastardy ey ae aie anrd ata (MOR) Asolo Soc bobo bvoo bo does [118] 
Gaintald aye gael sea Ba (211] albiflorus...........37, 39, [118] 
HAG) oF Korero ais Menerorcciaiaie ous ota bic [210] laxus albiflorus............ [118] 
night-blooming............ [210] | Troxtmon cuspidaium.........[157] 
Pomatopaiwis ane oe [210] PIGUCU NDA Cee ene [258] 
commons eee ene [210] PATUULORILTU RAR eee [258] 
Monestush eee eee [230] | Troximon, cuspidate.........[257] 
DYSMAcUs eee 42, [230] | Tumble weed............... (112] 
Touterea decapetala........... {174] | Tundra, wet sone be 38, 39, 40 
TEU OME en ey ie [173] TUNDRALES . idly ile lacs oxo) 
UGC err AUN seein eee [173] | Turkey-foot grass BAA lata 13, [57] 
SENUALE PIAA a este vars Roe MAS) |) Uva Goss dodbooes 27, [96] 
SPECLOS Dla deri nea ers e [173] kidney-leaved............. [96] 
Mownsendiasnaaiec nee [232] MOMMA daogobooobuod oo [OO 
EXSCapaleseeiu tei LOn (25.5) u menwainl Hl OWers ee ae ei eee [221] 
grandiflora eee 19, [232] IAMeGI CON eee [221] 
SELECE Os SrA Lae ei [233)]5\ @iwasted-stalkeas woe aeee 27, [93] 
Townsendia, large-flowered. . .[232] clasping-leaved............ [93] 
Silleya yay ER OE Sapa Gene ZS) UMO oS ossslodeddocosaboce [55] 
Toxicodendron.............. [167] latifoliay tiara see anne 10, [55] 
Riyidibergirssyeieceiee XD MAA |) | IaaUNCVND, OO Goes bo oa oo} oe ([55] 
MOxiCOSCOLdione eee [88] | Uliginose society............. 10 
falcatuimeyy eae aan Pe (RSEU| Ih) WGRUNCIDYNID OS So 5 66 05.0 65 06 [103] 
SrAMINe ume yas ineice (RSU i Obron Bisbee iy cubediond tanaio Maro o {103] 
Mradescantiayy noni qe [87] PNeagiceGlog go asabenboodeo [103] 
occidentalis aia einer ES |) Wavirimnr NUDES bodes boda ss {181] 
Scopulonumeyne eerie [87] | Umbrella-wort.............. [112] 
Universitatis........... 18, [87] bboy agin etna yea Bete BiNG 8 [113] 
nL ESeeeaies), Li ata ee eat eee eR [164] TEIN BE Rie are ao hietainlarctas 6 ({113] 
LAMIOSA Van ars onset aeree [164] heart-leaved.............. {112] 
‘ra copogsoneee Meets [255] lance-leaved............... ({113] 
PoTnloliusseseeee eee 45, [255] narrow-leaved............. (113] 
porrifolius X pratensis...... [255] | UMBRELLA-WoRT FAMILY......[112] 
Pratensisemewws eerie 45, [255] | Upper Sonoran vegetation.... 9 
Dreacleymustard:))) 4 -s9- 2 oe [130] | Upper Transition vegetation... 9 
Mridophy lume udeeaeeeoe. (ZEUS Gy eng ooo on cow cce so OB 
lateriflorum............... [142] gracilishc ce eee Nae 12, [102] 
leucocarpum.............. Re NUR YNGNDG Gh! ou bo dood ooo [102] 
Monspeliense........... ANS AZ) MURRICAT ES efter eee eae [102] 
paradoxum-cqes sae ees PANE Urticulaniayees eaten [219] 
sbritolitnm sane oe [154] Wall Sari siies ie panieusse pat pene [219] 
dasyphyllum........... 42, [154] | Uva-ursi procumbens......... {186] 
hybridum..............44, [154] (CLV OL RRM E a G BAG eb Elo sO [186] 
Lividiuimbaacaecie sea OP Sa) Wee bicoccco vega dio obicd duos {117] 
pratenses yn Avy aes 44, [154] Vaccariasa-peene eae 45, [117] 
FEPENS are Psa eiee 44, [154] DULIATUS HAC eae {117] 
Triple-awned grass........... [60] | Vaccinium.................. [187] 
ARTISEE UIE LC eee [65] caespitosum............... [187] 
MAUS ae eee 39, [65] CPrVENNOCOCCUME:. 02 sie oioiels ai [187] 
montanum............. 33, [65] Myrtillus microphyllum.... .{187] 
SPIca tums avail aie [65] oreophilum............... [187] 
SUDSPICALUM Anse eisetelr 31,32, 41 SCOPATIUIMe Eee eee 42, [187]. 


457] 


INDEX 


References to the Flora are in brackets [ | 


WAGCGCINTACEAE:. so 42 oe elo 
Vagnera......... Rare aye TeASeet [93] 
amplexicaulis........... 25, [93] 
KACCIMMOSAK ie) ceheislvenere cle 25, [93] 
stellataynercr cence 22,28, [93] 
Wallerian ecrtischscccaceon miners 223] 
edible. . [223] 
Greek ae aceeenval terns [198] 
VALERIAN FAMILY............ [223] 
Walenianaselsciccis acelin 223] 
ceratophylla........... 35, [223] 
COTS Saeed o tors o Teter Dati [223] 
VALERIANACEAE............. [223] 
WATE RTANALES sie cicieiet (223] 
VALLICOLAE........18, 21, 24, 27 
Venus’s looking-glass. ata . [223] 
COMMON sno Oeil [223] 
WESTER th amiaccysererses cheats [223] 
Werbascum*:scererielcereiei [221] 
Blattariay cose e cies aie 45, [211] 
aphapsusia)spcvacvecvsicnnels 45, [211] 
Wien benal-\ryaly sate neiehe eas 204 
ambrosifolia............ 14, [204] 


AlcDLetia at ayetie ominstoisiekenete a 


Dracteosaseeeeaen eee 204] 
albiflora emcee [204] 
Canadensisheceeea ease [205] 
hastata ioe eicitys\s a etetiel- 11, [204] 
Verbena, common wild.......[205] 
IWERBENA GEAR ere eietereley ie) feet: [204] 
Wernbesinast rca. saci css aces we [243] 
encelioides exauriculata[243], [244] 
exaunculatareereer oor: [243 
Weronicam eis ysrciacieac cals [214] 
AQLEStIS rote hee) . [215] 
Americana....... on Ag, 29, pial 
IBUSUCUIIE eee (215 
ByZantinaee ernie 45, [215] 
PEKERTINA sen tee aarciiens (214] 
Senpyllitolianssee ea 45, [214] 
Wormskjoldii....... 34, 40, [214] 
J ueXalapensisiaa-yraceraciscrie [214] 
WOnichiiamanaoioddameiciimorae > [204] 
Wey sisi rotenone eee ioe ns [204] 
large-bracteditei))-.)-12 mis [204] 
white-flowered........... [204] 
ragweed-leaved............ [204] 
VERVAIN FAMILY.............[204] 
Wetcht itamgiesasr serene 21, [161] 
tN) per neta iero crt o aaa 34, [155] 
mop uMEvt es So anaoeadoadodC {161] 
narrow-leaved............. [161] 
remote-leaved..............[161] 
small-flowered............. {161] 
Wetchlling sa aicrectancr il: 21, [161] 
white-flowered.............[161] 
WA XBEM, oo cboaddoddoga aC (221] 


309 
Bentagoteniccvesssc vse 23, [221] 
PANG OLUMISst leer eee [221] 
Miciaiis lars Aoio sie didislaiocuarekote 161] 
Gissitifolianeerereeee eee 21, [161] 
UGTA Sandon as oane ne tee eae 161 
Oneganayisiteeioe 21, 22, [161] 
PLOdLuctareee eee: 21, 22, [161] 
Sparsitolianeerreeeaoee 21, [161] 
Vilfa depauperata filiformis... (o7] 
Ruchardsonteseeree nacre (61 
Viola dU eS ae aa eee (171] 
bellidifoliaseeyaceic ste crek [172] 
biflorasie hese s see [172] 
Canadensis- Neo-Mexicanus 
39, [172] 
Ryd bergieeerrenine cn 23, [172] 
Cognatay wwe ww notes ae [171] 
Neo-Mexicana............. [172] 
Nuttalllitey (uae ceoaciasie (172] 
pallens nee cae 33, [171] 
Dalustriswa ener 33, [171] 
DIY SCLOCESS Reenter cate {172] 
ene: HIDE Greer nae [172] 
vallicola.. 25, [172] 
VIOLACEAE.. SR Ghote oes {171] 
Violetin nce Maier ven teil {171] 
blue, western..............[171] 
Gereeleeniaelos sodboncccade {172] 
dog=tootheeeericneee error: [92] 
marsh iayicikr uneasy: [171] 
New) Mexicosscemsasec eee: {172] 
noddingiNncaarcnysceeto: {172] 
Nuttallisy eye [171] 
Delbaere riding cicinio coin ana {171] 
Rydbergishs Seance: [172] 
two-flowered.............. {172] 
Valleys s-vita eee on: [172] 
WIGEWAN INS Soacecooocdds (172] 
VIOLET RAMI Yaseen eee Lal 
Wiornaye a,c ac sista enero rae nae {121] 
erlophoraeac-mieeeiorecie (122] 
NOnests ema cacobdecdabmes [121] 
Virginia creeper............. [169] 
Vinelike\.Sactseiennee eas [169] 
Wir ginisiboweletneee eet {121] 
WESLELD vais aveisvetcyesse seitence ia: {121] 
VITACHAE en yacuiiaer var treae [169] 
Witistxc eee tiarher eee as [169] 
ATIZOMICAs eerie ae LOO 
Boulderensisiece seein ee [169] 
palmatasysieierrerrm tortie [169] 
FLPOVAD said wispe 0s ts)'s a apa haa [169] 
Tyee cgos oo dooee 12, 22, [169] 
Wolwiiluss.ceiarcg aceite [195] 
ANLOLIOMepsbetonetekstrctete te tehatrete [195] 
Wallflower, Cockerell’s....... {131] 


INDEX 


References to the Flora are in brackets [ ] 


310 
STOW MEN EIS ene tedsete [131] 
WeESLELM ese einai aite [130] 

Washingtonia longistylis...... [182] 
CDIUSA MES Maurie) coe aelster ees [182] 

Weer Crees cose edoadod soe [128] 

Water crowfoot.............. (122 
White muy cae serene 34, [122] 

flaccid-leaved........... (122] 

Water dropwort.............. [183] 
endlersshanreneicieericiniitcr [183] 

Water hemlock.............. [182] 

Water hoarhound............ [208] 
ENINANCEIGY ob adoopidagboooK [208] 
WESLETM ss iierleperesetsieneheteteiele [208 

Wraterleateaciaaier tle oo] 
Rendler/s ayy ones [199] 

WATER-LILY FAMILY.......... [125] 

Water milfoil.............10, [181] 
Spiked AEM aate [181] 

Water parsnip............... [183] 
Gut-leavedsaenmmmiirnacevatcl [183] 

Water pepper............... 10 


Water-plantain.............. 


COMMON eae [56] 
WATER-PLANTAIN FAMILY..... [56] 
Water spring bee [114] 

Chamisso’s. (114] 
Water starwort........... 10, [166] 

AIKEN be 5 )4'g'd6 go Go clauiae.s [166] 

MATS Hes ae ee eer years 166] 
WATER STARWORT FAMILY [166] 
Wiax-cunrantanenineneeehicn 20, 29 

Sra ee Pe ile aap aaa [140] 
Wieed Sure Naya yA RUE ae 
Western mallow............. [170] 

WATER vn eee aya paar [170] 
Westernlistare oreo: [173] 

many-flowered............ [173] 

nakedwer ae are eee Ludo 

SHOW Eset csi ciel eno tinier [173] 

StrIiCE Se etnine np au nh enn hunreioe {173] 

ten-petalled............... {174] 

wavy-leaved.............. [173] 
Wihea ea ica ine natn itratora [77] 
Wiheatioralssmmemecianiri-iets [76] 

ANGVANIES os ola gesododagood00 [76] 

WHOMINEMINSG Gig gbeesodoaucos [76] 

Ruchardsonvs eae eeeeeee [76] 

Lipanane verter Keio [77] 

Scnibnerissseeueiince ace [76] 

Slender (eiepaiicrewstaye/aaisherhoinvs [76] 

SOLE RU a LN rade Sat rela [77] 

Vasey’s [76] 

VIOLE EN ROCHA Vt NOR eee ar naa [76] 

WESTER! siirean ie cr om a Vann [77] 
White evening primrose....... [178] 


cut-leaved nye ateliaraior [179] 


INUttallis heise saan ers [179] 
rhizomatous............... [179] 
white-stemmed............ [178] 
White sage.................. [110] 
woolly.syhaieee sua ee ee [110] 
Whitlow-grass............... [132] 
artic) whitess casero ae [133] 
Baker’se.i7. ee eS 3] 
Goloradone ae eee [132] 
hoary jessy Nese idee milo cesses [133] 
thick=leaved-eeysemeneenee ts [132] 
twisted-podded............ [133] 
wihitefancticun ee eee [133] 
iC Bab StoES HLS Gididia wuoldraiorokn [132] 
Wihitlowworteeeeseeinee ane (112] 
decumbentso555), sheen [133] 
fexo) (a Keron Iu Bid eh Atala lai [133] 
James sii ane aaa Ne tage {112] 
pUlVvinate.se eee {112] 
vellowisheer cece ne [133] 
Waldibrientiarien sec ince 21 
Wild cherry ponee bCWS Mile 2X) 
black- fated western....... [152] 
Wild oat-grass............... [66] 
(Camtigaws) Gucb igs cabooo 0% [66] 
COMO Nooisccceddacss aa [66] 
intermediate.............. [66] 
Waldiliquonicesse nyse lent [159] 
SCaly eat ei httene oceans [159] 
Wild onion, Fraser’s......... [92] 
Geyer Gee snes ee aes yale [91] 
Nuttall lise eee ea Ss [91] 
Pike's) Peak.cs-32))2 20-5. 4. [92] 
GHECURVER rp iae ee bieeene [92] 
Waldéplummaraeniie steric 20, 28 
Almerican ere enoeeeemeree {151] 
Wild rye, Canadian.......... [78] 
Macounys ieee [78] 
slendere nae oe ene [78] 
StOUEN: Agen Een ona [78] 
Wildsarsaparilla............. [181] 
COMMMONG daiscosegesoooaos 181 
Willow. . 12, 21,27, 38, [99] 
Bebbis se uuice see yee 00] 
bloom-branched........... [99] 
Gwar k eee ca eae ear ae eeom [100] 
falseyWaplandeeeeeeeeeeers [100] 
Hendlerisceriiciiuas sured [99] 
clacous nn nee eee [100] 
green-leates einen ieee [100] 
aplandtifalsesseemaaeeceee [100] 
long-beaked............... [99] 
Narrow-leatye eee [99] 
Nuttall lice ie ant eae siete [100] 
Peachy eee MMO Se [99] 
rock-lovingesee semen [100] 
Rocky Mountain.......... [101] 


459] 


INDEX 


References to the Flora are in brackets [ ] 


Wolf starr aruercraristeetce sy ctcrerets 
Yellows ee CIO ere 


STA Easy fore secs tere neree srekete 
Nortehernvaceve reese eee 
paniclediwrnsa cc seimchktee ee 
glandulanacceee ieee 
Plmperne leslie 
TEA dishes wapeje sere eesetaiels rae 
western.. Pra ele 
WILLow- HERB PAMIDY Jone 


IDOa socnmic adios eed GoMlnsidD 
creeping... PAL ed CU KN eae 
Gnestlowerede animale 


one-sidedmanseie cea oae i 


WINTERGREEN FAMILY........ 
Witchvonasseniniyeine yikes 
Wood reed-grass............. 
SIS ET esi sere cmcailsbateuetebers 
Wicoal ®iGitcssscdbogomecdsans 
dense-cymed.............. 
small-flowered............. 
Sprecher te velerter ition 


WooD SORREL FAMILY........ 
Wooded mesa formation...... 


Oreganan eo silos woe 29, 
SCOpULInaas eee tei 29, 
WioodsiaNiclittivnisererr rica 
MOMMMEAV Ga concadonuoaaae 
Wiool-jomltenmr eerie 18, 
Bakerisiisemisiicesmia ioctl ares 


SUbal pines -tereyetceasieaeieret: 
umbellate BAH Sais marcia crolatrok 


WOlOiocdodccosacunovesce 


Bur 
bienniallvin racine omcheatssmens (247] 
Wiyethialy arises Oye ions read [242] 
amplexicaulissn. cis.) [242] 
Wyethia, clasping-leaved..... [242] 
\WarowiieAs Gboobubecocapasc [239] 
(6a FIG, Gate el SU nm Ents ian 16, [239] 
DERI, doodosicoocacebonS [225] 
Commune eee 12, 45, [225] 
MantEhOxalisueryeieva seer {163] 
stricta einem 25, [163] 
Ximenesia exauriculata....... [244] 
Xylophacoswae yee aes [157] 
ISEWe wid boone aio consi Ceteasc 30, [157] 
Shortianuss see 15, [157] 
EXGVIRIDAT ESS alsin yecd evar aera [87] 
AERO Wirsaactsuallensenyeie eteuattncra tke [246] 
WOOL Lys ey a wat testa ele [246] 
Nellowicressee eee eee {129] 
Spreadinccnew cy tae rrr ne {129] 
warty-podded:2......../.- [129] 
Yellow mountain avens.......[146] 
Arapahoehnancneraaiicncceit [146] 
Yellow pond lily.......... 24, [125] 
many-sepalled.. 5c ol ASI) 
Yellow wood sorrel.. [163] 
tikoyated raced oldiama Arico e3 [163[ 
h Alcor Banter dich caacicca waco n [94] 
ONMSUSTUROLLO Aeterna [94] 
glaucarepaeroer 15,18, 20, [94] 
Yucca nae ats aR 19 
Yucca mesa formation.. aouliyy te) 
Zanichellia. . RARE Dodie tieen SO] 
palustriss-ceee cee ene 10, [56] 
Zanichellia, marsh........... [56] 
ZANICHELLIACEAE.... [55] 
Zones of vegetation.......... 8 
alpine summits............ 9 
foothills and mountain pla- 

EAU Laer Matte 9 
lower mountain slopes Beat 9 
mesas. babe 9 
plains... : 9 
subalpine mountain slopes... 9 

Zygadenus elegans...........- [88] 
ESPEN MCD Cb aoa sooo KO Od [88] 
Coloradowepeterarrya-Precrer [83] 
SHOW shisloseision gl seatsien selee aieeke [88] 


(Ss) 


UNIVERSITY OF MISSOURI STUDIES 


Edited by W.“G, Brown) ' 


SCIENCE SERIES 
VOLUME I 


Topography of the Thorax and Abdomen, by PETER Por- 
TER, M. A., M,,.D., Associate Professor of Anatomy, St. 
Louis University. pp. vii, 142. 1905. $1.75. Qut of print. 


The Flora of Columbia and Vicinity, by Francis Pot- 
TER DANIELS, Ph, D. pp. x, 319. 1907-  $1:25. 


VOLUME II 


An Introduction to the Mechanics of the Inner Har, by 
Max Meyer, Ph. D., Professor of Experimental By 
chology. pp. viii, 140. 1907. | $1.00. 


The Flora of Boulder, Colorado, and Vicinity, by Fran- 
cis Porrer DANIELS, Ph. D., Professor in Wabash Col- 
lege, Indiana. Formerly Assistant in the’ University of 
Missouri. pp. Vili, 311. 1911.» $1.50. 


‘LITERARY AND LINGUISTIC SERIES 
VOLUMEL — 


Chevalerie Vivien, Facsimile Phototypes, with an intro- 
duction and notes, by RAyMoND WEEKS, Ph. D., Profes- 
sor of the Romance Languages and Literatures, Columbia 
University, New York. pp. 12 with XXIV plates. 1910. 
$1.25. 


VOLUME II 


“The Cyclic Relations of the Chanson de Willame, by 


THEODORE ELy Hamitton, A. M., Ph. D., Assistant Pro- 
fessor of Romance Languages in Ohio State University. 
Formerly Instructor in Romance Languages in the Uni- 
versity of Missouri, pp. ix, 301. 1911. $1.50. 


. Balted by We G Bow 


By 


pony ey a 


A RIAN 


Aes VOLUME Ly ‘i 


‘ The Clothing Industry, in New ion by Fett E. PorR, Ph. 
D., Professor of Economics aud Finance. pps xviii, 340. 
i 1905. va AE NEN ine Drm PAINT 


et | VOLUME 1 


u “The Social anetion of Religious Belief, by: Wie Rte 
'WiLson ELWANG,, Ph, D. pp. viii, 104. 1908. $1. 00. 


i 


‘The Origin and ioe Development ok the English Unie 

yersities to the Close of the Thirteenth Century, by, 
EARNEST VANCOURT VauGHN, A. M., Instructor i in denen 
pp: en, 147. 7908 $1. 00; a i Ph srt 


wat 


Qo, 


The Origin of ‘the Werewolf Superstition, by) Caonen: 
| Tayior Stewart, ‘A. M., Ph. D., ‘Assistant Professor i 
of Germanic Panen sees) pp. iv, 32. naa 35 cents . 


4. The Transitional Period, 1788-1 789, i in ‘the Government 
o the United States, by FRANK FLETCHER STEPHENS, Ph. 

} Ph. D., Instructor in American ey las yas on 

he ane oS 00. 


fb 
fy Sr Mi 


NW AG Baan fa 
AIA ABA BTA [i fo 


rs 


RAS RBAAaAs RARE 


ay 
, 
a 


“~~ se 


53 95> 


os 
é 


SED: 


a 
Aen 
cf™ 
é 
ARABAIOR Ae 
lan 


» Ps wp} 


> pw) » 


pws 


)) 
} 


a Di 


PED ay» >, 


22> > 


> 


»> 
D>) 


oN 

Vaan bi GN AS a ANA o : 
pr 

= Vianna Ap Doan 


RAARAN Ta 


Ags 2 RIP RAT ae 
An BRARANRE, Aaa ar eNO 


DED) SS e Olt eae LAP LIE : 
oe 


») =) 


SDD) 
D922 DY.) 


>) 


YAIAINNNe 
| pe e) \ 
‘ VENES SN COD